JP2013094367A - Air cleaning filter material - Google Patents

Air cleaning filter material Download PDF

Info

Publication number
JP2013094367A
JP2013094367A JP2011238931A JP2011238931A JP2013094367A JP 2013094367 A JP2013094367 A JP 2013094367A JP 2011238931 A JP2011238931 A JP 2011238931A JP 2011238931 A JP2011238931 A JP 2011238931A JP 2013094367 A JP2013094367 A JP 2013094367A
Authority
JP
Japan
Prior art keywords
activated carbon
cover layer
filter medium
air cleaning
cleaning filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011238931A
Other languages
Japanese (ja)
Inventor
Sadahito Goto
禎仁 後藤
Kotaro Shimokawa
晃太朗 下川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2011238931A priority Critical patent/JP2013094367A/en
Publication of JP2013094367A publication Critical patent/JP2013094367A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a filter material for a pleated filter with a low ventilation resistance and a large dust holding amount, and with a small amount of dropping activated charcoal in a pleating process.SOLUTION: The air cleaning filter material includes activated charcoal and thermoplastic resin between cover layers. The air cleaning filter material is made from palm shell activated charcoal whose average particle size is 400-800 μm and whose hardness by JIS K 1474 is at least 90%. The average fiber diameter of fibers constituting a cover layer on the upstream side is 20-100 μm.

Description

本発明は、脱臭機能を有した空気清浄用濾材に関するものである。   The present invention relates to an air cleaning filter medium having a deodorizing function.

近年、自動車用、家庭用フィルタ等の分野において、濾材の高機能化・多様化の要請が急激に高まっており、脱臭機能を有する空気清浄用濾材の検討が多くなされている。そして、これら空気清浄用濾材として、粒子状または繊維状の吸着剤と接着剤を用いてシート化する方法が多く採用されており、例えば、基材層間に粒状吸着剤と粒状接着剤の混合物を散布し、これを加熱接着してなる吸着濾材が開示されている(例えば特許文献1)。   In recent years, in the fields of automobiles, household filters, and the like, there has been a rapid increase in demands for highly functional and diversified filter media, and many studies have been made on air cleaning filter media having a deodorizing function. And as these air cleaning filter media, a method of forming a sheet using a particulate or fibrous adsorbent and an adhesive is often employed. For example, a mixture of a granular adsorbent and a granular adhesive is provided between base materials. An adsorptive filter medium formed by spraying and heat-bonding this is disclosed (for example, Patent Document 1).

かかる吸着濾材は低コストで通気性に優れる吸着性シートが得られるが、吸着剤層と基材シートとの接着が弱いため剥離が生じやすく、プリーツ加工等で外力がかかる場合、あるいはフィルタを高風量下に曝した場合では吸着剤の脱落が大きい等、実用上の問題を有していた。   Such adsorptive filter media can provide an adsorbent sheet that is low in cost and excellent in air permeability. However, since the adhesion between the adsorbent layer and the base sheet is weak, peeling is likely to occur, and when external force is applied by pleating, etc. When exposed to air flow, there were problems in practical use such as a large dropout of the adsorbent.

かかる問題を解決するため、例えば接着シートを用いて吸着剤層と基材を接着した吸着性シートが開示されている(例えば特許文献2)。しかしながら、かかる吸着性シートは、接着シートが通気性を阻害して通気抵抗が高くなり、更には接着面で粉塵が目詰まりしやすい、あるいは吸着性能を阻害するという問題を有していた。   In order to solve this problem, for example, an adsorbent sheet in which an adsorbent layer and a substrate are bonded using an adhesive sheet is disclosed (for example, Patent Document 2). However, such an adsorbent sheet has a problem that the adhesive sheet impairs the air permeability and increases the air resistance, and further, the adhering surface tends to clog the dust or impedes the adsorbing performance.

特開平11−5058号公報Japanese Patent Laid-Open No. 11-5058 特開2002−273123号公報JP 2002-273123 A

本発明は、上記従来技術の課題を背景になされたものであり、低通気抵抗でダスト保持量が大きく、プリーツ加工時の活性炭脱落が小さい空気清浄用濾材を提供するものである。   The present invention has been made against the background of the above-described problems of the prior art, and provides an air purifying filter medium having low ventilation resistance, a large dust holding amount, and a small amount of activated carbon falling off during pleating.

本発明者は上記課題を解決するため、鋭意研究した結果、遂に本発明を完成するに至った。即ち、本発明は以下の通りである。
1.カバー層間に、活性炭及び熱可塑性樹脂を含む空気清浄用濾材であって、活性炭が平均粒径400〜800μm、かつJIS K 1474による硬さが90%以上のヤシ殻活性炭からなり、上流側カバー層を構成する繊維の平均繊維径が20〜100μmである空気清浄用濾材。
2.前記濾材をプリーツ状に成型したフィルタユニット。
As a result of intensive studies to solve the above problems, the present inventors have finally completed the present invention. That is, the present invention is as follows.
1. An air-cleaning filter medium containing activated carbon and a thermoplastic resin between cover layers, wherein the activated carbon is made of coconut shell activated carbon having an average particle diameter of 400 to 800 μm and a hardness of 90% or more according to JIS K 1474, and an upstream cover layer The filter medium for air cleaning whose average fiber diameter of the fiber which comprises is 20-100 micrometers.
2. A filter unit in which the filter medium is formed into a pleated shape.

本発明による空気清浄用濾材は、低通気抵抗で、ダスト保持量が大きく、プリーツ加工時の活性炭脱落が小さい空気清浄用濾材を提供できる。   The air-cleaning filter medium according to the present invention can provide an air-cleaning filter medium having a low ventilation resistance, a large dust holding amount, and a small amount of activated carbon falling off during pleating.

本発明の空気清浄用濾材の模式図である。It is a schematic diagram of the filter medium for air cleaning of this invention. 本発明中の通気抵抗測定冶具である。It is a ventilation resistance measuring jig in the present invention. 本発明中の活性炭脱落量測定に使用するフィルタユニットの模式図である。It is a schematic diagram of the filter unit used for activated carbon dropout amount measurement in the present invention.

以下、本発明を詳細に説明する。
本発明の空気清浄用濾材は、カバー層間に、活性炭及び熱可塑性樹脂を含む空気清浄用濾材である。本発明に使用されるカバー層は、織布状、不織布状いずれでも構わない。上流側カバー層を構成する繊維の平均繊維径は20〜100μmであり、20〜60μmが好ましく、20〜45μmがより好ましい。上流側カバー層は、被処理空気の流入面であるため、構成繊維の平均繊維径が20μmより小さいと、繊維間の空隙も狭くなり、空気中の塵埃がカバー層上に堆積し、通気抵抗が急上昇する。平均繊維径が100μmより大きいと、特にプリーツ時に活性炭粒子が飛び出すあるいは脱落する。
Hereinafter, the present invention will be described in detail.
The air-cleaning filter medium of the present invention is an air-cleaning filter medium containing activated carbon and a thermoplastic resin between cover layers. The cover layer used in the present invention may be woven or non-woven. The average fiber diameter of the fibers constituting the upstream cover layer is 20 to 100 μm, preferably 20 to 60 μm, and more preferably 20 to 45 μm. Since the upstream cover layer is the inflow surface of the air to be treated, if the average fiber diameter of the constituent fibers is smaller than 20 μm, the gap between the fibers becomes narrow, dust in the air accumulates on the cover layer, and airflow resistance Soars. When the average fiber diameter is larger than 100 μm, the activated carbon particles pop out or fall off particularly during pleating.

一方で、下流側カバー層を構成する繊維の平均繊維径は特に限定されないが、活性炭の脱落を考慮し10〜30μmが好ましい。10μmより小さいと通気抵抗が高く、30μmより大きいと活性炭の脱落を生じる。   On the other hand, the average fiber diameter of the fibers constituting the downstream cover layer is not particularly limited, but is preferably 10 to 30 μm in consideration of dropping off of the activated carbon. If it is smaller than 10 μm, the ventilation resistance is high, and if it is larger than 30 μm, the activated carbon falls off.

本発明のカバー層を構成する繊維部分の充填密度は0.05g/cc以上であることが好ましい。0.05g/ccより充填密度が低いとプリーツ加工時に熱セットが効かず、プリーツ形状を保つことが難しくなる。より好ましくは0.15g/cc以上である。   The filling density of the fiber part constituting the cover layer of the present invention is preferably 0.05 g / cc or more. If the packing density is lower than 0.05 g / cc, heat setting does not work during pleating and it becomes difficult to maintain the pleated shape. More preferably, it is 0.15 g / cc or more.

本発明のカバー層は、厚みが0.1mm〜3.0mmであることが好ましい。0.1mmより小さいと目付斑も考慮すると活性炭の抜け、脱落の懸念が生じる。3.0mmより大きいと濾材全体の厚みが大き過ぎ、プリーツ状ユニットとした場合に構造抵抗が大きくなり、結果としてユニット全体での通気抵抗が高くなり過ぎ、実用上問題がある。   The cover layer of the present invention preferably has a thickness of 0.1 mm to 3.0 mm. If it is smaller than 0.1 mm, there is a concern that the activated carbon may come off or fall off when the spot weight is taken into consideration. When the thickness is larger than 3.0 mm, the thickness of the entire filter medium is too large, and the structural resistance becomes large when the pleated unit is used. As a result, the ventilation resistance of the entire unit becomes too high, which causes a practical problem.

本発明のカバー層は、目付量が15〜100g/mであることが好ましく、より好ましくは20〜80g/mである。15g/m未満であれば活性炭、及び熱可塑性樹脂の抜けが多くなる。100g/mを越えると、シート厚み大きくなり、プリーツ状ユニットとした場合の構造抵抗が大きくなる。 The cover layer of the present invention preferably has a basis weight of 15 to 100 g / m 2 , more preferably 20 to 80 g / m 2 . If it is less than 15 g / m 2 , the activated carbon and the thermoplastic resin are likely to escape. If it exceeds 100 g / m 2 , the sheet thickness increases, and the structural resistance in the case of a pleated unit increases.

本発明のカバー層を構成する繊維材質は、ポリオレフィン系、レーヨン系、ポリエステル系、ポリアミド系、ポリウレタン系、アクリル系、ポリビニルアルコール系、ポリカーボネート等特に規定はなく、芯鞘繊維を使用しても種々の混合繊維であっても構わない。また、タバコ煙粒子、カーボン粒子、海塩粒子をはじめとするサブミクロン粒子に対する除去効果も増大することができる帯電した不織布、いわゆるエレクトレットシートを基材に使用することもできる。エレクトレットシートを基材とすることにより、ダスト等が吸着層に侵入して吸着層内の細孔が閉塞することを防止し、フィルタ寿命を延長することができるからである。   The fiber material constituting the cover layer of the present invention is not particularly specified, such as polyolefin, rayon, polyester, polyamide, polyurethane, acrylic, polyvinyl alcohol, polycarbonate, etc. The mixed fiber may be used. In addition, a charged non-woven fabric, so-called electret sheet, which can increase the effect of removing submicron particles such as tobacco smoke particles, carbon particles, and sea salt particles can also be used as a substrate. This is because, by using the electret sheet as a base material, it is possible to prevent dust and the like from entering the adsorption layer and block the pores in the adsorption layer, thereby extending the filter life.

本発明のカバー層の繊維配向は、特に限定はなく、例えば不織布状であればランダム状、クロス状、パラレル状いずれでも構わない。   The fiber orientation of the cover layer of the present invention is not particularly limited, and may be any of a random shape, a cloth shape, and a parallel shape as long as it is a nonwoven fabric, for example.

本発明においてカバー層間、活性炭層との接着には、熱可塑性樹脂が用いられる。熱可塑性樹脂として種類はポリオレフィン系、ポリアミド系、ポリウレタン系、ポリエステル系、エチレンーアクリル共重合体、ポリアクリレート、ポリアーレン、ポリアクリル、ポリジエン、エチレンー酢酸ビニル、PVC、PS等があげられる。   In the present invention, a thermoplastic resin is used for adhesion between the cover layer and the activated carbon layer. Examples of the thermoplastic resin include polyolefin-based, polyamide-based, polyurethane-based, polyester-based, ethylene-acrylic copolymer, polyacrylate, polyarene, polyacrylic, polydiene, ethylene-vinyl acetate, PVC, PS, and the like.

熱可塑性樹脂の大きさは、粉末状の樹脂は平均で1〜40μm(以下、「粉末状熱可塑性樹脂」と呼ぶ場合がある)の粒径が好ましい。より好ましくは5〜30μmである。さらに好ましくは1〜40μmの範囲に95重量%以上が含まれることである。かかる範囲の粒子径であれば、熱可塑性樹脂が、活性炭の表面細孔を塞ぐことを低減できる一方、活性炭との混合時にファンデルワールス力や静電気力による活性炭への予備接着が有効になされ、均一に分散することができ、活性炭層内、及びカバー層との接着性を良好にできるからである。   As for the size of the thermoplastic resin, the powdery resin preferably has an average particle size of 1 to 40 μm (hereinafter sometimes referred to as “powdered thermoplastic resin”). More preferably, it is 5-30 micrometers. More preferably, it is 95% by weight or more in the range of 1 to 40 μm. If the particle size is in such a range, the thermoplastic resin can reduce the clogging of the surface pores of the activated carbon, while pre-adhesion to the activated carbon by van der Waals force or electrostatic force is effectively made when mixed with activated carbon, It is because it can disperse | distribute uniformly and the adhesiveness in an activated carbon layer and a cover layer can be made favorable.

粉末状熱可塑性樹脂の形状は特に規定はないが、球状、破砕状、繊維状等があげられる。粉末状熱可塑性樹脂の融点は、移動車両等の室内の環境温度等考慮すると80℃以上が好ましい。より好ましくは90℃以上である。   The shape of the powdered thermoplastic resin is not particularly limited, but examples thereof include a spherical shape, a crushed shape, and a fibrous shape. The melting point of the powdered thermoplastic resin is preferably 80 ° C. or higher in consideration of the environmental temperature in the room of a moving vehicle or the like. More preferably, it is 90 ° C. or higher.

粉末状熱可塑性樹脂の溶融時の流動性はJIS K−7210記載のMI値で、1〜80g/10minが好ましい。より好ましくは3〜30g/10minである。かかる範囲であれば、吸着剤の表面の閉塞を防止しつつ、活性炭層とカバー層を強固に接着することができるからである。   The fluidity at the time of melting of the powdered thermoplastic resin is an MI value described in JIS K-7210, and preferably 1 to 80 g / 10 min. More preferably, it is 3-30 g / 10min. This is because, within such a range, the activated carbon layer and the cover layer can be firmly bonded while preventing the surface of the adsorbent from being blocked.

粉末状、粒状とも熱可塑性樹脂の使用量は、活性炭に対して1〜50重量%使用するのが好ましい。より好ましくは3〜30重量%である。かかる範囲内であれば、カバー層との接着力、通気抵抗、脱臭性能に優れる脱臭濾材が得られるからである。
粉末状、粒状とも熱可塑性粉末樹脂の粒径調整法は、機械粉砕、冷凍粉砕、化学調整法等があげられる。また最終的に篩にかけ一定粒径を得ることができるが、一定の粒径を確保できる方法であれば特に限定されない。
It is preferable to use the thermoplastic resin in an amount of 1 to 50% by weight with respect to the activated carbon in both powder and granular form. More preferably, it is 3 to 30% by weight. This is because a deodorizing filter medium excellent in adhesive strength with the cover layer, ventilation resistance, and deodorizing performance can be obtained within such a range.
Examples of the method for adjusting the particle size of the thermoplastic powder resin in both powder and granular form include mechanical pulverization, freeze pulverization, and chemical adjustment. Moreover, although it can finally screen and obtain a fixed particle size, if it is a method which can ensure a fixed particle size, it will not specifically limit.

本発明の空気清浄用濾材の構成単位としては、上流側カバー層/活性炭及び粉末状熱可塑性樹脂の混合粉粒体/下流側カバー層である。当然ながら、前記積層体にさらに活性炭と粉末状熱可塑性樹脂の混合粉粒体を配置し、カバー層を繰り返し積層一体化することも可能である。   The structural unit of the air-cleaning filter medium of the present invention is an upstream cover layer / active carbon and a powdered thermoplastic resin mixed powder / downstream cover layer. Of course, it is also possible to dispose a mixed powder of activated carbon and powdered thermoplastic resin in the laminate and repeatedly laminate and integrate the cover layers.

本発明の空気清浄用濾材に用いられる活性炭の平均粒子径は、通気性、ダスト保持性、吸着材の脱落、シート加工性等を考慮して、JIS K 1474活性炭試験方法に基づいた質量平均径にて400〜800μmである。好ましくは、450〜750μmである。平均粒子径が400μm未満の場合には、一定の脱臭性能を得るのに通気抵抗が大きくなりすぎ、また、同時にシート充填密度が高くなりやすく、ダスト供給時に早期の通気抵抗上昇を引き起こす原因にもなり好ましくない。平均粒子径が800μmを越える場合には、脱臭性能が極端に低くなり、更には厚みが大きくなる為、プリーツユニットとしての構造抵抗が高くなるので好ましくない。なお、上記の粒状活性炭は、通常の分級機を使用して所定の粒度調整をすることにより、得ることが可能である。   The average particle diameter of the activated carbon used for the air cleaning filter medium of the present invention is the mass average diameter based on the JIS K 1474 activated carbon test method in consideration of air permeability, dust retention, adsorbent dropout, sheet processability, and the like. 400 to 800 μm. Preferably, it is 450-750 micrometers. If the average particle size is less than 400 μm, the ventilation resistance becomes too high to obtain a certain deodorizing performance, and at the same time the sheet filling density tends to be high, which may cause an early increase in the ventilation resistance when supplying dust. It is not preferable. When the average particle diameter exceeds 800 μm, the deodorizing performance is extremely lowered, and the thickness is increased, so that the structural resistance as a pleat unit is increased, which is not preferable. In addition, said granular activated carbon can be obtained by carrying out predetermined particle size adjustment using a normal classifier.

本発明の空気清浄用濾材に用いられる活性炭は、JIS K 1474活性炭試験方法にて硬さ90%以上を有するヤシ殻活性炭が用いられる。好ましくは硬さ95%以上のヤシ殻活性炭である。硬さが90%未満であるとシート加工時やプリーツ加工時に活性炭が破砕され、濾材表面やプリーツ頂点から活性炭の脱落が発生する。   The activated carbon used for the air cleaning filter medium of the present invention is coconut shell activated carbon having a hardness of 90% or more according to the JIS K 1474 activated carbon test method. Preferred is coconut shell activated carbon having a hardness of 95% or more. When the hardness is less than 90%, the activated carbon is crushed during sheet processing or pleating, and the activated carbon falls off from the filter medium surface or the pleat apex.

活性炭原料としては、ヤシ殻の他に木質系、石炭系、ピッチ系などが知られているが、ヤシ殻活性炭の細孔は他の原料と比較して小さい細孔の比率が多く、不純物である灰分も少ない。つまり、ヤシ殻活性炭は細孔が小さいために吸着した臭気分子に対して効果的に細孔壁との分子間力が働き、吸着した臭気分子を脱離させにくい特徴がある。また灰分が少ないことから重量当たりの臭気吸着性能も高い。   In addition to coconut shells, wood-based, coal-based, pitch-based, etc. are known as activated carbon raw materials, but the pores of coconut shell activated carbon have a large proportion of small pores compared to other raw materials, Some ash is also low. That is, since the coconut shell activated carbon has small pores, the intermolecular force with the pore walls effectively acts on the adsorbed odor molecules, and the adsorbed odor molecules are difficult to desorb. Moreover, since there is little ash content, the odor adsorption performance per weight is also high.

本発明の空気清浄用濾材に用いられる活性炭のJIS K 1474に準拠して測定したときのトルエン吸着量は、20重量%以上が好ましい。悪臭ガス等の無極性のガス状及び液状物質に対して高い吸着性能を必要とするためである。   The amount of toluene adsorbed when measured in accordance with JIS K 1474 of the activated carbon used for the air cleaning filter medium of the present invention is preferably 20% by weight or more. This is because high adsorption performance is required for nonpolar gaseous and liquid substances such as malodorous gases.

本発明の空気清浄用濾材に用いられる活性炭の吸着層1層あたりの重量は、20〜500g/mの範囲であることが好ましい。かかる範囲であれば充分な吸着性能が得られるだけでなく、通気抵抗においても低く抑えることができるためである。 It is preferable that the weight per layer of the activated carbon used in the air-cleaning filter medium of the present invention is in the range of 20 to 500 g / m 2 . This is because, within such a range, not only sufficient adsorption performance can be obtained, but also the ventilation resistance can be kept low.

本発明の空気清浄用濾材に用いられる活性炭は、極性物質やアルデヒド類の吸着性能を向上することを目的として、薬品処理を施して用いてもよい。
ガス薬品処理に用いられる薬品としては、アルデヒド系ガスやNOx等の窒素化合物、SOx等の硫黄化合物、酢酸等の酸性の極性物質に対しては、例えばエタノールアミン、ポリエチレンイミン、アニリン、P−アニシジン、スルファニル酸等のアミン系薬剤や水酸化ナトリウム、水酸化カリウム、炭酸グアニジン、リン酸グアニジン、アミノグアニジン硫酸塩、5.5−ジメチルヒダントイン、ベンゾグアナミン、2.2−イミノジエタノール、2.2.2−ニトロトリエタノール、エタノールアミン塩酸塩、2−アミノエタノール、2.2−イミノジエタノール塩酸塩、P−アミノ安息香酸、スルファニル酸ナトリウム、L−アルギニン、メチルアミン塩酸塩、セミカルバジド塩酸塩、ヒドラジン、ヒドロキノン、硫酸ヒドロキシルアミン、過マンガン酸塩、炭酸カリウム、炭酸水素カリウム等が好適に用いられ、アンモニア、メチルアミン、トリメチルアミン、ピリジン等の塩基性の極性物質に対しては、例えば、リン酸、クエン酸、リンゴ酸、アスコルビン酸、酒石酸等が好適に用いられる。なお、薬品処理は、例えば、活性炭に薬品を担持させたり、添着することにより行う。また、活性炭に直接薬品を処理する以外に、シート面表面付近に通常のコーティング法等で添着加工する方法やシート全体に含浸添着することも可能である。この際、アルギン酸ソーダやポリエチレンオキサイド等の増粘剤を混入した薬品水溶液をつくり、これを担持、添着を実施する方法もできる。この方法では水への溶解度が低い薬品を担持、添着し、更に薬品の脱落を抑制するのにも有効である。
The activated carbon used in the air cleaning filter medium of the present invention may be used after chemical treatment for the purpose of improving the adsorption performance of polar substances and aldehydes.
Examples of chemicals used in gas chemical treatment include aldehyde gases, nitrogen compounds such as NOx, sulfur compounds such as SOx, and acidic polar substances such as acetic acid such as ethanolamine, polyethyleneimine, aniline, and P-anisidine. , Amine drugs such as sulfanilic acid, sodium hydroxide, potassium hydroxide, guanidine carbonate, guanidine phosphate, aminoguanidine sulfate, 5.5-dimethylhydantoin, benzoguanamine, 2.2-iminodiethanol, 2.2.2 -Nitrotriethanol, ethanolamine hydrochloride, 2-aminoethanol, 2.2-iminodiethanol hydrochloride, P-aminobenzoic acid, sodium sulfanilate, L-arginine, methylamine hydrochloride, semicarbazide hydrochloride, hydrazine, hydroquinone , Hydroxylamine sulfate Permanganate, potassium carbonate, potassium hydrogen carbonate and the like are preferably used. For basic polar substances such as ammonia, methylamine, trimethylamine and pyridine, for example, phosphoric acid, citric acid, malic acid, ascorbine Acid, tartaric acid and the like are preferably used. The chemical treatment is performed by, for example, supporting or attaching a chemical to activated carbon. In addition to directly treating the activated carbon with chemicals, it is possible to impregnate the entire sheet or impregnate the entire sheet by a method such as an ordinary coating method in the vicinity of the sheet surface. At this time, a chemical aqueous solution in which a thickener such as sodium alginate or polyethylene oxide is mixed can be prepared, supported, and attached. This method is effective in supporting and attaching a chemical having low solubility in water and further suppressing the chemical from falling off.

本発明の空気清浄用濾材は、抗菌剤、抗かび剤、抗ウイルス剤、難燃剤等の付随的機能を有する成分等を含めて構成してもよい。これらの成分は繊維類や不織布、織物中に練り込んでも、後加工で添着、及び担持して付与してもよい。例えば、難燃剤を含めて構成することにより、FMVSS.302で規定されている遅燃性の基準やUL難燃規格に合致した空気清浄用濾材を製造することが可能である。
上記の付随的機能を有する成分は、活性炭等へ添着又は担持してもよい。但し、この際には、活性炭本来の吸着機能を損なわないよう留意する必要がある。また、カバー層や通気性シート等の繊維に吸着性能を有する機能を付与、例えば、酸やアルカリの薬剤を添着したりイオン交換繊維等を用いることにより、脱臭機能を強化することも可能である。
The air-cleaning filter medium of the present invention may include components having incidental functions such as antibacterial agents, antifungal agents, antiviral agents, and flame retardants. These components may be kneaded into fibers, non-woven fabrics, or woven fabrics, or may be attached and supported by post-processing. For example, by including a flame retardant, FMVSS. It is possible to manufacture a filter medium for air cleaning that meets the standards for retarding flame retardancy defined in 302 and UL flame retardant standards.
The component having the incidental function may be attached or supported on activated carbon or the like. However, in this case, care must be taken not to impair the original adsorption function of the activated carbon. Also, it is possible to enhance the deodorizing function by imparting a function having adsorption performance to the fibers such as a cover layer and a breathable sheet, for example, by attaching an acid or alkali agent or using ion exchange fibers. .

空気清浄用濾材の基本的な製法について説明する。まず、活性炭及び粉末状熱可塑性樹脂を所定の重量秤量し、シェーカー(撹拌器)に入れ、約10分間回転速度30rpmで撹拌する。この際の水分率は混合物重量の15%以内が好ましい。この時点で粉末状熱可塑性樹脂が活性炭表面に仮接着された混合物となっている。次に、この混合粉粒体をカバー層の上に散布後、通気性シート(カバー層)を積層し、熱プレス処理を実施する。熱プレスの際のシート表面温度は熱可塑性粉末樹脂融点の3〜30℃、好ましくは5〜20℃高い程度が好ましい。別法として、活性炭と粉末状熱可塑性樹脂を予め混合した混合粉体をカバー層の上に散布後、更に粒状熱可塑性樹脂を一定量散布し、更に通気性シート(カバー層)を積層後、熱プレス処理を実施する方法、あるいはカバー層に予め粒状熱可塑性樹脂を固着させておき、このシートを上述したカバー層として、この上に活性炭と粉末状熱可塑性樹脂を予め混合した混合粉体を散布、あるいは通気性シート(カバー層)に使用し、熱プレス処理を実施して空気清浄用濾材を得ることもできる。   The basic manufacturing method of the air cleaning filter medium will be described. First, activated carbon and a powdered thermoplastic resin are weighed to a predetermined weight, placed in a shaker (stirrer), and stirred at a rotational speed of 30 rpm for about 10 minutes. The moisture content at this time is preferably within 15% of the weight of the mixture. At this point, the powdery thermoplastic resin is a mixture temporarily bonded to the activated carbon surface. Next, after spraying this mixed granular material on a cover layer, a breathable sheet (cover layer) is laminated | stacked and a hot press process is implemented. The sheet surface temperature during hot pressing is preferably about 3 to 30 ° C, preferably 5 to 20 ° C higher than the melting point of the thermoplastic powder resin. Alternatively, after spraying a mixed powder in which activated carbon and powdered thermoplastic resin are premixed on the cover layer, a certain amount of granular thermoplastic resin is further sprayed, and a breathable sheet (cover layer) is laminated, A method of performing a heat press treatment or a granular thermoplastic resin fixed in advance to a cover layer, and this sheet as a cover layer described above, a mixed powder in which activated carbon and a powdered thermoplastic resin are premixed thereon It can also be used for spraying or breathable sheets (cover layers) and subjected to hot press treatment to obtain an air cleaning filter medium.

また、熱処理する前に赤外線等で予め予備加熱し、仮接着しておけば、プレス時におこりがちな混合粉粒体の不規則な流動も生じず、より分散性が良好な空気清浄用濾材が製造できる。赤外線による熱処理は、気流などを起こさず、混合粉粒体を静置した状態で加熱することができ、混合粉粒体の飛散などを防止することができる。
最終的に熱プレスしシート製造するにはよく使用されるロール間熱プレス法、あるいは上下ともフラットな熱ベルトコンベヤー間にはさみこむフラットベッドラミネート法等があげられる。より均一な厚み、接着状態をつくりだすには後者の方がより好ましい。また、本特許で記載するカバー層と上記製法の特徴の組み合わせにより、活性炭同志の過度の結着を抑制することができると同時に、基材不織布との実用上充分な接着強力を得ることができる。
Also, if preheated and pre-bonded with infrared rays or the like before heat treatment, there will be no irregular flow of the mixed powder particles that tend to occur during pressing, and an air purifying filter medium with better dispersibility can be obtained. Can be manufactured. The heat treatment using infrared rays does not cause an air current and the like, can be heated in a state where the mixed powder particles are allowed to stand, and scattering of the mixed powder particles can be prevented.
In order to produce a sheet by finally hot pressing, a hot press method between rolls or a flat bed laminating method in which the upper and lower parts are sandwiched between flat heat belt conveyors can be used. The latter is more preferable for producing a more uniform thickness and adhesion. In addition, the combination of the characteristics of the cover layer described in this patent and the above production method can suppress excessive binding between the activated carbons, and at the same time can obtain a practically sufficient adhesive strength with the base nonwoven fabric. .

本発明で得られた空気清浄用濾材は、プリーツ形状に加工するのに好適である。プリーツ形状への加工方法は特に限定されずレシプロ方式、ロータリー方式、ストライピング方式等、広く利用できる。プリーツ形状に加工することによって単位面積あたりの濾材折り込み量を増やせる為、脱臭性能やダスト保持性能を飛躍的に向上させることができる。   The air cleaning filter medium obtained in the present invention is suitable for processing into a pleated shape. The method of processing into a pleated shape is not particularly limited, and can be widely used such as a reciprocating method, a rotary method, and a striping method. Since the amount of filter media folded per unit area can be increased by processing into a pleated shape, the deodorizing performance and dust holding performance can be dramatically improved.

本発明の空気清浄用濾材を使用したプリーツ状フィルタユニットの厚みは、10〜400mmが好ましい。カーエアコンに内蔵装着をはじめとする車載用途や家庭用空気清浄機であれば、通常の内部スペースの関係から、10〜60mm程度、ビル空調用途へよく設置される大型のフィルタユニットであれば40〜400mm程度が収納スペースから考えると好ましい。   The thickness of the pleated filter unit using the air cleaning filter medium of the present invention is preferably 10 to 400 mm. For in-vehicle applications such as built-in car air conditioners and household air purifiers, 40 to approximately 10 to 60 mm for large filter units often installed in building air conditioning applications due to the normal internal space. About ~ 400 mm is preferable considering the storage space.

本発明のフィルタユニットのひだ山頂点間隔は、2〜30mmが好ましい。2mm以下ではひだ山間が密着しすぎでデッドスペースが多く、効率的にシートを活用できなくなるため好ましくない。一方、30mmを越えると濾材折り込み面積が小さくなるためフィルタ厚みに応じた除去効果を得ることができなくなるため好ましくない。   The pleat peak apex distance of the filter unit of the present invention is preferably 2 to 30 mm. If it is 2 mm or less, the folds are in close contact with each other and there is a lot of dead space, which makes it impossible to use the sheet efficiently. On the other hand, if it exceeds 30 mm, the filter medium folding area becomes small, and therefore it is not preferable because the removal effect corresponding to the filter thickness cannot be obtained.

以下本発明を実施例によって、さらに詳細に説明するが、下記実施例は本発明を限定する性質のものではなく、前・後記の趣旨に沿って設計変更することはいずれも本発明の技術的範囲に含まれるものである。
なお、実施例中の数値は以下のような方法で測定した値である。
Hereinafter, the present invention will be described in more detail by way of examples. However, the following examples are not intended to limit the present invention, and any design change in accordance with the gist of the present invention will be described. It is included in the range.
In addition, the numerical value in an Example is the value measured by the following methods.

(平均繊維径)
不織布の表面の走査型電子顕微鏡写真(倍率100倍)を撮影し、その写真からn=30にて繊維径を測定した平均値を算出した。
(Average fiber diameter)
A scanning electron micrograph (100 times magnification) of the surface of the nonwoven fabric was taken, and an average value of fiber diameters measured from the photograph at n = 30 was calculated.

(目付)
200mm×200mmの試料を使用し、80℃の恒温槽中に30分放置後、デシケータ(乾燥剤:シリカゲル)中で30分放置する。その後取り出し、感量10mgの化学天秤で測定して、m当りの重量に換算した。
(Weight)
A sample of 200 mm × 200 mm is used, left in a constant temperature bath at 80 ° C. for 30 minutes, and then left in a desiccator (desiccant: silica gel) for 30 minutes. Thereafter, the sample was taken out, measured with a chemical balance having a sensitivity of 10 mg, and converted to a weight per m 2 .

(平均粒径)
JIS K 1474活性炭試験方法に基づき測定を行い、質量平均径を求めた。
(Average particle size)
Measurement was carried out based on the JIS K 1474 activated carbon test method to determine the mass average diameter.

(活性炭硬さ)
JIS K 1474活性炭試験方法に基づき測定を行った。
(Activated carbon hardness)
The measurement was performed based on the JIS K 1474 activated carbon test method.

(通気抵抗)
(図2)に示す測定冶具により、試料大きさφ75mm、有効濾過面積φ50.5mm、濾材通過風速50cm/secの条件下で測定した。
(Ventilation resistance)
Measurement was performed under the conditions of a sample size φ75 mm, an effective filtration area φ50.5 mm, and a filter medium passing air velocity of 50 cm / sec using a measurement jig shown in FIG.

(厚み)
荷重686Paの圧力を加えた時の値を測定した。
(Thickness)
The value when a pressure of 686 Pa was applied was measured.

(ダスト保持量、ダスト集塵効率)
濾材単板をダクト内に設置し、濾材通過風速が50cm/secになるよう大気を通気させ、濾材上流側から、JIS Z 8901記載の15種粉塵を70mg/mの濃度にて負荷し、通気抵抗が初期から150Pa上昇するまで粉塵を負荷した。この時の濾材単位面積あたりのダスト捕集量をダスト保持量とした。
また、次式により集塵効率を求めた。
ダスト集塵効率[%]=ダスト保持量÷ダスト供給量×100
(Dust retention, dust collection efficiency)
A filter medium veneer is installed in the duct, the atmosphere is ventilated so that the filter medium passing air speed is 50 cm / sec, and 15 kinds of dust described in JIS Z 8901 is loaded at a concentration of 70 mg / m 3 from the upstream side of the filter medium. Dust was loaded until the ventilation resistance increased by 150 Pa from the beginning. The amount of dust collected per unit area of the filter medium at this time was defined as the amount of dust retained.
Moreover, the dust collection efficiency was calculated | required by following Formula.
Dust collection efficiency [%] = Dust retention amount / Dust supply amount x 100

(活性炭脱落量)
200mm幅で作成した濾材をプリーツ折り高さが28mmになるように山谷交互スジ付け方式にてプリーツ加工を実施した。プリーツ加工品を30山でカットし、カット端面から活性炭が脱落しないようにヒートシール処理を施した。プリーツカット品に200mm×30mm、厚み1mmの枠体用不織布をプリーツピッチが等間隔になるように周囲4面に貼り付けフィルタユニットとした(図3)。
作成したフィルタユニットを地面に水平方向に配置し、高さ50cmから平滑でクリーンな台上に自由落下させ、これを上下それぞれ3回繰り返しフィルタユニットから脱落した活性炭の重量を測定し、これを活性炭脱落量とした。
(Activated carbon loss)
The filter medium prepared with a width of 200 mm was subjected to pleating by the Yamatani alternating streaking method so that the pleat folding height was 28 mm. The pleated product was cut at 30 ridges and heat-sealed so that the activated carbon did not fall off from the cut end face. A 200 mm × 30 mm, 1 mm thick non-woven fabric for a frame was applied to a pleat cut product on four surrounding surfaces so that the pleat pitch was equally spaced (FIG. 3).
Place the created filter unit horizontally on the ground, let it fall freely on a smooth and clean table from a height of 50 cm, repeat this three times each up and down, measure the weight of the activated carbon dropped from the filter unit, The amount dropped out.

(トルエン脱臭性能)
25℃、相対湿度50%雰囲気中で、80ppmのトルエンガスを風速20cm/secにて試験濾材に通風した。通風1分後に濾材の上下流の濃度をそれぞれガステック製検知管で測定し、上流側のガス濃度から下流側のガス濃度を減じた値を上流側のガス濃度で除した値の百分率で示した。測定は6cm×6cmに切り取った濾材単板サンプルで行った。
(Toluene deodorization performance)
In an atmosphere of 25 ° C. and 50% relative humidity, 80 ppm of toluene gas was passed through the test filter medium at a wind speed of 20 cm / sec. One minute after ventilation, the upstream and downstream concentrations of the filter medium are measured with a gas-tech detector tube, and the percentage obtained by dividing the upstream gas concentration by the downstream gas concentration is divided by the upstream gas concentration. It was. The measurement was performed on a filter medium single plate sample cut to 6 cm × 6 cm.

[実施例1]
平均繊維径35μm、目付65g/m、厚み0.2mmのポリエステル系繊維からなるサーマルボンド不織布を上流カバー層として用いた。
活性炭として、平均粒径500μm、硬さ97%、窒素吸着法によるBET比表面積1080m/gである5%炭酸カリウム添着ヤシガラ系粒状活性炭と、熱可塑性粉末樹脂として、エチレン−アクリル酸共重合体(平均粒径10μm、MI 9g/10min、融点105℃)を、10:1の重量比にて秤量し、均一になるまで撹拌混合した。
この混合粉粒体を前記上流カバー層に総量330g/m(活性炭300g/m相当)になるように均一に散布した。
その上にスパンボンド法により作成したポリエチレン/ポリエステル系芯鞘長繊維不織布(平均20μm、目付20g/m、厚み0.2mm)を重ね合わせ、テフロン(登録商標)/ガラス製のベルト間に挟み込み、このベルト間隔を0.5mm、圧力100kPaに設定し140℃、30秒間熱プレス加工実施した。その後冷却し所望の空気清浄用濾材を得た。
[Example 1]
A thermal bond nonwoven fabric made of polyester fibers having an average fiber diameter of 35 μm, a basis weight of 65 g / m 2 , and a thickness of 0.2 mm was used as the upstream cover layer.
As activated carbon, 5% potassium carbonate-impregnated coconut husk granular activated carbon having an average particle diameter of 500 μm, a hardness of 97%, and a BET specific surface area of 1080 m 2 / g by nitrogen adsorption method, and an ethylene-acrylic acid copolymer as a thermoplastic powder resin (Average particle size 10 μm, MI 9 g / 10 min, melting point 105 ° C.) was weighed at a weight ratio of 10: 1 and stirred and mixed until uniform.
The mixed powder was uniformly sprayed on the upstream cover layer so that the total amount was 330 g / m 2 (equivalent to activated carbon 300 g / m 2 ).
A polyethylene / polyester core-sheath long fiber non-woven fabric (average 20 μm, basis weight 20 g / m 2 , thickness 0.2 mm) prepared by the spunbond method is overlaid and sandwiched between Teflon / glass belts. The belt interval was set to 0.5 mm and the pressure was set to 100 kPa, and hot pressing was performed at 140 ° C. for 30 seconds. Thereafter, it was cooled to obtain a desired air cleaning filter medium.

[実施例2]
平均繊維径45μm、目付60g/m、厚み0.2mmのポリエステル系繊維からなるサーマルボンド不織布を上流カバー層として用いた。
活性炭として、平均粒径730μm、硬さ97%、窒素吸着法によるBET比表面積950m2/gであるヤシガラ系粒状活性炭と、熱可塑性粉末樹脂として住友精化製フロービーズEA209(エチレン−アクリル酸共重合、平均粒径10μm、MI 9g/10min、融点105℃)を、10:1の重量比にて秤量し、均一になるまで撹拌混合した。
この混合粉粒体を前記上流カバー層に総量341g/m(活性炭310g/m相当)になるように均一に散布した。
その後の加工は実施例1と同様に実施し、空気清浄用濾材を得た。
[Example 2]
A thermal bond nonwoven fabric made of polyester fibers having an average fiber diameter of 45 μm, a basis weight of 60 g / m 2 and a thickness of 0.2 mm was used as the upstream cover layer.
As activated carbon, coconut husk granular activated carbon having an average particle size of 730 μm, a hardness of 97%, and a BET specific surface area of 950 m 2 / g by a nitrogen adsorption method, and flow beads EA209 (ethylene-acrylic acid copolymer made by Sumitomo Seika) as a thermoplastic powder resin. , Average particle size 10 μm, MI 9 g / 10 min, melting point 105 ° C.) were weighed at a weight ratio of 10: 1 and stirred and mixed until uniform.
The mixed powder was uniformly sprayed on the upstream cover layer so that the total amount was 341 g / m 2 (equivalent to activated carbon 310 g / m 2 ).
Subsequent processing was carried out in the same manner as in Example 1 to obtain an air cleaning filter medium.

[実施例3]
平均繊維径40μm、目付65g/m、厚み0.2mmのポリエステル系繊維からなるサーマルボンド不織布を上流カバー層とし、それにポリアミドスパンボンドから熱接着性シート(呉羽テック製ダイナックLNS0010、目付10g/m)を積層して用いた。
活性炭として、平均粒径560μm、硬さ96%、窒素吸着法によるBET比表面積1100m/gである5%炭酸カリウム添着ヤシガラ系粒状活性炭と、熱可塑性粉末樹脂としてエチレン−アクリル酸共重合体(平均粒径10μm、MI 9g/10min、融点105℃)を、10:0.3の重量比にて秤量し、均一になるまで撹拌混合した。
この混合粉粒体を前記上流カバー層と積層した熱接着性シート上に総量297g/m(活性炭270g/m相当)になるように均一に散布した。
その後の加工は実施例1と同様に実施し、空気清浄用濾材を得た。
[Example 3]
A thermal bond nonwoven fabric made of polyester fiber having an average fiber diameter of 40 μm, a basis weight of 65 g / m 2 , and a thickness of 0.2 mm is used as an upstream cover layer. 2 ) were used in a stacked manner.
As activated carbon, 5% potassium carbonate-impregnated coconut husk granular activated carbon having an average particle size of 560 μm, hardness of 96%, and a BET specific surface area of 1100 m 2 / g by nitrogen adsorption method, and ethylene-acrylic acid copolymer ( (Average particle size 10 μm, MI 9 g / 10 min, melting point 105 ° C.) were weighed at a weight ratio of 10: 0.3, and stirred and mixed until uniform.
The mixed powder was uniformly sprayed on the thermal adhesive sheet laminated with the upstream cover layer so that the total amount was 297 g / m 2 (equivalent to 270 g / m 2 of activated carbon).
Subsequent processing was carried out in the same manner as in Example 1 to obtain an air cleaning filter medium.

[実施例4]
平均繊維径22μm、目付55g/m、厚み0.2mmのポリエステル系繊維からなるサーマルボンド不織布を上流カバー層とし、それにポリアミドスパンボンドから熱接着性シート(呉羽テック製ダイナックLNS0010、目付10g/m)を積層して用いた。
活性炭として、平均粒径450μm、硬さ96%、窒素吸着法によるBET比表面積1020m/gである5%炭酸カリウム添着ヤシガラ系粒状活性炭と、熱可塑性粉末樹脂としてエチレン−アクリル酸共重合体(平均粒径10μm、MI 9g/10min、融点105℃)を、10:0.3の重量比にて秤量し、均一になるまで撹拌混合した。
この混合粉粒体を前記上流カバー層と積層した熱接着性シート上に総量275g/m(活性炭250g/m相当)になるように均一に散布した。
その後の加工は実施例1と同様に実施し、空気清浄用濾材を得た。
[Example 4]
A thermal bond nonwoven fabric made of polyester fiber having an average fiber diameter of 22 μm, a basis weight of 55 g / m 2 , and a thickness of 0.2 mm is used as an upstream cover layer, and from a polyamide spunbond to a heat-adhesive sheet (Kureha Tech Dynac LNS0010, basis weight 10 g / m 2 ) were used in a stacked manner.
As activated carbon, 5% potassium carbonate-impregnated coconut husk granular activated carbon having an average particle diameter of 450 μm, a hardness of 96%, and a BET specific surface area of 1020 m 2 / g by a nitrogen adsorption method, and an ethylene-acrylic acid copolymer ( (Average particle size 10 μm, MI 9 g / 10 min, melting point 105 ° C.) were weighed at a weight ratio of 10: 0.3, and stirred and mixed until uniform.
The mixed powder was uniformly sprayed on the heat-adhesive sheet laminated with the upstream cover layer so that the total amount was 275 g / m 2 (equivalent to activated carbon 250 g / m 2 ).
Subsequent processing was carried out in the same manner as in Example 1 to obtain an air cleaning filter medium.

[実施例5]
平均繊維径40μm、目付65g/m、厚み0.2mmのポリエステル系繊維からなるサーマルボンド不織布を上流カバー層とし、それにポリアミドスパンボンドから熱接着性シート(呉羽テック製ダイナックLNS0010、目付10g/m)を積層して用いた。
活性炭として、平均粒径610μm、硬さ96%、窒素吸着法によるBET比表面積1100m/gである5%炭酸カリウム添着ヤシガラ系粒状活性炭と、熱可塑性粉末樹脂としてエチレン−アクリル酸共重合体(平均粒径10μm、MI 9g/10min、融点105℃)を、10:0.3の重量比にて秤量し、均一になるまで撹拌混合した。
この混合粉粒体を前記上流カバー層と積層した熱接着性シート上に総量297g/m(活性炭270g/m相当)になるように均一に散布した。
その後の加工は実施例1と同様に実施し、空気清浄用濾材を得た。
[Example 5]
A thermal bond nonwoven fabric made of polyester fiber having an average fiber diameter of 40 μm, a basis weight of 65 g / m 2 and a thickness of 0.2 mm is used as an upstream cover layer, and a polyamide spunbond to a heat-adhesive sheet (Kureha Tech Dynac LNS0010, basis weight 10 g / m). 2 ) were used in a stacked manner.
As activated carbon, an average particle size of 610 μm, hardness of 96%, 5% potassium carbonate-impregnated coconut husk granular activated carbon having a BET specific surface area of 1100 m 2 / g by a nitrogen adsorption method, and an ethylene-acrylic acid copolymer ( (Average particle size 10 μm, MI 9 g / 10 min, melting point 105 ° C.) were weighed at a weight ratio of 10: 0.3, and stirred and mixed until uniform.
The mixed powder was uniformly sprayed on the thermal adhesive sheet laminated with the upstream cover layer so that the total amount was 297 g / m 2 (equivalent to 270 g / m 2 of activated carbon).
Subsequent processing was carried out in the same manner as in Example 1 to obtain an air cleaning filter medium.

[比較例1]
平均繊維径15μm、目付65g/m、厚み0.1mmのポリエステル系繊維からなるサーマルボンド不織布を上流カバー層として用いた。
活性炭として、平均粒径560μm、硬さ96%、窒素吸着法によるBET比表面積990m/gである5%炭酸カリウム添着ヤシガラ系粒状活性炭と、熱可塑性粉末樹脂としてエチレン−アクリル酸共重合体(平均粒径10μm、MI 9g/10min、融点105℃)を、10:1の重量比にて秤量し、均一になるまで撹拌混合した。
この混合粉粒体を前記上流カバー層の熱接着性シート側に総量300g/m(活性炭273g/m相当)になるように均一に散布した。
その後の加工は実施例1と同様に実施し、空気清浄用濾材を得た。
[Comparative Example 1]
A thermal bond nonwoven fabric made of polyester fibers having an average fiber diameter of 15 μm, a basis weight of 65 g / m 2 and a thickness of 0.1 mm was used as the upstream cover layer.
As activated carbon, 5% potassium carbonate-impregnated coconut husk granular activated carbon having an average particle size of 560 μm, a hardness of 96%, and a BET specific surface area of 990 m 2 / g by a nitrogen adsorption method, and an ethylene-acrylic acid copolymer ( (Average particle size 10 μm, MI 9 g / 10 min, melting point 105 ° C.) were weighed at a weight ratio of 10: 1 and stirred and mixed until uniform.
The mixed powder was uniformly sprayed on the heat-adhesive sheet side of the upstream cover layer so that the total amount was 300 g / m 2 (equivalent to activated carbon 273 g / m 2 ).
Subsequent processing was carried out in the same manner as in Example 1 to obtain an air cleaning filter medium.

[比較例2]
平均繊維径110μm、目付70g/m、厚み0.2mmのポリエステル系繊維からなるサーマルボンド不織布を上流カバー層として用いた。
活性炭として、平均粒径560μm、硬さ96%、窒素吸着法によるBET比表面積1000m/gである5%炭酸カリウム添着ヤシガラ系粒状活性炭と、熱可塑性粉末樹脂としてエチレン−アクリル酸共重合体(平均粒径10μm、MI 9g/10min、融点105℃)を、10:1の重量比にて秤量し、均一になるまで撹拌混合した。
この混合粉粒体を前記上流カバー層の熱接着性シート側に総量298g/m(活性炭271g/m2相当)になるように均一に散布した。
その後の加工は実施例1と同様に実施し、空気清浄用濾材を得た。
[Comparative Example 2]
A thermal bond nonwoven fabric made of polyester fibers having an average fiber diameter of 110 μm, a basis weight of 70 g / m 2 , and a thickness of 0.2 mm was used as the upstream cover layer.
As activated carbon, an average particle size of 560 μm, hardness of 96%, 5% potassium carbonate-impregnated coconut husk granular activated carbon having a BET specific surface area of 1000 m 2 / g by nitrogen adsorption method, and ethylene-acrylic acid copolymer ( (Average particle size 10 μm, MI 9 g / 10 min, melting point 105 ° C.) were weighed at a weight ratio of 10: 1 and stirred and mixed until uniform.
This mixed granular material was uniformly sprayed on the thermal adhesive sheet side of the upstream cover layer so that the total amount was 298 g / m 2 (equivalent to activated carbon 271 g / m 2 ).
Subsequent processing was carried out in the same manner as in Example 1 to obtain an air cleaning filter medium.

[比較例3]
平均繊維径55μm、目付60g/m、厚み0.2mmのポリエステル系繊維からなるサーマルボンド不織布を上流カバー層として用いた。
活性炭として、平均粒径300μm、硬さ95%、窒素吸着法によるBET比表面積1020m/gであるヤシガラ系粒状活性炭と、熱可塑性粉末樹脂としてエチレン−アクリル酸共重合体(平均粒径10μm、MI 9g/10min、融点105℃)を、10:1の重量比にて秤量し、均一になるまで撹拌混合した。
この混合粉粒体を前記上流カバー層の熱接着性シート側に総量297g/m(活性炭270g/m相当)になるように均一に散布した。
その後の加工は実施例1と同様に実施し、空気清浄用濾材を得た。
[Comparative Example 3]
A thermal bond nonwoven fabric made of polyester fibers having an average fiber diameter of 55 μm, a basis weight of 60 g / m 2 , and a thickness of 0.2 mm was used as the upstream cover layer.
As activated carbon, an average particle size of 300 μm, a hardness of 95%, a coconut shell-based granular activated carbon having a BET specific surface area of 1020 m 2 / g by a nitrogen adsorption method, and an ethylene-acrylic acid copolymer (average particle size of 10 μm, MI 9 g / 10 min, melting point 105 ° C.) was weighed at a weight ratio of 10: 1 and stirred and mixed until uniform.
The mixed powder was uniformly sprayed on the thermal adhesive sheet side of the upstream cover layer so that the total amount was 297 g / m 2 (equivalent to 270 g / m 2 of activated carbon).
Subsequent processing was carried out in the same manner as in Example 1 to obtain an air cleaning filter medium.

[比較例4]
平均繊維径55μm、目付55g/m、厚み0.2mmのポリエステル系繊維からなるサーマルボンド不織布に、ポリアミドスパンボンドから熱接着性シート(呉羽テック製ダイナックLNS0010、目付10g/m)を積層し上流カバー層として用いた。
活性炭として、平均粒径860μm、硬さ96%、窒素吸着法によるBET比表面積968m/gであるヤシガラ系粒状活性炭と、熱可塑性粉末樹脂としてエチレン−アクリル酸共重合体(平均粒径10μm、MI 9g/10min、融点105℃)を、10:0.3の重量比にて秤量し、均一になるまで撹拌混合した。
この混合粉粒体を前記上流カバー層の熱接着性シート側に総量297g/m(活性炭270g/m相当)になるように均一に散布した。
その後の加工は実施例1と同様に実施し、空気清浄用濾材を得た。
[Comparative Example 4]
A thermal adhesive non-woven fabric made of polyester fiber having an average fiber diameter of 55 μm, a basis weight of 55 g / m 2 , and a thickness of 0.2 mm is laminated with a polyamide spunbond heat adhesive sheet (Kureha Tech Dynac LNS0010, basis weight 10 g / m 2 ). Used as an upstream cover layer.
As activated carbon, an average particle diameter of 860 μm, a hardness of 96%, a coconut shell granular activated carbon having a BET specific surface area of 968 m 2 / g by nitrogen adsorption method, and an ethylene-acrylic acid copolymer (average particle diameter of 10 μm, MI 9 g / 10 min, melting point 105 ° C.) was weighed at a weight ratio of 10: 0.3, and stirred and mixed until uniform.
The mixed powder was uniformly sprayed on the thermal adhesive sheet side of the upstream cover layer so that the total amount was 297 g / m 2 (equivalent to 270 g / m 2 of activated carbon).
Subsequent processing was carried out in the same manner as in Example 1 to obtain an air cleaning filter medium.

[比較例5]
平均繊維径55μm、目付55g/m、厚み0.2mmのポリエステル系繊維からなるサーマルボンド不織布に、ポリアミドスパンボンドから熱接着性シート(呉羽テック製ダイナックLNS0010、目付10g/m)を積層し上流カバー層として用いた。
活性炭として、平均粒径490μm、硬さ88%、窒素吸着法によるBET比表面積1618m/gであるヤシガラ系粒状活性炭と、熱可塑性粉末樹脂としてエチレン−アクリル酸共重合体(平均粒径10μm、MI 9g/10min、融点105℃)を、10:0.5の重量比にて秤量し、均一になるまで撹拌混合した。
この混合粉粒体を前記上流カバー層の熱接着性シート側に総量275g/m(活性炭250g/m相当)になるように均一に散布した。
その後の加工は実施例1と同様に実施し、空気清浄用濾材を得た。
[Comparative Example 5]
A thermal adhesive non-woven fabric made of polyester fiber having an average fiber diameter of 55 μm, a basis weight of 55 g / m 2 , and a thickness of 0.2 mm is laminated with a polyamide spunbond heat adhesive sheet (Kureha Tech Dynac LNS0010, basis weight 10 g / m 2 ). Used as an upstream cover layer.
As activated carbon, an average particle size of 490 μm, a hardness of 88%, a coconut shell-based granular activated carbon having a BET specific surface area of 1618 m 2 / g by a nitrogen adsorption method, and an ethylene-acrylic acid copolymer (average particle size of 10 μm, MI 9 g / 10 min, melting point 105 ° C.) was weighed at a weight ratio of 10: 0.5, and stirred and mixed until uniform.
This mixed granular material was uniformly sprayed on the thermal adhesive sheet side of the upstream cover layer so that the total amount was 275 g / m 2 (equivalent to activated carbon 250 g / m 2 ).
Subsequent processing was carried out in the same manner as in Example 1 to obtain an air cleaning filter medium.

[比較例6]
平均繊維径55μm、目付55g/m、厚み0.2mmのポリエステル系繊維からなるサーマルボンド不織布に、ポリアミドスパンボンドから熱接着性シート(呉羽テック製ダイナックLNS0010、目付10g/m)を積層し上流カバー層として用いた。
活性炭として、平均粒径550μm、硬さ85%、窒素吸着法によるBET比表面積1301m/gである石炭系粒状活性炭と、熱可塑性粉末樹脂としてエチレン−アクリル酸共重合体(平均粒径10μm、MI 9g/10min、融点105℃)を、10:0.5の重量比にて秤量し、均一になるまで撹拌混合した。
この混合粉粒体を前記上流カバー層の熱接着性シート側に総量301g/m(活性炭274g/m相当)になるように均一に散布した。
その後の加工は実施例1と同様に実施し、空気清浄用濾材を得た。
[Comparative Example 6]
A thermal adhesive non-woven fabric made of polyester fiber having an average fiber diameter of 55 μm, a basis weight of 55 g / m 2 , and a thickness of 0.2 mm is laminated with a polyamide spunbond heat adhesive sheet (Kureha Tech Dynac LNS0010, basis weight 10 g / m 2 ). Used as an upstream cover layer.
As the activated carbon, an average particle size of 550 μm, a hardness of 85%, a coal-based granular activated carbon having a BET specific surface area of 1301 m 2 / g by a nitrogen adsorption method, and an ethylene-acrylic acid copolymer (average particle size of 10 μm, MI 9 g / 10 min, melting point 105 ° C.) was weighed at a weight ratio of 10: 0.5, and stirred and mixed until uniform.
The mixed powder and granular material was uniformly sprayed so that the total amount 301 g / m 2 (activated carbon 274 g / m 2 or equivalent) to the thermal adhesive sheet side of the upstream cover layer.
Subsequent processing was carried out in the same manner as in Example 1 to obtain an air cleaning filter medium.

以上、実施例および比較例にて得られた空気清浄用濾材について通気抵抗、厚み、ダスト保持量、ダスト集塵効率、活性炭脱落量、トルエン脱臭性能の評価を実施した。実施した結果を表1および表2に示す。   As described above, the air-purifying filter media obtained in the examples and comparative examples have been evaluated for ventilation resistance, thickness, dust holding amount, dust collection efficiency, activated carbon dropping amount, and toluene deodorizing performance. The results are shown in Table 1 and Table 2.

実施例1〜4は通気抵抗が低く、さらに上流カバー層の繊維径と活性炭粒径が好適に設計されているため、上流カバー層のダストの目詰まりが抑制され、また活性炭部の空隙に効果的にダストが保持されていることからダスト保持量が大きい。プリーツ加工時の折り目において、カバー層の破れや活性炭の破砕が無いため、活性炭脱落量も小さい。
一方、比較例1では上流カバー層の繊維径が小さすぎるため、に活性炭脱落量は少ないが、通気抵抗が高く、ダスト保持量も非常に小さい。比較例2では、上流カバー層の繊維径が大きすぎ、活性炭の脱落が大きい。比較例3、4では活性炭の硬度が低いために、濾材加工時およびプリーツ加工時に活性炭の破砕が発生し、活性炭脱落量が多い。
In Examples 1 to 4, the airflow resistance is low, and further, the fiber diameter and activated carbon particle size of the upstream cover layer are suitably designed. Therefore, clogging of dust in the upstream cover layer is suppressed, and it is effective for the voids in the activated carbon part. Since dust is retained, the amount of dust retained is large. Since there is no breakage of the cover layer or crushing of the activated carbon at the crease during pleating, the amount of activated carbon falling off is small.
On the other hand, in Comparative Example 1, since the fiber diameter of the upstream cover layer is too small, the amount of activated carbon falling off is small, but the ventilation resistance is high, and the dust holding amount is also very small. In Comparative Example 2, the fiber diameter of the upstream cover layer is too large, and the fall of activated carbon is large. In Comparative Examples 3 and 4, since the hardness of the activated carbon is low, the activated carbon is crushed during the filtering medium processing and the pleating processing, and the amount of falling activated carbon is large.

以上述べた如く、本発明の空気清浄用濾材は、低通気抵抗でダスト保持量が大きく、プリーツ加工時の活性炭脱落が小さい濾材を提供するものであり産業界に貢献することが大である。   As described above, the air-cleaning filter medium of the present invention provides a filter medium having a low airflow resistance, a large dust holding amount, and a small amount of activated carbon falling off during pleating, and contributes greatly to the industry.

1 空気清浄用濾材
2 上流側カバー層
3 活性炭/粉末状熱可塑性樹脂
4 下流側カバー層
5 プリーツユニット
6 枠体
DESCRIPTION OF SYMBOLS 1 Air purifying filter medium 2 Upstream cover layer 3 Activated carbon / powdered thermoplastic resin 4 Downstream cover layer 5 Pleated unit 6 Frame

Claims (2)

カバー層間に、活性炭及び熱可塑性樹脂を含む空気清浄用濾材であって、活性炭が平均粒径400〜800μm、かつJIS K 1474による硬さが90%以上のヤシ殻活性炭からなり、上流側カバー層を構成する繊維の平均繊維径が20〜100μmである空気清浄用濾材。   An air-cleaning filter medium containing activated carbon and a thermoplastic resin between cover layers, wherein the activated carbon is made of coconut shell activated carbon having an average particle diameter of 400 to 800 μm and a hardness of 90% or more according to JIS K 1474, and an upstream cover layer The filter medium for air cleaning whose average fiber diameter of the fiber which comprises is 20-100 micrometers. 請求項1に記載の濾材をプリーツ状に成型したフィルタユニット。   A filter unit obtained by molding the filter medium according to claim 1 into a pleated shape.
JP2011238931A 2011-10-31 2011-10-31 Air cleaning filter material Pending JP2013094367A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011238931A JP2013094367A (en) 2011-10-31 2011-10-31 Air cleaning filter material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011238931A JP2013094367A (en) 2011-10-31 2011-10-31 Air cleaning filter material

Publications (1)

Publication Number Publication Date
JP2013094367A true JP2013094367A (en) 2013-05-20

Family

ID=48616970

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011238931A Pending JP2013094367A (en) 2011-10-31 2011-10-31 Air cleaning filter material

Country Status (1)

Country Link
JP (1) JP2013094367A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103877780A (en) * 2014-03-20 2014-06-25 苏州腾纳环保科技有限公司 Manufacturing method for multi-effect filtering material
JP2015164710A (en) * 2014-03-03 2015-09-17 東洋紡株式会社 air cleaning filter medium
JP2016043103A (en) * 2014-08-25 2016-04-04 東洋紡株式会社 Deodorizing filter material
CN109289439A (en) * 2018-12-10 2019-02-01 安徽万山红环保科技有限公司 A kind of waste gas purification activated carbon adsorption device
WO2019098071A1 (en) * 2017-11-16 2019-05-23 東亞合成株式会社 Deodorant-containing working fluid, method for manufacturing deodorizing product, deodorizing filter medium, deodorizing filter unit, and deodorizing device
JP2021053554A (en) * 2019-09-27 2021-04-08 株式会社 竹宝 Method for manufacturing bad smell adsorption sheet, and bad smell adsorption sheet

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07277716A (en) * 1994-04-07 1995-10-24 Cataler Kogyo Kk Active carbon
JP2002273123A (en) * 2001-03-22 2002-09-24 Toyobo Co Ltd Chemical filter
JP2002331212A (en) * 2001-05-09 2002-11-19 Nissan Motor Co Ltd Dedusting deodorizing filter
JP2003117389A (en) * 2001-10-19 2003-04-22 Bridgestone Corp Ozone decomposition type gas adsorbent, filter medium using this adsorbent, method for regenerating the same and regenerated article
JP2006192333A (en) * 2005-01-11 2006-07-27 Toyobo Co Ltd Gas adsorption sheet
JP2006281212A (en) * 2006-06-02 2006-10-19 Bridgestone Corp Ozone decomposition type gas adsorbent, filter medium using this adsorbent, method for regenerating it, and recycled article
JP2008086841A (en) * 2006-09-29 2008-04-17 Japan Vilene Co Ltd Gas-removing filtration medium, composite filter, and filter element
JP2008206550A (en) * 2007-02-23 2008-09-11 Toyobo Co Ltd Absorbent sheet
JP2009125668A (en) * 2007-11-22 2009-06-11 Ebara Jitsugyo Co Ltd Basic structure of adsorbent and adsorbent produced therefrom

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07277716A (en) * 1994-04-07 1995-10-24 Cataler Kogyo Kk Active carbon
JP2002273123A (en) * 2001-03-22 2002-09-24 Toyobo Co Ltd Chemical filter
JP2002331212A (en) * 2001-05-09 2002-11-19 Nissan Motor Co Ltd Dedusting deodorizing filter
JP2003117389A (en) * 2001-10-19 2003-04-22 Bridgestone Corp Ozone decomposition type gas adsorbent, filter medium using this adsorbent, method for regenerating the same and regenerated article
JP2006192333A (en) * 2005-01-11 2006-07-27 Toyobo Co Ltd Gas adsorption sheet
JP2006281212A (en) * 2006-06-02 2006-10-19 Bridgestone Corp Ozone decomposition type gas adsorbent, filter medium using this adsorbent, method for regenerating it, and recycled article
JP2008086841A (en) * 2006-09-29 2008-04-17 Japan Vilene Co Ltd Gas-removing filtration medium, composite filter, and filter element
JP2008206550A (en) * 2007-02-23 2008-09-11 Toyobo Co Ltd Absorbent sheet
JP2009125668A (en) * 2007-11-22 2009-06-11 Ebara Jitsugyo Co Ltd Basic structure of adsorbent and adsorbent produced therefrom

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN7015001541; 「活性炭 バイオマス炭素材」 , 20090501, 明和工業株式会社 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015164710A (en) * 2014-03-03 2015-09-17 東洋紡株式会社 air cleaning filter medium
CN103877780A (en) * 2014-03-20 2014-06-25 苏州腾纳环保科技有限公司 Manufacturing method for multi-effect filtering material
JP2016043103A (en) * 2014-08-25 2016-04-04 東洋紡株式会社 Deodorizing filter material
WO2019098071A1 (en) * 2017-11-16 2019-05-23 東亞合成株式会社 Deodorant-containing working fluid, method for manufacturing deodorizing product, deodorizing filter medium, deodorizing filter unit, and deodorizing device
JPWO2019098071A1 (en) * 2017-11-16 2020-12-03 東亞合成株式会社 Deodorant-containing processing liquid, manufacturing method of deodorant products, deodorant filter media, deodorant filter unit and deodorizer
CN109289439A (en) * 2018-12-10 2019-02-01 安徽万山红环保科技有限公司 A kind of waste gas purification activated carbon adsorption device
JP2021053554A (en) * 2019-09-27 2021-04-08 株式会社 竹宝 Method for manufacturing bad smell adsorption sheet, and bad smell adsorption sheet
JP7152028B2 (en) 2019-09-27 2022-10-12 株式会社 竹宝 Ammonia and acetic acid adsorption sheet manufacturing method and ammonia and acetic acid adsorption sheet

Similar Documents

Publication Publication Date Title
JP4099714B2 (en) Adsorbent sheet and air cleaning filter
JP6988477B2 (en) Filter media for air purification
WO2014196564A1 (en) Filtering medium for deodorizing filter
JP2013094367A (en) Air cleaning filter material
JP5082292B2 (en) Adsorbent sheet
KR102129457B1 (en) Gas adsorbent, gas adsorbing sheet, and air filter
JP7188383B2 (en) Gas adsorbent, deodorant fiber sheet, and method for producing gas adsorbent
JP2015029770A (en) Air cleaning filter medium
JP5334364B2 (en) Gas removal filter medium, composite filter and filter element
JP2013154269A (en) Filter material
JP2008206550A (en) Absorbent sheet
JP2014100654A (en) Filter material for air cleaning, and filter unit
JP6194579B2 (en) Air cleaning media
JP2013220375A (en) Filter medium
JP6594609B2 (en) Filter medium for deodorizing filter
JP2015139720A (en) Filter material for deodorization filter
JP6323670B2 (en) Filter medium for deodorizing filter
JP4935177B2 (en) Adsorbent sheet
JP2012096129A (en) Filter medium for air cleaning
JP5720415B2 (en) Air cleaning media
JP6184342B2 (en) Filter media
JP2018143643A (en) Deodorization filter medium and filter
JP2015164710A (en) air cleaning filter medium
JP2021112694A (en) Filter medium for air filter, and air filter unit using the same
JP6696141B2 (en) Filter material for deodorizing filter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141027

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150605

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150804

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20151006