WO2016194208A1 - 超音波トランスデューサ素子、その製造方法及び超音波撮像装置 - Google Patents

超音波トランスデューサ素子、その製造方法及び超音波撮像装置 Download PDF

Info

Publication number
WO2016194208A1
WO2016194208A1 PCT/JP2015/066236 JP2015066236W WO2016194208A1 WO 2016194208 A1 WO2016194208 A1 WO 2016194208A1 JP 2015066236 W JP2015066236 W JP 2015066236W WO 2016194208 A1 WO2016194208 A1 WO 2016194208A1
Authority
WO
WIPO (PCT)
Prior art keywords
insulating film
cavity layer
layer
ultrasonic transducer
cavity
Prior art date
Application number
PCT/JP2015/066236
Other languages
English (en)
French (fr)
Inventor
浩章 長谷川
泰一 竹崎
俊太郎 町田
龍崎 大介
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2015/066236 priority Critical patent/WO2016194208A1/ja
Priority to JP2017521459A priority patent/JP6636516B2/ja
Priority to US15/579,383 priority patent/US10610890B2/en
Priority to EP15894241.7A priority patent/EP3306952B1/en
Publication of WO2016194208A1 publication Critical patent/WO2016194208A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/24Constructional features of resonators of material which is not piezoelectric, electrostrictive, or magnetostrictive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/0292Electrostatic transducers, e.g. electret-type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B3/00Devices comprising flexible or deformable elements, e.g. comprising elastic tongues or membranes
    • B81B3/0035Constitution or structural means for controlling the movement of the flexible or deformable elements
    • B81B3/0037For increasing stroke, i.e. achieve large displacement of actuated parts
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R19/00Electrostatic transducers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R31/00Apparatus or processes specially adapted for the manufacture of transducers or diaphragms therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4483Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/02Sensors
    • B81B2201/0271Resonators; ultrasonic resonators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2203/00Basic microelectromechanical structures
    • B81B2203/03Static structures
    • B81B2203/0315Cavities
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2207/00Microstructural systems or auxiliary parts thereof
    • B81B2207/05Arrays
    • B81B2207/053Arrays of movable structures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/24Probes
    • G01N29/2406Electrostatic or capacitive probes, e.g. electret or cMUT-probes
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H9/17Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator
    • H03H9/171Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator implemented with thin-film techniques, i.e. of the film bulk acoustic resonator [FBAR] type
    • H03H9/172Means for mounting on a substrate, i.e. means constituting the material interface confining the waves to a volume
    • H03H9/174Membranes

Definitions

  • the present invention relates to a manufacturing technique of an ultrasonic transducer element, and more particularly to a structure of an ultrasonic transducer element manufactured by a MEMS (Micro Electro Mechanical System) technique and a technique effective when applied to the manufacturing method.
  • MEMS Micro Electro Mechanical System
  • Ultrasonic transducers are incorporated in the ultrasonic probe of an ultrasonic imaging device and transmit and receive ultrasonic waves to diagnose tumors in the human body and inspect cracks in buildings. It is used for various purposes.
  • CMUT Capacitive Micromachined Ultrasonic
  • Transducer capacitive detection type ultrasonic transducers in which the vibration part is fabricated on a silicon substrate.
  • This CMUT has advantages such as a wide frequency band of ultrasonic waves that can be used and high sensitivity as compared with an ultrasonic transducer using a conventional piezoelectric body. Further, since it is manufactured using LSI processing technology, fine processing is possible, and it is suitable for manufacturing a transducer for an ultrasonic probe.
  • Patent Documents 1 to 3 disclose CMUTs arranged in an array with a single CMUT element.
  • FIG. 1 shows a cross-sectional structure of a basic CMUT element.
  • a cavity layer (cavity portion) 102 surrounded by insulating films 106, 103, and 107 is formed on the lower electrode 101.
  • the insulating film 106 separates the lower electrode 101 and the cavity layer (cavity portion) 102, and a membrane 105 is configured by the upper insulating film 107 and the upper electrode 104 of the cavity layer 102.
  • the insulating film 107 constituting the membrane 105 is formed wider than the upper region of the cavity layer 102.
  • the electrode 104 is referred to as a membrane 105 in the present specification.
  • the insulating film 103 surrounding the side surface of the cavity layer 102 is composed of a plurality of insulating films, and is separated from the insulating film 107 constituting the membrane 105 with the vertical tangents M and M ′ as a boundary, and is fixed to support the vibration of the membrane 105. Part.
  • the pressure of the ultrasonic wave to be transmitted depends on the vibration amplitude of the membrane 105.
  • the outer periphery of the membrane 105 is supported by a fixed portion (insulating film) 103, and vibration amplitude is generated by bending caused by elastic deformation of the membrane. From this, the vibration amplitude of the membrane 105 has a continuous distribution that is zero at the outer peripheral portion and maximum at the center. Therefore, even with a CMUT having the same maximum amplitude as the area of the membrane as viewed from above, the sound pressure generated varies depending on the distribution shape of the vibration amplitude.
  • the membrane in the vicinity of the fixedly supported point cannot vibrate and does not contribute to the transmission of sound waves.
  • the maximum amplitude of the membrane may be increased.
  • the driving voltage for vibrating the membrane, and dielectric breakdown of the insulating film sandwiched between the upper and lower electrodes and charge is injected from the electrode to the insulating film while using the CMUT, and the insulating film is charged up. May occur.
  • the insulating film is charged up, there is a problem that the electric field between the upper and lower electrodes is shielded by the electric charges charged in the insulating film, and optimal driving cannot be performed.
  • Patent Documents 1, 2, and 3 considering the above problems, the peripheral portion of the membrane 105 is easily deformed as a structure that increases the sound pressure of ultrasonic waves to be transmitted while suppressing an increase in drive voltage.
  • a structure that makes the central portion difficult to deform is disclosed.
  • Patent Document 1 has a structure in which a groove is provided at the end of the membrane
  • Patent Document 2 has a structure in which the thickness of the center of the membrane is increased
  • Patent Document 3 has a structure in which the end of the membrane has a corrugated shape.
  • a method for facilitating deformation of the membrane end portion is disclosed. However, even if these methods are used, only about 50% of the membrane area can be effectively utilized.
  • an object of the present invention is to increase the area that can be effectively used by bringing the vibration of the membrane closer to a piston-like vibration, thereby suppressing an increase in drive voltage in the CMUT, and transmitting the sound pressure of the ultrasonic wave of the CMUT. It is to provide a structure and a method for manufacturing the same.
  • an ultrasonic transducer element includes a substrate, a lower electrode formed on the first main surface of the substrate, a first insulating film formed on the lower electrode, A first cavity layer formed on the first insulation film; a second insulation film formed on the first cavity layer; and a first cavity layer formed on the second insulation film as viewed from above.
  • An upper electrode disposed on the upper electrode, a third insulating film formed on the upper electrode, a second cavity layer formed on the third insulating film, and formed on the second cavity layer.
  • a fourth insulating film a fixed portion made of the second, third, and fourth insulating films surrounding the outer periphery of the first cavity layer as viewed from the upper surface of the first main surface of the substrate; and formed on the first cavity layer.
  • the second cavity layer As a connecting part made of the second, third, and fourth insulating films connecting the movable part and the fixed part, the first connecting part and the first connecting part are spaced apart from each other. And a second connecting portion arranged in a stacked manner.
  • the ultrasonic transducer element is configured to have the second cavity layer between the first connection portion and the second connection portion.
  • a material layer having a lower elastic modulus than the insulating film is formed on the third insulating film,
  • the movable portion is an area inside the material layer having a low elastic modulus instead of the second cavity layer in the membrane, and is compared with both connection portions between the first connection portion and the second connection portion.
  • the material layer has a low elastic modulus.
  • the material layer having a lower elastic modulus than the second cavity layer or the two connection portions is a first main layer of the substrate.
  • the first cavity layer is arranged at a continuous position that borders the outer periphery of the first cavity layer as viewed from the upper surface of the surface, and at a position that overlaps the first cavity layer.
  • the method of manufacturing an ultrasonic transducer element in the method of manufacturing an ultrasonic transducer element, (a) a step of forming a first electrode on the first main surface of the substrate; and (b) on the electrode. Forming a first insulating film; (c) forming a first sacrificial layer on the first insulating film so as to overlap the first electrode when viewed from above; and (d) the first sacrificial layer.
  • FIG. 2A is a cross-sectional view showing a manufacturing process of a CMUT element taken along the line AA ′ in FIG. 2B, and FIG.
  • FIG. 2B is a cross-sectional view taken along the line BB ′ in FIG. It is sectional drawing which showed the manufacturing process of the CMUT element in the cut
  • FIG. 6 is a cross-sectional view showing a manufacturing process of the CMUT element following FIG. 5.
  • FIG. 7 is a cross-sectional view showing a manufacturing process of the CMUT element following FIG. 6.
  • FIG. 8 is a cross-sectional view showing a manufacturing step of the CMUT element following FIG. 7.
  • FIG. 9 is a cross-sectional view showing a manufacturing step of the CMUT element following FIG. 8.
  • FIG. 10 is a cross-sectional view showing the manufacturing process of the CMUT element following FIG. 9.
  • FIG. 9 is a cross-sectional view showing a manufacturing process of the CMUT element following FIG. 9.
  • FIG. 11 is a cross-sectional view showing a manufacturing step of the CMUT element following FIG. 10.
  • FIG. 12 is a cross-sectional view showing a manufacturing step of the CMUT element following FIG. 11.
  • FIG. 13 is a cross-sectional view showing a manufacturing step of the CMUT element following FIG. 12.
  • FIG. 14 is a cross-sectional view showing a manufacturing step of the CMUT element following FIG. 13.
  • FIG. 15 is a cross-sectional view showing a manufacturing step of the CMUT element following FIG. 14.
  • (A) is sectional drawing which showed the CMUT element in Example 2 of this invention remove
  • (b) is the top view seen from the upper surface of the board
  • FIG. 16A is a cross-sectional view taken along line C-C ′ in FIG. 16B
  • FIG. 16B is a cross-sectional view taken along line D-D ′ in FIG.
  • (A) is sectional drawing which showed the CMUT element in Example 3 of this invention remove
  • (b) is the top view seen from the upper surface of the board
  • FIG. 18A is a cross-sectional view taken along the line E-E ′ of FIG. 18B
  • FIG. 18B is a cross-sectional view taken along the line F-F ′ of FIG. 1 is a perspective view showing an overall configuration of an ultrasonic imaging apparatus to which the present invention is applied.
  • 1 is a functional block diagram of an ultrasonic imaging apparatus to which the present invention is applied.
  • the purpose of producing a CMUT capable of suppressing an increase in driving voltage and increasing an ultrasonic transmission sound pressure is to provide two layers between a membrane and a fixing portion of the membrane.
  • FIG. 2B is a top view showing the internal configuration of the ultrasonic transducer (CMUT) element according to the first embodiment with the insulating film removed and the outer shape of the cavity layer represented by a contour line.
  • the first embodiment of the present invention shows a case where the outer shape of the first cavity layer 102 immediately below the membrane as viewed from above is rectangular.
  • the second cavity layer is disposed in a cylindrical region having a rectangular cross section that is continuous in a rectangular frame shape when viewed from above so as to border the outer periphery of the membrane above the first cavity layer.
  • FIG. 2A shows a cross-sectional view along the line BB ′ in FIG. An example of the positional relationship between the lower electrode 101, the upper electrode 104, and the first and second cavity layers 102 and 305 on the substrate 301 is shown.
  • the CMUT element according to the first embodiment includes a lower electrode 101 formed on a substrate 301, a first cavity layer 102, and a second cavity layer 305 surrounded by contour lines 204 and 205 indicated by broken lines in FIG.
  • the upper electrode 104 has a laminated structure. Further, although an insulating film is formed so as to cover the substrate, each electrode, and each cavity layer, it is not shown to show the structure of the lower layer of each insulating film.
  • Reference numeral 201 denotes a wet etching hole for forming a cavity layer, and a projection is provided on each of the first and second cavity layers for connection to the hole.
  • 202 and 203 are pad openings for applying a voltage to each electrode.
  • FIG. 3A is a cross-sectional view taken along line AA ′ in FIG.
  • FIG. 3B is a cross-sectional view taken along the line BB ′ in FIG. 3A and 3B
  • the lower electrode 101 is formed on the insulating film 1031 formed on the substrate 301 so as to show the CMUT element including the insulating film.
  • a cavity layer 102 is formed on the lower electrode 101 via an insulating film 1032.
  • An insulating film 1033 is formed so as to surround the cavity 102, and an upper electrode 104 is formed on the insulating film 1033.
  • a second cavity layer 305 is formed on the upper electrode 104 with an insulating film 1034 interposed therebetween.
  • An insulating film 1035 is formed so as to surround the second cavity layer 305 and the insulating film 1034, and is formed on the upper layer of the insulating film 1035.
  • An insulating film 1036 is formed.
  • the insulating films 1035, 1034, and 1033 are formed with wet etching holes 201 penetrating these films.
  • the wet etching hole 201 is formed to form the cavity layers 102 and 305, and is filled with an insulating film 1036 after the formation of the cavity layer.
  • 202 and 203 are pad openings for supplying a voltage to the lower electrode 101 and the upper electrode 104, respectively.
  • the membrane is composed of the insulating films 1033 to 1036 and the upper electrode 104 in the upper region of the first cavity layer 102.
  • a movable part that is recognized as a region having an amplitude of a predetermined ratio or more with respect to the maximum amplitude is defined.
  • the movable portion is in a rectangular region surrounded by the contour line 204 inside the second cavity layer 305 in FIG.
  • the outline 205 on the outer side of the second cavity layer 305 substantially matches the outline of the first cavity layer 102. Therefore, the movable part of the membrane includes a fixed part made of an insulating film that surrounds the side surface of the first cavity layer 102, and the upper and lower sides of the region of the second cavity layer surrounded by the contour line 204 and the contour line 205 in FIG.
  • the insulating film is a connection part that connects the movable part and the fixed part. When this connecting portion is elastically deformed, vibration is generated in the movable portion to transmit ultrasonic waves.
  • the feature of the first embodiment is that the movable portion 304 of the membrane inside the contour line 204 as viewed from the upper surface of the substrate. Is connected to the fixing portion 302 outside the contour 205 by the first connecting portion 3031 and the second connecting portion 3032.
  • the first connection part 3031 and the second connection part 3032 are stacked with a second cavity layer 305 therebetween.
  • FIG. 4 is a graph showing a bending curve of the insulating film 1033 along the AA ′ section of FIG. 2 when a drive voltage is applied to the ultrasonic transducer element having the structure of FIGS. It is.
  • a curve 401 indicates the amount of deflection of the conventional ultrasonic transducer element shown in FIG. 1 and the curve 402 indicates the first embodiment, and a curve 402 does not have the second connection portion 3032.
  • Both ends N and N 'of the graph correspond to the end portions on both sides of the first cavity layer 102 shown in FIGS. 2 (b) and 3 (a). From the comparison of the curves 401 and 402, it can be seen that the area corresponding to the movable portion 304 is flatter in the bending shape of the first embodiment between the two having the same maximum bending amount.
  • the function of the second connection unit 3032 functions as follows.
  • a tensile force is generated at the coupling portion with the movable portion 304 due to the extension deformation of the connection portion 3032.
  • a bending moment is generated in the direction in which the membrane 105 is bent back, and a bend 403 is generated along the contour line 204 surrounding the movable portion 304.
  • FIG. 4 shows a structure in which the force to be pulled up so that the central part of the movable part is difficult to be recessed in a parabolic shape even if the movable part of the membrane is displaced up and down is shared by the two connecting parts.
  • the parabolic shape 402 can be changed to a bathtub-shaped shape 401.
  • FIG. 2A and 2B show an example in which the contour line 205 on the outer periphery of the second cavity layer 305 substantially coincides with the contour of the outer shape of the first cavity layer 102.
  • FIG. this does not necessarily need to be matched, and may be located outside or inside as long as it is near the contour of the outer shape of the first cavity layer 102.
  • the position of the boundary between the fixed portion 302 and the connection portion changes depending on the position of the contour line 205.
  • the outline 204 on the inner periphery of the second cavity layer 305 needs to be located inside the outline of the outer shape of the first cavity layer 102 when viewed from the upper surface of the first cavity layer 102.
  • FIGS. 5 (b) to 15 (b) show the cross section in FIG. 2 (b).
  • BB 'cross section is shown.
  • an insulating film 1031 made of a silicon oxide film is formed on a substrate 301 to a thickness of 500 nm, and then a lower electrode 101 made of an aluminum alloy film is formed to a thickness of 100 nm. Then, an insulating film 1032 made of a silicon oxide film is deposited on the lower electrode 101 by a plasma CVD (Chemical Vapor Deposition) method to a thickness of 200 nm.
  • a plasma CVD Chemical Vapor Deposition
  • a sacrificial layer 501 made of a polycrystalline silicon film is deposited by about 300 nm on the upper surface of the insulating film 1032 made of a silicon oxide film by a plasma CVD method. Then, a sacrificial layer 501 made of a polycrystalline silicon film is formed by a photolithography technique and a dry etching technique. This remaining portion becomes the first cavity layer 102 in a subsequent process. Subsequently, as shown in FIGS. 7A and 7B, an insulating film 1033 made of a silicon oxide film is deposited by a plasma CVD method so as to cover the sacrificial layer 501 and the insulating film 1032 made of a silicon oxide film. .
  • an aluminum alloy film is deposited to a thickness of 100 nm by a sputtering method.
  • the upper electrode 104 is formed by a photolithography technique and a dry etching technique, and then, as shown in FIGS. 9A and 9B, the upper electrode 104 and the insulating film 1033 made of a silicon oxide film are covered.
  • an insulating film 1034 made of a silicon oxide film is deposited to 200 nm by plasma CVD.
  • a sacrificial layer 901 made of a polycrystalline silicon film is deposited to a thickness of 200 nm on the upper surface of the insulating film 1034 made of a silicon oxide film by plasma CVD.
  • a sacrificial layer 901 made of a polycrystalline silicon film is formed by a photolithography technique and a dry etching technique.
  • the sacrificial layer 901 is formed on the insulating film 1034 in a cylindrical shape that is continuous in a rectangular shape when viewed from above. This remaining portion becomes the second cavity layer 305 in a subsequent process.
  • an insulating film 1035 made of a silicon oxide film is deposited by a plasma CVD method so as to cover the sacrificial layer 901 and the insulating film 1034 made of a silicon oxide film.
  • a photolithography technique and dry etching are performed on the insulating films 1035, 1034, and 1033 made of silicon oxide films and the sacrificial layer 901 sandwiched between these insulating films.
  • a wet etching hole 201 reaching the sacrificial layer 501 is formed using a technique.
  • the sacrificial layers 901 and 501 are wet-etched with potassium hydroxide through the wet etching holes 201 to form the cavity layers 305 and 102.
  • an insulating film 1036 made of a silicon nitride film is formed to 100 nm by plasma CVD. accumulate.
  • the lower electrode 101 penetrating the insulating films 1036, 1035, 1034, 1033, and 1032 made of a silicon oxide film is used by using a photolithography technique and a dry etching technique.
  • pad openings 202 and 203 to the upper electrode 104 are formed.
  • the CMUT element according to the first embodiment can be formed.
  • the CMUT element has a rectangular first cavity layer as viewed from the upper surface of the substrate.
  • the shape is not limited to this, and may be, for example, circular or polygonal.
  • the material constituting the CMUT element shown in the first embodiment is an example of the combination, and tungsten and other conductive materials may be used as the material of the upper electrode and the lower electrode.
  • the material of the insulating film is not necessarily limited to the same material.
  • only the uppermost layer film constituting the connection portion 3032 is a silicon nitride film in order to avoid permeation of moisture into the internal structure, but other insulating films may be used. In that case, in order to avoid an imbalance in rigidity between the connection portions 3031 and 3032, the rigidity of the connection portions 3031 and 3032 may be adjusted by adjusting the film thicknesses of the two.
  • the material for the sacrificial layer may be any material that can ensure wet etching selectivity with the material surrounding the sacrificial layer. Therefore, in addition to the polycrystalline silicon film, an SOG film (Spin-on-Glass) or a metal film may be used.
  • SOG film Spin-on-Glass
  • metal film may be used.
  • FIG. 16B is a top view showing the internal configuration of the ultrasonic transducer (CMUT) element in Example 2 with the insulating film removed and the outer shape of the cavity layer and the flexible member layer expressed by contour lines. .
  • CMUT ultrasonic transducer
  • a flexible member 1501 is provided instead in the region of the second cavity layer surrounded by the contour lines 204 and 205 in the first embodiment.
  • FIG. 17A is a cross-sectional view of the CMUT element taken along line C-C ′ in FIG.
  • FIG. 17B is a cross-sectional view taken along line D-D ′ of FIG.
  • the flexible member 1501 is filled in the region that was the second cavity layer 305 in the first embodiment.
  • the first and second connection portions 3031 and 3032 separated by the flexible member layer are deformed and moved like a parallel link mechanism. It is possible to suppress the bending of the portion 304, which is desirable for increasing the vibration area of the membrane above a predetermined amplitude ratio.
  • the insulating films 1035 and 1036 on the upper layer of the second cavity layer 305 are cracked or peeled off, which may reduce the yield when the CMUT device is completed.
  • Example 2 by filling the flexible member 1501 in the region that was the second cavity layer 305 in Example 1, the upper insulating films 1035 and 1036 of the flexible member 1501 were broken, It can suppress peeling.
  • the rigidity (Young's modulus) of the flexible member 1501 should be as close as possible to the cavity, and a Young's modulus smaller than the Young's modulus of the insulating films constituting the connection portions 3031 and 3032, the movable portion 304, and the fixed portion 302 can be obtained.
  • Good material Specifically, an organic material such as polyimide having a Young's modulus of about 1/10 of the Young's modulus of the insulating film is preferable.
  • the manufacturing method of the flexible member layer 1501 of Example 2 is not connected to the wet etching hole 201 because the wet etching is not performed using the sacrificial layer.
  • FIG. 18 is a top view showing the internal configuration of the ultrasonic transducer (CMUT) element in Example 3 with the insulating film removed and the outer shape of the cavity layer represented by a contour line.
  • the third embodiment has a structure in which the second cavity layer 305 is provided in the region surrounded by the contour lines 204 and 205.
  • FIG. 19A is a cross-sectional view taken along the line E-E ′ of FIG.
  • FIG. 19B is a cross-sectional view taken along line F-F ′ in FIG.
  • the feature of the CMUT element of Example 3 is that two rows of second cavity layers 305 are arranged in parallel with the upper electrode 104 sandwiched only in the longitudinal direction of the first cavity layer 102 having a rectangular shape when viewed from above.
  • the movable portion 304 of the membrane is supported by the first connection portion 3031 and the second connection portion 3032 that are separated from each other by the formed second cavity layer 305.
  • the fixed part that regulates the vibration of the movable part 304 is the fixed part on both side surfaces in the longitudinal direction of the first cavity layer 102, so the second cavity layer is provided only in that part.
  • the connection portions 3031 and 3032 are deformed, and the bending of the movable portion 304 can be suppressed, and the vibration area exceeding the predetermined amplitude ratio of the membrane can be increased.
  • the second cavity layer is also provided above the lead line portion of the upper electrode 104. It will be. In such a configuration, the thicknesses of the connection portions 3031 and 3032 in the upper and lower regions of the second cavity layer above the lead line portion are unbalanced by the upper electrode 104, and unnecessary vibration occurs when the membrane vibrates. there's a possibility that.
  • the second cavity layer 305 is not provided on the upper part of the lead line portion of the upper electrode 104, and the membrane.
  • Example 3 two rows of second cavity layers 305 are provided in the longitudinal direction of the first cavity layer 102, but the two rows of second cavity layers 305 are connected in order to connect to the wet etching holes 201.
  • a second cavity layer 306 is provided.
  • the second cavity layer may be filled with a flexible material by combining the third embodiment and the second embodiment described above.
  • the contour line 205 on the outer periphery of the flexible member layer 1501 or the second cavity layer 305 substantially coincides with the contour of the outer shape of the first cavity layer 102 is shown.
  • this does not necessarily need to be matched, and may be located outside or inside as long as it is near the contour of the outer shape of the first cavity layer 102.
  • the outline 204 of the inner periphery of the flexible member layer 1501 or the second cavity layer 305 needs to be located inside the outline of the outer shape of the first cavity layer 102 when viewed from the upper surface of the first cavity layer 102. It is.
  • FIGS. 20 and 21 a configuration example of an ultrasonic imaging apparatus including the CMUT element of each of the above-described embodiments in the ultrasonic imaging apparatus and the role thereof will be described.
  • FIG. 20 is a perspective view illustrating the entire configuration of the ultrasonic imaging apparatus
  • FIG. 21 is a block diagram illustrating functions of the ultrasonic imaging apparatus.
  • the ultrasonic imaging apparatus 2001 processes an ultrasonic transmission / reception circuit that transmits and receives ultrasonic waves, and an echo signal received by the ultrasonic transmission / reception circuit to generate an ultrasonic image to be inspected.
  • a main body 2005 that stores a circuit
  • a display 2003 that is connected to the main body 2005 and displays an ultrasound image and a GUI for performing an interface with the operator, an operation unit 2004 that is operated by the operator, and a main body 2005
  • an ultrasonic probe 2002 connected to an ultrasonic transmission / reception circuit through a fixed connection portion 2006.
  • the ultrasonic probe 2002 is a device that transmits and receives ultrasonic waves to and from a subject by contacting the subject, and has a structure in which a large number of transducer elements are arranged in a one-dimensional or two-dimensional array.
  • a transducer 2007, an acoustic lens, a backing material, and the like are provided.
  • the ultrasonic transducer 2007 is configured by arranging, for example, CMUT elements in a one-dimensional or two-dimensional array in the range of several hundred to 10,000.
  • CMUT elements in a one-dimensional or two-dimensional array in the range of several hundred to 10,000.
  • FIG. 20 as an example, a movable ultrasonic imaging apparatus having a wheel at the bottom of the main body 2005 is shown.
  • an ultrasonic imaging apparatus, a notebook type, or a box fixed to an examination room is shown.
  • the present invention can be applied to portable ultrasonic imaging devices such as molds, and other known ultrasonic imaging devices.
  • the main body 2005 includes the above-described ultrasonic transmission / reception circuit 2111 and signal processing circuit 2112, a control unit 2113, a memory unit 2114, a power supply device 2115, and an auxiliary device 2116.
  • the ultrasonic transmission / reception circuit 2111 generates a drive voltage for transmitting ultrasonic waves from the ultrasonic probe 2002 or receives an echo signal from the ultrasonic probe 2002.
  • the ultrasonic transmission / reception circuit 2111 receives a delay circuit, a filter, a gain, and the like. An adjustment circuit is provided.
  • the signal processing circuit 2112 performs processing necessary for correction such as LOG compression and depth correction and image creation on the received echo signal, and includes a DSC (digital scan converter), a color Doppler circuit, an FFT analysis unit, and the like. May be included.
  • the signal processing by the signal processing circuit 2112 can be either analog signal processing or digital signal processing, part of which can be realized by software, or by ASIC (application specific integrated circuit) or FPGA (field-programmable gate array). It is also possible to do.
  • the control unit 2113 controls each circuit of the main body 2005 and devices connected to the main body 2005.
  • the memory unit 2114 stores information, parameters, and processing results necessary for signal processing and control.
  • the power supply device 2115 supplies necessary power to each part of the ultrasonic imaging apparatus.
  • the auxiliary device 2116 is for realizing functions associated with the ultrasonic imaging apparatus, such as sound generation, and is added as necessary.
  • this invention is not limited to the above-mentioned Example, Various modifications are included.
  • the above-described embodiments have been described in detail for better understanding of the present invention, and are not necessarily limited to those having all the configurations described.
  • a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Mechanical Engineering (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Transducers For Ultrasonic Waves (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

超音波トランスデューサ素子を、基板と、前記基板の第1主面上に形成された下部電極と、前記下部電極上に形成された第1絶縁膜と、前記第1絶縁膜上に形成された第1空洞層と、前記第1空洞層上に形成された第2絶縁膜と、前記第2絶縁膜上に形成され、上面からみて前記第1空洞層と重なる位置に配置された上部電極と、前記上部電極上に形成された第3絶縁膜と、前記第3絶縁膜上に形成された第2空洞層と、前記第2空洞層上に形成された第4絶縁膜と、前記基板の第1主面の上面からみて、前記第1空洞層外周を取り囲む前記第2~4絶縁膜より成る固定部と、前記第1空洞層上に形成された前記第2~4絶縁膜と前記上部電極より成るメンブレンにおいて、前記第2空洞層より内側の領域になる可動部と、前記可動部と前記固定部を接続する前記第2~4絶縁膜より成る接続部として、第1接続部と、該第1接続部と間隔を隔てて積層された第2接続部とを備えて構成した。

Description

超音波トランスデューサ素子、その製造方法及び超音波撮像装置
 本発明は、超音波トランスデューサ素子の製造技術に関し、特に、MEMS(Micro Electro Mechanical System)技術により製造した超音波トランスデューサ素子の構造と、その製造方法に適用して有効な技術に関する。
 超音波トランスデューサは、超音波撮像装置の超音波探触子(プローブ)内に組み込まれ、超音波を送信、受信することにより、人体内の腫瘍の診断や建造物に発生した亀裂の検査など様々な用途に用いられている。
 これまでは、圧電体の振動を利用した超音波トランスデューサが用いられてきたが、近年のMEMS技術の進歩により、振動部をシリコン基板上に作製した容量検出型超音波トランスデューサ(CMUT:Capacitive Micromachined Ultrasonic Transducer)が実用化を目指して盛んに開発されている。このCMUTは、従来の圧電体を用いた超音波トランスデューサと比較して、使用できる超音波の周波数帯域が広く、および高感度であるなどの利点がある。またLSI加工技術を用いて作製するので微細加工が可能であり、超音波探触子用の振動子の製造に適する。
 関連する先行技術として例えば、特許文献1~3には、単体のCMUT素子とアレイ状に配置したCMUTが開示されている。
特開2006-319712号公報 特開2009-182838号公報 特開2112-004926号公報
 図1のモデルを用いて、CMUT素子の基本的な構造および動作を説明する。図1は基本的なCMUT素子の断面構造を示している。
  下部電極101の上層に絶縁膜106,103,107に囲まれた空洞層(空洞部)102が形成されている。絶縁膜106は、下部電極101と空洞層(空洞部)102を隔て、空洞層102の上層の絶縁膜107と上部電極104により、メンブレン105が構成される。
 メンブレン105を構成する絶縁膜107は、空洞層102の上部領域より広く形成されているが、図1において、空洞層102の両側面の垂直接線M,M’の間の絶縁膜107、及び上部電極104を、本願明細書ではメンブレン105と呼ぶ。
  空洞層102の側面を囲む絶縁膜103は複数層の絶縁膜で構成され、垂直接線M,M’を境界としてメンブレン105を構成する絶縁膜107と区分けされて、メンブレン105の振動を支持する固定部となる。
 上部電極104と下部電極101の間に直流電圧と交流電圧を重畳すると、静電気力が上部電極104と下部電極101の間に働き、メンブレン105が印加した交流電圧の周波数で振動することで、超音波を発信する。逆に、受信の場合は、メンブレン105の表面に到達した超音波の圧力により、メンブレン105が振動する。すると、上部電極104と下部電極101との間の距離が変化するため、静電容量の変化として超音波を検出できる。
 上記動作原理から、送信する超音波の圧力はメンブレン105の振動振幅に依存する。メンブレン105の外周は固定部(絶縁膜)103により支持されており、メンブレンの弾性変形により生じる撓みによって振動振幅が発生する。このことから、メンブレン105の振動振幅は外周部でゼロ、中心で最大となる連続的な分布を持つ。したがって、メンブレンを上面から見た面積と最大振幅が等しいCMUTでも、この振動振幅の分布形状により発生する音圧は異なる。すなわち、理想的には、撓みを生じない平板がピストン状に平行移動する振動で音圧は最大となるため、振動振幅が最大振幅に近い部位の面積を拡大することが望ましいが、メンブレンの外周が固定支持されているため、固定支持された点の近傍のメンブレンは振動することができずに音波の送信には寄与しないことになる。
このような場合に、送信する超音波の圧力を増大させるためには、メンブレンの最大振幅を増大させれば良い。しかし、メンブレンを振動させるための駆動電圧を大きくする必要があり、上下電極に挟まれる絶縁膜の絶縁破壊や、CMUTを使用中に、電極から絶縁膜に電荷が注入され絶縁膜がチャージアップするという問題が発生する可能性がある。絶縁膜がチャージアップすると、絶縁膜に帯電した電荷により、上下電極間の電界が遮蔽され、最適な駆動ができなくなるという問題が生じる。
 特許文献1,2,3には、以上の問題点を考慮して、駆動電圧の上昇を抑制しつつ、送信する超音波の音圧を増大させる構造として、メンブレン105の周辺部を変形しやすく、中心部を変形しにくくする構造が開示されている。特許文献1には、メンブレン端部に溝を設けた構造、特許文献2にはメンブレン中央部の厚みを増した構造、特許文献3にはメンブレン端部をコルゲート形状にした構造を設けることにより、それぞれメンブレン端部を変形しやすくする方法が開示されている。
  しかしながら、これらの方法を用いたとしても、メンブレン面積のうち50%程度を有効利用できるに留まっている。
 そこで本発明の目的は、メンブレンの振動をよりピストン状の振動に近づけることで有効利用可能な面積を拡大することにより、CMUTでの駆動電圧の増大を抑制し、CMUTの超音波の送信音圧を増大することができる構造とその製造方法を提供することである。
  本発明の前記ならびにその他の目的と新規な特徴は、本明細書の記述および添付図面から明らかになるであろう。
 上記課題を解決するために本発明では、超音波トランスデューサ素子を、基板と、前記基板の第1主面上に形成された下部電極と、前記下部電極上に形成された第1絶縁膜と、前記第1絶縁膜上に形成された第1空洞層と、前記第1空洞層上に形成された第2絶縁膜と、前記第2絶縁膜上に形成され、上面からみて前記第1空洞層と重なる位置に配置された上部電極と、前記上部電極上に形成された第3絶縁膜と、前記第3絶縁膜上に形成された第2空洞層と、前記第2空洞層上に形成された第4絶縁膜と、前記基板の第1主面の上面からみて、前記第1空洞層外周を取り囲む前記第2,3,4絶縁膜より成る固定部と、前記第1空洞層上に形成された前記第2,3,4絶縁膜と前記上部電極より成るメンブレンにおいて、前記第2空洞層より内側の領域になる可動部と、前記可動部と前記固定部を接続する前記第2,3,4絶縁膜より成る接続部として、第1接続部と、該第1接続部と間隔を隔てて積層して配置された第2接続部とを備えて構成した。
 また、上記課題を解決するために本発明では、前記超音波トランスデューサ素子において、前記第1接続部と前記第2接続部の間に前記第2空洞層を有するように構成した。
 また、上記課題を解決するために本発明では、前記超音波トランスデューサ素子において、前記第2空洞層に替えて、前記第3絶縁膜上に絶縁膜より弾性率の低い材料層が形成され、前記可動部は、前記メンブレンにおいて、前記第2空洞層に替えて前記弾性率の低い材料層より内側の領域になり、前記第1接続部と前記第2接続部の間に両接続部と比較して弾性率の低い前記材料層を有するように構成した。
 また、上記課題を解決するために本発明では、前記超音波トランスデューサ素子において、前記第2の空洞層、または前記両接続部と比較して弾性率の低い材料層は、前記基板の第1主面の上面からみて前記第1空洞層の外周を縁取る連続した位置に、かつ前記第1空洞層と重なる位置に、配置されるように構成した。
 また、上記課題を解決するために本発明では、超音波トランスデューサ素子の製造方法において、(a)前記基板の第1主面上に第1電極を形成する工程と、(b)前記電極上に第1絶縁膜を形成する工程と、(c)前記第1絶縁膜上に、前記第1電極と上面からみて重なる配置に第1犠牲層を形成する工程と、(d)前記第1犠牲層上に第2絶縁膜を形成する工程と、(e)前記第2絶縁膜上に形成され、上面からみて前記第1犠牲層と重なる配置に第2電極を形成する工程と、(f)前記第2電極上に第3絶縁膜を形成する工程と、(g)前記第3絶縁膜上に、前記第1犠牲層の外周に重なる配置に第2犠牲層を形成する工程と、(h)前記第2犠牲層と前記第3絶縁膜上に第4絶縁膜を形成する工程と、(i)前記第4絶縁膜、前記第2犠牲層、前記第3絶縁膜、及び前記第2絶縁膜を貫通し、前記第1犠牲層に到達する開口部を形成する工程と、(j)前記開口部を介して、前記第1、第2犠牲層を除去して第1、第2空洞層を形成して、第1空洞層と第2空洞層の間に第1接続部を、第2空洞層の上部に第2接続部を形成する工程と、(k)前記第4絶縁膜上に第5絶縁膜を形成し、前記開口部を封止する工程と、を有するようにした。
 本願において開示される発明のうち、代表的なものによって得られる効果を簡単に説明すれば以下のとおりである。
  本発明によれば、CMUT素子のメンブレンの可動部の撓みを抑制し、かつメンブレンの振動面積を増加させることで、駆動電圧の増大の抑制と超音波の送信音圧の増大を両立することができる。
基本的なCMUT素子の断面図である。 (a)は本発明の実施例1におけるCMUT素子を絶縁膜を取り除いて示した断面図であり、(b)は基板の上面から見た上面図である。 (a)は図2(b)のA-A’線で切断した断面図であり、(b)は図2(b)のB-B’線で切断した断面図である。 本発明の実施例1と従来のCMUTに電圧を印加した場合のメンブレンの変位形状の比較のグラフである。 (a)は図2(b)のA-A’線で切断した断面でのCMUT素子の製造工程を示した断面図であり、(b)は図2(b)のB-B’線で切断した断面でのCMUT素子の製造工程を示した断面図である。 図5に続くCMUT素子の製造工程を示した断面図である。 図6に続くCMUT素子の製造工程を示した断面図である。 図7に続くCMUT素子の製造工程を示した断面図である。 図8に続くCMUT素子の製造工程を示した断面図である。 図9に続くCMUT素子の製造工程を示した断面図である。 図10に続くCMUT素子の製造工程を示した断面図である。 図11に続くCMUT素子の製造工程を示した断面図である。 図12に続くCMUT素子の製造工程を示した断面図である。 図13に続くCMUT素子の製造工程を示した断面図である。 図14に続くCMUT素子の製造工程を示した断面図である。 (a)は本発明の実施例2におけるCMUT素子を絶縁膜を取り除いて示した断面図であり、(b)は基板の上面から見た上面図である。 (a)は図16(b)のC-C’線で切断した断面図であり、(b)は図16(b)のD-D’線で切断した断面図である。 (a)は本発明の実施例3におけるCMUT素子を絶縁膜を取り除いて示した断面図であり、(b)は基板の上面から見た上面図である。 (a)は図18(b)のE-E’線で切断した断面図であり、(b)は図18(b)のF-F’線で切断した断面図である。 本発明が適用される超音波撮像装置の全体構成を示す斜視図である。 本発明が適用される超音波撮像装置の機能ブロック図である。
 下記の実施の形態の記載では、駆動電圧の増大を抑制し、超音波の送信音圧を増大することができるCMUTを作製するという目的を、メンブレンと、メンブレンの固定部との間を2層に分けた接続部で接続することで、超音波の送信時においてメンブレン中央部の平坦性を保ったまま、メンブレンの振動をピストン振動に近づけることで実現する。
 なお、以下の実施例を説明するための全図において、同一の部材には原則として同一の符号を付し、その繰り返しの説明は省略する。また、以下の実施例においては、便宜上、その必要があるときは、複数のセクションまたは実施例に分割して説明するが、特に明示した場合を除き、それらは互いに無関係なものではなく、一方は他方の一部または全部の変形例、詳細、補足説明等の関係にある。
 また、以下の実施例において、要素の数等(個数、数値、量、範囲等を含む)に言及する場合、特に明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されるものではなく、特定の数以上でも以下でもよい。更に、以下の実施例において、その構成要素(要素ステップ等も含む)は、特に明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。
 同様に、以下の実施例において、構成要素等の形状、位置関係等に言及するときは、特に明示した場合および原理的に明らかにそうではないと考えられる場合等を除き、実質的にその形状等に近似または類似するもの等を含むものとする。このことは、上記数値および範囲についても同様である。なお、平面図であっても理解を容易にするため、ハッチングを付す場合がある。
 図2(b)は、実施例1における超音波トランスデューサ(CMUT)素子を、絶縁膜を取り除いて、空洞層の外形を輪郭線で表して、内部構成を示した上面図である。本発明の実施例1においては、上面からみたメンブレン直下の第1の空洞層102の外形形状が矩形状の場合を示している。更に、第2の空洞層を、第1の空洞層の上部のメンブレンの外周を縁取る様に、上面から見て矩形枠状に連続した矩形断面の筒状の領域に配置している。
  図2(a)は、図2(b)におけるB-B’断面図を示している。基板301上の下部電極101、上部電極104、および第1、第2の空洞層102,305の位置関係の1例を示す。
 実施例1におけるCMUT素子は、基板301上に形成した下部電極101と、第1空洞層102、図2(b)中の破線で示した輪郭線204、205で囲まれた第2空洞層305、上部電極104からなる積層構造からなる。また、基板、それぞれの電極、それぞれの空洞層を覆うように絶縁膜は形成されているが、それぞれの絶縁膜の下層の構造を示すために図示していない。201は空洞層を形成するためのウェットエッチング孔であり、孔に接続するために、第1、第2の空洞層にそれぞれ突起部が設けられている。202,203は各電極へ電圧を印加するためのパッド開口部である。
 図3(a)は、図2(b)のA-A’線で切断した断面図である。図3(b)は図2(b)のB-B’線で切断した断面図である。図3(a)および図3(b)に絶縁膜も含めてCMUT素子を示すように、基板301に形成された絶縁膜1031上に下部電極101が形成されている。下部電極101の上層には絶縁膜1032を介して空洞層102が形成されている。空洞部102を囲むように絶縁膜1033が形成され、絶縁膜1033の上層に上部電極104が形成されている。上部電極104の上層には絶縁膜1034を介して第2空洞層305が形成されており、第2空洞層305と絶縁膜1034を囲むように絶縁膜1035が形成され、絶縁膜1035の上層に絶縁膜1036が形成されている。
  また、絶縁膜1035、1034、1033にはこれらの膜を貫通するウェットエッチング孔201が形成されている。このウェットエッチング孔201は、空洞層102、305を形成するために形成されたものであり、空洞層の形成後、絶縁膜1036によって埋め込まれている。202、203はそれぞれ下部電極101、上部電極104へ電圧を供給するためのパッド開口部である。
 図2(a)、(b)および図3(a)、(b)において、メンブレンは、第1空洞層102の上部の領域の絶縁膜1033~1036および上部電極104により構成される。このメンブレンが超音波送受信時に振動する際に、最大振幅に対して所定比率以上の振幅を有する領域と認められる可動部を定義する。本実施例1において可動部は、図2(b)において、第2空洞層305の内側の輪郭線204が囲む矩形領域内とする。
 また、本実施例1では、第2空洞層305の外側の輪郭線205が、第1空洞層102の輪郭とほぼ一致している。そのため、前記メンブレンの可動部は、第1空洞層102の側面を囲む絶縁膜から成る固定部と、図2(b)において、輪郭線204と輪郭線205が囲む第2空洞層の領域の上下にある絶縁膜が、可動部と固定部を接続する接続部となる。この接続部が弾性変形することにより、可動部に振動が生じて超音波を発信する。
 本実施例1の特徴は、図2(a)、(b)、および図3(a)、(b)に示すように、基板の上面からみて輪郭線204よりも内側のメンブレンの可動部304を、第1接続部3031と第2接続部3032により、輪郭線205よりも外側の固定部302へ接続した点にある。前記第1接続部3031と第2接続部3032は第2空洞層305を隔てて積層されている。
 接続部を積層したことによる効果は下記の通りである。図4は、図2、図3の構造を備える超音波トランスデューサ素子に駆動電圧を印加し、振動させた時の絶縁膜1033の撓み曲線を図2のA-A’断面に沿って示したグラフである。曲線401が本実施例1、曲線402が第2接続部3032を持たない図1に示す従来の超音波トランスデューサ素子の撓み量を示している。グラフの両端N,N’が、図2(b),図3(a)に示した第1空洞層102の両側面端部に対応している。曲線401、402の比較から、最大撓み量が等しい両者の間で、実施例1の撓み形状は可動部304に相当する領域がより平坦であることが読み取れる。
 第2接続部3032の機能は下記のように機能する。静電気力による撓みが生じると、接続部3032の伸び変形によって、可動部304との結合部に引っ張り力が発生する。その結果、メンブレン105を曲げ戻す方向に曲げモーメントが発生し、可動部304を囲む輪郭線204に沿って屈曲403が生じる。その結果として、可動部304の中央部の撓みを抑制でき、メンブレンの最大振幅に対する所定比率以上の振幅比を有する振動面積を増加させることが可能となる。
 図3(a)において、説明を更に加えると、第2空洞層を挟んで、第1接続部3031、第2接続部3032、可動部304、および固定部302により平行リンク機構が構成されて、メンブレンの可動部を上下に変位させても可動部の中央部が放物線状に凹んでいき難くなるような引き上げる力を、2つの接続部で分担するような構造とすることで、図4に示すような放物線状形状402から、バスタブ状形状401にできる。
 なお、図2(a),(b)において、第2空洞層305の外周の輪郭線205が第1空洞層102の外形の輪郭とほぼ一致している例を示している。しかし、これは必ずしも一致させる必要はなく、第1空洞層102の外形の輪郭の近傍であれば、外側に位置しても、内側に位置してもよい。輪郭線205の位置により固定部302と接続部の境界の位置が変わることになる。
  ただし、第2空洞層305の内周の輪郭線204は、第1空洞層102の上面から見て、第1空洞層102の外形の輪郭の内側に位置することが必要である。
 次に、図面を用いて本実施例1に記載されたCMUT素子の製造方法を説明する。図5(a)~図15(a)は、図2(b)中のA-A’断面を示しており、図5(b)~図15(b)は、図2(b)中のB-B’断面を示している。
 まず、図5(a),(b)に示すように、基板301上にシリコン酸化膜による絶縁膜1031を500nm形成し、その後、アルミニウム合金膜からなる下部電極101を100nm形成する。そして、この下部電極101上にプラズマCVD(Chemical Vapor Deposition)法によりシリコン酸化膜による絶縁膜1032を200nm堆積させる。
 次に、図6(a),(b)に示すように、シリコン酸化膜からなる絶縁膜1032の上面に多結晶シリコン膜からなる犠牲層501をプラズマCVD法により約300nm堆積する。そして、フォトリソグラフィ技術とドライエッチング技術により、多結晶シリコン膜からなる犠牲層501を形成する。この残された部分がその後の工程で第1空洞層102となる。
  続いて、図7(a),(b)に示すように、犠牲層501、シリコン酸化膜からなる絶縁膜1032を覆うように、プラズマCVD法によりシリコン酸化膜からなる絶縁膜1033を200nm堆積する。
 次に、図8(a),(b)に示すように、上部電極104を形成するため、スパッタリング法によりアルミニウム合金膜を100nm堆積する。そして、フォトリソグラフィ技術とドライエッチング技術により、上部電極104を形成し、続いて、図9(a),(b)に示すように、上部電極104、シリコン酸化膜からなる絶縁膜1033を覆うように、プラズマCVD法によりシリコン酸化膜からなる絶縁膜1034を200nm堆積する。
 次に、図10(a),(b)に示すように、シリコン酸化膜からなる絶縁膜1034の上面に多結晶シリコン膜からなる犠牲層901をプラズマCVD法により200nm堆積する。そして、フォトリソグラフィ技術とドライエッチング技術により、多結晶シリコン膜からなる犠牲層901を形成する。図2に示す通り、犠牲層901は絶縁膜1034の上で上面から見て矩形状に連続した筒状に形成される。この残された部分がその後の工程で第2空洞層305となる。
  引続き、図11(a),(b)に示すように、犠牲層901、シリコン酸化膜からなる絶縁膜1034を覆うように、プラズマCVD法によりシリコン酸化膜からなる絶縁膜1035を200nm堆積する。
 続いて、図12(a),(b)に示すように、シリコン酸化膜からなる絶縁膜1035、1034、1033と、それらの絶縁膜に挟まれた犠牲層901に、フォトリソグラフィ技術とドライエッチング技術を使用して犠牲層501まで到達するウェットエッチング穴201を形成する。
  その後、図13(a),(b)に示すように、ウェットエッチング穴201を介して、犠牲層901、501を水酸化カリウムでウェットエッチングすることにより、空洞層305,102を形成する。
 次に、図14(a),(b)に示すように、ウェットエッチング穴201を埋め込んで、空洞層305,102を密封するために、プラズマCVD法によりシリコン窒化膜からなる絶縁膜1036を100nm堆積する。
  引き続き、図15(a),(b)に示すように、フォトリソグラフィ技術とドライエッチング技術を使用して、シリコン酸化膜からなる絶縁膜1036、1035、1034、1033、1032を貫通する下部電極101、上部電極104へのパッド開口部202,203を形成する。  以上のようにして、本実施例1におけるCMUT素子を形成することができる。
 なお、図2(b)において、CMUT素子は基板の上面から見て矩形の第1空洞層を有しているが、形状はこれに限らず、例えば、円形でも多角形でもよい。
 本実施例1において示したCMUT素子を構成する材料は、その組み合わせの一例を示したものであり、上部電極、下部電極の材料として、タングステンやその他の導電性を持つ材料にしてもよい。また、絶縁膜の材料については、必ずしも同一材料に限らない。例えば本実施例1では、接続部3032を構成する最上層の膜のみ、内部構造への水分の浸透を避けるためシリコン窒化膜としたが、他の絶縁膜でも良い。その場合、接続部3031、3032の剛性のアンバランスを回避するため、両者の膜厚を調節して、接続部3031、3032の剛性を調整すればよい。犠牲層の材料も、犠牲層の周りを囲む材料とのウェットエッチング選択性が確保することができればよい。したがって、多結晶シリコン膜の他に、SOG膜(Spin-on-Glass)あるいは金属膜などであってもよい。
 図16(b)は、実施例2における超音波トランスデューサ(CMUT)素子を、絶縁膜を取り除いて、空洞層、柔軟部材層の外形を輪郭線で表して、内部構成を示した上面図である。本実施例2では、実施例1における輪郭線204,205で囲まれる第2空洞層の領域内に代わりに柔軟部材1501を備えている。図17(a)は、前記CMUT素子を、図16(b)のC-C’線で切断した断面図である。図17(b)は図16(b)のD-D’線で切断した断面図である。
 図17(a)および図17(b)に示すように、実施例1では第2空洞層305となっていた領域に、柔軟部材1501が充填された構造である。実施例1で示したような第2の空洞層を設ける構成と同様の効果があり、柔軟部材層によって分離された第1,第2接続部3031、3032が平行リンク機構のごとく変形し、可動部304の撓みを抑制することが可能となり、メンブレンの所定の振幅比以上の振動面積を増加させることに対しては望ましい。
 実施例1のCMUT素子の製造プロセス中では、第2空洞層305の上層の絶縁膜1035,1036に割れや剥がれが生じ、CMUTデバイス完成時の歩留まりを低下させる可能性がある。一方、本実施例2のように、実施例1では第2空洞層305となっていた領域に、柔軟部材1501を充填することにより、柔軟部材1501の上層の絶縁膜1035、1036が割れたり、剥がれたりすることを抑制できる。この場合、柔軟部材1501の剛性(ヤング率)は、空洞になるべく近い方がよく、接続部3031、3032、可動部304、および固定部302を構成する絶縁膜のヤング率よりも小さいヤング率を持つ材料であると良い。具体的には絶縁膜のヤング率の1/10程度のヤング率を持つポリイミド等の有機材料が好ましい。
 また、本実施例2の柔軟部材層1501の製造方法は、犠牲層を使用してウェットエッチングは行わないので、ウェットエッチング穴201とは接続しない。
 図18は、実施例3における超音波トランスデューサ(CMUT)素子を、絶縁膜を取り除いて、空洞層の外形を輪郭線で表して、内部構成を示した上面図である。本実施例3は、実施例1と同様に輪郭線204と205で囲まれる領域内に第2空洞層305を備えた構造を有している。図19(a)は、図18(b)のE-E’線で切断した断面図である。図19(b)は図18(b)のF-F’線で切断した断面図である。
 実施例3のCMUT素子の特徴は、上面から見て矩形状の第1空洞層102の長手方向にのみ、上部電極104を挟んで2列の第2空洞層305を備え、この平行して配置された第2空洞層305により分離して形成された第1接続部3031と第2接続部3032によって、メンブレンの可動部304が支持されている。
  第1空洞層102が矩形状の場合、可動部304の振動を規定する固定部は第1空洞層102の長手方向の両側面の固定部であるため、その部分のみに第2空洞層を設ければ、接続部3031、3032が変形し、可動部304の撓みを抑制することが可能となり、メンブレンの所定の振幅比以上の振動面積を増加させることができる。
 また、図3で示したように、実施例1のような第1空洞層102の外周を第2空洞層305で囲む場合、上部電極104の引き出し線部の上部にも第2空洞層を設けることになる。そのような構成では、引き出し線部の上部の第2空洞層の上下の領域の接続部3031、3032の膜厚は上部電極104の分だけアンバランスとなり、メンブレンの振動時に、不要な振動が発生する可能性がある。一方、本実施例3に示した構成にすることにより、図19(a)、(b)で示すように、上部電極104の引き出し線部の上部に第2空洞層305を設けることなく、メンブレンの振動時に不要な振動が発生することを抑制できる。ただし、第1空洞層が円形や正六角形のような回転対称となる形状の場合は、実施例1で示した構成がよいことはいうまでもない。実施例3では、第1空洞層102の長手方向に2列の第2空洞層305を設けているが、ウェットエッチング穴201と接続するために、前記2列の第2空洞層305を接続する第2空洞層306を有している。
 また、本実施例3と上述した実施例2を組み合わせて、第2空洞層に柔軟材料を充填した構成でもよいことは明らかである。
  なお、実施例2、3においても、柔軟部材層1501、または第2空洞層305の外周の輪郭線205が第1空洞層102の外形の輪郭とほぼ一致している例を示している。しかし、これは必ずしも一致させる必要はなく、第1空洞層102の外形の輪郭の近傍であれば、外側に位置しても、内側に位置してもよい。
  ただし、柔軟部材層1501、または第2空洞層305の内周の輪郭線204は、第1空洞層102の上面から見て、第1空洞層102の外形の輪郭の内側に位置することが必要である。
 最後に、図20及び図21を参照しながら、超音波撮像装置における上述した各実施例のCMUT素子を備えた超音波撮像装置の一構成例とその役割について説明する。
  まず図20及び図21を参照して、本実施形態の超音波撮像装置の構成を説明する。図20は、超音波撮像装置の全体構成を示す斜視図、図21は、超音波撮像装置の機能を示すブロック図である。
 図20に示すように、超音波撮像装置2001は、超音波の送受信を行う超音波送受信回路や、超音波送受信回路が受信したエコー信号を処理し、検査対象の超音波画像を生成する信号処理回路などを収納する本体2005と、本体2005に接続され、超音波画像や操作者とのインターフェイスを行うためのGUIを表示する表示器2003と、操作者が操作する操作部2004と、本体2005に固定された接続部2006を介して超音波送受信回路に接続される超音波探触子2002と、を備えている。
  超音波探触子2002は、被検体に接触させて被検体との間で超音波を送受波する装置であり、多数のトランスデューサ素子を1次元または2次元アレイ状に配置した構造を有する超音波トランスデューサ2007と、音響レンズやバッキング材などを備えている。本実施形態の超音波撮像装置では、超音波トランスデューサ2007は、例えばCMUT素子を数百個~1万個程度の範囲で1次元または2次元アレイ状に配置して構成されている。
  なお図20では、一例として、本体2005の底部に車輪を備えた可動式の超音波撮像装置を示しているが、本実施形態は、検査室に固定された超音波撮像装置、ノート型やボックス型などの携帯型超音波撮像装置、その他、公知の超音波撮像装置に適用することができる。
 本体2005には、図21に示すように、上述した超音波送受信回路2111及び信号処理回路2112、制御部2113、メモリ部2114、電源装置2115、及び補助装置2116が備えられている。
  超音波送受信回路2111は、超音波探触子2002から超音波を送波するための駆動電圧を発生させたり、超音波探触子2002からエコー信号を受信するもので、遅延回路、フィルタ、ゲイン調整回路などを備えている。
  信号処理回路2112は、受信したエコー信号に対し、LOG圧縮、深度補正等の補正や画像作成等に必要な処理を行うもので、DSC(デジタルスキャンコンバータ)、カラードプラ回路、FFT解析部などを含んでいてもよい。信号処理回路2112による信号処理は、アナログ信号処理及びデジタル信号処理のいずれも可能であり、一部はソフトウェアで実現でき、またASIC(application specific integrated circuit)やFPGA(field-programmable gate array)で実現することも可能である。
 制御部2113は、本体2005の各回路や本体2005に接続された機器の制御を行う。メモリ部2114には、信号処理や制御に必要な情報やパラメータ及び処理結果が記憶される。電源装置2115は、超音波撮像装置の各部に、必要な電力を供給する。補助装置2116は、上述した各部のほかに、超音波撮像装置に付随する機能、例えば音声発生などを実現するためのもので、必要に応じて適宜追加される。
 なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明のより良い理解のために詳細に説明したのであり、必ずしも説明の全ての構成を備えるものに限定されものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることが可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
101 下部電極
102、305 空洞層
103 固定部(絶縁膜)
104 上部電極
105 メンブレン
106,107 絶縁膜
201 ウェットエッチング孔
202 下部電極への開口部
203 上部電極への開口部
204 可動部を囲む境界となる第2空洞層の輪郭線
205 接続部を囲む境界となる第2空洞層の輪郭線
301 基板
302 固定部
3031、3032 接続部
304 可動部
305 第2空洞層
306 実施例3における2列の第2空洞層を接続する第2空洞層
401 電圧印加時における実施例1の変位形状
402 電圧印加時における従来のCMUTの変位形状
403 実施例1の変位形状に生じた屈曲
501 犠牲層
1031,1032,1033,1034、1035、1036 絶縁膜
1501 柔軟部材
2001 超音波撮像装置
2002 超音波探触子
2003 表示部
2004 操作部
2005 本体部
2006 プローブ接続部
2007 超音波トランスデューサ
2111 超音波送受信部
2112 信号処理部
2113 制御部
2114 メモリ部
2115 電源装置
2116 補助装置

Claims (10)

  1.  基板と、
     前記基板の第1主面上に形成された下部電極と、
     前記下部電極上に形成された第1絶縁膜と、
     前記第1絶縁膜上に形成された第1空洞層と、
     前記第1空洞層上に形成された第2絶縁膜と、
     前記第2絶縁膜上に形成され、上面からみて前記第1空洞層と重なる位置に配置された上部電極と、
     前記上部電極上に形成された第3絶縁膜と、
     前記第3絶縁膜上に形成された第2空洞層と、
     前記第2空洞層上に形成された第4絶縁膜と、
     前記基板の第1主面の上面からみて、
     前記第1空洞層外周を取り囲む前記第2,3,4絶縁膜より成る固定部と、
     前記第1空洞層上に形成された前記第2,3,4絶縁膜と前記上部電極より成るメンブレンにおいて、前記第2空洞層より内側の領域になる可動部と、
     前記可動部と前記固定部を接続する前記第2,3,4絶縁膜より成る接続部として、第1接続部と、該第1接続部と間隔を隔てて積層して配置された第2接続部とを有することを特徴とする超音波トランスデューサ素子。
  2.  請求項1記載の超音波トランスデューサ素子において、
     前記第1接続部と前記第2接続部の間に前記第2空洞層を有することを特徴とする超音波トランスデューサ素子。
  3.  請求項1記載の超音波トランスデューサ素子において、
     前記第2空洞層に替えて、前記第3絶縁膜上に絶縁膜より弾性率の低い材料層が形成され、
     前記可動部は、前記メンブレンにおいて、前記第2空洞層に替えて前記弾性率の低い材料層より内側の領域になり、
     前記第1接続部と前記第2接続部の間に両接続部と比較して弾性率の低い前記材料層を有することを特徴とする超音波トランスデューサ素子。
  4.  前記第2の空洞層、または前記両接続部と比較して弾性率の低い材料層は、前記基板の第1主面の上面からみて前記第1空洞層の外周を縁取る連続した位置に、かつ前記第1空洞層と重なる位置に、配置されていることを特徴とする請求項2、または請求項3に記載の超音波トランスデューサ素子。
  5.  前記第2の空洞層、または前記両接続部と比較して弾性率の低い材料層は、前記基板の第1主面の上面からみて前記第1空洞層の対向する2辺に沿って少なくとも2列の帯状に連続して外周を縁取る位置に、かつ前記第1空洞層と重なる位置に、配置されていることを特徴とする請求項2、または請求項3に記載の超音波トランスデューサ素子。
  6.  前記第2の空洞層、または前記両接続部と比較して弾性率の低い材料層は、前記基板の第1主面の上面からみて前記第1空洞層と比較して、その内周部は前記第1空洞層と重なる位置に配置され、及びその外周部の一部、または全てが前記第1空洞層の外形の輪郭より外側の領域に配置されていることを特徴とする請求項2、または請求項3に記載の超音波トランスデューサ素子。
  7.  請求項1記載の超音波トランスデューサ素子において、
     前記基板の第1主面の上面からみて前記第1空洞層の外形形状が矩形、円形、または六角形であることを特徴とする超音波トランスデューサ素子。
  8.  基板の第1主面に形成される超音波トランスデューサ素子の製造方法であって、
    (a)前記基板の第1主面上に第1電極を形成する工程と、
    (b)前記電極上に第1絶縁膜を形成する工程と、
    (c)前記第1絶縁膜上に、前記第1電極と上面からみて重なる配置に第1犠牲層を形成する工程と、
    (d)前記第1犠牲層上に第2絶縁膜を形成する工程と、
    (e)前記第2絶縁膜上に形成され、上面からみて前記第1犠牲層と重なる配置に第2電極を形成する工程と、
    (f)前記第2電極上に第3絶縁膜を形成する工程と、
    (g)前記第3絶縁膜上に、前記第1犠牲層の外周に重なる配置に第2犠牲層を形成する工程と、
    (h)前記第2犠牲層と前記第3絶縁膜上に第4絶縁膜を形成する工程と、
    (i)前記第4絶縁膜、前記第2犠牲層、前記第3絶縁膜、及び前記第2絶縁膜を貫通し、前記第1犠牲層に到達する開口部を形成する工程と、
    (j)前記開口部を介して、前記第1、第2犠牲層を除去して第1、第2空洞層を形成して、第1空洞層と第2空洞層の間に第1接続部を、第2空洞層の上部に第2接続部を形成する工程と、
    (k)前記第4絶縁膜上に第5絶縁膜を形成し、前記開口部を封止する工程と、
    を有することを特徴とする超音波トランスデューサ素子の製造方法。
  9.  請求項8記載の超音波トランスデューサ素子の製造方法において、
     前記(g)の工程に替えて、前記第3絶縁膜上に、前記第1犠牲層の外周に重なる配置に前記絶縁膜と比較して弾性率の低い材料層を形成する工程と、
     前記(h)の工程に替えて、前記弾性率の低い材料層と前記第3絶縁膜上に第4絶縁膜を形成する工程と、
     前記(i)の工程に替えて、前記第4絶縁膜、前記第3絶縁膜、及び前記第2絶縁膜を貫通し、前記第1犠牲層に到達する開口部を形成する工程と、
     前記(j)の工程に替えて、前記開口部を介して、前記第1犠牲層を除去して第1空洞層を形成して、第1空洞層と前記弾性率の低い材料層の間に第1接続部を、前記弾性率の低い材料層の上部に第2接続部を形成する工程と、
    を有することを特徴とする超音波トランスデューサ素子の製造方法。
  10.  請求項1乃至7のいずれかの請求項に記載の超音波トランスデューサ素子を1次元または2次元アレイ状に配置した超音波トランスデューサを備えた超音波探触子を有することを特徴とする超音波撮像装置。
PCT/JP2015/066236 2015-06-04 2015-06-04 超音波トランスデューサ素子、その製造方法及び超音波撮像装置 WO2016194208A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2015/066236 WO2016194208A1 (ja) 2015-06-04 2015-06-04 超音波トランスデューサ素子、その製造方法及び超音波撮像装置
JP2017521459A JP6636516B2 (ja) 2015-06-04 2015-06-04 超音波トランスデューサ素子、及び超音波撮像装置
US15/579,383 US10610890B2 (en) 2015-06-04 2015-06-04 Ultrasonic transducer element, method of manufacturing the same, and ultrasonic image pickup device
EP15894241.7A EP3306952B1 (en) 2015-06-04 2015-06-04 Ultrasonic transducer element, method for manufacturing same, and ultrasonic image pickup device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/066236 WO2016194208A1 (ja) 2015-06-04 2015-06-04 超音波トランスデューサ素子、その製造方法及び超音波撮像装置

Publications (1)

Publication Number Publication Date
WO2016194208A1 true WO2016194208A1 (ja) 2016-12-08

Family

ID=57441914

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/066236 WO2016194208A1 (ja) 2015-06-04 2015-06-04 超音波トランスデューサ素子、その製造方法及び超音波撮像装置

Country Status (4)

Country Link
US (1) US10610890B2 (ja)
EP (1) EP3306952B1 (ja)
JP (1) JP6636516B2 (ja)
WO (1) WO2016194208A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10610890B2 (en) * 2015-06-04 2020-04-07 Hitachi, Ltd. Ultrasonic transducer element, method of manufacturing the same, and ultrasonic image pickup device
CN111954129A (zh) * 2020-08-14 2020-11-17 美特科技(苏州)有限公司 一种扬声器模块
WO2023067965A1 (ja) * 2021-10-21 2023-04-27 株式会社メムス・コア 音響誘導型半導体素子及び音響素子集積回路

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110287617B (zh) * 2019-06-28 2022-09-27 中北大学 一种大功率超声换能器的设计及相关参数求解方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007046180A1 (ja) * 2005-10-18 2007-04-26 Hitachi, Ltd. 超音波トランスデューサ、超音波探触子および超音波撮像装置
JP2009182838A (ja) * 2008-01-31 2009-08-13 Kyoto Univ 弾性波トランスデューサ、弾性波トランスデューサアレイ、超音波探触子、超音波撮像装置
JP2011507561A (ja) * 2007-12-03 2011-03-10 コロ テクノロジーズ インコーポレイテッド 積層型変換デバイス
WO2014103334A1 (ja) * 2012-12-28 2014-07-03 コニカミノルタ株式会社 超音波振動子セル、超音波プローブ、及び超音波振動子セルの制御方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4632853B2 (ja) 2005-05-13 2011-02-16 オリンパスメディカルシステムズ株式会社 静電容量型超音波振動子とその製造方法
US8483014B2 (en) 2007-12-03 2013-07-09 Kolo Technologies, Inc. Micromachined ultrasonic transducers
WO2009097576A2 (en) * 2008-01-30 2009-08-06 Temte John D Interactive system and method for transacting business over a network
JP2012004926A (ja) 2010-06-18 2012-01-05 Konica Minolta Medical & Graphic Inc プローブ及び超音波診断装置
WO2016194208A1 (ja) * 2015-06-04 2016-12-08 株式会社日立製作所 超音波トランスデューサ素子、その製造方法及び超音波撮像装置
JP6763731B2 (ja) * 2016-09-28 2020-09-30 株式会社日立製作所 超音波トランスデューサ、その製造方法および超音波撮像装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007046180A1 (ja) * 2005-10-18 2007-04-26 Hitachi, Ltd. 超音波トランスデューサ、超音波探触子および超音波撮像装置
JP2011507561A (ja) * 2007-12-03 2011-03-10 コロ テクノロジーズ インコーポレイテッド 積層型変換デバイス
JP2009182838A (ja) * 2008-01-31 2009-08-13 Kyoto Univ 弾性波トランスデューサ、弾性波トランスデューサアレイ、超音波探触子、超音波撮像装置
WO2014103334A1 (ja) * 2012-12-28 2014-07-03 コニカミノルタ株式会社 超音波振動子セル、超音波プローブ、及び超音波振動子セルの制御方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3306952A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10610890B2 (en) * 2015-06-04 2020-04-07 Hitachi, Ltd. Ultrasonic transducer element, method of manufacturing the same, and ultrasonic image pickup device
CN111954129A (zh) * 2020-08-14 2020-11-17 美特科技(苏州)有限公司 一种扬声器模块
US11330365B2 (en) 2020-08-14 2022-05-10 Merry Electronics(Suzhou) Co., Ltd. Speaker module
WO2023067965A1 (ja) * 2021-10-21 2023-04-27 株式会社メムス・コア 音響誘導型半導体素子及び音響素子集積回路

Also Published As

Publication number Publication date
JP6636516B2 (ja) 2020-01-29
US20180161813A1 (en) 2018-06-14
JPWO2016194208A1 (ja) 2018-05-24
EP3306952A1 (en) 2018-04-11
US10610890B2 (en) 2020-04-07
EP3306952B1 (en) 2020-11-04
EP3306952A4 (en) 2019-01-09

Similar Documents

Publication Publication Date Title
JP5486689B2 (ja) 超音波トランスデューサおよびそれを用いた超音波診断装置
US20070222338A1 (en) Ultrasonic transducer, ultrasonic probe and method for fabricating the same
US8687466B2 (en) Cell, element of ultrasonic transducer, ultrasonic transducer including the same, and method of manufacturing cell of ultrasonic transducer
US8727994B2 (en) Cell and channel of ultrasonic transducer, and ultrasonic transducer including the same
JP5851238B6 (ja) 超音波トランスデューサ、その製造方法、および、それを用いた超音波探触子
WO2016194208A1 (ja) 超音波トランスデューサ素子、その製造方法及び超音波撮像装置
US20130049526A1 (en) Ultrasonic transducer and method of manufacturing the same
JP2013065983A (ja) 電気機械変換装置、及びその製造方法
WO2018061395A1 (ja) 超音波トランスデューサ、その製造方法および超音波撮像装置
EP3546073B1 (en) Ultrasound probe and ultrasound diagnostic apparatus
JP6267787B2 (ja) 超音波トランスデューサ及びその製造方法、並びに超音波検査装置
KR20160011104A (ko) 초음파 변환기 및 초음파 변환기의 제조 방법
JP6752727B2 (ja) 超音波トランスデューサおよび超音波撮像装置
JP6390428B2 (ja) 超音波振動子セル、超音波プローブ、及び超音波振動子セルの制御方法
JP7127554B2 (ja) 超音波プローブ、及び超音波診断装置
US11376628B2 (en) Capacitive device and piezoelectric device
JP6470406B2 (ja) 超音波トランスデューサおよび超音波検査装置
US20230002213A1 (en) Micro-machined ultrasound transducers with insulation layer and methods of manufacture

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15894241

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017521459

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15579383

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2015894241

Country of ref document: EP