WO2016194435A1 - Bonding method for heat-radiating member and heat-generating element equipped with heat-radiating member - Google Patents

Bonding method for heat-radiating member and heat-generating element equipped with heat-radiating member Download PDF

Info

Publication number
WO2016194435A1
WO2016194435A1 PCT/JP2016/058234 JP2016058234W WO2016194435A1 WO 2016194435 A1 WO2016194435 A1 WO 2016194435A1 JP 2016058234 W JP2016058234 W JP 2016058234W WO 2016194435 A1 WO2016194435 A1 WO 2016194435A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
porous metal
metal body
alloy
metal composition
Prior art date
Application number
PCT/JP2016/058234
Other languages
French (fr)
Japanese (ja)
Inventor
鷲塚清多郎
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2016194435A1 publication Critical patent/WO2016194435A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/14Soldering, e.g. brazing, or unsoldering specially adapted for soldering seams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/19Soldering, e.g. brazing, or unsoldering taking account of the properties of the materials to be soldered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/40Mountings or securing means for detachable cooling or heating arrangements ; fixed by friction, plugs or springs

Definitions

  • the present invention relates to a method of joining a heat radiating member for joining a porous metal body, which is a heat radiating member, to a heat generating element, and a heat generating element with a heat radiating member joined by this joining method.
  • Patent Document 1 discloses a bonding method for bonding a porous metal body to the surface of a semiconductor device. Since the porous metal body has a plurality of holes, the area in contact with air is large and the heat dissipation is excellent.
  • Examples of a method for mechanically and thermally joining the porous metal body and the semiconductor device include a method using solder.
  • the wettability of solder to metal is high. Therefore, when solder is provided between the porous metal body and the surface of the semiconductor device and then heated, the solder easily enters the plurality of holes of the porous metal body. Therefore, when the porous metal body is bonded to the surface of the semiconductor device using solder, the solder tends to wet not only to the bonded portion of the porous metal body but also to the hole of the non-bonded portion. That is, regarding the porous metal body, the area in contact with air is significantly reduced. In addition, the amount of solder at the interface between the porous metal body and the semiconductor device is reduced.
  • An object of the present invention is to provide a method for joining a heat radiating member and a heat generating element with a heat radiating member capable of suppressing a decrease in heat dissipation and a decrease in bonding strength.
  • the joining method of the heat dissipation member of the present invention includes an installation process and a heating process.
  • the installation step includes a porous metal body that is a heat radiating member including a plurality of holes, and a metal composition including Sn and at least one alloy selected from the group consisting of a CuNi alloy, a CuMn alloy, a CuAl alloy, and a CuCr alloy; Provided between the heater elements.
  • the metal composition is heated to join the porous metal body and the heating element.
  • the heating step reacts the one kind of alloy with Sn by heating the metal composition to form an intermetallic compound phase having an intermetallic compound as a main phase.
  • Sn reacts with the one kind of alloy and Sn. Therefore, molten Sn can be prevented from flowing out of the joint portion between the porous metal body and the heating element.
  • the metal composition when the metal composition is heated in the heating step, it is difficult for the metal composition to get wet in the plurality of pores of the porous metal body. Therefore, when the porous metal body is bonded to the heat generating element using the metal composition, the metal composition is not so much filled into the plurality of holes of the porous metal body. That is, with respect to the porous metal body, the area in contact with air does not decrease so much, and the amount of the metal composition between the porous metal body and the heating element does not decrease so much.
  • the joining method of the present invention can suppress a reduction in heat dissipation and a reduction in joining strength.
  • the porous metal body preferably contains Cu.
  • At least the bonding surface of the heat generating element with the porous metal body contains Cu.
  • the heating element is preferably a power semiconductor element.
  • the bonding method of the present invention that excels in heat dissipation is suitable for power semiconductor elements that generate a large amount of heat.
  • the heat generating element with a heat radiating member of the present invention is obtained by bonding a porous metal body to the surface of the heat generating element.
  • An intermetallic compound that is a reaction product of Sn and at least one alloy selected from the group consisting of a CuNi alloy, a CuMn alloy, a CuAl alloy, and a CuCr alloy is formed in at least the hole that contacts the heating element in the porous metal body. Filled.
  • the heat generating element with the heat radiating member of the present invention is joined by the method of joining the heat radiating member of the present invention. Therefore, the heat generating element with the heat radiating member of the present invention has the same effect as the method for joining the heat radiating members of the present invention.
  • the joining method of the heat dissipating member and the heat generating element with the heat dissipating member according to the present invention can suppress a decrease in heat dissipation and a decrease in joining strength.
  • FIG. 1 is a cross-sectional view schematically showing an installation process performed by the heat dissipation member joining method according to the embodiment of the present invention.
  • FIG. 2 is an enlarged cross-sectional view of a part of the metal composition 105 shown in FIG.
  • FIG. 3 is an enlarged cross-sectional view of a part of the metal composition 105 that melts in the heating process performed by the heat dissipation member joining method according to the embodiment of the present invention.
  • FIG. 4 is a cross-sectional view schematically showing the heat generating element 100 with the heat radiating member obtained by the method of joining the heat radiating members according to the embodiment of the present invention.
  • FIG. 5 is an enlarged cross-sectional view of a part of the metal composition 105 shown in FIG.
  • FIG. 6 is a diagram showing a temperature profile of a heating process performed by the heat dissipation member joining method according to the embodiment of the present invention.
  • a heating element 101, a porous metal body 102, and a metal composition 105 are prepared (preparation process).
  • the heating element 101 is, for example, a power semiconductor element that generates a large amount of heat.
  • the heating element 101 is a rectangular parallelepiped. At least the surface of the heating element 101 is plated and covered with a Cu film. Therefore, at least the bonding surface of the heating element 101 with the porous metal body 102 contains Cu.
  • the heating element 101 may be, for example, a substrate on which a power semiconductor element having a large amount of heat generation is mounted in addition to the power semiconductor element itself having a large amount of heat generation. In this case, it is preferable that at least the back surface (the surface on which the power semiconductor element is not mounted) of the substrate is subjected to Cu plating.
  • the porous metal body 102 is a rectangular parallelepiped and has a plurality of holes 80.
  • the hole 80 is basically an open pore connected to the outside.
  • the porosity of the porous metal body 102 is about 70 to 98% by volume.
  • the porous metal body 102 is made of a material containing Cu.
  • the metal composition 105 is formed into a paste.
  • the metal composition 105 is used to join the heating element 101 and the porous metal body 102.
  • the metal composition 105 includes a metal component 110 and an organic component 108.
  • the metal component 110 is composed of Sn powder 106 and CuNi alloy powder 107.
  • the CuNi alloy powder 107 can react with the Sn powder 106 that is melted by heating the metal composition 105 to generate an intermetallic compound.
  • an intermetallic compound In the present embodiment, details of the intermetallic compound will be described later.
  • the average particle diameter (D50) of the Sn powder 106 is preferably in the range of 1 to 100 ⁇ m. Further, the average particle diameter (D50) of the CuNi alloy powder 107 is preferably in the range of 0.1 to 30 ⁇ m.
  • the average particle diameter of the Sn powder 106 When the average particle diameter of the Sn powder 106 is smaller than 1 ⁇ m, the surface area of the Sn particles increases. Therefore, more oxides are formed on the surface of the Sn particles, the wettability of the Sn particles with respect to the CuNi alloy powder 107 is lowered, and the alloying reaction tends to be suppressed. On the other hand, when the average particle diameter of the Sn powder 106 is larger than 100 ⁇ m, the thickness of the joined portion between the heat generating element 101 and the porous metal body 102 becomes excessively large, and there is a possibility that the heat dissipation performance is significantly lowered.
  • the average particle size of the CuNi alloy powder 107 is smaller than 0.1 ⁇ m, the surface area of the CuNi alloy particles increases. Therefore, more oxides are formed on the surface of the CuNi alloy particles, the wettability of the CuNi alloy particles with respect to the molten Sn is lowered, and the alloying reaction tends to be suppressed.
  • the average particle diameter of the CuNi alloy powder 107 is larger than 30 ⁇ m, the size of the gap between the CuNi alloy particles increases, so that voids are likely to be generated in the bonded portion, and sufficient bonding strength cannot be obtained. There is.
  • the organic component 108 includes a flux, a solvent, a thixotropic agent, and the like.
  • the flux contains rosin and an activator. The flux functions to remove oxide films on the surfaces of the heating element 101, the porous metal body 102, the Sn powder 106, and the CuNi alloy powder 107.
  • the rosin is, for example, a modified rosin modified with rosin and a rosin resin composed of a derivative such as rosin, a synthetic resin composed of the derivative, or a mixture thereof.
  • a modified rosin modified with rosin and a rosin resin composed of a derivative such as rosin, a synthetic resin composed of the derivative, or a mixture thereof for example, polymerized rosin R-95 (manufactured by Arakawa Chemical Industries, Ltd.) is used.
  • Activators are, for example, amine hydrohalides, organic halogen compounds, organic acids, organic amines, polyhydric alcohols, and the like.
  • adipic acid is used as the activator.
  • Solvent adjusts the viscosity of the metal composition 105.
  • the solvent include alcohols, ketones, esters, ethers, aromatics, and hydrocarbons.
  • HeDG hexyl diglycol
  • the thixotropic agent is maintained as a binder so that the metal component 110 and the organic component 108 are mixed uniformly and then they are not separated.
  • the thixotropic agent include hydrogenated castor oil, carnauba wax, amides, hydroxy fatty acids, dibenzylidene sorbitol, bis (p-methylbenzylidene) sorbitol, beeswax, stearamide, hydroxystearic acid ethylene bisamide, and the like.
  • the metal composition 105 includes, as additives, Ag, Au, Al, Bi, C, Co, Cu, Fe, Ga, Ge, In, Mn, Mo, Ni, P, Pb, Pd, Pt, Si. , Sb, Zn, and the like may be included. Further, the metal composition 105 may contain not only these additives but also metal complexes, metal compounds, and the like as additives.
  • a paste-like metal composition 105 is applied on the surface of the heat generating element 101 as shown in FIG. To do. That is, the paste-like metal composition 105 is provided between the heating element 101 and the porous metal body 102 (installation step).
  • the normal-temperature metal composition 105 shown in FIG. 1 is heated using a reflow apparatus, for example, according to the temperature profile shown in FIG. 6 (heating process).
  • the heating temperature is a temperature equal to or higher than the melting point of Sn. Melting point T m of a Sn is 231.9 ° C..
  • heating is performed at a heating temperature of 250 ° C. to 400 ° C. for 2 minutes to 5 minutes. The peak temperature is allowed to reach 400 ° C.
  • the solvent contained in the organic component 108 is combusted or decomposed between the start of heating and the elapse of time t 1 .
  • An intermetallic compound is produced by a reaction between the molten Sn and the CuNi alloy powder 107.
  • This reaction is, for example, a reaction associated with liquid phase diffusion bonding (“TLP bonding: Transient Liquid Phase Diffusion Bonding”).
  • the produced intermetallic compound is an alloy containing at least two selected from the group consisting of Cu, Ni and Sn.
  • the intermetallic compound is, for example, (Cu, Ni) 6 Sn 5 , Cu 4 Ni 2 Sn 5 , Cu 5 NiSn 5 , (Cu, Ni) 3 Sn, CuNi 2 Sn, Cu 2 NiSn, or the like. .
  • the reflow apparatus stops heating.
  • the reaction between the molten Sn and the CuNi alloy powder 107 is completed, and the metal composition 105 changes from the metal paste to the intermetallic compound phase 109 containing the CuNi alloy powder 107 as shown in FIGS. To do.
  • the CuSn alloy layer 25 is made of, for example, Cu 3 Sn or Cu 6 Sn 5 .
  • the metal composition 105 continue to cool to room temperature.
  • the heating element 100 with the heat radiation member in which the porous metal body 102 is joined to the surface of the heating element 101 by the metal composition 105 is obtained.
  • Sn is consumed by the reaction between the CuNi alloy powder 107 and the molten Sn. Therefore, according to the present bonding method, molten Sn can be prevented from flowing out of the bonded portion between the porous metal body 102 and the heating element 101.
  • the wettability of the metal composition 105 with respect to a metal is extremely lower than the wettability of the solder with respect to a metal.
  • the metal composition 105 when the metal composition 105 is heated in the heating step, the metal composition 105 is unlikely to get wet in the plurality of holes 80 of the porous metal body 102. Therefore, when the porous metal body 102 is joined to the heating element 101 using the metal composition 105, the metal composition 105 is not so much filled into the plurality of holes 80 of the porous metal body 102. That is, regarding the porous metal body 102, the area in contact with air does not decrease so much, and the amount of the metal composition between the porous metal body 102 and the heating element 101 does not decrease so much.
  • the joining method of the present embodiment can suppress a decrease in heat dissipation and a decrease in joining strength.
  • the intermetallic compound containing at least two kinds selected from the group consisting of Cu, Ni and Sn has a high melting point (for example, 400 ° C. or higher). Therefore, the metal composition 105 (refer FIG. 3) comprised with this intermetallic compound has high heat resistance.
  • the heating element 101 and the metal composition 105 are firmly bonded by the CuSn alloy layer 25 described above, and the porous metal body 102 and the metal composition 105 are firmly bonded.
  • the metal composition 105 is formed in a paste shape, the fluidity of the metal component 110 is increased, and the molten Sn and the CuNi alloy powder 107 are easily brought into contact with each other. That is, the molten Sn and the CuNi alloy powder 107 are likely to react.
  • FIG. 7 is a diagram comparing the wettability of the metal composition 105 with respect to the Cu plate and the wettability of the solder with respect to the Cu plate.
  • FIG. 7 shows experimental results comparing the shape change of the metal composition 105 on the Cu plate and the shape change of the solder paste on the Cu plate before and after the heating step.
  • the metal composition 105 when the metal composition 105 is heated in the heating step, the metal composition 105 is unlikely to get wet in the plurality of holes 80 of the porous metal body 102. Therefore, when the porous metal body 102 is joined to the heating element 101 using the metal composition 105, the metal composition 105 is not so much filled into the plurality of holes 80 of the porous metal body 102. That is, regarding the porous metal body 102, the area in contact with air does not decrease so much, and the amount of the metal composition between the porous metal body 102 and the heating element 101 does not decrease so much.
  • the bonding method of this embodiment can suppress a decrease in heat dissipation and a decrease in bonding strength.
  • the metal composition 105 is in the form of a paste, but is not limited thereto.
  • the metal composition may be, for example, a sheet-like solid or putty-like form.
  • the material of the Sn powder 106 is Sn alone, but is not limited thereto.
  • the material of the Sn powder 106 is an alloy containing Sn (specifically, Cu, Ni, Ag, Au, Sb, Zn, Bi, In, Ge, Al, Co, Mn, Fe, Cr, Mg). , Pd, Si, Sr, Te, and an alloy containing at least one selected from the group consisting of P and Sn).
  • powdered Sn is used in the present embodiment, the present invention is not limited to this.
  • plate-like Sn or foil-like Sn may be used.
  • a plate-like or foil-like Sn metal material it is preferable to use a sheet in which a coating film made of Cu alloy powder is formed on a plate-like or foil-like Sn metal material. At this time, it is preferable that the flux is contained in the sheet in addition to the Sn metal material and the Cu alloy powder.
  • a sheet in which Cu alloy powder particles are embedded in Sn metal material may be used, or a sheet having a sandwich structure of a coating film made of Sn metal material and Cu alloy powder and Sn metal material may be used.
  • a Cu alloy may be plated on the surface of the Sn metal material.
  • the thickness of the Sn metal material is preferably 100 ⁇ m or less.
  • the thickness of the Sn metal material is larger than 100 ⁇ m, the thickness of the joint portion between the heat generating element and the porous metal body becomes excessively large, and there is a possibility that the heat dissipation performance is remarkably lowered.
  • the material of the CuNi alloy powder 107 is a CuNi alloy, but is not limited thereto.
  • the CuNi alloy powder 107 instead of the CuNi alloy powder 107, for example, at least one alloy powder selected from the group consisting of a CuMn alloy powder, a CuAl alloy powder, and a CuCr alloy powder may be used.
  • the ratio of Ni, Mn, Al and Cr is preferably 5 to 20% by weight of Cu alloy powder.
  • an intermetallic compound containing at least two selected from the group consisting of Cu, Mn and Sn is generated by a reaction between the molten Sn and the CuMn alloy powder.
  • This intermetallic compound is, for example, (Cu, Mn) 6 Sn 5 , Cu 4 Mn 2 Sn 5 , Cu 5 MnSn 5 , (Cu, Mn) 3 Sn, Cu 2 MnSn, or CuMn 2 Sn.
  • the main component of the porous metal member 102 is Cu, but is not limited thereto.
  • a single metal such as nickel, zinc, or aluminum, or a porous metal member made of an alloy containing copper as a main component may be used.
  • This alloy is, for example, an alloy such as brass (Cu—Zn), white copper (Cu—Ni), bronze (Cu—Sn) or the like.
  • hot air is heated, but the present invention is not limited to this.
  • far infrared heating, high frequency induction heating, a hot plate, or the like may be used.
  • hot air is heated in air
  • hot air may be heated in N 2 , H 2 , formic acid, or vacuum, for example.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

According to the present invention, a heat-generating element (101), a porous metal body (102), and a metal composition (105) are prepared (preparation step). The heat-generating element (101) is, for example, a power semiconductor that generates a large amount of heat. The porous metal body (102) has a plurality of pores (80). The metal composition (105) is in paste form. The metal composition (105) includes a metal component (110) and an organic component (108). The metal component (110) comprises a Sn powder (106) and a CuNi alloy powder (107). The metal composition (105) paste is provided between the heat-generating element (101) and the porous metal body (102) (installation step). Then, the metal composition (105) is heated in accordance with a temperature profile using, for example, a reflow device (heating step).

Description

放熱部材の接合方法、放熱部材付き発熱素子Heat dissipation element joining method, heat generating element with heat dissipation element
 本発明は、放熱部材である多孔質金属体を発熱素子に接合する放熱部材の接合方法及びこの接合方法で接合された放熱部材付き発熱素子に関するものである。 The present invention relates to a method of joining a heat radiating member for joining a porous metal body, which is a heat radiating member, to a heat generating element, and a heat generating element with a heat radiating member joined by this joining method.
 従来、放熱部材である多孔質金属体を発熱素子の表面に接合する放熱部材の接合方法が知られている。例えば特許文献1には、多孔質金属体を半導体装置の表面に接合する接合方法が開示されている。多孔質金属体は複数の孔を有するため、空気と接触する面積が大きく、放熱性に優れる。 Conventionally, there is known a joining method of a heat dissipating member for joining a porous metal body, which is a heat dissipating member, to the surface of a heat generating element. For example, Patent Document 1 discloses a bonding method for bonding a porous metal body to the surface of a semiconductor device. Since the porous metal body has a plurality of holes, the area in contact with air is large and the heat dissipation is excellent.
 多孔質金属体と半導体装置とを機械的かつ熱的に接合する方法としては例えば、はんだを用いる方法が挙げられる。 Examples of a method for mechanically and thermally joining the porous metal body and the semiconductor device include a method using solder.
特開平6-5751号公報JP-A-6-5751
 しかしながら、一般に、金属に対するはんだの濡れ性は高い。そのため、多孔質金属体と半導体装置の表面との間にはんだを設けてから加熱した時、多孔質金属体の複数の孔にはんだが進入し易い。よって、はんだを用いて多孔質金属体を半導体装置の表面に接合した場合、多孔質金属体の接合部分だけではなく、非接合部分の孔にまではんだが濡れ上がってしまいやすい。すなわち、多孔質金属体に関して、空気と接触する面積が著しく低下してしまう。また、多孔質金属体と半導体装置との界面部分におけるはんだ量が少なくなってしまう。 However, in general, the wettability of solder to metal is high. Therefore, when solder is provided between the porous metal body and the surface of the semiconductor device and then heated, the solder easily enters the plurality of holes of the porous metal body. Therefore, when the porous metal body is bonded to the surface of the semiconductor device using solder, the solder tends to wet not only to the bonded portion of the porous metal body but also to the hole of the non-bonded portion. That is, regarding the porous metal body, the area in contact with air is significantly reduced. In addition, the amount of solder at the interface between the porous metal body and the semiconductor device is reduced.
 したがって、はんだを用いて多孔質金属体を発熱素子に接合する従来の接合方法には、多孔質金属体の放熱性が低下したり、多孔質金属体と発熱素子との接合強度が低下するという問題がある。 Therefore, in the conventional joining method of joining the porous metal body to the heating element using solder, the heat dissipation of the porous metal body is reduced or the joining strength between the porous metal body and the heating element is reduced. There's a problem.
 本発明の目的は、放熱性の低下および接合強度の低下を抑制できる放熱部材の接合方法及び放熱部材付き発熱素子を提供することにある。 An object of the present invention is to provide a method for joining a heat radiating member and a heat generating element with a heat radiating member capable of suppressing a decrease in heat dissipation and a decrease in bonding strength.
 本発明の放熱部材の接合方法は、設置工程と、加熱工程と、を有する。 The joining method of the heat dissipation member of the present invention includes an installation process and a heating process.
 設置工程は、CuNi合金、CuMn合金、CuAl合金およびCuCr合金からなる群より選ばれる少なくとも1種の合金とSnとを含む金属組成物を、複数の孔を備える放熱部材である多孔質金属体と発熱素子との間に設ける。 The installation step includes a porous metal body that is a heat radiating member including a plurality of holes, and a metal composition including Sn and at least one alloy selected from the group consisting of a CuNi alloy, a CuMn alloy, a CuAl alloy, and a CuCr alloy; Provided between the heater elements.
 加熱工程は、金属組成物を加熱し、多孔質金属体と発熱素子とを接合する。 In the heating step, the metal composition is heated to join the porous metal body and the heating element.
 この構成において加熱工程は、金属組成物を加熱することによって前記1種の合金とSnとを反応させ、金属間化合物を主相とする金属間化合物相を形成する。ここで、加熱工程では前記1種の合金とSnとが反応することにより、Snが消費される。よって、溶融したSnが多孔体金属体と発熱素子の接合部外部への流出を抑えることができる。 In this configuration, the heating step reacts the one kind of alloy with Sn by heating the metal composition to form an intermetallic compound phase having an intermetallic compound as a main phase. Here, in the heating step, Sn reacts with the one kind of alloy and Sn. Therefore, molten Sn can be prevented from flowing out of the joint portion between the porous metal body and the heating element.
 そのため、加熱工程において金属組成物を加熱した時、多孔質金属体の複数の孔に金属組成物が濡れ上がり難い。よって、金属組成物を用いて多孔質金属体を発熱素子に接合した場合、多孔質金属体の複数の孔に金属組成物があまり充填されない。すなわち、多孔質金属体に関して、空気と接触する面積があまり低下しないし、多孔質金属体と発熱素子との間の金属組成物の量があまり減らない。 Therefore, when the metal composition is heated in the heating step, it is difficult for the metal composition to get wet in the plurality of pores of the porous metal body. Therefore, when the porous metal body is bonded to the heat generating element using the metal composition, the metal composition is not so much filled into the plurality of holes of the porous metal body. That is, with respect to the porous metal body, the area in contact with air does not decrease so much, and the amount of the metal composition between the porous metal body and the heating element does not decrease so much.
 したがって、はんだを用いて多孔質金属体を発熱素子に接合する従来の接合方法に比べて、本発明の接合方法は、放熱性の低下および接合強度の低下を抑制できる。 Therefore, compared to the conventional joining method in which the porous metal body is joined to the heating element using solder, the joining method of the present invention can suppress a reduction in heat dissipation and a reduction in joining strength.
 また、本発明において多孔質金属体は、Cuを含むことが好ましい。 In the present invention, the porous metal body preferably contains Cu.
 この構成では、多孔質金属体に含まれるCuと溶融したSnとが反応し、合金層を生成する。そのため、多孔質金属体と金属組成物との接合強度が高まる。 In this configuration, Cu contained in the porous metal body reacts with molten Sn to generate an alloy layer. Therefore, the bonding strength between the porous metal body and the metal composition is increased.
 また、本発明において発熱素子のうち少なくとも多孔質金属体との接合表面は、Cuを含むことが好ましい。 In the present invention, it is preferable that at least the bonding surface of the heat generating element with the porous metal body contains Cu.
 この構成では、発熱素子に含まれるCuと溶融したSnとが反応し、合金層を生成する。そのため、発熱素子と金属組成物との接合強度が高まる。 In this configuration, Cu contained in the heating element reacts with molten Sn to generate an alloy layer. Therefore, the bonding strength between the heating element and the metal composition is increased.
 また、本発明において発熱素子は、パワー半導体素子であることが好ましい。 In the present invention, the heating element is preferably a power semiconductor element.
 放熱性に優れる本発明の接合方法は、発熱量の大きいパワー半導体素子に好適である。 The bonding method of the present invention that excels in heat dissipation is suitable for power semiconductor elements that generate a large amount of heat.
 また、本発明の放熱部材付き発熱素子は、多孔質金属体が発熱素子の表面に接合されたものである。 Further, the heat generating element with a heat radiating member of the present invention is obtained by bonding a porous metal body to the surface of the heat generating element.
 多孔質金属体のうち少なくとも発熱素子に接触する孔には、CuNi合金、CuMn合金、CuAl合金およびCuCr合金からなる群より選ばれる少なくとも1種の合金とSnとの反応物である金属間化合物が充填されている。 An intermetallic compound that is a reaction product of Sn and at least one alloy selected from the group consisting of a CuNi alloy, a CuMn alloy, a CuAl alloy, and a CuCr alloy is formed in at least the hole that contacts the heating element in the porous metal body. Filled.
 この構成において本発明の放熱部材付き発熱素子は、本発明の放熱部材の接合方法で接合されたものである。そのため、本発明の放熱部材付き発熱素子は、本発明の放熱部材の接合方法と同様の効果を奏する。 In this configuration, the heat generating element with the heat radiating member of the present invention is joined by the method of joining the heat radiating member of the present invention. Therefore, the heat generating element with the heat radiating member of the present invention has the same effect as the method for joining the heat radiating members of the present invention.
 本発明に係る放熱部材の接合方法および放熱部材付き発熱素子は、放熱性の低下および接合強度の低下を抑制できる。 The joining method of the heat dissipating member and the heat generating element with the heat dissipating member according to the present invention can suppress a decrease in heat dissipation and a decrease in joining strength.
本発明の実施形態に係る放熱部材の接合方法で行われる設置工程を模式的に示す断面図である。It is sectional drawing which shows typically the installation process performed with the joining method of the thermal radiation member which concerns on embodiment of this invention. 図1に示す金属組成物105の一部を拡大した断面図である。It is sectional drawing to which some metal compositions 105 shown in FIG. 1 were expanded. 本発明の実施形態に係る放熱部材の接合方法で行われる加熱工程で溶融する金属組成物105の一部を拡大した断面図である。It is sectional drawing to which some metal compositions 105 fuse | melted by the heating process performed with the joining method of the heat radiating member which concerns on embodiment of this invention were expanded. 本発明の実施形態に係る放熱部材の接合方法で得られた放熱部材付き発熱素子100を模式的に示す断面図である。It is sectional drawing which shows typically the heat generating element with a heat radiating member 100 obtained with the joining method of the heat radiating member which concerns on embodiment of this invention. 図4に示す金属組成物105の一部を拡大した断面図である。It is sectional drawing to which some metal compositions 105 shown in FIG. 4 were expanded. 本発明の実施形態に係る放熱部材の接合方法で行われる加熱工程の温度プロファイルを示す図である。It is a figure which shows the temperature profile of the heating process performed with the joining method of the thermal radiation member which concerns on embodiment of this invention. Cu板に対する金属組成物105の濡れ性とCu板に対するはんだの濡れ性とを比較した図である。It is the figure which compared the wettability of the metal composition 105 with respect to Cu plate, and the wettability of the solder with respect to Cu plate.
 以下、本発明の実施形態に係る放熱部材の接合方法について説明する。 Hereinafter, the joining method of the heat dissipation member according to the embodiment of the present invention will be described.
 図1は、本発明の実施形態に係る放熱部材の接合方法で行われる設置工程を模式的に示す断面図である。図2は、図1に示す金属組成物105の一部を拡大した断面図である。図3は、本発明の実施形態に係る放熱部材の接合方法で行われる加熱工程で溶融する金属組成物105の一部を拡大した断面図である。図4は、本発明の実施形態に係る放熱部材の接合方法で得られた放熱部材付き発熱素子100を模式的に示す断面図である。図5は、図4に示す金属組成物105の一部を拡大した断面図である。図6は、本発明の実施形態に係る放熱部材の接合方法で行われる加熱工程の温度プロファイルを示す図である。 FIG. 1 is a cross-sectional view schematically showing an installation process performed by the heat dissipation member joining method according to the embodiment of the present invention. FIG. 2 is an enlarged cross-sectional view of a part of the metal composition 105 shown in FIG. FIG. 3 is an enlarged cross-sectional view of a part of the metal composition 105 that melts in the heating process performed by the heat dissipation member joining method according to the embodiment of the present invention. FIG. 4 is a cross-sectional view schematically showing the heat generating element 100 with the heat radiating member obtained by the method of joining the heat radiating members according to the embodiment of the present invention. FIG. 5 is an enlarged cross-sectional view of a part of the metal composition 105 shown in FIG. FIG. 6 is a diagram showing a temperature profile of a heating process performed by the heat dissipation member joining method according to the embodiment of the present invention.
 まず、図1に示すように、発熱素子101と多孔質金属体102と金属組成物105とを用意する(用意工程)。 First, as shown in FIG. 1, a heating element 101, a porous metal body 102, and a metal composition 105 are prepared (preparation process).
 発熱素子101は例えば、発熱量の大きいパワー半導体素子である。発熱素子101は、直方体である。また、発熱素子101の少なくとも表面は、めっき処理が施され、Cu膜で覆われている。そのため、発熱素子101のうち少なくとも多孔質金属体102との接合表面は、Cuを含む。 The heating element 101 is, for example, a power semiconductor element that generates a large amount of heat. The heating element 101 is a rectangular parallelepiped. At least the surface of the heating element 101 is plated and covered with a Cu film. Therefore, at least the bonding surface of the heating element 101 with the porous metal body 102 contains Cu.
 なお、発熱素子101は、発熱量の大きいパワー半導体素子そのものに加え、例えば発熱量の大きいパワー半導体素子が実装された基板でも良い。この場合、基板の少なくとも裏面(パワー半導体素子が実装されていない面)は、Cuめっき処理が施されていることが好ましい。 The heating element 101 may be, for example, a substrate on which a power semiconductor element having a large amount of heat generation is mounted in addition to the power semiconductor element itself having a large amount of heat generation. In this case, it is preferable that at least the back surface (the surface on which the power semiconductor element is not mounted) of the substrate is subjected to Cu plating.
 多孔質金属体102は、直方体であり、複数の孔80を有する。孔80は、基本的には外部に連接したオープンポアである。多孔質金属体102の空孔率は70~98体積%程度である。多孔質金属体102はCuを含む材料で構成されている。 The porous metal body 102 is a rectangular parallelepiped and has a plurality of holes 80. The hole 80 is basically an open pore connected to the outside. The porosity of the porous metal body 102 is about 70 to 98% by volume. The porous metal body 102 is made of a material containing Cu.
 金属組成物105は、ペースト状に成形されている。金属組成物105は、発熱素子101と多孔質金属体102とを接合するために用いられる。金属組成物105は、図2に示すように、金属成分110と有機成分108とを含む。金属成分110は、Sn粉末106と、CuNi合金粉末107と、からなる。 The metal composition 105 is formed into a paste. The metal composition 105 is used to join the heating element 101 and the porous metal body 102. As shown in FIG. 2, the metal composition 105 includes a metal component 110 and an organic component 108. The metal component 110 is composed of Sn powder 106 and CuNi alloy powder 107.
 CuNi合金粉末107は、金属組成物105の加熱によって溶融するSn粉末106と反応し、金属間化合物を生成し得る。本実施形態において、金属間化合物の詳細については後述する。 The CuNi alloy powder 107 can react with the Sn powder 106 that is melted by heating the metal composition 105 to generate an intermetallic compound. In the present embodiment, details of the intermetallic compound will be described later.
 なお、Sn粉末106とCuNi合金粉末107との配合比は、重量比で、CuNi合金粉末:Sn粉末=50:50~20:80の範囲内であることが好ましい。Sn粉末106の配合量が多すぎると、従来の接合方法と同様に、反応後に未反応のSn成分が多孔質金属体102に濡れ上がり、殆どの孔80をつぶしてしまうおそれがある。一方、CuNi合金粉末107の配合量が多すぎると、多孔質な金属間化合物相109が生成してしまい、接合強度が著しく低下してしまう傾向がある。 In addition, it is preferable that the compounding ratio of Sn powder 106 and CuNi alloy powder 107 is in the range of CuNi alloy powder: Sn powder = 50: 50 to 20:80 by weight ratio. If the amount of the Sn powder 106 is too large, the unreacted Sn component may wet up the porous metal body 102 after the reaction and crush most of the holes 80 as in the conventional bonding method. On the other hand, when the amount of the CuNi alloy powder 107 is too large, a porous intermetallic compound phase 109 is generated, and the bonding strength tends to be remarkably reduced.
 また、Sn粉末106の平均粒径(D50)は、1~100μmの範囲内であることが好ましい。さらに、CuNi合金粉末107の平均粒径(D50)は、0.1~30μmの範囲内であることが好ましい。 The average particle diameter (D50) of the Sn powder 106 is preferably in the range of 1 to 100 μm. Further, the average particle diameter (D50) of the CuNi alloy powder 107 is preferably in the range of 0.1 to 30 μm.
 Sn粉末106の平均粒径が1μmよりも小さい場合、Sn粒子の表面積が増加する。そのため、より多くの酸化物がSn粒子の表面に形成し、CuNi合金粉末107に対するSn粒子の濡れ性が低下し、合金化反応が抑制されてしまう傾向がある。一方、Sn粉末106の平均粒径が100μmよりも大きい場合、発熱素子101と多孔質金属体102との接合部分の厚みが過剰に大きくなり、放熱性が著しく低下してしまうおそれがある。 When the average particle diameter of the Sn powder 106 is smaller than 1 μm, the surface area of the Sn particles increases. Therefore, more oxides are formed on the surface of the Sn particles, the wettability of the Sn particles with respect to the CuNi alloy powder 107 is lowered, and the alloying reaction tends to be suppressed. On the other hand, when the average particle diameter of the Sn powder 106 is larger than 100 μm, the thickness of the joined portion between the heat generating element 101 and the porous metal body 102 becomes excessively large, and there is a possibility that the heat dissipation performance is significantly lowered.
 また、CuNi合金粉末107の平均粒径が0.1μmよりも小さい場合、CuNi合金粒子の表面積が増加する。そのため、より多くの酸化物がCuNi合金粒子の表面に形成し、溶融したSnに対するCuNi合金粒子の濡れ性が低下し、合金化反応が抑制されてしまう傾向がある。一方、CuNi合金粉末107の平均粒径が30μmよりも大きい場合、CuNi合金粒子間の隙間のサイズが増大することにより、接合部分にボイドが生成しやすくなり、十分な接合強度が得られなくなる傾向がある。 Further, when the average particle size of the CuNi alloy powder 107 is smaller than 0.1 μm, the surface area of the CuNi alloy particles increases. Therefore, more oxides are formed on the surface of the CuNi alloy particles, the wettability of the CuNi alloy particles with respect to the molten Sn is lowered, and the alloying reaction tends to be suppressed. On the other hand, when the average particle diameter of the CuNi alloy powder 107 is larger than 30 μm, the size of the gap between the CuNi alloy particles increases, so that voids are likely to be generated in the bonded portion, and sufficient bonding strength cannot be obtained. There is.
 次に、有機成分108は、フラックス、溶剤、チキソ剤などを含む。フラックスは、ロジンと活性剤を含む。フラックスは、発熱素子101、多孔質金属体102、Sn粉末106、及びCuNi合金粉末107のそれぞれの表面の酸化被膜を除去する機能を果たす。 Next, the organic component 108 includes a flux, a solvent, a thixotropic agent, and the like. The flux contains rosin and an activator. The flux functions to remove oxide films on the surfaces of the heating element 101, the porous metal body 102, the Sn powder 106, and the CuNi alloy powder 107.
 ロジンは例えば、ロジンを変性した変性ロジン及びロジンなどの誘導体からなるロジン系樹脂、その誘導体からなる合成樹脂、またはこれらの混合体などである。ロジンは例えば、重合ロジンR-95(荒川化学工業社製)を用いる。 The rosin is, for example, a modified rosin modified with rosin and a rosin resin composed of a derivative such as rosin, a synthetic resin composed of the derivative, or a mixture thereof. As the rosin, for example, polymerized rosin R-95 (manufactured by Arakawa Chemical Industries, Ltd.) is used.
 また、活性剤は例えば、アミンのハロゲン化水素酸塩、有機ハロゲン化合物、有機酸、有機アミン、多価アルコールなどである。活性剤は例えば、アジピン酸を用いる。 Activators are, for example, amine hydrohalides, organic halogen compounds, organic acids, organic amines, polyhydric alcohols, and the like. For example, adipic acid is used as the activator.
 溶剤は、金属組成物105の粘度を調整する。溶剤は例えば、アルコール、ケトン、エステル、エーテル、芳香族系、炭化水素類などである。溶剤は例えば、ヘキシルジグリコール(HeDG)を用いる。 Solvent adjusts the viscosity of the metal composition 105. Examples of the solvent include alcohols, ketones, esters, ethers, aromatics, and hydrocarbons. For example, hexyl diglycol (HeDG) is used as the solvent.
 チキソ剤は、金属成分110と有機成分108を均一に混和させた後、これらが分離しないようにバインダーとして維持する。チキソ剤は例えば、硬化ヒマシ油、カルナバワックス、アミド類、ヒドロキシ脂肪酸類、ジベンジリデンソルビトール、ビス(p-メチルベンジリデン)ソルビトール類、蜜蝋、ステアリン酸アミド、ヒドロキシステアリン酸エチレンビスアミドなどである。 The thixotropic agent is maintained as a binder so that the metal component 110 and the organic component 108 are mixed uniformly and then they are not separated. Examples of the thixotropic agent include hydrogenated castor oil, carnauba wax, amides, hydroxy fatty acids, dibenzylidene sorbitol, bis (p-methylbenzylidene) sorbitol, beeswax, stearamide, hydroxystearic acid ethylene bisamide, and the like.
 なお、金属組成物105には、添加物として、Ag、Au、Al、Bi、C、Co、Cu、Fe、Ga、Ge、In、Mn、Mo、Ni、P、Pb、Pd、Pt、Si、Sb、Zn等が含まれていても良い。また、金属組成物105には、これらの添加物だけでなく、添加剤として金属錯体、金属化合物等が含まれていても良い。 The metal composition 105 includes, as additives, Ag, Au, Al, Bi, C, Co, Cu, Fe, Ga, Ge, In, Mn, Mo, Ni, P, Pb, Pd, Pt, Si. , Sb, Zn, and the like may be included. Further, the metal composition 105 may contain not only these additives but also metal complexes, metal compounds, and the like as additives.
 次に、図4に示す放熱部材付き発熱素子100を得るため、図1に示すように、発熱素子101の表面上にペースト状の金属組成物105を塗布し、多孔質金属体102を載置する。すなわち、発熱素子101と多孔質金属体102との間に、ペースト状の金属組成物105を設ける(設置工程)。 Next, in order to obtain the heat generating element 100 with the heat radiating member shown in FIG. 4, a paste-like metal composition 105 is applied on the surface of the heat generating element 101 as shown in FIG. To do. That is, the paste-like metal composition 105 is provided between the heating element 101 and the porous metal body 102 (installation step).
 次に、図1に示した常温の金属組成物105を、図6に示す温度プロファイルに従って、例えばリフロー装置を用いて加熱する(加熱工程)。加熱温度は、Snの融点以上の温度とする。Snの融点Tは、231.9℃である。例えば、加熱工程は、150℃~230℃でプレヒートを行った後、加熱温度250℃~400℃で2分~5分の間、加熱する。ピーク温度は400℃に到達させる。 Next, the normal-temperature metal composition 105 shown in FIG. 1 is heated using a reflow apparatus, for example, according to the temperature profile shown in FIG. 6 (heating process). The heating temperature is a temperature equal to or higher than the melting point of Sn. Melting point T m of a Sn is 231.9 ° C.. For example, in the heating step, after preheating at 150 ° C. to 230 ° C., heating is performed at a heating temperature of 250 ° C. to 400 ° C. for 2 minutes to 5 minutes. The peak temperature is allowed to reach 400 ° C.
 加熱により金属組成物105がSnの融点T以上に達すると、Sn粉末106が、図3に示すように溶融する。 When the metal composition 105 by heating reaches above the melting point T m of a Sn, Sn powder 106 melts as shown in FIG.
 なお、有機成分108に含まれる溶剤は、加熱を開始してから、時間tが経過するまでの間に、燃焼または分解する。 Note that the solvent contained in the organic component 108 is combusted or decomposed between the start of heating and the elapse of time t 1 .
 溶融したSnと、CuNi合金粉末107との反応によって金属間化合物が生成される。この反応は、例えば、液相拡散接合(「TLP接合:TransientLiquid Phase DiffusionBonding」)に伴う反応である。生成される金属間化合物は、Cu、NiおよびSnからなる群より選ばれる少なくとも2種を含んだ合金である。具体的には、金属間化合物は、例えば(Cu,Ni)Sn、CuNiSn、CuNiSn、(Cu,Ni)Sn、CuNiSn、CuNiSn等である。 An intermetallic compound is produced by a reaction between the molten Sn and the CuNi alloy powder 107. This reaction is, for example, a reaction associated with liquid phase diffusion bonding (“TLP bonding: Transient Liquid Phase Diffusion Bonding”). The produced intermetallic compound is an alloy containing at least two selected from the group consisting of Cu, Ni and Sn. Specifically, the intermetallic compound is, for example, (Cu, Ni) 6 Sn 5 , Cu 4 Ni 2 Sn 5 , Cu 5 NiSn 5 , (Cu, Ni) 3 Sn, CuNi 2 Sn, Cu 2 NiSn, or the like. .
 次に、図6に示すように、時間tが経過した後、リフロー装置は加熱を停止する。これにより、溶融したSnとCuNi合金粉末107との反応は完了し、金属組成物105は、金属ペーストから、図4、図5に示すようにCuNi合金粉末107を含む金属間化合物相109へ変化する。 Next, as shown in FIG. 6, after the time t 2, the reflow apparatus stops heating. As a result, the reaction between the molten Sn and the CuNi alloy powder 107 is completed, and the metal composition 105 changes from the metal paste to the intermetallic compound phase 109 containing the CuNi alloy powder 107 as shown in FIGS. To do.
 また、金属組成物105が加熱されると、同時に、発熱素子101及び多孔質金属体102に含まれるCuと溶融したSnとの化学反応によって、CuSn合金層25も生成される。CuSn合金層25は、例えばCuSn、CuSnからなる。 When the metal composition 105 is heated, simultaneously, a CuSn alloy layer 25 is also generated by a chemical reaction between Cu contained in the heating element 101 and the porous metal body 102 and molten Sn. The CuSn alloy layer 25 is made of, for example, Cu 3 Sn or Cu 6 Sn 5 .
 なお、時間tの後、金属組成物105は常温まで自然冷却していく。 Incidentally, after the time t 2, the metal composition 105 continue to cool to room temperature.
 以上の接合方法により、多孔質金属体102が金属組成物105によって発熱素子101の表面に接合された放熱部材付き発熱素子100が得られる。ここで、加熱工程ではCuNi合金粉末107と溶融したSnとが反応することにより、Snが消費される。よって、本接合方法は、溶融したSnが多孔体金属体102と発熱素子101の接合部外部への流出を抑えることができる。また、金属に対する金属組成物105の濡れ性は、金属に対するはんだの濡れ性より極めて低い。 By the above joining method, the heating element 100 with the heat radiation member in which the porous metal body 102 is joined to the surface of the heating element 101 by the metal composition 105 is obtained. Here, in the heating process, Sn is consumed by the reaction between the CuNi alloy powder 107 and the molten Sn. Therefore, according to the present bonding method, molten Sn can be prevented from flowing out of the bonded portion between the porous metal body 102 and the heating element 101. Moreover, the wettability of the metal composition 105 with respect to a metal is extremely lower than the wettability of the solder with respect to a metal.
 そのため、加熱工程において金属組成物105を加熱した時、多孔質金属体102の複数の孔80に金属組成物105が濡れ上がり難い。よって、金属組成物105を用いて多孔質金属体102を発熱素子101に接合した場合、多孔質金属体102の複数の孔80に金属組成物105があまり充填されない。すなわち、多孔質金属体102に関して、空気と接触する面積があまり低下しないし、多孔質金属体102と発熱素子101との間の金属組成物の量があまり減らない。 Therefore, when the metal composition 105 is heated in the heating step, the metal composition 105 is unlikely to get wet in the plurality of holes 80 of the porous metal body 102. Therefore, when the porous metal body 102 is joined to the heating element 101 using the metal composition 105, the metal composition 105 is not so much filled into the plurality of holes 80 of the porous metal body 102. That is, regarding the porous metal body 102, the area in contact with air does not decrease so much, and the amount of the metal composition between the porous metal body 102 and the heating element 101 does not decrease so much.
 したがって、はんだを用いて多孔質金属体を発熱素子に接合する従来の接合方法に比べて、本実施形態の接合方法は、放熱性の低下および接合強度の低下を抑制できる。 Therefore, compared to the conventional joining method in which the porous metal body is joined to the heat generating element using solder, the joining method of the present embodiment can suppress a decrease in heat dissipation and a decrease in joining strength.
 また、Cu、NiおよびSnからなる群より選ばれる少なくとも2種を含んだ金属間化合物は、高い融点(例えば400℃以上)を有する。そのため、この金属間化合物で構成される金属組成物105(図3参照)は、高い耐熱性を有する。 Further, the intermetallic compound containing at least two kinds selected from the group consisting of Cu, Ni and Sn has a high melting point (for example, 400 ° C. or higher). Therefore, the metal composition 105 (refer FIG. 3) comprised with this intermetallic compound has high heat resistance.
 また、前述したCuSn合金層25により、発熱素子101と金属組成物105とは強固に接合されるとともに、多孔質金属体102と金属組成物105とは強固に接合される。 Further, the heating element 101 and the metal composition 105 are firmly bonded by the CuSn alloy layer 25 described above, and the porous metal body 102 and the metal composition 105 are firmly bonded.
 また、金属組成物105がペースト状に成形されているため、金属成分110の流動性が高まり、溶融したSnとCuNi合金粉末107とが接触し易くなる。すなわち、溶融したSnとCuNi合金粉末107とが反応し易くなる。 Further, since the metal composition 105 is formed in a paste shape, the fluidity of the metal component 110 is increased, and the molten Sn and the CuNi alloy powder 107 are easily brought into contact with each other. That is, the molten Sn and the CuNi alloy powder 107 are likely to react.
 以下、金属組成物105の濡れ性とはんだペーストの濡れ性とを比較する。 Hereinafter, the wettability of the metal composition 105 and the wettability of the solder paste will be compared.
 図7は、Cu板に対する金属組成物105の濡れ性とCu板に対するはんだの濡れ性とを比較した図である。図7は、加熱工程の前後における、Cu板上の金属組成物105の形状変化とCu板上のはんだペーストの形状変化とを比較した実験結果を示している。 FIG. 7 is a diagram comparing the wettability of the metal composition 105 with respect to the Cu plate and the wettability of the solder with respect to the Cu plate. FIG. 7 shows experimental results comparing the shape change of the metal composition 105 on the Cu plate and the shape change of the solder paste on the Cu plate before and after the heating step.
 実験では、Cu板上の金属組成物105の形状は加熱工程の前後で殆ど変化しなかったのに対して、Cu板上のはんだペーストは、円形状からCu板上に大きく濡れ広がることが明らかとなった。 In the experiment, the shape of the metal composition 105 on the Cu plate hardly changed before and after the heating step, whereas the solder paste on the Cu plate spreads greatly from the circular shape onto the Cu plate. It became.
 すなわち、Cu板に対する金属組成物105の濡れ性は、Cu板に対するはんだの濡れ性より極めて低いことが明らかとなった。 That is, it has been clarified that the wettability of the metal composition 105 with respect to the Cu plate is extremely lower than the wettability of the solder with respect to the Cu plate.
 そのため、加熱工程において金属組成物105を加熱した時、多孔質金属体102の複数の孔80に金属組成物105が濡れ上がり難い。よって、金属組成物105を用いて多孔質金属体102を発熱素子101に接合した場合、多孔質金属体102の複数の孔80に金属組成物105があまり充填されない。すなわち、多孔質金属体102に関して、空気と接触する面積があまり低下しないし、多孔質金属体102と発熱素子101との間の金属組成物の量があまり減らない。 Therefore, when the metal composition 105 is heated in the heating step, the metal composition 105 is unlikely to get wet in the plurality of holes 80 of the porous metal body 102. Therefore, when the porous metal body 102 is joined to the heating element 101 using the metal composition 105, the metal composition 105 is not so much filled into the plurality of holes 80 of the porous metal body 102. That is, regarding the porous metal body 102, the area in contact with air does not decrease so much, and the amount of the metal composition between the porous metal body 102 and the heating element 101 does not decrease so much.
 したがって、はんだを用いて多孔質金属体を発熱素子に接合する従来の接合方法に比べて、本実施形態の接合方法は、放熱性の低下および接合強度の低下を抑制できる。 Therefore, compared to the conventional bonding method in which the porous metal body is bonded to the heat generating element using solder, the bonding method of this embodiment can suppress a decrease in heat dissipation and a decrease in bonding strength.
《他の実施形態》
 なお、本実施形態において金属組成物105は、ペーストの形態であるが、これに限るものではない。実施の際、金属組成物は、たとえばシート状の固体やパテ状の形態でもよい。
<< Other embodiments >>
In the present embodiment, the metal composition 105 is in the form of a paste, but is not limited thereto. In implementation, the metal composition may be, for example, a sheet-like solid or putty-like form.
 また、本実施形態においてSn粉末106の材料は、Sn単体であるが、これに限るものではない。実施の際は、Sn粉末106の材料は、Snを含む合金(具体的にはCu、Ni、Ag、Au、Sb、Zn、Bi、In、Ge、Al、Co、Mn、Fe、Cr、Mg、Pd、Si、Sr、TeおよびPからなる群より選ばれる少なくとも1種とSnとを含む合金)でもよい。 Further, in this embodiment, the material of the Sn powder 106 is Sn alone, but is not limited thereto. In implementation, the material of the Sn powder 106 is an alloy containing Sn (specifically, Cu, Ni, Ag, Au, Sb, Zn, Bi, In, Ge, Al, Co, Mn, Fe, Cr, Mg). , Pd, Si, Sr, Te, and an alloy containing at least one selected from the group consisting of P and Sn).
 また、本実施形態において粉末状のSnを用いたが、これに限るものではない。実施の際は、板状のSnや箔状のSnを用いてもよい。板状又は箔状のSn金属材を用いる場合、板状又は箔状のSn金属材上にCu合金粉末からなる塗膜を形成させたシートを用いることが好ましい。このとき、Sn金属材とCu合金粉末以外にもフラックスがシート中に含まれていることが好ましい。 Moreover, although powdered Sn is used in the present embodiment, the present invention is not limited to this. In implementation, plate-like Sn or foil-like Sn may be used. When using a plate-like or foil-like Sn metal material, it is preferable to use a sheet in which a coating film made of Cu alloy powder is formed on a plate-like or foil-like Sn metal material. At this time, it is preferable that the flux is contained in the sheet in addition to the Sn metal material and the Cu alloy powder.
 また、Sn金属材に、Cu合金粉末粒子をめりこんだシートを用いても良いし、Sn金属材とCu合金粉末からなる塗膜とSn金属材とのサンドイッチ構造を有するシートを用いても良いし、Sn金属材の表面にCu合金をめっきしても良い。 Further, a sheet in which Cu alloy powder particles are embedded in Sn metal material may be used, or a sheet having a sandwich structure of a coating film made of Sn metal material and Cu alloy powder and Sn metal material may be used. Alternatively, a Cu alloy may be plated on the surface of the Sn metal material.
 また、板状又は箔状のSn金属材を用いる場合、Sn金属材の厚みは100μm以下が好ましい。Sn金属材の厚みが100μmより大きいと、発熱素子と多孔質金属体との接合部分の厚みが過剰に大きくなり、放熱性が著しく低下してしまうおそれがある。 Further, when a plate-like or foil-like Sn metal material is used, the thickness of the Sn metal material is preferably 100 μm or less. When the thickness of the Sn metal material is larger than 100 μm, the thickness of the joint portion between the heat generating element and the porous metal body becomes excessively large, and there is a possibility that the heat dissipation performance is remarkably lowered.
 また、本実施形態においてCuNi合金粉末107の材料は、CuNi合金であるが、これに限るものではない。実施の際は、CuNi合金粉末107に代えて、例えばCuMn合金粉末、CuAl合金粉末およびCuCr合金粉末からなる群より選ばれる少なくとも1種の合金粉末を用いてもよい。Ni、Mn、Al、Crの割合は5~20重量%のCu合金粉末が好ましい。 In this embodiment, the material of the CuNi alloy powder 107 is a CuNi alloy, but is not limited thereto. At the time of implementation, instead of the CuNi alloy powder 107, for example, at least one alloy powder selected from the group consisting of a CuMn alloy powder, a CuAl alloy powder, and a CuCr alloy powder may be used. The ratio of Ni, Mn, Al and Cr is preferably 5 to 20% by weight of Cu alloy powder.
 CuMn合金粉末を用いる場合、溶融したSnとCuMn合金粉末との反応により、Cu、MnおよびSnからなる群より選ばれる少なくとも2種を含んだ金属間化合物が生成される。この金属間化合物は例えば、(Cu,Mn)Sn、CuMnSn、CuMnSn、(Cu,Mn)Sn、CuMnSn、CuMnSnである。 In the case of using the CuMn alloy powder, an intermetallic compound containing at least two selected from the group consisting of Cu, Mn and Sn is generated by a reaction between the molten Sn and the CuMn alloy powder. This intermetallic compound is, for example, (Cu, Mn) 6 Sn 5 , Cu 4 Mn 2 Sn 5 , Cu 5 MnSn 5 , (Cu, Mn) 3 Sn, Cu 2 MnSn, or CuMn 2 Sn.
 また、本実施形態において多孔質金属部材102の主成分はCuであるが、これに限るものではない。実施の際は、例えば、ニッケル、亜鉛、アルミニウム等の単体の金属や、銅を主成分とした合金からなる多孔質金属部材を用いてもよい。この合金は、例えば真鍮(Cu-Zn)、白銅(Cu-Ni)、青銅(Cu-Sn)等の合金である。その他、Cu、Ni、Au、Ag等を電解メッキ、もしくは、無電解メッキした多孔質金属部材を用いてもよい。 In this embodiment, the main component of the porous metal member 102 is Cu, but is not limited thereto. In implementation, for example, a single metal such as nickel, zinc, or aluminum, or a porous metal member made of an alloy containing copper as a main component may be used. This alloy is, for example, an alloy such as brass (Cu—Zn), white copper (Cu—Ni), bronze (Cu—Sn) or the like. In addition, you may use the porous metal member which electroplated or electrolessly plated Cu, Ni, Au, Ag, etc.
 また、本実施形態の加熱工程において、熱風加熱しているが、これに限るものではない。実施の際は、例えば遠赤外線加熱や高周波誘導加熱、ホットプレート等を用いてもよい。 In the heating process of this embodiment, hot air is heated, but the present invention is not limited to this. In implementation, for example, far infrared heating, high frequency induction heating, a hot plate, or the like may be used.
 また、本実施形態の加熱工程において、大気中で熱風加熱しているが、これに限るものではない。実施の際は、例えばN、H、ギ酸、又は真空中で熱風加熱しても良い。 Moreover, in the heating process of this embodiment, although hot air is heated in air | atmosphere, it does not restrict to this. In implementation, hot air may be heated in N 2 , H 2 , formic acid, or vacuum, for example.
 また、本実施形態の加熱工程において、加熱中は加圧していないが、これに限るものではない。実施の際は、例えば加熱中、数MPa程度の加圧を行ってもよい。この場合、緻密な金属間化合物が得られ、接合強度が増大する。 In the heating process of this embodiment, no pressure is applied during heating, but the present invention is not limited to this. In implementation, for example, pressurization of about several MPa may be performed during heating. In this case, a dense intermetallic compound is obtained, and the bonding strength increases.
 最後に、前記実施形態の説明は、すべての点で例示であり、制限的なものではないと考えられるべきである。本発明の範囲は、上述の実施形態ではなく、特許請求の範囲によって示される。さらに、本発明の範囲には、特許請求の範囲と均等の範囲が含まれる。 Finally, the description of the embodiment should be considered as illustrative in all points and not restrictive. The scope of the present invention is shown not by the above embodiments but by the claims. Furthermore, the scope of the present invention includes the scope equivalent to the claims.
25…CuSn合金層
80…孔
100…放熱部材付き発熱素子
101…発熱素子
102…多孔質金属体
105…金属組成物
106…Sn粉末
107…CuNi合金粉末
108…有機成分
109…金属間化合物相
110…金属成分
25 ... CuSn alloy layer 80 ... hole 100 ... heat generating element 101 with heat dissipation member ... heat generating element 102 ... porous metal body 105 ... metal composition 106 ... Sn powder 107 ... CuNi alloy powder 108 ... organic component 109 ... intermetallic compound phase 110 ... metal components

Claims (5)

  1.  CuNi合金、CuMn合金、CuAl合金およびCuCr合金からなる群より選ばれる少なくとも1種の合金とSnとを含む金属組成物を、複数の孔を備える放熱部材である多孔質金属体と発熱素子との間に設ける設置工程と、
     前記金属組成物を加熱し、前記多孔質金属体と前記発熱素子とを接合する加熱工程と、を含む放熱部材の接合方法。
    A metal composition containing Sn and at least one alloy selected from the group consisting of a CuNi alloy, a CuMn alloy, a CuAl alloy, and a CuCr alloy, and a heating element and a porous metal body that is a heat dissipation member having a plurality of holes An installation process between them;
    A heating member joining method, comprising: heating the metal composition to join the porous metal body and the heating element.
  2.  前記多孔質金属体は、Cuを含むことを特徴とする請求項1に記載の放熱部材の接合方法。 The method for joining heat radiating members according to claim 1, wherein the porous metal body contains Cu.
  3.  前記発熱素子のうち少なくとも前記多孔質金属体との接合表面は、Cuを含むことを特徴とする請求項2に記載の放熱部材の接合方法。 3. The method of joining heat radiating members according to claim 2, wherein at least a joining surface of the heat generating element with the porous metal body contains Cu.
  4.  前記発熱素子は、パワー半導体素子であることを特徴とする請求項1又は2に記載の放熱部材の接合方法。 The method of joining heat radiating members according to claim 1 or 2, wherein the heat generating element is a power semiconductor element.
  5.  多孔質金属体が発熱素子の表面に接合された、放熱部材付き発熱素子であって、
     前記多孔質金属体のうち少なくとも前記発熱素子に接触する孔には、CuNi合金、CuMn合金、CuAl合金およびCuCr合金からなる群より選ばれる少なくとも1種の合金とSnとの反応物である金属間化合物が充填されていることを特徴とする放熱部材付き発熱素子。
    A heating element with a heat dissipation member, in which a porous metal body is bonded to the surface of the heating element,
    In the porous metal body, at least the hole contacting the heating element has a space between the metal that is a reaction product of Sn and at least one alloy selected from the group consisting of a CuNi alloy, a CuMn alloy, a CuAl alloy, and a CuCr alloy. A heating element with a heat radiating member, which is filled with a compound.
PCT/JP2016/058234 2015-06-01 2016-03-16 Bonding method for heat-radiating member and heat-generating element equipped with heat-radiating member WO2016194435A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-111065 2015-06-01
JP2015111065 2015-06-01

Publications (1)

Publication Number Publication Date
WO2016194435A1 true WO2016194435A1 (en) 2016-12-08

Family

ID=57442354

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/058234 WO2016194435A1 (en) 2015-06-01 2016-03-16 Bonding method for heat-radiating member and heat-generating element equipped with heat-radiating member

Country Status (1)

Country Link
WO (1) WO2016194435A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108581109A (en) * 2018-05-07 2018-09-28 哈尔滨工业大学深圳研究生院 A kind of preparation method of the high-temperature service solder joint based on tin filled and process copper
WO2022246665A1 (en) * 2021-05-25 2022-12-01 华为技术有限公司 Semiconductor apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005064271A (en) * 2003-08-13 2005-03-10 Toa Tetsumo Kk Heatsink
WO2011027659A1 (en) * 2009-09-03 2011-03-10 株式会社村田製作所 Soldering paste, bonding method using same, and bonding structure
WO2013132953A1 (en) * 2012-03-05 2013-09-12 株式会社村田製作所 Bonding method, electronic device manufacturing method, and electronic component

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005064271A (en) * 2003-08-13 2005-03-10 Toa Tetsumo Kk Heatsink
WO2011027659A1 (en) * 2009-09-03 2011-03-10 株式会社村田製作所 Soldering paste, bonding method using same, and bonding structure
WO2013132953A1 (en) * 2012-03-05 2013-09-12 株式会社村田製作所 Bonding method, electronic device manufacturing method, and electronic component

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108581109A (en) * 2018-05-07 2018-09-28 哈尔滨工业大学深圳研究生院 A kind of preparation method of the high-temperature service solder joint based on tin filled and process copper
WO2022246665A1 (en) * 2021-05-25 2022-12-01 华为技术有限公司 Semiconductor apparatus

Similar Documents

Publication Publication Date Title
JP6499962B2 (en) Electrically conductive composition comprising non-eutectic solder alloy
TWI695823B (en) Metal sintering film compositions
TW201642281A (en) Sintering pastes with high metal loading for semiconductor die attach applications
JP5943066B2 (en) Bonding method and manufacturing method of bonded structure
JP6287682B2 (en) Bonded body and power module substrate
US11821058B2 (en) Method for producing intermetallic compound
JP6528852B2 (en) Heat pipe, heat dissipation part, heat pipe manufacturing method
CN107835724B (en) Joining member and method for manufacturing joining member
JP7229220B2 (en) molded solder
JP5642336B2 (en) Semiconductor device and manufacturing method thereof
JP6713120B1 (en) Copper Sintered Substrate Nano Silver Impregnated Bonding Sheet, Manufacturing Method and Bonding Method
WO2016194435A1 (en) Bonding method for heat-radiating member and heat-generating element equipped with heat-radiating member
JP6176854B2 (en) Composite material with active metal brazing material layer
JP5758242B2 (en) Lead-free bonding material
WO2021045131A1 (en) Solder paste and solder bonded body
KR102148297B1 (en) Method for hybrid transient liquid phase sintering bonding for dissimilar material bonding
WO2017073313A1 (en) Joining member and joining member joining method
WO2016076094A1 (en) Joining member joining method and metal composition
WO2019146587A1 (en) Joining layer of semiconductor module, semiconductor module, and method for manufacturing same
JP7198479B2 (en) Semiconductor device bonding structure, method for producing semiconductor device bonding structure, and conductive bonding agent
JP2008091801A (en) Semiconductor device, and its manufacturing method
JP6766542B2 (en) A bonding material to be bonded to the electrodes of a semiconductor device
JP6680144B2 (en) Method for manufacturing ceramic / Al-SiC composite material joined body and method for manufacturing power module substrate with heat sink

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16802874

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16802874

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP