WO2016194154A1 - 光情報記録装置および光情報記録方法、光情報再生装置および光情報再生方法 - Google Patents

光情報記録装置および光情報記録方法、光情報再生装置および光情報再生方法 Download PDF

Info

Publication number
WO2016194154A1
WO2016194154A1 PCT/JP2015/065972 JP2015065972W WO2016194154A1 WO 2016194154 A1 WO2016194154 A1 WO 2016194154A1 JP 2015065972 W JP2015065972 W JP 2015065972W WO 2016194154 A1 WO2016194154 A1 WO 2016194154A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
page data
signal
optical
dimensional
Prior art date
Application number
PCT/JP2015/065972
Other languages
English (en)
French (fr)
Inventor
和幸 田島
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to JP2017521407A priority Critical patent/JP6297219B2/ja
Priority to PCT/JP2015/065972 priority patent/WO2016194154A1/ja
Publication of WO2016194154A1 publication Critical patent/WO2016194154A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/04Processes or apparatus for producing holograms
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/26Processes or apparatus specially adapted to produce multiple sub- holograms or to obtain images from them, e.g. multicolour technique
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/10Digital recording or reproducing
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/004Recording, reproducing or erasing methods; Read, write or erase circuits therefor
    • G11B7/0065Recording, reproducing or erasing by using optical interference patterns, e.g. holograms
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector

Definitions

  • the present invention relates to an apparatus and method for recording information on a recording medium or reproducing information from the recording medium using holography.
  • Patent Document 1 JP-A-2004-272268
  • Patent Document 2 JP-A-2004-272268
  • the “Summary” of this publication discloses a multiplexing method and apparatus in which holograms are spatially multiplexed by partial spatial overlap between adjacent stacks of holograms. Can take full advantage of other multiplexing techniques such as wavelength, phase code, peritropy, or fractal multiplexing, etc.
  • An amount equal to the beam waist of the signal light writing the hologram separates the individual stacks of holograms
  • a hologram and a hologram adjacent to the hologram are all read out at the same time.By arranging a filter at the beam waist of the reproduced data, the read out adjacent hologram is transmitted to the camera surface. Or these undesired reproductions have a limited angular passband. In the optical system, it is described that may be filtered. "By the intermediate plane of the angular filter.
  • Patent Document 2 “Summary” of Japanese Patent Application Laid-Open No. 2014-53069 (Patent Document 2) states that “in an optical information recording / reproducing apparatus for recording information using holography, an array of pixels of a two-dimensional spatial light modulator in one direction”
  • the lower limit value of the continuous number of recorded data that has been multi-valued while suppressing the complexity of processing is set to K (K ⁇ 2, K: natural number).
  • Two-dimensional encoding pattern of real part page data (Example 1) Two-dimensional encoding pattern of imaginary part page data (Example 1) Two-dimensional encoding pattern of complex amplitude page data (Example 1) Schematic diagram showing an embodiment of an optical information recording / reproducing apparatus
  • Two-dimensional encoding pattern of imaginary part page data (Example 1)
  • Two-dimensional encoding pattern of complex amplitude page data (Example 1)
  • Schematic diagram showing an embodiment of an optical information recording / reproducing apparatus Schematic diagram showing an embodiment of a pickup in an optical information recording / reproducing apparatus (recording principle)
  • FIG. 7 is a diagram illustrating an operation flow of a signal generation circuit in the present embodiment (embodiment 5). Diagram showing how to convert complex amplitude information to amplitude information
  • FIG. 6 is a diagram illustrating an operation flow of a signal processing circuit in the present embodiment (sixth embodiment). Diagram showing signal arrangement of amplitude information Diagram showing signal arrangement of phase information and schematic diagram showing signal arrangement of phase information Diagram showing how to separate the real part from the phase information Diagram showing how to separate imaginary part from phase information
  • the figure showing the opening size in the continuous number lower limit K 1 of an information signal
  • the figure showing the opening size in the continuous number lower limit K 2 of an information signal
  • FIG. 2 is a block diagram showing a recording / reproducing apparatus of an optical information recording medium for recording and / or reproducing digital information using holography.
  • the optical information recording / reproducing device 10 is connected to an external control device 91 via an input / output control circuit 90.
  • the optical information recording / reproducing apparatus 10 receives the information signal to be recorded from the external control device 91 by the input / output control circuit 90.
  • the optical information recording / reproducing apparatus 10 transmits the reproduced information signal to the external control apparatus 91 by the input / output control circuit 90.
  • the optical information recording / reproducing apparatus 10 includes a pickup 11, a reproduction reference light optical system 12, a cure optical system 13, a disk rotation angle detection optical system 14, and a rotation motor 50.
  • the optical information recording medium 1 is a rotation motor. 50 can be rotated.
  • the pickup 11 plays the role of irradiating the optical information recording medium 1 with reference light and signal light and recording digital information on the recording medium using holography.
  • the information signal to be recorded is sent by the controller 89 to the spatial light modulator in the pickup 11 via the signal generation circuit 86, and the signal light is modulated by the spatial light modulator.
  • the reproduction reference light optical system 12 When reproducing the information recorded on the optical information recording medium 1, the reproduction reference light optical system 12 generates a light wave that causes the reference light emitted from the pickup 11 to enter the optical information recording medium in a direction opposite to that during recording. Generate. Reproduction light reproduced by the reproduction reference light is detected by a photodetector (to be described later) in the pickup 11, and a signal is reproduced by the signal processing circuit 85.
  • the irradiation time of the reference light and the signal light applied to the optical information recording medium 1 can be adjusted by controlling the opening / closing time of the shutter in the pickup 11 via the shutter control circuit 87 by the controller 89.
  • the cure optical system 13 plays a role of generating a light beam used for pre-cure and post-cure of the optical information recording medium 1.
  • Precure is a pre-process for irradiating a predetermined light beam in advance before irradiating the desired position with reference light and signal light when recording information at a desired position in the optical information recording medium 1.
  • Post-cure is a post-process for irradiating a predetermined light beam after recording information at a desired position in the optical information recording medium 1 so that additional recording cannot be performed at the desired position.
  • the disk rotation angle detection optical system 14 is used to detect the rotation angle of the optical information recording medium 1.
  • a signal corresponding to the rotation angle is detected by the disk rotation angle detection optical system 14, and a disk rotation motor control circuit is detected by the controller 89 using the detected signal.
  • the rotation angle of the optical information recording medium 1 can be controlled via 88.
  • a predetermined light source driving current is supplied from the light source driving circuit 82 to the light sources in the pickup 11, the cure optical system 13, and the disk rotation angle detection optical system 14, and each light source emits a light beam with a predetermined light amount. Can do.
  • the pickup 11 and the disc cure optical system 13 are provided with a mechanism capable of sliding the position in the radial direction of the optical information recording medium 1, and position control is performed via the access control circuit 81.
  • the recording technique using the principle of angle multiplexing of holography tends to have a very small tolerance for the deviation of the reference beam angle. Therefore, a mechanism for detecting the deviation amount of the reference beam angle is provided in the pickup 11, a servo control signal is generated by the servo signal generation circuit 83, and the deviation amount is corrected via the servo control circuit 84. It is necessary to provide a servo mechanism for this purpose in the optical information recording / reproducing apparatus 10. Further, the pickup 11, the cure optical system 13, and the disk rotation angle detection optical system 14 may be simplified by combining several optical system configurations or all optical system configurations.
  • FIG. 3 shows a recording principle in an example of a basic optical system configuration of the pickup 11 in the optical information recording / reproducing apparatus 10.
  • the light beam emitted from the light source 301 passes through the collimator lens 302 and enters the shutter 303.
  • the shutter 303 When the shutter 303 is open, after the light beam passes through the shutter 303, the optical ratio of the p-polarized light and the s-polarized light becomes a desired ratio by the optical element 304 composed of, for example, a half-wave plate.
  • the optical element 304 composed of, for example, a half-wave plate.
  • the light is incident on a PBS (Polarization Beam Splitter) prism 305.
  • PBS Polarization Beam Splitter
  • the light beam that has passed through the PBS prism 305 functions as signal light 306, and after the light beam diameter is expanded by the beam expander 308, the light beam passes through the phase mask 309, the relay lens 310, and the PBS prism 311 and passes through the spatial light modulator 312. Is incident on.
  • the signal light to which information is added by the spatial light modulator 312 reflects the PBS prism 311 and propagates through the relay lens 313 and the opening 314. Thereafter, the signal light is condensed on the optical information recording medium 1 by the objective lens 315.
  • the light beam reflected from the PBS prism 305 functions as reference light 307 and is set to a predetermined polarization direction according to recording or reproduction by the polarization direction conversion element 316 and then galvano- lated via the mirror 317 and the mirror 318. Incident on the mirror 319. Since the angle of the galvanometer mirror 319 can be adjusted by the actuator 320, the incident angle of the reference light incident on the optical information recording medium 1 after passing through the lens 321 and the lens 322 can be set to a desired angle. In order to set the incident angle of the reference light, an element that converts the wavefront of the reference light may be used instead of the galvanometer mirror.
  • the signal light and the reference light are incident on the optical information recording medium 1 so as to overlap each other, whereby an interference fringe pattern is formed in the recording medium, and information is recorded by writing this pattern on the recording medium.
  • the incident angle of the reference light incident on the optical information recording medium 1 can be changed by the galvanometer mirror 319, recording by angle multiplexing is possible.
  • holograms recorded in the same area with different reference beam angles holograms corresponding to each reference beam angle are called pages, and a set of pages angle-multiplexed in the same area is called a book. .
  • FIG. 4 shows the principle of reproduction in an example of the basic optical system configuration of the pickup 11 in the optical information recording / reproducing apparatus 10.
  • the reference light is incident on the optical information recording medium 1 as described above, and the light beam transmitted through the optical information recording medium 1 is reflected by the galvanometer mirror 324 whose angle can be adjusted by the actuator 323.
  • the reproduction reference light is generated.
  • the reproduction light reproduced by the reproduction reference light propagates through the objective lens 315, the relay lens 313, and the opening 314. Thereafter, the reproduction light passes through the PBS prism 311 and enters the photodetector 325, and the recorded signal can be reproduced.
  • the photodetector 325 for example, an image sensor such as a CMOS image sensor or a CCD image sensor can be used. However, any element may be used as long as page data can be reproduced.
  • FIG. 5 shows an operation flow of recording and reproduction in the optical information recording / reproducing apparatus 10.
  • FIG. 5a shows an operation flow from when the optical information recording medium 1 is inserted into the optical information recording / reproducing apparatus 10 until preparation for recording or reproduction is completed.
  • FIG. 5b shows information from the ready state to the optical information recording medium 1.
  • FIG. 5 c shows an operation flow until the information recorded on the optical information recording medium 1 is reproduced from the ready state.
  • the optical information recording / reproducing apparatus 10 discriminates whether or not the inserted medium is a medium for recording or reproducing digital information using holography, for example (S501). S502). As a result of disc discrimination, when it is determined that the optical information recording medium records or reproduces digital information using holography, the optical information recording / reproducing apparatus 10 reads control data provided on the optical information recording medium (S503). ), For example, information relating to the optical information recording medium and information relating to various setting conditions during recording and reproduction, for example.
  • the access control circuit 81 is controlled to position the pickup 11 and the cure optical system 13 at predetermined positions on the optical information recording medium.
  • the optical information recording medium 1 has address information, it reproduces the address information, checks whether it is positioned at the target position, and calculates the amount of deviation from the predetermined position if it is not positioned at the target position. And repeat the positioning operation.
  • a predetermined area is precured using the light beam emitted from the cure optical system 13 (S514), and data is recorded using the reference light and signal light emitted from the pickup 11 (S515).
  • post cure is performed using the light beam emitted from the cure optical system 13 (S516). Data may be verified as necessary.
  • the operation flow from the ready state to the reproduction of recorded information is as follows.
  • the access control circuit 81 is controlled to pick up the pickup 11 and the reproduction reference light optical system 12. Is positioned at a predetermined position on the optical information recording medium.
  • the optical information recording medium 1 has address information, it reproduces the address information, checks whether it is positioned at the target position, and calculates the amount of deviation from the predetermined position if it is not positioned at the target position. And repeat the positioning operation. Thereafter, reference light is emitted from the pickup 11, information recorded on the optical information recording medium is read (S522), and reproduction data is transmitted (S523).
  • FIG. 6 is a block diagram of the signal generation circuit 86 of the optical information recording / reproducing apparatus 10.
  • the input / output control circuit 90 notifies the controller 89 that the input of user data has started.
  • the controller 89 receives the notification from the input / output circuit 90 and instructs the signal generation circuit 86 to record the data for one page input from the input / output control circuit 90.
  • a processing command from the controller 89 is notified to the sub-controller 601 in the signal generation circuit 86 via the control line 609.
  • the sub-controller 601 controls each signal processing circuit via the control line 609 so that the signal processing circuits are operated in parallel.
  • the memory control circuit 603 is controlled to store the user data input from the input / output control circuit 90 via the data line 610 in the memory 602.
  • the CRC calculation circuit 604 performs control to convert the user data into CRC.
  • the CRC-converted data is scrambled by adding a pseudo-random data sequence by the scramble circuit 605, and the error correction encoding circuit 606 performs error correction encoding by adding the parity data sequence.
  • two-dimensional modulation is performed based on the modulation rule so that the lower limit value of the continuous number of information signals recorded by the two-dimensional modulation circuit 607 is K (K ⁇ 2, L: natural number).
  • the pickup interface circuit 608 reads the two-dimensionally modulated data in the order of arrangement of the two-dimensional data on the spatial light modulator 312, adds a reference marker at the time of reproduction, and then the spatial light modulator in the pickup 11. Two-dimensional data is transferred to 312.
  • the spatial filter shown here is an example and is not limited to this shape.
  • FIG. 17a shows the arrangement of information signals when binary amplitude information of “0” and “1” is recorded. Since the value of the imaginary part is 0 in the amplitude information, the information signals are naturally aligned on the horizontal axis.
  • FIG. 17b shows an arrangement of information signals when binary phase information of “(1 + j) / ⁇ 2” and “( ⁇ 1 ⁇ j) / ⁇ 2” is handled as an example. Since the value of the imaginary part is not 0, the information signal is arranged on the horizontal axis.
  • phase information when phase information is handled, it is expressed in the form of complex amplitude, but it is equivalent even if expressed in the form of 0 to 2 ⁇ .
  • “(1 + j) / ⁇ 2” represents phase information equivalent to “ ⁇ / 4”.
  • the two-dimensional data representing the phase information can be expressed, for example, by adding two pages.
  • the two pages of the two-dimensional data that are two-dimensionally modulated by the two-dimensional modulation circuit 607 are respectively used as the real part page / imaginary part. Assign as a department page.
  • the real part data that has been two-dimensionally modulated is stored once by the real part data storage circuit (611). Is done.
  • the real part data is stored once, but the imaginary part data may be stored once, or both the real part data and the imaginary part data may be stored.
  • FIG. 7 is a block diagram of the signal processing circuit 85 of the optical information recording / reproducing apparatus 10.
  • the controller 89 instructs the signal processing circuit 85 to reproduce the data for one page input from the pickup 11.
  • the recorded data is amplitude information
  • the image data can be easily detected by the photodetector 325, but when the recorded data is phase information, a detector capable of detecting the phase information is provided. It is necessary to perform phase detection using a phase difference detection method represented by a method such as a fringe scan method.
  • a processing command from the controller 89 is notified to the sub-controller 701 in the signal processing circuit 85 via the control line 712.
  • the sub-controller 701 controls each signal processing circuit via the control line 712 so that the signal processing circuits are operated in parallel.
  • the memory control circuit 703 is controlled to store the image data input from the pickup 11 via the pickup interface circuit 711 via the data line 713 in the memory 702.
  • the image position detection circuit 710 performs control to detect a marker from the image data stored in the memory 702 and extract an effective data range.
  • the image distortion correction circuit 709 uses the detected marker to perform distortion correction such as image inclination, magnification, and distortion, and performs control to convert the image data to the expected two-dimensional data size.
  • the dimension equalization circuit 101 performs control to remove intersymbol interference of two-dimensional data.
  • two-dimensional demodulation is performed by the two-dimensional demodulation circuit 707 according to the modulation rule used at the time of the modulation and recording.
  • the recorded information signal is phase information and the two-dimensional modulation at the time of signal generation is processed separately for the real part and the imaginary part, the data is separated into the real part and the imaginary part, It becomes possible to add the real part and the imaginary part after demodulation.
  • a block diagram of the two-dimensional demodulation circuit 707 in this case is shown in FIG.
  • FIG. 18 shows an outline of a method for separating the real part and the imaginary part in the real part / imaginary part data separation circuit.
  • FIG. 18 shows four values of “(1 + j) / ⁇ 2”, “(1 ⁇ j) / ⁇ 2”, “( ⁇ 1 + j) / ⁇ 2”, and “( ⁇ 1 ⁇ j) / ⁇ 2”.
  • FIG. 18A shows the signal arrangement when phase information is recorded.
  • FIG. 18A shows the cosine of each of the four signal points, thereby moving the signal point on the horizontal axis and separating the binary part of the real part.
  • 18b calculates the sine of each of the four signal points, thereby moving the signal points on the vertical axis and separating the binary value of the imaginary part.
  • the recording data is a multi-value information signal
  • the error correction circuit 706 corrects an error included in each data string, and the scramble release circuit 705 cancels the scramble to add the pseudo random number data string, and then the CRC calculation circuit 704 detects an error in the user data on the memory 702. Check not included. Thereafter, user data is transferred from the memory 702 to the input / output control circuit 90.
  • FIG. 8 shows a data processing flow at the time of recording.
  • Data processing at the time of recording will be described with reference to FIG.
  • the signal generation circuit 86 receives user data (S801), it is divided into a plurality of data strings and each data string is converted to CRC (S802) so that error detection during reproduction can be performed, and the number of on pixels and the number of off pixels are substantially equal.
  • CRC CRC
  • S803 scramble
  • S804 error correction coding
  • the lower limit value of the continuous number of information signals is set to K (K ⁇ 2, K: natural number).
  • Two-dimensional modulation (S805) is performed based on the modulation rule.
  • this data string is converted into M ⁇ N two-dimensional data, and the two-dimensional data for one page (S806) is formed by repeating the data for one page data.
  • a marker serving as a reference for image position detection and image distortion correction during reproduction is added (S807).
  • the even / odd number of the recorded page data is determined (S808). If the page data is even, the page data is executed once. The data is stored in the partial data storage circuit (611) (S809), and the processes of S801 to S807 are performed again. If the page data is odd, the previous even page data is stored, so that the even page data is added as the real part of the complex amplitude and the odd page data is added as the imaginary part to generate an information signal of phase information (S810). Then, the data is transferred to the spatial light modulator 312 (S811). Note that the data processing in FIG.
  • Image data detected by the photodetector 325 is transferred to the signal processing circuit 85 (S901).
  • An image position is detected with reference to a marker included in the image data (S902), distortion such as inclination, magnification, and distortion of the image is corrected (S903), and then intersymbol interference removal by two-dimensional equalization processing (S904) ) And binarization processing (S905), and by removing the marker (S906), two-dimensional data for one page is acquired (S907).
  • FIG. 1 is an example of a two-dimensional pattern that is two-dimensionally encoded in the first embodiment.
  • FIG. 1a shows two-dimensional data to be assigned to the real part of the information signal. The values are assumed to be a and b (a and b: real numbers).
  • the feature of this pattern is that the lower limit value of the continuous number of a / b in the arrangement for one direction is restricted to K (K ⁇ 2, K: natural number).
  • K K
  • K natural number
  • FIG. 1b shows two-dimensional data to be assigned to the imaginary part of the information signal, and the values are assumed to be c and d (c, d: real number).
  • c, d real number
  • FIG. 1c is a two-dimensional pattern generated by adding FIG. 1a and FIG. 1b.
  • 1c are “1 + j”, “1-j”, “ ⁇ 1 + j”, “ ⁇ 1 ⁇ j”. 4 values. These four values are equivalent to the expressions “ ⁇ / 4”, “3 ⁇ / 4”, “5 ⁇ / 4”, and “7 ⁇ / 4”, respectively.
  • the values that can be taken in FIG. 1c are the four values a + jc, a + jd, b + jc, and b + jd.
  • the lower limit value of the continuous number of values of each page of the real part / imaginary part of the complex amplitude is K (K ⁇ 2, K: natural number). ), And the value obtained by adding the real part and the imaginary part does not need to follow the restriction.
  • the lower limit value K is determined by the continuous number of values of each page of the real part / imaginary part.
  • the aperture size can be reduced to 1 / K.
  • each of the quaternary values must comply with the constraints.
  • the complexity of modulation becomes a problem.
  • the state transition path is 16 ⁇ 16.
  • 256 ways are 256 ways.
  • This embodiment is different from the first embodiment in that the restriction on the number of continuous information signals in two-dimensional encoding is simultaneously applied in two directions as shown in FIG.
  • the lower limit value of the information signal is limited to only one direction, whereas in this embodiment, the lower limit value of the continuous number in the array in one direction is K (K ⁇ 2, K: natural number), and orthogonal thereto.
  • the lower limit of the number of consecutive numbers in the array in the direction to be applied is restricted to L (L ⁇ 2, L: natural number).
  • L ⁇ 2, L natural number
  • This embodiment is different from the first embodiment in that a plurality of pages of data are generated and two-dimensionally encoded in parallel by different circuits.
  • a processing flow at the time of data recording in the present embodiment will be described with reference to FIG. FIG. 12 differs from FIG. 8 in that the recording data for two pages is received collectively (S1201), and then the even / odd page determination of the recording data is performed (S1202), and the odd and even pages are paralleled in different flows. There is a place to process.
  • Real part two-dimensional modulation (S1213) is performed for even pages
  • imaginary part two-dimensional modulation (S1206) is performed for odd pages.
  • the signal generation circuit 86 separately holds the real part two-dimensional modulation part and the imaginary part two-dimensional modulation part, thereby enabling two-dimensional modulation different between the real part and the imaginary part.
  • the real part and the imaginary part are processed separately only in the two-dimensional modulation part.
  • any process included in the information signal generation flow can be performed regardless of the processing contents of the real part and the imaginary part. I do not care. As a result, the two-dimensional data of the real part and the imaginary part can be freely changed.
  • This embodiment differs from Embodiment 1 in that when recording a hologram, signal light irradiation for recording the real part of the information signal and signal light irradiation for recording the imaginary part are performed separately.
  • a multilevel information signal is displayed by a spatial light modulator and a hologram is recorded by one signal light irradiation.
  • a different binary information signal is irradiated twice by a signal light. Record the hologram.
  • a processing flow at the time of data recording in the present embodiment is shown in FIG.
  • FIG. 13 differs from FIG. 8 in that even if it is an even page or an odd page, the pattern is transferred to the spatial light modulator (S1308), and the odd / even page data is determined after the pattern transfer (S1309). If the number is even, the data is received again (S1301), the odd page data is created, and the pattern is transferred again to the spatial light modulator as the imaginary part (S1308).
  • This embodiment is different from the first embodiment in that the information signal expressed in complex amplitude is again replaced with a signal having only amplitude and recorded.
  • the information signal represented by the complex amplitude is displayed and recorded by the spatial light modulator.
  • the multi-value information signal represented by only the amplitude is displayed and recorded by the spatial light modulator. To do.
  • a processing flow at the time of data reproduction in this embodiment is shown in FIG.
  • FIG. 14 differs from FIG. 8 in that even-numbered pages and odd-numbered pages are added to create a complex amplitude information signal (S1410), and the complex amplitude information signal is then replaced again with an amplitude-only information signal (S1411). .
  • An example of replacing complex amplitude information with amplitude information is shown in FIG.
  • the arrangement of signal points is on the real axis. For example, the four values may be set to “ ⁇ 2”, “2 ⁇ 2 / 3”, “ ⁇ 2 / 3”, and “0”.
  • the maximum value of the quaternary amplitude is ⁇ 2, and the interval between the quaternary signal points is equal.
  • any value range and any correspondence can be used as long as the value does not include an imaginary number. It does not matter if the signal points are not equally spaced.
  • This embodiment is different from the first embodiment in that when reproducing complex amplitude information, the coherent light is irradiated simultaneously with the reproduction light to detect the real part and the imaginary part separately. That is.
  • the interference light can be generated by using the light source (301). For example, by replacing the PBS prism (304, 311) with a half mirror during signal reproduction in FIG. 4, half of the reference light (307) interferes. It reaches the photodetector (325) as light. Further, for example, the phase of the interference light can be changed by replacing the phase mask (309) with an optical element such as a ⁇ / 4 plate, and the reference light is irradiated twice by changing the phase of the interference light by ⁇ / 2. Thus, real part reproduction / imaginary part reproduction of signal information can be switched.
  • a complex amplitude information signal is reproduced by one reference light irradiation, and the real part and the imaginary part are separated by reproduction signal processing.
  • the reproduced information signal is acquired.
  • the real part and the imaginary part are separated.
  • a processing flow at the time of data reproduction in this embodiment is shown in FIG.
  • the real part / imaginary part of the reproduced data is determined after error detection (821) (S1612), and the data is the real part.
  • the real part is temporarily stored (S1613), and the reproduced image is acquired again by the photodetector (811). If the data is an imaginary part, the stored real part is added (S1614), and the reproduction data is transmitted as multi-value data of complex amplitude (S1615). Since the real part data and the imaginary part data to be added are reproduced from the hologram recorded at the same location on the recording medium, the movement of the reference light irradiation angle and position is determined as the imaginary part by the real part / imaginary part judgment. Do.
  • the processing load can be reduced.
  • the second data can be determined as the imaginary part by assigning the first part as the real part and the second part as the imaginary part in the two-time irradiation.
  • the information signal is expressed by complex amplitude
  • the real part and the imaginary part are each two-dimensionally encoded with the lower limit of the continuous number as K (K ⁇ 2, K: natural number).
  • Two-dimensional encoding may be performed by dividing the amplitude information and the phase information into K (K ⁇ 2, K: natural number) as the lower limit value of the continuous number.
  • an amplitude modulation type spatial light modulator and a phase modulation type spatial light modulator are used at the same time, and the signal displayed on each spatial light modulator has a lower limit value of the continuous number K (K ⁇ 2, K : Natural number), and an amplitude phase signal can be generated by superimposing the information signal.
  • the description based on the hologram recording technology of the angle multiplex recording method is described, but the present invention is not limited to the angle multiplex recording method, and other hologram recording technologies such as a shift multiplex recording method and other than the hologram
  • the optical information recording medium may be used for signal processing.
  • even pages are treated as real parts of complex amplitude and odd pages as imaginary parts, but even pages may be treated as imaginary parts and odd pages as real parts.
  • the real part and the imaginary part are separately processed during two-dimensional demodulation, but two-dimensional demodulation may be performed without separation.
  • two-dimensional demodulation may be performed without separation.
  • the multi-value to four values is described as an example, but the value of the information signal to be recorded may take any number. Since the information signal is represented by a combination of the real part and the imaginary part, the information signal obtained by adding the real part and the imaginary part into multiple values can be similarly converted into multiple values. For example, it is possible to cope with four values by processing two stages of two-dimensional modulation circuits corresponding to two values with respect to the real part / imaginary part, and eight values by processing with three stages.
  • this invention is not limited to an above-described Example, Various modifications are included.
  • the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described.
  • a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.
  • Each of the above-described configurations, functions, processing units, processing means, and the like may be realized by hardware by designing a part or all of them with, for example, an integrated circuit.
  • Each of the above-described configurations, functions, and the like may be realized by software by interpreting and executing a program that realizes each function by the processor.
  • Information such as programs, tables, and files for realizing each function can be stored in a memory, a hard disk, a recording device such as an SSD (Solid State Drive), or a recording medium such as an IC card, an SD card, or a DVD.
  • the control lines and information lines indicate what is considered necessary for the explanation, and not all the control lines and information lines on the product are necessarily shown. Actually, it may be considered that almost all the components are connected to each other.
  • SYMBOLS 1 Optical information recording medium, 10 ... Optical information recording / reproducing apparatus, 11 ... Pickup, 12 ... Reference optical system for reproduction
  • Light source 303 ... shutter, 304 ... optical element 305 ... PBS prism, 306 ... signal light, 307 ...
  • reference light 308 ... beam expander, 309 ... phase ( phase) 310, relay lens, 311 ... PBS prism, 312 ... spatial light modulator, 313 ... relay lens, 314 ... aperture, 315 ... objective lens, 316 ... polarized light Direction changing element, 320 ... actuator, 321 ... lens, 322 ... lens, 323 ... actuator, 324 ... mirror, 325 ... photodetector

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Optics & Photonics (AREA)
  • Optical Recording Or Reproduction (AREA)
  • Holo Graphy (AREA)
  • Signal Processing For Digital Recording And Reproducing (AREA)
  • Optical Head (AREA)

Abstract

K=2の2次元符号化方法を達成する方法であるトレリスを用いた変調方式で、光記録媒体に記録されるデータを2値から4値への多値化をした場合、2次元符号化方法が非常に複雑になる。 ホログラフィを利用してページデータを記録する光情報記録装置であって、 記録する情報信号は第1の情報と第2の情報により構成される第3の情報を有する信号であり、 前記第1の情報のページデータ及び前記第2の情報のページデータのそれぞれの2次元データ配列の1方向の情報信号の連続数の下限値がそれぞれK(K≧2,K:自然数)となることを特徴とする2次元符号化方法により、前記第1の情報のページデータ及び前記第2の情報のページデータに対応する2次元ページデータを生成し、前記第1の情報のページデータに対応する2次元ページデータと前記第2の情報のページデータに対応する2次元ページデータを足し合わせることで前記第3の情報信号を生成する信号生成部と、 前記第3の情報信号に基づき前記2次元ページデータの前記第1の情報及び前記第2の情報の情報信号の連続数に応じたサイズのホログラムを光情報記録媒体に記録することを特徴とするピックアップと、 を具備することを特徴とする光情報記録装置及び方法で解決できる。

Description

光情報記録装置および光情報記録方法、光情報再生装置および光情報再生方法
 本発明は、ホログラフィを用いて、記録媒体に情報を記録または記録媒体から情報を再生する、装置及び方法に関する。
 ホログラムの高密度記録技術として、例えば特開2004-272268号公報(特許文献1)がある。本公報の「要約」には、「ホログラムの隣接するスタック間で部分的空間的重なり合いによってホログラムが空間的に多重化される、多重化方法および装置が開示される。各々のスタックは、例えば角度、波長、位相符号、ペリストロピック、またはフラクタル多重化等の別の多重化技術の完全な利点をさらに取り得る。ホログラムを書き込む信号光のビームウエストに等しい量が、ホログラムの個々のスタックを分離する。再現時に、あるホログラムとそのホログラムに隣接するホログラムとは、全て同時に読み出される。再現されたデータのビームウエストにフィルタが配置されることにより、読み出された隣接するホログラムは、カメラ面まで伝達されない。もしくは、これらの所望ではない再現は、制限された角度パスバンドを有する光学系においては、中間面の角度フィルタによってフィルタリングされ得る。」と記載されている。
 また、特開2014-53069号公報(特許文献2)の「要約」には「ホログラフィを利用して情報を記録する光情報記録再生装置において、2次元空間光変調器のピクセルの1方向に対する配列におけるON/OFFピクセル連続数の下限値がK(K≧2,K:自然数)となることを特徴とする2次元符号化方法により2次元データを生成する信号生成部と、前記信号生成部が生成した2次元データをホログラムディスクに記録するピックアップと、を具備する光情報記録装置及び方法で解決できる。」と記載されている。
特開2004-272268号公報 特開2014-053069号公報
 ところで、特許文献2の方法において光記録媒体に記録されるデータを多値化した場合、記録データの連続数の下限値をK(K≧2,K:自然数)とする2次元符号化方法が非常に複雑になるといった課題が挙げられる。例えばK=2の2次元符号化方法を達成する方法としてトレリス則を用いた変調方式が挙げられるが、2値から4値への多値化を行った場合トレリス則の取り得るパスは16倍にも膨れ上がる。
  本発明の目的は、記録データの多値化を行った際に記録データの連続数の下限値をK(K≧2,K:自然数)とする2次元符号化方法を簡略化することにある。
 上記課題は、例えば請求項の範囲に記載の発明により解決される。
 本発明によれば、ホログラフィを利用したデジタル情報の記録において、処理の複雑化を抑えつつ多値化した記録データの連続数の下限値をK(K≧2,K:自然数)とする2次元符号化方法を達成できる。
実部用ページデータの2次元符号化パターン(実施例1) 虚部用ページデータの2次元符号化パターン(実施例1) 複素振幅ページデータの2次元符号化パターン(実施例1) 光情報記録再生装置の実施例を表す概略図 光情報記録再生装置内のピックアップの実施例を表す概略図(記録原理) 光情報記録再生装置内のピックアップの実施例を表す概略図(再生原理) 本実施例における光情報記録再生装置の動作フローを表す図 本実施例における光情報記録再生装置の動作フローを表す図 本実施例における光情報記録再生装置の動作フローを表す図 本実施例における信号生成回路の構成例を表す図 本実施例における信号処理回路の構成例を表す図 本実施例における信号生成回路の動作フローを表す図 本実施例における信号処理回路の動作フローを表す図 2次元符号化を達成するトレリスを表す概略図 2次元符号化を達成するトレリスを表す概略図 2次元符号化を達成するトレリスを表す概略図 実部用ページデータの2次元符号化パターン(実施例2) 虚部用ページデータの2次元符号化パターン(実施例2) 複素振幅ページデータの2次元符号化パターン(実施例2) 本実施例における信号生成回路の動作フローを表す図(実施例3) 本実施例における信号生成回路の動作フローを表す図(実施例4) 本実施例における信号生成回路の動作フローを表す図(実施例5) 複素振幅の情報を振幅情報に変換する方法を表す図 本実施例における信号処理回路の動作フローを表す図(実施例6) 振幅情報の信号配置を表す図 位相情報の信号配置を表す図と位相情報の信号配置を表す概略図 位相情報から実部を分離する方法を表す図 位相情報から虚部を分離する方法を表す図 情報信号の連続数下限値K=1における開口サイズを表す図 情報信号の連続数下限値K=2における開口サイズを表す図 本実施例における2次元復調回路の構成例を表す図
 以下、本発明の実施例について図面を用いて説明する。
 本発明の実施形態を添付図面にしたがって説明する。図2はホログラフィを利用してデジタル情報を記録および/または再生する光情報記録媒体の記録再生装置を示すブロック図である。
  光情報記録再生装置10は、入出力制御回路90を介して外部制御装置91と接続されている。記録する場合には、光情報記録再生装置10は外部制御装置91から記録する情報信号を入出力制御回路90により受信する。再生する場合には、光情報記録再生装置10は再生した情報信号を入出力制御回路90により外部制御装置91に送信する。
  光情報記録再生装置10は、ピックアップ11、再生用参照光光学系12、キュア光学系13、ディスク回転角度検出用光学系14、及び回転モータ50を備えており、光情報記録媒体1は回転モータ50によって回転可能な構成となっている。
 ピックアップ11は、参照光と信号光を光情報記録媒体1に照射してホログラフィを利用してデジタル情報を記録媒体に記録する役割を果たす。この際、記録する情報信号はコントローラ89によって信号生成回路86を介してピックアップ11内の空間光変調器に送られ、信号光は空間光変調器によって変調される。
  光情報記録媒体1に記録した情報を再生する場合は、ピックアップ11から出射された参照光を記録時とは逆の向きに光情報記録媒体に入射させる光波を再生用参照光光学系12にて生成する。再生用参照光によって再生される再生光をピックアップ11内の後述する光検出器によって検出し、信号処理回路85によって信号を再生する。
 光情報記録媒体1に照射する参照光と信号光の照射時間は、ピックアップ11内のシャッタの開閉時間をコントローラ89によってシャッタ制御回路87を介して制御することで調整できる。
 キュア光学系13は、光情報記録媒体1のプリキュアおよびポストキュアに用いる光ビームを生成する役割を果たす。プリキュアとは、光情報記録媒体1内の所望の位置に情報を記録する際、所望位置に参照光と信号光を照射する前に予め所定の光ビームを照射する前工程である。ポストキュアとは、光情報記録媒体1内の所望の位置に情報を記録した後、該所望の位置に追記不可能とするために所定の光ビームを照射する後工程である。
 ディスク回転角度検出用光学系14は、光情報記録媒体1の回転角度を検出するために用いられる。光情報記録媒体1を所定の回転角度に調整する場合は、ディスク回転角度検出用光学系14によって回転角度に応じた信号を検出し、検出された信号を用いてコントローラ89によってディスク回転モータ制御回路88を介して光情報記録媒体1の回転角度を制御する事が出来る。
  光源駆動回路82からは所定の光源駆動電流がピックアップ11、キュア光学系13、ディスク回転角度検出用光学系14内の光源に供給され、各々の光源からは所定の光量で光ビームを発光することができる。
 また、ピックアップ11、そして、ディスクキュア光学系13は、光情報記録媒体1の半径方向に位置をスライドできる機構が設けられており、アクセス制御回路81を介して位置制御がおこなわれる。
  ところで、ホログラフィの角度多重の原理を利用した記録技術は、参照光角度のずれに対する許容誤差が極めて小さくなる傾向がある。
  従って、ピックアップ11内に、参照光角度のずれ量を検出する機構を設けて、サーボ信号生成回路83にてサーボ制御用の信号を生成し、サーボ制御回路84を介して該ずれ量を補正するためのサーボ機構を光情報記録再生装置10内に備えることが必要となる。
  また、ピックアップ11、キュア光学系13、ディスク回転角度検出用光学系14は、いくつかの光学系構成または全ての光学系構成をひとつに纏めて簡素化しても構わない。
 図3は、光情報記録再生装置10におけるピックアップ11の基本的な光学系構成の一例における記録原理を示したものである。光源301を出射した光ビームはコリメートレンズ302を透過し、シャッタ303に入射する。シャッタ303が開いている時は、光ビームはシャッタ303を通過した後、例えば2分の1波長板などで構成される光学素子304によってp偏光とs偏光の光量比が所望の比になるようになど偏光方向が制御された後、PBS(Polarization Beam Splitter)プリズム305に入射する。
 PBSプリズム305を透過した光ビームは、信号光306として働き、ビームエキスパンダ308によって光ビーム径が拡大された後、位相マスク309、リレーレンズ310、PBSプリズム311を透過して空間光変調器312に入射する。
  空間光変調器312によって情報が付加された信号光は、PBSプリズム311を反射し、リレーレンズ313ならびに開口314を伝播する。その後、信号光は対物レンズ315によって光情報記録媒体1に集光する。一方、PBSプリズム305を反射した光ビームは参照光307として働き、偏光方向変換素子316によって記録時または再生時に応じて所定の偏光方向に設定された後、ミラー317ならびにミラー318を経由してガルバノミラー319に入射する。ガルバノミラー319はアクチュエータ320によって角度を調整可能のため、レンズ321とレンズ322を通過した後に光情報記録媒体1に入射する参照光の入射角度を、所望の角度に設定することができる。なお、参照光の入射角度を設定するために、ガルバノミラーに代えて、参照光の波面を変換する素子を用いても構わない。
 このように信号光と参照光とを光情報記録媒体1において、互いに重ね合うように入射させることで、記録媒体内には干渉縞パターンが形成され、このパターンを記録媒体に書き込むことで情報を記録する。また、ガルバノミラー319によって光情報記録媒体1に入射する参照光の入射角度を変化させることができるため、角度多重による記録が可能である。
  以降、同じ領域に参照光角度を変えて記録されたホログラムにおいて、1つ1つの参照光角度に対応したホログラムをページと呼び、同領域に角度多重されたページの集合をブックと呼ぶことにする。
 図4は、光情報記録再生装置10におけるピックアップ11の基本的な光学系構成の一例における再生原理を示したものである。記録した情報を再生する場合は、前述したように参照光を光情報記録媒体1に入射し、光情報記録媒体1を透過した光ビームを、アクチュエータ323によって角度調整可能なガルバノミラー324にて反射させることで、その再生用参照光を生成する。
  この再生用参照光によって再生された再生光は、対物レンズ315、リレーレンズ313ならびに開口314を伝播する。その後、再生光はPBSプリズム311を透過して光検出器325に入射し、記録した信号を再生することができる。光検出器325としては例えばCMOSイメージセンサーやCCDイメージセンサーなどの撮像素子を用いることができるが、ページデータを再生可能であれば、どのような素子であっても構わない。
 図5は、光情報記録再生装置10における記録、再生の動作フローを示したものである。ここでは、特にホログラフィを利用した記録再生に関するフローを説明する。
  図5aは、光情報記録再生装置10に光情報記録媒体1を挿入した後、記録または再生の準備が完了するまでの動作フローを示し、図5bは準備完了状態から光情報記録媒体1に情報を記録するまでの動作フロー、図5cは準備完了状態から光情報記録媒体1に記録した情報を再生するまでの動作フローを示したものである。
 図5aに示すように媒体を挿入すると(S501)、光情報記録再生装置10は、例えば挿入された媒体がホログラフィを利用してデジタル情報を記録または再生する媒体であるかどうかディスク判別を行う(S502)。
  ディスク判別の結果、ホログラフィを利用してデジタル情報を記録または再生する光情報記録媒体であると判断されると、光情報記録再生装置10は光情報記録媒体に設けられたコントロールデータを読み出し(S503)、例えば光情報記録媒体に関する情報や、例えば記録や再生時における各種設定条件に関する情報を取得する。
 コントロールデータに応じた各種調整やピックアップ11に関わる学習処理(S504)を行い、光情報記録再生装置10は、記録または再生の準備が完了する(S505)。
  準備完了状態から情報を記録するまでの動作フローは図5bに示すように、まず記録するデータを受信して(S511)、該データに応じた情報をピックアップ11内の空間光変調器に送る。
  その後、光情報記録媒体に高品質の情報を記録できるように、必要に応じて例えば光源301のパワー最適化やシャッタ303による露光時間の最適化等の各種記録用学習処理を事前に行う(S512)。
 その後、シーク動作(S513)ではアクセス制御回路81を制御して、ピックアップ11ならびにキュア光学系13の位置を光情報記録媒体の所定の位置に位置づけする。光情報記録媒体1がアドレス情報を持つ場合には、アドレス情報を再生し、目的の位置に位置づけされているか確認し、目的の位置に配置されていなければ、所定の位置とのずれ量を算出し、再度位置づけする動作を繰り返す。
  その後、キュア光学系13から出射する光ビームを用いて所定の領域をプリキュアし(S514)、ピックアップ11から出射する参照光と信号光を用いてデータを記録する(S515)。
  データを記録した後は、キュア光学系13から出射する光ビームを用いてポストキュアを行う(S516)。必要に応じてデータをベリファイしても構わない。
 準備完了状態から記録された情報を再生するまでの動作フローは図5cに示すように、まずシーク動作(S521)で、アクセス制御回路81を制御して、ピックアップ11ならびに再生用参照光光学系12の位置を光情報記録媒体の所定の位置に位置づけする。光情報記録媒体1がアドレス情報を持つ場合には、アドレス情報を再生し、目的の位置に位置づけされているか確認し、目的の位置に配置されていなければ、所定の位置とのずれ量を算出し、再度位置づけする動作を繰り返す。
  その後、ピックアップ11から参照光を出射し、光情報記録媒体に記録された情報を読み出し(S522)、再生データを送信する(S523)。
 図6は、光情報記録再生装置10の信号生成回路86のブロック図である。出力制御回路90にユーザデータの入力が開始されると、入出力制御回路90はコントローラ89にユーザデータの入力が開始されたことを通知する。コントローラ89は入出力回路90からの通知を受け、信号生成回路86に入出力制御回路90から入力される1ページ分のデータを記録処理するよう命ずる。コントローラ89からの処理命令は制御用ライン609を経由し、信号生成回路86内サブコントローラ601に通知される。本通知を受け、サブコントローラ601は各信号処理回路を並列に動作させるよう制御用ライン609を介して各信号処理回路の制御を行う。
 先ずメモリ制御回路603に、データライン610を介して入出力制御回路90から入力されるユーザデータをメモリ602に格納するよう制御する。メモリ602に格納したユーザデータが、ある一定量に達すると、CRC演算回路604でユーザデータをCRC化する制御を行う。次にCRC化したデータに、スクランブル回路605で擬似乱数データ列を加えるスクランブル化を施し、誤り訂正符号化回路606でパリティデータ列を加える誤り訂正符号化する制御を行う。次に、2次元変調回路607で記録する情報信号の連続数の下限値がK(K≧2,L:自然数)となるよう変調規則に基づいて2次元変調する。最後にピックアップインターフェース回路608に2次元変調したデータを空間光変調器312上の2次元データの並び順で読み出させ、再生時に基準となるマーカーを付加した後、ピックアップ11内の空間光変調器312に2次元データを転送する。
 この時、情報信号の連続数の下限値がK(K≧2,L:自然数)となるように2次元変調した場合にはホログラムサイズが1/K倍となる為それに応じて開口314のサイズを変更する必要がある。これは、実際にはホログラムサイズが開口サイズによって決定される為である。開口サイズの変更方法をK=2の場合を例として図19に示す。図19aは情報信号の連続数の下限値に制約を持たせなかった場合の空間フィルタであるが、下限値がK=2となるように2次元変調した場合には図19bのように下限値を設定下方向のフィルタサイズを1/K倍とすることが望ましい。但し、ここで示した空間フィルタは例であり、この形状に限定されるものではない。また、空間光変調器312に転送する2次元データは。実数のみで表される振幅情報であっても、実数と虚数で表される位相情報もしくは振幅位相情報であっても構わない。
 振幅情報と位相情報の違いは図17に示すように実部の値を横軸に、虚部の値を縦軸に示したグラフで表すことができる。図17aは“0”、“1”の2値の振幅情報を記録する場合の情報信号の配置を表している。振幅情報では虚部の値が0となる為、当然情報信号は横軸上に一直線に並ぶ。図17bには例として“(1+j)/√2”、“(-1-j)/√2”の2値の位相情報を扱う場合の情報信号の配置を表している。虚部の値が0ではなくなる為、情報信号は横軸上を離れる配置となる。尚、本実施例では位相情報を扱う場合には複素振幅の形で表現しているが、0~2πの形で表現しても同等となる。例えば“(1+j)/√2”は“π/4”と同等の位相情報を表すことになる。位相情報を表す2次元データは例えば2ページの足し合わせによって表現することが可能であり、その場合には2次元変調回路607で2次元変調した2次元データ2ページをそれぞれ実部用ページ/虚部用ページとして割り当てる。その際には、実部データを2次元変調した後に虚部データを2次元変調して足し合わせる必要があるため、2次元変調した実部データは1度実部データ記憶回路(611)によって記憶される。ここでは実部データを1度記憶する例を示したが、虚部データを1度記憶してもよいし、実部データと虚部データ両方を記憶しても構わない。
 図7は、光情報記録再生装置10の信号処理回路85のブロック図である。コントローラ89はピックアップ11内の光検出器325が画像データを検出すると、信号処理回路85にピックアップ11から入力される1ページ分のデータを再生処理するよう命ずる。ここで、記録したデータが振幅情報であった場合には光検出器325で簡単に画像データを検出可能だが、記録したデータが位相情報であった場合には位相情報を検出可能な検出器を用いるか、もしくはフリンジスキャン法といった方法に代表される位相差検出法を用いて位相検出を行う必要がある。
 コントローラ89からの処理命令は制御用ライン712を経由し、信号処理回路85内サブコントローラ701に通知される。本通知を受け、サブコントローラ701は各信号処理回路を並列に動作させるよう制御用ライン712を介して各信号処理回路の制御を行う。先ず、メモリ制御回路703に、データライン713を介して、ピックアップ11からピックアップインターフェース回路711を経由して入力される画像データをメモリ702に格納するよう制御する。メモリ702に格納されたデータがある一定量に達すると、画像位置検出回路710でメモリ702に格納された画像データ内からマーカーを検出して有効データ範囲を抽出する制御を行う。次に検出されたマーカーを用いて画像歪み補正回路709で、画像の傾き・倍率・ディストーションなどの歪み補正を行い、画像データを期待される2次元データのサイズに変換する制御を行い、更に2次元等化回路101で2次元データの符号間干渉を除去する制御を行う。
 次に、変調して記録されたデータに対して、変調時に用いた変調則にしたがって、2次元復調回路707で2次元復調を行う。ここで、記録した情報信号が位相情報、かつ信号生成時における2次元変調を実部と虚部で分けて処理していた場合にはデータを実部と虚部に分離し、それぞれを2次元復調した後に実部と虚部を足し合わせることが可能となる。この場合の2次元復調回路707のブロック図を図20に示す。2次元等化回路101からの2次元データは実部/虚部データ分離回路2001によって実部と虚部に分離された後、実部は実部2次元復調回路2002で復調、虚部は虚部2次元復調回路2003で復調される。各々復調された実部と虚部は実部/虚部足し合わせ回路2004で足し合わされる。実部/虚部データ分離回路において、実部と虚部を分離する方法の概要を図18に示す。
 図18は例として“(1+j)/√2”、“(1―j)/√2”、“(―1+j)/√2”、“(―1―j)/√2”の4値の位相情報を記録した場合の信号配置を示している、図18aは4つの信号点のそれぞれ余弦を計算することで信号点を横軸上に移して実部の2値を分離しており、図18bは4つの信号点のそれぞれ正弦を計算することで信号点を縦軸上に移して虚部の2値を分離している。続いて、2次元データを構成する複数ビットの各ビットデータを、2値化回路708において2値の振幅情報を記録した場合には例えば“0”、“1”、位相情報を記録した場合には例えば“(1+j)/√2”、“(-1-j)/√2”と判定して2値化し、メモリ702上に再生データの出力の並びでデータを格納する制御を行う。
 この時、記録データが多値の情報信号であった場合には2値化ではなく情報信号の階調分に応じた値に区別すれば良い。
 次に誤り訂正回路706で各データ列に含まれる誤りを訂正し、スクランブル解除回路705で擬似乱数データ列を加えるスクランブルを解除した後、CRC演算回路704でメモリ702上のユーザデータ内に誤りが含まれない確認を行う。その後、入出力制御回路90にメモリ702からユーザデータを転送する。
 図8は、記録時のデータ処理フローを示したものであり、図8を用いて記録時のデータ処理について説明する。信号生成回路86がユーザデータを受信(S801)すると、複数のデータ列に分割、再生時エラー検出が行えるように各データ列をCRC化(S802)し、オンピクセル数とオフピクセル数をほぼ等しくし、同一パターンの繰り返しを防ぐことを目的にデータ列に擬似乱数データ列を加えるスクランブル(S803)を施した後、再生時エラー訂正が行えるようにリード・ソロモン符号等の誤り訂正符号化(S804)を行い、特開2014-53069号公報(特許文献2)に記載されている2次元符号化方法を適用して情報信号の連続数の下限値をK(K≧2,K:自然数)とする変調規則に基づいて2次元変調(S805)を行う。
 次にこのデータ列をM×Nの2次元データに変換し、それを1ページデータ分繰返すことで1ページ分の2次元データ(S806)を構成、このように構成した2次元データに対して再生時の画像位置検出や画像歪補正での基準となるマーカーを付加(S807)する。
 ここで、複数ページデータの足し合わせによって位相情報の情報信号を表現する為に記録ページデータの偶数/奇数を判定(S808)し、ページデータが偶数であった場合にはページデータを1度実部データ記憶回路(611)に記憶(S809)し、再度S801~S807の処理を行う。ページデータが奇数であった場合には前偶数ページデータが記憶されている為、偶数ページデータを複素振幅の実部、奇数ページデータを虚部として足し合わせ位相情報の情報信号を生成(S810)、空間光変調器312にデータを転送(S811)する。なお、図8のデータ処理は最初に偶数ページデータを受信した場合を想定しているが、これに限定されず、最初に奇数ページデータを受信しても構わない。その場合、S808でージデータの偶数/奇数を判定(S808)し、ページデータが奇数であった場合にはページデータを1度実部データ記憶回路(611)に記憶(S809)し、再度S801~S807の処理を行うこととなる。
 次に図9を用いて再生時のデータ処理フローについて説明する。光検出器325で検出された画像データが信号処理回路85に転送(S901)される。この画像データに含まれるマーカーを基準に画像位置を検出(S902)し、画像の傾き・倍率・ディストーションなどの歪みを補正(S903)した後、2次元等化処理による符号間干渉の除去(S904)及び2値化処理(S905)を行い、マーカーを除去(S906)することで1ページ分の2次元データを取得(S907)する。次に、2次元データの実部と虚部を分離し(S908)、実部のみの2次元データ復調(S909)と虚部のみの2次元データ復調(S910)を行い、実部と虚部を再度足し合わせる(S911)このようにして得られた2次元データを複数のデータ列に変換した後、誤り訂正処理(S912)を行い、パリティデータ列を取り除く。次にスクランブル解除処理(S913)を施し、CRCによる誤り検出処理(S914)を行ってCRCパリティを削除した後にユーザデータを入出力制御回路90経由で送信(S915)する。
 ここで、以上で説明した本実施例の光情報記録再生装置において、本実施例の特徴である2次元符号化方法について説明する。この2次元符号化は記録する情報信号を複素振幅で表現し、複素振幅の実部と虚部それぞれを分けて2次元符号化するものである。この2次元符号化について図1、図10を用いて詳細説明する。
 図1は第1の実施例において、2次元符号化した2次元パターンの例である。図1aは情報信号の実部に割り当てる為の2次元データを表しており、仮にその値をa、b(a,b:実数)とする。このパターンの特徴は1方向に対する配列におけるa/bの連続数の下限値がK(K≧2,K:自然数)となるように制約をかける。例えば図1の場合ではK=2の例を示しており、配列中のa/b連続数は最小でも2つ連続することになり、孤立のものは除外される。
 図1bは情報信号の虚部に割り当てる為の2次元データを表しており、仮にその値をc、d(c,d:実数)とする。虚部用のデータに対しても実部と同様の制約をかけるが、実部用の2次元データと虚部用の2次元データでは異なるユーザデータを用いる為2次元配列の並びは異なったものとなる。図1cは図1aと図1bを足し合わせて生成した2次元パターンであり、足し合わせの際には図1bを虚部として扱う為に虚数を表すjを付加し、図1cは実部と虚部を両方もった複素振幅となる。例えばa=1、b=-1、c=1、b=-1とした場合には図1cの取り得る値は“1+j”、“1-j”、“-1+j”、“-1-j”の4値となる。尚、この4値の値はそれぞれ“π/4”、“3π/4”、“5π/4”、“7π/4”の表現と同等である。
 図1cの取り得る値はa+jc、a+jd、b+jc、b+jdの4値となるが、複素振幅の実部/虚部の各ページの値の連続数の下限値をK(K≧2,K:自然数)とする制約を守っていれば良く、実部と虚部を足し合わせた値が制約を守る必要は無い。この時、前述した情報信号の連続数の下限値によって開口のサイズを変更する方法に関して下限値Kは実部/虚部の各ページの値の連続数によって決められる。その為、たとえ実部と虚部を足し合わせた値の連続数の下限値が1であっても実部/虚部の各ページの値の連続数の下限値がK(K≧2,K:自然数)であった場合には開口サイズを1/Kにすることが可能である。
 通常、4値の情報信号を用いて連続数の下限値をK(K≧2,K:自然数)とする2次元符号化を行う場合には4値の値それぞれが制約を守る必要があり、変調の複雑化が問題となる。例えばトレリス則を用いて2値の情報信号を2次元符号化する場合にトレリス則は図10aに示すように2値×2bitで2=4つの状態を遷移し、遷移するパスは4×4で16通りとなる。2値から4値への多値化を行った場合にはトレリス則は図10bに示すように4値×2bitで4=16の状態を遷移し、状態を遷移するパスは16×16で256通りとなる。
 このように、4値の情報信号に制約を守らせた場合、2値から4値への多値化でパスは16倍に膨れ上がる。一方で、本特許に記載の技術を用いた場合には図8におけるS801~S807の処理を奇数ページと偶数ページで2度繰り返して行い、2値の2次元符号化を2度行うことで4値の情報信号に制約を守らせた場合と同様の効果が得られる。その為、図10cに示すように図10aのトレリスを2つ用いることで2次元符号化が可能であり、2値と比較して倍の規模で4値の2次元符号化が可能となる。このように、実部と虚部をそれぞれ2次元符号化し、足し合わせて情報信号を生成することで変調の複雑化を大幅に抑えて情報信号の多値化を行うことが可能である。
 本実施例が実施例1と異なるのは、図11に示すように2次元符号化における情報信号の連続数の制約を2方向同時にかけることである。実施例1が情報信号の下限値を1方向だけに限っていたのに対して、本実施例では1方向の配列における連続数の下限値をK(K≧2,K:自然数)、それと直交する方向の配列における連続数の下限値をL(L≧2,L:自然数)と制約をかける。これによりホログラムサイズは1/(K×L)倍となりK×L倍の高密度化が可能となる。
 本実施例が実施例1と異なるのは、複数ページデータの生成及び2次元符号化を異なる回路で並列処理することである。本実施例におけるデータ記録時の処理フローを図12を用いて説明する。図12が図8と異なるのは記録データを2ページ分纏めて受信(S1201)し、その後に記録データの偶数/奇数ページ判定(S1202)を行い、奇数ページと偶数ページを異なるフローで並列に処理するところにある。偶数ページに対しては実部2次元変調(S1213)を行い、奇数ページに対しては虚部2次元変調(S1206)を行う。これにより、実部と虚部を同時に2次元変調することが出来る為、処理時間を延ばすことなく情報信号の多値化が可能である。
 また、信号生成回路86は実部2次元変調部と虚部2次元変調部をわけて保持することにより実部と虚部で異なる2次元変調が可能となる。本実施例では2次元変調部のみ実部と虚部を分けて処理したが、情報信号生成フローに含まれる処理であればいかなる処理であっても実部と虚部の処理内容を変えても構わない。これにより実部と虚部の2次元データを自由に変更することが可能となる。
 本実施例が実施例1と異なるのは、ホログラムを記録する際に情報信号の実部を記録する為の信号光照射と虚部を記録する為の信号光照射を分けて行うことである。実施例1では多値の情報信号を空間光変調器で表示し、1度の信号光照射でホログラムを記録していたが、本実施例では異なる2値の情報信号を2度信号光照射してホログラムを記録する。本実施例におけるデータ記録時の処理フローを図13に示す。
 図13が図8と異なる点は偶数ページ/奇数ページどちらであっても空間光変調器にパターンを転送(S1308)し、パターン転送後にページデータの奇数/偶数を判定(S1309)、ページデータが偶数であった場合にはもう1度データを受信(S1301)し、奇数ページデータ作成、虚数部分として空間光変調器に再度パターンを転送(S1308)するところである。
 偶数ページデータの信号光照射と奇数ページデータの信号光照射が両方行われて情報信号が記録される為、信号光照射角度及び位置の移動は奇数ページデータの信号光照射後に行う。なお、奇数ページデータを作成する間に偶数ページデータの信号光を照射しておくことで、空間光変調器にパターンを転送した後の処理待ち時間を省くことが可能である。これにより複素振幅の信号情報を表示できない、もしくは2値の信号情報しか表示することのできない空間光変調器を用いても多値の信号情報を記録することができる。
 本実施例が実施例1と異なるのは、複素振幅で表した情報信号を再度振幅のみの信号に置き換えて記録することである。実施例1では複素振幅で表した情報信号を空間光変調器で表示して記録していたが、本実施例では振幅のみで表した多値の情報信号を空間光変調器で表示して記録する。本実施例におけるデータ再生時の処理フローを図14に示す。
 図14が図8と異なるのは偶数ページと奇数ページを足し合わせて複素振幅の情報信号を作成(S1410)した後に、複素振幅の情報信号を再度振幅だけの情報信号に置き換える(S1411)ところである。複素振幅の情報を振幅の情報に置き換える例を図15に示す。実施例1で例とした複素振幅の4値“1+j”、“1-j”、“-1+j”、“-1-j”を振幅4値に置き換える際には信号点の配置を実軸上に移せば良い為、例えば4値を“√2”、”2√2/3“、“√2/3”、“0”とすればよい。これにより複素振幅の信号情報を表示できない空間光変調器を用いても多値の信号情報を記録することができる。本実施例では振幅4値の最大値を√2、かつ4値の信号点の間隔を等間隔としたが、虚数を含まない値であればどのような値の範囲、どのような対応付けであっても構わないし、信号点の間隔は等間隔でなくとも構わない。
 本実施例が実施例1と異なるのは、複素振幅の情報を再生する際に再生光と同時に干渉光を光検出器に照射し、実部のみの検出と虚部のみの検出を分けて行うことである。干渉光は光源(301)を用いて生成することが可能であり、例えば図4における信号再生時にPBSプリズム(304、311)をハーフミラーに置き換えることで参照光(307)の半分の光が干渉光として光検出器(325)に到達する。更に、例えばフェーズマスク(309)をλ/4板といった光学素子に置き換えることで干渉光の位相を変化させることが可能となり、干渉光の位相をπ/2変化させて参照光を2度照射することで信号情報の実部再生/虚部再生を切り替えることができる。
 実施例1では複素振幅の情報信号を1度の参照光照射で再生し、再生信号処理によって実部と虚部を分離していたが、本実施例では再生された情報信号を取得した時点で実部と虚部が分離されている。本実施例におけるデータ再生時の処理フローを図16に示す。
 図16が図9と異なるところは再生時に実部と虚部の分離を行わず、誤り検出(821)後に再生データの実部/虚部を判定(S1612)し、データが実部である場合には一旦実部を記憶(S1613)し、再度光検出器で再生画像を取得(811)することである。データが虚部であった場合には記憶していた実部と足し合わせ(S1614)複素振幅の多値データとして再生データを送信(S1615)する。足し合わせる実部データと虚部データは記録媒体上の同一箇所に記録されたホログラムから再生される為、参照光照射角度及び位置の移動は実部/虚部判定で虚部と判定された後に行う。
 本実施例では再生信号処理で複素振幅の情報信号の実部と虚部を分離する必要がなくなり、処理の負荷低減が可能となる。記録媒体からの情報信号再生方法によっては再生データの実部/虚部の区別が無く判定できない場合がある。その場合には例えば2度照射のうち1度目を実部、2度目を虚部として割り当てることで2度目のデータを虚部と判断することが可能である。
 上記実施例では情報信号を複素振幅で表現し、実部と虚部をそれぞれ連続数の下限値をK(K≧2,K:自然数)とする2次元符号化を行ったが、情報信号を振幅情報と位相情報に分けてそれぞれ連続数の下限値をK(K≧2,K:自然数)とする2次元符号化を行ってもよい。その場合、例えば振幅変調型の空間光変調器と位相変調型の空間光変調器を同時に用いてそれぞれの空間光変調器に表示される信号が連続数の下限値をK(K≧2,K:自然数)となる情報信号にし、それを重ね合わせることで振幅位相信号を生成することができる。
  上記実施例では角度多重記録方式のホログラム記録技術に基づく説明を記述したが、本発明は角度多重記録方式に限定されるものではなく、シフト多重記録方式等の他のホログラム記録技術や、ホログラム以外の光情報記録媒体における信号処理に使用しても構わない。
 また、上記実施例では偶数ページを複素振幅の実部、奇数ページを虚部として扱ったが偶数ページを虚部、奇数ページを実部としても構わない。
 また、上記実施例では2次元復調時に実部と虚部を分けて処理したが、分離することなく2次元復調しても構わない。多値のままの情報信号を扱うことにより実部と虚部の分離及び足し合わせる必要が無くなり、処理を高速が出来る可能性がある。
 更に、上記実施例では4値への多値化を例として記述したが、記録する情報信号の値はいくつの値をとっても構わない。情報信号は実部と虚部の組み合わせによって表される為、実部と虚部を多値化することにより足し合わせた情報信号も同様に多値化することが可能である。例えば実部/虚部に対して2値に対応した2次元変調回路を2段繋げて処理することで4値に、3段繋げて処理することで8値に対応することが可能となる。
 なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
  また、上記の各構成、機能、処理部、処理手段等は、それらの一部又は全部を、例えば集積回路で設計する等によりハードウェアで実現してもよい。また、上記の各構成、機能等は、プロセッサがそれぞれの機能を実現するプログラムを解釈し、実行することによりソフトウェアで実現してもよい。各機能を実現するプログラム、テーブル、ファイル等の情報は、メモリや、ハードディスク、SSD(Solid State Drive)等の記録装置、または、ICカード、SDカード、DVD等の記録媒体に置くことができる。
  また、制御線や情報線は説明上必要と考えられるものを示しており、製品上必ずしも全ての制御線や情報線を示しているとは限らない。実際には殆ど全ての構成が相互に接続されていると考えてもよい。
1・・・光情報記録媒体、10・・・光情報記録再生装置、11・・・ピックアップ、12・・・再生用参照光光学系、13・・・ディスクCure光学系、14・・・ディスク回転角度検出用光学系、81・・・アクセス制御回路、82・・・光源駆動回路、83・・・サーボ信号生成回路、84・・・サーボ制御回路、85・・・信号処理回路、86・・・信号生成回路、87・・・シャッタ制御回路、88・・・ディスク回転モータ制御回路、89・・・コントローラ、90・・・入出力制御回路、91・・・外部制御装置、301・・・光源、303・・・シャッタ、304・・・光学素子305・・・PBSプリズム、306・・・信号光、307・・・参照光、308・・・ビームエキスパンダ、309・・・フェーズ(位相)マスク、310・・・リレーレンズ、311・・・PBSプリズム、312・・・空間光変調器、313・・・リレーレンズ、314・・・開口、315・・・対物レンズ、316・・・偏光方向変換素子、320・・・アクチュエータ、321・・・レンズ、322・・・レンズ、323・・・アクチュエータ、324・・・ミラー、325・・・光検出器

Claims (22)

  1.  ホログラフィを利用してページデータを記録する光情報記録装置であって、
     記録する情報信号は第1の情報と第2の情報により構成される第3の情報を有する信号であり、
     前記第1の情報のページデータ及び前記第2の情報のページデータのそれぞれの2次元データ配列の1方向の情報信号の連続数の下限値がそれぞれK(K≧2,K:自然数)となることを特徴とする2次元符号化方法により、前記第1の情報のページデータ及び前記第2の情報のページデータに対応する2次元ページデータを生成し、前記第1の情報のページデータに対応する2次元ページデータと前記第2の情報のページデータに対応する2次元ページデータを足し合わせることで前記第3の情報を有する信号を生成する信号生成部と、
     前記第3の情報を有する信号に基づき前記2次元ページデータの前記第1の情報及び前記第2の情報の情報信号の連続数に応じたサイズのホログラムを光情報記録媒体に記録するピックアップと、
    を具備することを特徴とする光情報記録装置。
  2.  請求項1に記載の光情報記録装置であって、
     前記第1の情報とは振幅情報、前記第2の情報とは位相情報、前記第3の情報とは振幅位相情報であることを特徴とする光情報記録装置。
  3.  請求項1に記載の光情報記録装置であって、
     前記第1の情報とは実部情報、前記第2の情報とは虚部情報、前記第3の情報とは複素振幅情報であることを特徴とする光情報記録装置。
  4.  請求項2または3に記載の光情報記録装置であって、
    前記2次元符号化方法では生成する信号の前記第1の情報のページデータ及び前記第2の情報のページデータにおける前記2次元データ配列の1方向の情報信号の連続数に対し、それと直交する方向の連続数の下限値がそれぞれL(L≧2、L:自然数)となることを特徴とする光情報記録装置。
  5.  請求項2または3に記載の光情報記録装置であって、
     前記信号生成部は、
      記録する情報信号の前記第1の情報のページデータを2次元符号化する第1の2次元符号化部と、
      記録する情報信号の前記第2の情報のページデータを2次元符号化する第2の2次元符号化部と、
      前記第1の2次元符号化部と前記第2の2次元符号化部を制御する制御部を具備し、
     前記制御部は前記第1の情報の2次元符号化と前記第2の2次元符号化を並行して行うよう前記第1の2次元符号化部と前記第2の2次元符号化部を制御することを特徴とする光情報記録装置。
  6.  請求項2または3に記載の光情報記録装置であって、
     前記信号生成部は前記第3の情報を有する信号を生成した後、前記第3の情報を有する信号を前記第1の情報信号のみに置き換えることを特徴とする光情報記録装置。
  7.  ホログラフィを利用して情報を記録する光情報記録装置であって、
     記録する情報信号は第1の情報と第2の情報により構成される第3の情報を有する信号であり、
     前記第1の情報のページデータ及び前記第2の情報のページデータのそれぞれの2次元データ配列の1方向の情報信号の連続数の下限値がそれぞれK(K≧2,K:自然数)となることを特徴とする2次元符号化方法により前記第1の情報のページデータ及び前記第2の情報のページデータに対応する2次元ページデータを生成する信号生成部と、
     前記2次元ページデータの前記第1の情報及び前記第2の情報の情報信号の連続数に応じたサイズのホログラムを光情報記録媒体に記録するピックアップと、を具備し、前記信号生成部により情報信号の前記第1の情報のページデータのみを2次元符号化し、前記ピックアップにより前記第1の情報のページデータに対応する2次元ページデータを前記光情報記録媒体に記録する第1の手段と、
     前記信号生成部により情報信号の前記第2の情報のページデータのみを2次元符号化し、前記ピックアップにより前記第2の情報のページデータに対応する2次元ページデータを前記第1の手段により記録された前記光情報記録媒体上の位置に記録する第2の手段と、
     を有することを特徴とする光情報記録装置。
  8.  信号光と参照光との干渉パターンがページデータとして記録されている光情報記録媒体から情報を再生する光情報再生装置であって、
     信号光と参照光を生成するレーザ光を出射するレーザ光源と、
     前記参照光により再生された第1の情報及び第2の情報で構成される第3の情報を有する信号が記録されたページデータを検出する光検出器と、
    前記光検出器によって検出した第3の情報を有する信号を前記第1の情報のページデータ及び前記第2の情報のページデータに分離するデータ分離部と、
     分離された前記第1の情報のページデータと前記第2の情報のページデータよりそれぞれ復調する2次元データ復調部と、
    を具備することを特徴とする光情報再生装置。
  9.  請求項8に記載の光情報再生装置であって、
     前記第1の情報とは振幅情報、前記第2の情報とは位相情報、前記第3の情報とは振幅位相情報であることを特徴とする光情報再生装置。
  10.  請求項8に記載の光情報再生装置であって、
     前記第1の情報とは実部情報、前記第2の情報とは虚部情報、前記第3の情報とは複素振幅情報であることを特徴とする光情報再生装置。
  11.  請求項9または10に記載の光情報再生装置であって、
     前記参照光より干渉光を生成する干渉光生成部を具備し、
     前記光情報記録媒体に記録された情報信号と第1の干渉光を干渉させ、前記光検出器により第1の情報のページデータを検出する第1の手段と、
     前記光情報記録媒体に記録された情報信号と前記第1の干渉光と位相が異なる第2の干渉光を干渉させ、前記光検出器により第2の情報のページデータを検出する第2の手段と、を備え、
     前記2次元データ復調部は前記光検出器で検出した情報信号の第1の情報のページデータ及び第2の情報のページデータをそれぞれ復調する、
    ことを特徴とする光情報再生装置。
  12.  ホログラフィを利用してページデータを光情報記録媒体に記録する光情報記録方法であって、
     記録する情報信号は第1の情報と第2の情報により構成される第3の情報を有する信号であり、
     前記第1の情報のぺージデータ及び前記第2の情報のページデータのそれぞれの2次元データ配列の1方向の情報信号の連続数の下限値がそれぞれK(K≧2,K:自然数)となることを特徴とする2次元符号化方法により前記第1の情報のページデータ及び前記第2の情報のページデータに対応する2次元ページデータを生成するステップと、
     前記第1の情報のページデータに対応する2次元ページデータと前記第2の情報のページデータに対応する2次元ページデータを足し合わせることで前記第3の情報を有する信号を生成するステップと、
     前記第3の情報を有する信号に基づき、前記2次元ページデータの前記第1の情報及び前記第2の情報の情報信号の連続数に応じたサイズのホログラムを光情報記録媒体に記録するステップと、
     を有することを特徴とする光情報記録方法。
  13.  請求項12に記載の光情報記録方法であって、
     前記第1の情報とは振幅情報、前記第2の情報とは位相情報、前記第3の情報とは振幅位相情報であることを特徴とする光情報記録方法。
  14.  請求項12に記載の光情報記録方法であって、
     前記第1の情報とは実部情報、前記第2の情報とは虚部情報、前記第3の情報とは複素振幅情報であることを特徴とする光情報記録方法。
  15.  請求項13または14に記載の光情報記録方法であって、
    前記2次元符号化方法では生成する信号の前記第1の情報のページデータ及び前記第2の情報のページデータにおける前記データ配列の1方向の情報信号の連続数に対し、それと直交する方向の連続数の下限値がそれぞれL(L≧2、L:自然数)となることを特徴とする光情報記録方法。
  16.  請求項13または14に記載の光情報記録方法であって、
     記録する情報信号の前記第1の情報のページデータを2次元符号化するステップと、
     記録する情報信号の前記第2の情報のページデータを2次元符号化するステップと、を有し、
     前記第1の情報のページデータの2次元符号化のステップと前記第2の情報のページデータの2次元符号化のステップを並行して行うことを特徴とする光情報記録方法。
  17.  請求項13または14に記載の光情報記録方法であって、
    前記第3の情報を有する信号を生成した後、前記第3の情報を有する信号を前記第1の情報信号のみに置き換えるステップと、
     を有することを特徴とする光情報記録方法。
  18.  ホログラフィを利用して情報を光情報記録媒体に記録する光情報記録方法であって、
     記録する情報信号は第1の情報と第2の情報により構成される第3の情報を有する信号であり、
     前記第1の情報及び前記第2の情報のページデータのそれぞれの2次元データ配列の1方向の情報信号の連続数の下限値がそれぞれK(K≧2,K:自然数)となることを特徴とする2次元符号化方法により前記第1の情報のページデータ及び前記第2の情報のページデータに対応する2次元ページデータを生成する生成ステップと、
     前記生成ステップにより情報信号の前記第1の情報のページデータのみを2次元符号化し、前記第1の情報のページデータに対応する2次元ページデータを前記光情報記録媒体に記録する第1の記録ステップと、
     情報信号の前記第2の情報のページデータのみを2次元符号化し、前記第2の情報のページデータに対応する2次元ページデータを前記第1の記録ステップにより記録された前記光情報記録媒体上の位置に記録することで、前記第1の情報信号と前記第2の情報を足し合わせ前記第3の情報を有する信号を生成する第2の記録ステップと、を有することを特徴とする光情報記録方法。
  19.  信号光と参照光との干渉パターンがページデータとして記録されている光情報記録媒体から情報を再生する光情報再生方法であって、
     信号光と参照光を生成するステップと、
     前記参照光により再生された第1の情報及び第2の情報で構成される第3の情報を有する信号が記録されたページデータを検出するステップと、
    前記光検出器によって検出した第3の情報を有する信号を前記第1の情報のページデータ及び前記第2の情報のページデータに分離するステップと、
     分離された前記第1の情報のページデータと前記第2の情報のページデータよりそれぞれ復調するステップと、
     を有することを特徴とする光情報再生方法。
  20.  請求項19に記載の光情報再生方法であって、
     前記第1の情報とは振幅情報、前記第2の情報とは位相情報、前記第3の情報とは振幅位相情報であることを特徴とする光情報再生方法。
  21.  請求項19に記載の光情報再生方法であって、
     前記第1の情報とは実部情報、前記第2の情報とは虚部情報、前記第3の情報とは複素振幅情報であることを特徴とする光情報再生方法。
  22.  請求項20または21に記載の光情報再生方法であって、
     前記参照光より干渉光を生成するステップと、
     前記光情報記録媒体に記録された情報信号と第1の干渉光を干渉させ、第1の情報のページデータを検出するステップと、
     前記ホログラムディスクに記録された情報信号と前記第1の干渉光と位相が異なる第2の干渉光を干渉させ、第2の情報のページデータを検出するステップと、
     検出した前記第1の情報のページデータ及び前記第2の情報のページデータをそれぞれ復調するステップと、
    を有することを特徴とする光情報再生方法。
PCT/JP2015/065972 2015-06-03 2015-06-03 光情報記録装置および光情報記録方法、光情報再生装置および光情報再生方法 WO2016194154A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017521407A JP6297219B2 (ja) 2015-06-03 2015-06-03 光情報記録装置および光情報記録方法、光情報再生装置および光情報再生方法
PCT/JP2015/065972 WO2016194154A1 (ja) 2015-06-03 2015-06-03 光情報記録装置および光情報記録方法、光情報再生装置および光情報再生方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/065972 WO2016194154A1 (ja) 2015-06-03 2015-06-03 光情報記録装置および光情報記録方法、光情報再生装置および光情報再生方法

Publications (1)

Publication Number Publication Date
WO2016194154A1 true WO2016194154A1 (ja) 2016-12-08

Family

ID=57440390

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/065972 WO2016194154A1 (ja) 2015-06-03 2015-06-03 光情報記録装置および光情報記録方法、光情報再生装置および光情報再生方法

Country Status (2)

Country Link
JP (1) JP6297219B2 (ja)
WO (1) WO2016194154A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000293849A (ja) * 1999-04-07 2000-10-20 Fuji Xerox Co Ltd 光記録方法、光再生方法、光記録媒体
JP2010003358A (ja) * 2008-06-20 2010-01-07 Hitachi Ltd 光情報記録装置、光情報記録方法、光情報記録再生装置および光情報記録再生方法
JP2012027996A (ja) * 2010-07-28 2012-02-09 Hitachi Consumer Electronics Co Ltd 光情報記録再生装置及び再生装置
JP2014002823A (ja) * 2012-06-20 2014-01-09 Hitachi Consumer Electronics Co Ltd 光情報記録再生装置および光情報記録再生方法
JP2014211935A (ja) * 2013-04-19 2014-11-13 国立大学法人宇都宮大学 光情報記録装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000293849A (ja) * 1999-04-07 2000-10-20 Fuji Xerox Co Ltd 光記録方法、光再生方法、光記録媒体
JP2010003358A (ja) * 2008-06-20 2010-01-07 Hitachi Ltd 光情報記録装置、光情報記録方法、光情報記録再生装置および光情報記録再生方法
JP2012027996A (ja) * 2010-07-28 2012-02-09 Hitachi Consumer Electronics Co Ltd 光情報記録再生装置及び再生装置
JP2014002823A (ja) * 2012-06-20 2014-01-09 Hitachi Consumer Electronics Co Ltd 光情報記録再生装置および光情報記録再生方法
JP2014211935A (ja) * 2013-04-19 2014-11-13 国立大学法人宇都宮大学 光情報記録装置

Also Published As

Publication number Publication date
JPWO2016194154A1 (ja) 2017-08-03
JP6297219B2 (ja) 2018-03-20

Similar Documents

Publication Publication Date Title
WO2015114743A1 (ja) 光情報装置、光情報処理方法
US8159923B2 (en) Optical information recording apparatus, optical information recording method, optical information reproducing apparatus and optical information reproducing method
JP5802616B2 (ja) 光情報記録再生装置および光情報記録再生方法
US8699311B2 (en) Optical information recording/reproducing apparatus, optical information reproducing apparatus, optical information recording/reproducing method and optical information reproducing method
JP6297219B2 (ja) 光情報記録装置および光情報記録方法、光情報再生装置および光情報再生方法
WO2017094130A1 (ja) 光情報記録再生装置および光情報記録再生方法
WO2015011744A1 (ja) 光情報記録装置、光情報再生装置、光情報記録方法および再生位置ずれ検出方法
WO2015162653A1 (ja) 光情報装置および光情報処理方法
WO2014033895A1 (ja) ホログラム記録装置及びホログラム記録方法
WO2015011745A1 (ja) 光情報記録媒体、光情報記録方法および光情報再生方法
WO2016194155A1 (ja) ホログラフィックメモリ装置、及び光情報検出方法
CN107077871B (zh) 光信息记录再现装置、光信息再现装置和光信息再现方法
WO2014083670A1 (ja) 光情報再生装置及び光情報再生方法
WO2015083247A1 (ja) 光情報記録装置、および光情報記録方法
JP2015060613A (ja) 光情報記録装置および光情報記録方法
JP2015082327A (ja) 光情報再生装置、光情報再生方法および光情報記録方法
WO2015083246A1 (ja) 光情報再生装置及び光情報再生方法
JP6078634B2 (ja) 光情報再生装置および光情報記録再生装置
WO2020008496A1 (ja) ホログラム記録装置、ホログラム再生装置、ホログラム記録方法、及びホログラム再生方法
JPWO2014167620A1 (ja) 光情報再生装置及び光情報再生方法
KR100589620B1 (ko) 홀로그래픽 데이터 엔코딩/디코딩 방법
JP2015146221A (ja) 光情報再生装置および光情報再生方法
JP2016071918A (ja) 光情報記録再生装置および光情報再生方法
JP2014053069A (ja) 光情報記録媒体、光情報記録装置、光情報記録方法、光情報再生装置、光情報再生方法。
WO2015097837A1 (ja) マーカーパタン生成方法、情報記録媒体、情報再生方法、および情報記録媒体再生装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15894187

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017521407

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15894187

Country of ref document: EP

Kind code of ref document: A1