JP6766542B2 - A bonding material to be bonded to the electrodes of a semiconductor device - Google Patents

A bonding material to be bonded to the electrodes of a semiconductor device Download PDF

Info

Publication number
JP6766542B2
JP6766542B2 JP2016178607A JP2016178607A JP6766542B2 JP 6766542 B2 JP6766542 B2 JP 6766542B2 JP 2016178607 A JP2016178607 A JP 2016178607A JP 2016178607 A JP2016178607 A JP 2016178607A JP 6766542 B2 JP6766542 B2 JP 6766542B2
Authority
JP
Japan
Prior art keywords
metal
bonding material
porous member
semiconductor device
melting point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2016178607A
Other languages
Japanese (ja)
Other versions
JP2018043261A (en
Inventor
真男 野口
真男 野口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2016178607A priority Critical patent/JP6766542B2/en
Publication of JP2018043261A publication Critical patent/JP2018043261A/en
Application granted granted Critical
Publication of JP6766542B2 publication Critical patent/JP6766542B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Die Bonding (AREA)

Description

本明細書に開示の技術は、半導体装置の電極に接合される接合材に関する。 The techniques disclosed herein relate to bonding materials that are bonded to electrodes of semiconductor devices.

特許文献1に、半導体装置の電極に接合される接合材が開示されている。この接合材は、銅、ニッケル、銀、鉄等によって構成されている多孔質部材と、多孔質部材の空孔内に配置されているはんだ層を備えている。接合材は、半導体装置の電極に接合される。接合材を介して、半導体装置の電極を外部の端子等に接続することができる。 Patent Document 1 discloses a bonding material to be bonded to an electrode of a semiconductor device. This bonding material includes a porous member made of copper, nickel, silver, iron, etc., and a solder layer arranged in the pores of the porous member. The bonding material is bonded to the electrodes of the semiconductor device. The electrodes of the semiconductor device can be connected to external terminals or the like via a bonding material.

特開2004−298962号公報Japanese Unexamined Patent Publication No. 2004-298962

半導体装置の動作時に、半導体装置が発熱する。すると、半導体装置が熱膨張するとともに、半導体装置に接合されている接合材も熱膨張する。半導体装置と接合材との膨張率の差により、接合材の内部に応力が発生する。半導体装置と接合材は中央部から外周部に向かって膨張するので、応力は接合材の外周部で中央部よりも高くなる。接合材の外周部に繰り返し高い応力が加わると、その外周部で接合材にクラックが生じるおそれがある。したがって、本明細書では、接合材の外周部における応力を抑制する技術を提供する。 When the semiconductor device operates, the semiconductor device generates heat. Then, as the semiconductor device thermally expands, the bonding material bonded to the semiconductor device also thermally expands. Due to the difference in expansion coefficient between the semiconductor device and the bonding material, stress is generated inside the bonding material. Since the semiconductor device and the bonding material expand from the central portion toward the outer peripheral portion, the stress is higher at the outer peripheral portion of the bonding material than at the central portion. If high stress is repeatedly applied to the outer peripheral portion of the joint material, cracks may occur in the joint material at the outer peripheral portion. Therefore, the present specification provides a technique for suppressing stress at the outer peripheral portion of the bonding material.

本明細書が開示する接合材は、半導体装置の電極に接合される。この接合材は、多孔質部材と低融点金属層を備えている。前記多孔質部材は、第1金属により構成されている。前記低融点金属層は、前記第1金属よりも融点が低い第2金属により構成されており、前記多孔質部材の空孔内に配置されている。前記第1金属と前記第2金属が、加熱時に合金化する特性を備えている。前記第1金属のヤング率が、前記合金のヤング率よりも高い。前記第1金属の熱伝導率が、前記合金の熱伝導率よりも高い。前記接合材の中央部では、前記接合材の外周部よりも、前記多孔質部材の空孔率が低い。 The bonding material disclosed herein is bonded to an electrode of a semiconductor device. This bonding material includes a porous member and a low melting point metal layer. The porous member is made of a first metal. The low melting point metal layer is composed of a second metal having a melting point lower than that of the first metal, and is arranged in the pores of the porous member. The first metal and the second metal have a property of alloying when heated. The Young's modulus of the first metal is higher than the Young's modulus of the alloy. The thermal conductivity of the first metal is higher than the thermal conductivity of the alloy. In the central portion of the joining material, the porosity of the porous member is lower than that in the outer peripheral portion of the joining material.

なお、上記の「合金」は、金属間化合物であってもよいし、固溶体であってもよいが、金属間化合物であることが好ましい。 The above-mentioned "alloy" may be an intermetallic compound or a solid solution, but is preferably an intermetallic compound.

接合材を半導体装置の電極に接合する際に、接合材が加熱される。すると、接合材の内部で第1金属と第2金属が合金化する。接合材の中央部では多孔質部材の空孔率が低いので、加熱後の接合材の中央部では合金に対する第1金属の割合が高くなる。第1金属の熱伝導率が高いので、加熱後の接合材の中央部の熱伝導率は高い。接合材の外周部では多孔質部材の空孔率が高いので、加熱後の接合材の外周部では第1金属に対する合金の割合が高くなる。合金のヤング率が低いので、加熱後の接合材の外周部のヤング率は低い。接合材の中央部は半導体装置の中央部に接合され、接合材の外周部は半導体装置の外周部に接合される。加熱後の接合材の中央部の熱伝導率が高いので、半導体装置の中央部から好適に放熱することができる。したがって、半導体装置の中央部の温度上昇を好適に抑制することができる。また、加熱後の接合材の外周部のヤング率が低いので、加熱後の接合材の外周部は柔軟性を有する。このため、加熱後の接合材の外周部に高い応力が生じることが抑制される。このように、この接合材によれば、半導体装置の中央部の温度上昇を抑制しながら、接合材の外周部における応力を抑制することができる。 When the bonding material is bonded to the electrodes of the semiconductor device, the bonding material is heated. Then, the first metal and the second metal are alloyed inside the bonding material. Since the porosity of the porous member is low in the central portion of the bonding material, the ratio of the first metal to the alloy is high in the central portion of the bonding material after heating. Since the thermal conductivity of the first metal is high, the thermal conductivity of the central portion of the bonding material after heating is high. Since the porosity of the porous member is high in the outer peripheral portion of the bonding material, the ratio of the alloy to the first metal is high in the outer peripheral portion of the bonding material after heating. Since the Young's modulus of the alloy is low, the Young's modulus of the outer peripheral portion of the bonding material after heating is low. The central portion of the bonding material is bonded to the central portion of the semiconductor device, and the outer peripheral portion of the bonding material is bonded to the outer peripheral portion of the semiconductor device. Since the thermal conductivity of the central portion of the bonding material after heating is high, heat can be suitably dissipated from the central portion of the semiconductor device. Therefore, the temperature rise in the central portion of the semiconductor device can be suitably suppressed. Further, since the Young's modulus of the outer peripheral portion of the bonded material after heating is low, the outer peripheral portion of the bonded material after heating has flexibility. Therefore, it is possible to prevent high stress from being generated on the outer peripheral portion of the bonded material after heating. As described above, according to this bonding material, it is possible to suppress the stress at the outer peripheral portion of the bonding material while suppressing the temperature rise in the central portion of the semiconductor device.

実施形態の接合材の断面図。Sectional drawing of the bonding material of embodiment. 接合材の製造方法の説明図。Explanatory drawing of the manufacturing method of a joint material. 接合材の製造方法の説明図。Explanatory drawing of the manufacturing method of a joint material. 接合材の製造方法の説明図。Explanatory drawing of the manufacturing method of a joint material. 接合材の製造方法の説明図。Explanatory drawing of the manufacturing method of a joint material. 接合材の使用方法の説明図。Explanatory drawing of how to use a joint material. 接合材の使用方法の説明図。Explanatory drawing of how to use a joint material.

図1に示す接合材10は、多孔質部材20と低融点金属層30を有している。多孔質部材20は、その内部に多数の空孔22を有している。空孔22は互いに繋がっている。低融点金属層30は、空孔22内に配置されている。各空孔22は、低融点金属層30によって満たされている。多孔質部材20は、金属により構成されている。低融点金属層30は、多孔質部材20を構成する金属よりも融点が低い金属により構成されている。多孔質部材20を構成する金属と低融点金属層30を構成する金属は、加熱によって互いに合金化する組み合わせとされている。特に、本実施形態では、多孔質部材20を構成する金属と低融点金属層30を構成する金属は、加熱によって互いに反応して金属間化合物が生成される組み合わせとなっている。多孔質部材20を構成する金属のヤング率は、加熱によって生成される金属間化合物のヤング率よりも高い。また、多孔質部材20を構成する金属の熱伝導率は、加熱によって生成される金属間化合物の熱伝導率よりも高い。また、加熱によって生成される金属間化合物の融点は、低融点金属層30を構成する金属の融点よりも高く、多孔質部材20を構成する金属の融点よりも低い。上述した関係を満たす多孔質部材20と低融点金属層30との金属との組み合わせの例を、表1に示す。 The bonding material 10 shown in FIG. 1 has a porous member 20 and a low melting point metal layer 30. The porous member 20 has a large number of pores 22 inside. The holes 22 are connected to each other. The low melting point metal layer 30 is arranged in the pores 22. Each pore 22 is filled with a low melting point metal layer 30. The porous member 20 is made of metal. The low melting point metal layer 30 is made of a metal having a melting point lower than that of the metal constituting the porous member 20. The metal constituting the porous member 20 and the metal constituting the low melting point metal layer 30 are combined to be alloyed with each other by heating. In particular, in the present embodiment, the metal constituting the porous member 20 and the metal constituting the low melting point metal layer 30 are a combination of reacting with each other by heating to form an intermetallic compound. The Young's modulus of the metal constituting the porous member 20 is higher than the Young's modulus of the intermetallic compound produced by heating. Further, the thermal conductivity of the metal constituting the porous member 20 is higher than the thermal conductivity of the intermetallic compound produced by heating. Further, the melting point of the intermetallic compound produced by heating is higher than the melting point of the metal constituting the low melting point metal layer 30, and lower than the melting point of the metal constituting the porous member 20. Table 1 shows an example of the combination of the porous member 20 satisfying the above-mentioned relationship and the metal of the low melting point metal layer 30.

Figure 0006766542
Figure 0006766542

接合材10は、中央部10aと、中央部10aの周囲に配置された外周部10bを有している。接合材10の厚み方向に沿って見たときに、外周部10bは中央部10aの周囲を一巡している。中央部10aでは、外周部10bよりも、多孔質部材20の空孔率が低い。すなわち、中央部10aでは、外周部10bよりも、空孔22の密度が低い。したがって、中央部10aでは外周部10bよりも多孔質部材20を構成する金属の体積比率が高く、外周部10bでは中央部10aよりも低融点金属層30を構成する金属の体積比率が高い。 The joining material 10 has a central portion 10a and an outer peripheral portion 10b arranged around the central portion 10a. When viewed along the thickness direction of the bonding material 10, the outer peripheral portion 10b goes around the central portion 10a. In the central portion 10a, the porosity ratio of the porous member 20 is lower than that in the outer peripheral portion 10b. That is, the density of the pores 22 in the central portion 10a is lower than that in the outer peripheral portion 10b. Therefore, the volume ratio of the metal constituting the porous member 20 is higher in the central portion 10a than in the outer peripheral portion 10b, and the volume ratio of the metal constituting the low melting point metal layer 30 is higher in the outer peripheral portion 10b than in the central portion 10a.

次に、接合材10の製造方法について説明する。まず、多孔質部材20の材料金属により構成された金属粉末を有機溶媒(例えば、エチレングリコール等)に混合したペーストを作成する。金属粉末が有機溶媒中に均等に分散するように、十分にペーストを撹拌する。なお、ここでは、金属粉末の密度が高い第1のペーストと、金属粉末の密度が低い第2のペーストを準備する。次に、図2に示すように、グラファイトプレート50上に作成したペーストを塗布する。つまり、図2に示すように、有機溶媒42と金属粉末40とが混合されたペーストをグラファイトプレート50上に塗布する。ここでは、まず、金属粉末40の密度が高い第1のペーストをグラファイトプレート50上に塗布することで、中央部10aを作成する。次に、金属粉末40の密度が低い第2のペーストを中央部10aの周囲を囲むようにグラファイトプレート50上に塗布することで、外周部10bを作成する。外周部10bは、中央部10aに隣接するとともに中央部10aと略同じ厚さとなるように塗布する。ペーストの塗布には、ステンシルマスクを用いた塗布方法や、シリンジを用いた塗布方法を用いることができる。 Next, a method for manufacturing the bonding material 10 will be described. First, a paste is prepared by mixing a metal powder composed of the material metal of the porous member 20 with an organic solvent (for example, ethylene glycol). Stir the paste well so that the metal powder is evenly dispersed in the organic solvent. Here, a first paste having a high density of the metal powder and a second paste having a low density of the metal powder are prepared. Next, as shown in FIG. 2, the prepared paste is applied onto the graphite plate 50. That is, as shown in FIG. 2, a paste in which the organic solvent 42 and the metal powder 40 are mixed is applied onto the graphite plate 50. Here, first, a first paste having a high density of the metal powder 40 is applied onto the graphite plate 50 to create the central portion 10a. Next, the outer peripheral portion 10b is created by applying a second paste having a low density of the metal powder 40 on the graphite plate 50 so as to surround the periphery of the central portion 10a. The outer peripheral portion 10b is applied so as to be adjacent to the central portion 10a and have substantially the same thickness as the central portion 10a. For coating the paste, a coating method using a stencil mask or a coating method using a syringe can be used.

次に、図3に示すように、ペーストを加熱しながら、加圧板52によってペーストを上から加圧する。例えば、放電プラズマ焼結装置等によってこの工程を実施することができる。加熱によって、有機溶媒42が揮発する。また、ペーストの加圧によって、金属粉末40が圧縮されるとともに互いに密着する。金属粉末40が圧縮された状態で加熱されることによって、金属粉末40同士が互いに結合する。これによって、図4に示す多孔質部材20が形成される。このように製造された多孔質部材20は、空孔率が低い中央部10aと、中央部10aの周囲に配置されていると共に空孔率が高い外周部10bを有する。 Next, as shown in FIG. 3, the paste is pressed from above by the pressure plate 52 while heating the paste. For example, this step can be carried out by a discharge plasma sintering apparatus or the like. The organic solvent 42 volatilizes by heating. Further, the pressure of the paste compresses the metal powders 40 and causes them to adhere to each other. By heating the metal powder 40 in a compressed state, the metal powder 40 binds to each other. As a result, the porous member 20 shown in FIG. 4 is formed. The porous member 20 produced in this way has a central portion 10a having a low porosity and an outer peripheral portion 10b arranged around the central portion 10a and having a high porosity.

次に、図5に示すように、低融点金属層30の材料金属を溶融させた溶融金属30aを容器内に準備し、溶融金属30a内に多孔質部材20を浸漬する。すると、多孔質部材20の空孔22内に溶融金属30aが流入し、空孔22内に溶融金属30aが充填される。その後、容器内の溶融金属30aから多孔質部材20を引き上げる。多孔質部材20を引き上げると、空孔22内の溶融金属30aが冷えて凝固する。これによって、空孔22内に低融点金属層30が形成される。すなわち、図1に示す接合材10が完成する。なお、溶融金属30a内に多孔質部材20を浸漬するときに多孔質部材20が加熱されるが、浸漬時間が短いので、多孔質部材20と溶融金属30aはほとんど反応しない。すなわち、多孔質部材20を構成する金属と溶融金属30aから金属間化合物が生成される反応はほとんど生じない。したがって、空孔22内には低融点金属層30が形成される。 Next, as shown in FIG. 5, a molten metal 30a obtained by melting the material metal of the low melting point metal layer 30 is prepared in a container, and the porous member 20 is immersed in the molten metal 30a. Then, the molten metal 30a flows into the pores 22 of the porous member 20, and the molten metal 30a is filled in the pores 22. After that, the porous member 20 is pulled up from the molten metal 30a in the container. When the porous member 20 is pulled up, the molten metal 30a in the pores 22 cools and solidifies. As a result, the low melting point metal layer 30 is formed in the pores 22. That is, the bonding material 10 shown in FIG. 1 is completed. When the porous member 20 is immersed in the molten metal 30a, the porous member 20 is heated, but since the immersion time is short, the porous member 20 and the molten metal 30a hardly react with each other. That is, the reaction of forming an intermetallic compound from the metal constituting the porous member 20 and the molten metal 30a hardly occurs. Therefore, the low melting point metal layer 30 is formed in the pores 22.

次に、接合材10の使用方法について説明する。接合材10は、図6に示す半導体装置70と基板60との接続に用いられる。半導体装置70は、半導体基板70aとその裏面に設けられた電極70bを有する。半導体基板70aの主材料はSiC(炭化シリコン)であり、半導体装置70は250℃程度の高温でも動作することが可能である。基板60は、基板本体60bとその表面に設けられたメッキ層60a(金属層)を有する。接合材10は、電極70bとメッキ層60aとの接続に用いられる。 Next, a method of using the bonding material 10 will be described. The bonding material 10 is used for connecting the semiconductor device 70 and the substrate 60 shown in FIG. The semiconductor device 70 has a semiconductor substrate 70a and an electrode 70b provided on the back surface thereof. The main material of the semiconductor substrate 70a is SiC (silicon carbide), and the semiconductor device 70 can operate even at a high temperature of about 250 ° C. The substrate 60 has a substrate main body 60b and a plating layer 60a (metal layer) provided on the surface thereof. The bonding material 10 is used for connecting the electrode 70b and the plating layer 60a.

まず、図6に示すように、基板60、接合材10及び半導体装置70を積層する。接合材10を、電極70bとメッキ層60aに接触させる。接合材10の中央部10aが半導体装置70の中央部に接触し、接合材10の外周部10bが半導体装置70の外周部に接触する。次に、図6に示す積層体をリフロー炉に投入することで、積層体を加熱する。なお、基板60、接合材10及び半導体装置70の酸化を防ぐために、水素などの還元雰囲気下で加熱することが好ましい。ここでは、ピーク温度が低融点金属層30の融点よりも高い温度(例えば、低融点金属層30がSnにより構成されている場合には、232℃以上の温度)となるように積層体を加熱する。すると、低融点金属層30が溶融する。電極70b及びメッキ層60aは、低融点金属層30に対して濡れ性が高い金属によって構成されている。したがって、溶融した低融点金属層30は液相拡散反応によって電極70b及びメッキ層60aと反応し、金属間化合物が生成される。これによって、接合材10が電極70b及びメッキ層60aに対して接合される。すなわち、電極70bとメッキ層60aが、接合材10を介して電気的に接続される。また、溶融した低融点金属層30は、液相拡散反応によって多孔質部材20と反応する。これによって、図7に示すように、金属間化合物32が生成する。金属間化合物32の融点は低融点金属層30の融点よりも高いので、金属間化合物32は生成される際に固化する。ここでは、図7に示すように、低融点金属層30の略全体を金属間化合物32に変化させる。多孔質部材20は、大部分が元の純金属として残存する。その結果、図7に示すように、多孔質部材20の空孔22内が金属間化合物32によって満たされている構造が得られる。 First, as shown in FIG. 6, the substrate 60, the bonding material 10, and the semiconductor device 70 are laminated. The bonding material 10 is brought into contact with the electrode 70b and the plating layer 60a. The central portion 10a of the bonding material 10 contacts the central portion of the semiconductor device 70, and the outer peripheral portion 10b of the bonding material 10 contacts the outer peripheral portion of the semiconductor device 70. Next, the laminate shown in FIG. 6 is put into the reflow furnace to heat the laminate. In order to prevent oxidation of the substrate 60, the bonding material 10, and the semiconductor device 70, it is preferable to heat the substrate 60 in a reducing atmosphere such as hydrogen. Here, the laminate is heated so that the peak temperature is higher than the melting point of the low melting point metal layer 30 (for example, when the low melting point metal layer 30 is composed of Sn, the temperature is 232 ° C. or higher). To do. Then, the low melting point metal layer 30 melts. The electrode 70b and the plating layer 60a are made of a metal having high wettability with respect to the low melting point metal layer 30. Therefore, the molten low melting point metal layer 30 reacts with the electrode 70b and the plating layer 60a by the liquid phase diffusion reaction, and an intermetallic compound is produced. As a result, the bonding material 10 is bonded to the electrode 70b and the plating layer 60a. That is, the electrode 70b and the plating layer 60a are electrically connected via the bonding material 10. Further, the molten low melting point metal layer 30 reacts with the porous member 20 by a liquid phase diffusion reaction. This produces the intermetallic compound 32, as shown in FIG. Since the melting point of the intermetallic compound 32 is higher than the melting point of the low melting point metal layer 30, the intermetallic compound 32 solidifies when it is produced. Here, as shown in FIG. 7, substantially the entire low melting point metal layer 30 is changed to the intermetallic compound 32. Most of the porous member 20 remains as the original pure metal. As a result, as shown in FIG. 7, a structure is obtained in which the pores 22 of the porous member 20 are filled with the intermetallic compound 32.

なお、金属間化合物32の融点は低融点金属層30の融点よりも高い。また、多孔質部材20の融点は金属間化合物32の融点よりもさらに高い。例えば、多孔質部材20がCuによって構成されており、低融点金属層30がSnによって構成されている場合には、金属間化合物32としてCuSnが生成される。金属間化合物32(CuSn)の融点(約415℃)は、低融点金属層30(Sn)の融点(約232℃)よりも高い。また、多孔質部材20(Cu)の融点(約1085℃)は、金属間化合物32(CuSn)の融点(約415℃)よりも高い。加熱後の接合材10は、融点が高い金属間化合物32と多孔質部材20により構成されている。このため、加熱後の接合材10は、高い耐熱性を有する。例えば、SiCを主材料とする半導体装置70が動作可能な定格温度(約250℃)において、接合材10は十分な耐熱性を有している。接合材10によれば、はんだ等に比べて、より高い耐熱性を確保することができる。すなわち、接合材10は、低融点金属層30の融点の温度において接合することが可能である一方で、接合後は低融点金属層30の融点よりも高い耐熱温度を有する。 The melting point of the intermetallic compound 32 is higher than the melting point of the low melting point metal layer 30. Further, the melting point of the porous member 20 is even higher than the melting point of the intermetallic compound 32. For example, when the porous member 20 is made of Cu and the low melting point metal layer 30 is made of Sn, Cu 6 Sn 5 is produced as the intermetallic compound 32. The melting point (about 415 ° C.) of the intermetallic compound 32 (Cu 6 Sn 5 ) is higher than the melting point (about 232 ° C.) of the low melting point metal layer 30 (Sn). Further, the melting point (about 1085 ° C.) of the porous member 20 (Cu) is higher than the melting point (about 415 ° C.) of the intermetallic compound 32 (Cu 6 Sn 5 ). The bonded material 10 after heating is composed of an intermetallic compound 32 having a high melting point and a porous member 20. Therefore, the bonding material 10 after heating has high heat resistance. For example, the bonding material 10 has sufficient heat resistance at a rated temperature (about 250 ° C.) at which a semiconductor device 70 using SiC as a main material can operate. According to the bonding material 10, higher heat resistance can be ensured as compared with solder or the like. That is, while the bonding material 10 can be bonded at the temperature of the melting point of the low melting point metal layer 30, it has a heat resistant temperature higher than the melting point of the low melting point metal layer 30 after bonding.

上述したように、中央部10aでは、外周部10bよりも、多孔質部材20の空孔率が低い。上述したように空孔22は金属間化合物32で満たされているので、中央部10aでは、外周部10bよりも、金属間化合物32の体積比率が低い。すなわち、中央部10aでは、外周部10bよりも、多孔質部材20の体積比率が高い。多孔質部材20のヤング率は、金属間化合物32のヤング率よりも高い。また、多孔質部材20の熱伝導率は、金属間化合物32の熱伝導率よりも高い。中央部10aでは外周部10bよりも多孔質部材20の体積比率が高いので、中央部10aは外周部10bよりも高いヤング率を有し、中央部10aは外周部10bよりも高い熱伝導率を有する。 As described above, in the central portion 10a, the porosity ratio of the porous member 20 is lower than that in the outer peripheral portion 10b. Since the pores 22 are filled with the intermetallic compound 32 as described above, the volume ratio of the intermetallic compound 32 in the central portion 10a is lower than that in the outer peripheral portion 10b. That is, the volume ratio of the porous member 20 is higher in the central portion 10a than in the outer peripheral portion 10b. The Young's modulus of the porous member 20 is higher than the Young's modulus of the intermetallic compound 32. Further, the thermal conductivity of the porous member 20 is higher than the thermal conductivity of the intermetallic compound 32. Since the volume ratio of the porous member 20 is higher in the central portion 10a than in the outer peripheral portion 10b, the central portion 10a has a higher Young's modulus than the outer peripheral portion 10b, and the central portion 10a has a higher thermal conductivity than the outer peripheral portion 10b. Have.

半導体装置70は、動作時に発熱する。半導体装置70の中央部(中央部10aの上側の部分)は、その周囲を半導体装置70の外周部(外周部10bの上側の部分)に囲まれている。このため、半導体装置70の中央部で生じた熱は横方向に放熱され難い。しかしながら、本実施形態では、半導体装置70の中央部が接合材10の中央部10aに接合されている。中央部10aは高い熱伝導率を有するので、半導体装置70の中央部で生じた熱が中央部10aを介して効率的に放熱される。したがって、半導体装置70の中央部の温度上昇を抑制することができる。また、半導体装置70の外周部は接合材10の外周部10bに接合されている。外周部10bの熱伝導率は中央部10aよりも低い。このため、半導体装置70の外周部では、接合材10を介した放熱効率がそれほど高くはない。しかしながら、半導体装置70の外周部では、半導体基板70aの外周面からも放熱される。このため、半導体装置70の外周部でも温度上昇を抑制することができる。このように、半導体装置70の中央部と外周部の何れでも、適切に温度上昇が抑制される。 The semiconductor device 70 generates heat during operation. The central portion (the upper portion of the central portion 10a) of the semiconductor device 70 is surrounded by the outer peripheral portion (the upper portion of the outer peripheral portion 10b) of the semiconductor device 70. Therefore, the heat generated in the central portion of the semiconductor device 70 is difficult to be dissipated in the lateral direction. However, in the present embodiment, the central portion of the semiconductor device 70 is joined to the central portion 10a of the bonding material 10. Since the central portion 10a has a high thermal conductivity, the heat generated in the central portion of the semiconductor device 70 is efficiently dissipated through the central portion 10a. Therefore, it is possible to suppress the temperature rise in the central portion of the semiconductor device 70. Further, the outer peripheral portion of the semiconductor device 70 is joined to the outer peripheral portion 10b of the bonding material 10. The thermal conductivity of the outer peripheral portion 10b is lower than that of the central portion 10a. Therefore, in the outer peripheral portion of the semiconductor device 70, the heat dissipation efficiency via the bonding material 10 is not so high. However, in the outer peripheral portion of the semiconductor device 70, heat is also dissipated from the outer peripheral surface of the semiconductor substrate 70a. Therefore, the temperature rise can be suppressed even in the outer peripheral portion of the semiconductor device 70. In this way, the temperature rise is appropriately suppressed in both the central portion and the outer peripheral portion of the semiconductor device 70.

半導体装置70が発熱すると、半導体装置70と接合材10が熱膨張する。半導体装置70の線膨張係数は、接合材10の線膨張係数よりも小さい。したがって、接合材10は半導体装置70よりも大きく膨張しようとする。しかしながら、半導体装置70によって拘束されることで接合材10の膨張が抑制される。その結果、接合材10の内部に応力が生じる。接合材10は中央部10a(中央部)から外周部10b(外周部)に向かって膨張するので、接合材10の中央部10aでは高い応力は生じないが、接合材10の外周部10bでは高い応力が生じやすい。しかしながら、外周部10bはヤング率が低く、柔軟性を有する。したがって、外周部10bの内部に応力が生じることが抑制される。また、中央部10aはヤング率が高いが、上述したように中央部10aでは高い応力が生じない。このように、接合材10の中央部10aと外周部10bのいずれでも、高い応力が生じることが抑制される。したがって、接合材10は、繰り返しの温度変化に対して耐久性が高い。 When the semiconductor device 70 generates heat, the semiconductor device 70 and the bonding material 10 thermally expand. The coefficient of linear expansion of the semiconductor device 70 is smaller than the coefficient of linear expansion of the bonding material 10. Therefore, the bonding material 10 tends to expand more than the semiconductor device 70. However, the expansion of the bonding material 10 is suppressed by being restrained by the semiconductor device 70. As a result, stress is generated inside the bonding material 10. Since the joining material 10 expands from the central portion 10a (central portion) toward the outer peripheral portion 10b (outer peripheral portion), high stress does not occur in the central portion 10a of the joining material 10, but it is high in the outer peripheral portion 10b of the joining material 10. Stress is likely to occur. However, the outer peripheral portion 10b has a low Young's modulus and is flexible. Therefore, it is possible to prevent stress from being generated inside the outer peripheral portion 10b. Further, although the Young's modulus is high in the central portion 10a, high stress does not occur in the central portion 10a as described above. In this way, it is possible to prevent high stress from being generated in either the central portion 10a or the outer peripheral portion 10b of the bonding material 10. Therefore, the bonding material 10 has high durability against repeated temperature changes.

なお、上述した実施形態では、半導体基板70aがSiCにより構成されていたが、Si(シリコン)により構成されていてもよいし、他の化合物半導体により構成されていてもよい。また、上述した実施形態では、合金として金属間化合物が生成されたが、合金として金属の固溶体が生成されてもよい。 In the above-described embodiment, the semiconductor substrate 70a is made of SiC, but it may be made of Si (silicon) or another compound semiconductor. Further, in the above-described embodiment, the intermetallic compound is produced as the alloy, but a solid solution of the metal may be produced as the alloy.

以上、本発明の具体例を詳細に説明したが、これらは例示にすぎず、特許請求の範囲を限定するものではない。特許請求の範囲に記載の技術には、以上に例示した具体例をさまざまに変形、変更したものが含まれる。本明細書または図面に説明した技術要素は、単独であるいは各種の組み合わせによって技術的有用性を発揮するものであり、出願時請求項記載の組み合わせに限定されるものではない。また、本明細書または図面に例示した技術は複数目的を同時に達成するものであり、そのうちの一つの目的を達成すること自体で技術的有用性を持つものである。 Although specific examples of the present invention have been described in detail above, these are merely examples and do not limit the scope of claims. The techniques described in the claims include various modifications and modifications of the specific examples illustrated above. The technical elements described herein or in the drawings exhibit their technical usefulness alone or in various combinations, and are not limited to the combinations described in the claims at the time of filing. In addition, the techniques illustrated in the present specification or drawings achieve a plurality of objectives at the same time, and achieving one of the objectives itself has technical usefulness.

10 :接合材
10a :中央部
10b :外周部
20 :多孔質部材
22 :空孔
30 :低融点金属層
32 :金属間化合物
60 :基板
60a :メッキ層
60b :基板本体
70 :半導体装置
70a :半導体基板
70b :電極
10: Bonding material 10a: Central portion 10b: Outer peripheral portion 20: Porous member 22: Pore 30: Low melting point metal layer 32: Intermetallic compound 60: Substrate 60a: Plating layer 60b: Substrate body 70: Semiconductor device 70a: Semiconductor Substrate 70b: Electrode

Claims (5)

半導体装置の電極に接合されるために用いられる前記電極に接合される前の接合材であって、
第1金属により構成されている多孔質部材と、
前記第1金属よりも融点が低い第2金属により構成されており、前記多孔質部材の空孔内に配置されている低融点金属層、
を備えており、
前記第1金属と前記第2金属が、加熱時に合金化する特性を備えており、
前記第1金属のヤング率が、前記合金のヤング率よりも高く、
前記第1金属の熱伝導率が、前記合金の熱伝導率よりも高く、
前記接合材の中央部では、前記接合材の外周部よりも、前記多孔質部材の空孔率が低い接合材。
A bonding material used for bonding to an electrode of a semiconductor device before being bonded to the electrode .
Porous member composed of first metal and
A low melting point metal layer composed of a second metal having a melting point lower than that of the first metal and arranged in the pores of the porous member.
Is equipped with
The first metal and the second metal have the property of alloying when heated.
The Young's modulus of the first metal is higher than the Young's modulus of the alloy.
The thermal conductivity of the first metal is higher than the thermal conductivity of the alloy.
A joining material having a lower porosity of the porous member in the central portion of the joining material than in the outer peripheral portion of the joining material.
前記多孔質部材の前記空孔内が前記低融点金属層によって満たされている、請求項1の接合材。The bonding material according to claim 1, wherein the pores of the porous member are filled with the low melting point metal layer. 半導体装置の電極に接合材を接合する方法であって、It is a method of joining a bonding material to the electrodes of a semiconductor device.
前記電極に接合する前の前記接合材が、The bonding material before joining to the electrode
第1金属により構成されている多孔質部材と、Porous member composed of first metal and
前記第1金属よりも融点が低い第2金属により構成されており、前記多孔質部材の空孔内に配置されている低融点金属層、A low melting point metal layer composed of a second metal having a melting point lower than that of the first metal and arranged in the pores of the porous member.
を備えており、Is equipped with
前記半導体装置に接合する前の前記接合材において、前記接合材の中央部では、前記接合材の外周部よりも、前記多孔質部材の空孔率が低く、In the joining material before joining to the semiconductor device, the porosity ratio of the porous member is lower in the central portion of the joining material than in the outer peripheral portion of the joining material.
前記方法が、前記接合材の前記中央部が前記半導体装置の中央部に接触するとともに前記接合材の前記外周部が前記半導体装置の外周部に接触するように前記接合材を前記電極に接触させた状態で前記半導体装置と前記接合材を加熱することで、前記接合材を前記電極に接合するステップを有しており、In the method, the bonding material is brought into contact with the electrode so that the central portion of the bonding material contacts the central portion of the semiconductor device and the outer peripheral portion of the bonding material contacts the outer peripheral portion of the semiconductor device. It has a step of joining the bonding material to the electrode by heating the semiconductor device and the bonding material in this state.
前記ステップにおいて、前記第1金属により構成されている前記多孔質部材が残存するように前記第1金属と前記第2金属が合金化し、In the step, the first metal and the second metal are alloyed so that the porous member composed of the first metal remains.
前記第1金属のヤング率が、前記合金のヤング率よりも高く、The Young's modulus of the first metal is higher than the Young's modulus of the alloy.
前記第1金属の熱伝導率が、前記合金の熱伝導率よりも高い、The thermal conductivity of the first metal is higher than the thermal conductivity of the alloy.
方法。Method.
前記電極に接合した後の前記接合材において、前記多孔質部材の前記空孔内が前記合金によって満たされている、請求項3の方法。The method according to claim 3, wherein in the bonding material after bonding to the electrode, the inside of the pores of the porous member is filled with the alloy. 前記電極に接合する前の前記接合材において、前記多孔質部材の前記空孔内が前記低融点金属層によって満たされている、請求項3または4の方法。The method according to claim 3 or 4, wherein in the bonding material before bonding to the electrode, the inside of the pores of the porous member is filled with the low melting point metal layer.
JP2016178607A 2016-09-13 2016-09-13 A bonding material to be bonded to the electrodes of a semiconductor device Expired - Fee Related JP6766542B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016178607A JP6766542B2 (en) 2016-09-13 2016-09-13 A bonding material to be bonded to the electrodes of a semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016178607A JP6766542B2 (en) 2016-09-13 2016-09-13 A bonding material to be bonded to the electrodes of a semiconductor device

Publications (2)

Publication Number Publication Date
JP2018043261A JP2018043261A (en) 2018-03-22
JP6766542B2 true JP6766542B2 (en) 2020-10-14

Family

ID=61692714

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016178607A Expired - Fee Related JP6766542B2 (en) 2016-09-13 2016-09-13 A bonding material to be bonded to the electrodes of a semiconductor device

Country Status (1)

Country Link
JP (1) JP6766542B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012004876A1 (en) * 2010-07-08 2012-01-12 三菱電機株式会社 Bonded body, semiconductor device provided with same, bonding method, and production method using same
JP5700504B2 (en) * 2010-08-05 2015-04-15 株式会社デンソー Semiconductor device bonding materials
JP2014175454A (en) * 2013-03-08 2014-09-22 Mitsubishi Electric Corp Power semiconductor device and method of manufacturing power semiconductor device

Also Published As

Publication number Publication date
JP2018043261A (en) 2018-03-22

Similar Documents

Publication Publication Date Title
JP6287682B2 (en) Bonded body and power module substrate
JP4770533B2 (en) Semiconductor device manufacturing method and semiconductor device
KR102422607B1 (en) Bonded body, substrate for power module with heat sink, heat sink, method for producing bonded body, method for producing substrate for power module with heat sink, and method for producing heat sink
JP6319643B2 (en) Ceramics-copper bonded body and method for manufacturing the same
JP2006202944A (en) Joining method and joining structure
KR20130043210A (en) Semiconductor device bonding material
JP5636720B2 (en) Semiconductor device manufacturing method and joining jig
JP2008311273A (en) Junction body, and electronic module, and bonding method
JP6024477B2 (en) Manufacturing method of power module substrate with heat sink
JP2005288458A (en) Joined body, semiconductor device, joining method and method for producing semiconductor device
JP2015177182A (en) power module
JP2009188176A (en) Semiconductor device, and manufacturing method thereof
JP2006059904A (en) Semiconductor device and its manufacturing method
TW202112482A (en) Solder-metal mesh composite material and method for producing same
JP6399906B2 (en) Power module
JP6142584B2 (en) Metal composite, circuit board, semiconductor device, and method for manufacturing metal composite
JP6766542B2 (en) A bonding material to be bonded to the electrodes of a semiconductor device
JP6481409B2 (en) Power module substrate and power module
JP2018111111A (en) Manufacturing method for metal junction body and semiconductor device
JP2019510367A (en) Circuit carrier manufacturing method, circuit carrier, semiconductor module manufacturing method, and semiconductor module
KR102524698B1 (en) Assembly, power module substrate, power module, assembly method and manufacturing method of power module substrate
WO2016167217A1 (en) Bonded body, substrate for power module with heat sink, heat sink, method for producing bonded body, method for producing substrate for power module with heat sink, and method for producing heat sink
KR102148297B1 (en) Method for hybrid transient liquid phase sintering bonding for dissimilar material bonding
JP6213204B2 (en) Ag base layer forming paste
JP6819385B2 (en) Manufacturing method of semiconductor devices

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190517

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200310

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200818

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200831

R151 Written notification of patent or utility model registration

Ref document number: 6766542

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees