WO2016195380A1 - Procédé de préparation d'un aérogel composite d'oxyde de métal-silice et aérogel composite d'oxyde de métal-silice préparé en l'utilisant - Google Patents

Procédé de préparation d'un aérogel composite d'oxyde de métal-silice et aérogel composite d'oxyde de métal-silice préparé en l'utilisant Download PDF

Info

Publication number
WO2016195380A1
WO2016195380A1 PCT/KR2016/005815 KR2016005815W WO2016195380A1 WO 2016195380 A1 WO2016195380 A1 WO 2016195380A1 KR 2016005815 W KR2016005815 W KR 2016005815W WO 2016195380 A1 WO2016195380 A1 WO 2016195380A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal oxide
silica composite
airgel
silica
producing
Prior art date
Application number
PCT/KR2016/005815
Other languages
English (en)
Korean (ko)
Inventor
김종훈
최재훈
이제균
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US15/577,742 priority Critical patent/US10526207B2/en
Priority to CN201680031855.8A priority patent/CN107683173B/zh
Priority to EP16803735.6A priority patent/EP3305726B1/fr
Priority claimed from KR1020160067867A external-priority patent/KR101868682B1/ko
Publication of WO2016195380A1 publication Critical patent/WO2016195380A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/12Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/14Colloidal silica, e.g. dispersions, gels, sols

Definitions

  • An object of the present invention is to minimize the shrinkage of silica gel generated during the drying process of a metal oxide-silica composite airgel, thereby facilitating a metal oxide-silica composite aerogel having low tap density and high specific surface area with excellent pore properties. It is to provide a manufacturing method that can be manufactured.
  • the silicate solution may include the water glass (Na 2 SiO 3 ) in an amount to include 0.04M to 6.0M silica when based on silica (SiO 2 ) included in the water glass.
  • a separation process of separating the precipitate from the solvent using a conventional method, specifically, a vacuum filter or the like may optionally be further performed.
  • the method of manufacturing a composite airgel according to an embodiment of the present invention may further include a separation process with a solvent after the formation of the metal oxide-silica composite precipitate.
  • the washing process may be performed according to a conventional method such as dipping, spraying, or spraying using a washing solvent.
  • the washing solvent is water; Alcohol compounds such as methanol, ethanol, isopropanol or propanol; Hydrocarbon-based compounds such as hexane, octane, n-decane, n-heptane, n-undodecane, cyclohexane or toluene; Or ketone compounds such as methyl ethyl ketone or acetone, and any one or a mixture of two or more thereof may be used.
  • Alcohol-based compounds having excellent miscibility with water as a reaction solvent, easy penetration into pores inside silica gel particles, and no drying effect and subsequent pore shrinkage and deformation when combined with subsequent drying processes, More specifically ethanol can be used.
  • the water content control process may be performed by a conventional solid / liquid separation method such as a vacuum filter, more specifically, the water content in the metal oxide-silica composite precipitate is 110% by weight or less based on the total weight of the metal oxide-silica composite precipitate. More specifically, it may be performed to be 85% by weight or less. This moisture content control can shorten the drying time during the drying process and at the same time increase the fairness.
  • the metal oxide-silica composite airgel may have an average particle diameter (D 50 ) of 7 ⁇ m to 15 ⁇ m, more specifically 7 ⁇ m to 12 ⁇ m.
  • the average particle diameter (D 50 ) of the metal oxide-silica composite airgel may be defined as the particle size based on 50% of the particle size distribution, wherein the average particle diameter of the metal oxide-silica composite airgel is laser diffraction method (laser) diffraction method) or as a dry analysis model, a particle size analyzer (Macrotrac Particle Size Analyzer S3500) was used to calculate the average particle diameter (D 50 ) at 50% of the particle size distribution in the measuring device. can do.
  • the silica airgel has a BET (Brunauer-Emmett-Teller) surface area of 50 m 2 / g to 700 m 2 / g, an average particle diameter (D 50 ) of 10 ⁇ m to 150 ⁇ m, and a porosity of 0.5 cm 3 / g to 2.4 Cm 3 / g, and the average pore diameter of pores included in the silica airgel may be 0.5nm to 40nm.
  • BET Brunauer-Emmett-Teller
  • the metal oxide may be used without particular limitation as long as it is fixed by silanol groups on the surface of the silica airgel and used to form the composite airgel.
  • the metal oxide may be an oxide containing any one or two or more metals selected from the group consisting of alkali metals, alkaline earth metals, lanthanides, actinides, transition metals, and metals of Group 13 (IIIA), More specifically, calcium (Ca), magnesium (Mg), copper (Cu), zinc (Zn), manganese (Mn), cadmium (Cd), lead (Pb), nickel (Ni), chromium (Cr), silver (Ag), titanium (Ti), vanadium (V), cobalt (Co), molybdenum (Mo), tin (Sn), antimony (Sb), strontium (Sr), barium (Ba), and tungsten (W) It may be an oxide containing any one or two or more metal elements selected from the group consisting of
  • the metal oxide-silica composite aerogel provided with 0.009 g / ml to 0.055 g / ml and having a BET specific surface area of 450 m 2 / g or more, and more specifically 450 m 2 / g to 600 m 2 / g do.
  • the precipitate was spontaneously precipitated and then the transparent solvent was removed.
  • the separated precipitate was washed three times with ethanol and then vacuum filtered.
  • the resulting cake (water content of about 85% by weight) was placed on a substrate of a MIR drying apparatus equipped with a MIR lamp, and irradiated with MIR under the conditions described in Table 1 below, thereby containing a plurality of micropores.
  • a metal oxide-silica composite aerogel comprising a porous porous silica, and a metal oxide dispersed in the porous silica. The amount of each compound was used as described in Table 1 below.
  • a metal oxide-silica composite aerogel was prepared in the same manner as in Example 1 except that the washing and drying processes were performed under the conditions described in Table 1 below.
  • the tap density was measured using a tap density meter (TAP-2S, Logan Istruments co.). The results are shown in Table 1 below.
  • Drying condition 'IR 90%' in Table 1 means performing by adjusting the intensity (intensity) of the infrared irradiation device to 90%, and as a result, the drying temperature at IR 90% is lower than when the IR 100% do.
  • the MIR wavelength penetrates inside the aerogel structure and directly resonates energy by resonating in the wavelength range of 2 ⁇ 4 ⁇ m with the hydroxyl group (-OH) included in the molecular structure of water and ethanol used as reaction solvent and washing solvent.
  • the drying of the solvent may proceed within the pores of the gel structure, and at the same time, the surface of the gel particles is dried by increasing the ambient temperature by the MIR lamp, thereby minimizing shrinkage of the airgel particles during the drying process compared to the conventional oven drying. Because. Accordingly, it can be seen that the tap density of the composite airgel finally prepared during drying by MIR irradiation can significantly increase the specific surface area.
  • Examples 1 to 3 irradiated with MIR in the wavelength range of 2 ⁇ m to 8 ⁇ m differed only from the wavelength range under the use of the same washing solvent and under the same IR 90% or IR 100% drying conditions.
  • NIR Near Infrared Ray, NIR
  • Example 1 using the ethanol single solvent as the washing solvent, the tap density reduction effect was greater than in Example 2 using a mixed solvent of water and ethanol as the washing solvent under the same IR 90% conditions. From these results, it can be seen that the tap density of the metal oxide-silica composite aerogel can be further lowered through simultaneous control of the washing solvent together with the drying process by infrared irradiation.
  • Example 1 the metal oxide-silica composite aerogels prepared in Example 1 and Comparative Example 1, the adsorption / desorption amount of nitrogen according to the partial pressure (0.11 ⁇ p / p o ⁇ 1) using an ASAP 2010 device of Micrometrics was measured, and from this, the BET specific surface area of the composite airgel was evaluated.
  • Example 1 subjected to the drying process by MIR irradiation showed a BET specific surface area increased by about 25.9% or more compared with Comparative Example 1 subjected to the oven drying process. From these results, it can be seen that the specific surface area of the final composite airgel with the tap density during drying through infrared irradiation can be significantly improved.

Abstract

La présente invention concerne un procédé de préparation d'un aérogel composite d'oxyde de métal-silice et l'aérogel composite d'oxyde de métal-silice qui est préparé en l'utilisant et qui présente d'excellentes propriétés de porosité ainsi que d'excellentes propriétés telles qu'une densité après tassement faible, une surface active spécifique élevée et similaires. Le procédé comprend les étapes consistant à : préparer un précipité composite d'oxyde de métal-silice en ajoutant une solution de sel métallique à une solution de silicate et en les faisant réagir ; et sécher le précipité composite d'oxyde de métal-silice l'exposant à des rayons infrarouges présentant une région de longueur d'onde de 2 µm à 8 µm.
PCT/KR2016/005815 2015-06-01 2016-06-01 Procédé de préparation d'un aérogel composite d'oxyde de métal-silice et aérogel composite d'oxyde de métal-silice préparé en l'utilisant WO2016195380A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/577,742 US10526207B2 (en) 2015-06-01 2016-06-01 Method of preparing metal oxide-silica composite aerogel and metal oxide-silica composite aerogel prepared by using the same
CN201680031855.8A CN107683173B (zh) 2015-06-01 2016-06-01 金属氧化物-二氧化硅复合气凝胶的制备方法和制备的金属氧化物-二氧化硅复合气凝胶
EP16803735.6A EP3305726B1 (fr) 2015-06-01 2016-06-01 Procédé de préparation d'un aérogel composite d'oxyde de métal-silice

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20150077280 2015-06-01
KR10-2015-0077280 2015-06-01
KR10-2016-0067867 2016-06-01
KR1020160067867A KR101868682B1 (ko) 2015-06-01 2016-06-01 금속산화물-실리카 복합 에어로겔의 제조방법 및 이를 이용하여 제조된 금속산화물-실리카 복합 에어로겔

Publications (1)

Publication Number Publication Date
WO2016195380A1 true WO2016195380A1 (fr) 2016-12-08

Family

ID=57440737

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/005815 WO2016195380A1 (fr) 2015-06-01 2016-06-01 Procédé de préparation d'un aérogel composite d'oxyde de métal-silice et aérogel composite d'oxyde de métal-silice préparé en l'utilisant

Country Status (1)

Country Link
WO (1) WO2016195380A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI706914B (zh) * 2019-05-03 2020-10-11 中央研究院 金屬複合氧化矽材料及其製備方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11139819A (ja) * 1997-11-05 1999-05-25 Mitsui Chem Inc 高強度軽量シリカエアロゲル成型体とその製造方法
JP2000034117A (ja) * 1998-07-16 2000-02-02 Mitsui Chemicals Inc シリカ質アエロゲル球体の製造方法
US20110000370A1 (en) * 2004-12-27 2011-01-06 Svenska Aerogel Ab Agglomerates of precipitated silica, method for their preparation and their use as filter medium for gas filtration
KR20110046715A (ko) * 2009-10-29 2011-05-06 최진석 중적외선 카본램프를 이용한 페인트 건조용 히터
JP2014051643A (ja) * 2012-08-09 2014-03-20 Panasonic Corp 2剤式エアロゲル成形体材料、及び、それを用いた断熱材、並びに、断熱材の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11139819A (ja) * 1997-11-05 1999-05-25 Mitsui Chem Inc 高強度軽量シリカエアロゲル成型体とその製造方法
JP2000034117A (ja) * 1998-07-16 2000-02-02 Mitsui Chemicals Inc シリカ質アエロゲル球体の製造方法
US20110000370A1 (en) * 2004-12-27 2011-01-06 Svenska Aerogel Ab Agglomerates of precipitated silica, method for their preparation and their use as filter medium for gas filtration
KR20110046715A (ko) * 2009-10-29 2011-05-06 최진석 중적외선 카본램프를 이용한 페인트 건조용 히터
JP2014051643A (ja) * 2012-08-09 2014-03-20 Panasonic Corp 2剤式エアロゲル成形体材料、及び、それを用いた断熱材、並びに、断熱材の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3305726A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI706914B (zh) * 2019-05-03 2020-10-11 中央研究院 金屬複合氧化矽材料及其製備方法

Similar Documents

Publication Publication Date Title
KR101868682B1 (ko) 금속산화물-실리카 복합 에어로겔의 제조방법 및 이를 이용하여 제조된 금속산화물-실리카 복합 에어로겔
KR101907737B1 (ko) 금속산화물-실리카 복합 에어로겔의 제조방법 및 이를 이용하여 제조된 금속산화물-실리카 복합 에어로겔
KR101868683B1 (ko) 금속산화물-실리카 복합 에어로겔의 제조방법 및 이를 이용하여 제조된 금속산화물-실리카 복합 에어로겔
WO2017171279A1 (fr) Procédé de préparation d'un granule d'aérogel de silice sphérique, et granule d'aérogel de silice sphérique préparé par ce procédé
KR101938369B1 (ko) 산화금속-실리카 복합 에어로겔의 제조방법 및 이로부터 제조된 산화금속-실리카 복합 에어로겔
KR101941648B1 (ko) 소수성의 산화금속-실리카 복합 에어로겔의 제조방법 및 이로부터 제조된 소수성의 산화금속-실리카 복합 에어로겔
KR101015430B1 (ko) 실리카 에어로겔 분말의 제조방법
KR101752091B1 (ko) 실리카 에어로겔 포함 블랑켓 및 이의 제조방법
KR101187568B1 (ko) 실리카 에어로겔 과립의 제조방법
WO2017078293A1 (fr) Procédé de préparation d'un aérogel hydrophobe composite de type oxyde métallique-silice, et aérogel hydrophobe composite de type oxyde métallique-silice ainsi préparé
KR101938654B1 (ko) 산화금속-실리카 복합 에어로겔의 제조방법 및 이로부터 제조된 산화금속-실리카 복합 에어로겔
KR20130051304A (ko) 초소수성 실리카 에어로겔 분말
WO2013100492A1 (fr) Matériau d'isolation par le vide comprenant un matériau sorbeur ayant une grande surface spécifique
Elnahrawy et al. Influence of reaction conditions on sol-gel process producing SiO 2 and SiO 2-P 2 O 5 gel and glass
WO2018048289A1 (fr) Procédé de fabrication d'aérogel de silice et aérogel de silice ainsi fabriqu.
CN111573650B (zh) 一种制备高比表面积介孔碳粉末的方法
WO2016195379A1 (fr) Procédé de préparation d'un aérogel composite oxyde métallique-silice et aérogel composite oxyde métallique-silice préparé par ledit procédé
WO2016195380A1 (fr) Procédé de préparation d'un aérogel composite d'oxyde de métal-silice et aérogel composite d'oxyde de métal-silice préparé en l'utilisant
WO2016195381A1 (fr) Procédé de préparation d'un aérogel composite de type oxyde métallique-silice et aérogel composite de type oxyde métallique-silice ainsi préparé
Ikram et al. Hydrothermal-hot press processed SiO2-rGO hybrid with enhanced physical properties
WO2011136497A2 (fr) Procédé pour la fabrication d'un lithium-métal de transition-phosphate
WO2014112661A1 (fr) Silice mésoporeuse granulaire pure, et procédé permettant de produire une telle silice à l'aide de liant organique
WO2017099488A1 (fr) Procédé de fabrication d'un aérogel de composite d'oxyde métallique-silice et aérogel de composite d'oxyde métallique-silice ainsi fabriqué
WO2022080877A1 (fr) Méthode de préparation de microtige de silice poreuse capable de réguler la forme et la taille
WO2020111632A1 (fr) Procédé de réglage de dimension fractale d'une substance à base de graphène

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16803735

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15577742

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016803735

Country of ref document: EP