JP2015139720A - Filter material for deodorization filter - Google Patents

Filter material for deodorization filter Download PDF

Info

Publication number
JP2015139720A
JP2015139720A JP2014012285A JP2014012285A JP2015139720A JP 2015139720 A JP2015139720 A JP 2015139720A JP 2014012285 A JP2014012285 A JP 2014012285A JP 2014012285 A JP2014012285 A JP 2014012285A JP 2015139720 A JP2015139720 A JP 2015139720A
Authority
JP
Japan
Prior art keywords
nonwoven fabric
fiber
heat
filter
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014012285A
Other languages
Japanese (ja)
Inventor
禎仁 後藤
Sadahito Goto
禎仁 後藤
裕輔 日高
Yusuke Hidaka
裕輔 日高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2014012285A priority Critical patent/JP2015139720A/en
Publication of JP2015139720A publication Critical patent/JP2015139720A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a filter material for a deodorization filter capable of sufficiently exhibiting deodorization performance, and excellent in a pressure loss and a dust holding amount, while enhancing adhesiveness and rigidity.SOLUTION: The filter material is composed of a laminate structure of sandwiching an adsorption layer composed of an adsorbent and an adhesive between base material layers. In the filter material for the deodorization filter, one layer of the base material layer is composed of resin-processed thermal bond nonwoven fabric, and another one layer of the base material layer is composed of a laminate sheet of integrally laminating nonwoven fabric composed of heat-seal system long fiber and electret needle punch nonwoven fabric by a needle punch, and the adsorption layer and the nonwoven fabric composed of the heat-seal system long fiber of the laminate sheet are adjacently laminated by a heat-seal.

Description

本発明は接着性と剛性に優れる上に低圧力損失、高粉塵保持量を有する脱臭フィルター用濾材に関するものである。   The present invention relates to a filter medium for a deodorizing filter having excellent adhesiveness and rigidity, as well as low pressure loss and high dust holding capacity.

近年、空調用、エアコン用、自動車用フィルター等の分野において、濾材の高性能化、低コストの要求が高まってきており、除塵性能と脱臭性能を両立するフィルター用濾材の検討が多くなされている。一般に脱臭性能を付与するには、粒子状または繊維状の吸着剤と接着剤を用いてシート化する方法が多く採用されており、例えば基材間に粒状吸着剤と粒状接着剤の混合物を散布し、これを加熱接着してなる吸着濾材が開発されている(例えば、特許文献1)。しかしながら、かかる吸着濾材は接着強度が弱いため、吸着剤の脱落や剛性の低下という問題があった。これらの問題を解決するには、接着剤の混合比率を高める方法が挙げられるが、吸着剤表面への被膜による脱臭性能の低下や、圧力損失の増加を引き起こす問題があった。   In recent years, in the fields of air-conditioning, air-conditioning, and automobile filters, there has been an increasing demand for higher performance and lower cost of filter media, and many studies have been made on filter media that achieve both dust removal performance and deodorization performance. . In general, in order to impart deodorizing performance, a method of forming a sheet using a particulate or fibrous adsorbent and an adhesive is often employed. For example, a mixture of a granular adsorbent and a granular adhesive is sprayed between substrates. However, an adsorption filter medium obtained by heat-bonding this has been developed (for example, Patent Document 1). However, such an adsorbent filter medium has a problem in that the adsorbent is dropped and the rigidity is lowered because the adhering strength is weak. In order to solve these problems, there is a method of increasing the mixing ratio of the adhesive. However, there is a problem that the deodorizing performance is reduced due to the coating on the surface of the adsorbent and the pressure loss is increased.

特許文献2には、ニードルパンチ不織布層と吸着層が隣接しており、かかるニードルパンチ不織布の毛羽が吸着層に入り込み、アンカー効果によって接着強度を高めた吸着性シートが記載されているが、さらなる高性能化の要望があった。   Patent Document 2 describes an adsorbent sheet in which a needle punched nonwoven fabric layer and an adsorbing layer are adjacent to each other, and the fluff of the needle punched nonwoven fabric enters the adsorbing layer, and the adhesive strength is increased by an anchor effect. There was a demand for higher performance.

特開平11−5058号公報Japanese Patent Laid-Open No. 11-5058 特開2007−301434号公報JP 2007-301434 A

本発明は接着性と剛性を高めながらも脱臭性能を十分に発揮でき、圧力損失や粉塵保持量に優れた脱臭フィルター用濾材を提供することを課題とするものである。   It is an object of the present invention to provide a filter medium for a deodorizing filter that can sufficiently exhibit deodorizing performance while improving adhesiveness and rigidity and is excellent in pressure loss and dust retention.

本発明者らは鋭意検討した結果、以下に示す手段により、上記課題を解決できることを見出し、本発明に到達した。本発明は以下のとおりである。
(1)基材層間に吸着剤と接着剤からなる吸着層を挟みこんだ積層構造体からなる濾材であって、基材層の一層が樹脂加工されたサーマルボンド不織布からなり、基材層のもう一層が熱融着系長繊維からなる不織布とエレクトレットニードルパンチ不織布をニードルパンチで積層一体化した積層シートからなり、吸着層と前記積層シートの熱融着系長繊維からなる不織布とが隣接し熱融着により積層されている脱臭フィルター用濾材。
(2)熱融着系長繊維からなる不織布が、芯鞘構造の複合熱融着系長繊維からなる不織布である(1)に記載の脱臭フィルター用濾材。
As a result of intensive studies, the present inventors have found that the above problems can be solved by the following means, and have reached the present invention. The present invention is as follows.
(1) A filter medium composed of a laminated structure in which an adsorbent layer composed of an adsorbent and an adhesive is sandwiched between base material layers, wherein one layer of the base material layer is a resin-processed thermal bond nonwoven fabric, The other layer is a non-woven fabric composed of heat-bonding long fibers and an electret needle punch non-woven fabric laminated and integrated with a needle punch, and the adsorbing layer and the non-woven fabric composed of heat-bonding long fibers of the laminated sheet are adjacent to each other. Filter media for deodorizing filters laminated by heat fusion.
(2) The filter medium for a deodorizing filter according to (1), wherein the nonwoven fabric composed of the heat-sealing long fibers is a nonwoven fabric composed of composite heat-sealing long fibers having a core-sheath structure.

本発明の脱臭フィルター用濾材は、接着性と剛性を高めながらも脱臭性能を十分に発揮でき、圧力損失や粉塵保持量に優れるという効果を奏するものである。   The filter medium for a deodorizing filter according to the present invention can sufficiently exhibit deodorizing performance while improving adhesion and rigidity, and has an effect of being excellent in pressure loss and dust holding amount.

本発明は基材層間に吸着剤と接着剤からなる吸着層を挟みこんだ積層構造体からなる濾材であって、基材層の一層が樹脂加工されたサーマルボンド不織布からなり、基材層のもう一層が熱融着系長繊維からなる不織布とエレクトレットニードルパンチ不織布をニードルパンチで積層一体化した積層シートからなり、吸着層と前記積層シートの熱融着系長繊維からなる不織布とが隣接するように積層されており、熱融着系長繊維からなる不織布を構成する熱融着系長繊維の低融点成分と吸着層の接着剤が熱融着により強固に接着していることを特徴とする脱臭フィルター用濾材である。   The present invention is a filter medium composed of a laminated structure in which an adsorbent layer made of an adsorbent and an adhesive is sandwiched between base material layers, one layer of the base material layer is a resin-processed thermal bond nonwoven fabric, The other layer is composed of a laminated sheet obtained by laminating and integrating a non-woven fabric made of heat-sealing long fibers and electret needle punched non-woven fabric with a needle punch, and the adsorbing layer is adjacent to the non-woven fabric made of heat-bonding long fibers of the laminated sheet. The low melting point component of the heat-sealing long fibers constituting the nonwoven fabric composed of heat-bonding long fibers and the adhesive of the adsorption layer are firmly bonded by heat-sealing. It is a filter medium for deodorizing filters.

本発明の基材層の一方に使用される熱融着性長繊維からなる不織布は、芯鞘構造の複合長繊維を構成繊維とし、芯部の素材は高融点であるポリエチレンテレフタレート、ポリブチレンテレフタレート等であり、鞘部の素材は低融点であるポリエチレン、ポリプロピレン、低融点ポリエステル等であることが好ましい。
熱融着系長繊維が芯鞘構造であれば鞘部分が熱融着により減少しても、芯成分が残っているため熱融着系長繊維からなる不織布の平面性は損なわれず、繊維が厚み方向に動くことはないため、濾材として高い剛性を維持することができる。
The nonwoven fabric composed of the heat-fusible long fibers used in one of the base material layers of the present invention comprises a composite long fiber having a core-sheath structure, and the core material is a high melting point polyethylene terephthalate or polybutylene terephthalate. It is preferable that the sheath material is polyethylene, polypropylene, low melting point polyester or the like having a low melting point.
If the heat-sealable long fiber is a core-sheath structure, even if the sheath part is reduced by heat-sealing, the core component remains so that the flatness of the non-woven fabric composed of the heat-sealable long fiber is not impaired, and the fiber Since it does not move in the thickness direction, high rigidity can be maintained as a filter medium.

一方、熱融着系短繊維からなる不織布では、熱融着系短繊維の低融点成分と吸着剤は接着するものの、短繊維が厚み方向にも動きやすいため、吸着剤の自由度が大きく、濾材として十分な剛性が得られない。それに対し、前述の通り、熱融着系長繊維からなる不織布であれば、繊維は厚み方向へ動きづらいため、熱融着系長繊維からなる不織布に接着した吸着剤の自由度が小さく、濾材として高い剛性が得られる。   On the other hand, in the non-woven fabric composed of heat-bonding short fibers, the low melting point component of the heat-bonding short fibers and the adsorbent are bonded, but the short fibers are easy to move in the thickness direction, so the degree of freedom of the adsorbent is large. Sufficient rigidity cannot be obtained as a filter medium. On the other hand, as described above, if the nonwoven fabric is composed of heat-bonding long fibers, the fibers are difficult to move in the thickness direction, so the degree of freedom of the adsorbent adhered to the nonwoven fabric composed of heat-bonding long fibers is small, and the filter medium. High rigidity can be obtained.

本発明の熱融着系長繊維からなる不織布の目付は、5〜40g/mが好ましく、10〜30g/mがより好ましい。目付が5g/m未満では吸着層と熱融着する面積が小さくなり、十分な接着強度が得られない。目付が40g/mを超えると、繊維本数の増加に伴い圧力損失が高くなるばかりか、繊維間の粉塵保持空間が減少し、粉塵保持量が低下する。 5-40 g / m < 2 > is preferable and the fabric weight of the nonwoven fabric consisting of the heat-fusion-type long fiber of this invention has more preferable 10-30 g / m < 2 >. When the basis weight is less than 5 g / m 2 , the area to be heat-sealed with the adsorption layer becomes small, and sufficient adhesive strength cannot be obtained. When the basis weight exceeds 40 g / m 2 , not only the pressure loss increases with the increase in the number of fibers, but also the dust holding space between the fibers decreases, and the dust holding amount decreases.

本発明の熱融着系長繊維からなる不織布を構成する熱融着系長繊維の繊維径は3〜100μmが好ましく、5〜80μmがより好ましく、10〜60μmがさらに好ましい。かかる範囲であれば、柔軟性を保持しつつ、吸着層とエレクトレットニードルパンチ不織布をつなぎ止め、接着強度の向上と高剛性化の役割を十分に果たすことができるからである。   The fiber diameter of the heat-sealing long fibers constituting the nonwoven fabric composed of the heat-sealing long fibers of the present invention is preferably from 3 to 100 μm, more preferably from 5 to 80 μm, even more preferably from 10 to 60 μm. This is because, within this range, the adsorbing layer and the electret needle punched nonwoven fabric can be held together while maintaining flexibility, and the role of improving adhesive strength and increasing rigidity can be sufficiently achieved.

本発明の脱臭フィルター用濾材において、エレクトレットニードルパンチ不織布の使用は必須である。濾材の高性能化の要求が高まっており、脱臭性能と微細塵除去性能の両方の特性を併せ持つ必要があるからである。   In the filter medium for a deodorizing filter of the present invention, it is essential to use an electret needle punched nonwoven fabric. This is because there is an increasing demand for higher performance of filter media, and it is necessary to have both deodorization performance and fine dust removal performance.

本発明の基材層の一方に使用されるエレクトレットニードルパンチ不織布は、ポリオレフィン系繊維およびポリエステル系繊維から構成される摩擦帯電濾材が好ましい。素材は特に限定されず、ポリオレフィン系繊維には、ポリエチレン、ポリプロピレン等を、ポリエステル系繊維には、ポリエチレンテレフタレート、ポリトリメチレンテレフタレート、芳香族ポリエステル等を用いることができる。   The electret needle punched nonwoven fabric used for one of the substrate layers of the present invention is preferably a frictionally charged filter medium composed of polyolefin fibers and polyester fibers. The material is not particularly limited, and polyethylene, polypropylene, or the like can be used for the polyolefin fiber, and polyethylene terephthalate, polytrimethylene terephthalate, aromatic polyester, or the like can be used for the polyester fiber.

本発明のエレクトレットニードルパンチ不織布を構成するポリオレフィン系繊維とポリエステル系繊維の繊維径は、3〜30μmが好ましい。かかる範囲であれば低圧力損失であり、微細塵を十分に除去できるためである。ポリオレフィン系繊維とポリエステル系繊維の混合割合は質量比率で30:70〜70:30が好ましい。かかる範囲であれば有効に荷電することが出来るためである。   As for the fiber diameter of the polyolefin fiber and polyester fiber which comprise the electret needle punch nonwoven fabric of this invention, 3-30 micrometers is preferable. This is because the pressure loss is low within this range, and fine dust can be sufficiently removed. The mixing ratio of the polyolefin fiber and the polyester fiber is preferably 30:70 to 70:30 in mass ratio. This is because it can be effectively charged within such a range.

本発明のエレクトレットニードルパンチ不織布を構成する繊維の断面形状は特に限定されず、円形、三角形、矩形、異形など何れでも良いが、好ましくは円形断面の繊維である。例えば矩形断面繊維であると、繊維同士の接触面積が増大し、有効繊維表面積の減少を引き起こすからである。繊維断面形状は直線部を有さない形状であれば、真円に限らず楕円形などでも良い。またその繊維長は、摩擦帯電濾材のシート化手段にもよるが、10〜100mmが好ましく、30〜80mmがより好ましい。かかる範囲であれば、該繊維のカーディングにおいて、より均一なウェブを作製することができるからである。   The cross-sectional shape of the fibers constituting the electret needle punched nonwoven fabric of the present invention is not particularly limited, and may be any of a circular shape, a triangular shape, a rectangular shape, an irregular shape, and the like, but a fiber having a circular cross section is preferred. For example, when the fiber has a rectangular cross section, the contact area between the fibers increases, and the effective fiber surface area decreases. The fiber cross-sectional shape is not limited to a perfect circle as long as it does not have a straight portion, and may be an ellipse. Further, the fiber length is preferably 10 to 100 mm, and more preferably 30 to 80 mm, although it depends on the sheeting means of the frictionally charged filter medium. This is because, within such a range, a more uniform web can be produced in the carding of the fibers.

本発明のエレクトレットニードルパンチ不織布の目付は10〜100g/mが好ましく、10〜50g/mがより好ましい。目付が10g/m未満であると十分に微細塵を除去することが出来ない。また目付が100g/mを超えてしまうと、圧力損失が増大してしまうため、フィルターを使用する上で好ましくない。 Basis weight of the electret needle punched nonwoven fabric of the present invention is preferably 10~100g / m 2, 10~50g / m 2 is more preferable. If the basis weight is less than 10 g / m 2 , fine dust cannot be sufficiently removed. On the other hand, if the basis weight exceeds 100 g / m 2 , the pressure loss increases, which is not preferable in using the filter.

熱融着系長繊維からなる不織布とエレクトレットニードルパンチ不織布との積層方法は、ニードルパンチにより積層する。ニードルパンチにより積層一体化すると、エレクトレットニードルパンチ不織布の構成繊維が熱融着系長繊維からなる不織布と厚み方向に強く交絡し、突き抜けた繊維が吸着層と接着し、二次的に接着強度を高めることが出来るからである。   A method of laminating a non-woven fabric composed of heat-bonding long fibers and an electret needle punch non-woven fabric is laminated by needle punch. When laminated and integrated with a needle punch, the constituent fibers of the electret needle punch nonwoven fabric are strongly entangled in the thickness direction with the nonwoven fabric composed of heat-bonding long fibers, and the penetrated fibers are bonded to the adsorption layer, resulting in secondary adhesive strength. It is because it can raise.

本発明の基材層のもう一方には、樹脂加工されたサーマルボンド不織布が使用される。サーマルボンド不織布は繊維の低融点成分によって繊維間の交点のみが接着されてなる不織布であるが、通常は熱収縮を考慮し低融点成分を有しない繊維が一定比率で混合される。そのため、部分的に交点接着が弱く不織布全体としての腰強度や引張り強度が不足することが多い。そこで、サーマルボンド不織布に樹脂加工することにより、全繊維の交点間を接着させ腰強度とともに引張り強度を増大させることが可能となる。   A resin-processed thermal bond nonwoven fabric is used for the other side of the base material layer of the present invention. The thermal bond nonwoven fabric is a nonwoven fabric in which only the intersections between the fibers are bonded by the low melting point component of the fiber, but usually the fibers not having the low melting point component are mixed at a certain ratio in consideration of thermal shrinkage. Therefore, the adhesion at the intersection is partially weak, and the waist strength and tensile strength of the nonwoven fabric as a whole are often insufficient. Therefore, by applying resin processing to the thermal bond nonwoven fabric, it becomes possible to bond the intersections of all the fibers and increase the tensile strength as well as the waist strength.

サーマルボンド不織布の樹脂加工に用いる樹脂は特に限定されないが、加工後に固い樹脂が好ましく、アクリル酸エステル系樹脂、スチレン−アクリル共重合樹脂、などのアクリル系樹脂や、ポリエステル樹脂、ウレタン樹脂などが使用できるが固さ、耐熱性からアクリル系樹脂、ポリエステル樹脂が好ましい。樹脂加工に用いる樹脂量は1〜10g/mが好ましく、より好ましくは2〜5g/mである。樹脂量が少ないと十分な剛性が得られず、多いと通気性を阻害するので好ましくない。また、樹脂成分に難燃剤、抗菌防カビ剤、顔料など付加機能剤を適宜混合することができる。特に、顔料を混合するとダスト負荷時の視認性が向上し、交換時期の目安がわかり好ましい。 The resin used for the resin processing of the thermal bond nonwoven fabric is not particularly limited, but a hard resin is preferable after processing, and acrylic resins such as acrylic ester resins and styrene-acrylic copolymer resins, polyester resins, and urethane resins are used. Acrylic resins and polyester resins are preferred because of their hardness and heat resistance. The resin amount used for the resin processing is preferably 1 to 10 g / m 2 , more preferably 2 to 5 g / m 2 . If the amount of resin is small, sufficient rigidity cannot be obtained, and if the amount is large, air permeability is hindered. Further, an additional functional agent such as a flame retardant, an antibacterial and antifungal agent, and a pigment can be appropriately mixed with the resin component. In particular, when a pigment is mixed, the visibility at the time of dust loading is improved, and a guideline for the replacement time is known and preferable.

本発明の吸着層に使用する吸着剤は、粉末状、粒状、破砕状、造粒状、ビーズ状の各種吸着剤が挙げられるが、幅広く種々のガスを吸着できる活性炭系が好ましい。例えば、ヤシガラ系、木質系、石炭系、ピッチ系等の活性炭が好適である。表面観察によって見られる内部への導入孔いわゆるマクロ孔数は多い方がよい。活性炭と接着剤である熱可塑性粉末樹脂から混合粉粒体をつくった際に、熱可塑性粉末樹脂が活性炭表面を被覆しても、熱プレス加工時に細孔内部からのガス脱着により、吸着可能な細孔を開放することができる。また、活性炭表面はある程度粗い方が溶融した樹脂の流動性も悪くなり、吸着性能低下を抑えることができる。   Examples of the adsorbent used in the adsorption layer of the present invention include various adsorbents in powder form, granular form, crushed form, granulated form, and bead form, and an activated carbon system that can adsorb a wide variety of gases is preferable. For example, activated carbons such as coconut shell, wood, coal, and pitch are suitable. It is better that the number of so-called macropores introduced into the interior as seen by surface observation is large. When mixed powder is made from activated carbon and thermoplastic powder resin as an adhesive, even if the thermoplastic powder resin covers the activated carbon surface, it can be adsorbed by gas desorption from inside the pores during hot pressing. The pores can be opened. In addition, if the surface of the activated carbon is rough to some extent, the fluidity of the melted resin also deteriorates, and a decrease in adsorption performance can be suppressed.

本発明の吸着剤の粒径範囲は、通気性、吸着材の脱落、シート加工性等を考慮して、JIS標準ふるい(JIS Z8801)による値で60〜1000μmが好ましく、100〜900μmがより好ましい。粒径範囲が60μm未満では、一定の高吸着容量を得るのに圧力損失が大きくなりすぎ、またシート充填密度が高くなるために粉塵負荷時の圧力損失の上昇が早くなり、粉塵保持量が低下する。粒径範囲が1000μmを超える場合には、シートからの脱落が生じ易くなり、またワンパスでの初期吸着性能が極端に低くなり、さらにはプリーツ形状および波状等の空気浄化用フィルターユニットとしたときの折り曲げ、および波状加工時の加工性が悪くなる。なお、上記の粒状粉粒状吸着剤は、通常の分級機を使用して所定の粒度調整をすることにより、得ることが可能である。   The particle size range of the adsorbent of the present invention is preferably 60 to 1000 μm, more preferably 100 to 900 μm as a value according to JIS standard sieve (JIS Z8801) in consideration of air permeability, adsorbent dropping, sheet processability and the like. . If the particle size range is less than 60 μm, the pressure loss becomes too large to obtain a certain high adsorption capacity, and the sheet packing density increases, so the pressure loss rises quickly when the dust is loaded, and the dust holding amount decreases. To do. When the particle size range exceeds 1000 μm, the sheet tends to fall off, the initial adsorption performance in one pass becomes extremely low, and when the air purification filter unit has a pleated shape or a wavy shape. Workability at the time of bending and corrugated processing deteriorates. In addition, said granular powder granular adsorbent can be obtained by carrying out predetermined particle size adjustment using a normal classifier.

本発明の濾材に含まれる吸着剤の重量は、10〜450g/mが好ましく、50〜350g/mがより好ましい。かかる範囲であれば、圧力損失の大幅な上昇を抑えつつ、十分な脱臭性能を得ることができる。 10-450 g / m < 2 > is preferable and, as for the weight of the adsorption agent contained in the filter medium of this invention, 50-350 g / m < 2 > is more preferable. If it is this range, sufficient deodorizing performance can be obtained, suppressing the big raise of a pressure loss.

本発明の吸着剤は、極性物質やアルデヒド類の吸着性能を向上することを目的として、薬品処理を施して用いてもよい。ガス薬品処理に用いられる薬品としては、アルデヒド系ガスやNOx等の窒素化合物、SOx等の硫黄化合物、酢酸等の酸性の極性物質に対しては、例えばエタノールアミン、ポリエチレンイミン、アニリン、P−アニシジン、スルファニル酸等のアミン系薬剤や水酸化ナトリウム、水酸化カリウム、炭酸グアニジン、リン酸グアニジン、アミノグアニジン硫酸塩、5.5−ジメチルヒダントイン、ベンゾグアナミン、2.2−イミノジエタノール、2.2.2−ニトロトリエタノール、エタノールアミン塩酸塩、2−アミノエタノール、2.2−イミノジエタノール塩酸塩、P−アミノ安息香酸、スルファニル酸ナトリウム、L−アルギニン、メチルアミン塩酸塩、セミカルバジド塩酸塩、ヒドラジン、ヒドロキノン、硫酸ヒドロキシルアミン、過マンガン酸塩、炭酸カリウム、炭酸水素カリウム等が好適に用いられ、アンモニア、メチルアミン、トリメチルアミン、ピリジン等の塩基性の極性物質に対しては、例えば、リン酸、クエン酸、リンゴ酸、アスコルビン酸、酒石酸等が好適に用いられる。なお、薬品処理は、例えば、活性炭に薬品を担持させたり、添着することにより行う。また、活性炭に直接薬品を処理する以外に、シート面表面付近に通常のコーティング法等で添着加工する方法やシート全体に含浸添着することも可能である。この際、アルギン酸ソーダやポリエチレンオキサイド等の増粘剤を混入した薬品水溶液をつくり、これを担持、添着を実施する方法もできる。この方法では水への溶解度が低い薬品を担持、添着し、さらに薬品の脱落を抑制するのにも有効である。   The adsorbent of the present invention may be used after chemical treatment for the purpose of improving the adsorption performance of polar substances and aldehydes. Examples of chemicals used in gas chemical treatment include aldehyde gases, nitrogen compounds such as NOx, sulfur compounds such as SOx, and acidic polar substances such as acetic acid such as ethanolamine, polyethyleneimine, aniline, and P-anisidine. , Amine drugs such as sulfanilic acid, sodium hydroxide, potassium hydroxide, guanidine carbonate, guanidine phosphate, aminoguanidine sulfate, 5.5-dimethylhydantoin, benzoguanamine, 2.2-iminodiethanol, 2.2.2 -Nitrotriethanol, ethanolamine hydrochloride, 2-aminoethanol, 2.2-iminodiethanol hydrochloride, P-aminobenzoic acid, sodium sulfanilate, L-arginine, methylamine hydrochloride, semicarbazide hydrochloride, hydrazine, hydroquinone , Hydroxyla sulfate , Permanganate, potassium carbonate, potassium hydrogen carbonate, etc. are preferably used. For basic polar substances such as ammonia, methylamine, trimethylamine, pyridine, phosphoric acid, citric acid, malic acid, etc. Ascorbic acid, tartaric acid and the like are preferably used. The chemical treatment is performed by, for example, supporting or attaching a chemical to activated carbon. In addition to directly treating the activated carbon with chemicals, it is possible to impregnate the entire sheet or impregnate the entire sheet by a method such as an ordinary coating method in the vicinity of the sheet surface. At this time, a chemical aqueous solution in which a thickener such as sodium alginate or polyethylene oxide is mixed can be prepared, supported, and attached. This method is effective in supporting and attaching a chemical having low solubility in water and further suppressing the chemical from falling off.

本発明の吸着層に使用する接着剤は、熱可塑性粉末樹脂であることが好ましい。粉末樹脂であれば吸着剤および熱融着系長繊維からなる不織布とエレクトレットニードルパンチ不織布とを積層一体化した積層シートの毛羽や低融点部分に均一に分散することができる。熱可塑性粉末樹脂の種類としては、ポリオレフィン系樹脂、ポリアミド系樹脂、ポリエステル系樹脂、エチレン−アクリル共重合体樹脂等が挙げられる。   The adhesive used for the adsorption layer of the present invention is preferably a thermoplastic powder resin. If it is a powder resin, it can be uniformly dispersed in the fluff and the low melting point portion of a laminated sheet in which a nonwoven fabric composed of an adsorbent and a heat-sealing long fiber and an electret needle punched nonwoven fabric are laminated and integrated. Examples of the thermoplastic powder resin include polyolefin resin, polyamide resin, polyester resin, and ethylene-acrylic copolymer resin.

本発明の接着剤に使用する熱可塑性粉末樹脂の大きさは、平均粒子径で1〜40μmが好ましく、5〜30μmがより好ましい。さらに好ましくは1〜40μmの範囲に95重量%以上が含まれることである。かかる範囲の平均粒子径であれば、熱可塑性樹脂が、粉粒状吸着剤の表面細孔を塞ぐことを低減できる一方、吸着剤との混合時にファンデルワールス力や静電気力による粉粒状吸着剤への予備接着が有効になされ、均一に分散することができ、吸着剤層と基材層の部分的剥離を効果的に防止することができるからである。   As for the magnitude | size of the thermoplastic powder resin used for the adhesive agent of this invention, 1-40 micrometers is preferable at an average particle diameter, and 5-30 micrometers is more preferable. More preferably, it is 95% by weight or more in the range of 1 to 40 μm. When the average particle size is within this range, the thermoplastic resin can reduce the blocking of the surface pores of the granular adsorbent, while at the time of mixing with the adsorbent, to the granular adsorbent by van der Waals force or electrostatic force. This is because pre-adhesion is effectively performed and can be uniformly dispersed, and partial peeling between the adsorbent layer and the base material layer can be effectively prevented.

本発明の接着剤に使用する熱可塑性粉末樹脂の形状は特に規定はないが、球状、破砕状等があげられる。当然ながら、2種以上の熱可塑性粉末樹脂を併用もできる。さらには、薬品担持した粉粒状吸着剤または薬品担持した基材不織布を使用した場合でもこの処方であれば、粉粒状吸着剤表面に熱可塑性粉末樹脂がドライ状態の混合時から仮接着した状態になるため仮に該薬品が相異なる性質のものであっても後のシート化工程でも互いに干渉することを避けることができるので充分な効果が発揮される。   The shape of the thermoplastic powder resin used for the adhesive of the present invention is not particularly limited, but examples thereof include a spherical shape and a crushed shape. Of course, two or more thermoplastic powder resins can be used in combination. Furthermore, even if a chemical-supported granular adsorbent or a chemical-supported non-woven fabric is used, if this prescription is used, the thermoplastic powder resin is temporarily bonded to the surface of the granular adsorbent from the time of mixing in the dry state. Therefore, even if the chemicals have different properties, they can be prevented from interfering with each other in the subsequent sheet forming step, so that a sufficient effect is exhibited.

本発明の濾材に含まれる熱可塑性粉末樹脂は、吸着剤に対して1〜40重量%使用するのが好ましく、3〜30重量%使用するのがより好ましい。かかる範囲内であれば、基材層との接着力、圧力損失、脱臭性能に優れる脱臭フィルター用濾材が得られるからである。   The thermoplastic powder resin contained in the filter medium of the present invention is preferably used in an amount of 1 to 40% by weight, more preferably 3 to 30% by weight, based on the adsorbent. This is because, within such a range, a filter material for a deodorizing filter excellent in adhesive strength with the base material layer, pressure loss, and deodorizing performance can be obtained.

本発明の濾材は、抗菌剤、抗かび剤、抗ウイルス剤、難燃剤等の付随的機能を有する成分等を含めて構成してもよい。これらの成分は繊維類や不織布中に練り込んでも、後加工で添着、および担持して付与してもよい。例えば、難燃剤を含めて構成することにより、FMVSS.302で規定されている遅燃性の基準やUL難燃規格に合致した脱臭フィルター用濾材を製造することが可能である。   The filter medium of the present invention may contain components having ancillary functions such as antibacterial agents, antifungal agents, antiviral agents, and flame retardants. These components may be kneaded into fibers or non-woven fabrics, or may be added and supported by post-processing. For example, by including a flame retardant, FMVSS. It is possible to produce a filter medium for a deodorizing filter that meets the standards for retarding flame retardancy defined in 302 and UL flame retardant standards.

本発明の濾材を最終的に熱プレスしシート製造するには、よく使用されるロール間熱プレス法、あるいは上下ともフラットな熱ベルトコンベヤー間にはさみこむフラットベッドラミネート法等があげられる。より均一な厚み、接着状態をつくりだすには後者の方がより好ましい。また、本特許で記載する基材層用積層シートと上記製法の特徴の組み合わせにより、粉粒状吸着剤同士の過度の結着を抑制することができると同時に、基材層用積層シートとの実用上充分な接着強力を得ることができる。   In order to produce a sheet by finally hot pressing the filter medium of the present invention, a commonly used hot press method between rolls or a flat bed laminating method in which the upper and lower parts are sandwiched between flat heat belt conveyors can be used. The latter is more preferable for producing a more uniform thickness and adhesion. Moreover, by combining the laminated sheet for base material layers described in this patent and the characteristics of the above production method, it is possible to suppress excessive binding between the particulate adsorbents, and at the same time, practical use with the laminated sheet for base material layers. In addition, sufficient adhesive strength can be obtained.

本発明の脱臭フィルター用濾材の製法について説明する。まずは、吸着剤と接着剤を所定の重量秤量し、攪拌機に入れ、約10分間回転速度30rpmで攪拌する。次にこの混合粉末を前記積層シートからなる基材層の熱融着系長繊維からなる不織布側に散布し、さらにその上から樹脂加工されたサーマルボンド不織布からなる基材層を重ね合わせ、熱プレス処理を行なう。熱プレスの際のシート表面温度は熱可塑性樹脂の融点の3〜30℃、好ましくは5〜20℃高いのが好ましい。   The manufacturing method of the filter medium for deodorizing filters of this invention is demonstrated. First, the adsorbent and the adhesive are weighed to a predetermined weight, put in a stirrer, and stirred at a rotational speed of 30 rpm for about 10 minutes. Next, the mixed powder is spread on the non-woven fabric side made of the heat-bonding long fibers of the base material layer made of the laminated sheet, and the base material layer made of the thermal bond non-woven fabric processed with the resin is laminated thereon to heat the mixed powder. Press processing. The sheet surface temperature during hot pressing is preferably 3 to 30 ° C., preferably 5 to 20 ° C. higher than the melting point of the thermoplastic resin.

本発明の脱臭フィルター用濾材の厚みは0.1〜3.0mmが好ましく、0.5〜2.0mmがより好ましい。厚みが0.1mm未満であれば粉塵捕集空間が小さいため、粉塵負荷時の圧力損失の上昇が早く、目詰まりが発生する。また3.0mmを超えるとシート全体の厚みが厚すぎるため、プリーツ状ユニットとした場合に構造抵抗が大きくなり、結果としてユニット全体での圧力損失が高くなり過ぎ実用上問題がある。   0.1-3.0 mm is preferable and, as for the thickness of the filter material for deodorizing filters of this invention, 0.5-2.0 mm is more preferable. If the thickness is less than 0.1 mm, the dust collection space is small, so that the pressure loss rises quickly when dust is loaded, and clogging occurs. On the other hand, if the thickness exceeds 3.0 mm, the thickness of the entire sheet is too thick, so that when the pleated unit is used, the structural resistance increases, and as a result, the pressure loss in the entire unit becomes too high, causing a practical problem.

本発明の脱臭フィルター用濾材の目付は、30〜500g/mであることが好ましい。目付が30g/m未満であれば濾材の剛性が弱いため、通風負荷時にユニットが変形し、圧力損失が増大する。500g/mを超えるとシート厚みが厚くなるためプリーツ状ユニットとした場合の構造抵抗が大きくなり実用上問題となる。 The basis weight of the filter medium for the deodorizing filter of the present invention is preferably 30 to 500 g / m 2 . If the basis weight is less than 30 g / m 2 , the filter medium has low rigidity, so that the unit is deformed at the time of ventilation load, and the pressure loss increases. If it exceeds 500 g / m 2 , the thickness of the sheet becomes so thick that the structural resistance in the case of a pleated unit becomes large, which is a practical problem.

本発明の濾材を使用したプリーツ状フィルタユニットの厚みは、10〜400mmが好ましい。カーエアコンに内蔵装着をはじめとする車載用途や家庭用空気清浄機であれば、通常の内部スペースの関係から、10〜60mm程度、ビル空調用途へよく設置される大型のフィルターユニットであれば40〜400mm程度が収納スペースから考えると好ましい。   The thickness of the pleated filter unit using the filter medium of the present invention is preferably 10 to 400 mm. For in-vehicle applications such as built-in car air conditioners and home air purifiers, 40 to approximately 10 to 60 mm, a large filter unit that is often installed for building air conditioning applications, due to the normal internal space. About ~ 400 mm is preferable considering the storage space.

以下に実施例を示し、本発明をより具体的に説明する。実施例中に示した特性は以下の方法で測定した。   Hereinafter, the present invention will be described in more detail with reference to examples. The characteristics shown in the examples were measured by the following methods.

(圧力損失)
濾材をダクト内に設置し、空気濾過速度が31cm/秒になるよう大気を通気させ、濾材の上流、下流の静圧差を差圧計にて読み取り、圧力損失(Pa)を測定した。
(Pressure loss)
The filter medium was installed in the duct, the atmosphere was vented so that the air filtration speed was 31 cm / sec, the difference in static pressure upstream and downstream of the filter medium was read with a differential pressure gauge, and the pressure loss (Pa) was measured.

(0.3μm粒子捕集効率)
濾材をダクト内に設置し、空気濾過速度が16cm/秒になるよう大気を通気させ、濾材の上流、下流の0.3〜0.5μm粒子の個数濃度をパーティクルカウンターにて計測し、次式にて粒子捕集効率を算出した。
粒子捕集効率(%)=[1−(下流側濃度/上流側濃度)]×100
(0.3 μm particle collection efficiency)
The filter medium is installed in the duct, the atmosphere is vented so that the air filtration speed is 16 cm / sec, and the number concentration of 0.3 to 0.5 μm particles upstream and downstream of the filter medium is measured with a particle counter. The particle collection efficiency was calculated at
Particle collection efficiency (%) = [1− (downstream concentration / upstream concentration)] × 100

(接着強度)
両側の基材層間の平均剥離強度を測定。試験片のサイズは巾50mm、長さ200mmとして、引張強度100mm/分として実施した。
(Adhesive strength)
Measure the average peel strength between the substrate layers on both sides. The size of the test piece was 50 mm wide, 200 mm long, and the tensile strength was 100 mm / min.

(剛性)
JIS L−1096 A法(ガーレ法)に準拠し、MD方向の剛軟度を測定した。
(rigidity)
Based on JIS L-1096 A method (Gurley method), the bending resistance in the MD direction was measured.

(トルエン除去効率)
濾材をダクト内に設置し、空気濾過速度が16cm/秒になるよう大気を通気させ、濾材の上流側の濃度が80ppmになるようにトルエンガスを注入する。測定開始から1分後の上下流側濃度を炭化水素計にて測定し、次式にてトルエンガスの初期除去効率を算出した。
トルエン除去効率(%)=[1−(下流側濃度/上流側濃度)]×100
(Toluene removal efficiency)
The filter medium is placed in the duct, the atmosphere is vented so that the air filtration speed is 16 cm / sec, and toluene gas is injected so that the upstream concentration of the filter medium is 80 ppm. The upstream / downstream concentration after 1 minute from the start of measurement was measured with a hydrocarbon meter, and the initial removal efficiency of toluene gas was calculated by the following equation.
Toluene removal efficiency (%) = [1− (downstream concentration / upstream concentration)] × 100

(ダスト粉塵保持量)
フィルターをダクト内に設置し、空気濾過速度が31cm/秒になるように大気を通気させ、フィルター上流側からISO規格10103−1(2012)に規定されたA2(Fine)ダストを1.0g/mの濃度にて初期圧力損失から150Pa上昇するまで負荷し、捕集した粉塵量を粉塵保持量(g/m)とした。
(Dust dust holding amount)
A filter is installed in the duct, and the atmosphere is vented so that the air filtration speed is 31 cm / second. A2 (Fine) dust defined in ISO standard 10103-1 (2012) is 1.0 g / The load was applied at a concentration of m 3 until the initial pressure loss increased by 150 Pa, and the amount of collected dust was defined as the amount of retained dust (g / m 2 ).

[実施例1]
ポリプロピレン繊維(繊度2.2dtex、繊維長51mm)と、ポリエステル繊維(繊度1.7dtex、繊維長44mm)を1:1の重量比で混綿、カーディングして目付25g/mの混繊ウェブを作製後、3MPaの高圧水を連続的に噴霧して交絡、乾燥し、混繊シートを作成した。この混繊シートに、目付12g/mのポリエステル(芯)/ポリエチレン(鞘)で構成される芯鞘型複合熱融着系長繊維(繊維径30μm)からなる不織布を、ニードルパンチにより積層一体化し、さらに摩擦帯電を行い、エレクトレット積層シートからなる基材層を得た。
また、ポリエステル繊維(繊度17dtex、繊維長51mm)、低融点ポリエステル繊維(繊度4.4dtex、繊維長51mm)および低融点ポリエステル繊維(繊度22dtex、繊維長51mm)を2:3:5の重量比で混綿、カーディングしてサーマルボンド法により熱融着し目付65g/mのサーマルボンド不織布を得た。さらにこのサーマルボンド不織布をポリエステル樹脂水溶液中に浸漬後、乾燥させ2g/mのポリエステル樹脂が加工された基材層を得た。
次にエレクトレット積層シート基材層の熱融着系長繊維からなる不織布側へ、平均粒径550μmのヤシガラ活性炭および熱可塑性粉末樹脂としてエチレンアクリル酸共重合体(粒径10μm、融点109℃)の重量比1:0.1の混合粉末を目付220g/mになるように散布し、さらに上から接着層として低融点ポリエステルのホットメルトシート(12g/m、融点105℃)とサーマルボンド基材層を順に重ね合わせ、140℃で30秒間の加熱処理にてシート化を行い脱臭フィルター用濾材を得た。
得られた濾材のシート特性を表1に示す。
[Example 1]
Polypropylene fiber (fineness: 2.2 dtex, fiber length: 51 mm) and polyester fiber (fineness: 1.7 dtex, fiber length: 44 mm) are mixed in a weight ratio of 1: 1 and carded to form a mixed fiber web having a basis weight of 25 g / m 2. After production, 3 MPa high-pressure water was continuously sprayed to entangle and dry to produce a mixed fiber sheet. A nonwoven fabric composed of a core-sheath type composite heat-sealing long fiber (fiber diameter 30 μm) composed of polyester (core) / polyethylene (sheath) having a basis weight of 12 g / m 2 is laminated and integrated into this mixed fiber sheet by needle punching. Then, triboelectric charging was performed to obtain a base material layer made of an electret laminated sheet.
Also, polyester fiber (fineness 17 dtex, fiber length 51 mm), low melting point polyester fiber (fineness 4.4 dtex, fiber length 51 mm) and low melting point polyester fiber (fineness 22 dtex, fiber length 51 mm) in a weight ratio of 2: 3: 5. The mixture was carded and carded and thermally fused by a thermal bond method to obtain a thermal bond nonwoven fabric having a basis weight of 65 g / m 2 . Further, the thermal bond nonwoven fabric was immersed in an aqueous polyester resin solution and then dried to obtain a base material layer processed with 2 g / m 2 of polyester resin.
Next, to the non-woven fabric side comprising the heat-bonding long fibers of the electret laminated sheet base material layer, coconut husk activated carbon having an average particle size of 550 μm and an ethylene acrylic acid copolymer (particle size 10 μm, melting point 109 ° C.) as a thermoplastic powder resin A mixed powder having a weight ratio of 1: 0.1 was sprayed so as to have a basis weight of 220 g / m 2, and a low melting point polyester hot melt sheet (12 g / m 2 , melting point 105 ° C.) and a thermal bond group as an adhesive layer from above. The material layers were sequentially stacked and formed into a sheet by heat treatment at 140 ° C. for 30 seconds to obtain a filter medium for a deodorizing filter.
Table 1 shows the sheet characteristics of the obtained filter medium.

[実施例2]
ポリプロピレン繊維(繊度2.2dtex、繊維長51mm)と、ポリエステル繊維(繊度1.7dtex、繊維長44mm)を1:1の重量比で混綿、カーディングして目付25g/mの混繊ウェブを作製後、3MPaの高圧水を連続的に噴霧して交絡、乾燥し、混繊シートを作成した。この混繊シートに、目付12g/mのポリエステル(芯)/ポリエチレン(鞘)で構成される芯鞘型複合熱融着系長繊維(繊維径30μm)からなる不織布を、ニードルパンチにより積層一体化し、さらに摩擦帯電を行い、エレクトレット積層シートからなる基材層を得た。
また、ポリエステル繊維(繊度17dtex、繊維長51mm)、低融点ポリエステル繊維(繊度4.4dtex、繊維長51mm)および低融点ポリエステル繊維(繊度22dtex、繊維長51mm)を2:3:5の重量比で混綿、カーディングしてサーマルボンド法により熱融着し目付65g/mのサーマルボンド不織布を得た。さらにこのサーマルボンド不織布をポリエステル樹脂水溶液中に浸漬後、乾燥させ2g/mのポリエステル樹脂が加工された基材層を得た。
次にエレクトレット積層シート基材層の熱融着系長繊維からなる不織布側へ、平均粒径550μmのヤシガラ活性炭および熱可塑性粉末樹脂としてエチレンアクリル酸共重合体(粒径10μm、融点109℃)の重量比1:0.05の混合粉末を目付210g/mになるように散布し、さらに上から接着層として低融点ポリエステルのホットメルトシート(12g/m、融点105℃)とサーマルボンド基材層を順に重ね合わせ、140℃で30秒間の加熱処理にてシート化を行い脱臭フィルター用濾材を得た。
得られた濾材のシート特性を表1に示す。
[Example 2]
Polypropylene fiber (fineness: 2.2 dtex, fiber length: 51 mm) and polyester fiber (fineness: 1.7 dtex, fiber length: 44 mm) are mixed in a weight ratio of 1: 1 and carded to form a mixed fiber web having a basis weight of 25 g / m 2. After production, 3 MPa high-pressure water was continuously sprayed to entangle and dry to produce a mixed fiber sheet. A nonwoven fabric composed of a core-sheath type composite heat-sealing long fiber (fiber diameter 30 μm) composed of polyester (core) / polyethylene (sheath) having a basis weight of 12 g / m 2 is laminated and integrated into this mixed fiber sheet by needle punching. Then, triboelectric charging was performed to obtain a base material layer made of an electret laminated sheet.
Also, polyester fiber (fineness 17 dtex, fiber length 51 mm), low melting point polyester fiber (fineness 4.4 dtex, fiber length 51 mm) and low melting point polyester fiber (fineness 22 dtex, fiber length 51 mm) in a weight ratio of 2: 3: 5. The mixture was carded and carded and thermally fused by a thermal bond method to obtain a thermal bond nonwoven fabric having a basis weight of 65 g / m 2 . Further, the thermal bond nonwoven fabric was immersed in an aqueous polyester resin solution and then dried to obtain a base material layer processed with 2 g / m 2 of polyester resin.
Next, to the non-woven fabric side comprising the heat-bonding long fibers of the electret laminated sheet base material layer, coconut husk activated carbon having an average particle size of 550 μm and an ethylene acrylic acid copolymer (particle size 10 μm, melting point 109 ° C.) as a thermoplastic powder resin A mixed powder having a weight ratio of 1: 0.05 was sprayed so as to have a basis weight of 210 g / m 2, and a low-melting polyester hot melt sheet (12 g / m 2 , melting point 105 ° C.) and a thermal bond group as an adhesive layer from above. The material layers were sequentially stacked and formed into a sheet by heat treatment at 140 ° C. for 30 seconds to obtain a filter medium for a deodorizing filter.
Table 1 shows the sheet characteristics of the obtained filter medium.

[実施例3]
ポリプロピレン繊維(繊度2.2dtex、繊維長51mm)と、ポリエステル繊維(繊度1.7dtex、繊維長44mm)を1:1の重量比で混綿、カーディングして目付25g/mの混繊ウェブを作製後、3MPaの高圧水を連続的に噴霧して交絡、乾燥し、混繊シートを作成した。この混繊シートに、目付12g/mのポリエステル(芯)/ポリエチレン(鞘)で構成される芯鞘型複合熱融着系長繊維(繊維径30μm)からなる不織布を、ニードルパンチにより積層一体化し、さらに摩擦帯電を行い、エレクトレット積層シートからなる基材層を得た。
また、ポリエステル繊維(繊度17dtex、繊維長51mm)、低融点ポリエステル繊維(繊度4.4dtex、繊維長51mm)および低融点ポリエステル繊維(繊度22dtex、繊維長51mm)を2:3:5の重量比で混綿、カーディングしてサーマルボンド法により熱融着し目付65g/mのサーマルボンド不織布を得た。さらにこのサーマルボンド不織布をポリエステル樹脂と緑顔料水溶液中に浸漬後、乾燥させ2g/mのポリエステル樹脂と1g/mの緑顔料が加工された基材層を得た。
次にエレクトレット積層シート基材層の熱融着系長繊維からなる不織布側へ、平均粒径550μmのヤシガラ活性炭および熱可塑性粉末樹脂としてエチレンアクリル酸共重合体(粒径10μm、融点109℃)の重量比1:0.05の混合粉末を目付210g/mになるように散布し、さらに上から接着層として低融点ポリエステルのホットメルトシート(12g/m、融点105℃)とサーマルボンド基材層を順に重ね合わせ、140℃で30秒間の加熱処理にてシート化を行い脱臭フィルター用濾材を得た。
得られた濾材のシート特性を表1に示す。
[Example 3]
Polypropylene fiber (fineness: 2.2 dtex, fiber length: 51 mm) and polyester fiber (fineness: 1.7 dtex, fiber length: 44 mm) are mixed in a weight ratio of 1: 1 and carded to form a mixed fiber web having a basis weight of 25 g / m 2. After production, 3 MPa high-pressure water was continuously sprayed to entangle and dry to produce a mixed fiber sheet. A nonwoven fabric composed of a core-sheath type composite heat-sealing long fiber (fiber diameter 30 μm) composed of polyester (core) / polyethylene (sheath) having a basis weight of 12 g / m 2 is laminated and integrated into this mixed fiber sheet by needle punching. Then, triboelectric charging was performed to obtain a base material layer made of an electret laminated sheet.
Also, polyester fiber (fineness 17 dtex, fiber length 51 mm), low melting polyester fiber (fineness 4.4 dtex, fiber length 51 mm) and low melting polyester fiber (fineness 22 dtex, fiber length 51 mm) in a weight ratio of 2: 3: 5. The mixture was carded and carded and thermally fused by a thermal bond method to obtain a thermal bond nonwoven fabric having a basis weight of 65 g / m 2 . After further immersing the thermal bond nonwoven fabric in the polyester resin and green pigment aqueous green pigment dried 2 g / m 2 of polyester resin and 1 g / m 2 was obtained by the base layer processing.
Next, to the non-woven fabric side comprising the heat-bonding long fibers of the electret laminated sheet base material layer, coconut husk activated carbon having an average particle size of 550 μm and an ethylene acrylic acid copolymer (particle size 10 μm, melting point 109 ° C.) as a thermoplastic powder resin A mixed powder having a weight ratio of 1: 0.05 was sprayed so as to have a basis weight of 210 g / m 2, and a low-melting polyester hot melt sheet (12 g / m 2 , melting point 105 ° C.) and a thermal bond group as an adhesive layer from above. The material layers were sequentially stacked and formed into a sheet by heat treatment at 140 ° C. for 30 seconds to obtain a filter medium for a deodorizing filter.
Table 1 shows the sheet characteristics of the obtained filter medium.

[実施例4]
ポリプロピレン繊維(繊度2.2dtex、繊維長51mm)と、ポリエステル繊維(繊度1.7dtex、繊維長44mm)を1:1の重量比で混綿、カーディングして目付25g/mの混繊ウェブを作製後、3MPaの高圧水を連続的に噴霧して交絡、乾燥し、混繊シートを作成した。この混繊シートに、目付12g/mのポリエステル(芯)/ポリエチレン(鞘)で構成される芯鞘型複合熱融着系長繊維(繊維径30μm)からなる不織布を、ニードルパンチにより積層一体化し、さらに摩擦帯電を行い、エレクトレット積層シートからなる基材層を得た。
また、ポリエステル繊維(繊度17dtex、繊維長51mm)、低融点ポリエステル繊維(繊度4.4dtex、繊維長51mm)および低融点ポリエステル繊維(繊度22dtex、繊維長51mm)を2:3:5の重量比で混綿、カーディングしてサーマルボンド法により熱融着し目付65g/mのサーマルボンド不織布を得た。さらにこのサーマルボンド不織布をポリエステル樹脂水溶液中に浸漬後、乾燥させ2g/mのポリエステル樹脂が加工された基材層を得た。
次にエレクトレット積層シート基材層の熱融着系長繊維からなる不織布側へ、平均粒径550μmのヤシガラ活性炭および熱可塑性粉末樹脂としてエチレンアクリル酸共重合体(粒径10μm、融点109℃)の重量比1:0.1の混合粉末を目付220g/mになるように散布し、さらに上からサーマルボンド基材層を重ね合わせ、140℃で30秒間の加熱処理にてシート化を行い脱臭フィルター用濾材を得た。
得られた濾材のシート特性を表1に示す。
[Example 4]
Polypropylene fiber (fineness: 2.2 dtex, fiber length: 51 mm) and polyester fiber (fineness: 1.7 dtex, fiber length: 44 mm) are mixed in a weight ratio of 1: 1 and carded to form a mixed fiber web having a basis weight of 25 g / m 2. After production, 3 MPa high-pressure water was continuously sprayed to entangle and dry to produce a mixed fiber sheet. A nonwoven fabric composed of a core-sheath type composite heat-sealing long fiber (fiber diameter 30 μm) composed of polyester (core) / polyethylene (sheath) having a basis weight of 12 g / m 2 is laminated and integrated into this mixed fiber sheet by needle punching. Then, triboelectric charging was performed to obtain a base material layer made of an electret laminated sheet.
Also, polyester fiber (fineness 17 dtex, fiber length 51 mm), low melting point polyester fiber (fineness 4.4 dtex, fiber length 51 mm) and low melting point polyester fiber (fineness 22 dtex, fiber length 51 mm) in a weight ratio of 2: 3: 5. The mixture was carded and carded and thermally fused by a thermal bond method to obtain a thermal bond nonwoven fabric having a basis weight of 65 g / m 2 . Further, the thermal bond nonwoven fabric was immersed in an aqueous polyester resin solution and then dried to obtain a base material layer processed with 2 g / m 2 of polyester resin.
Next, to the non-woven fabric side comprising the heat-bonding long fibers of the electret laminated sheet base material layer, coconut husk activated carbon having an average particle size of 550 μm and an ethylene acrylic acid copolymer (particle size 10 μm, melting point 109 ° C.) as a thermoplastic powder resin A mixed powder with a weight ratio of 1: 0.1 is sprayed so as to have a basis weight of 220 g / m 2. Further, a thermal bond base material layer is superimposed from above, and a sheet is formed by heating at 140 ° C. for 30 seconds to deodorize. A filter medium for a filter was obtained.
Table 1 shows the sheet characteristics of the obtained filter medium.

[比較例1]
実施例1において、サーマルボンド不織布からなる基材層へ樹脂加工を行わなかったこと以外は実施例1と同様にしてシート化を行い脱臭フィルター用濾材を得た。
得られた濾材のシート特性を表1に示す。
[Comparative Example 1]
In Example 1, except that resin processing was not performed on the base material layer made of the thermal bond nonwoven fabric, a sheet was formed in the same manner as in Example 1 to obtain a filter medium for a deodorizing filter.
Table 1 shows the sheet characteristics of the obtained filter medium.

[比較例2]
ポリプロピレン繊維(繊度2.2dtex、繊維長51mm)と、ポリエステル繊維(繊度1.7dtex、繊維長44mm)を1:1の重量比で混綿、カーディングして目付25g/mの混繊ウェブを作製後、3MPaの高圧水を連続的に噴霧して交絡、乾燥し、混繊シートを作成した。この混繊シートをニードルパンチにより摩擦帯電を行い、エレクトレットシートからなる基材層を得た。
また、ポリエステル繊維(繊度17dtex、繊維長51mm)、低融点ポリエステル繊維(繊度4.4dtex、繊維長51mm)および低融点ポリエステル繊維(繊度22dtex、繊維長51mm)を2:3:5の重量比で混綿、カーディングしてサーマルボンド法により熱融着し目付65g/mのサーマルボンド不織布を得た。さらにこのサーマルボンド不織布をポリエステル樹脂水溶液中に浸漬後、乾燥させ2g/mのポリエステル樹脂が加工された基材層を得た。
次にエレクトレットシート基材層へ、平均粒径550μmのヤシガラ活性炭および熱可塑性粉末樹脂としてエチレンアクリル酸共重合体(粒径10μm、融点109℃)の重量比1:0.1の混合粉末を目付220g/mになるように散布し、さらに上から接着層として低融点ポリエステルのホットメルトシート(12g/m、融点105℃)とサーマルボンド基材層を順に重ね合わせ、140℃で30秒間の加熱処理にてシート化を行い脱臭フィルター用濾材を得た。
得られた濾材のシート特性を表1に示す。
[Comparative Example 2]
Polypropylene fiber (fineness: 2.2 dtex, fiber length: 51 mm) and polyester fiber (fineness: 1.7 dtex, fiber length: 44 mm) are mixed in a weight ratio of 1: 1 and carded to form a mixed fiber web having a basis weight of 25 g / m 2. After production, 3 MPa high-pressure water was continuously sprayed to entangle and dry to produce a mixed fiber sheet. The mixed fiber sheet was triboelectrically charged with a needle punch to obtain a base material layer made of an electret sheet.
Also, polyester fiber (fineness 17 dtex, fiber length 51 mm), low melting point polyester fiber (fineness 4.4 dtex, fiber length 51 mm) and low melting point polyester fiber (fineness 22 dtex, fiber length 51 mm) in a weight ratio of 2: 3: 5. The mixture was carded and carded and thermally fused by a thermal bond method to obtain a thermal bond nonwoven fabric having a basis weight of 65 g / m 2 . Further, the thermal bond nonwoven fabric was immersed in an aqueous polyester resin solution and then dried to obtain a base material layer processed with 2 g / m 2 of polyester resin.
Next, coconut husk activated carbon having an average particle diameter of 550 μm and a mixed powder having an ethylene acrylic acid copolymer (particle diameter of 10 μm, melting point of 109 ° C.) in a weight ratio of 1: 0.1 as a thermoplastic powder resin are applied to the electret sheet base material layer. It is sprayed to 220 g / m 2, and a low-melting polyester hot melt sheet (12 g / m 2 , melting point 105 ° C.) and a thermal bond base material layer are sequentially laminated as an adhesive layer from the top, and 140 ° C. for 30 seconds. A sheet was formed by heat treatment to obtain a filter medium for a deodorizing filter.
Table 1 shows the sheet characteristics of the obtained filter medium.

[比較例3]
ポリプロピレン繊維(繊度2.2dtex、繊維長51mm)と、ポリエステル繊維(繊度1.7dtex、繊維長44mm)を1:1の重量比で混綿、カーディングして目付25g/mの混繊ウェブを作製後、3MPaの高圧水を連続的に噴霧して交絡、乾燥し、混繊シートを作成した。この混繊シートに、目付12g/mの低融点ポリエステル短繊維(繊度4.4dtex、繊維長51mm)からなる不織布を、ニードルパンチにより積層一体化し、さらに摩擦帯電を行い、エレクトレット積層シートからなる基材層を得た。
また、ポリエステル繊維(繊度17dtex、繊維長51mm)、低融点ポリエステル繊維(繊度4.4dtex、繊維長51mm)および低融点ポリエステル繊維(繊度22dtex、繊維長51mm)を2:3:5の重量比で混綿、カーディングしてサーマルボンド法により熱融着し目付65g/mのサーマルボンド不織布を得た。さらにこのサーマルボンド不織布をポリエステル樹脂水溶液中に浸漬後、乾燥させ2g/mのポリエステル樹脂が加工された基材層を得た。
次にエレクトレット積層シート基材層の低融点ポリエステル短繊維からなる不織布側へ、平均粒径550μmのヤシガラ活性炭および熱可塑性粉末樹脂としてエチレンアクリル酸共重合体(粒径10μm、融点109℃)の重量比1:0.1の混合粉末を目付220g/mになるように散布し、さらに上から接着層として低融点ポリエステルのホットメルトシート(12g/m、融点105℃)とサーマルボンド基材層を順に重ね合わせ、140℃で30秒間の加熱処理にてシート化を行い脱臭フィルター用濾材を得た。
得られた濾材のシート特性を表1に示す。
[Comparative Example 3]
Polypropylene fiber (fineness: 2.2 dtex, fiber length: 51 mm) and polyester fiber (fineness: 1.7 dtex, fiber length: 44 mm) are mixed in a weight ratio of 1: 1 and carded to form a mixed fiber web having a basis weight of 25 g / m 2. After production, 3 MPa high-pressure water was continuously sprayed to entangle and dry to produce a mixed fiber sheet. A nonwoven fabric made of low-melting-point polyester short fibers with a basis weight of 12 g / m 2 (fineness: 4.4 dtex, fiber length: 51 mm) is laminated and integrated with this punched sheet by needle punching, and further triboelectrically charged to form an electret laminated sheet. A substrate layer was obtained.
Also, polyester fiber (fineness 17 dtex, fiber length 51 mm), low melting point polyester fiber (fineness 4.4 dtex, fiber length 51 mm) and low melting point polyester fiber (fineness 22 dtex, fiber length 51 mm) in a weight ratio of 2: 3: 5. The mixture was carded and carded and thermally fused by a thermal bond method to obtain a thermal bond nonwoven fabric having a basis weight of 65 g / m 2 . Further, the thermal bond nonwoven fabric was immersed in an aqueous polyester resin solution and then dried to obtain a base material layer processed with 2 g / m 2 of polyester resin.
Next, the weight of an ethylene acrylic acid copolymer (particle size 10 μm, melting point 109 ° C.) as a coconut husk activated carbon having an average particle size of 550 μm and a thermoplastic powder resin is applied to the nonwoven fabric side comprising the low melting point polyester short fibers of the electret laminated sheet base material layer. A mixed powder having a ratio of 1: 0.1 was sprayed so as to have a basis weight of 220 g / m 2, and a low-melting polyester hot melt sheet (12 g / m 2 , melting point 105 ° C.) and a thermal bond base material as an adhesive layer from above. The layers were layered in order and formed into a sheet by heat treatment at 140 ° C. for 30 seconds to obtain a filter medium for a deodorizing filter.
Table 1 shows the sheet characteristics of the obtained filter medium.

[比較例4]
ポリプロピレン繊維(繊度2.2dtex、繊維長51mm)と、ポリエステル繊維(繊度1.7dtex、繊維長44mm)を1:1の重量比で混綿、カーディングして目付25g/mの混繊ウェブを作製後、3MPaの高圧水を連続的に噴霧して交絡、乾燥し、混繊シートを作成した。この混繊シートに、目付12g/mのポリエステル(芯)/ポリエチレン(鞘)で構成される芯鞘型複合熱融着系長繊維(繊維径30μm)からなる不織布を、ニードルパンチにより積層一体化し、さらに摩擦帯電を行い、エレクトレット積層シートからなる基材層を得た。
また、ポリエステル繊維(繊度17dtex、繊維長51mm)、低融点ポリエステル繊維(繊度4.4dtex、繊維長51mm)および低融点ポリエステル繊維(繊度22dtex、繊維長51mm)を2:3:5の重量比で混綿、カーディングしてサーマルボンド法により熱融着し目付65g/mのサーマルボンド不織布からなる基材層を得た。
次にエレクトレット積層シート基材層の熱融着系長繊維からなる不織布側へ、平均粒径550μmのヤシガラ活性炭および熱可塑性粉末樹脂としてエチレンアクリル酸共重合体(粒径10μm、融点109℃)の重量比1:0.2の混合粉末を目付240g/mになるように散布し、さらに上から接着層として低融点ポリエステルのホットメルトシート(12g/m、融点105℃)とサーマルボンド基材層を順に重ね合わせ、140℃で30秒間の加熱処理にてシート化を行い脱臭フィルター用濾材を得た。
得られた濾材のシート特性を表1に示す。
[Comparative Example 4]
Polypropylene fiber (fineness: 2.2 dtex, fiber length: 51 mm) and polyester fiber (fineness: 1.7 dtex, fiber length: 44 mm) are mixed in a weight ratio of 1: 1 and carded to form a mixed fiber web having a basis weight of 25 g / m 2. After production, 3 MPa high-pressure water was continuously sprayed to entangle and dry to produce a mixed fiber sheet. A nonwoven fabric composed of a core-sheath type composite heat-sealing long fiber (fiber diameter 30 μm) composed of polyester (core) / polyethylene (sheath) having a basis weight of 12 g / m 2 is laminated and integrated into this mixed fiber sheet by needle punching. Then, triboelectric charging was performed to obtain a base material layer made of an electret laminated sheet.
Also, polyester fiber (fineness 17 dtex, fiber length 51 mm), low melting point polyester fiber (fineness 4.4 dtex, fiber length 51 mm) and low melting point polyester fiber (fineness 22 dtex, fiber length 51 mm) in a weight ratio of 2: 3: 5. A base material layer made of a thermal bond nonwoven fabric having a basis weight of 65 g / m 2 was obtained by blending and carding and heat-sealing by a thermal bond method.
Next, to the non-woven fabric side comprising the heat-bonding long fibers of the electret laminated sheet base material layer, coconut husk activated carbon having an average particle size of 550 μm and an ethylene acrylic acid copolymer (particle size 10 μm, melting point 109 ° C.) as a thermoplastic powder resin A mixed powder having a weight ratio of 1: 0.2 was sprayed so as to have a basis weight of 240 g / m 2, and a hot-melt sheet of low-melting polyester (12 g / m 2 , melting point 105 ° C.) and a thermal bond group as an adhesive layer from above. The material layers were sequentially stacked and formed into a sheet by heat treatment at 140 ° C. for 30 seconds to obtain a filter medium for a deodorizing filter.
Table 1 shows the sheet characteristics of the obtained filter medium.

実施例1〜4で得られた濾材は剛性が高く、低圧力損失、高粉塵保持量であり脱臭性能にも優れていた。一方、比較例1〜3で得られた濾材は剛性が低く、比較例4で得られた濾材は脱臭性能に劣っており脱臭フィルター用濾材としては不適である。   The filter media obtained in Examples 1 to 4 had high rigidity, low pressure loss, high dust holding capacity, and excellent deodorization performance. On the other hand, the filter media obtained in Comparative Examples 1 to 3 have low rigidity, and the filter media obtained in Comparative Example 4 are inferior in deodorizing performance and are not suitable as filter media for deodorizing filters.

本発明で得られる脱臭フィルター用濾材は剛性が高く圧力損失や粉塵保持量に優れており、長時間使用可能な濾材であり、産業界への寄与大である。   The filter medium for a deodorizing filter obtained by the present invention has high rigidity and excellent pressure loss and dust holding capacity, and is a filter medium that can be used for a long time, and greatly contributes to the industry.

Claims (2)

基材層間に吸着剤と接着剤からなる吸着層を挟みこんだ積層構造体からなる濾材であって、基材層の一層が樹脂加工されたサーマルボンド不織布からなり、基材層のもう一層が熱融着系長繊維からなる不織布とエレクトレットニードルパンチ不織布をニードルパンチで積層一体化した積層シートからなり、吸着層と前記積層シートの熱融着系長繊維からなる不織布とが隣接し熱融着により積層されている脱臭フィルター用濾材。   A filter medium composed of a laminated structure in which an adsorbent layer composed of an adsorbent and an adhesive is sandwiched between base material layers, wherein one layer of the base material layer is a resin-processed thermal bond nonwoven fabric, and the other layer of the base material layer is It consists of a laminated sheet in which a nonwoven fabric composed of heat-bonding long fibers and electret needle punched nonwoven fabric are laminated and integrated with a needle punch, and the adsorbing layer and the nonwoven fabric composed of heat-bonding long fibers of the laminated sheet are adjacent to each other and heat-sealed. Filter media for deodorizing filters that are laminated with each other. 熱融着系長繊維からなる不織布が、芯鞘構造の複合熱融着系長繊維からなる不織布である請求項1に記載の脱臭フィルター用濾材。   The filter medium for a deodorizing filter according to claim 1, wherein the nonwoven fabric composed of heat-sealing long fibers is a nonwoven fabric composed of composite heat-sealing long fibers having a core-sheath structure.
JP2014012285A 2014-01-27 2014-01-27 Filter material for deodorization filter Pending JP2015139720A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014012285A JP2015139720A (en) 2014-01-27 2014-01-27 Filter material for deodorization filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014012285A JP2015139720A (en) 2014-01-27 2014-01-27 Filter material for deodorization filter

Publications (1)

Publication Number Publication Date
JP2015139720A true JP2015139720A (en) 2015-08-03

Family

ID=53770475

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014012285A Pending JP2015139720A (en) 2014-01-27 2014-01-27 Filter material for deodorization filter

Country Status (1)

Country Link
JP (1) JP2015139720A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017070876A (en) * 2015-10-05 2017-04-13 東洋紡株式会社 Filter medium for deodorizing filter
JP2018143643A (en) * 2017-03-08 2018-09-20 東洋紡株式会社 Deodorization filter medium and filter
JP2019155247A (en) * 2018-03-12 2019-09-19 呉羽テック株式会社 Filter reinforcing material and filter medium for deodorization filter including the same
WO2019189638A1 (en) 2018-03-30 2019-10-03 東レ株式会社 Multilayer filter material

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017070876A (en) * 2015-10-05 2017-04-13 東洋紡株式会社 Filter medium for deodorizing filter
JP2018143643A (en) * 2017-03-08 2018-09-20 東洋紡株式会社 Deodorization filter medium and filter
JP7017026B2 (en) 2017-03-08 2022-02-08 東洋紡株式会社 Deodorizing filter media and filters
JP2019155247A (en) * 2018-03-12 2019-09-19 呉羽テック株式会社 Filter reinforcing material and filter medium for deodorization filter including the same
WO2019176628A1 (en) * 2018-03-12 2019-09-19 呉羽テック株式会社 Filter reinforcement material and filter medium for deodorizing filter comprising same
CN111836673A (en) * 2018-03-12 2020-10-27 吴羽泰克株式会社 Filter reinforcing material and filter medium for deodorizing filter comprising same
JP7032963B2 (en) 2018-03-12 2022-03-09 呉羽テック株式会社 Filter reinforcing material and filter material for deodorizing filter including this
CN111836673B (en) * 2018-03-12 2022-07-12 吴羽泰克株式会社 Filter reinforcing material and filter medium for deodorizing filter comprising same
WO2019189638A1 (en) 2018-03-30 2019-10-03 東レ株式会社 Multilayer filter material
KR20200138223A (en) 2018-03-30 2020-12-09 도레이 카부시키가이샤 Multilayer filter media

Similar Documents

Publication Publication Date Title
WO2014196564A1 (en) Filtering medium for deodorizing filter
JP4099714B2 (en) Adsorbent sheet and air cleaning filter
JP5082292B2 (en) Adsorbent sheet
JP2011104529A (en) Harmful gas removing material
JPWO2016195009A1 (en) Air cleaning media
JP2015139720A (en) Filter material for deodorization filter
JP2013154269A (en) Filter material
JP2013094367A (en) Air cleaning filter material
JP2008206550A (en) Absorbent sheet
JP6594609B2 (en) Filter medium for deodorizing filter
JP4815138B2 (en) Flame retardant deodorizing filter media
KR100986797B1 (en) The nonwovens filter
JP2013220375A (en) Filter medium
CN111836673B (en) Filter reinforcing material and filter medium for deodorizing filter comprising same
JP6323670B2 (en) Filter medium for deodorizing filter
JP2014100654A (en) Filter material for air cleaning, and filter unit
JP6194579B2 (en) Air cleaning media
JP3646861B2 (en) Particle-containing nonwoven fabric and method for producing the same
JP4935177B2 (en) Adsorbent sheet
JP2012096129A (en) Filter medium for air cleaning
JP6696141B2 (en) Filter material for deodorizing filter
JP2018143643A (en) Deodorization filter medium and filter
JP2015164710A (en) air cleaning filter medium
JP2017213163A (en) Deodorization filter medium
JP2005177256A (en) Adsorbent sheet and air purification filter