WO2016195009A1 - Air cleaning filter - Google Patents

Air cleaning filter Download PDF

Info

Publication number
WO2016195009A1
WO2016195009A1 PCT/JP2016/066386 JP2016066386W WO2016195009A1 WO 2016195009 A1 WO2016195009 A1 WO 2016195009A1 JP 2016066386 W JP2016066386 W JP 2016066386W WO 2016195009 A1 WO2016195009 A1 WO 2016195009A1
Authority
WO
WIPO (PCT)
Prior art keywords
activated carbon
silica gel
filter medium
group
air cleaning
Prior art date
Application number
PCT/JP2016/066386
Other languages
French (fr)
Japanese (ja)
Inventor
禎仁 後藤
健人 高見
増森 忠雄
北川 義幸
Original Assignee
東洋紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡株式会社 filed Critical 東洋紡株式会社
Priority to JP2017522241A priority Critical patent/JP6988477B2/en
Publication of WO2016195009A1 publication Critical patent/WO2016195009A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/01Deodorant compositions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/16Disinfection, sterilisation or deodorisation of air using physical phenomena
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/28Plant or installations without electricity supply, e.g. using electrets

Definitions

  • the present invention relates to an air cleaning filter medium having a deodorizing function.
  • a method of attaching a hydrazine derivative to an inorganic porous material such as silica gel is disclosed as an aldehyde removing material that does not use activated carbon (for example, Patent Document 4).
  • Such adsorbents are excellent in aldehyde removal performance, but they cannot adsorb hydrocarbon gases such as toluene, xylene, butane, etc., so there is a problem that the removal performance is insufficient particularly as an exhaust gas odor deodorizing filter. It was. *
  • Patent Document 5 a deodorant containing an inorganic porous material such as zeolite and a activated carbon impregnated with a hydrazine derivative has been disclosed (for example, Patent Document 5).
  • the particle size of the inorganic porous material is limited to 30 ⁇ m or less because it is for supporting on the fiber structure, and the air cleaning When ventilated as a filter medium, there is a problem that ventilation resistance increases due to the high bulk density of the porous body.
  • the conventional filter medium containing deodorizing material particles such as activated carbon particles and silica gel particles has a structure in which particles are supported between fiber sheets, and there is a problem that the deodorizing material particles fall off from the fiber gaps.
  • the present invention has been made against the background of the above-mentioned prior art, has low ventilation resistance, is excellent in deodorizing performance of aldehydes and hydrocarbon gases, and has good visibility due to dust adhesion during use.
  • a filter medium for cleaning is provided.
  • the present invention is as follows. 1. A filter medium in which a uniform mixture of silica gel, activated carbon and a thermoplastic resin, in which a hydrazide compound is supported between cover layers, is fixed, and the shape of the silica gel and activated carbon is a crushed shape. . 2. 2. The air cleaning filter medium according to 1 above, wherein the hydrazide compound is adipic acid dihydrazide. 3. 3. The air cleaning filter medium according to 1 or 2 above, wherein one of the cover layers is an electret nonwoven fabric. 4). A filter unit obtained by molding the filter medium according to any one of the above 1 to 3 into a pleated shape.
  • FIG. 1 It is a schematic diagram of the filter medium for air cleaning of this invention. It is a ventilation resistance measuring jig in the present invention. It is a perspective view of the filter unit in the present invention.
  • the air purification filter medium of the present invention needs to contain silica gel. Since silica gel does not have surface functional groups or impurities derived from natural products unlike activated carbon, it does not react with silica gel even when a chemical for aldehyde adsorption is added, and the chemical can be prevented from deteriorating.
  • Silica gel is an aggregate of primary particles mainly composed of silicon dioxide, and can be obtained by various methods such as a gas phase method, a wet method (precipitation method), and a sol-gel method.
  • the silica gel used in the present invention can be obtained by any method as long as desired characteristics can be obtained. *
  • the silica gel used in the present invention needs to be in a crushed shape.
  • it is spherical, when it is supported between the cover layers, not only does the packing density increase and the ventilation resistance increases, but the particles are slippery, so that the particles fall off after forming into a sheet or after pleating.
  • the average particle size of the silica gel used in the present invention is preferably 50 ⁇ m or more, and more preferably 100 to 600 ⁇ m. When the average particle size is less than 50 ⁇ m, it is advantageous for obtaining an adsorption rate. However, when silica gel particles are fixed between cover layers and used as a filter medium for air cleaning, if the amount used is increased to ensure the adsorption capacity. Since the packing density is increased, the ventilation resistance is too large to allow ventilation. Furthermore, there is a possibility that dropout and scattering occur easily. *
  • the pore diameter of the silica gel used in the present invention is preferably 12 to 100 nm, more preferably 20 to 90 nm, further preferably 30 to 80 nm, and most preferably 40 to 70 nm. . If the pore diameter is less than 12 nm, the pores are likely to be clogged at the time of drug addition, which is disadvantageous in terms of reaction rate, and the physical adsorption force due to intermolecular force between the walls increases, so unintentional adsorption of odors And desorption increases. On the other hand, when the pore diameter exceeds 100 nm, it is difficult to obtain a surface area, so that a sufficient deodorization rate cannot be obtained. *
  • the pore diameter defined in the present invention means a peak diameter obtained by the BJH method. More specifically, the pore diameter is obtained using an adsorption side isotherm obtained by a nitrogen adsorption method at 77 Kelvin (liquid nitrogen temperature). It is done. In this method, since it is not always necessary to obtain the total pore volume, evaluation and analysis are facilitated. *
  • the silica gel used in the present invention has the above-mentioned pore diameter in order to reduce the action of capillary condensation, and also requires a surface area to develop an adsorption rate useful as a deodorizing material. That is, the specific surface area calculated by the nitrogen adsorption BET method at 77 Kelvin is preferably 20 to 1000 m 2 / g, more preferably 35 to 500 m 2 / g, and 50 to 400 m 2 / g. Is more preferably 70 to 300 m 2 / g. When the specific surface area is less than 20 m 2 / g, the aldehyde removal rate decreases, and when it exceeds 1000 m 2 / g, the physical adsorption amount of odor increases.
  • the air-cleaning filter medium of the present invention is characterized in that at least one hydrazide compound is supported on silica gel in order to develop adsorption performance for lower aldehydes such as acetaldehyde.
  • hydrazide compound examples include a monohydrazide compound having one hydrazide group in the molecule, a dihydrazide compound having two hydrazide groups in the molecule, and a polyhydrazide compound having three or more hydrazide groups in the molecule. Can do. *
  • the monohydrazide compound include, for example, general formula (1) R—CO—NHNH 2 [wherein R represents a hydrogen atom, an alkyl group, or an aryl group which may have a substituent.
  • R represents a hydrogen atom, an alkyl group, or an aryl group which may have a substituent.
  • the monohydrazide compound represented by this can be mentioned.
  • examples of the alkyl group represented by R include a methyl group, an ethyl group, an n-propyl group, an n-butyl group, an n-pentyl group, an n-hexyl group, an n-heptyl group, Examples thereof include linear alkyl groups having 1 to 12 carbon atoms such as n-octyl group, n-nonyl group, n-decyl group and n-undecyl group.
  • aryl group a phenyl group, a biphenyl group, a naphthyl group etc. can be mentioned, for example, Among these, a phenyl group is preferable.
  • substituent for the aryl group examples include a halogen atom such as a hydroxyl group, fluorine, chlorine, bromine, methyl group, ethyl group, n-propyl group, iso-propyl group, n-butyl group, tert-butyl group, iso group.
  • a halogen atom such as a hydroxyl group, fluorine, chlorine, bromine, methyl group, ethyl group, n-propyl group, iso-propyl group, n-butyl group, tert-butyl group, iso group.
  • -A linear or branched alkyl group having 1 to 4 carbon atoms such as a butyl group.
  • hydrazide compound represented by the general formula (1) examples include lauric acid hydrazide, salicylic acid hydrazide, form hydrazide, acetohydrazide, propionic acid hydrazide, p-hydroxybenzoic acid hydrazide, naphthoic acid hydrazide, 3-hydroxy- Examples thereof include 2-naphthoic acid hydrazide. *
  • dihydrazide compound examples include, for example, general formula (2) H 2 NHN—X—NHNH 2 [wherein X represents a group —CO— or a group —CO—A—CO—.
  • A represents an alkylene group or an arylene group.
  • the dihydrazide compound represented by this can be mentioned.
  • examples of the alkylene group represented by A include a methylene group, an ethylene group, a trimethylene group, a tetramethylene group, a pentamethylene group, a hexamethylene group, a heptamethylene group, an octamethylene group, and a nonamethylene group.
  • linear alkylene groups having 1 to 12 carbon atoms such as a decamethylene group and an undecamethylene group.
  • substituent for the alkylene group include a hydroxyl group.
  • arylene group include a phenylene group, a biphenylene group, a naphthylene group, an anthrylene group, and a phenanthrylene group. Among these, a phenylene group and a naphthylene group are preferable.
  • substituent of the arylene group include the same substituents as the aryl group.
  • dihydrazide compound represented by the general formula (2) examples include carbohydrazide, oxalic acid dihydrazide, malonic acid dihydrazide, succinic acid dihydrazide, adipic acid dihydrazide, azelaic acid dihydrazide, sebacic acid dihydrazide, and dodecane-2-acid dihydrazide.
  • Dibasic acid dihydrazides such as maleic acid dihydrazide, fumaric acid dihydrazide, diglycolic acid dihydrazide, tartaric acid dihydrazide, malic acid dihydrazide, isophthalic acid dihydrazide, terephthalic acid dihydrazide, dimer acid dihydrazide, 2,6-naphthoic acid dihydrazide, etc. .
  • various dibasic acid dihydrazide compounds described in JP-B-2-4607, 2,4-dihydrazino-6-methylamino-sym-triazine, and the like can be used as the dihydrazide of the present invention.
  • polyhydrazide compound examples include polyacrylic hydrazide.
  • dihydrazide compounds are preferable, dibasic acid dihydrazide is particularly preferable, and adipic acid dihydrazide is even more preferable.
  • the said hydrazide compound can be used individually by 1 type or in mixture of 2 or more types.
  • the method for supporting the hydrazide compound on the silica gel is not particularly limited as long as the desired properties can be obtained.
  • a method of mixing the hydrazide compound in silica sol and supporting it on the primary particle surface and drying and solidifying it The silica gel is dissolved in a solvent and impregnated and supported by a hydrazide compound, the hydrazide compound is dissolved in a solvent and sprayed or applied to the silica gel to absorb, and the solvent is dried in subsequent steps.
  • the solvent an appropriate one can be selected in consideration of the characteristics and workability of the hydrazide compound. Among these, it is preferable to use an aqueous solvent from the viewpoint of safety and workability.
  • a more preferable loading treatment method is a method in which a drug solution with less water retention is absorbed and mixed while stirring and mixing in a container, and the particle dispersibility is maintained by stirring and mixing or a fluidized bed in the subsequent drying step.
  • the solution is absorbed by spraying or injecting the hydrazide compound solution while stirring and mixing with a Henschel mixer or a ribbon mixer, etc., and heating, decompression, or a combination thereof is used in subsequent steps. It is preferable to dry by. Since the hydrazide compound and the silica gel as the carrier are also hydrophilic, they are inferior in the equilibrium adsorption force of the drug as compared with activated carbon. Therefore, by using this method, a good filter medium with reduced surface precipitation can be obtained. *
  • the amount of solvent used is preferably 5 to 300 parts by weight, more preferably 10 to 250 parts by weight, still more preferably 20 to 200 parts by weight, and most preferably 50 to 150 parts by weight with respect to 100 parts of silica gel particles.
  • the amount of solvent used is less than 5 parts by weight, the permeation into the carrier becomes insufficient and the adsorption performance is lowered.
  • the amount of the solvent used exceeds 300 parts by weight, the silica gel is saturated, so that chemical precipitation and aggregation occur on the surface, and much energy is required for drying.
  • the solvent volume is generally 5% to 200%, more preferably 10% to 150%, and more preferably 20 to 110% of the total pore volume. Is more preferable. *
  • the amount of hydrazide compound supported on silica gel is preferably 1 to 100 parts by weight, more preferably 5 to 50 parts by weight, based on 100 parts of silica gel. If the amount is less than 1 part by weight, the removal capacity and speed become insufficient, and if it exceeds 100 parts by weight, the pores of the silica gel become clogged, and the removal capacity and speed, which are combined effects with the porous body, cannot be obtained.
  • Examples of the activated carbon used in the present invention include coconut shells, wood-based materials, coal-based materials, and pitch-based materials, with coconut shells being preferred.
  • the fine pores of coconut shell activated carbon have a large proportion of small pores compared to other raw materials, and the amount of ash that is an impurity is also small. That is, since the coconut shell activated carbon has small pores, the intermolecular force with the pore wall effectively acts on the adsorbed odor molecules, and it is difficult to desorb the adsorbed odor molecules. Moreover, since there is little ash content, the odor adsorption performance per weight is also high. *
  • the shape of the activated carbon used in the present invention needs to be a crushed shape.
  • the pulverized activated carbon can be obtained by mechanically pulverizing coconut shell activated carbon with a ball mill or a crusher. *
  • the average particle diameter of the activated carbon used in the present invention is 100 ⁇ m or more in terms of mass average diameter based on the JIS K 1474 activated carbon test method in consideration of air permeability, dust retention, detachability, sheet processability, and the like. And more preferably 200 to 600 ⁇ m.
  • the average particle size is less than 100 ⁇ m, it is advantageous to obtain the adsorption rate.
  • silica gel is fixed between the cover layers and used as a filter medium for air cleaning, it is filled if the amount used is increased to secure the adsorption capacity. Density increases and ventilation resistance is too high to vent. Furthermore, there is a possibility that dropout and scattering occur easily.
  • said granular activated carbon can be obtained by carrying out predetermined particle size adjustment using a normal classifier. *
  • the activated carbon used in the present invention is preferably coconut shell activated carbon having a hardness of 90% or more according to JIS K 1474 activated carbon test method, more preferably coconut shell activated carbon having a hardness of 95% or more. If the hardness of the activated carbon is less than 90%, the activated carbon is crushed during sheet processing or pleating, and the activated carbon falls off from the filter medium surface or the pleat apex. *
  • the amount of toluene adsorbed when measured according to JIS K 1474 of the activated carbon used in the present invention is preferably 20% by weight or more. This is because high adsorption performance is required for nonpolar gaseous and liquid substances such as malodorous gases.
  • a mixture of activated carbon, silica gel, and a thermoplastic resin is sandwiched between cover layers, and the silica gel carries a hydrazide compound.
  • the activated carbon and silica gel are bonded together, and the cover layer and the adsorbent are bonded.
  • silica gel carrying activated carbon and a hydrazide compound as an adsorbent.
  • Activated carbon alone can adsorb hydrocarbon-based odorous gases, but cannot absorb low-molecular-weight aldehydes with low boiling point and high polarity.
  • silica gel carrying hydrazide compound with high adsorption performance of low-molecular-weight aldehydes Use together. As a result, it becomes possible to deodorize various odors in a balanced manner.
  • the filter medium becomes black, so even if dust accumulates during air cleaning, the dust cannot be visually recognized, and even if clogging due to dust accumulation occurs, it may not be noticed.
  • the weight ratio of the content of the silica gel on which the hydrazide compound is supported relative to the activated carbon in the mixture must be 1 to 100. If it is less than 1, the dust visibility is poor, and if it exceeds 100, the adsorption of hydrocarbon gas Lack of ability.
  • the cover layer used for the air cleaning filter medium of the present invention may be a woven or non-woven fibrous structure.
  • the average fiber diameter of the fibers constituting the cover layer on the upstream side during air cleaning is preferably 10 to 100 ⁇ m, more preferably 20 to 60 ⁇ m, and even more preferably 20 to 45 ⁇ m. Since the upstream cover layer is the inflow surface of the air to be treated, if the average fiber diameter of the constituent fibers is less than 10 ⁇ m, the gap between the fibers is also narrowed, dust in the air accumulates on the cover layer, and the ventilation Resistance soars. When the average fiber diameter of the constituent fibers exceeds 100 ⁇ m, the adsorbent particles jump out or fall off particularly during pleating. *
  • the average fiber diameter of the fibers constituting the cover layer on the downstream side at the time of air cleaning is not particularly limited, but is preferably 10 to 30 ⁇ m in consideration of dropping of the adsorbent.
  • the average fiber diameter of the constituent fibers is less than 10 ⁇ m, the airflow resistance increases, and when it exceeds 30 ⁇ m, the adsorbent falls off.
  • the packing density of the fiber structure constituting the cover layer of the present invention is preferably 0.05 g / cc or more.
  • the packing density is less than 0.05 g / cc, heat setting does not work during pleating and it becomes difficult to maintain the pleated shape. More preferably, it is 0.15 g / cc or more.
  • the cover layer of the present invention preferably has a thickness of 0.1 to 3.0 mm. If the thickness is less than 0.1 mm, the activated carbon may come off or fall off when considering the uneven appearance. When the thickness exceeds 3.0 mm, the thickness of the entire filter medium is too large, and when the pleated unit is used, the structural resistance increases, and as a result, the ventilation resistance of the entire unit becomes too high, which causes a problem in practice. *
  • Cover layer of the present invention preferably has a basis weight is 15 ⁇ 100g / m 2, more preferably 20 ⁇ 80g / m 2. If the basis weight is less than 15 g / m 2 , the adsorbent and the thermoplastic resin are likely to come off. When the basis weight exceeds 100 g / m 2 , the sheet thickness increases, and the structural resistance in the case of a pleated unit increases.
  • the fiber material of the fiber structure constituting the cover layer of the present invention is not particularly limited, and materials such as polyolefin, polyester, rayon, polyamide, polyurethane, acrylic, polyvinyl alcohol, and polycarbonate are used. be able to. Among them, if a core-sheath type composite fiber using a low-melting thermoplastic resin component as a sheath component and a high-melting thermoplastic resin component as a core component is used, the sheath component melts at the time of forming a heated sheet, which will be described later. It is preferable because the bonding force is increased. *
  • the cover layer of the present invention it is preferable to use a charged non-woven fabric, so-called electret sheet, which can also increase the removal effect on submicron particles such as tobacco smoke particles, carbon particles and sea salt particles.
  • electret sheet By using the electret sheet as a cover layer, not only odorous substances but also submicron particles can be removed simultaneously, and the air cleaning effect is further improved.
  • dust etc. will enter the adsorbent layer composed of activated carbon, silica gel, and thermoplastic resin, and the pores of the activated carbon and silica gel in the adsorbent layer will be blocked. This is because the filter life can be prevented and the filter life can be extended.
  • the fiber orientation of the fiber structure constituting the cover layer of the present invention is not particularly limited.
  • the fiber orientation may be random, cloth, or parallel as long as it is a nonwoven fabric.
  • thermoplastic resin is used for adhesion between the cover layer and the adsorbent, and the material thereof is polyester, polyolefin, polyamide, polyurethane, ethylene-acrylic copolymer, Examples thereof include thermoplastic resins such as polyacrylate, polyarene, polyacryl, polydiene, ethylene-vinyl acetate, PVC, and PS.
  • the size of the thermoplastic resin of the present invention is not particularly limited, but it is preferably powdery and having an average particle size of about 1 to 200 ⁇ m.
  • the thermoplastic resin can reduce blocking of the surface pores of the adsorbent, while pre-adhesion to activated carbon by van der Waals force or electrostatic force is effective when mixed with the adsorbent. This is because it can be uniformly dispersed, and the adhesiveness in the adsorbent layer and with the cover layer can be improved.
  • the shape of the thermoplastic resin of the present invention is not particularly limited as long as it is in a powder form, but a crushed form is preferable because it is less likely to fall off from the cover layer when sprayed onto the cover layer.
  • the melting point of the thermoplastic resin is preferably 80 ° C. or higher, more preferably 90 ° C. or higher in consideration of the environmental temperature in the room of a moving vehicle or the like.
  • the fluidity at the time of melting of the thermoplastic resin of the present invention is preferably 1 to 80 g / 10 min, more preferably 3 to 30 g / 10 min in terms of MI value described in JIS K-7210. This is because, within such a range, the adsorbent layer and the cover layer can be firmly bonded while preventing the surface of the adsorbent from being blocked.
  • the content of the thermoplastic resin of the present invention is preferably 3 to 100% by weight, more preferably 5 to 70% by weight, based on the adsorbent. This is because a deodorizing filter medium excellent in adhesive strength with the cover layer, ventilation resistance, and deodorizing performance can be obtained within such a range.
  • the air-cleaning filter medium of the present invention may include components having incidental functions such as antibacterial agents, antifungal agents, antiviral agents, and flame retardants. These components may be kneaded into fibers, non-woven fabrics, and woven fabrics, or may be added or supported by post-processing. For example, by including a flame retardant, FMVSS. It is possible to manufacture a filter medium for air cleaning that meets the standards for retarding flame retardancy defined in 302 and UL flame retardant standards. *
  • the component having the incidental function may be attached or supported on activated carbon or the like. However, in this case, care must be taken not to impair the original adsorption function of the activated carbon.
  • it is possible to enhance the deodorizing function by imparting a function having adsorption performance to the fibers of the cover layer, for example, by attaching an acid or alkali chemical or using ion exchange fibers.
  • silica gel on which a hydrazide compound is supported, activated carbon, and a powdered thermoplastic resin are weighed to a predetermined weight, placed in a shaker (stirrer), and stirred at a rotational speed of 30 rpm for about 10 minutes.
  • the moisture content at this time is preferably within 15% of the weight of the mixture.
  • the powdery thermoplastic resin is temporarily bonded to the activated carbon surface and the silica gel surface on which the hydrazide compound is supported.
  • the cover layer is laminated and a hot press treatment is performed.
  • the sheet surface temperature during hot pressing is preferably about 3 to 30 ° C., more preferably 5 to 20 ° C. higher than the melting point of the powdered thermoplastic resin.
  • preheating is performed in advance using infrared rays or the like and temporary bonding is performed before heat treatment, an irregular flow of the mixture that tends to occur during pressing does not occur, and an air purifying filter medium with better dispersibility can be manufactured.
  • the heat treatment using infrared rays does not cause an air current and the like, can be heated while the mixture is left standing, and can prevent the mixture from being scattered.
  • a hot-roll hot-pressing method that is often used, or a flat-bed laminating method that is sandwiched between heat belt conveyors that are flat on the upper and lower sides can be given.
  • the latter is more preferable for producing a more uniform thickness and adhesion.
  • the combination of the characteristics of the cover layer described in the present invention and the above production method can suppress excessive binding between the activated carbons, and at the same time, can obtain a practically sufficient adhesive strength with the cover layer.
  • the air cleaning filter medium obtained in the present invention is suitable for processing into a pleated shape.
  • the method of processing into a pleated shape is not particularly limited, and can be widely used such as a reciprocating method, a rotary method, and a striping method. Since the amount of filter media folded per unit area can be increased by processing into a pleated shape, deodorization performance and dust retention performance can be dramatically improved.
  • the thickness of the pleated filter unit using the air-cleaning filter medium of the present invention is preferably 10 to 400 mm.
  • the thickness of the pleated filter unit using the air-cleaning filter medium of the present invention is preferably 10 to 400 mm.
  • it is about 10-60mm due to the normal internal space.
  • About 400 mm is preferable from the viewpoint of storage space. *
  • the distance between the ridge peaks of the filter unit of the present invention is preferably 2 to 30 mm. If it is less than 2 mm, the folds are in close contact with each other and there is a lot of dead space, which makes it impossible to use the sheet efficiently. On the other hand, if it exceeds 30 mm, the filter medium folding area becomes small, and therefore it is not preferable because the removal effect corresponding to the filter thickness cannot be obtained.
  • Average particle diameter For activated carbon and silica gel, the mass average diameter based on the JIS K 1474 activated carbon test method was taken as the average particle diameter. Moreover, about the thermoplastic resin, D50 median diameter was made into the average particle diameter using the laser diffraction type particle size distribution measuring apparatus (made by Shimadzu Corporation). *
  • Toluene deodorization efficiency In an atmosphere of 25 ° C and 50% relative humidity, 80 ppm of toluene gas was passed through the test filter medium at a wind speed of 20 cm / sec. One minute after ventilation, the upstream and downstream concentrations of the filter medium are measured with a gas-tech detector tube, and the percentage obtained by dividing the upstream gas concentration by the downstream gas concentration is divided by the upstream gas concentration. It was. The measurement was performed on a filter medium single plate sample cut to 6 cm ⁇ 6 cm. *
  • the filter medium prepared with a width of 200 mm was subjected to pleat processing by an alternating streaks method so that the pleat folding height was 28 mm.
  • the pleated product was cut at 30 ridges and heat-sealed so that the activated carbon did not fall off from the cut end face.
  • a 200 mm ⁇ 30 mm, 1 mm thick non-woven fabric for a frame was applied to a pleat cut product on four surrounding surfaces so that the pleat pitch was equally spaced (FIG. 3). Place the created filter unit horizontally on the ground, let it fall freely on a smooth and clean table from a height of 50 cm, repeat this three times each up and down, measure the weight of the activated carbon dropped from the filter unit, The amount dropped out. *
  • Example 1 Polypropylene fiber (fineness: 2.2 dtex, fiber length: 51 mm) and polyester fiber (fineness: 1.7 dtex, fiber length: 44 mm) are mixed and carded at a weight ratio of 1: 1, and the basis weight is 25 g / m 2.
  • 3 MPa high-pressure water was continuously sprayed to entangle and dry to prepare a mixed fiber sheet.
  • a nonwoven fabric composed of a core-sheath type composite heat-sealing long fiber (fiber diameter 30 ⁇ m) composed of polyester (core) / polyethylene (sheath) having a basis weight of 12 g / m 2 is laminated and integrated into this mixed fiber sheet by needle punching.
  • thermoplastic powder resin a crushed-shaped ethylene-vinyl acetate copolymer resin (average particle size 150 ⁇ m, MI 24 g / 10 min, melting point 100 ° C.) was used, and these were used in a weight ratio of 50:25:25. Weighed and mixed with a hoop shaker (manufactured by Kyomachi Industrial Vehicle Co., Ltd.) for 15 minutes. This mixed powder was uniformly sprayed on the non-woven fabric side made of the heat-bonding long fibers of the electret laminated sheet so that the total amount was 100 g / m 2 .
  • a resin-bonded nonwoven fabric (weight per unit area: 40 g / m 2 , thickness: 0.2 mm) made of rayon fiber (fiber diameter: 20 ⁇ m) is laminated as an upstream side cover layer, and sandwiched between Teflon (registered trademark) / glass belts, The belt interval was set to 0.5 mm and the pressure was set to 100 kPa, and hot pressing was performed at 140 ° C. for 30 seconds. Thereafter, it was cooled to obtain a desired air cleaning filter medium.
  • Example 2 An air cleaning filter medium was obtained in the same manner as in Example 1 except that a polypropylene melt blown nonwoven fabric having an average fiber diameter of 7 ⁇ m was used as the downstream layer. *
  • a silica gel an adipic acid dihydrazide is added to a spherical silica gel having an average particle diameter of 125 ⁇ m, a packing density of JIS K 1474 (2007) activated carbon test method of 0.75 g / cc, and a BET specific surface area of 610 m 2 / g.
  • An air cleaning filter medium was obtained in the same manner as in Example 1 except that 5 parts by weight of 100 parts by weight was used.
  • ⁇ Comparative example 2> Implementation was carried out except that a spherical pitch activated carbon having an average particle size of 250 ⁇ m, a packing density of 0.50 g / cc, and a BET specific surface area of 1200 m 2 / g in JIS K 1474 (2007) activated carbon test method was used as the activated carbon. In the same manner as in Example 1, an air cleaning filter medium was obtained.
  • the ventilation resistance is low, and not only acetaldehyde but also toluene, which is a typical hydrocarbon gas, can be removed, and the collection efficiency is excellent. Since the particle sizes of silica gel and activated carbon, which are deodorizing materials, are in a crushed shape, the amount of deodorizing material particles falling from the filter medium is small even after pleating. On the other hand, in the comparative example, the shape of silica gel or activated carbon is spherical, so the packing density of the particles in the filter medium is high and the ventilation resistance is high, and the deodorant particles are slippery between particles and between the particle and cover layers. The later dropout is large.
  • the air-cleaning filter medium of the present invention can provide an air-cleaning filter medium with low ventilation resistance, excellent deodorization performance of aldehydes and hydrocarbon gases, and less deodorizing material particles falling off and excellent in pleatability. It can greatly contribute to the industry.

Abstract

[Problem] To provide an air cleaning filter that has a low ventilation resistance, shows an excellent performance in deodorizing aldehydes and hydrocarbon-based gases, causes little falling off of deodorant particles and can be easily pleated. [Solution] An air cleaning filter that comprises a homogeneous mixture, said mixture comprising silica gel carrying a hydrazide compound thereon, activated carbon and a thermoplastic resin and being fixed between cover layers, wherein the silica gel and activated carbon are in a crushed state.

Description

空気清浄用濾材Air cleaning media
本発明は、脱臭機能を有した空気清浄用濾材に関するものである。 The present invention relates to an air cleaning filter medium having a deodorizing function.
近年、自動車用、家庭用フィルタ等の分野において、濾材の高機能化・多様化の要請が急激に高まっており、脱臭機能を有する空気清浄用濾材の検討が多くなされている。そして、これら空気清浄用濾材として、粒子状または繊維状の吸着剤と接着剤を用いてシート化する方法が多く採用されており、例えば、基材層間に粒状吸着剤と粒状接着剤の混合物を散布し、これを加熱接着してなる吸着濾材が開示されている(例えば、特許文献1)。  In recent years, in the fields of automobiles, household filters, and the like, there has been a rapid increase in demands for highly functional and diversified filter media, and many studies have been made on air cleaning filter media having a deodorizing function. And as these air cleaning filter media, a method of forming a sheet using a particulate or fibrous adsorbent and an adhesive is often employed. For example, a mixture of a granular adsorbent and a granular adhesive is provided between base materials. An adsorptive filter medium formed by spraying and heat-bonding this is disclosed (for example, Patent Document 1). *
一方で、排気ガスやタバコ煙などから発生するアセトアルデヒドに代表されるアルデヒド類は臭気閾値が低く、有害性も高いため脱臭フィルタによる高効率な除去が期待されている。アセトアルデヒドやホルムアルデヒドは沸点が低く、極性も高いので通常の活性炭では除去しにくいことから、活性炭による低級アルデヒドの吸着除去性能を向上させる手段として、アニリンなどのアミン類や、ヒドラジン誘導体を活性炭に添着してその性能を向上させる方法が開示されている(例えば、特許文献2、3)。しかし、当該技術を用いた消臭材ならびに空気清浄フィルタは、添着した薬剤が活性炭上で徐々に劣化し、アルデヒド除去性能が低下していく問題があった。  On the other hand, since aldehydes typified by acetaldehyde generated from exhaust gas and tobacco smoke have a low odor threshold and high toxicity, high-efficiency removal with a deodorizing filter is expected. Since acetaldehyde and formaldehyde have low boiling point and high polarity and are difficult to remove with ordinary activated carbon, amines such as aniline and hydrazine derivatives are attached to activated carbon as a means to improve the adsorption removal performance of lower aldehyde by activated carbon. Have been disclosed (for example, Patent Documents 2 and 3). However, the deodorant material and the air purifying filter using the technology have a problem that the attached chemical gradually deteriorates on the activated carbon, and the aldehyde removal performance is lowered. *
また、活性炭を用いないアルデヒド除去材として、シリカゲル等の無機多孔体にヒドラジン誘導体を添着する方法が開示されている(例えば、特許文献4)。かかる吸着材はアルデヒド除去性能に特化して優れているが、トルエン、キシレン、ブタンなどの炭化水素系ガスの吸着はできないため、特に排ガス臭の脱臭フィルタとしては除去性能が不足するという問題があった。  In addition, a method of attaching a hydrazine derivative to an inorganic porous material such as silica gel is disclosed as an aldehyde removing material that does not use activated carbon (for example, Patent Document 4). Such adsorbents are excellent in aldehyde removal performance, but they cannot adsorb hydrocarbon gases such as toluene, xylene, butane, etc., so there is a problem that the removal performance is insufficient particularly as an exhaust gas odor deodorizing filter. It was. *
かかる問題を解決するため、ヒドラジン誘導体を添着したゼオライト等の無機多孔体と活性炭を含有した消臭剤が開示されている(例えば、特許文献5)。当該技術を用いればアルデヒドと炭化水素系ガスを共に消臭できることは可能であるが、繊維構造体への担持用であるため、無機多孔体の粒径が30μm以下と限定されており、空気清浄濾材として通風した場合は多孔体のかさ密度の高さから通気抵抗が大きくなるという問題がある。  In order to solve this problem, a deodorant containing an inorganic porous material such as zeolite and a activated carbon impregnated with a hydrazine derivative has been disclosed (for example, Patent Document 5). Although it is possible to deodorize both aldehyde and hydrocarbon gas by using this technology, the particle size of the inorganic porous material is limited to 30 μm or less because it is for supporting on the fiber structure, and the air cleaning When ventilated as a filter medium, there is a problem that ventilation resistance increases due to the high bulk density of the porous body. *
さらに従来の活性炭粒子やシリカゲル粒子等の脱臭材粒子を含有した濾材は、繊維シート間に粒子を担持した構造であり、繊維空隙から脱臭材粒子が脱落するという問題がある。 Furthermore, the conventional filter medium containing deodorizing material particles such as activated carbon particles and silica gel particles has a structure in which particles are supported between fiber sheets, and there is a problem that the deodorizing material particles fall off from the fiber gaps.
日本国公開特許公報「特開平11-5058号」Japanese Patent Publication “Japanese Patent Laid-Open No. 11-5058” 日本国公開特許公報「特開平3-98642号」Japanese Patent Publication "JP-A-3-98642" 日本国公開特許公報「特開2001-218824号」Japanese Patent Publication “JP 2001-218824” 日本国公開特許公報「特開2010-58075号」Japanese Published Patent Publication “JP 2010-58075” 日本国公開特許公報「特開2008-148804号」Japanese Patent Publication “JP 2008-148804”
本発明は、上記従来技術の課題を背景になされたものであり、低通気抵抗であり、アルデヒド類と炭化水素系ガス類の脱臭性能に優れ、使用中のダスト付着による視認性が良好な空気清浄用濾材を提供するものである。 The present invention has been made against the background of the above-mentioned prior art, has low ventilation resistance, is excellent in deodorizing performance of aldehydes and hydrocarbon gases, and has good visibility due to dust adhesion during use. A filter medium for cleaning is provided.
本発明者等は上記課題を解決するため、鋭意研究した結果、ついに本発明を完成するに至った。すなわち、本発明は以下の通りである。1.カバー層間にヒドラジド化合物が担持されたシリカゲル、活性炭および熱可塑性樹脂の均一な混合物が固定化されてなる濾材であって、シリカゲルおよび活性炭の形状が破砕形状であることを特徴とする空気清浄用濾材。2.ヒドラジド化合物がアジピン酸ジヒドラジドである上記1に記載の空気清浄用濾材。3.カバー層の一層がエレクトレット不織布からなる上記1または2に記載の空気清浄用濾材。4.上記1~3のいずれか1つに記載の濾材をプリーツ状に成型したフィルタユニット。 As a result of intensive studies to solve the above problems, the present inventors have finally completed the present invention. That is, the present invention is as follows. 1. A filter medium in which a uniform mixture of silica gel, activated carbon and a thermoplastic resin, in which a hydrazide compound is supported between cover layers, is fixed, and the shape of the silica gel and activated carbon is a crushed shape. . 2. 2. The air cleaning filter medium according to 1 above, wherein the hydrazide compound is adipic acid dihydrazide. 3. 3. The air cleaning filter medium according to 1 or 2 above, wherein one of the cover layers is an electret nonwoven fabric. 4). A filter unit obtained by molding the filter medium according to any one of the above 1 to 3 into a pleated shape.
上記構成により、低通気抵抗でアルデヒド類、炭化水素系ガス類の脱臭性能に優れ、脱臭材粒子の脱落が少なくプリーツ加工性に優れた空気清浄用濾材を提供できる。 With the above configuration, it is possible to provide a filter medium for air cleaning having low ventilation resistance, excellent deodorizing performance of aldehydes and hydrocarbon gases, less deodorizing material particles, and excellent pleatability.
本発明の空気清浄用濾材の模式図である。It is a schematic diagram of the filter medium for air cleaning of this invention. 本発明中の通気抵抗測定冶具である。It is a ventilation resistance measuring jig in the present invention. 本発明中のフィルタユニットの斜視図である。It is a perspective view of the filter unit in the present invention.
以下、本発明を詳細に説明する。 本発明の空気清浄用濾材は、シリカゲルを含むことが必要である。シリカゲルは活性炭と異なり天然物由来の表面官能基や不純物を有しないので、アルデヒド吸着用の薬剤を添着してもシリカゲルと反応することはなく、薬剤が劣化するのを抑制できる。シリカゲルは、二酸化珪素を主成分とした一次粒子の凝集体であり気相法、湿式法(沈降法)、ゾルゲル法など各種方法により得ることができる。本発明に用いられるシリカゲルは、所望の特性が得られるものであれば、どのような方法にて得られるものでも用いることができる。  Hereinafter, the present invention will be described in detail. The air purification filter medium of the present invention needs to contain silica gel. Since silica gel does not have surface functional groups or impurities derived from natural products unlike activated carbon, it does not react with silica gel even when a chemical for aldehyde adsorption is added, and the chemical can be prevented from deteriorating. Silica gel is an aggregate of primary particles mainly composed of silicon dioxide, and can be obtained by various methods such as a gas phase method, a wet method (precipitation method), and a sol-gel method. The silica gel used in the present invention can be obtained by any method as long as desired characteristics can be obtained. *
本発明に用いられるシリカゲルは、破砕形状であることが必要である。球状であるとカバー層間に担持した際に、充てん密度が高くなり通気抵抗が大きくなるばかりか、粒子が滑りやすいためにシート化後、あるいはプリーツ加工後に粒子脱落が多くなる。  The silica gel used in the present invention needs to be in a crushed shape. When it is spherical, when it is supported between the cover layers, not only does the packing density increase and the ventilation resistance increases, but the particles are slippery, so that the particles fall off after forming into a sheet or after pleating. *
本発明に用いられるシリカゲルの平均粒径は、50μm以上であることが好ましく、100~600μmであることがより好ましい。平均粒径が50μm未満であると吸着速度を得るには有利であるが、カバー層間にシリカゲル粒子を固定化して空気清浄用濾材として使用する場合、吸着容量を確保するために使用量を増やすと充てん密度が高くなるため、通気抵抗が大きすぎて、通風できなくなる。さらに脱落や飛散が生じやすくなる可能性がある。  The average particle size of the silica gel used in the present invention is preferably 50 μm or more, and more preferably 100 to 600 μm. When the average particle size is less than 50 μm, it is advantageous for obtaining an adsorption rate. However, when silica gel particles are fixed between cover layers and used as a filter medium for air cleaning, if the amount used is increased to ensure the adsorption capacity. Since the packing density is increased, the ventilation resistance is too large to allow ventilation. Furthermore, there is a possibility that dropout and scattering occur easily. *
本発明に用いられるシリカゲルの細孔直径は、12~100nmであることが好ましく、20~90nmであることがより好ましく、30~80nmであることがさらに好ましく、40~70nmであることが最も好ましい。細孔直径が12nm未満であると薬剤添着時に細孔が閉塞しやすくなるため、反応速度の面で不利となり、また壁間の分子間力による物理吸着力が大きくなるため臭気の非意図的吸着および脱離が大きくなる。一方、細孔直径が100nmを超える場合には表面積を得ることが困難であるため、十分な脱臭速度が得られない。  The pore diameter of the silica gel used in the present invention is preferably 12 to 100 nm, more preferably 20 to 90 nm, further preferably 30 to 80 nm, and most preferably 40 to 70 nm. . If the pore diameter is less than 12 nm, the pores are likely to be clogged at the time of drug addition, which is disadvantageous in terms of reaction rate, and the physical adsorption force due to intermolecular force between the walls increases, so unintentional adsorption of odors And desorption increases. On the other hand, when the pore diameter exceeds 100 nm, it is difficult to obtain a surface area, so that a sufficient deodorization rate cannot be obtained. *
なお、本発明で定義される細孔直径はBJH法により得られるピーク直径を意味しており、より詳しくは77ケルビン(液体窒素温度)における窒素吸着法により得られる吸着側等温線を用いて求められる。本法では必ずしも全細孔容積を求める必要がないため、評価、解析が容易となる。  The pore diameter defined in the present invention means a peak diameter obtained by the BJH method. More specifically, the pore diameter is obtained using an adsorption side isotherm obtained by a nitrogen adsorption method at 77 Kelvin (liquid nitrogen temperature). It is done. In this method, since it is not always necessary to obtain the total pore volume, evaluation and analysis are facilitated. *
本発明に用いられるシリカゲルでは毛管凝縮の作用を低減するために上述の細孔直径を有するとともに、脱臭材として有用な吸着速度を発現させるために表面積が必要である。すなわち、77ケルビンにおける窒素吸着BET法により計算される比表面積において20~1000m/gであることが好ましく、35~500m/gであることがより好ましく、50~400m/gであることがさらに好ましく、70~300m/gであることがなおさら好ましい。比表面積が20m/g未満であるとアルデヒドの除去速度が小さくなり、1000m/gを超えると臭気の物理吸着量が多くなる。  The silica gel used in the present invention has the above-mentioned pore diameter in order to reduce the action of capillary condensation, and also requires a surface area to develop an adsorption rate useful as a deodorizing material. That is, the specific surface area calculated by the nitrogen adsorption BET method at 77 Kelvin is preferably 20 to 1000 m 2 / g, more preferably 35 to 500 m 2 / g, and 50 to 400 m 2 / g. Is more preferably 70 to 300 m 2 / g. When the specific surface area is less than 20 m 2 / g, the aldehyde removal rate decreases, and when it exceeds 1000 m 2 / g, the physical adsorption amount of odor increases.
本発明の空気清浄用濾材はアセトアルデヒド等の低級アルデヒドに対する吸着性能を発現させるために、シリカゲルに少なくとも1種のヒドラジド化合物を担持してなることを特徴とする。  The air-cleaning filter medium of the present invention is characterized in that at least one hydrazide compound is supported on silica gel in order to develop adsorption performance for lower aldehydes such as acetaldehyde. *
ヒドラジド化合物としては、分子中に1個のヒドラジド基を有するモノヒドラジド化合物、分子中に2個のヒドラジド基を有するジヒドラジド化合物、分子中に3個以上のヒドラジド基を有するポリヒドラジド化合物等を挙げることができる。  Examples of the hydrazide compound include a monohydrazide compound having one hydrazide group in the molecule, a dihydrazide compound having two hydrazide groups in the molecule, and a polyhydrazide compound having three or more hydrazide groups in the molecule. Can do. *
モノヒドラジド化合物の具体例としては、例えば、一般式(1)R-CO-NHNH[式中、Rは水素原子、アルキル基または置換基を有することのあるアリール基を示す。]で表されるモノヒドラジド化合物を挙げることができる。 上記一般式(1)において、Rで示されるアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、n-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基、n-ウンデシル基等の炭素数1~12の直鎖状アルキル基を挙げることができる。アリール基としては、例えば、フェニル基、ビフェニル基、ナフチル基等を挙げることができ、これらの中でもフェニル基が好ましい。またアリール基の置換基としては、例えば、水酸基、フッ素、塩素、臭素等のハロゲン原子、メチル基、エチル基、n-プロピル基、iso-プロピル基、n-ブチル基、tert-ブチル基、iso-ブチル基等の炭素数1~4の直鎖または分岐鎖状のアルキル基等を挙げることができる。  Specific examples of the monohydrazide compound include, for example, general formula (1) R—CO—NHNH 2 [wherein R represents a hydrogen atom, an alkyl group, or an aryl group which may have a substituent. The monohydrazide compound represented by this can be mentioned. In the general formula (1), examples of the alkyl group represented by R include a methyl group, an ethyl group, an n-propyl group, an n-butyl group, an n-pentyl group, an n-hexyl group, an n-heptyl group, Examples thereof include linear alkyl groups having 1 to 12 carbon atoms such as n-octyl group, n-nonyl group, n-decyl group and n-undecyl group. As an aryl group, a phenyl group, a biphenyl group, a naphthyl group etc. can be mentioned, for example, Among these, a phenyl group is preferable. Examples of the substituent for the aryl group include a halogen atom such as a hydroxyl group, fluorine, chlorine, bromine, methyl group, ethyl group, n-propyl group, iso-propyl group, n-butyl group, tert-butyl group, iso group. -A linear or branched alkyl group having 1 to 4 carbon atoms such as a butyl group.
上記一般式(1)のヒドラジド化合物としては、より具体的には、ラウリル酸ヒドラジド、サリチル酸ヒドラジド、ホルムヒドラジド、アセトヒドラジド、プロピオン酸ヒドラジド、p-ヒドロキシ安息香酸ヒドラジド、ナフトエ酸ヒドラジド、3-ヒドロキシ-2-ナフトエ酸ヒドラジド等を例示できる。  Specific examples of the hydrazide compound represented by the general formula (1) include lauric acid hydrazide, salicylic acid hydrazide, form hydrazide, acetohydrazide, propionic acid hydrazide, p-hydroxybenzoic acid hydrazide, naphthoic acid hydrazide, 3-hydroxy- Examples thereof include 2-naphthoic acid hydrazide. *
ジヒドラジド化合物の具体例としては、例えば、一般式(2)HNHN-X-NHNH[式中Xは基-CO-または基-CO-A-CO-を示す。Aはアルキレン基またはアリーレン基を示す。]で表わされるジヒドラジド化合物を挙げることができる。 上記一般式(2)において、Aで示されるアルキレン基としては、例えば、メチレン基、エチレン基、トリメチレン基、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基、ヘプタメチレン基、オクタメチレン基、ノナメチレン基、デカメチレン基、ウンデカメチレン基等の炭素数1~12の直鎖状アルキレン基を挙げることができる。アルキレン基の置換基としては、例えば水酸基等を挙げることができる。アリーレン基としては、例えば、フェニレン基、ビフェニレン基、ナフチレン基、アントリレン基、フェナントリレン基等を挙げることができ、これらの中でもフェニレン基、ナフチレン基等が好ましい。アリーレン基の置換基としては、上記アリール基の置換基と同様のものを挙げることができる。  Specific examples of the dihydrazide compound include, for example, general formula (2) H 2 NHN—X—NHNH 2 [wherein X represents a group —CO— or a group —CO—A—CO—. A represents an alkylene group or an arylene group. The dihydrazide compound represented by this can be mentioned. In the general formula (2), examples of the alkylene group represented by A include a methylene group, an ethylene group, a trimethylene group, a tetramethylene group, a pentamethylene group, a hexamethylene group, a heptamethylene group, an octamethylene group, and a nonamethylene group. And linear alkylene groups having 1 to 12 carbon atoms such as a decamethylene group and an undecamethylene group. Examples of the substituent for the alkylene group include a hydroxyl group. Examples of the arylene group include a phenylene group, a biphenylene group, a naphthylene group, an anthrylene group, and a phenanthrylene group. Among these, a phenylene group and a naphthylene group are preferable. Examples of the substituent of the arylene group include the same substituents as the aryl group.
上記一般式(2)のジヒドラジド化合物は、具体的には、例えば、カルボヒドラジド、シュウ酸ジヒドラジド、マロン酸ジヒドラジド、コハク酸ジヒドラジド、アジピン酸ジヒドラジド、アゼライン酸ジヒドラジド、セバシン酸ジヒドラジド、ドデカン-2酸ジヒドラジド、マレイン酸ジヒドラジド、フマル酸ジヒドラジド、ジグリコール酸ジヒドラジド、酒石酸ジヒドラジド、リンゴ酸ジヒドラジド、イソフタル酸ジヒドラジド、テレフタル酸ジヒドラジド、ダイマー酸ジヒドラジド、2,6-ナフトエ酸ジヒドラジド等の2塩基酸ジヒドラジド等が挙げられる。さらに、特公平2-4607号公報に記載の各種2塩基酸ジヒドラジド化合物、2,4-ジヒドラジノ-6-メチルアミノ-sym-トリアジン等も本発明のジヒドラジドとして用いることができる。  Specific examples of the dihydrazide compound represented by the general formula (2) include carbohydrazide, oxalic acid dihydrazide, malonic acid dihydrazide, succinic acid dihydrazide, adipic acid dihydrazide, azelaic acid dihydrazide, sebacic acid dihydrazide, and dodecane-2-acid dihydrazide. Dibasic acid dihydrazides such as maleic acid dihydrazide, fumaric acid dihydrazide, diglycolic acid dihydrazide, tartaric acid dihydrazide, malic acid dihydrazide, isophthalic acid dihydrazide, terephthalic acid dihydrazide, dimer acid dihydrazide, 2,6-naphthoic acid dihydrazide, etc. . Further, various dibasic acid dihydrazide compounds described in JP-B-2-4607, 2,4-dihydrazino-6-methylamino-sym-triazine, and the like can be used as the dihydrazide of the present invention. *
ポリヒドラジド化合物は、具体的には、ポリアクリル酸ヒドラジド等を例示できる。これらの中でも、ジヒドラジド化合物が好ましく、2塩基酸ジヒドラジドが特に好ましく、アジピン酸ジヒドラジドがより一層好ましい。  Specific examples of the polyhydrazide compound include polyacrylic hydrazide. Among these, dihydrazide compounds are preferable, dibasic acid dihydrazide is particularly preferable, and adipic acid dihydrazide is even more preferable. *
上記ヒドラジド化合物は1種を単独でまたは2種以上を混合して使用することができる。  The said hydrazide compound can be used individually by 1 type or in mixture of 2 or more types. *
シリカゲル上へのヒドラジド化合物の担持処理法としては、所望の特性が得られる手法であれば特に制限されないが、例えばシリカゾル中にヒドラジド化合物を混合し一次粒子表面上に担持させると共に乾燥固化させる方法、シリカゲルを溶媒中に溶解させヒドラジド化合物を含浸担持する方法、ヒドラジド化合物を溶媒中に溶解させシリカゲル上に噴霧ま
たは塗布することにより吸収させる方法などにより担持させ、続く工程により溶媒の乾燥を行う。溶媒としてはヒドラジド化合物の特性ならびに作業性を考慮し適当なものを選択することができる。このうち安全性ならびに作業性の観点から水系溶媒を用いることが好ましい。 
The method for supporting the hydrazide compound on the silica gel is not particularly limited as long as the desired properties can be obtained. For example, a method of mixing the hydrazide compound in silica sol and supporting it on the primary particle surface and drying and solidifying it, The silica gel is dissolved in a solvent and impregnated and supported by a hydrazide compound, the hydrazide compound is dissolved in a solvent and sprayed or applied to the silica gel to absorb, and the solvent is dried in subsequent steps. As the solvent, an appropriate one can be selected in consideration of the characteristics and workability of the hydrazide compound. Among these, it is preferable to use an aqueous solvent from the viewpoint of safety and workability.
より好ましい担持処理方法としては、容器中で攪拌混合しながら水分が滞留する未満の薬剤溶液を吸収担持させ、続く乾燥工程においても攪拌混合もしくは流動層などにより粒子分散性を維持する方法である。当該方法を用いることにより、粒子間を架橋した溶液による凝集固着が軽減されると共に、後述する濾材のシート化時にシリカゲルおよびシート表面へのヒドラジド化合物の析出および析出物の飛散を低減することができる。さらには、シート加工時に、薬剤析出物または微粉末が減少することによる粒子固着性向上効果もある。  A more preferable loading treatment method is a method in which a drug solution with less water retention is absorbed and mixed while stirring and mixing in a container, and the particle dispersibility is maintained by stirring and mixing or a fluidized bed in the subsequent drying step. By using this method, aggregation and fixation due to a solution in which the particles are cross-linked can be reduced, and precipitation of the hydrazide compound on the silica gel and the surface of the sheet and scattering of the precipitate can be reduced when forming the filter medium described later. . Furthermore, there is also an effect of improving particle adhesion due to a decrease in drug precipitates or fine powder during sheet processing. *
より具体的な担持例としてはヘンシェルミキサーまたはリボンミキサー等にて攪拌混合しながらヒドラジド化合物溶液を噴霧または適時注入することで溶液を吸収させるとともに、続く工程で加熱、減圧、またはその併用をすることにより乾燥することが好ましい。ヒドラジド化合物および担体であるシリカゲルも親水性であるため活性炭と比較して薬剤の平衡吸着力に劣るため、当該手法を用いることで表面析出の低減された良好な濾材を得ることができる。  As a more specific example of support, the solution is absorbed by spraying or injecting the hydrazide compound solution while stirring and mixing with a Henschel mixer or a ribbon mixer, etc., and heating, decompression, or a combination thereof is used in subsequent steps. It is preferable to dry by. Since the hydrazide compound and the silica gel as the carrier are also hydrophilic, they are inferior in the equilibrium adsorption force of the drug as compared with activated carbon. Therefore, by using this method, a good filter medium with reduced surface precipitation can be obtained. *
攪拌混合法により担持させる場合においては装置およびシリカゲルの特性により適当な条件を用いることができる。より具体的には溶媒使用量はシリカゲル粒子100部に対し5~300重量部が好ましく、10~250重量部がより好ましく、20~200重量部がさらに好ましく、50~150重量部が最も好ましい。溶媒使用量が、5重量部未満の場合には、担体への浸透が不十分となるため吸着性能が低下する。また、溶媒使用量が、300重量部を超える場合には、シリカゲルが飽和するため、表面への薬剤析出および凝集が生じると共に、乾燥に多大なエネルギーが必要となる。シリカゲルの細孔容積との観点から鑑みると、概ね全細孔容積に対して5%~200%の溶媒体積が好ましく、10%~150%の溶媒体積がより好ましく、20~110%の溶媒体積がさらに好ましい。  In the case of carrying by the stirring and mixing method, appropriate conditions can be used depending on the characteristics of the apparatus and silica gel. More specifically, the amount of solvent used is preferably 5 to 300 parts by weight, more preferably 10 to 250 parts by weight, still more preferably 20 to 200 parts by weight, and most preferably 50 to 150 parts by weight with respect to 100 parts of silica gel particles. When the amount of solvent used is less than 5 parts by weight, the permeation into the carrier becomes insufficient and the adsorption performance is lowered. Further, when the amount of the solvent used exceeds 300 parts by weight, the silica gel is saturated, so that chemical precipitation and aggregation occur on the surface, and much energy is required for drying. In view of the pore volume of silica gel, the solvent volume is generally 5% to 200%, more preferably 10% to 150%, and more preferably 20 to 110% of the total pore volume. Is more preferable. *
本発明におけるヒドラジド化合物のシリカゲルへの担持量としては、シリカゲル100部に対して1~100重量部が好ましく、5~50重量部がより好ましい。1重量部未満であると除去容量と速度が不十分となり、100重量部を超えるとシリカゲルの細孔閉塞が顕著となり、多孔質体との併用効果である除去容量と速度が得られなくなる。  In the present invention, the amount of hydrazide compound supported on silica gel is preferably 1 to 100 parts by weight, more preferably 5 to 50 parts by weight, based on 100 parts of silica gel. If the amount is less than 1 part by weight, the removal capacity and speed become insufficient, and if it exceeds 100 parts by weight, the pores of the silica gel become clogged, and the removal capacity and speed, which are combined effects with the porous body, cannot be obtained. *
本発明に用いられる活性炭の原料としては、ヤシ殻、木質系、石炭系、ピッチ系などが挙げられるが、ヤシ殻であることが好ましい。ヤシ殻活性炭の細孔は他の原料と比較して小さい細孔の比率が多く、不純物である灰分も少ない。つまり、ヤシ殻活性炭は細孔が小さいために、吸着した臭気分子に対して効果的に細孔壁との分子間力が働き、吸着した臭気分子を脱離させにくい特徴がある。また灰分が少ないことから重量当たりの臭気吸着性能も高い。  Examples of the activated carbon used in the present invention include coconut shells, wood-based materials, coal-based materials, and pitch-based materials, with coconut shells being preferred. The fine pores of coconut shell activated carbon have a large proportion of small pores compared to other raw materials, and the amount of ash that is an impurity is also small. That is, since the coconut shell activated carbon has small pores, the intermolecular force with the pore wall effectively acts on the adsorbed odor molecules, and it is difficult to desorb the adsorbed odor molecules. Moreover, since there is little ash content, the odor adsorption performance per weight is also high. *
本発明に用いられる活性炭の形状は、破砕形状であることが必要である。球状であるとカバー層間に担持した際に、充てん密度が高くなり通気抵抗が大きくなるばかりか、粒子が滑りやすいためにシート化後、またはプリーツ加工後に粒子脱落が多くなる。破砕形状の活性炭はヤシ殻活性炭をボールミルや破砕機等で機械的に粉砕することにより得ることができる。  The shape of the activated carbon used in the present invention needs to be a crushed shape. When it is spherical, when it is supported between the cover layers, the packing density increases and the airflow resistance increases, and the particles are slippery, so that the particles fall off after forming into a sheet or after pleating. The pulverized activated carbon can be obtained by mechanically pulverizing coconut shell activated carbon with a ball mill or a crusher. *
本発明に用いられる活性炭の平均粒径は、通気性、ダスト保持性、脱落性、シート加工性等を考慮して、JIS K 1474活性炭試験方法に基づいた質量平均径にて100μm以上であることが好ましく、200~600μmであることがより好ましい。平均粒径が100μm未満であると吸着速度を得るには有利であるが、カバー層間にシリカゲルを固定化して空気清浄用濾材として使用する場合、吸着容量を確保するために使用量を増やすと充てん密度が高くなり、通気抵抗が大きすぎ通風できなくなる。さらに脱落や飛散が生じやすくなる可能性がある。なお、上記の粒状活性炭は、通常の分級機を使用して所定の粒度調整をすることにより、得ることが可能である。  The average particle diameter of the activated carbon used in the present invention is 100 μm or more in terms of mass average diameter based on the JIS K 1474 activated carbon test method in consideration of air permeability, dust retention, detachability, sheet processability, and the like. And more preferably 200 to 600 μm. When the average particle size is less than 100 μm, it is advantageous to obtain the adsorption rate. However, when silica gel is fixed between the cover layers and used as a filter medium for air cleaning, it is filled if the amount used is increased to secure the adsorption capacity. Density increases and ventilation resistance is too high to vent. Furthermore, there is a possibility that dropout and scattering occur easily. In addition, said granular activated carbon can be obtained by carrying out predetermined particle size adjustment using a normal classifier. *
本発明に用いられる活性炭は、JIS K 1474活性炭試験方法にて硬さ90%以上を有するヤシ殻活性炭を用いることが好ましく、硬さ95%以上のヤシ殻活性炭がより好ましい。活性炭の硬さが90%未満であるとシート加工時やプリーツ加工時に活性炭が破砕され、濾材表面やプリーツ頂点から活性炭の脱落が発生する。  The activated carbon used in the present invention is preferably coconut shell activated carbon having a hardness of 90% or more according to JIS K 1474 activated carbon test method, more preferably coconut shell activated carbon having a hardness of 95% or more. If the hardness of the activated carbon is less than 90%, the activated carbon is crushed during sheet processing or pleating, and the activated carbon falls off from the filter medium surface or the pleat apex. *
本発明に用いられる活性炭のJIS K 1474に準拠して測定したときのトルエン吸着量は、20重量%以上が好ましい。悪臭ガス等の無極性のガス状及び液状物質に対して高い吸着性能を必要とするためである。  The amount of toluene adsorbed when measured according to JIS K 1474 of the activated carbon used in the present invention is preferably 20% by weight or more. This is because high adsorption performance is required for nonpolar gaseous and liquid substances such as malodorous gases. *
本発明の空気清浄用濾材は、活性炭、シリカゲルおよび熱可塑性樹脂の混合物がカバー層間に挟持されており、前記シリカゲルにはヒドラジド化合物が担持されており、前記熱可塑性樹脂の溶融により、吸着材である活性炭とシリカゲルが接着されると共に、カバー層と吸着材が接着されているものである。  In the air cleaning filter medium of the present invention, a mixture of activated carbon, silica gel, and a thermoplastic resin is sandwiched between cover layers, and the silica gel carries a hydrazide compound. The activated carbon and silica gel are bonded together, and the cover layer and the adsorbent are bonded. *
本発明の空気清浄用濾材では、吸着材として活性炭とヒドラジド化合物が担持されたシリカゲルを併用することが必要である。活性炭単独では炭化水素系の臭気ガスは吸着できるが、沸点が低く極性の高い低分子アルデヒド類は吸着できないため、それを補う目的で、低分子アルデヒド類の吸着性能が高いヒドラジド化合物を担持したシリカゲルを併用する。その結果、種々の臭気に対してバランスよく脱臭することが可能になる。  In the air purifying filter medium of the present invention, it is necessary to use in combination silica gel carrying activated carbon and a hydrazide compound as an adsorbent. Activated carbon alone can adsorb hydrocarbon-based odorous gases, but cannot absorb low-molecular-weight aldehydes with low boiling point and high polarity. For this purpose, silica gel carrying hydrazide compound with high adsorption performance of low-molecular-weight aldehydes. Use together. As a result, it becomes possible to deodorize various odors in a balanced manner. *
さらに、活性炭単独であると、濾材が黒色化するため、空気清浄時にダストが堆積してもダストが視認できず、ダスト堆積による目詰まりが起こっていても気付くことができない恐れがある。混合物中における活性炭に対するヒドラジド化合物が担持されたシリカゲルの含有量の重量比は、1~100とする必要があり、1未満であるとダスト視認性に劣り、100を超えると炭化水素系ガスの吸着能が不足する。  Furthermore, when the activated carbon is used alone, the filter medium becomes black, so even if dust accumulates during air cleaning, the dust cannot be visually recognized, and even if clogging due to dust accumulation occurs, it may not be noticed. The weight ratio of the content of the silica gel on which the hydrazide compound is supported relative to the activated carbon in the mixture must be 1 to 100. If it is less than 1, the dust visibility is poor, and if it exceeds 100, the adsorption of hydrocarbon gas Lack of ability. *
本発明の空気清浄用濾材に使用するカバー層は、織布状、不織布状のいずれの繊維構造体でも構わない。空気清浄時の上流側となるカバー層を構成する繊維の平均繊維径は、10~100μmが好ましく、20~60μmがより好ましく、20~45μmがさらに好ましい。上流側カバー層は、被処理空気の流入面であるため、構成繊維の平均繊維径が10μm未満であると、繊維間の空隙も狭くなり、空気中の塵埃がカバー層上に堆積し、通気抵抗が急上昇する。構成する繊維の平均繊維径が100μmを超えると、特にプリーツ加工時に、吸着材粒子が飛び出すあるいは脱落する。  The cover layer used for the air cleaning filter medium of the present invention may be a woven or non-woven fibrous structure. The average fiber diameter of the fibers constituting the cover layer on the upstream side during air cleaning is preferably 10 to 100 μm, more preferably 20 to 60 μm, and even more preferably 20 to 45 μm. Since the upstream cover layer is the inflow surface of the air to be treated, if the average fiber diameter of the constituent fibers is less than 10 μm, the gap between the fibers is also narrowed, dust in the air accumulates on the cover layer, and the ventilation Resistance soars. When the average fiber diameter of the constituent fibers exceeds 100 μm, the adsorbent particles jump out or fall off particularly during pleating. *
一方で、空気清浄時の下流側となるカバー層を構成する繊維の平均繊維径は、特に限定されないが、吸着材の脱落を考慮し10~30μmが好ましい。構成繊維の平均繊維径が10μm未満であると通気抵抗が高くなり、30μmを超えると吸着材の脱落が生じる。  On the other hand, the average fiber diameter of the fibers constituting the cover layer on the downstream side at the time of air cleaning is not particularly limited, but is preferably 10 to 30 μm in consideration of dropping of the adsorbent. When the average fiber diameter of the constituent fibers is less than 10 μm, the airflow resistance increases, and when it exceeds 30 μm, the adsorbent falls off. *
本発明のカバー層を構成する繊維構造体の充てん密度は、0.05g/cc以上であることが好ましい。充てん密度が0.05g/cc未満であるとプリーツ加工時に熱セットが効かず、プリーツ形状を保つことが難しくなる。より好ましくは0.15g/cc以上である。  The packing density of the fiber structure constituting the cover layer of the present invention is preferably 0.05 g / cc or more. When the packing density is less than 0.05 g / cc, heat setting does not work during pleating and it becomes difficult to maintain the pleated shape. More preferably, it is 0.15 g / cc or more. *
本発明のカバー層は、厚みが0.1~3.0mmであることが好ましい。厚みが0.1mm未満であると目付斑も考慮すると活性炭の抜け、脱落の懸念が生じる。厚みが3.0mmを超えると濾材全体の厚みが大き過ぎ、プリーツ状ユニットとした場合に構造抵抗が大きくなり、結果としてユニット全体での通気抵抗が高くなり過ぎ、実用上問題がある。  The cover layer of the present invention preferably has a thickness of 0.1 to 3.0 mm. If the thickness is less than 0.1 mm, the activated carbon may come off or fall off when considering the uneven appearance. When the thickness exceeds 3.0 mm, the thickness of the entire filter medium is too large, and when the pleated unit is used, the structural resistance increases, and as a result, the ventilation resistance of the entire unit becomes too high, which causes a problem in practice. *
本発明のカバー層は、目付量が15~100g/mであることが好ましく、20~80g/mがより好ましい。目付が15g/m未満であれば吸着材および熱可塑性樹脂の抜けが多くなる。目付が100g/mを越えると、シート厚み大きくなり、プリーツ状ユニットとした場合の構造抵抗が大きくなる。  Cover layer of the present invention preferably has a basis weight is 15 ~ 100g / m 2, more preferably 20 ~ 80g / m 2. If the basis weight is less than 15 g / m 2 , the adsorbent and the thermoplastic resin are likely to come off. When the basis weight exceeds 100 g / m 2 , the sheet thickness increases, and the structural resistance in the case of a pleated unit increases.
本発明のカバー層を構成する繊維構造体の繊維素材は、特に限定されず、ポリオレフィン系、ポリエステル系、レーヨン系、ポリアミド系、ポリウレタン系、アクリル系、ポリビニルアルコール系、ポリカーボネート系等の素材を用いることができる。そのなかでも、低融点熱可塑性樹脂成分を鞘成分に、高融点熱可塑性樹脂成分を芯成分に用いた芯鞘型複合繊維を用いれば後述する加熱シート化時に鞘成分が溶融して活性炭との結合力が高まり好ましい。  The fiber material of the fiber structure constituting the cover layer of the present invention is not particularly limited, and materials such as polyolefin, polyester, rayon, polyamide, polyurethane, acrylic, polyvinyl alcohol, and polycarbonate are used. be able to. Among them, if a core-sheath type composite fiber using a low-melting thermoplastic resin component as a sheath component and a high-melting thermoplastic resin component as a core component is used, the sheath component melts at the time of forming a heated sheet, which will be described later. It is preferable because the bonding force is increased. *
本発明のカバー層には、タバコ煙粒子、カーボン粒子、海塩粒子をはじめとするサブミクロン粒子に対する除去効果も増大することができる帯電した不織布、いわゆるエレクトレットシートを使用することが好ましい。エレクトレットシートをカバー層とすることにより、臭気物質のみならずサブミクロン粒子も同時に除去可能となり、空気清浄効果がより一層向上する。また、エレクトレットシートを吸着材の上流に設置すれば、ダスト等が活性炭、シリカゲル、熱可塑性樹脂から構成される吸着材層に侵入して吸着材層内の活性炭およびシリカゲルの細孔が閉塞することを防止し、フィルタ寿命を延長することができるからである。  For the cover layer of the present invention, it is preferable to use a charged non-woven fabric, so-called electret sheet, which can also increase the removal effect on submicron particles such as tobacco smoke particles, carbon particles and sea salt particles. By using the electret sheet as a cover layer, not only odorous substances but also submicron particles can be removed simultaneously, and the air cleaning effect is further improved. Also, if the electret sheet is installed upstream of the adsorbent, dust etc. will enter the adsorbent layer composed of activated carbon, silica gel, and thermoplastic resin, and the pores of the activated carbon and silica gel in the adsorbent layer will be blocked. This is because the filter life can be prevented and the filter life can be extended. *
本発明のカバー層を構成する繊維構造体の繊維配向は、特に限定はなく、例えば不織布状であればランダム状、クロス状、パラレル状いずれでも構わない。  The fiber orientation of the fiber structure constituting the cover layer of the present invention is not particularly limited. For example, the fiber orientation may be random, cloth, or parallel as long as it is a nonwoven fabric. *
本発明の空気清浄用濾材において、カバー層と吸着材との接着には、熱可塑性樹脂が用いられ、その素材としてはポリエステル系、ポリオレフィン系、ポリアミド系、ポリウレタン系、エチレン-アクリル共重合体、ポリアクリレート、ポリアーレン、ポリアクリル、ポリジエン、エチレン-酢酸ビニル、PVC、PS等の熱可塑性樹脂が挙げられる。 本発明の熱可塑性樹脂の大きさは、特に限定されないが、粉末状で平均粒径1~200μm程度のものが好ましい。平均粒径1~200μmであれば、熱可塑性樹脂が、吸着材の表面細孔を塞ぐことを低減できる一方、吸着材との混合時にファンデルワールス力や静電気力による活性炭への予備接着が有効になされ、均一に分散することができ、吸着材層内、及びカバー層との接着性を良好にできるからである。  In the air cleaning filter medium of the present invention, a thermoplastic resin is used for adhesion between the cover layer and the adsorbent, and the material thereof is polyester, polyolefin, polyamide, polyurethane, ethylene-acrylic copolymer, Examples thereof include thermoplastic resins such as polyacrylate, polyarene, polyacryl, polydiene, ethylene-vinyl acetate, PVC, and PS. The size of the thermoplastic resin of the present invention is not particularly limited, but it is preferably powdery and having an average particle size of about 1 to 200 μm. If the average particle size is 1 to 200 μm, the thermoplastic resin can reduce blocking of the surface pores of the adsorbent, while pre-adhesion to activated carbon by van der Waals force or electrostatic force is effective when mixed with the adsorbent. This is because it can be uniformly dispersed, and the adhesiveness in the adsorbent layer and with the cover layer can be improved. *
本発明の熱可塑性樹脂は粉末状であれば形状は特に規定しないが、破砕状であるとカバー層への散布時にカバー層からの脱落が少なく好ましい。熱可塑性樹脂の融点は、移動車両等の室内の環境温度等考慮すると80℃以上が好ましく、90℃以上がより好ましい。  The shape of the thermoplastic resin of the present invention is not particularly limited as long as it is in a powder form, but a crushed form is preferable because it is less likely to fall off from the cover layer when sprayed onto the cover layer. The melting point of the thermoplastic resin is preferably 80 ° C. or higher, more preferably 90 ° C. or higher in consideration of the environmental temperature in the room of a moving vehicle or the like. *
本発明の熱可塑性樹脂の溶融時の流動性は、JIS K-7210記載のMI値で、1~80g/10minが好ましく、3~30g/10minがより好ましい。かかる範囲であれば、吸着材の表面の閉塞を防止しつつ、吸着材層とカバー層を強固に接着することができるからである。  The fluidity at the time of melting of the thermoplastic resin of the present invention is preferably 1 to 80 g / 10 min, more preferably 3 to 30 g / 10 min in terms of MI value described in JIS K-7210. This is because, within such a range, the adsorbent layer and the cover layer can be firmly bonded while preventing the surface of the adsorbent from being blocked. *
本発明の熱可塑性樹脂の含有量は、吸着材に対して3~100重量%であることが好ましく、5~70重量%であることがより好ましい。かかる範囲内であれば、カバー層との接着力、通気抵抗、脱臭性能に優れる脱臭濾材が得られるからである。  The content of the thermoplastic resin of the present invention is preferably 3 to 100% by weight, more preferably 5 to 70% by weight, based on the adsorbent. This is because a deodorizing filter medium excellent in adhesive strength with the cover layer, ventilation resistance, and deodorizing performance can be obtained within such a range. *
本発明の空気清浄用濾材は、抗菌剤、抗かび剤、抗ウイルス剤、難燃剤等の付随的機能を有する成分等を含めて構成してもよい。これらの成分は繊維類や不織布、織物中に練り込んでも、後加工で添着、または担持して付与してもよい。例えば、難燃剤を含めて構成することにより、FMVSS.302で規定されている遅燃性の基準やUL難燃規格に合致した空気清浄用濾材を製造することが可能である。  The air-cleaning filter medium of the present invention may include components having incidental functions such as antibacterial agents, antifungal agents, antiviral agents, and flame retardants. These components may be kneaded into fibers, non-woven fabrics, and woven fabrics, or may be added or supported by post-processing. For example, by including a flame retardant, FMVSS. It is possible to manufacture a filter medium for air cleaning that meets the standards for retarding flame retardancy defined in 302 and UL flame retardant standards. *
上記の付随的機能を有する成分は、活性炭等へ添着または担持してもよい。但し、この際には、活性炭本来の吸着機能を損なわないよう留意する必要がある。また、カバー層の繊維に吸着性能を有する機能を付与、例えば、酸やアルカリの薬剤を添着したり
、イオン交換繊維等を用いたりすることにより、脱臭機能を強化することも可能である。 
The component having the incidental function may be attached or supported on activated carbon or the like. However, in this case, care must be taken not to impair the original adsorption function of the activated carbon. In addition, it is possible to enhance the deodorizing function by imparting a function having adsorption performance to the fibers of the cover layer, for example, by attaching an acid or alkali chemical or using ion exchange fibers.
空気清浄用濾材の基本的な製法について説明する。まず、ヒドラジド化合物が担持されたシリカゲル、活性炭および粉末状熱可塑性樹脂を所定の重量秤量し、シェーカー(撹拌器)に入れ、約10分間回転速度30rpmで撹拌する。この際の水分率は混合物重量の15%以内が好ましい。この時点で粉末状熱可塑性樹脂が活性炭表面およびヒドラジド化合物が担持されたシリカゲル表面に仮接着された混合物となっている。次に、この混合物をカバー層の上に散布後、カバー層を積層し、熱プレス処理を実施する。熱プレスの際のシート表面温度は粉末状熱可塑性樹脂の融点の好ましくは3~30℃、より好ましくは5~20℃高い程度である。  The basic manufacturing method of the air cleaning filter medium will be described. First, silica gel on which a hydrazide compound is supported, activated carbon, and a powdered thermoplastic resin are weighed to a predetermined weight, placed in a shaker (stirrer), and stirred at a rotational speed of 30 rpm for about 10 minutes. The moisture content at this time is preferably within 15% of the weight of the mixture. At this point, the powdery thermoplastic resin is temporarily bonded to the activated carbon surface and the silica gel surface on which the hydrazide compound is supported. Next, after spraying this mixture on the cover layer, the cover layer is laminated and a hot press treatment is performed. The sheet surface temperature during hot pressing is preferably about 3 to 30 ° C., more preferably 5 to 20 ° C. higher than the melting point of the powdered thermoplastic resin. *
別法として、ヒドラジド化合物が担持されたシリカゲル、活性炭および粉末状熱可塑性樹脂を予め混合した混合粉体をカバー層の上に散布後、さらに粒状熱可塑性樹脂を一定量散布し、さらにカバー層を積層後、熱プレス処理を実施する方法、またはカバー層に予め粒状熱可塑性樹脂を固着させておき、このシートを上述したカバー層として、この上に活性炭と粉末状熱可塑性樹脂を予め混合した混合粉体を散布、またはカバー層に使用し、熱プレス処理を実施して空気清浄用濾材を得ることもできる。  Alternatively, after spraying a mixed powder premixed with silica gel, activated carbon and powdered thermoplastic resin carrying a hydrazide compound onto the cover layer, a certain amount of granular thermoplastic resin is further sprayed, and the cover layer is further covered. After lamination, a method of performing a heat press treatment, or a granular thermoplastic resin fixed in advance to the cover layer, and this sheet is used as the cover layer described above, and activated carbon and powdered thermoplastic resin are mixed in advance thereon It is also possible to obtain a filter medium for air cleaning by spraying powder or using it for a cover layer and performing a heat press treatment. *
別法として、活性炭、ヒドラジド化合物が担持されたシリカゲル、および粉末状熱可塑性樹脂を予め混合した混合粉体をカバー層の上に散布後、さらに粒状熱可塑性樹脂を一定量散布し、さらにカバー層を積層後、熱プレス処理を実施する方法、またはカバー層に予め粒状熱可塑性樹脂を固着させておき、このシートを上述したカバー層として、この上に活性炭と粉末状熱可塑性樹脂を予め混合した混合粉体を散布、またはカバー層に使用し、熱プレス処理を実施して、空気清浄用濾材を得ることもできる。  As an alternative method, after spraying a mixed powder in which activated carbon, silica gel supporting a hydrazide compound, and a powdered thermoplastic resin are mixed in advance onto the cover layer, a certain amount of granular thermoplastic resin is further sprayed, and the cover layer After laminating, a method of performing a heat press treatment, or a granular thermoplastic resin is fixed in advance to the cover layer, and this sheet is used as the cover layer described above, and activated carbon and a powdered thermoplastic resin are premixed thereon. It is also possible to obtain a filter medium for air cleaning by spraying the mixed powder or using it for the cover layer and performing a hot press treatment. *
また、熱処理する前に赤外線等で予め予備加熱し、仮接着しておけば、プレス時におこりがちな混合物の不規則な流動も生じず、より分散性が良好な空気清浄用濾材が製造できる。赤外線による熱処理は、気流などを起こさず、混合物を静置した状態で加熱することができ、混合物の飛散などを防止することができる。  Further, if preheating is performed in advance using infrared rays or the like and temporary bonding is performed before heat treatment, an irregular flow of the mixture that tends to occur during pressing does not occur, and an air purifying filter medium with better dispersibility can be manufactured. The heat treatment using infrared rays does not cause an air current and the like, can be heated while the mixture is left standing, and can prevent the mixture from being scattered. *
最終的に熱プレスしシート製造するにはよく使用されるロール間熱プレス法、または上下ともフラットな熱ベルトコンベヤー間にはさみこむフラットベッドラミネート法等があげられる。より均一な厚み、接着状態をつくりだすには後者の方がより好ましい。また、本発明で記載するカバー層と上記製法の特徴の組み合わせにより、活性炭同志の過度の結着を抑制することができると同時に、カバー層との実用上充分な接着強力を得ることができる。  In order to finally heat-press and manufacture a sheet, a hot-roll hot-pressing method that is often used, or a flat-bed laminating method that is sandwiched between heat belt conveyors that are flat on the upper and lower sides can be given. The latter is more preferable for producing a more uniform thickness and adhesion. In addition, the combination of the characteristics of the cover layer described in the present invention and the above production method can suppress excessive binding between the activated carbons, and at the same time, can obtain a practically sufficient adhesive strength with the cover layer. *
本発明で得られた空気清浄用濾材は、プリーツ形状に加工するのに好適である。プリーツ形状への加工方法は特に限定されずレシプロ方式、ロータリー方式、ストライピング方式等、広く利用できる。プリーツ形状に加工することによって単位面積あたりの濾材折り込み量を増やせるため、脱臭性能やダスト保持性能を飛躍的に向上させることができる。  The air cleaning filter medium obtained in the present invention is suitable for processing into a pleated shape. The method of processing into a pleated shape is not particularly limited, and can be widely used such as a reciprocating method, a rotary method, and a striping method. Since the amount of filter media folded per unit area can be increased by processing into a pleated shape, deodorization performance and dust retention performance can be dramatically improved. *
本発明の空気清浄用濾材を使用したプリーツ状フィルタユニットの厚みは、10~400mmが好ましい。カーエアコンに内蔵装着をはじめとする車載用途や家庭用空気清浄機であれば、通常の内部スペースの関係から、10~60mm程度、ビル空調用途へよく設置される大型のフィルタユニットであれば40~400mm程度が収納スペースから考えると好ましい。  The thickness of the pleated filter unit using the air-cleaning filter medium of the present invention is preferably 10 to 400 mm. For in-vehicle applications such as built-in car air conditioners and household air purifiers, it is about 10-60mm due to the normal internal space. About 400 mm is preferable from the viewpoint of storage space. *
本発明のフィルタユニットのひだ山頂点間隔は、2~30mmが好ましい。2mm未満ではひだ山間が密着しすぎでデッドスペースが多く、効率的にシートを活用できなくなるため好ましくない。一方、30mmを越えると濾材折り込み面積が小さくなるためフィルタ厚みに応じた除去効果を得ることができなくなるため好ましくない。 The distance between the ridge peaks of the filter unit of the present invention is preferably 2 to 30 mm. If it is less than 2 mm, the folds are in close contact with each other and there is a lot of dead space, which makes it impossible to use the sheet efficiently. On the other hand, if it exceeds 30 mm, the filter medium folding area becomes small, and therefore it is not preferable because the removal effect corresponding to the filter thickness cannot be obtained.
以下本発明を実施例によって、さらに詳細に説明するが、下記実施例は本発明を限定する性質のものではなく、前・後記の趣旨に沿って設計変更することはいずれも本発明の技術的範囲に含まれるものである。 なお、実施例中の数値は以下の方法で測定した値である。  Hereinafter, the present invention will be described in more detail by way of examples. However, the following examples are not intended to limit the present invention, and any design change in accordance with the gist of the present invention will be described. It is included in the range. In addition, the numerical value in an Example is the value measured with the following method. *
(平均繊維径) カバー層表面の走査型電子顕微鏡写真(倍率100~1000倍)を撮影し、その写真からn=30にて繊維径を測定した平均値を算出した。  (Average fiber diameter) A scanning electron micrograph (magnification of 100 to 1000 times) of the cover layer surface was taken, and an average value obtained by measuring the fiber diameter at n = 30 was calculated from the photograph. *
(平均粒径) 活性炭およびシリカゲルについては、JIS K 1474活性炭試験方法に基づいた質量平均径を平均粒径とした。また、熱可塑性樹脂については、レーザ回折式粒子径分布測定装置(島津製作所製)を用いてD50メジアン径を平均粒径とした。  (Average particle diameter) For activated carbon and silica gel, the mass average diameter based on the JIS K 1474 activated carbon test method was taken as the average particle diameter. Moreover, about the thermoplastic resin, D50 median diameter was made into the average particle diameter using the laser diffraction type particle size distribution measuring apparatus (made by Shimadzu Corporation). *
(目付) 200mm×200mmの試料を使用し、80℃の恒温槽中に30分放置後、デシケータ(乾燥剤:シリカゲル)中で30分放置する。その後取り出し、感量10mgの化学天秤で測定して、m当りの重量に換算した。  (Weight) Using a 200 mm × 200 mm sample, leave it in a constant temperature bath at 80 ° C. for 30 minutes, and then leave it in a desiccator (desiccant: silica gel) for 30 minutes. Thereafter, the sample was taken out, measured with a chemical balance having a sensitivity of 10 mg, and converted to a weight per m 2 .
(通気抵抗) 図2に示す測定冶具により、試料大きさφ75mm、有効濾過面積φ50.5mm、濾材通過風速50cm/secとなるよう通風した時の上流側と下流側の差圧をマノスターゲージで測定し、通気抵抗とした。  (Ventilation resistance) Using the measuring jig shown in FIG. 2, the differential pressure between the upstream side and the downstream side when the sample size is φ75 mm, the effective filtration area is φ50.5 mm, and the filter medium passing air velocity is 50 cm / sec. The measured airflow resistance was measured. *
(厚み) φ75mmの試料を用い、ダイヤルシックネスゲージにより測定した。測定子の大きさはφ50mm、測定荷重は2.94Nとした。  (Thickness) Measured with a dial thickness gauge using a φ75 mm sample. The size of the probe was 50 mm, and the measurement load was 2.94N. *
(充てん密度) JIS K 1474(2007)活性炭試験法に基づき充てん密度を測定した。  (Filling density) The filling density was measured based on JIS K 1474 (2007) activated carbon test method. *
(0.3μm粒子捕集効率) 濾材をダクト内に設置し、空気濾過速度が20cm/秒になるよう大気を通気させ、濾材の上流、下流の0.3~0.5μm粒子の個数濃度をパーティクルカウンターにて計測し、次式にて粒子捕集効率を算出した。  粒子捕集効率(%)=[1-(下流側濃度/上流側濃度)]×100  (0.3 μm particle collection efficiency) A filter medium is installed in the duct, and the air is vented so that the air filtration speed is 20 cm / second, and the number concentration of 0.3 to 0.5 μm particles upstream and downstream of the filter medium is determined. Measurement was performed with a particle counter, and the particle collection efficiency was calculated using the following equation. Particle collection efficiency (%) = [1- (Downstream concentration / Upstream concentration)] × 100
(アセトアルデヒド脱臭効率) 25℃、相対湿度50%雰囲気中で、3ppmのアセトアルデヒドガスを風速20cm/secにて試験濾材に通風した。通風1分後に濾材の上下流の濃度をそれぞれガステック製検知管で測定し、上流側のガス濃度から下流側のガス濃度を減じた値を上流側のガス濃度で除した値の百分率で示した。測定は6cm×6cmに切り取った濾材単板サンプルで行った。  (Acetaldehyde deodorization efficiency) In an atmosphere of 25 ° C. and 50% relative humidity, 3 ppm of acetaldehyde gas was passed through the test filter medium at a wind speed of 20 cm / sec. One minute after ventilation, the upstream and downstream concentrations of the filter medium are measured with a gas-tech detector tube, and the percentage obtained by dividing the upstream gas concentration by the downstream gas concentration is divided by the upstream gas concentration. It was. The measurement was performed on a filter medium single plate sample cut to 6 cm × 6 cm. *
(トルエン脱臭効率) 25℃、相対湿度50%雰囲気中で、80ppmのトルエンガスを風速20cm/secにて試験濾材に通風した。通風1分後に濾材の上下流の濃度をそれぞれガステック製検知管で測定し、上流側のガス濃度から下流側のガス濃度を減じた値を上流側のガス濃度で除した値の百分率で示した。測定は6cm×6cmに切り取った濾材単板サンプルで行った。  (Toluene deodorization efficiency) In an atmosphere of 25 ° C and 50% relative humidity, 80 ppm of toluene gas was passed through the test filter medium at a wind speed of 20 cm / sec. One minute after ventilation, the upstream and downstream concentrations of the filter medium are measured with a gas-tech detector tube, and the percentage obtained by dividing the upstream gas concentration by the downstream gas concentration is divided by the upstream gas concentration. It was. The measurement was performed on a filter medium single plate sample cut to 6 cm × 6 cm. *
(粒子脱落量) 200mm幅で作成した濾材をプリーツ折り高さが28mmになるように山谷交互スジ付け方式にてプリーツ加工を実施した。プリーツ加工品を30山でカットし、カット端面から活性炭が脱落しないようにヒートシール処理を施した。プリーツカット品に200mm×30mm、厚み1mmの枠体用不織布をプリーツピッチが等間隔になるように周囲4面に貼り付けフィルタユニットとした(図3)。 作成したフィルタユニットを地面に水平方向に配置し、高さ50cmから平滑でクリーンな台上に自由落下させ、これを上下それぞれ3回繰り返しフィルタユニットから脱落した活性炭の重量を測定し、これを活性炭脱落量とした。  (Particle dropout amount) The filter medium prepared with a width of 200 mm was subjected to pleat processing by an alternating streaks method so that the pleat folding height was 28 mm. The pleated product was cut at 30 ridges and heat-sealed so that the activated carbon did not fall off from the cut end face. A 200 mm × 30 mm, 1 mm thick non-woven fabric for a frame was applied to a pleat cut product on four surrounding surfaces so that the pleat pitch was equally spaced (FIG. 3). Place the created filter unit horizontally on the ground, let it fall freely on a smooth and clean table from a height of 50 cm, repeat this three times each up and down, measure the weight of the activated carbon dropped from the filter unit, The amount dropped out. *
<実施例1> ポリプロピレン繊維(繊度2.2dtex、繊維長51mm)と、ポリエステル繊維(繊度1.7dtex、繊維長44mm)を1:1の重量比で混綿、カーディングして目付25g/mの混繊ウェブを作製後、3MPaの高圧水を連続的に噴霧して交絡、乾燥し、混繊シートを作成した。この混繊シートに、目付12g/mのポリエステル(芯)/ポリエチレン(鞘)で構成される芯鞘型複合熱融着系長繊維(繊維径30μm)からなる不織布を、ニードルパンチにより積層一体化し、さらに摩擦帯電を行い、下流層となるエレクトレット積層シートを得た。 活性炭として平均粒径250μm、JIS K 1474(2007)活性炭試験法の充てん密度が0.43g/cc、BET比表面積1500m/gである破砕形状ヤシガラ系粒状活性炭と、シリカゲルとして平均粒径120μm、JIS K 1474(2007)活性炭試験法の充てん密度が0.71g/cc、BET比表面積610m/gの破砕形状A型シリカゲルに、アジピン酸ジヒドラジドをシリカゲル100重量部に対し5重量部担持させたもの用い、さらに、熱可塑性粉末樹脂としては破砕形状エチレン-酢酸ビニル共重合樹脂(平均粒径150μm、MI 24g/10min、融点100℃)を用い、これらを50:25:25の重量比にて秤量し、フープシェーカー(京町産業車両株式会社製)にて15分撹拌混合した。この混合粉粒体を前記エレクトレット積層シートの熱融着系長繊維からなる不織布側へ総量100g/mになるように均一に散布した。 その上にレーヨン繊維(繊維径20μm)からなるレジンボンド不織布(目付40g/m、厚み0.2mm)を上流側カバー層として重ね合わせ、テフロン(登録商標)/ガラス製のベルト間に挟み込み、このベルト間隔を0.5mm、圧力100kPaに設定し140℃、30秒間熱プレス加工実施した。その後冷却し所望の空気清浄用濾材を得た。  <Example 1> Polypropylene fiber (fineness: 2.2 dtex, fiber length: 51 mm) and polyester fiber (fineness: 1.7 dtex, fiber length: 44 mm) are mixed and carded at a weight ratio of 1: 1, and the basis weight is 25 g / m 2. After producing the mixed fiber web, 3 MPa high-pressure water was continuously sprayed to entangle and dry to prepare a mixed fiber sheet. A nonwoven fabric composed of a core-sheath type composite heat-sealing long fiber (fiber diameter 30 μm) composed of polyester (core) / polyethylene (sheath) having a basis weight of 12 g / m 2 is laminated and integrated into this mixed fiber sheet by needle punching. And triboelectric charging was performed to obtain an electret laminated sheet as a downstream layer. An average particle size of 250 μm as activated carbon, a packed density of JIS K 1474 (2007) activated carbon test method having a packing density of 0.43 g / cc, a BET specific surface area of 1500 m 2 / g, and an average particle size of 120 μm as silica gel 5 parts by weight of adipic acid dihydrazide was supported on 100 parts by weight of silica gel on crushed A-type silica gel having a packing density of 0.71 g / cc and a BET specific surface area of 610 m 2 / g according to JIS K 1474 (2007) activated carbon test method. In addition, as the thermoplastic powder resin, a crushed-shaped ethylene-vinyl acetate copolymer resin (average particle size 150 μm, MI 24 g / 10 min, melting point 100 ° C.) was used, and these were used in a weight ratio of 50:25:25. Weighed and mixed with a hoop shaker (manufactured by Kyomachi Industrial Vehicle Co., Ltd.) for 15 minutes. This mixed powder was uniformly sprayed on the non-woven fabric side made of the heat-bonding long fibers of the electret laminated sheet so that the total amount was 100 g / m 2 . A resin-bonded nonwoven fabric (weight per unit area: 40 g / m 2 , thickness: 0.2 mm) made of rayon fiber (fiber diameter: 20 μm) is laminated as an upstream side cover layer, and sandwiched between Teflon (registered trademark) / glass belts, The belt interval was set to 0.5 mm and the pressure was set to 100 kPa, and hot pressing was performed at 140 ° C. for 30 seconds. Thereafter, it was cooled to obtain a desired air cleaning filter medium.
<実施例2> 下流層として平均繊維径7μmからなるポリプロピレンメルトブローン不織布をエレクトレット化して用いた以外は、実施例1と同様にして空気清浄用濾材を得た。  <Example 2> An air cleaning filter medium was obtained in the same manner as in Example 1 except that a polypropylene melt blown nonwoven fabric having an average fiber diameter of 7 µm was used as the downstream layer. *
<比較例1> シリカゲルとして平均粒径125μm、JIS K 1474(2007)活性炭試験法の充てん密度が0.75g/cc、BET比表面積610m/gの球状A型シリカゲルに、アジピン酸ジヒドラジドをシリカゲル100重量部に対し5重量部担持させたもの用いた以外は、実施例1と同様にして空気清浄用濾材を得た。  <Comparative Example 1> As a silica gel, an adipic acid dihydrazide is added to a spherical silica gel having an average particle diameter of 125 μm, a packing density of JIS K 1474 (2007) activated carbon test method of 0.75 g / cc, and a BET specific surface area of 610 m 2 / g. An air cleaning filter medium was obtained in the same manner as in Example 1 except that 5 parts by weight of 100 parts by weight was used.
<比較例2> 活性炭として平均粒径250μm、JIS K 1474(2007)活性炭試験法の充てん密度が0.50g/cc、BET比表面積1200m/gである球状ピッチ系活性炭を用いた以外は実施例1と同様にして空気清浄用濾材を得た。  <Comparative example 2> Implementation was carried out except that a spherical pitch activated carbon having an average particle size of 250 μm, a packing density of 0.50 g / cc, and a BET specific surface area of 1200 m 2 / g in JIS K 1474 (2007) activated carbon test method was used as the activated carbon. In the same manner as in Example 1, an air cleaning filter medium was obtained.
以上、実施例および比較例にて得られた空気清浄用濾材について通気抵抗、厚み、捕集効率、アセトアルデヒド脱臭効率、トルエン脱臭効率、粒子脱落量の評価を実施した。測定結果を表1に示す。  As described above, the air resistance, thickness, collection efficiency, acetaldehyde deodorization efficiency, toluene deodorization efficiency, and particle dropout amount of the air cleaning filter media obtained in Examples and Comparative Examples were evaluated. The measurement results are shown in Table 1. *
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
実施例では通気抵抗が低く、アセトアルデヒドだけでなく、炭化水素系ガスの代表であるトルエンも除去可能であり、捕集効率にも優れている。脱臭材であるシリカゲルおよび活性炭の粒径が破砕形状であるため、プリーツ加工後も濾材からの脱臭材粒子の脱落量が少ない。 一方、比較例ではシリカゲルまたは活性炭の形状が球形であるため、濾材中の粒子の充てん密度が高くなり通気抵抗が高いだけでなく、粒子間や粒子-カバー層間で脱臭材粒子が滑りやすくシート化後の脱落が大きい。 In the examples, the ventilation resistance is low, and not only acetaldehyde but also toluene, which is a typical hydrocarbon gas, can be removed, and the collection efficiency is excellent. Since the particle sizes of silica gel and activated carbon, which are deodorizing materials, are in a crushed shape, the amount of deodorizing material particles falling from the filter medium is small even after pleating. On the other hand, in the comparative example, the shape of silica gel or activated carbon is spherical, so the packing density of the particles in the filter medium is high and the ventilation resistance is high, and the deodorant particles are slippery between particles and between the particle and cover layers. The later dropout is large.
本発明の空気清浄用濾材は、低通気抵抗でアルデヒド類、炭化水素系ガス類の脱臭性能に優れ、脱臭材粒子の脱落が少なくプリーツ加工性に優れた空気清浄用濾材を提供できるものであり産業界に大いに寄与することができる。 The air-cleaning filter medium of the present invention can provide an air-cleaning filter medium with low ventilation resistance, excellent deodorization performance of aldehydes and hydrocarbon gases, and less deodorizing material particles falling off and excellent in pleatability. It can greatly contribute to the industry.
1   空気清浄用濾材   2   上流側カバー層   3   活性炭、シリカゲル、熱可塑性樹脂混合層   4   下流側カバー層   5   プリーツユニット   6   枠体   1 Air filter medium 2 Upstream cover layer 3 Activated carbon, silica gel, thermoplastic resin mixed layer 4 Downstream cover layer 5 Pleated unit 6 Frame body

Claims (4)

  1. カバー層間にヒドラジド化合物が担持されたシリカゲル、活性炭および熱可塑性樹脂の均一な混合物が固定化されてなる濾材であって、シリカゲルおよび活性炭の形状が破砕形状であることを特徴とする空気清浄用濾材。 A filter medium in which a uniform mixture of silica gel, activated carbon and a thermoplastic resin, in which a hydrazide compound is supported between cover layers, is fixed, and the shape of the silica gel and activated carbon is a crushed shape. .
  2.  ヒドラジド化合物がアジピン酸ジヒドラジドである請求項1記載の空気清浄用濾材。 The air-cleaning filter medium according to claim 1, wherein the hydrazide compound is adipic acid dihydrazide.
  3. カバー層の一層がエレクトレット不織布からなる請求項1~2記載の空気清浄用濾材。 The air cleaning filter medium according to claim 1, wherein one of the cover layers is made of an electret nonwoven fabric.
  4. 請求項1~3記載の濾材をプリーツ状に成型したフィルタユニット。   A filter unit in which the filter medium according to claims 1 to 3 is molded into a pleat shape.
PCT/JP2016/066386 2015-06-02 2016-06-02 Air cleaning filter WO2016195009A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017522241A JP6988477B2 (en) 2015-06-02 2016-06-02 Filter media for air purification

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-112026 2015-06-02
JP2015112026 2015-06-02

Publications (1)

Publication Number Publication Date
WO2016195009A1 true WO2016195009A1 (en) 2016-12-08

Family

ID=57441311

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/066386 WO2016195009A1 (en) 2015-06-02 2016-06-02 Air cleaning filter

Country Status (2)

Country Link
JP (1) JP6988477B2 (en)
WO (1) WO2016195009A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6439084B1 (en) * 2018-02-22 2018-12-19 協和機電工業株式会社 Adsorbent and method for producing adsorbent
JP2019048301A (en) * 2016-12-14 2019-03-28 有限会社フィルコーポレーション Filter material, filter element with the same, and method of manufacturing filter material
JP2020000999A (en) * 2018-06-28 2020-01-09 株式会社キャタラー Sheet-like adsorbent and manufacturing method therefor
CN111468068A (en) * 2020-05-18 2020-07-31 军事科学院军事医学研究院环境医学与作业医学研究所 Modified silica gel adsorbent, preparation method thereof and modified silica gel filter screen
CN111589428A (en) * 2020-05-18 2020-08-28 军事科学院军事医学研究院环境医学与作业医学研究所 Composite material for purifying air and preparation method thereof
JP2020203242A (en) * 2019-06-14 2020-12-24 進和テック株式会社 Filter unit for on-vehicle air cleaner

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007074816A1 (en) * 2005-12-26 2007-07-05 Nikki-Universal Co., Ltd. Purifier for aldehyde-containing air and process for production of the same
JP2008206550A (en) * 2007-02-23 2008-09-11 Toyobo Co Ltd Absorbent sheet
JP2009202150A (en) * 2008-01-28 2009-09-10 Japan Vilene Co Ltd Flame-retardant filter medium for gas removal
JP2014204799A (en) * 2013-04-11 2014-10-30 株式会社リブドゥコーポレーション Absorbent article
JP2015029770A (en) * 2013-08-05 2015-02-16 東洋紡株式会社 Air cleaning filter medium
JP2015077536A (en) * 2013-10-15 2015-04-23 株式会社キャタラー Adsorption sheet and method for producing the same, and air cleaner using the adsorption sheet

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007203295A (en) * 1996-07-25 2007-08-16 Nikki Universal Co Ltd Air cleaning filter
JP3657438B2 (en) * 1998-09-17 2005-06-08 三菱製紙株式会社 Manufacturing method of air purification filter
JP2013052369A (en) * 2011-09-06 2013-03-21 Toray Ind Inc Filter medium for air filter, and air filter
JP6323670B2 (en) * 2013-06-07 2018-05-16 東洋紡株式会社 Filter medium for deodorizing filter

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007074816A1 (en) * 2005-12-26 2007-07-05 Nikki-Universal Co., Ltd. Purifier for aldehyde-containing air and process for production of the same
JP2008206550A (en) * 2007-02-23 2008-09-11 Toyobo Co Ltd Absorbent sheet
JP2009202150A (en) * 2008-01-28 2009-09-10 Japan Vilene Co Ltd Flame-retardant filter medium for gas removal
JP2014204799A (en) * 2013-04-11 2014-10-30 株式会社リブドゥコーポレーション Absorbent article
JP2015029770A (en) * 2013-08-05 2015-02-16 東洋紡株式会社 Air cleaning filter medium
JP2015077536A (en) * 2013-10-15 2015-04-23 株式会社キャタラー Adsorption sheet and method for producing the same, and air cleaner using the adsorption sheet

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019048301A (en) * 2016-12-14 2019-03-28 有限会社フィルコーポレーション Filter material, filter element with the same, and method of manufacturing filter material
JP6439084B1 (en) * 2018-02-22 2018-12-19 協和機電工業株式会社 Adsorbent and method for producing adsorbent
JP2020000999A (en) * 2018-06-28 2020-01-09 株式会社キャタラー Sheet-like adsorbent and manufacturing method therefor
JP7139166B2 (en) 2018-06-28 2022-09-20 株式会社キャタラー Sheet-shaped adsorbent and its manufacturing method
JP2020203242A (en) * 2019-06-14 2020-12-24 進和テック株式会社 Filter unit for on-vehicle air cleaner
CN111468068A (en) * 2020-05-18 2020-07-31 军事科学院军事医学研究院环境医学与作业医学研究所 Modified silica gel adsorbent, preparation method thereof and modified silica gel filter screen
CN111589428A (en) * 2020-05-18 2020-08-28 军事科学院军事医学研究院环境医学与作业医学研究所 Composite material for purifying air and preparation method thereof
CN111589428B (en) * 2020-05-18 2023-01-31 军事科学院军事医学研究院环境医学与作业医学研究所 Composite material for purifying air and preparation method thereof

Also Published As

Publication number Publication date
JPWO2016195009A1 (en) 2018-03-22
JP6988477B2 (en) 2022-01-05

Similar Documents

Publication Publication Date Title
WO2016195009A1 (en) Air cleaning filter
JP4099714B2 (en) Adsorbent sheet and air cleaning filter
TW541200B (en) Filter element, process for producing it and filter using the element
JP2015029770A (en) Air cleaning filter medium
JP7188383B2 (en) Gas adsorbent, deodorant fiber sheet, and method for producing gas adsorbent
WO2014196564A1 (en) Filtering medium for deodorizing filter
KR102129457B1 (en) Gas adsorbent, gas adsorbing sheet, and air filter
JP2011104529A (en) Harmful gas removing material
JP5082292B2 (en) Adsorbent sheet
JP2013094367A (en) Air cleaning filter material
JP2018167155A (en) Adsorbent
JP2008206550A (en) Absorbent sheet
JP6194579B2 (en) Air cleaning media
JP2014100654A (en) Filter material for air cleaning, and filter unit
JP4876397B2 (en) Gas adsorbent sheet
JP6594609B2 (en) Filter medium for deodorizing filter
JP2006263490A (en) Flame-retardant deodorizing filter material
JP2015139720A (en) Filter material for deodorization filter
JPH057725A (en) Deodorizing filter
JP7017026B2 (en) Deodorizing filter media and filters
JP6323670B2 (en) Filter medium for deodorizing filter
JP4935177B2 (en) Adsorbent sheet
WO2020203508A1 (en) Gas adsorbent
JP2015164710A (en) air cleaning filter medium
JP2021112694A (en) Filter medium for air filter, and air filter unit using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16803443

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017522241

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16803443

Country of ref document: EP

Kind code of ref document: A1