KR100589620B1 - 홀로그래픽 데이터 엔코딩/디코딩 방법 - Google Patents

홀로그래픽 데이터 엔코딩/디코딩 방법 Download PDF

Info

Publication number
KR100589620B1
KR100589620B1 KR1020040040663A KR20040040663A KR100589620B1 KR 100589620 B1 KR100589620 B1 KR 100589620B1 KR 1020040040663 A KR1020040040663 A KR 1020040040663A KR 20040040663 A KR20040040663 A KR 20040040663A KR 100589620 B1 KR100589620 B1 KR 100589620B1
Authority
KR
South Korea
Prior art keywords
decoding
pattern
encoding
data
pixel
Prior art date
Application number
KR1020040040663A
Other languages
English (en)
Other versions
KR20050115564A (ko
Inventor
김학선
Original Assignee
주식회사 대우일렉트로닉스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 대우일렉트로닉스 filed Critical 주식회사 대우일렉트로닉스
Priority to KR1020040040663A priority Critical patent/KR100589620B1/ko
Publication of KR20050115564A publication Critical patent/KR20050115564A/ko
Application granted granted Critical
Publication of KR100589620B1 publication Critical patent/KR100589620B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/26Processes or apparatus specially adapted to produce multiple sub- holograms or to obtain images from them, e.g. multicolour technique
    • G03H1/2645Multiplexing processes, e.g. aperture, shift, or wavefront multiplexing
    • G03H1/265Angle multiplexing; Multichannel holograms
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/04Processes or apparatus for producing holograms
    • G03H1/08Synthesising holograms, i.e. holograms synthesized from objects or objects from holograms
    • G03H1/0841Encoding method mapping the synthesized field into a restricted set of values representative of the modulator parameters, e.g. detour phase coding
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/04Processes or apparatus for producing holograms
    • G03H1/18Particular processing of hologram record carriers, e.g. for obtaining blazed holograms
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/02Details of features involved during the holographic process; Replication of holograms without interference recording
    • G03H2001/0208Individual components other than the hologram
    • G03H2001/0224Active addressable light modulator, i.e. Spatial Light Modulator [SLM]
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2260/00Recording materials or recording processes
    • G03H2260/50Reactivity or recording processes
    • G03H2260/54Photorefractive reactivity wherein light induces photo-generation, redistribution and trapping of charges then a modification of refractive index, e.g. photorefractive polymer

Abstract

본 발명은 홀로그래픽 데이터 엔코딩/디코딩 방법에 관한 것으로, 개시된 엔코딩 방법은 디지털 입력 데이터들의 M 비트 단위로 블록화하여 블록별로 각 비트들을 J ×J(J ≥2) 정방형 픽셀로 표현된 4개의 엔코딩 패턴으로 표현하며, 엔코딩 패턴은 블록의 첫 번째 비트가 "1"이거나 "1" 다음에 "1"에 대한 엔코딩 패턴과, "0"다음에 "1"에 대한 엔코딩 패턴과, 블록의 첫 번째 비트가 "0"이거나 "0" 다음에 "1"에 대한 엔코딩 패턴과, "1" 다음의 "0"에 대한 엔코딩 패턴들로 이루어진 것을 특징으로 한다.
이와 같이, 본 발명은 J ×J 정방픽셀로 이루어진 엔코딩 패턴들을 이용하여 엔코딩한 후 엔코딩 패턴과 동일한 디코딩 패턴으로 데이터를 디코딩함으로써, 데이터의 재생 효율을 향상시킬 수 있다.

Description

홀로그래픽 데이터 엔코딩/디코딩 방법{HOLOGRAPHY DATA ENCODING/DECODING METHOD}
도 1은 본 발명에 따른 홀로그래픽 데이터 엔코딩/디코딩 방법을 수행할 수 있는 홀로그래픽 디지털 저장 및 재생 시스템의 블록구성도이고,
도 2는 본 발명에 적용되는 엔코딩 패턴을 도시한 도면이고,
도 3은 본 발명에 따른 홀로그래픽 데이터 엔코딩 과정을 설명하기 위한 예시도이고,
도 4는 본 발명에 따른 홀로그래픽 데이터 디코딩 과정을 설명하기 위한 예시도이다.
<도면의 주요 부분에 대한 부호의 설명>
110 : 저장 및 재생 장치 111 : 광원
112 : 광 분리기 113, 116 : 셔터
114, 117 : 반사경 115 : 액츄에이터
118 : 공간 광 변조기 119 : 저장매체
120 : CCD 130 : 데이터 엔코딩 장치
150 : 데이터 디코딩 장치
본 발명은 홀로그래픽 시스템(Holographic System)에 관한 것으로, 더욱 상세하게는 홀로그래픽 데이터의 재생 효율 향상을 위한 홀로그래픽 데이터 엔코딩/디코딩 방법에 관한 것이다.
현재 데이터 저장용 메모리의 대용량 및 고속 처리를 위해 광 저장매체로 수∼수백 Gbytes를 저장할 수 있는 홀로그래픽 기록 매체와 그 기록/재생 장치에 대한 연구 및 개발이 활발히 진행 중에 있다.
홀로그래픽 데이터의 기록은 대상 물체로부터 반사된 신호광의 강도와 방향을 기록함으로써 이루어진다. 대상 물체의 빛의 강도와 방향은 신호광과 기준광의 간섭으로 이루어져 간섭 무늬를 만들게 되고, 이렇게 형성된 간섭 무늬는 간섭 무늬의 강도에 반응하는 물질로 이루어진 홀로그래픽 저장매체 속에 기록된다. 저장매체에 기록된 홀로그래픽 데이터는 기록 과정에서 사용된 기준광으로만 읽어 낼 수 있고, 기록시에 사용된 기준광과 파장 또는 위상이 다른 기준광은 저장매체에 기록된 홀로그래픽 데이터를 통과하여 읽어 내지 못한다.
이와 같은 홀로그래픽 성질을 이용하여 각각 다른 기준광으로 기록 매체의 같은 장소에 많은 홀로그래픽 데이터를 기록함으로써 작은 기록 매체 내부에 방대한 데이터를 저장하는 것이 가능해 진다.
전형적인 홀로그래픽 디지털 저장 및 재생 시스템은, 홀로그래픽 데이터를 저장매체에 기록하는 기록모드 시에 광원에서 발생한 레이저광을 기준광과 신호광 으로 분기시키고, 신호광을 외부 입력 데이터(즉, 저장하고자 하는 입력 데이터)에 따라 픽셀들이 명암을 이루는 한 페이지 단위의 2진 데이터로 변조하며, 변조된 신호광과 분기되어 기 설정된 편향 각으로 반사시킨 기록용 기준광을 서로 간섭시킴으로서 얻어지는 간섭 무늬를 입력 데이터에 대응하는 홀로그래픽 데이터로써 저장매체에 기록한다.
이때, 저장매체에 기록되는 A ×A(예컨대, 240 ×240)의 홀로그래픽 데이터는 일련의 전처리(예를 들면, 픽셀 데이터를 엔코딩하고 에러 정정 코드(패리티 비트) 등을 삽입하는 엔코딩 처리, 디코딩에서의 오우버 샘플링을 위한 테두리 생성 처리 등) 과정을 통해 엔코딩된 후 공간 광 변조기를 통해 신호광으로 변조되어 저장매체에 기록되며, 저장매체로부터 재생되는 A ×A(예를 들면, 240 ×240)의 홀로그래픽 데이터(즉, 간섭무늬 형상 이미지)는 CCD(Charge Coupled Device) 등을 통해 조사되어 (A+B) ×(A+B)의 사이즈를 갖는 데이터 이미지(예를 들면, 1024 ×1024의 데이터 이미지)로 변환되고, 오우버 샘플링 과정을 통해 엔코딩 전의 데이터, 즉 A ×A 사이즈를 갖는 데이터 이미지(예를 들면, 240 ×240이 데이터 이미지)로 변환되며, 이후 ECC 디코딩 등의 과정을 통해 엔코딩 전의 원래 데이터로 복원된다.
예를 들면, 한 페이지 단위의 이미지 데이터는 (A+B) ×(A+B)의 사이즈, 예를 들면 1024 ×1024의 사이즈를 갖는데, 이러한 페이지 이미지에는 띠 모양의 테두리와 테두리 안에 720 ×720의 사이즈를 갖는 데이터 이미지를 포함하고 있다.
따라서, (A+B) ×(A+B) 사이즈의 데이터 이미지에서 원래의 데이터 크기인 A ×B 데이터 이미지를 추출하기 위해서는 먼저 (A+B) ×(A+B) 사이즈의 데이터 이미지에서 테두리를 검출하는 것이 필요한데, 이를 위한 하나의 방법으로서 각 행 라인의 픽셀 총 합과 각 열 라인의 픽셀 총 합을 구하는 방식을 이용할 수 있다. 즉 각 행 라인의 픽셀 총 합과 각 열 라인의 픽셀 총 합을 구하면 양쪽에 유난히 큰 값을 가지는 라인이 존재하며, 이 라인들이 양쪽의 테두리 위치가 되는 것이다. 여기서, 테두리를 이루는 픽셀 라인의 총 합이 큰 값으로 나타나는 것은 실제 데이터 이미지 영역의 픽셀들은 "1"과 "0"의 픽셀 데이터 값들이 랜덤에게 혼재하는 형태를 갖는 반면에, 테두리의 형성하는 픽셀들이 모두 동일한 픽셀 데이터 값(예컨대, "1")으로 되어 있기 때문이다.
다음에, 전술한 일련의 과정들을 통해 테두리를 검출한 후에 예컨대 테두리 안의 왼쪽 상단 모서리 부분에서부터 시작하여 오른쪽 상단 모서리 부분으로 순차적으로 이동해 가면서 각 라인별로 픽셀을 추출한다. 예를 들어, 원래의 데이터 이미지가 240 ×240 사이즈이고, 재생 측에서 CCD를 통해 얻은 데이터 이미지가 720×720 사이즈라고 가정할 때, 각 라인별로 두 개의 픽셀을 건너뛰어 픽셀을 선택하는 방식으로 240 ×240 사이즈의 데이터 이미지를 추출하며, 이와 같이 추출된 240×240 사이즈의 데이터 이미지는 디코더 측으로 전달되어 엔코딩 전의 원래 데이터로 디코딩 된다.
한편, 재생신호를 디코딩하는 방법 중의 하나로서 임계값을 이용하는 방식이 있으며, 이러한 임계값 이용 방식으로는 픽셀의 평균이나 0.5값을 이용하는 방식과 국부 임계값을 이용하는 방식이 있다. 전자의 경우는 픽셀의 평균이나 0.5값보다 크면 1로 판독하고, 그 보다 작으면 0으로 판독하는 방법이다. 국부 임계값 이용 방식은 한 페이지의 재생신호를 여러 개의 영역으로 분할하고, 분할된 각 영역에 대해 서로 다른 임계값을 적용, 즉 페이지의 중심에 가까울수록 상대적으로 높은 임계값을 적용하고 페이지의 중심으로부터 멀어질수록(즉, 모서리 부분에 근접할수록) 상대적으로 낮은 임계값을 적용하여 1과 0을 판정하는 방식이다.
재생신호의 에러율을 감소시키기 위한 다른 방식으로는 미합중국 소재의 스탠포드 대학에서 제안한 방식(이하, 스탠포드 방식이라 칭함)이 있는 데, 스탠포드 방식은 국부적으로 1이 0보다 큰 것을 이용하여 입력 데이터를 코딩한 후에 저장매체에 기록하고, 재생 후에는 그 역으로 디코딩을 수행하는 방식이다. 예를 들어, 0은 01로, 1은 10으로 코딩하여 기록하고 재생 후에는 그 역 과정을 통해 디코딩하는 방식이다.
재생신호의 에러율을 감소시키기 위한 또 다른 방식으로는 IBM에서 제안한 방식(이하, IBM 방식이라 칭함)이 있는 데, IBM 방식은 1의 수와 0의 수가 같도록 코딩하여 저장매체에 기록하고, 재생 후에는 세기의 순서에 의해 디코딩하는 방식이다.
예를 들어, 6 : 8 코드의 경우, 8비트 중 1과 0의 개수가 같은 64개의 조합을 64개의 데이터와 연관시키고(6비트 → 8비트), 재생 시에는 재생된 신호 중(8비트 신호) 세기가 큰 것 4개를 1로, 나머지는 0으로 한 조합을 만들고 이를 6비트로 전환하여 디코딩하는 방식이다. 이러한 IBM 방식은 4 : 6에서 대략 67% 정도의 코드 레이트를 갖고, 6 : 8에서는 대략 75% 정도의 코드 레이트를 갖으며, 8 : 12에 서는 대략 67% 정도의 코드 레이트를 갖는다.
그러나, 전술한 바와 같은 종래의 엔코딩 및 디코딩 방법들이 이미지를 기초로 한 스토리지 시스템에 적용되는 경우 저장매체의 특성으로 인해서 데이터를 완벽하게 재생할 수 없는 문제점이 있다.
또한, 종래의 엔코딩 및 디코딩 방법은 온 픽셀의 개수가 오프 픽셀의 개수보다 많은 경우가 발생할 경우 온 픽셀들이 오프 픽셀들에 영향을 주기 때문에 재생 에러가 발생하는 문제점이 있다.
본 발명은 이와 같은 종래의 문제점을 해결하기 위하여 제안한 것으로, J ×J 정방픽셀로 이루어진 엔코딩 패턴들을 이용하여 엔코딩한 후 엔코딩 패턴과 동일한 디코딩 패턴으로 데이터를 디코딩함으로써, 데이터의 재생 효율을 향상시킬 수 있는 데 그 목적이 있다.
이와 같은 목적을 실현하기 위한 본 발명의 한 견지로서 상기 디지털 입력 데이터들의 M 비트 단위로 블록화하여 블록별로 각 비트들을 J ×J(J ≥2) 정방형 픽셀로 표현된 4개의 엔코딩 패턴으로 표현하되, 상기 블록의 첫 번째 비트가 "1"이거나 "1" 다음에 "1"인 경우 A 엔코딩 패턴으로, "0"다음에 "1"인 경우 B 엔코딩 패턴으로, 상기 블록의 첫 번째 비트가 "0"이거나 "0" 다음에 "1"인 경우 C 엔코딩 패턴으로, "1" 다음의 "0"인 경우 D 엔코딩 패턴으로 표현하며, 상기 M비트 단위로 각각의 비트들간 상호관계를 분석하여 상기 A, B, C, D 엔코딩 패턴들을 적용시켜 상기 블록의 데이터를 엔코딩하는 것을 특징으로 한다.
본 발명의 다른 견지로서 홀로그래픽 데이터 디코딩 방법은, M비트 단위로 블록화되어 코딩된 데이터를 디코딩하는 방법으로서, 상기 코딩된 데이터에 의한 재생 데이터 이미지를 J ×J(J ≥2) 정방형 픽셀 단위구역별로 분리한 후 상기 M비트 단위로 블록화시키고, 상기 블록화된 각 비트들의 J ×J 정방형 픽셀들의 구조와 4개의 디코딩 패턴들의 비교를 통해 디코딩하되, 상기 4개의 디코딩 패턴은 상기 블록의 첫 번째 비트가 "1"이거나 "1" 다음에 "1"인 경우 A 디코딩 패턴과, "0"다음에 "1"인 경우 B 디코딩 패턴과, 상기 블록의 첫 번째 비트가 "0"이거나 "0" 다음에 "1"인 경우 C 디코딩 패턴과, "1" 다음의 "0"인 경우 D 디코딩 패턴이며, 상기 각 비트들의 J×J 정방형 픽셀 구조와 상기 A, B, C, D 디코딩 패턴들의 비교를 통해 상기 각 J×J 정방형 픽셀들의 비트값을 산출하는 것을 특징으로 한다.
이하에서는 첨부한 도면을 참조하여 바람직한 실시 예에 대하여 상세히 설명하기로 한다. 이 실시 예를 통해 본 발명의 목적, 특징 및 이점들을 보다 잘 이해할 수 있게 된다. 그러나 본 발명은 이러한 실시 예로 제한되는 것은 아니다.
도 1은 본 발명에 따른 홀로그래픽 데이터 엔코딩/디코딩 방법을 수행할 수 있는 홀로그래픽 디지털 저장 및 재생 시스템의 블록구성도이고, 도 2는 본 발명에 적용되는 엔코딩 패턴을 도시한 도면이고, 도 3 및 도 4는 본 발명에 따른 홀로그래픽 데이터 엔코딩 및 디코딩 과정을 설명하기 위한 예시도이다.
홀로그래픽 디지털 저장 및 재생 시스템은, 도 1에 도시된 바와 같이, 크게 구분해 볼 때, 저장 및 재생 장치(110), 데이터 엔코딩 장치(130) 및 데이터 디코딩 장치(150)로 구성된다.
저장 및 재생 장치(110)는 통상의 일반적인 재생 시스템을 나타내는 것으로, 홀로그래피에서 요구되는 레이저광을 발생하는 광원(111), 3차원상의 홀로그래픽 데이터(즉, 간섭 무늬)를 저장하는 저장매체(119)(예를 들면, 광 굴절성 크리스탈) 및 CCD(120)를 포함하며, 이러한 광원(111)과 저장매체(119) 사이에는 다수의 광학계를 포함하는 두 개의 경로, 즉 기준광 처리 경로(PS1)와 신호광 처리 경로(PS2)가 형성된다.
먼저, 광 분리기(112)에서는 광원(111)으로부터 입사되는 레이저광을 기준광과 신호광으로 분기하는 데, 여기에서 분기된 수직 편광의 기준광은 기준광 처리 경로(PS1)로 제공되고 분기된 신호광은 신호광 처리 경로(PS2)로 제공된다.
다음에, 기준광 처리 경로(PS1)상에는 셔터(113), 반사경(114) 및 액츄에이터(115)가 기준광의 출사 방향으로 구비되며, 이러한 광 전달 경로를 통해 기준광 처리 경로(PS1)에서는 홀로그래픽 데이터의 기록 또는 재생에 필요한 기준광을 기 설정된 소정의 편향 각으로 반사시켜 저장매체(119)에 제공한다.
이때, 설명의 편의와 이해의 증진을 위해 도 1에서의 도시는 생략하였으나, 기준광 처리 경로(PS1) 상에는 기준광 처리를 위한 다수의 광학 렌즈(예를 들면, 웨이스트 구성 렌즈, 빔 확장기 등)가 구비된다.
따라서, 광 분리기(112)로부터 분기되어 셔터(113)의 개구를 통해 입사되는 수직 편광된 기준광은 도시 생략된 광학 렌즈 등을 통해 조정되고 임의의 크기로 확장(즉, 후술하는 신호광 처리 경로(PS2)에서 빔 확장기를 통해 확장되는 신호광의 크기를 커버하기에 충분한 정도의 크기로 확장)되며, 반사경(114)을 통해 기설정된 소정 각도, 예를 들면 기록시의 기록 각 또는 재생을 위해 기 설정된 재생 각 으로 편향된 후 저장매체(119)로 입사(조사)된다.
여기에서, 기록 또는 재생 시에 이용되는 기준광은 각 페이지 단위의 2진 데이터를 저장매체(119)에 기록할 때마다 액츄에이터(115)를 이용해 반사경(114)을 회전시켜 그 편향각도(θ)를 변화시키는 방법으로 제어되는 데, 이러한 기준광 편향 기법을 통해 수백 내지 수천 개의 홀로그래픽 데이터를 저장매체(119)에 저장하거나 혹은 저장된 홀로그래픽 데이터를 재생할 수 있다.
한편, 신호광 처리 경로(PS2)상에는 셔터(116), 반사경(117) 및 공간 광 변조기(118)가 신호광의 출사 방향으로 순차 구비되는 데, 셔터(116)는 도시 생략된 시스템 제어 수단으로부터의 제어에 따라, 기록모드 시에는 개방 상태를 유지하고, 재생모드 시에는 차단 상태를 유지한다.
이때, 설명의 편의와 이해의 증진을 위해 도 1에서의 도시는 생략하였으나, 신호광 처리 경로(PS2) 상에는 신호광 처리를 위한 다수의 광학 렌즈(예를 들면, 리이미징 렌즈, 빔 확장기, 필드 렌즈 등)가 구비된다.
따라서, 광 분리기(112)로부터 분기되어 셔터(116)의 개구를 통해 입사되는 신호광은 반사경(117)을 통해 소정의 편향 각으로 반사된 후 공간 광 변조기(118)로 전달된다.
이어서, 공간 광 변조기(118)에서는 반사경(117)으로부터 전달되는 신호광을 데이터 엔코딩 장치(130)로부터 제공되는 입력 데이터(즉, 본 발명에 따라 코딩된 입력 데이터)에 따라 픽셀들이 이루는 명암으로 된 2진 데이터의 한 페이지 단위로 변조, 즉 일 예로서 입력 데이터가 영상의 한 프레임 단위로 된 화상 데이터일 때 공간 광 변조기(118)로 입사되는 신호광은 한 프레임 단위의 신호광으로 변조된 후, 기준광 처리 경로(PS1)의 반사경(114)에서 입사되는 기준광과 동기를 맞추어 저장매체(119)로 입사된다.
따라서, 저장매체(119)에서는 기록모드 시에 공간 광 변조기(118)로부터 제공되는 2진 데이터의 페이지 단위로 변조된 신호광과 이에 대응하는 편향각도(θ)를 가지고 반사경(114)으로부터 입사되는 기록용 기준광간의 간섭을 통해 얻어지는 간섭 무늬가 기록된다. 즉, 변조된 신호광과 기준광간의 간섭에 의해 얻어지는 간섭 무늬의 강도에 따라 저장매체(119) 내부에서 운동 전하의 광 유도 현상이 발생하는 데, 이러한 과정을 통해 저장매체(119)에 홀로그래픽 데이터의 간섭 무늬가 기록된다.
한편, 데이터 엔코딩 장치(130)는 N : M(단, N〈 M) 언밸런시드 코드를 이용하여 데이터 코딩을 수행하는 데, 외부로부터 입력되는 디지털 입력 데이터(즉, 저장매체에 기록하고자 하는 입력 데이터)를 N비트 단위(예를 들면, 6비트)로 블록화하여 그룹으로 분리하며, 각 그룹의 각 비트들은 4개의 픽셀로 표현한다. 이때 "0"과 "1"은 각각 두개의 엔코딩 패턴을 표현되며, 4개의 엔코딩 패턴은, 도 2에 도시된 바와 같이, 온 픽셀이 하나이고 2 ×2 정방형 픽셀 구조를 갖는다.
즉, 도 2에 도시된 바와 같이, 1행1열이 온인 경우는 비트값 "1"에 대응되는 패턴으로서, 각 그룹의 시작 비트가 "1"인 경우거나 "1"다음에 나오는 "1"에 대한 엔코딩 패턴(이하, A패턴이라고함)이고, 1행2열이 온인 경우는 "0"다음에 나오는 "1"에 대한 엔코딩 패턴(이하, B 패턴이라고함)이고, 2행1열이 온인 경우는 각 그 룹의 시작 비트가 "0"인 경우거나 "0" 다음에 나오는 "0"에 대한 엔코딩 패턴(이하, C 패턴이라고함)이고, 2행2열이 온인 경우는 "1" 다음에 나오는 "0"에 대한 엔코딩 패턴(이하, D패턴이라고함)이다.
데이터 엔코딩 장치(130)는 각 그룹의 N개 비트를 상기와 같은 엔코딩 패턴들로 표현한 후 N:M 언밸런시드 코드를 이용하여 코딩시킨다. 즉, N 비트의 디지털 입력 데이터는 M 비트로 표현되는데, 이때 K(K=M-N) 비트에 대응되는 값들도 엔코딩 패턴들을 이용하여 표현된다.
예를 들면, 그룹핑된 비트들이 "110100"인 경우 데이터 엔코딩 장치(130)는 6:8언밸런스드 코드 기법을 이용하여 8비트, 즉 "11010010"으로 표현하고, 각 그룹의 첫 번째 및 두 번째 비트인 "11"을 각각 A엔코딩 패턴으로 표현하고, 세 번째 "0"은 "1"의 값 다음의 "0"이기 때문에 D엔코딩 패턴으로 표현하고, 네 번째 "1"은 "0"의 값 다음의 "1"이기 때문에 B 엔코딩 패턴으로 표현하고, 다섯 번째 "0"은 "1" 다음의 "0"이기 때문에 D엔코딩 패턴으로 표현하고, 여섯 번째 "0"은 "0" 다음의 "0"이기 때문에 C 엔코딩 패턴으로 표현한다. 이와 같은 방식으로 데이터 엔코딩 장치(130)는, 도 3에 도시된 바와 같이, "11010010"에 대해서 각각 비트값들을 2 ×2픽셀로 이루어진 엔코딩 패턴으로 표현하여 엔코딩한다.
상기와 같이 그룹핑된 비트들에 대한 엔코딩 패턴들을 살펴보면, 온되는 픽셀들이 오프되는 픽셀들보다 상대적으로 적어 인접 픽셀들에 대한 방해 요소들을 배제시킬 수 있다.
이와 같이, 그룹으로 분리된 각 블록 데이터들을 각 비트가 2 ×2픽셀로 이 루어진 M비트로 변환(예를 들어, 8비트)하여 코딩한 후 각 블록 데이터로 코딩된 한 페이지의 2진 데이터를 공간 광 변조기(118)로 전달한다.
따라서, 공간 광 변조기(118)가 반사경(117)으로부터 입사되는 신호광을 픽셀들이 이루는 명암으로 된 2진 데이터의 한 페이지 단위로 변조하여 생성한 신호광을 저장매체(119)로 조사함으로써, 저장매체(119)에는 본 발명에 따라 코딩된 홀로그래픽 데이터가 저장된다.
한편, 본 발명에 따라 코딩되어 저장매체(119)에 기록(저장)된 홀로그래픽 데이터를 재생하는 경우, 도시 생략된 시스템 제어 수단으로부터의 제어에 따라 신호광 처리 경로(PS2)측의 셔터(116)는 차단 상태로 되고 기준광 처리 경로(PS1)측이 셔터(113)는 개방 상태로 된다.
따라서, 광 분리기(112)로부터 분기된 기준광(재생용 기준광)은 반사경(114)을 통해 반사되어 저장매체(119)로 조사되며, 그 결과 저장매체(134)에서는 판독용 기준광에 의해 기록된 간섭 무늬가 입사된 판독용 기준광을 회절시켜 원래의 픽셀 명암으로 구성되는 한 페이지의 2진 데이터(즉, 바둑판 형상 무늬)로 복조되며, 여기에서 복조된 재생 신호는 CCD(120)로 조사된다.
이어서, CCD(120)에서는 저장매체(119)로부터 조사되는 재생 출력을 원래의 데이터, 즉 전기신호로 복원하며, 여기에서 복원된 재생 신호는 데이터 디코딩 장치(150)로 전달된다.
데이터 디코딩 장치(150)는 저장매체(119)로부터 재생되어 CCD(120)를 통해 출력되는 코딩된 재생신호를 코딩 전의 원 신호로 디코딩하는 데, (A+B) ×(A+B) 사이즈의 데이터 이미지에서 원래의 데이터 크기인 A ×A 데이터 이미지를 추출하기 위해서 먼저 (A+B) ×(A+B) 사이즈의 데이터 이미지에서 테두리를 검출한다. 이를 위한 하나의 방법으로서 각 행 라인의 픽셀 총 합과 각 열 라인의 픽셀 총 합을 구하는 방식을 이용할 수 있다. 즉 각 행 라인의 픽셀 총 합과 각 열 라인의 픽셀 총 합을 구하면 양쪽에 유난히 큰 값을 가지는 라인이 존재하며, 이 라인들이 양쪽의 테두리 위치가 되는 것이다. 여기서, 테두리를 이루는 픽셀 라인의 총 합이 큰 값으로 나타나는 것은 실제 데이터 이미지 영역의 픽셀들은 "1"과 "0"의 픽셀 데이터 값들이 랜덤에게 혼재하는 형태를 갖는 반면에, 테두리의 형성하는 픽셀들이 모두 동일한 픽셀 데이터 값(예컨대, "1")으로 되어 있기 때문이다.
다음에, 전술한 일련의 과정들을 통해 테두리를 검출한 후에 예컨대 테두리 안의 왼쪽 상단 모서리 부분에서부터 시작하여 오른쪽 상단 모서리 부분으로 순차적으로 이동해 가면서 각 라인별로 픽셀을 추출한다.
이때, 데이터 디코딩 장치(150)는 추출한 데이터 이미지를 2 ×2 정방형 픽셀 단위구역별로 분리한 후 각 단위구역들에 대해 광의 강도를 기준으로 내림차순으로 정렬한다. 그런 다음, 데이터 디코딩 장치(150)는 기 정의된 디코딩 패턴(도 2 에 도시된 기 정의된 A 엔코딩 패턴은 A 디코딩 패턴으로 B 엔코딩 패턴은 B 디코딩 패턴으로 C 엔코딩 패턴은 C 디코딩 패턴으로 D 엔코딩 패턴은 D 디코딩 패턴으로 정의함)들을 이용하여 비트값을 산출한 후 총 M비트 중에서 K비트(예를 들면, 2비트)의 정보 비트를 제거하여 원래의 N비트(예를 들면, 6비트) 데이터로 디코딩 한다.
즉, 도 4에 도시된 픽셀 구조를 갖는 데이터가 CCD(120)로부터 입력된 경우, 데이터 디코딩 장치(150)는 2 ×2 픽셀 구조를 갖는 디코딩 패턴과 데이터를 비교하여 "11000010"이라는 비트값을 산출한 후 각 비트에 대응되는 J ×J 정방 픽셀들과 디코딩 패턴들을 비교하여 데이터가 제대로 디코딩되었는지를 검사한다. 즉 데이터 디코딩 장치(150)는 디코딩 패턴들을 토대로 인접하는 세 비트에 해당되는 3개의 J ×J 정방형 픽셀의 구조를 체크하여 데이터가 제대로 디코딩되었는지를 검사한다.
도 4를 참조하면, 디코딩 패턴들을 토대로 각 비트들에 대응되는 J ×J 정방형 픽셀들의 구조들간 상호관계를 조사하면, 네 번째 비트는 앞의 세 번째 비트와 전혀 관계가 없는 것을 알 수 있다. 즉, "0"비트값 다음에 나오는 "0"비트값에 대응되는 디코딩 패턴은 C 디코딩 패턴에 해당되지만, 여기서는 D 디코딩 패턴이기 때문에 데이터 오류가 발생되었음을 알 수 있다. 데이터 디코딩 장치(150)는 이러한 데이터 오류에 대해 각 인접 비트들에 대응되는 디코딩 패턴의 형태로 오류 정정을 실시한다. 즉, 네 번째 비트 "0" 다음의 다섯 번째 비트의 디코딩 패턴이 D 디코딩 패턴이고, D 디코딩 패턴은 "1"다음에 나타나는 엔코딩 패턴에 해당되기 때문에 네 번째 비트는"1"이 된다.
전술한 바와 같은 본 발명은 J ×J 정방픽셀로 이루어진 엔코딩 패턴들을 이용하여 엔코딩한 후 엔코딩 패턴과 동일한 디코딩 패턴으로 데이터를 디코딩함으로써, 데이터의 재생 효율을 향상시킬 수 있다.

Claims (7)

  1. 디지털 입력 데이터를 엔코딩하는 방법으로서,
    상기 디지털 입력 데이터들의 M 비트 단위로 블록화하여 블록별로 각 비트들을 J ×J(J ≥2) 정방형 픽셀로 표현된 4개의 엔코딩 패턴으로 표현하되, 상기 블록의 첫 번째 비트가 "1"이거나 "1" 다음에 "1"인 경우 A 엔코딩 패턴으로, "0"다음에 "1"인 경우 B 엔코딩 패턴으로, 상기 블록의 첫 번째 비트가 "0"이거나 "0" 다음에 "1"인 경우 C 엔코딩 패턴으로, "1" 다음의 "0"인 경우 D 엔코딩 패턴으로 표현하며,
    상기 M비트 단위로 각각의 비트들간 상호관계를 분석하여 상기 A, B, C, D 엔코딩 패턴들을 적용시켜 상기 블록의 데이터를 엔코딩하는 것을 특징으로 하는 홀로그래픽 데이터 엔코딩 방법.
  2. 제 1 항에 있어서,
    상기 엔코딩 패턴은, 온(또는 오프)되는 하나 픽셀을 가지며, 상기 각 엔코딩 패턴별로 온(또는 오프)되는 픽셀의 위치가 변경되는 것을 특징으로 하는 홀로그래픽 데이터 엔코딩 방법.
  3. 제 1 항에 있어서,
    상기 각 비트들이 2 ×2 정방형 픽셀의 구조로 이루어진 경우, 상기 엔코딩 패턴은 2 ×2 정방형 픽셀로 구조를 가지며, 상기 A 엔코딩 패턴은 1행1열만 온 또는 오프되는 픽셀이고, 상기 B 엔코딩 패턴은 1행2열만 온 또는 오프되는 픽셀이고, 상기 C 엔코딩 패턴은 2행1열만 온 또는 오프되는 픽셀이고, 상기 D 엔코딩 패턴은 2행2열만 온 또는 오프되는 픽셀인 것을 특징으로 하는 홀로그래픽 데이터 엔코딩 방법.
  4. M비트 단위로 블록화되어 코딩된 데이터를 디코딩하는 방법으로서,
    상기 코딩된 데이터에 의한 재생 데이터 이미지를 J ×J(J ≥2) 정방형 픽셀 단위구역별로 분리한 후 상기 M비트 단위로 블록화시키고, 상기 블록화된 각 비트들의 J ×J 정방형 픽셀들의 구조와 4개의 디코딩 패턴들의 비교를 통해 디코딩하되, 상기 4개의 디코딩 패턴은 상기 블록의 첫 번째 비트가 "1"이거나 "1" 다음에 "1"인 경우 A 디코딩 패턴과, "0"다음에 "1"인 경우 B 디코딩 패턴과, 상기 블록의 첫 번째 비트가 "0"이거나 "0" 다음에 "1"인 경우 C 디코딩 패턴과, "1" 다음의 "0"인 경우 D 디코딩 패턴이며,
    상기 각 비트들의 J×J 정방형 픽셀 구조와 상기 A, B, C, D 디코딩 패턴들의 비교를 통해 상기 각 J×J 정방형 픽셀들의 비트값을 산출하는 것을 특징으로 하는 홀로그래픽 데이터 디코딩 방법.
  5. 제 4 항에 있어서,
    상기 디코딩 패턴은, 온(또는 오프)되는 하나 픽셀을 가지며, 상기 각 디코딩 패턴별로 온(또는 오프)되는 픽셀의 위치가 변경되는 것을 특징으로 하는 홀로그래픽 데이터 디코딩 방법.
  6. 제 4 항에 있어서,
    상기 각 비트들이 2 ×2 정방형 픽셀의 구조로 이루어진 경우, 상기 디코딩 패턴은 2 ×2 정방형 픽셀로 구조를 가지며, 상기 A 디코딩 패턴은 1행1열만 온 또는 오프되는 픽셀이고, 상기 B 디코딩 패턴은 1행2열만 온 또는 오프되는 픽셀이고, 상기 C 디코딩 패턴은 2행1열만 온 또는 오프되는 픽셀이고, 상기 D 디코딩 패턴은 2행2열만 온 또는 오프되는 픽셀인 것을 특징으로 하는 홀로그래픽 데이터 디코딩 방법.
  7. 제 4 항에 있어서,
    상기 디코딩 방법은,
    상기 M 비트들 중 인접하는 세 개의 비트씩 추출하는 단계와,
    상기 A, B, C, D 디코딩 패턴들을 토대로 상기 추출된 세 개의 비트들 중 인접하는 두 비트들간 J ×J 정방형 픽셀 구조의 상호 관계를 검사하는 단계와,
    상기 검사 결과에 의거하여 에러 발생 비트를 검출하고, 상기 검출된 에러 발생 비트를 상기 A, B, C, D 디코딩 패턴들을 토대로 정정하는 단계
    를 더 포함하는 홀로그래픽 데이터 디코딩 방법.
KR1020040040663A 2004-06-04 2004-06-04 홀로그래픽 데이터 엔코딩/디코딩 방법 KR100589620B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020040040663A KR100589620B1 (ko) 2004-06-04 2004-06-04 홀로그래픽 데이터 엔코딩/디코딩 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020040040663A KR100589620B1 (ko) 2004-06-04 2004-06-04 홀로그래픽 데이터 엔코딩/디코딩 방법

Publications (2)

Publication Number Publication Date
KR20050115564A KR20050115564A (ko) 2005-12-08
KR100589620B1 true KR100589620B1 (ko) 2006-06-19

Family

ID=37289462

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020040040663A KR100589620B1 (ko) 2004-06-04 2004-06-04 홀로그래픽 데이터 엔코딩/디코딩 방법

Country Status (1)

Country Link
KR (1) KR100589620B1 (ko)

Also Published As

Publication number Publication date
KR20050115564A (ko) 2005-12-08

Similar Documents

Publication Publication Date Title
KR100420005B1 (ko) 홀로그래픽 디지털 저장 및 재생 시스템과 데이터코딩/디코딩 방법
KR100355998B1 (ko) 홀로그래픽 디지털 저장 및 재생 시스템과 데이터코딩/디코딩 방법
KR101422006B1 (ko) 데이터의 인코딩/디코딩 방법, 데이터의 검출방법 및데이터의 기록/재생 방법
KR100589620B1 (ko) 홀로그래픽 데이터 엔코딩/디코딩 방법
KR100569480B1 (ko) 홀로그래픽 데이터 인코딩/디코딩 방법
KR100589594B1 (ko) 홀로그래픽 데이터 엔코딩/디코딩 방법
KR100551384B1 (ko) 홀로그래픽 데이터 디코딩 방법
KR100551367B1 (ko) 홀로그래픽 데이터 엔코딩/디코딩 방법
KR100657675B1 (ko) 홀로그래픽 웜의 기록 재생을 위한 코딩 방법 및 그 장치
KR100589590B1 (ko) 홀로그래픽 시스템의 데이터 복원장치 및 방법
KR100739315B1 (ko) 회전 검출 기능을 갖는 홀로그래픽 디지털 데이터 재생 및저장 시스템과 방법
KR101520703B1 (ko) 데이터 인코딩 방법, 데이터 기록 방법 및 데이터 기록 장치
KR100551372B1 (ko) 홀로그래픽 디지털 데이터 시스템의 코딩 및 디코딩 방법
KR100657690B1 (ko) 홀로그래픽 데이터 인코딩/디코딩 방법
KR100551373B1 (ko) 홀로그래픽 디지털 데이터 시스템의 코딩 및 디코딩 방법
KR100681610B1 (ko) 홀로그래픽 데이터 인코딩/디코딩 방법
KR100555964B1 (ko) 홀로그래픽 데이터 엔코딩/디코딩 방법
KR100822633B1 (ko) 광정보의 모듈레이션 방법 및 그 장치
WO2015011745A1 (ja) 光情報記録媒体、光情報記録方法および光情報再生方法
KR100551374B1 (ko) 홀로그램 데이터 엔코딩/디코딩 시스템 및 그 방법
KR100589588B1 (ko) 홀로그램 데이터 엔코딩/디코딩 시스템 및 그 방법
KR100555976B1 (ko) Hdds 시스템에서 홀로그래픽 데이터 기록/재생시넌밸런스드 듀얼 웨이트 코딩/디코딩 방법
KR100555255B1 (ko) 홀로그래픽 디지털 데이터 저장시스템의 멀티-레벨 차분코딩 및 디코딩 방법 및 장치
KR100588966B1 (ko) 홀로그램 데이터 엔코딩/디코딩 시스템 및 그 방법
KR101507789B1 (ko) 데이터의 인코딩/디코딩 방법, 데이터의 검출방법, 데이터기록/재생장치 및 데이터 기록/재생 방법

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20110601

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee