WO2016194666A1 - Led用蛍光膜、led用蛍光膜の製造方法、led面発光装置、及び画像形成装置 - Google Patents

Led用蛍光膜、led用蛍光膜の製造方法、led面発光装置、及び画像形成装置 Download PDF

Info

Publication number
WO2016194666A1
WO2016194666A1 PCT/JP2016/065106 JP2016065106W WO2016194666A1 WO 2016194666 A1 WO2016194666 A1 WO 2016194666A1 JP 2016065106 W JP2016065106 W JP 2016065106W WO 2016194666 A1 WO2016194666 A1 WO 2016194666A1
Authority
WO
WIPO (PCT)
Prior art keywords
led
film
layer
phosphor
fluorescent
Prior art date
Application number
PCT/JP2016/065106
Other languages
English (en)
French (fr)
Inventor
柯文森
Original Assignee
久豊技研株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 久豊技研株式会社 filed Critical 久豊技研株式会社
Publication of WO2016194666A1 publication Critical patent/WO2016194666A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Definitions

  • the present invention relates to a fluorescent film for LED excited by light of a light emitting diode (LED: Light Emitting Diode), a method for manufacturing the fluorescent film for LED, an LED surface light emitting device including the fluorescent film, and an image forming apparatus.
  • LED Light Emitting Diode
  • a white surface light emitting device is disposed as a backlight assembly on the back of a liquid crystal display (LCD) such as a smartphone, a tablet terminal, a personal computer (PC), and a liquid crystal television.
  • LCD liquid crystal display
  • Conventional backlight assemblies are composed of a combination of a cold cathode tube and a light guide plate, an organic EL (Electro Luminescence), or the like.
  • the cold cathode tube has a relatively short lighting life.
  • organic EL has size restrictions.
  • LED surface-emitting devices are mainly devices equipped with phosphor-filled LEDs that emit white light by an excitation method.
  • a droplet of yellow phosphor paint is injected and filled into the package casing 501 and heated. Drying to form a yellow phosphor layer 503 on the blue LED 502 (see, for example, Patent Document 1).
  • reference numeral 504 denotes a substrate
  • 505 denotes wire bonding
  • 506 denotes an electrode.
  • the phosphor-filled LED has a problem that a crack is generated in the phosphor layer during drying or storage of the phosphor layer, and the product yield is poor.
  • a crack is generated in the phosphor layer during drying or storage of the phosphor layer, and the product yield is poor.
  • the phosphor layer is produced by injecting and filling the phosphor paint for each LED, so that the phosphor layer production work is complicated, and the manufacturing man-hours are large. There is a problem of increasing.
  • the phosphor-filled LED has a structure in which the phosphor layer is injected and filled on the LED and the phosphor layer and the LED are in direct contact with each other, the phosphor layer easily deteriorates due to the heat generated by the LED. There is a problem that the product life is shortened.
  • a first object of the present invention is to provide a fluorescent film for LED and a method for manufacturing the fluorescent film for LED that can be stored at room temperature without requiring moisture resistance management and without generating cracks. is there.
  • the second object of the present invention is to improve the product yield with a simple structure, to facilitate the assembly work and to reduce the number of manufacturing steps, and to prolong the product life significantly because the fluorescent film is hardly deteriorated.
  • Another object of the present invention is to provide an LED surface light emitting device and an image forming apparatus provided with the LED surface light emitting device.
  • a phosphor film for LED according to the present invention is laminated on a resin film having translucency as a substrate to be laminated, and is emitted by being excited by irradiation light of the LED. And a fluorescent layer.
  • the phosphor layer is preferably laminated by mixing at least a green phosphor paint or a yellow-green phosphor paint with a yellow phosphor paint, and is excited by a wavelength of 445 nm to 470 nm by a blue LED irradiation light to emit light.
  • a red phosphor paint for adjusting the color rendering properties is further mixed in the phosphor layer.
  • a diffusion layer or / and a prism layer are laminated on the resin film.
  • the fluorescent layer, the diffusion layer, and the prism layer are laminated on the resin film by printing.
  • the manufacturing method of the fluorescent film for LED which concerns on this invention is the fluorescence excited by the irradiation light of LED on the procedure which supplies the resin film which has translucency with a roll-to-roll apparatus, and the said resin film And a procedure for printing a body paint.
  • the LED phosphor film manufacturing method further includes a procedure for printing a diffusion layer on the resin film and / or a procedure for printing a prism layer on the resin film.
  • the LED surface light emitting device includes a plurality of LEDs mounted on a substrate, and is stretched on the plurality of LEDs with a gap from the LED, and is excited by light emitted from the LEDs to emit light. And a fluorescent film.
  • the phosphor film includes a resin film as a substrate to be laminated, and a phosphor layer that is laminated on the resin film and emits light when excited by the irradiation light of the LED. preferable.
  • the phosphor layer is preferably laminated by mixing at least a green phosphor paint or a yellow-green phosphor paint with a yellow phosphor paint, and is excited by a wavelength of 445 nm to 470 nm by a blue LED irradiation light to emit light.
  • a red phosphor paint for adjusting the color rendering properties is further mixed in the phosphor layer.
  • the phosphor film preferably has a diffusion layer and / or a prism layer laminated on the resin film in addition to the phosphor layer.
  • a support member for suppressing the bending of the phosphor film is disposed between the plurality of LEDs on the substrate.
  • the LED is preferably covered with a diffusing member for expanding the light emission angle.
  • the image forming apparatus is characterized in that a liquid crystal display is disposed on any one of the LED surface emitting devices.
  • the fluorescent film for LED and the method for manufacturing the fluorescent film for LED according to the present invention it is possible to realize a fluorescent film that does not require moisture resistance management and does not generate cracks and can be stored at room temperature. .
  • the product yield can be improved with a simple structure, the assembling work can be easily performed, the number of manufacturing steps can be reduced, the phosphor film is hardly deteriorated, and the product life is greatly increased. Excellent effect that can be extended to.
  • FIG. 10 is a structural diagram of an image forming apparatus according to a fourth embodiment. It is the schematic of the conventional fluorescent substance filling type LED.
  • FIG. 1 is a schematic diagram of a first layer structure of a fluorescent film for LED according to the first embodiment.
  • FIG. 2 is a schematic diagram of the second layer structure of the LED phosphor film according to the first embodiment.
  • FIG. 3A is a schematic view of an example of the third layer structure of the LED phosphor film according to the first embodiment.
  • FIG. 3B is a schematic view of another example of the third layer structure of the LED phosphor film according to the first embodiment.
  • FIG. 4A is a schematic diagram of an example of the fourth layer structure of the LED phosphor film according to the first embodiment.
  • FIG. 4B is a schematic diagram of another example of the fourth layer structure of the LED phosphor film according to the first embodiment.
  • an LED phosphor film (hereinafter also simply referred to as “phosphor film”) 100 is irradiated with a light emitting diode (LED: Light Emitting Diode) as a light source. It has the property of emitting light when excited by light.
  • the fluorescent film 100 is a fluorescent film having at least a fluorescent layer 20 on the resin film 10.
  • the fluorescent film 101 having the first layer structure is a film in which only the fluorescent layer 20 is laminated on the resin film 10 as shown in FIG.
  • the fluorescent film 102 having the second layer structure is a film in which a diffusion layer 30 and a fluorescent layer 20 are laminated on a resin film 10 as shown in FIG.
  • the phosphor film 103 having the third layer structure is a film in which the prism layer 40 and the phosphor layer 20 are laminated on the resin film 10, as shown in FIGS. 3A and 3B.
  • the fluorescent film 104 having the fourth layer structure is a film in which the diffusion layer 30, the prism layer 40, and the fluorescent layer 20 are laminated on the resin film 10, as shown in FIGS. 4A and 4B.
  • the fluorescent film 100 has approximately four types of structures, but there are many variations depending on the stacking order of each layer on the resin film 10.
  • the fluorescent layer 20 is laminated on the resin film 10 via the diffusion layer 30, but the lamination order of the diffusion layer 30 and the fluorescent layer 20 may be reversed.
  • the fluorescent film 103 of FIG. 3A the fluorescent layer 20 is laminated on the resin film 10 via the prism layer 40. 3B, the prism layer 40 is laminated on the resin film 10 with the fluorescent layer 20 interposed therebetween.
  • the fluorescent film 104 of FIG. 4A the fluorescent layer 20 is laminated on the resin film 10 via the diffusion layer 30 and the prism layer 40. 4B, the prism layer 40 is laminated on the resin film 10 with the diffusion layer 30 and the fluorescent layer 20 interposed therebetween.
  • the prism layer 40 exists in the lowermost layer with the resin film 10 side as the surface, the prism layer 40 is formed as an inverted prism. Note that the configuration of the fluorescent film 100 illustrated in FIGS. 1 to 4B is an example, and is not limited to the listed layer structures.
  • Resin film 10 functions as a substrate to be laminated for laminating fluorescent layer 20, diffusion layer 30, and prism layer 40.
  • the resin film 10 preferably has translucency, and more preferably is colorless and transparent.
  • Examples of the resin film 10 include synthetic resin films such as PET (Polyethylene Terephthalate), PMMA (Poly Methyl Methacrylate), PC (Polycarbonate), and TAC (Tri Acetyl Cellulose), but are not limited to the exemplary resin materials. .
  • the phosphor layer 20 is laminated by mixing at least a green phosphor paint or a yellow-green phosphor paint with a yellow phosphor paint, and an appropriate amount of an adhesive or binding material such as silicon (Si) is mixed.
  • the phosphor material include YAG (yttrium, aluminum, garnet), TAG (terbium, aluminum, garnet), sialon, and BOS (barium orthosilicate).
  • an appropriate amount of red phosphor paint is further mixed in addition to mixing the green phosphor paint or the yellow green phosphor paint with the yellow phosphor paint.
  • the fluorescent layer 20 of the present embodiment emits light when excited by a wavelength of 445 nm to 470 nm with blue irradiation light of a blue LED.
  • the fluorescent film 100 is continuously manufactured by a printing technique using a roll-to-roll apparatus. That is, the fluorescent layer 20, the diffusion layer 30, and the prism layer 40 are formed on the resin film 10 by printing using the resin film 10 as a substrate to be laminated.
  • FIG. 5 is a schematic view of an apparatus for manufacturing the LED phosphor film 100 according to the first embodiment.
  • the LED fluorescent film manufacturing apparatus 200 includes a roll-to-roll apparatus, and includes at least a resin film supply apparatus 210, a fluorescent layer printing apparatus 220, and a curing apparatus 250. And a cutting device 280.
  • the LED fluorescent film manufacturing apparatus 200 illustrated in FIG. 5 further includes a diffusion layer printing device 230 and a prism layer printing device 240.
  • the apparatus configuration of the LED phosphor film manufacturing apparatus 200 illustrated in FIG. 5 corresponds to the layer configuration in FIG. 4A, but the apparatus configuration is appropriately modified by the layer configurations illustrated in FIGS. 1 to 3B and 4B. The Hereafter, it demonstrates for every component of the manufacturing apparatus 200 of the fluorescent film for LED.
  • Resin film supply device 210 continuously supplies resin film 10 having translucency.
  • the resin film supply apparatus 210 of this embodiment it is preferable to employ
  • the resin film supply device 210 includes a presser roll 211 for preventing bending when the resin film 10 is unwound.
  • the resin film supply device 210 is not limited to an unwinding roll, and may be another type of supply device such as a single wafer supply device as long as the resin film 10 can be continuously supplied. Absent.
  • Examples of the resin film 10 include synthetic resin films such as the above-described PET, PMMA, PC, and TAC, but are not limited to the exemplified resin materials.
  • a light release film 13 is attached to the front and back surfaces of the fluorescent film 100.
  • the resin film 10 is attached to an unwinding roll as the resin film supply device 210 in a state of being wound in a cylindrical shape.
  • the resin film supply device 210 includes a peeling device 213 that peels off the light release film 13 attached to the back surface of the resin film 10.
  • the peeling device 213 of this embodiment is formed by, for example, a winding roll, but is not limited to a winding type, and may be another type of peeling device.
  • the diffusion layer printing device 230 laminates the diffusion layer 30 on the resin film 10 by printing.
  • the prism printing apparatus 240 laminates the prism layer 40 on the diffusion layer 30 laminated on the resin film 10 by printing.
  • a synthetic resin material such as polypropylene (PP) or polyethylene terephthalate (PET) is used.
  • the fluorescent layer printing apparatus 220 laminates the fluorescent layer 20 on the diffusion layer 30 and the prism layer 40 laminated on the resin film 10 by printing.
  • the above-described fluorescent materials such as YAG, TAG, sialon, and BOS are used.
  • the diffusion layer printing device 230 or the prism printing device 240 does not perform printing. Further, the arrangement order of the diffusion layer printing device 230, the prism printing device 240, and the fluorescent layer printing device 220 is appropriately changed according to the layer configuration of the LED phosphor film 100.
  • the curing device 250 heats the diffusion layer 30, the prism layer 40, and the fluorescent layer 20 on the resin film 10 to cure the adhesive material or binding material such as silicon (Si), and the resin film 10, the diffusion layer 30, the prism.
  • the laminated body of the layer 40 and the fluorescent layer 20 is integrated.
  • a flatness measuring device 260, a pinhole inspection device 265, and a foreign matter adhesion inspection device 270 are arranged between the curing device 250 and the pressing device 275.
  • the flatness measuring device 260, the pinhole inspection device 265, and the foreign matter adhesion inspection device 270 it is preferable to use a non-contact type measurement device and inspection device so as not to hinder the transfer of the film laminate 110.
  • the flatness measuring device 260, the pinhole inspection device 265, and the foreign matter adhesion inspection device 70 are arranged in this order from the upstream side in the transfer direction F, but the arrangement order is not limited. Further, it is not always necessary to provide all of the flatness measuring device 260, the pinhole inspection device 265, and the foreign matter adhesion inspection device 270.
  • the flatness measuring device 260 measures the flatness of the film laminate 110.
  • Examples of the flatness measuring device 260 of the present embodiment include a displacement sensor that measures the warpage and distortion of a member in a non-contact manner with a laser beam.
  • the flatness measuring device 260 is not limited to the laser light displacement measuring method, and other flatness measuring devices such as a prism oblique incidence method and a mirror optical system oblique incidence method may be employed.
  • the pinhole inspection device 265 detects the presence or absence of pinholes in the film laminate 110.
  • the pinhole inspection apparatus 265 of this embodiment for example, an optical pinhole inspection apparatus that detects the presence or absence of a pinhole in a non-contact manner by transmitting light can be cited.
  • the pinhole inspection device 265 is not limited to the optical pinhole inspection device, and other types of pinhole inspection devices such as a discharge pulse method using static electricity may be employed.
  • the foreign matter adhesion inspection device 270 inspects whether or not foreign matter has adhered to the film laminate 110.
  • Examples of the foreign matter adhesion inspection apparatus 270 of this embodiment include an optical foreign matter adhesion inspection apparatus and a high-speed image inspection apparatus.
  • the peeling film supply device 214 and the pressing device 275 are disposed on the downstream side in the transfer direction F of the foreign matter adhesion inspection device 270.
  • the release film supply device 214 attaches the light release film 14 on the fluorescent layer 20.
  • the light release film 14 is unwound from the release film supply device 214 and supplied.
  • the release film supply device 214 includes a pressing roll 215 for pressing the upper surface of the light release film 14.
  • the pressing device 275 attaches the light release film 14 on the fluorescent layer 20 with an appropriate pressing force.
  • the cutting device 280 is cured by the curing device 250, passes through the flatness measuring device 260, the pinhole inspection device 265, and the foreign matter adhesion inspection device 270, and then is used for a plurality of LEDs from the film laminate 110 to which the light release film 14 is attached.
  • the fluorescent film 100 is cut out.
  • a laser cutting device is preferably used as the cutting device 280 of the present embodiment.
  • the cutting device 280 is not limited to a laser cutting device, and may be constituted by other types of cutting devices such as a punch cutting device.
  • a container 281 for receiving a plurality of fluorescent films 100 cut by the cutting device 260 is provided below the cutting device 280.
  • Guide rolls 216 and 217 are arranged between the cutting device 280 and the winding roll 290, respectively.
  • part of the guide rolls 216 and 217 is not limited to the illustrated position.
  • a winding roll 290 is disposed on the most downstream side in the transfer direction F of the LED fluorescent film manufacturing apparatus 200 according to this embodiment.
  • the winding roll 290 winds the remaining film laminate 120 after the plurality of fluorescent films 100 are cut out from the film laminate 110 by the cutting device 280.
  • the winding roll 290 includes a pressing roll 291 for pressing the upper surface of the remaining film laminate 120.
  • FIG. 6 is a process diagram of the manufacturing method of the LED fluorescent film according to the first embodiment.
  • the manufacturing method of the fluorescent film 100 for LED which concerns on this embodiment is the procedure which supplies the resin film 10 which has translucency with a roll-to-roll apparatus, and the resin film 10 And a procedure for printing the fluorescent layer 20 that is excited by the irradiation light of the LED 60.
  • the method for manufacturing the LED fluorescent film 100 according to the present embodiment further includes a procedure for printing the diffusion layer 30 on the resin film 10 and / or a procedure for printing the prism layer 40 on the resin film 10. Specifically, each procedure is performed as follows.
  • the resin film supply device 200 supplies the resin film 10 having translucency.
  • the resin film 10 can be supplied continuously.
  • the resin film 10 is attached to an unwinding roll as the resin film supply device 210 in a state of being wound in a cylindrical shape.
  • a light release film 13 is attached to the front and back surfaces of the resin film 10.
  • the light release film 13 on the back side (lamination side) of the resin film 10 is sequentially wound and peeled off by the peeling device 213. Therefore, the light release film 13 remains on the surface (the lower surface in FIG. 5) of the resin film 10 of the film laminate 110.
  • the diffusion layer 30 is printed on the resin film 10 by the diffusion layer printing device 230.
  • the prism layer 40 is printed on the diffusion layer 30 laminated on the resin film 10 by the prism layer printing device 240.
  • the fluorescent layer 20 is printed by the fluorescent layer printing device 220 on the diffusion layer 30 and the prism layer 40 laminated on the resin film 10. Steps S120 to S140 describe the layer configuration illustrated in FIG. 4A, and the content and order of stacking differ depending on the layer configuration.
  • the film laminate 110 is heated and cured by the curing device 250 (S150).
  • the adhesive material such as silicon (Si) or the binding material is cured by the curing device 260 and the film laminate 110 is integrated.
  • the flatness measuring device 260 measures the flatness of the film laminate 110 (S160).
  • the flatness measuring device 260 of the present embodiment employs a displacement sensor that measures the warpage and distortion of a member in a non-contact manner with a laser beam, for example.
  • a non-contact type measuring device is employed as the flatness measuring device 260, the transfer of the film laminate 110 is not hindered.
  • the pinhole inspection device 265 detects the presence or absence of pinholes in the film laminate 110 (S170).
  • the pinhole inspection apparatus 265 of this embodiment employs, for example, an optical pinhole inspection apparatus that detects the presence or absence of a pinhole in a non-contact manner by transmitting light.
  • a non-contact type inspection device is adopted as the pinhole inspection device 265, the transfer of the film laminate 110 is not hindered.
  • the foreign matter adhesion inspection device 270 detects the presence or absence of foreign matter adhesion in the film laminate 110 (S180).
  • the foreign matter adhesion inspection apparatus 270 of this embodiment inspects the presence or absence of foreign matter adhesion using, for example, an optical foreign matter adhesion inspection apparatus or a high-speed image inspection apparatus.
  • the non-contact type inspection apparatus is employed as the foreign matter adhesion inspection apparatus 270, the transfer of the film laminate 110 is not hindered.
  • the pressing device 275 attaches the light release film 14 supplied from the release film supply device 214 onto the fluorescent layer 20 (S190). Further, the cutting device 280 cuts out the plurality of fluorescent films 100 from the film laminate 110 to which the light release film 14 is attached (S200).
  • the cutting device 280 of this embodiment employs a laser cutting device, for example. Since the laser cutting device does not generate burrs or yellowing at the cutting portion and does not receive an impact unlike the punch cutting device, the touch panel circuit is not damaged.
  • the plurality of fluorescent films 100 cut by the cutting device 206 are accommodated in a storage container 281 below the cutting device 280.
  • the winding roll 290 arranged on the most downstream side in the transfer direction F winds up the remaining film laminate 120 after cutting out the plurality of fluorescent films 100 (S210).
  • the curing device 250 cures the adhesive material or the binding material, whereby the resin film 10 is formed.
  • the fluorescent layer 20, the diffusion layer 30, and the prism layer 40 are integrally formed in a film shape. Therefore, according to the LED fluorescent film manufacturing apparatus 200 and the LED fluorescent film 100 manufacturing method according to the present embodiment, the LED fluorescent film 100 can be stored at room temperature without requiring moisture resistance management and without generating cracks. Can be produced.
  • the LED phosphor film manufacturing apparatus 200 and the LED phosphor film manufacturing method 200 according to the present embodiment, a resin film supply process, a film laminate stacking process, a curing process, a measurement / inspection process, In a simple series of steps including a pressing step and a cutting step, the LED phosphor film 100 can be continuously manufactured with a high yield. Compared to a manufacturing process in which a phosphor droplet is injected and filled for each LED package as in a conventional phosphor-filled LED, the number of manufacturing steps and the manufacturing cost can be greatly reduced.
  • the LED fluorescent film manufacturing apparatus 200 includes the flatness measuring device 260, the pinhole inspection device 265, and the foreign matter adhesion inspection device 270 between the curing device 250 and the pressing device 275.
  • the quality control of the fluorescent film 100 for LED can be positively performed.
  • the manufacturing apparatus 200 of the fluorescent film for LED which concerns on this embodiment is comprised as a roll-to-roll apparatus, in a series of processes from the resin film supply apparatus 210 to the winding roll 290, it is a some LED.
  • the fluorescent film 100 can be manufactured continuously.
  • FIG. 7 is a structural diagram of the surface light emitting device according to the second embodiment.
  • the LED surface light emitting device 301 according to the second embodiment mainly includes a wiring board 50, a light emitting diode (LED) 60, and a phosphor film 100.
  • LED light emitting diode
  • the LED surface light emitting device 301 according to the second embodiment will be described for each component.
  • Examples of the wiring board 50 include an aluminum board on which printed wiring is applied. A wiring pattern (not shown) is formed on the wiring board 50.
  • the board size of the wiring board 50 is determined in accordance with the size of a liquid crystal display device such as a smartphone or a mobile tablet.
  • a plurality of LEDs 60 are reflow mounted 65 on the wiring pattern of the wiring board 10.
  • the plurality of LEDs 60 are arranged in a matrix on the wiring board 50 in, for example, a regular arrangement such as a vertical and horizontal arrangement, or an irregular arrangement such as a dotted arrangement.
  • the LED 60 of the present embodiment for example, a flip chip blue LED that emits blue light is employed.
  • the flip chip LED for example, a high power LED having an output of 1 W / chip or more, a large amount of light, and high luminance may be adopted.
  • the emission color of the LED is not necessarily limited to blue light, and may be another emission color such as red light, green light, or ultraviolet light, but the phosphor material of the phosphor film 100 is differently mixed. .
  • the fluorescent film 100 (including the above-described 101, 102, and 103) according to the first embodiment is stretched across the LED and the gap G. Specifically, the fluorescent film 100 is bonded and fixed around the wiring substrate 10 by the adhesive layer 90.
  • the LEDs 60 and 60 are connected to each other. It is preferable to dispose the support member 80 as necessary. As the support member 80, a support or a frame can be considered.
  • Examples of the fluorescent film 100 include a mixture of a synthetic resin material such as a silicon resin or an epoxy resin and a phosphor paint such as a nitride.
  • the fluorescent film 100 is not limited to the exemplified materials, and various types applied to white LEDs. The material can be adopted.
  • an LED surface light emitting device 200 that emits white light
  • an excitation method using a phosphor in addition to a combination of a blue LED and a yellow phosphor film, a near ultraviolet LED and R (red), G (green), B The combination with the (blue) mixed fluorescent film is mentioned.
  • the color temperature (K) and the color rendering property (Ra) are problematic.
  • the phosphor film 100 is made of a yellow phosphor paint with a green phosphor paint or a red phosphor paint, a yellow green phosphor paint or a red phosphor paint, or a red phosphor paint and a green phosphor paint or a yellow green phosphor paint. It is mixed and manufactured by a printing technique, and the emission color as the surface light emitting device is verified and adjusted.
  • the fluorescent film 100 As a constituent material of the fluorescent layer 20 of the fluorescent film 100, for example, a yellow phosphor paint that passes blue light of a blue LED and develops white color is employed.
  • the thickness of the fluorescent film 100 is set to a thickness sufficient for the light that has passed through the yellow fluorescent film 100 to develop a white color according to the amount of light of the blue flip-chip LED.
  • it is not limited to the combination of blue LED and a yellow fluorescent film.
  • the fluorescent film 100 employ
  • the phosphor film 60 is combined with three kinds of phosphors of a red phosphor, a green phosphor and a blue phosphor. It may be used.
  • the operation of the LED surface light emitting device 301 according to the second embodiment will be described with reference to FIG.
  • FIG. 7 when the LED surface light emitting device 301 according to this embodiment is turned on to turn on the LED 60, light is emitted from the LED 60 toward the fluorescent film 100.
  • a blue flip-chip LED is used as the LED 60, blue light is irradiated toward the phosphor film 100. The blue light emitted from the LED 60 is incident on the fluorescent film 100 stretched across the gap G from the LED 60.
  • a fluorescent film having a yellow fluorescent layer 20 that is a complementary color of blue is employed as the fluorescent film 100. Therefore, the light passing through the fluorescent film 100 is colored as white light obtained by combining blue light and yellow light.
  • the phosphor layer 20 of the present embodiment is mixed with at least a green phosphor paint or a yellow-green phosphor paint in a yellow phosphor paint, and emits light when excited by a blue light emitted from a blue LED at a wavelength of 445 nm to 470 nm.
  • a yellow phosphor paint (YAG) is mixed with a green phosphor paint or a yellow green phosphor paint and an appropriate amount of silicon (Si), it is excited by a wavelength of 460 nm to 470 nm to emit white light.
  • Silicon (Si) is used as an adhesive or binder.
  • 440 nm light adversely affects the retina.
  • the blue light can be reduced and the eyes can be protected, so that it is suitable as a backlight assembly for liquid crystal televisions, smartphones, and tablet terminals.
  • a green phosphor paint or a yellow-green phosphor paint is not mixed with a yellow phosphor paint (YAG), it is excited by a wavelength of 445 nm to 470 nm and emits white light, so that it is preferably used for general illumination.
  • YAG yellow phosphor paint
  • RGB red phosphor paint
  • Color rendering properties (Ra) can be adjusted by mixing a red phosphor paint in addition to a yellow phosphor paint and a green phosphor paint or a yellow-green phosphor paint.
  • the current LED surface light emitting device individually produces phosphor-filled LEDs through the steps of LED mounting in a package casing, phosphor coating injection / filling, and phosphor layer heating / drying.
  • the phosphor-filled LEDs are manufactured by mounting them on a substrate in a matrix arrangement.
  • the LED surface light emitting device 301 according to the second embodiment simply attaches a fluorescent film (film) 100 having a laminated structure with a gap G on a plurality of flip chip LEDs 60 mounted in a matrix arrangement. It is a simple structure. That is, the LED surface light emitting device 301 according to the second embodiment can improve the product yield with a simple structure, can be easily assembled, and can reduce the number of manufacturing steps.
  • the fluorescent film 100 having a laminated structure is produced by a printing technique using a roll-to-roll apparatus.
  • the LED surface light emitting device 301 according to the present embodiment can significantly reduce the amount of phosphor paint used and the number of assembly steps, resulting in a significant reduction in manufacturing cost. be able to.
  • the LED surface light emitting device 301 according to the present embodiment can greatly reduce the manufacturing cost, it is possible to reduce the manufacturing cost of a final product such as a portable terminal equipped with a liquid crystal display device.
  • the fluorescent film 100 having a laminated structure is produced by a printing technique, and the final assembly is performed with the gap G interposed between the plurality of LEDs 60 arranged in a matrix. It is a simple structure in which only the film 100 is attached. Since a package casing for injecting droplets of phosphor paint is not required as in the case of phosphor-filled LEDs, flip chip LEDs can be reflow mounted 65 directly on the substrate, and the LED surface light emitting device 301 can be made thinner. In addition, weight reduction can be promoted. As a result, it is possible to reduce the thickness and weight of a portable terminal including a liquid crystal display (LCD) using the LED surface light emitting device 301 as a backlight assembly.
  • LCD liquid crystal display
  • the LED 60 and the fluorescent film 100 are provided with a gap G therebetween. Therefore, the heat of the LED 60 is difficult to be transmitted to the phosphor film (film) 100, so that the phosphor film 100 is hardly thermally deteriorated, and the product life of the LED surface light emitting device 301 can be greatly extended.
  • the fluorescent film 100 includes not only the fluorescent layer 20 but also the diffusion layer 30 and the prism layer 40, the amount of emitted light can be increased, and a liquid crystal display (LCD) having excellent visibility can be obtained. be able to.
  • a fluorescent film 100 having a special structure is produced in a film shape by a printing technique using a roll-to-roll device, and a plurality of LEDs 60 are mounted in the final assembly. Since it is a simple structure that is simply bonded and fixed to the wiring board 50, the manufacturing cost can be greatly reduced. As a result, the market price of the final product such as a portable terminal equipped with a liquid crystal display device can be suppressed.
  • FIG. 8 is a structural diagram of the LED surface light emitting device according to the third embodiment.
  • the LED surface light-emitting device 302 according to the third embodiment is different from the LED surface light-emitting device 301 according to the second embodiment in that each LED 60 is covered with a diffusing member 70 for expanding the light emission angle.
  • the diffusion member 70 is formed in a dome shape by dipping a resin material such as silicon (Si), for example. Since the diffusing member 70 has a dome shape, the diffusing member 70 has a lens function and can increase the light emission angle of the flip chip LED 60 having directivity.
  • the diffusion member 70 is not limited to the illustrated silicon resin, and other synthetic resin materials such as an epoxy resin may be employed.
  • the LED surface light emitting device 302 according to the third embodiment has basically the same effects as the LED surface light emitting device 301 according to the second embodiment.
  • each LED 60 is covered with the diffusion member 70 for expanding the light emission angle, so that the light emission angle (viewing angle) of the LED 60 can be expanded. The advantageous effect is demonstrated.
  • FIG. 9 is a side sectional view of an image forming apparatus according to the fourth embodiment.
  • a liquid crystal display (LCD) 310 is disposed on the LED surface light emitting devices 301 and 302 according to the second and third embodiments to constitute an image forming apparatus 400 such as a thin display.
  • the LED surface light emitting devices 301 and 302 according to the second and third embodiments are disposed as a backlight assembly on the back surface of the liquid crystal display 310, and the periphery is sealed with a housing such as a portable terminal.
  • the liquid crystal display 310 can also be disposed by stacking prism sheets on the LED surface emitting devices 301 and 302.
  • the fluorescent film 100 having a laminated structure is stretched across the LED 60 with a gap G therebetween, and the fluorescent film 100 is in addition to the fluorescent layer 20 in addition to the diffusion layer 30 and the prism layer 40.
  • a desired amount of light can be obtained in the LED surface light emitting devices 301 and 302, and it is not necessary to stack a prism sheet on the LED surface light emitting devices 301 and 302, or the prism sheet is stacked even when the prism sheets are stacked. The number of stacked sheets can be reduced.
  • the image forming apparatus 400 according to the fourth embodiment does not require a prism sheet or the number of prism sheets stacked is reduced, so the number of parts is reduced, and the number of assembly steps and materials of the image forming apparatus 400 are reduced. Costs can be reduced.
  • the image forming apparatus 400 can be thinned by reducing the number of prism sheets stacked.
  • the LED surface light emitting devices 301 and 302 are used as a backlight assembly of the liquid crystal display device 310, but may be used for the purpose of illuminating various displays and signboards. Further, the LED surface light emitting devices 301 and 302 may be used as a guide light, an indicator light, an emergency light, or various inspection lights, and various devices and apparatuses including the LED surface light emitting devices 301 and 302 as a part of the constituent elements. Applicable in general.
  • an aluminum substrate to which printed wiring is applied is used as the wiring substrate 50.
  • the fluorescent film 100 is a film
  • a flexible substrate is used instead of an aluminum substrate as a substrate on which the flip-chip LED is mounted, it can be applied to a wearable terminal that has attracted particular attention in recent years.
  • the flexible substrate forms an electronic circuit on a resin film such as PET (Polyethylene terephthalate) by a printing technique. Since the LED surface light emitting devices 301 and 302 according to the above-described embodiment promote the reduction in thickness and weight of the mobile terminal, it can contribute to the development of the mobile terminal market including wearable terminals.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Led Device Packages (AREA)
  • Laminated Bodies (AREA)

Abstract

簡単な構造で製品歩留まりを向上させ、組立作業が容易で製造工数を低減することができ、蛍光膜が劣化し難く製品寿命を大幅に延ばすことができるLED面発光装置を実現する。 LED面発光装置301は、基板50上に実装される複数のLED60と、複数のLED60上に各LED60と間隙Gを隔てて張設され、LED60の照射光で励起されて発光する蛍光膜100と、を備える。蛍光膜100は、被積層基材としての樹脂フィルム10と、樹脂フィルム10上に積層され、LED60の照射光で励起されて発光する蛍光層20と、を少なくとも備える。

Description

LED用蛍光膜、LED用蛍光膜の製造方法、LED面発光装置、及び画像形成装置
 本発明は、発光ダイオード(LED:Light Emitting Diode)の光で励起されるLED用蛍光膜、LED用蛍光膜の製造方法、当該蛍光膜を備えたLED面発光装置、及び画像形成装置に関する。
 スマートフォンやタブレット型端末、パーソナルコンピュータ(PC)、及び液晶テレビ等の液晶ディスプレイ(LCD)の背面には、バックライトアセンブリとして白色の面発光装置が配設されている。
 従来のバックライトアセンブリは、冷陰極管と導光板との組み合わせや有機EL(Electro Luminescence)等で構成されていた。しかしながら、冷陰極管は比較的点灯寿命が短い。また、有機ELは製造コストが高いことに加え、サイズ的な制約がある。
 そのため、近年、バックライトアセンブリは、LEDを用いた面発光装置へと移行してきている。現行のLED面発光装置は、励起方式により白色発光する蛍光体充填型のLEDを搭載した装置が主流である。蛍光体充填型LEDは、図10に示すように、例えば、パッケージケーシング501内の底面に青色LED502を実装した後、該パッケージケーシング501内に黄色蛍光体塗料の溶滴を注入・充填し、加熱・乾燥させて、青色LED502上に黄色蛍光体層503を形成している(例えば、特許文献1参照)。なお、図10において、504は基板、505はワイヤーボンディング、506は電極である。
特開2010-212508号公報
 ところで、蛍光体充填型LEDは、蛍光体層の耐湿管理が難しい。すなわち、蛍光体充填型LEDは、蛍光体層の乾燥途中や保管中において当該蛍光体層にクラックが発生することがあり、製品歩留まりが悪いという問題がある。特に、面発光装置(平面光源)として作製するためには、基板上に複数個のLEDをマトリクス状に配置する必要があるため、LEDの製品歩留まりの向上が求められる。
 また、蛍光体充填型LEDを用いた面発光装置は、各LED毎に蛍光体塗料を注入・充填して蛍光体層を作製するので、蛍光体層の作製作業が繁雑であり、製造工数が増大するという問題がある。
 さらに、蛍光体充填型LEDは、LED上に蛍光体層が注入・充填され、蛍光体層とLEDとが直接接触する構造になっているため、LEDの発熱によって蛍光体層が劣化しやすく、製品寿命が短くなるという問題がある。
 そこで、本発明の第1の目的は、上記の事情に鑑みて、耐湿管理が不要でクラックが発生せず、常温保管可能なLED用蛍光膜及びLED用蛍光膜の製造方法を提供することにある。
 また、本発明の第2の目的は、簡単な構造で製品歩留まりを向上させ、組立作業が容易で製造工数を低減することができ、蛍光膜が劣化し難く製品寿命を大幅に延長することができるLED面発光装置、当該LED面発光装置を備えた画像形成装置を提供することにある。
 上記目的を達成するために、本発明に係るLED用蛍光膜は、被積層基材としての透光性を有する樹脂フィルムと、前記樹脂フィルム上に積層され、LEDの照射光で励起されて発光する蛍光層と、を備えることを特徴とする。
 前記蛍光層は、黄色蛍光体塗料に少なくとも緑色蛍光体塗料もしくは黄緑色蛍光体塗料を混合して積層され、青色LEDの照射光で445nm~470nmの波長によって励起されて発光することが好ましい。
 前記蛍光層には、演色性を調整するための赤色蛍光体塗料が更に混合されることが好ましい。
 前記蛍光層に加え、前記樹脂フィルム上に拡散層または/およびプリズム層が積層されていることが好ましい。
 前記蛍光層、前記拡散層、及び前記プリズム層は、前記樹脂フィルム上に印刷により積層されることが好ましい。
 また、本発明に係るLED用蛍光膜の製造方法は、ロール・ツー・ロール装置により、透光性を有する樹脂フィルムを供給する手順と、前記樹脂フィルム上にLEDの照射光で励起される蛍光体塗料を印刷する手順と、を少なくとも有することを特徴とする。
 前記LED用蛍光膜の製造方法において、更に前記樹脂フィルム上に拡散層を印刷する手順または/および前記樹脂フィルム上にプリズム層を印刷する手順を有することが好ましい。
 さらに、本発明に係るLED面発光装置は、基板上に実装される複数のLEDと、前記複数のLED上に該LEDと間隙を隔てて張設され、前記LEDの照射光で励起されて発光する蛍光膜と、を備えることを特徴とする。
 前記LED面発光装置の構成において、前記蛍光膜は、被積層基材としての樹脂フィルムと、前記樹脂フィルム上に積層され、LEDの照射光で励起されて発光する蛍光層と、を備えることが好ましい。
 前記蛍光層は、黄色蛍光体塗料に少なくとも緑色蛍光体塗料もしくは黄緑色蛍光体塗料を混合して積層され、青色LEDの照射光で445nm~470nmの波長によって励起されて発光することが好ましい。
 前記蛍光層には、演色性を調整するための赤色蛍光体塗料が更に混合されることが好ましい。
 前記蛍光膜は、蛍光層に加え、前記樹脂フィルム上に拡散層または/およびプリズム層が積層されていることが好ましい。
 前記基板上における前記複数のLED間には、前記蛍光膜の撓みを抑制するための支持部材が配設されていることが好ましい。
 前記LEDは、発光角度を拡大するための拡散部材で覆われていることが好ましい。
 そして、本発明に係る画像形成装置は、前記のいずれかのLED面発光装置上に、液晶ディスプレイを配設したことを特徴とする。
 本発明に係るLED用蛍光膜及びLED用蛍光膜の製造方法によれば、耐湿管理が不要でクラックが発生せず、常温保管可能な蛍光膜を実現することができるという優れた効果を発揮する。
 本発明に係るLED面発光装置及び画像形成装置によれば、簡単な構造で製品歩留まりを向上させ、組立作業が容易で製造工数を低減することができ、蛍光膜が劣化し難く製品寿命を大幅に延長することができるという優れた効果を発揮する。
第1の実施形態に係るLED用蛍光膜の第1層構造の模式図である。 第1の実施形態に係るLED用蛍光膜の第2層構造の模式図である。 第1の実施形態に係るLED用蛍光膜の第3層構造における一例の模式図である。 第1の実施形態に係るLED用蛍光膜の第3層構造における他例の模式図である。 第1の実施形態に係るLED用蛍光膜の第4層構造における一例の模式図である。 第1の実施形態に係るLED用蛍光膜の第4層構造における他例の模式図である。 第1の実施形態に係るLED用蛍光膜の製造装置の概略図である。 第1実施形態に係るLED用蛍光膜の製造方法の工程図である。 第2の実施形態に係るLED面発光装置の構造図である。 第3の実施形態に係るLED面発光装置の構造図である。 第4の実施形態に係る画像形成装置の構造図である。 従来の蛍光体充填型LEDの概略図である。
 以下、図面を参照して、本発明の実施形態に係るLED用蛍光膜、LED用蛍光膜の製造方法、LED面発光装置、及び画像形成装置について説明する。ただし、図面において、同一又は類似の部材や部分には同一又は類似の符号を付している。また、図面は模式的に図示しており、実際の寸法や比率等とは必ずしも一致しない。さらに、図面相互間において、互いの寸法の関係や比率が異なる部分が含まれることがある。
〔第1の実施形態〕
 まず、図1から図4Bを参照して、第1の実施形態に係るLED用蛍光膜の構成について説明する。図1は第1の実施形態に係るLED用蛍光膜の第1層構造の模式図である。図2は第1の実施形態に係るLED用蛍光膜の第2層構造の模式図である。図3Aは第1の実施形態に係るLED用蛍光膜の第3層構造における一例の模式図である。図3Bは第1の実施形態に係るLED用蛍光膜の第3層構造における他例の模式図である。図4Aは第1の実施形態に係るLED用蛍光膜の第4層構造における一例の模式図である。図4Bは第1の実施形態に係るLED用蛍光膜の第4層構造における他例の模式図である。
 図1から図4Bに示すように、本実施形態に係るLED用蛍光膜(以下、単に「蛍光膜」という場合もある。)100は、光源としての発光ダイオード(LED:Light Emitting Diode)の照射光によって励起されて発光する性質を有する。蛍光膜100は、樹脂フィルム10上に、少なくも蛍光層20を有する蛍光フィルムである。
 第1層構造の蛍光膜101は、図1に示すように、樹脂フィルム10上に蛍光層20のみを積層したフィルムである。また、第2層構造の蛍光膜102は、図2に示すように、樹脂フィルム10上に拡散層30及び蛍光層20を積層したフィルムである。さらに、第3層構造の蛍光膜103は、図3A及び図3Bに示すように、樹脂フィルム10上にプリズム層40及び蛍光層20を積層したフィルムである。そして、第4層構造の蛍光膜104は、図4A及び図4Bに示すように、樹脂フィルム10上に、拡散層30、プリズム層40、及び蛍光層20を積層したフィルムである。このように蛍光膜100は、概ね4種類の構造を有するが、樹脂フィルム10上への各層の積層順序によって更に多くのバリエーションが存在する。
 すなわち、図2の蛍光膜102は、樹脂フィルム10上に拡散層30を介して蛍光層20が積層されているが、拡散層30と蛍光層20の積層順序が逆であっても構わない。図3Aの蛍光膜103は、樹脂フィルム10上にプリズム層40を介して、蛍光層20が積層されている。図3Bの蛍光膜103は、樹脂フィルム10上に蛍光層20を介して、プリズム層40が積層されている。図4Aの蛍光膜104は、樹脂フィルム10上に拡散層30及びプリズム層40を介して、蛍光層20が積層されている。図4Bの蛍光膜104は、樹脂フィルム10上に拡散層30及び蛍光層20を介して、プリズム層40が積層されている。樹脂フィルム10側を表面として、プリズム層40が最下層に存在する場合には、プリズム層40は逆プリズムとして形成される。なお、図1から図4Bに図示した蛍光膜100の構成は例示であって、列挙した層構造に限定されない。
 樹脂フィルム10は、蛍光層20、拡散層30、及びプリズム層40を積層するための被積層基材として機能する。樹脂フィルム10は、透光性を有することが好まく、無色透明であることがより好ましい。樹脂フィルム10としては、例えば、PET(Polyethylene Terephthalate)、PMMA(Poly Methyl Methacrylate)、PC(Polycarbonate)、及びTAC(Tri Acetyl Cellulose)等の合成樹脂フィルムが挙げられるが、例示の樹脂材料に限定されない。
 蛍光層20は、黄色蛍光体塗料に少なくとも緑色蛍光体塗料もしくは黄緑色蛍光体塗料を混合して積層され、シリコン(Si)等の粘着材もしくは結合材が適量混合される。また、蛍光体材料には、YAG(イットリウム・アルミニウム・ガーネット)系、TAG(テルビウム・アルミニウム・ガーネット)系、サイアロン系、及びBOS(バリウム・オルソシリケート)系などがある。白色光の演色性を調整するために、黄色蛍光体塗料に緑色蛍光体塗料もしくは黄緑色蛍光体塗料を混合することに加えて、更に赤色蛍光体塗料が適量混合される。本実施形態の蛍光層20は、青色LEDの青色の照射光で445nm~470nmの波長によって励起されて発光する。
 蛍光膜100は、ロール・ツー・ロール装置を用いて、印刷技術により連続製造される。すなわち、樹脂フィルム10を被積層基材として、当該樹脂フィルム10上に蛍光層20、拡散層30、及びプリズム層40が印刷により形成される。
 次に、図5を参照して、第1の実施形態に係るLED用蛍光膜100の作用とともに、第1の実施形態に係るLED用蛍光膜100の製造方法について説明する。図5は第1の実施形態に係るLED用蛍光膜100の製造装置の概略図である。
 図5に示すように、第1の実施形態に係るLED用蛍光膜の製造装置200はロール・ツー・ロール装置によって構成され、少なくとも、樹脂フィルム供給装置210、蛍光層印刷装置220、硬化装置250、及び切断装置280を備える。図5に例示するLED用蛍光膜の製造装置200は、更に拡散層印刷装置230及びプリズム層印刷装置240を備えている。図5に例示したLED用蛍光膜の製造装置200の装置構成は図4Aの層構成に対応しているが、図1から図3B及び図4Bに例示した層構成によって、装置構成が適宜改変される。以下、LED用蛍光膜の製造装置200の構成要素ごとに説明する。
 樹脂フィルム供給装置210は、透光性を有する樹脂フィルム10を連続供給する。本実施形態の樹脂フィルム供給装置210としては、例えば、巻出しロールを採用することが好ましい。樹脂フィルム供給装置210は、樹脂フィルム10を巻出す際の撓みを防止するための押えロール211を備える。なお、樹脂フィルム供給装置210は、巻出しロールに限定されず、樹脂フィルム10を連続供給可能な装置であれば、例えば、枚葉式供給装置等の他の形式の供給装置であっても構わない。
 樹脂フィルム10としては、上述のPET、PMMA、PC、及びTAC等の合成樹脂フィルムが挙げられるが、例示の樹脂材料に限定されない。
 蛍光膜100の表裏面には、軽剥離膜13が貼付される。樹脂フィルム10は、円筒体状に巻回された状態で、樹脂フィルム供給装置210としての巻出しロールに取り付けられる。
 樹脂フィルム供給装置210は、樹脂フィルム10の裏面に貼付された軽剥離膜13を剥離する剥離装置213を備える。本実施形態の剥離装置213は、例えば、巻取りロールによって形成されているが、巻取り形式に限定されず、他の形式の剥離装置であっても構わない。
 拡散層印刷装置230は、樹脂フィルム10上に拡散層30を印刷により積層する。プリズム印刷装置240は、樹脂フィルム10に積層した拡散層30上にプリズム層40を印刷により積層する。拡散層30及びプリズム層40の印刷には、ポリプロピレン(PP;polypropylene)やポリエチレンテレフタレート(PET;Polyethylene terephthalate)等の合成樹脂材を用いる。蛍光層印刷装置220は、樹脂フィルム10に積層した拡散層30及びプリズム層40上に蛍光層20を印刷により積層する。蛍光層20の印刷には、上述のYAG系、TAG系、サイアロン系、及びBOS系などの蛍光材料を用いる。なお、LED用蛍光膜100が拡散層30またはプリズム層40を有しない場合には、拡散層印刷装置230またはプリズム印刷装置240は印刷を行わない。また、LED用蛍光膜100の層構成におうじて、拡散層印刷装置230、プリズム印刷装置240、及び蛍光層印刷装置220の配設順序は適宜変更される。
 硬化装置250は、樹脂フィルム10上の拡散層30、プリズム層40、及び蛍光層20を加熱してシリコン(Si)等の粘着材もしくは結合材を硬化させ、樹脂フィルム10、拡散層30、プリズム層40、及び蛍光層20の積層体を一体化させる。
 本実施形態では、硬化装置250と押圧装置275との間に、平坦度測定装置260、ピンホール検査装置265、及び異物付着検査装置270が配置されている。平坦度測定装置260、ピンホール検査装置265、及び異物付着検査装置270には、フィルム積層体110の移送を阻害しないように、非接触型の測定装置、検査装置を用いることが好ましい。本実施形態では、移送方向Fの上流側から平坦度測定装置260、ピンホール検査装置265、及び異物付着検査装置70の順序で配置されているが、配置順序は限定されない。また、必ずしも平坦度測定装置260、ピンホール検査装置265、及び異物付着検査装置270の全ての装置を設ける必要はない。
 平坦度測定装置260は、フィルム積層体110の平坦度を測定する。本実施形態の平坦度測定装置260としては、例えば、レーザ光にて非接触で部材の反りや歪みを測定する変位センサが挙げられる。平坦度測定装置260は、レーザ光変位測定式に限定されず、例えば、プリズム斜入射式やミラー光学系斜入射式等の他の方式の平坦度測定装置を採用してもよい。
 ピンホール検査装置265は、フィルム積層体110のピンホールの有無を検出する。本実施形態のピンホール検査装置265としては、例えば、光の透過により非接触でピンホールの有無を検出する光学式ピンホール検査装置が挙げられる。ピンホール検査装置265は、光学式ピンホール検査装置に限定されず、例えば、静電気による放電パルス方式等の他の方式のピンホール検査装置を採用してもよい。
 異物付着検査装置270は、フィルム積層体110への異物の付着の有無を検査する。本実施形態の異物付着検査装置270としては、例えば、光学式の異物付着検査装置や高速画像検査装置が挙げられる。
 異物付着検査装置270の移送方向Fの下流側には、剥離膜供給装置214及び押圧装置275が配設されている。剥離膜供給装置214は、蛍光層20上に軽剥離膜14を貼付する。軽剥離膜14は、剥離膜供給装置214から巻き出されて供給される。剥離膜供給装置214は軽剥離膜14の上面を押えるための押さえロール215を備えている。押圧装置275は、適度の押圧力により、蛍光層20上に軽剥離膜14を貼付する。
 切断装置280は、硬化装置250によって硬化処理され、平坦度測定装置260、ピンホール検査装置265、及び異物付着検査装置270を経て、軽剥離膜14を貼付したフィルム積層体110から複数のLED用蛍光膜100を切り抜く。本実施形態の切断装置280には、例えば、レーザ切断装置を採用することが好ましい。切断装置280は、レーザ切断装置に限定されず、例えば、パンチ切断装置等の他の形式の切断装置によって構成しても構わない。切断装置280の下部には、当該切断装置260によって切断された複数の蛍光膜100を受けるための収容容器281が備えられている。
 樹脂フィルム供給装置210と拡散層印刷装置230との間、蛍光層印刷装置220と硬化装置250との間、異物付着検査装置270と押圧装置275との間、押圧装置275と切断装置280との間、及び切断装置280と巻取りロール290との間には、それぞれ案内ロール216,217が配置されている。案内ロール216,217の配設部位は、例示の位置に限定されない。
 本実施形態に係るLED用蛍光膜の製造装置200の移送方向Fの最下流側には、巻取りロール290が配置されている。巻取りロール290は、切断装置280でフィルム積層体110から複数の蛍光膜100を切り抜いた後の残存フィルム積層体120を巻き取る。巻取りロール290は、残存フィルム積層体120の上面を押えるための押さえロール291を備えている。
 次に、図5及び図6を参照して、第1実施形態に係るLED用蛍光膜の製造装置200の作用とともに、第1実施形態に係るLED用蛍光膜100の製造方法について説明する。図6は第1実施形態に係るLED用蛍光膜の製造方法の工程図である。
 図5及び図6に示すように、本実施形態に係るLED用蛍光膜100の製造方法は、ロール・ツー・ロール装置により、透光性を有する樹脂フィルム10を供給する手順と、樹脂フィルム10上にLED60の照射光で励起される蛍光層20を印刷する手順と、を少なくとも有する。本実施形態に係るLED用蛍光膜100の製造方法は、更に樹脂フィルム10上に拡散層30を印刷する手順または/および樹脂フィルム10上にプリズム層40を印刷する手順を有する。具体的には、各手順は以下のように実施される。
 まず、図5及び図6に示すように、樹脂フィルム10を供給する手順(S110)では、樹脂フィルム供給装置200が透光性を有する樹脂フィルム10を供給する。本実施形態では、樹脂フィルム供給装置210として巻出しロールを採用しているので、樹脂フィルム10連続供給することができる。樹脂フィルム10は、円筒体状に巻回された状態で、樹脂フィルム供給装置210としての巻出しロールに取り付けられる。
 樹脂フィルム10の表裏面には、軽剥離膜13が貼付されている。樹脂フィルム10の供給に際して、当該樹脂フィルム10の裏面側(積層側)の軽剥離膜13は、剥離装置213によって順次巻き取られて、剥離される。したがって、フィルム積層体110の樹脂フィルム10の表面(図5では下面)には、軽剥離膜13が残存している。
 また、拡散層30を印刷する手順(S120)では、樹脂フィルム10上に拡散層印刷装置230によって拡散層30が印刷される。さらに、プリズム層40を印刷する手順(S130)では、樹脂フィルム10に積層された拡散層30上にプリズム層印刷装置240によってプリズム層40が印刷される。そして、蛍光層20を印刷する手順(S140)では、樹脂フィルム10に積層された拡散層30及びプリズム層40上に蛍光層印刷装置220によって蛍光層20が印刷される。ステップS120からS140は、図4Aで例示した層構成について説明したものであり、層構成によって積層内容や積層順序が異なる。
 樹脂フィルム10上に拡散層30、プリズム層40、及び蛍光層20を積層した後、硬化装置250によって当該フィルム積層体110を加熱して硬化処理する(S150)。硬化装置260によってシリコン(Si)等の粘着材もしくは結合材が硬化してフィルム積層体110は一体化される。
 次に、フィルム積層体110を硬化処理した後、平坦度測定装置260がフィルム積層体110の平坦度を測定する(S160)。本実施形態の平坦度測定装置260は、例えば、レーザ光にて非接触で部材の反りや歪みを測定する変位センサを採用している。本実施形態では、平坦度測定装置260として非接触型の測定装置を採用しているので、フィルム積層体110の移送を阻害することがない。
 さらに、フィルム積層体110の平坦度を測定した後、ピンホール検査装置265がフィルム積層体110のピンホールの有無を検出する(S170)。本実施形態のピンホール検査装置265は、例えば、光の透過により非接触でピンホールの有無を検出する光学式ピンホール検査装置を採用している。本実施形態では、ピンホール検査装置265として非接触型の検査装置を採用しているので、フィルム積層体110の移送を阻害することがない。
 そして、フィルム積層体110のピンホールの有無を検査した後、異物付着検査装置270がフィルム積層体110の異物付着の有無を検出する(S180)。本実施形態の異物付着検査装置270は、例えば、光学式の異物付着検査装置や高速画像検査装置により異物付着の有無を検査する。本実施形態では、異物付着検査装置270として非接触型の検査装置を採用しているので、フィルム積層体110の移送を阻害することがない。なお、フィルム積層体110の平坦度を測定する手順(S160)、フィルム積層体11のピンホールの有無を検査する手順(S170)、及びフィルム積層体110の異物付着の有無を検出する手順の実施順序は例示の順序と異なっていても構わない。また、必ずしもこれらの全ての測定や検査を行う必要はない。
 次に、フィルム積層体110の異物付着の有無を検査した後、押圧装置275が剥離膜供給装置214から供給される軽剥離膜14を蛍光層20上に貼付する(S190)。さらに、切断装置280は、軽剥離膜14が貼付されたフィルム積層体110から複数の蛍光膜100を切り抜く(S200)。本実施形態の切断装置280は、例えば、レーザ切断装置を採用している。レーザ切断装置は、切断部にバリや黄変等の発生がなく、パンチ切断装置のように衝撃が加わらないので、タッチパネル回路の損傷も生じない。切断装置206によって切断された複数の蛍光膜100は、当該切断装置280の下部の収容容器281に収容される。
 最後に、移送方向Fの最下流側に配置された巻取りロール290が、複数の蛍光膜100を切り抜いた後の残存フィルム積層体120を巻き取る(S210)。
 以上説明したように、本実施形態に係るLED用蛍光膜の製造装置200、およびLED用蛍光膜100の製造方法では、硬化装置250が粘着材もしくは結合材を硬化することにより、樹脂フィルム10上の蛍光層20、拡散層30、及びプリズム層40がフィルム状に一体形成される。したがって、本実施形態に係るLED用蛍光膜の製造装置200、およびLED用蛍光膜100の製造方法によれば、耐湿管理が不要でクラックが発生せず、常温保管可能なLED用蛍光膜100を作製することができる。
 また、本実施形態に係るLED用蛍光膜の製造装置200、およびLED用蛍光膜100の製造方法によれば、樹脂フィルムの供給工程、フィルム積層体の積層工程、硬化工程、測定・検査工程、押圧工程及び切断工程からなる簡単な一連の工程において、LED用蛍光膜100を歩留まり良く連続で製造することができる。従来の蛍光体充填型LEDのように、LEDパッケージ毎に蛍光体の溶滴を注入・充填していた製造工程に比して、製造工数および製造コストを大幅に低減することができる。
 さらに、本実施形態に係るLED用蛍光膜の製造装置200は、硬化装置250と押圧装置275との間に、平坦度測定装置260、ピンホール検査装置265、及び異物付着検査装置270を有するので、LED用蛍光膜100の品質管理を積極的に行うことができる。
 そして、本実施形態に係るLED用蛍光膜の製造装置200は、ロール・ツー・ロール装置として構成されているので、樹脂フィルム供給装置210から巻取りロール290までの一連の工程において、複数のLED用蛍光膜100を連続で製造することができる。
〔第2の実施形態〕
 次に、第2の実施形態に係るLED面発光装置の構成について説明する。図7は第2の実施形態に係る面発光装置の構造図である。
 図7に示すように、第2実施形態に係るLED面発光装置301は、配線基板50、発光ダイオード(LED;Light Emitting Diode)60、及び蛍光膜100を主に備える。以下、第2実施形態に係るLED面発光装置301について、各構成要素ごとに説明する。
 配線基板50としては、プリント配線を施したアルミニウム基板が挙げられる。配線基板50には、不図示の配線パターンが形成されている。配線基板50は、スマートフォンや携帯タブレット等の液晶表示装置のサイズに合わせて、基板サイズが決定される。
 LED60としては、フリップチップLEDを採用することが好ましい。配線基板10の配線パターン上には、複数のLED60がリフロー実装65される。複数のLED60は、配線基板50上に、例えば、縦横配置等の規則的な配置で、もしくは散点状配置等の不規則的な配置でマトリクス状に配置される。
 本実施形態のLED60としては、例えば、青色光を発光するフリップチップ青色LEDを採用する。フリップチップLEDとしては、例えば、1W/チップ以上の出力を有し、光量が大きく高輝度を有するハイパワーLEDを採用してもよい。なお、LEDの発光色は必ずしも青色光に限定されず、例えば、赤色光、緑色光、もしくは紫外線光などの他の発光色であってもよいが、蛍光膜100の蛍光体材料の配合が異なる。
 複数のLED60上には、当該LEDと間隙Gを隔てて、第1の実施形態に係る蛍光膜100(上述の101,102,103を含む。)が張設されている。具体的には、蛍光膜100は、配線基板10の周囲に接着層90により接着固定される。特に、大面積のLED面発光装置200の場合は、蛍光膜100とフリップチップLED60との間隙Gを保持するために、もしくは蛍光膜100の撓みを抑制するために、LED60,60同士の間などに必要に応じて支持部材80を配設することが好ましい。支持部材80としては、支柱や枠体等が考えられる。
 蛍光膜100としては、例えば、シリコン樹脂もしくはエポキシ樹脂等の合成樹脂材に窒化物等の蛍光体塗料を混合したものが挙げられるが、例示の材質に限定されず、白色LEDに適用される各種の材質を採用することができる。
 白色発光のLED面発光装置200を得るためには、蛍光体を用いる励起方式の場合、青色LEDと黄色蛍光膜との組み合わせの他、近紫外LEDとR(赤)、G(緑)、B(青)の混合蛍光膜との組み合わせが挙げられる。白色発光させるLED面発光装置301の場合は、色温度(K)と演色性(Ra)が問題となる。したがって、蛍光膜100は、黄色蛍光体塗料に緑色蛍光体塗料もしくは赤色蛍光体塗料、黄緑色蛍光体塗料もしくは赤色蛍光体塗料、または赤色蛍光体塗料及び緑色蛍光体塗料もしくは黄緑色蛍光体塗料を混合して印刷技術で作製し、面発光装置としての発光色を検証調整する。
 蛍光膜100の蛍光層20の構成材料としては、例えば、青色LEDの青色光が通過して白色に発色する黄色蛍光体塗料が採用される。蛍光膜100の肉厚は、青色フリップチップLEDの光量に応じて、黄色の蛍光膜100を通過した光が白色に発色するに十分な厚みに設定される。また、青色LEDと黄色の蛍光膜との組み合わせに限定されず、LED面発光装置200における白色光の発光方式に応じて、蛍光膜100は適宜好ましいものを採用する。例えば、励起方式を採用する場合は、近紫外線LEDとRGB蛍光膜を組み合わせてもよい。また、3波長方式を採用する場合は、RGB3色の光の混合によって白色光を得るために、蛍光膜60として、赤色蛍光体、緑色蛍光体および青色蛍光体の3種類の蛍光体を組み合わせて用いてもよい。
 次に、図7を参照して、第2の実施形態に係るLED面発光装置301の作用について説明する。図7に示すように、本実施形態に係るLED面発光装置301に電源を投入して、LED60を点灯させると、該LED60から蛍光膜100へ向けて光が照射される。本実施形態では、LED60として青色のフリップチップLEDを採用しているので、蛍光膜100へ向けて青色光が照射される。LED60から照射された青色光は、当該LED60と間隙Gを隔てて張設された蛍光膜100に入射する。
 本実施形態では、蛍光膜100として、青色の補色である黄色の蛍光層20を有する蛍光フィルムを採用している。したがって、蛍光膜100を通過した光は、青色光と黄色光とを合成した白色光として発色する。本実施形態の蛍光層20は、黄色蛍光体塗料に少なくとも緑色蛍光体塗料もしくは黄緑蛍光体塗料が混合され、青色LEDの青色の照射光で445nm~470nmの波長によって励起されて発光する。
 例えば、黄色蛍光体塗料(YAG)に緑色蛍光体塗料もしくは黄緑色蛍光体塗料、及び適量のシリコン(Si)を混合する場合は、460nm~470nmの波長によって励起されて白色発光する。シリコン(Si)は粘着材もしくは結合材として用いる。ここで、440nmの光が網膜に悪影響を与えると言われている。上述のように、460nm~470nmの波長で白色発光することにより、ブルーライトを軽減して目を保護することができるので、液晶テレビ、スマートフォン、及びタブレット端末のバックライトアセンブリとして適している。他方、黄色蛍光体塗料(YAG)に緑色蛍光体塗料もしくは黄緑色蛍光体塗料を混合しない場合は、445nm~470nmの波長によって励起されて白色発光するので、一般照明向けに使用することが好ましい。
 また、本実施形態の蛍光層20には、赤色蛍光体塗料を更に混合することが好ましい。黄色蛍光体塗料と緑色蛍光体塗料もしくは黄緑蛍光体塗料に加え、更に赤色蛍光体塗料を混合することにより、演色性(Ra)を調整することができる。
 現行のLED面発光装置は、パッケージケーシング内へのLED実装、蛍光体塗料注入・充填、及び蛍光体層の加熱・乾燥という工程を経て蛍光体充填型LEDを個々に作製し、複数個の当該蛍光体充填型LEDを基板上にマトリクス配置で実装して作製される。
 これに対し、第2の実施形態に係るLED面発光装置301は、マトリクス配置で実装した複数個のフリップチップLED60上に間隙Gを隔てて積層構造の蛍光膜(フィルム)100を貼付するだけの簡単な構造である。すなわち、第2の実施形態に係るLED面発光装置301は、簡単な構造で製品歩留まりを向上させ、組立作業が容易で製造工数を低減することができる。
 また、積層構造の蛍光膜100は、ロール・ツー・ロール装置を用いて、印刷技術により作製する。これにより、本実施形態に係るLED面発光装置301は、蛍光体塗料の使用量を大幅に低減することができると共に、組立工数も低減することができ、その結果、製造コストを大幅に低減することができる。さらに、本実施形態に係るLED面発光装置301は、製造コストを大幅に低減することができるので、液晶表示装置を備えた携帯端末等の最終製品の製造コストの低減を図ることができる。
 そして、第2の実施形態に係るLED面発光装置301によれば、積層構造の蛍光膜100を印刷技術で作成し、最終組立はマトリクス配置した複数個のLED60上に間隙Gを隔てて当該蛍光膜100を貼付するのみの簡単な構造である。蛍光体充填型LEDのように蛍光体塗料の溶滴注入用のパッケージケーシングが不要であるので、基板上に直接フリップチップLEDをリフロー実装65することができ、LED面発光装置301の薄型化及び軽量化を促進することができる。その結果、当該LED面発光装置301をバックライトアセンブリとする液晶ディスプレイ(LCD)を備えた携帯端末の薄型化及び軽量化を図ることができる。
 また、第2の実施形態に係るLED面発光装置301によれば、LED60と蛍光膜100とが間隙Gを隔てて設けられる。したがって、LED60の熱が蛍光膜(フィルム)100に伝わり難いので、当該蛍光膜100が熱劣化し難く、LED面発光装置301の製品寿命を大幅に延長することができる。加えて、この蛍光膜100は、蛍光層20のみならず、拡散層30やプリズム層40を備えているので、出射光量を増大することができ、視認性に優れた液晶ディスプレイ(LCD)を得ることができる。
 さらに、第2の実施形態に係るLED面発光装置301では、ロール・ツー・ロール装置を用いて印刷技術により特殊構造の蛍光膜100をフィルム状に作製し、最終組立も複数のLED60を搭載した配線基板50に接着固定するだけの簡単な構造であるので、製造コストを大幅に低減することができる。その結果、液晶表示装置を備えた携帯端末等の最終製品の市場価格が抑えられる。
〔第3の実施形態〕
 次に、第3の実施形態に係るLED面発光装置302の構成について説明する。図8は第3の実施形態に係るLED面発光装置の構造図である。
 第3の実施形態に係るLED面発光装置302は、各LED60が発光角度を拡大するための拡散部材70で覆われている点が、第2の実施形態に係るLED面発光装置301と異なる。拡散部材70は、例えば、シリコン(Si)等の樹脂材をディプすることよりドーム状に形成されている。拡散部材70がドーム状を呈しているので、当該拡散部材70はレンズ機能を有し、指向性を有するフリップチップLED60の発光角度を拡大することができる。拡散部材70は例示のシリコン樹脂に限定されず、エポキシ樹脂等の他の合成樹脂材を採用してもよい。
 第3の実施形態に係るLED面発光装置302は、基本的に第2の実施形態に係るLED面発光装置301と同様の作用効果を奏する。特に、第3の実施形態に係るLED面発光装置302は、各LED60が発光角度を拡大するための拡散部材70で覆われているので、LED60の発光角度(視野角)を拡大することができるという有利な効果を発揮する。
〔第4の実施形態〕
 次に、第4の実施形態に係る画像形成装置の構成について説明する。図9は第4の実施形態に係る画像形成装置の側断面図である。
 図8に示すように、第2及び第3の実施形態に係るLED面発光装置301,302上に、液晶ディスプレイ(LCD)310を配設して、薄型ディスプレイ等の画像形成装置400を構成することができる。すなわち、第2及び第3の実施形態に係るLED面発光装置301,302は、液晶ディスプレイ310の背面にバックライトアセンブリとして配設され、周囲は携帯端末等の筐体で封止される。
 液晶ディスプレイ310は、LED面発光装置301,302上に、プリズムシートを積層して配設することもできる。しかし、LED面発光装置301,302では、積層構造の蛍光膜100がLED60と間隙Gを隔てて張設されており、当該蛍光膜100は蛍光層20に加えて、拡散層30やプリズム層40を有する。よって、LED面発光装置301,302において所望の光量が得られ、当該LED面発光装置301,302上にプリズムシートを積層することを要しないか、あるいはプリズムシートを積層する場合にも、当該プリズムシートの積層数を低減することができる。
 すなわち、第4の実施形態に係る画像形成装置400では、プリズムシートが不要であるか、プリズムシートの積層数が低減されるので、部品点数が削減され、当該画像形成装置400の組立工数および材料費を低減することができる。かつ、プリズムシートの積層数の低減により、画像形成装置400の薄型化を図ることができる。
 このように、上記の実施形態に係るLED面発光装置301,302は、液晶表示装置310のバックライトアセンブリとして用いられるが、各種ディスプレイや看板などを照らす目的で用いてもよい。また、LED面発光装置301,302は、案内灯、表示灯、非常灯もしくは各種検査用照明として用いてもよく、当該LED面発光装置301,302を構成要素の一部として含む各種機器・装置全般に適用可能である。
〔他の実施形態〕
 以上、本発明の好適な実施形態を説明したが、これらは本発明の説明のための例示であり、本発明の範囲をこれらの実施形態にのみ限定する趣旨ではない。本発明は、その要旨を逸脱しない範囲で、上記実施形態とは異なる種々の態様で実施することができる。
 すなわち、上記の実施形態では、配線基板50として、プリント配線を施したアルミニウム基板を用いている。蛍光膜100はフィルムであるので、フリップチップLEDを実装する基板として、アルミニウム基板の代わりにフレキシブル基板を採用すれば、近年特に注目されているウエアラブル端末への応用も可能となる。フレキシブル基板は、PET(Polyethylene terephthalate)等の樹脂フィルム上に電子回路を印刷技術によって形成する。上記の実施形態に係るLED面発光装置301,302は、携帯端末の薄型化及び軽量化を促進するので、ウエアラブル端末を含む携帯端末市場の発展に寄与しうる。
  10  樹脂フィルム、
  20  蛍光層、
  30  拡散層、
  40  プリズム層、
  50  配線基板、
  60  LED、
  70  拡散部材、
  80  支持部材、
  100  蛍光膜、
  301、302  LED面発光装置、
  310  液晶ディスプレイ、
  400  画像形成装置、
  G  間隙。

Claims (15)

  1.  被積層基材としての透光性を有する樹脂フィルムと、
     前記樹脂フィルム上に積層され、LEDの照射光で励起されて発光する蛍光層と、
    を備えることを特徴とするLED用蛍光膜。
  2.  前記蛍光層は、黄色蛍光体塗料に少なくとも緑色蛍光体塗料もしくは黄緑色蛍光体塗料を混合して積層され、青色LEDの照射光で445nm~470nmの波長によって励起されて発光することを特徴とする請求項1に記載のLED用蛍光膜。
  3.  前記蛍光層には、演色性を調整するための赤色蛍光体塗料が更に混合されることを特徴とする請求項2に記載のLED用蛍光膜。
  4.  前記蛍光層に加え、前記樹脂フィルム上に拡散層または/およびプリズム層が積層されていることを特徴とする請求項1から3のいずれか1項に記載のLED用蛍光膜。
  5.  前記蛍光層、前記拡散層、及び前記プリズム層は、前記樹脂フィルム上に印刷により積層されることを特徴とする請求項1から4のいずれか1項に記載のLED用蛍光膜。
  6.  ロール・ツー・ロール装置により、透光性を有する樹脂フィルムを供給する手順と、
     前記樹脂フィルム上にLEDの照射光で励起される蛍光体塗料を印刷する手順と、
    を少なくとも有することを特徴とするLED用蛍光膜の製造方法。
  7.  前記樹脂フィルム上に拡散層を印刷する手順または/および前記樹脂フィルム上にプリズム層を印刷する手順を有することを特徴とする請求項6に記載のLED用蛍光膜の製造方法。
  8.  基板上に実装される複数のLEDと、
     前記複数のLED上に該LEDと間隙を隔てて張設され、前記LEDの照射光で励起されて発光する蛍光膜と、
    を備えることを特徴とするLED面発光装置。
  9.  前記蛍光膜は、
     被積層基材としての樹脂フィルムと、
     前記樹脂フィルム上に積層され、LEDの照射光で励起されて発光する蛍光層と、
    を備えることを特徴とする請求項8に記載のLED面発光装置。
  10.  前記蛍光層は、黄色蛍光体塗料に少なくとも緑色蛍光体塗料もしくは黄緑色蛍光体塗料を混合して積層され、青色LEDの照射光で445nm~470nmの波長によって励起されて発光することを特徴とする請求項8または請求項9に記載のLED面発光装置。
  11.  前記蛍光層には、演色性を調整するための赤色蛍光体塗料が更に混合されることを特徴とする請求項10に記載のLED面発光装置。
  12.  前記蛍光膜は、蛍光層に加え、前記樹脂フィルム上に拡散層または/およびプリズム層が積層されていることを特徴とする請求項8から11のいずれか1項に記載のLED面発光装置。
  13.  前記基板上における前記複数のLED間には、前記蛍光膜の撓みを抑制するための支持部材が配設されていることを特徴とする請求項8から12のいずれか1項に記載のLED面発光装置。
  14.  前記LEDは、発光角度を拡大するための拡散部材で覆われていることを特徴とする請求項8から13のいずれか1項に記載のLED面発光装置。
  15.  請求項8から14のいずれか1項に記載のLED面発光装置上に、液晶ディスプレイを配設したことを特徴とする画像形成装置。
PCT/JP2016/065106 2015-05-29 2016-05-20 Led用蛍光膜、led用蛍光膜の製造方法、led面発光装置、及び画像形成装置 WO2016194666A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015109244A JP2016225423A (ja) 2015-05-29 2015-05-29 Led用蛍光膜、led用蛍光膜の製造方法、led面発光装置、及び画像形成装置
JP2015-109244 2015-05-29

Publications (1)

Publication Number Publication Date
WO2016194666A1 true WO2016194666A1 (ja) 2016-12-08

Family

ID=57441572

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/065106 WO2016194666A1 (ja) 2015-05-29 2016-05-20 Led用蛍光膜、led用蛍光膜の製造方法、led面発光装置、及び画像形成装置

Country Status (3)

Country Link
JP (1) JP2016225423A (ja)
TW (1) TW201705537A (ja)
WO (1) WO2016194666A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018107257A (ja) * 2016-12-26 2018-07-05 日亜化学工業株式会社 発光装置
CN111983848A (zh) * 2019-05-24 2020-11-24 佛山市国星光电股份有限公司 一种背光模组

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110945390B (zh) * 2017-07-19 2022-04-08 凸版印刷株式会社 波长转换片及其制造方法
JP6787515B1 (ja) * 2019-08-02 2020-11-18 日亜化学工業株式会社 発光装置および面発光光源

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH075462A (ja) * 1993-06-16 1995-01-10 Dainippon Printing Co Ltd 面光源、それを用いた表示装置、及びそれらに用いる光拡散シート
JP2009283438A (ja) * 2007-12-07 2009-12-03 Sony Corp 照明装置、表示装置、照明装置の製造方法
JP2010092705A (ja) * 2008-10-08 2010-04-22 Sony Corp 照明装置及びこれを用いた表示装置
JP2010123918A (ja) * 2008-10-21 2010-06-03 Toshiba Lighting & Technology Corp 照明装置
JP2014224247A (ja) * 2013-05-16 2014-12-04 エルジー イノテック カンパニー リミテッド 蛍光体及びそれを含む発光素子パッケージ
JP2015032373A (ja) * 2013-07-31 2015-02-16 ソニー株式会社 光源装置、および表示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH075462A (ja) * 1993-06-16 1995-01-10 Dainippon Printing Co Ltd 面光源、それを用いた表示装置、及びそれらに用いる光拡散シート
JP2009283438A (ja) * 2007-12-07 2009-12-03 Sony Corp 照明装置、表示装置、照明装置の製造方法
JP2010092705A (ja) * 2008-10-08 2010-04-22 Sony Corp 照明装置及びこれを用いた表示装置
JP2010123918A (ja) * 2008-10-21 2010-06-03 Toshiba Lighting & Technology Corp 照明装置
JP2014224247A (ja) * 2013-05-16 2014-12-04 エルジー イノテック カンパニー リミテッド 蛍光体及びそれを含む発光素子パッケージ
JP2015032373A (ja) * 2013-07-31 2015-02-16 ソニー株式会社 光源装置、および表示装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018107257A (ja) * 2016-12-26 2018-07-05 日亜化学工業株式会社 発光装置
CN111983848A (zh) * 2019-05-24 2020-11-24 佛山市国星光电股份有限公司 一种背光模组

Also Published As

Publication number Publication date
TW201705537A (zh) 2017-02-01
JP2016225423A (ja) 2016-12-28

Similar Documents

Publication Publication Date Title
US9746710B2 (en) Quantum dot light source device, backlight module, and liquid crystal display device
US11316082B2 (en) Wavelength converting member and method of producing the same
JP6460275B2 (ja) 波長変換シート及びバックライトユニット
US9297946B2 (en) Display device and method of manufacturing the same
JP5418762B2 (ja) 発光装置および表示装置
US7834953B2 (en) Light unit, liquid crystal display having the same, and method of manufacturing the same
WO2012141094A1 (ja) 光源モジュールおよびこれを備えた電子機器
WO2019080536A1 (zh) 背光模组、显示屏及终端
US10288793B2 (en) Backlight module, method of manufacturing the same and display device
WO2016194666A1 (ja) Led用蛍光膜、led用蛍光膜の製造方法、led面発光装置、及び画像形成装置
WO2016033848A1 (zh) 背光模组
JP2010170961A (ja) 光学部材および表示装置
KR20100055846A (ko) 발광 장치 및 이를 구비한 디스플레이 장치
WO2014040306A1 (zh) 直下式背光模组
US20150355507A1 (en) Method for manufacturing fluorescent powder substrate and liquid crystal module using fluorescent powder substrate
TWI589967B (zh) 背光模組和顯示裝置
US20140071709A1 (en) Light Guide Plate and Backlight Module
US20120014091A1 (en) Led package assembly and backlight module
CN209858903U (zh) 一种复合光学膜、背光装置和显示装置
KR20160112116A (ko) 발광소자 어레이와 이를 포함하는 조명시스템
JP2017041621A (ja) Led発光装置
KR20110107630A (ko) 라이트 유닛 및 이를 구비한 디스플레이 장치
US20140071655A1 (en) Direct Backlight Module
JP2013045771A (ja) バックライトアセンブリ及びその製造方法
TW200925516A (en) Light emitting unit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16803101

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16803101

Country of ref document: EP

Kind code of ref document: A1