WO2016192277A1 - 骨导声音传播装置和方法 - Google Patents

骨导声音传播装置和方法 Download PDF

Info

Publication number
WO2016192277A1
WO2016192277A1 PCT/CN2015/092672 CN2015092672W WO2016192277A1 WO 2016192277 A1 WO2016192277 A1 WO 2016192277A1 CN 2015092672 W CN2015092672 W CN 2015092672W WO 2016192277 A1 WO2016192277 A1 WO 2016192277A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
amplitude
vibration
frequency
vibration signal
Prior art date
Application number
PCT/CN2015/092672
Other languages
English (en)
French (fr)
Inventor
任俊媛
白静璐
吕学文
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US15/037,643 priority Critical patent/US9986334B2/en
Priority to EP15859999.3A priority patent/EP3306949B1/en
Publication of WO2016192277A1 publication Critical patent/WO2016192277A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones
    • H04R3/04Circuits for transducers, loudspeakers or microphones for correcting frequency response
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2430/00Signal processing covered by H04R, not provided for in its groups
    • H04R2430/03Synergistic effects of band splitting and sub-band processing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2460/00Details of hearing devices, i.e. of ear- or headphones covered by H04R1/10 or H04R5/033 but not provided for in any of their subgroups, or of hearing aids covered by H04R25/00 but not provided for in any of its subgroups
    • H04R2460/03Aspects of the reduction of energy consumption in hearing devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2460/00Details of hearing devices, i.e. of ear- or headphones covered by H04R1/10 or H04R5/033 but not provided for in any of their subgroups, or of hearing aids covered by H04R25/00 but not provided for in any of its subgroups
    • H04R2460/13Hearing devices using bone conduction transducers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R25/00Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
    • H04R25/60Mounting or interconnection of hearing aid parts, e.g. inside tips, housings or to ossicles
    • H04R25/604Mounting or interconnection of hearing aid parts, e.g. inside tips, housings or to ossicles of acoustic or vibrational transducers
    • H04R25/606Mounting or interconnection of hearing aid parts, e.g. inside tips, housings or to ossicles of acoustic or vibrational transducers acting directly on the eardrum, the ossicles or the skull, e.g. mastoid, tooth, maxillary or mandibular bone, or mechanically stimulating the cochlea, e.g. at the oval window

Definitions

  • the present invention relates to the field of bone conduction technology, and in particular, to a bone conduction sound propagation device and a bone conduction sound propagation method.
  • Bone conduction is a way of sound transmission, which is to transmit sound waves through human skull, bone labyrinth, inner ear lymph, spiral, auditory nerve, and auditory center by transforming sound into mechanical vibration of different frequencies.
  • bone conduction eliminates many steps of sound wave transmission, not only achieving clear sound reduction in noisy environments, but also sound waves do not affect others due to diffusion in the air. .
  • the sound transmitted by the conventional bone conduction device first passes through the attenuation of the human skin, soft tissues, bones, etc., and the sound heard by the user and the sound heard through the air conduction. There is a large distortion between the sound quality, and the listening effect is greatly affected.
  • a bone conduction sound propagation device comprising:
  • a signal output module for providing a digital audio signal
  • a signal conversion transmitting module configured to convert the digital audio signal into a vibration signal, and transmit the vibration signal
  • a signal detecting module configured to detect a vibration signal of at least one position point in a propagation path from the signal conversion transmitting module to the receiving end;
  • a signal feedback module configured to calculate an attenuation coefficient of the vibration signal of each of the position points, determine a compensation signal according to the attenuation coefficient, and compensate the vibration signal generated by the signal conversion transmitting module with the compensation signal.
  • the signal conversion transmitting module includes a vibration generating component for transmitting the vibration signal, and the signal feedback module applies the compensation signal to the vibration generating component.
  • the signal detection module includes a signal amplitude detecting unit
  • the compensation signal includes an amplitude compensation signal
  • the signal amplitude detecting unit is configured to detect a propagation path from the signal conversion transmitting module to the receiving end.
  • the signal feedback module is configured to calculate an amplitude attenuation coefficient of the vibration signal of each of the position points, and determine the amplitude compensation signal according to the amplitude attenuation coefficient.
  • the signal amplitude detecting unit includes at least one signal amplitude detecting component, and the signal amplitude detecting component is disposed corresponding to the position point to be detected, and is configured to detect when the vibration signal propagates to the corresponding position point Amplitude.
  • the signal feedback module calculates an amplitude attenuation coefficient of the vibration signal of each of the position points according to formula (1):
  • ⁇ i is an amplitude attenuation coefficient when the vibration signal propagates to the i th position point; wherein i is a positive integer, and the maximum value of i is the number of the position points;
  • U 0 is an initial amplitude when the vibration signal is transmitted from the signal conversion transmitting module
  • U i is the amplitude when the vibration signal propagates to the i-th position point
  • the signal feedback module further determines an amplitude compensation signal for each of the location points according to formula (2):
  • B i is the amplitude compensation signal of the i-th position point
  • f( ⁇ i ) is a piecewise function such that B i is a pulse signal in a magnification relationship with ⁇ i .
  • the number of the position points is N, and each of the position points is provided with a signal amplitude detecting member for detecting the amplitude when the vibration signal propagates to the position point.
  • a distance between the jth position point and the signal conversion transmitting module is greater than a distance between the j-1th position point and the signal conversion transmitting module, where j is a positive integer, and 1 ⁇ j ⁇ N;
  • the signal feedback module calculates an amplitude attenuation coefficient at each of the position points according to formula (3):
  • ⁇ j is the amplitude attenuation coefficient when the vibration signal propagates to the jth position point
  • U 0 is an initial amplitude when the vibration signal is transmitted from the signal conversion transmitting module
  • U j is the amplitude when the vibration signal propagates to the jth position point
  • the signal feedback module further determines an amplitude compensation signal for each of the location points according to equation (4):
  • B j is the amplitude compensation signal of the jth position point
  • f( ⁇ j ) is a piecewise function such that B j is a pulse signal in a magnification relationship with ⁇ j .
  • the signal conversion transmitting module further includes:
  • a first frequency dividing unit configured to divide the digital audio signal, and divide the digital audio signal into frequency-divided audio signals of M frequency bands, wherein a center frequency of the frequency-divided audio signal of each frequency band is f k , wherein M is a positive integer, and k is a positive integer selected from 1 to M;
  • a multi-frequency signal conversion transmitting unit configured to respectively convert the frequency-divided audio signals of M frequency bands with a center frequency of f k into M-component frequency-transmitted vibration signals;
  • the mixing unit is configured to synthesize the M group of the frequency-divided vibration signals into a complete vibration signal.
  • the signal conversion transmitting module further includes:
  • a first filtering unit configured to filter the digital audio signal; the first frequency dividing unit is configured to divide the filtered digital audio signal.
  • the signal feedback module further includes:
  • a second frequency dividing unit configured to divide a vibration signal detected by the signal detecting module, and divide the vibration signal into frequency-divided detecting vibration signals of M frequency bands that are consistent with a frequency band of the digital audio signal, And the center frequency of the frequency division detection vibration signal of each frequency band is also f k , wherein M is a positive integer, and k is a positive integer selected from 1 to M;
  • a multi-frequency signal feedback unit configured to respectively calculate attenuation coefficients of the frequency-divided detection vibration signals of M frequency bands with a center frequency of f k , determine M group compensation signals according to the M attenuation coefficients, and use the M group to compensate The signal compensates the M sets of the divided transmission vibration signals generated by the multi-frequency signal conversion transmitting unit.
  • the signal feedback module further includes:
  • a second filtering unit configured to filter a vibration signal detected by the signal detecting module; and the second frequency dividing unit is configured to divide the filtered vibration signal.
  • the signal output module may include an environment audio receiving unit for receiving an ambient audio signal and converting the ambient audio signal into the digital audio signal.
  • a bone conduction sound propagation method comprising the following steps:
  • the step of detecting a vibration signal of at least one of the propagation paths from the transmitting end to the receiving end comprises:
  • the step of calculating the attenuation coefficient of the vibration signal at each of the position points includes:
  • the compensation signal includes an amplitude compensation signal
  • the step of determining the compensation signal according to the attenuation coefficient includes:
  • the amplitude compensation signal is determined according to the amplitude attenuation coefficient.
  • the step of calculating the amplitude attenuation coefficient of the vibration signal for each of the location points comprises:
  • ⁇ i is an amplitude attenuation coefficient when the vibration signal propagates to the i th position point; wherein i is a positive integer, and the maximum value of i is the number of the position points;
  • U 0 is an initial amplitude when the vibration signal is emitted from the transmitting end
  • U i is the amplitude when the vibration signal propagates to the i-th position point
  • the step of determining the amplitude compensation signal according to the amplitude attenuation coefficient comprises:
  • the amplitude compensation signal for each of the position points is determined according to formula (2):
  • B i is the amplitude compensation signal of the i-th position point
  • f( ⁇ i ) is a piecewise function such that B i is a pulse signal in a magnification relationship with ⁇ i .
  • the number of the location points is N, and among the N of the location points, the distance between the jth location point and the transmitting end is greater than the j-1th location point and Transmitting a distance between the transmitting modules, wherein j is a positive integer, and 1 ⁇ j ⁇ N;
  • the step of calculating the amplitude attenuation coefficient of the vibration signal of each of the position points includes:
  • ⁇ j is an amplitude attenuation coefficient when the vibration signal propagates to the jth position point
  • U 0 is an initial amplitude when the vibration signal is transmitted from the transmitting end
  • U j is the amplitude when the vibration signal propagates to the jth position point
  • the step of determining the amplitude compensation signal according to the amplitude attenuation coefficient comprises:
  • the amplitude compensation signal for each of the position points is determined according to formula (4):
  • B j is the amplitude compensation signal of the jth position point
  • f( ⁇ j ) is a piecewise function such that B j is a pulse signal in a magnification relationship with ⁇ j .
  • the step of converting the digital audio signal into a vibration signal may further include:
  • the M group of the divided transmission vibration signals are combined into a complete vibration signal.
  • the method further comprises filtering the digital audio signal prior to dividing the digital audio signal.
  • the method further includes: dividing the detected vibration signal by dividing the vibration signal before calculating the attenuation coefficient of the vibration signal of each of the position points, and dividing the vibration signal into the number
  • the frequency division of the M frequency bands in which the audio signal frequency band is consistent is detected by the frequency division, and the center frequency of the frequency division detection vibration signal of each frequency band is also f k , wherein M is a positive integer, and k is selected from 1 to M Positive integer
  • the method further includes: after dividing the detected vibration signal, respectively calculating attenuation coefficients of the frequency-divided detection vibration signals of M frequency bands having a center frequency of f k , according to the M attenuation coefficients
  • the M sets of compensation signals are determined, and the M sets of the compensation signals are respectively compensated for the M sets of the divided transmission vibration signals.
  • the method further includes filtering the detected vibration signal prior to dividing the detected vibration signal.
  • step of providing a digital audio signal includes:
  • the bone conduction sound propagation device and the bone conduction sound propagation method provided by the embodiments of the present invention accurately compensate the attenuation of the sound signal during the bone conduction process, improve the amplitude-frequency response characteristic of the sound signal, and improve the sound signal in the bone. Distortion during conduction makes the sound heard by the user sound better.
  • FIG. 1 is a schematic diagram of a bone conduction sound propagation device according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a signal detecting module according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a signal detection module according to another embodiment of the present invention.
  • Figure 4 is a schematic diagram showing the amplitude of the vibration signal decaying with the propagation time
  • Figure 5 is a schematic diagram showing changes in amplitude of a vibration signal before compensation with time
  • Figure 6 is a schematic diagram of the output compensation signal
  • Figure 7 is a schematic diagram showing the variation of the amplitude of the compensated vibration signal with time
  • FIG. 8 is a schematic diagram of a signal conversion transmitting module in an embodiment of the present invention.
  • Figure 9 is a schematic diagram of signal frequency division
  • FIG. 10 is a schematic diagram of a signal feedback module in an embodiment of the present invention.
  • Figure 11 is a schematic diagram of a signal output module in an embodiment of the present invention.
  • 1-signal output module 11-environment audio receiving unit; 2-signal conversion Transmitting module; 21-first filtering unit; 22-first frequency dividing unit; 23-multi-frequency signal converting transmitting unit; 24-mixing unit; 3-signal detecting module; 31-signal amplitude detecting unit; 311-first signal Amplitude detecting member; 312-second signal amplitude detecting member; 313-third signal amplitude detecting member; 4-signal feedback module; 41-second filtering unit; 42-second frequency dividing unit; 43-multi-frequency signal feedback unit ; 5 - receiving end.
  • the bone conduction sound propagation device includes:
  • a signal output module 1 for providing a digital audio signal
  • a signal conversion transmitting module 2 configured to convert the digital audio signal into a vibration signal, and transmit the vibration signal
  • the signal detecting module 3 is configured to detect a vibration signal of at least one of the propagation paths from the signal conversion transmitting module 2 to the receiving end 5;
  • the signal feedback module 4 is configured to calculate an attenuation coefficient of the vibration signal of each of the position points, determine a compensation signal according to the attenuation coefficient, and compensate the vibration signal generated by the signal conversion transmitting module 2 with the compensation signal.
  • the signal conversion transmission module 2 can convert the digital audio signal into a vibration signal after receiving the digital audio signal from the signal output module 1.
  • the signal output module 1 may include a digital audio signal generator
  • the signal conversion transmitting module may include a bone conduction vibrator and a bone conduction driving chip for driving the bone conduction vibrator, and the digital audio signal may be transmitted to the bone
  • the drive drive chip, the bone conduction drive chip can drive the bone conduction vibrator to generate vibration, and the generated vibration can be transmitted through the user's bones and skin.
  • the signal conversion transmitting module 2 is an earplug
  • the receiving end 5 is a user
  • the propagation path may be a bone such as a skull transmitting a vibration signal
  • the position point may be a bone acting as a propagation path. Point anywhere.
  • the implementation of the bone conduction sound propagation device is not limited thereto, and may be other structures, and details are not described herein again.
  • the embodiment of the invention accurately compensates for the attenuation of the sound signal during the bone conduction process by calculating the attenuation coefficient of the vibration signal at each position point, and improves the distortion of the sound signal during the bone conduction process, so that the user of the receiving end 5 The sound heard is better.
  • the signal conversion transmitting module 2 includes a vibration generating component for transmitting the vibration signal, and the signal feedback module 4 can apply the compensation signal to the vibration generating component to the vibration signal Make compensation.
  • the present invention is not limited to the specific form of the vibration generating member.
  • the vibration generating member may be a member having a diaphragm function similar to that of the earphone in the earphone.
  • the compensation signal can be directly compensated in the form of a vibration signal, or the compensation signal can also be an electrical signal converted from a vibration signal collected at each position point, and the electrical signal pattern is transmitted through the wire.
  • the compensation signal is sent to the signal conversion transmitting module 2, and the signal conversion transmitting module 2 re-adjusts the amplitude of the vibration signal transmitted by the signal conversion transmitting module 2 according to the compensation signal of the electrical signal mode, thereby improving the distortion of the vibration signal during propagation.
  • the signal detecting module 3 may include a signal amplitude detecting unit 31, the compensation signal includes an amplitude compensation signal, and the signal amplitude detecting unit 31 is configured to detect propagation from the signal converting transmitting module 2 to the receiving end 5.
  • the amplitude of the vibration signal of at least one of the position points in the path, the signal feedback module 4 may calculate an amplitude attenuation coefficient of the vibration signal of each of the position points, and determine the amplitude compensation signal according to the amplitude attenuation coefficient.
  • the amplitude-frequency response characteristic of the vibration signal can be effectively improved, so that the user of the receiving end 5 can hear the sound signal with better sound quality.
  • the signal amplitude detecting unit 31 includes at least one signal amplitude detecting component, and the signal amplitude detecting component is disposed corresponding to the position point to be detected, for detecting the The amplitude at which the vibration signal propagates to the corresponding point in the position.
  • the signal amplitude detecting unit 31 includes a first signal amplitude detecting member 311 disposed at a first position point, a second signal amplitude detecting member 312 disposed at a second position point, and a third position point disposed at the third position.
  • the first signal amplitude detecting component 311, the second signal amplitude detecting component 312, and the third signal amplitude detecting component 313 are respectively configured to detect that the vibration signal propagates to the first location point, the second location point, and the location The amplitude at the third position point.
  • the degree detecting members 313 are all connected to the signal feedback module 4, and transmit the detected amplitudes at the first position point, the second position point, and the third position point to the signal feedback module 4.
  • the signal feedback module 4 determines the amplitude attenuation coefficient of the vibration signal to the corresponding position point according to the amplitude of the received vibration signal of each position point, and generates a corresponding amplitude compensation signal according to the amplitude attenuation coefficient.
  • the signal feedback module 4 calculates the amplitude attenuation coefficient of the vibration signal of each of the position points according to the formula (1):
  • ⁇ i is an amplitude attenuation coefficient when the vibration signal propagates to the i th position point; wherein i is a positive integer, and the maximum value of i is the number of the position points;
  • U 0 is an initial amplitude when the vibration signal is transmitted from the signal conversion transmitting module 2;
  • U i is the amplitude when the vibration signal propagates to the i-th position point
  • the signal feedback module 4 also determines an amplitude compensation signal for each of the location points according to equation (2):
  • B i is the amplitude compensation signal of the i-th position point
  • f( ⁇ i ) is a piecewise function such that B i is a pulse signal in a magnification relationship with ⁇ i
  • B i can be a nonlinear function of ⁇ i on, for larger multiples between the smaller ⁇ i, B i and ⁇ i, for larger between ⁇ i, B i and ⁇ i be a multiple of Smaller.
  • the amplitude U i of each of the position points may be compared with the initial amplitude U 0 of the vibration signal to obtain an amplitude attenuation coefficient ⁇ i of each of the position points, And an amplitude compensation signal B i for each of the location points.
  • the number of the position points is N, and each of the position points is provided with a signal amplitude detecting member for detecting the amplitude when the vibration signal propagates to the position point.
  • the signal amplitude detecting unit 31 includes N pieces of the signal amplitude detecting members.
  • the distance between the jth position point and the signal conversion transmitting module 2 is greater than the distance between the j-1th position point and the signal conversion transmitting module 2, where j is a positive integer. And 1 ⁇ j ⁇ N.
  • the signal feedback module 4 calculates the amplitude attenuation coefficient at each of the location points according to equation (3):
  • ⁇ j is an amplitude attenuation coefficient when the vibration signal propagates to the jth position point
  • U 0 is an initial amplitude when the vibration signal is transmitted from the signal conversion transmitting module 2;
  • U j is the amplitude when the vibration signal propagates to the jth position point
  • the signal feedback module 4 also determines an amplitude compensation signal for each of the location points according to equation (4):
  • B j is the amplitude compensation signal of the jth position point
  • f( ⁇ j ) is a piecewise function such that B j is a pulse signal in a magnification relationship with ⁇ j .
  • the amplitude U j of each of the position points is compared with the amplitude U j-1 of the previous position point, such that the segmentation of the propagation path is finer and the distance of each path is shorter. Therefore, this calculation method has a better compensation effect.
  • the amplitude detecting member 311 is provided with a second signal amplitude detecting member 312 at a second position, and a third signal amplitude detecting member 313 is disposed at the third position.
  • the distances of the first signal amplitude detecting member 311, the second signal amplitude detecting member 312, and the third signal amplitude detecting member 313 to the signal conversion transmitting module 2 are L 1 , L 2 , and L 3 , respectively .
  • the time when the vibration signal is emitted from the signal conversion transmitting module 2 is T 0
  • the times of propagation to the first signal amplitude detecting member 311, the second signal amplitude detecting member 32, and the third signal amplitude detecting member 313 are respectively T 1 , T 2 , T 3 .
  • the vibration signal is emitted from the signal conversion transmitting module 2 until the entire propagation path heard by the human ear is one period T, and then T 1 , T 2 , and T 3 are all included in the period of T 0 -T.
  • the initial amplitude when the vibration signal is emitted from the signal conversion transmitting module 2 is U 0
  • the first signal amplitude detecting member 311, the second signal amplitude detecting member 312, and the third signal amplitude detecting member 313 respectively detect the first position point.
  • the amplitudes of the vibration signals of the second position point and the third position point are U 1 , U 2 , and U 3 , respectively .
  • the changes of U 0 , U 1 , U 2 , and U 3 with time are as shown in Fig. 5.
  • the signal feedback module 4 calculates the first amplitude attenuation coefficient and the first amplitude attenuation coefficient when the vibration signal is transmitted from the signal conversion transmitting module 2 and then propagated to the first position point according to formula (5), formula (6), and formula (7). a second amplitude attenuation coefficient when the vibration signal propagates from the first position point to the second position point, and a third time when the vibration signal propagates from the second position point to the third position point Amplitude attenuation coefficient:
  • ⁇ 1 is the first amplitude attenuation coefficient
  • ⁇ 2 is the second amplitude attenuation coefficient
  • ⁇ 3 is the third amplitude attenuation coefficient
  • U 0 is an initial amplitude when the vibration signal is transmitted from the signal conversion transmitting module 2
  • U 1 is an amplitude when the vibration signal propagates to the first position point
  • U 2 is the vibration signal propagates to the first The amplitude at the two position points
  • U 3 is the amplitude when the vibration signal propagates to the third position point.
  • the signal feedback module 4 further determines, according to formula (8), formula (9), and formula (10), a first amplitude compensation signal and a second amplitude corresponding to the first position point, the second position point, and the third position point, respectively.
  • Compensation signal and third amplitude compensation signal are a first amplitude compensation signal and a second amplitude corresponding to the first position point, the second position point, and the third position point, respectively.
  • B 1 is the first amplitude compensation signal, and B 1 is a pulse signal in a magnification relationship with ⁇ 1 ;
  • B 2 is the second amplitude compensation signal, and B 2 is a magnification relationship with ⁇ 2
  • B 3 is the third amplitude compensation signal, and B 3 is a pulse signal in a magnification relationship with ⁇ 3 .
  • the pulse signal can be obtained by a conventional amplifying device such as a proportional amplifier.
  • the signal feedback module 4 can output the above-described compensation pulse signals B 1 , B 2 , B 3 periodically.
  • the signal conversion transmitting module 2 further includes:
  • a first frequency dividing unit 22 configured to divide the digital audio signal, and divide the digital audio signal into frequency-divided audio signals of M frequency bands, wherein a center frequency of the frequency-divided audio signal of each frequency band Is f k , where M is a positive integer and k is a positive integer selected from 1 to M;
  • the multi-frequency signal conversion transmitting unit 23 is configured to respectively convert the frequency-divided audio signals of the M frequency bands with a center frequency of f k into M-component frequency-transmitted vibration signals;
  • the mixing unit 24 is configured to synthesize the M group of the divided transmission vibration signals into a complete vibration signal.
  • the first frequency dividing unit 22 receives the digital audio signal sent from the signal output module 1, and divides the digital audio signal, and divides the digital audio signal into M frequency bands. Divided audio signal. Thereafter, the first frequency dividing unit 22 transmits the frequency-divided audio signals of the divided M frequency bands to the multi-frequency signal conversion transmitting unit 23.
  • the multi-frequency signal conversion transmitting unit 23 After receiving the frequency-divided audio signals of the M frequency bands, the multi-frequency signal conversion transmitting unit 23 converts the frequency-divided audio signals of the M frequency bands, converts the audio signals into vibration signals, and obtains the M-component frequency-transmitted vibration signals. Thereafter, the multi-frequency signal conversion transmitting unit 23 transmits the M-component frequency-transmitted vibration signal to the mixing unit 24, and after the mixing unit 24 receives the M-component frequency-transmitted vibration signal, the M-component frequency-transmitted vibration signals are combined and synthesized. For a complete vibration signal, and transmit this complete vibration signal.
  • the digital audio signal is divided into several frequency bands and then processed and propagated by using a bone sensing technology, which can improve the sound quality effect of the sound signal.
  • the digital audio signal is divided into three bands P 1, P 2, P 3 , dividing the center frequency of the audio signal to three bands, respectively, f 1, f 2, f 3 .
  • the more frequency bands are divided the higher the accuracy, and the better the sound signal that the human ear hears.
  • the signal conversion transmitting module 2 further includes:
  • the first filtering unit 21 is configured to filter the digital audio signal to filter out noise; and the first frequency dividing unit 22 is configured to divide the filtered digital audio signal.
  • the first filtering unit 21 receives the digital audio signal sent from the signal output module 1, and filters the digital audio signal, and then transmits the filtered digital audio signal to the first frequency dividing unit 22, first The frequency dividing unit 22 further divides the filtered digital audio signal.
  • the signal feedback module 4 further includes:
  • the second frequency dividing unit 42 is configured to divide the vibration signal detected by the signal detecting module 3, and divide the vibration signal into frequency-divided detecting vibration signals of M frequency bands that are consistent with the frequency band of the digital audio signal. And the center frequency of the frequency division detection vibration signal of each frequency band is also f k , wherein M is a positive integer, and k is a positive integer selected from 1 to M;
  • a multi-frequency signal feedback unit 43 for respectively calculating attenuation coefficients of the frequency-divided detection vibration signals of M frequency bands having a center frequency of f k , determining M group compensation signals according to M attenuation coefficients, and using the M group
  • the compensation signal compensates the M sets of the divided transmission vibration signals generated by the multi-frequency signal conversion transmitting unit 23.
  • the signal detecting module 3 transmits the detected vibration signal to the signal feedback module 4.
  • the second frequency dividing unit 42 receives the vibration signal, and divides the vibration signal into frequency-divided detection vibration signals of M frequency bands that are consistent with the frequency band of the digital audio signal, and then The frequency division detection vibration signals of the M frequency bands are sent to the multi-frequency signal feedback unit 43.
  • the multi-frequency signal feedback unit 43 After receiving the frequency-divided detection vibration signals of the M frequency bands, the multi-frequency signal feedback unit 43 respectively calculates M attenuation coefficients corresponding to the frequency-divided detection vibration signals of the M frequency bands, and determines according to the M attenuation coefficients.
  • the M group compensates the signals, and then sends the M sets of compensation signals to the M group of the divided transmission vibration signals generated by the multi-frequency signal conversion transmitting unit 23, and compensates the M group of the divided transmission vibration signals to reduce signal distortion. .
  • the detected vibration signal is divided into three frequency bands P 1 , P 2 , and P 3 which are the same as the digital audio signal, and the center frequencies of the three frequency bands are also respectively f 1 . And f 2 , f 3 , such that the frequency band of the frequency division detecting vibration signal is consistent with the frequency band of the frequency division transmitting vibration signal.
  • the multi-frequency signal feedback unit 43 calculates the attenuation coefficient and the compensation signal for the frequency-divided detection vibration signals of the center frequencies f 1 , f 2 , and f 3 , respectively, and then compensates the three generated by the multi-frequency signal conversion transmission unit 23 with the three sets of compensation signals, respectively.
  • the component transmits a vibration signal at a frequency to ensure the accuracy of the compensation.
  • the signal feedback module 4 may further include:
  • the second filtering unit 41 is configured to filter the vibration signal detected by the signal detecting module 3 to filter out the noise; and the second frequency dividing unit 42 is configured to divide the filtered vibration signal.
  • the second filtering unit 41 receives the vibration signal detected by the signal detecting module 3, and filters the vibration signal, and then transmits the filtered vibration signal to the second frequency dividing unit 42, the second frequency dividing unit. 42 further divides the filtered vibration signal.
  • the first frequency dividing unit 22 in the signal conversion transmitting module 2 divides the digital audio signal into frequency-divided audio signals of three frequency bands whose center frequencies are f 1 , f 2 , and f 3 respectively; the multi-frequency signal conversion transmitting unit 23 converting the frequency-divided audio signals of the three frequency bands into frequency-divided transmit vibration signals of three frequency bands whose center frequencies are f 1 , f 2 , and f 3 respectively; the mixing unit 24 transmits the frequency-divided vibration signals of the three frequency bands. Mix into a complete vibration signal.
  • the signal detecting module 3 detects the vibration signals propagating to the first position point, the second position point, and the third position point.
  • the second frequency dividing unit 42 in the signal feedback module 4 divides the detected vibration signal into frequency-divided detection vibration signals of three frequency bands having heart frequencies f 1 , f 2 , and f 3 , respectively.
  • the time when the frequency-divided detection vibration signal whose center frequency is f 1 is sent from the signal conversion transmitting module 2 is T 0
  • the time of the first signal amplitude detecting component 311 that is propagated to the first position point is T 11
  • the time of the second signal amplitude detecting member 312 at the two position points is T 12
  • the time of the third signal amplitude detecting member 313 propagating to the third position point is T 13
  • the frequency dividing detecting vibration signal is converted from the signal.
  • Module 2 emits the entire propagation path until the human ear hears a period T.
  • the initial amplitude of the frequency-divided detection vibration signal with the center frequency of f 1 from the signal conversion transmitting module 2 is U 10
  • the amplitudes propagated to the first position point, the second position point, and the third position point are respectively U 11 , U 12 , U 13 .
  • the initial amplitude of the frequency-divided detection vibration signal with a center frequency of f 2 is U 20
  • the amplitudes propagated to the first position point, the second position point, and the third position point are respectively U 21 , U 22 , U 23
  • the initial amplitude of the frequency-divided detection vibration signal with a center frequency of f 3 is U 30
  • the amplitudes propagated to the first position point, the second position point, and the third position point are U 31 , U 32 , and U 33 , respectively .
  • ⁇ 13 B determines the amplitude of the compensation signal substantially at a time T 11 amplitude compensation signal output B 11, after a time T 12 -T 11 output in accordance with ⁇ 11, ⁇ 12, after output time T 13 -T 12
  • the compensation pulse signal may be outputted by a conventional amplifier (such as a proportional amplifier) such that the compensated first signal amplitude detecting member 311, the second signal amplitude detecting member 312, and the third signal amplitude detecting member 313 are compensated.
  • the detected amplitudes are basically U 10 .
  • the signal feedback module 4 can calculate that the frequency-divided vibration signal with the center frequency of f 2 propagates to the first position point, the second position point, and the third position point have amplitude attenuation coefficients of ⁇ 21 , ⁇ 22 , ⁇ , respectively.
  • the corresponding amplitude compensation signals are B 21 , B 22 , B 23 respectively ;
  • the frequency attenuation coefficient of the frequency-divided detection vibration signal with the center frequency f 3 is propagated to the first position point, the second position point, and the third position point respectively
  • the corresponding amplitude compensation signals are B 31 , B 32 , B 33 , respectively .
  • the signal feedback module 4 simultaneously outputs the amplitude compensation signals B 11 , B 12 , B 13 corresponding to the frequency band with the center frequency f 1 at the period T, respectively, and the amplitude compensation signal B corresponding to the frequency band with the center frequency f 2 . 21 , B 22 , B 23 , and amplitude compensation signals B 31 , B 32 , B 33 corresponding to a frequency band having a center frequency of f 3 .
  • the frequency-divided vibration signals of the respective frequency bands generated by the multi-frequency signal conversion transmitting unit 23 in the signal conversion transmitting module 2 can be respectively compensated by the amplitude compensation signals.
  • the signal output module 1 includes an ambient audio receiving unit 11 for receiving an ambient audio signal and converting the ambient audio signal into the digital audio signal.
  • the ambient audio receiving unit 11 transmits the converted digital audio signal to the signal conversion transmitting module 2.
  • the bone conduction sound propagation device provided by the embodiment of the present invention can enhance the receiving effect of the human ear on the ambient sound, and can be used not only in the earphone device but also in the hearing aid device. Moreover, the bone conduction sound propagation device provided by the embodiment of the invention has the advantages of small distortion of the sound signal, good amplitude response characteristics, and good sound quality.
  • Another embodiment of the present invention also provides a bone conduction sound propagation method, comprising the following steps:
  • the embodiment of the invention compensates the attenuation of the sound signal during the bone conduction process by calculating the attenuation coefficient of the vibration signal at each position point, improves the distortion of the sound signal during the bone conduction process, and makes the sound heard by the user at the receiving end. Sound quality is better.
  • the transmitting end mentioned here may be the signal conversion transmitting module 2 in the embodiment of the aforementioned bone conduction sound propagation device.
  • the step of detecting a vibration signal of at least one of the propagation paths from the transmitting end to the receiving end comprises:
  • the step of calculating the attenuation coefficient of the vibration signal at each of the position points includes:
  • the compensation signal includes an amplitude compensation signal
  • the step of determining the compensation signal according to the attenuation coefficient includes:
  • the amplitude compensation signal is determined according to the amplitude attenuation coefficient.
  • the step of calculating an amplitude attenuation coefficient of the vibration signal of at least one of the position points includes:
  • ⁇ i is an amplitude attenuation coefficient when the vibration signal propagates to the i th position point; wherein i is a positive integer, and the maximum value of i is the number of the position points;
  • U 0 is an initial amplitude when the vibration signal is emitted from the transmitting end
  • U i is the amplitude when the vibration signal propagates to the i-th position point
  • the step of determining the amplitude compensation signal according to the amplitude attenuation coefficient comprises:
  • the amplitude compensation signal for each of the position points is determined according to the above formula (2):
  • B i is the amplitude compensation signal of the i-th position point
  • f( ⁇ i ) is a piecewise function such that B i is a pulse signal in a magnification relationship with ⁇ i .
  • the amplitude U i of each of the position points may be compared with the initial amplitude U 0 of the vibration signal to obtain an amplitude attenuation coefficient ⁇ i of each of the position points, And an amplitude compensation signal B i for each of the location points.
  • the number of the location points is N, and among the N of the location points, the distance between the jth location point and the transmitting end is greater than the j-1th position. a distance between the point and the transmitting end, wherein j is a positive integer, and 1 ⁇ j ⁇ N;
  • the step of calculating the amplitude attenuation coefficient of the vibration signal of each of the position points includes:
  • ⁇ j is an amplitude attenuation coefficient when the vibration signal propagates to the jth position point
  • U 0 is an initial amplitude when the vibration signal is transmitted from the transmitting end
  • U j is the amplitude when the vibration signal propagates to the jth position point
  • the step of determining the amplitude compensation signal according to the amplitude attenuation coefficient comprises:
  • the amplitude compensation signal of each of the position points is determined according to the above formula (4):
  • B j is the amplitude compensation signal of the jth position point
  • f( ⁇ j ) is a piecewise function such that B j is a pulse signal in a magnification relationship with ⁇ j .
  • the amplitude U j of each of the position points is compared with the amplitude U j-1 of the previous position point, the segmentation of the propagation path is finer, and the distance of each path is shorter, thus This calculation has a better compensation effect.
  • the step of converting the digital audio signal into a vibration signal may further include:
  • the M group of the divided transmission vibration signals are combined into a complete vibration signal.
  • the digital audio signal is divided into several frequency bands and then processed and propagated by using the bone sensing technology, which can improve the sound quality effect of the sound signal.
  • the method further includes filtering the digital audio signal prior to dividing the digital audio signal to filter out noise.
  • the method further includes: before calculating an attenuation coefficient of the vibration signal of the at least one of the position points: dividing the detected vibration signal, and dividing the vibration signal into a frequency band of the digital audio signal
  • the frequency division of the M frequency bands detects the vibration signal, and the center frequency of the frequency division detection vibration signal of each frequency band is also f k , wherein M is a positive integer, and k is a positive integer selected from 1 to M;
  • the method further includes performing the frequency division of the detected vibration signal:
  • the embodiment of the present invention calculates the attenuation coefficient and the compensation signal for the frequency division detection vibration signals of the M frequency bands respectively, and then compensates the M group compensation signals to the M component frequency transmission vibration signals respectively, which can effectively ensure the accuracy of the compensation. Moreover, the more frequency bands are divided, the higher the accuracy, and the better the effect of the sound signal heard by the human ear.
  • the method further includes performing the frequency division of the detected vibration signal:
  • the detected vibration signal is filtered to filter out noise.
  • step of providing a digital audio signal includes:
  • the embodiment of the present invention can enhance the receiving effect of the human ear on the ambient sound, and can be used not only in the earphone device but also in the hearing aid device.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Circuit For Audible Band Transducer (AREA)

Abstract

本发明的实施例公开了一种骨导声音传播装置和方法。所述骨导声音传播装置包括:信号输出模块,用于提供数字音频信号;信号转换发射模块,用于将所述数字音频信号转换成振动信号、并发射所述振动信号;信号检测模块,用于检测从所述信号转换发射模块至接收端的传播路径中至少一个位置点的振动信号;信号反馈模块,用于计算每个所述位置点的振动信号的衰减系数、根据所述衰减系数确定补偿信号、并用所述补偿信号补偿所述信号转换发射模块生成的振动信号。本发明的实施例对骨传导过程中声音信号的衰减进行了精确的补偿,提高了声音信号的幅频响应特性,改善了声音信号在骨传导过程中的失真,使得用户听到的声音音质更好。

Description

骨导声音传播装置和方法 技术领域
本发明涉及骨传导技术领域,尤其涉及一种骨导声音传播装置和骨导声音传播方法。
背景技术
骨传导是一种声音传导方式,即通过将声音转化为不同频率的机械振动,通过人的颅骨、骨迷路、内耳淋巴液、螺旋器、听神经、听觉中枢来传递声波。相对于通过鼓膜产生声波的经典声音传导方式,骨传导省去了许多声波传递的步骤,不仅能在嘈杂的环境中实现清晰的声音还原,而且声波也不会因为在空气中扩散而影响到他人。
虽然目前已经存在利用骨传导途径传播声音的装置,但是由于传统骨导装置传送的声音先要经过人体皮肤、软组织、骨骼等介质的衰减,导致用户听到的声音与通过空气传导听到的声音的音质之间存在较大的失真,收听效果受到较大影响。
发明内容
本发明的目的在于提供一种骨导声音传播装置和方法,以减轻或缓解现有技术中声音信号在骨传导过程中失真较大的技术问题。
作为本发明的第一个方面,提供一种骨导声音传播装置,包括:
信号输出模块,用于提供数字音频信号;
信号转换发射模块,用于将所述数字音频信号转换成振动信号、并发射所述振动信号;
信号检测模块,用于检测从所述信号转换发射模块至接收端的传播路径中至少一个位置点的振动信号;
信号反馈模块,用于计算每个所述位置点的振动信号的衰减系数、根据所述衰减系数确定补偿信号、并用所述补偿信号补偿所述信号转换发射模块生成的振动信号。
在一个实施例中,所述信号转换发射模块包括振动发生部件,所述振动发生部件用于发射所述振动信号,所述信号反馈模块将所述补偿信号施加在所述振动发生部件上。
在一个实施例中,,所述信号检测模块包括信号幅度检测单元,所述补偿信号包括幅度补偿信号,所述信号幅度检测单元用于检测从所述信号转换发射模块至所述接收端的传播路径中至少一个位置点的振动信号的幅度,所述信号反馈模块用于计算每个所述位置点的振动信号的幅度衰减系数,并根据所述幅度衰减系数确定所述幅度补偿信号。
进一步地,所述信号幅度检测单元包括至少一个信号幅度检测件,所述信号幅度检测件与待检测的所述位置点对应设置,用于检测所述振动信号传播到相应的所述位置点时的幅度。
在实施例中,所述信号反馈模块根据公式(1)计算每个所述位置点的振动信号的幅度衰减系数:
αi=(U0-Ui)/U0             (1)
其中,αi是所述振动信号传播到第i个所述位置点时的幅度衰减系数;其中,i为正整数,且i的最大值为所述位置点的个数;
U0是所述振动信号从所述信号转换发射模块发射时的初始幅度;
Ui是所述振动信号传播到第i个所述位置点时的幅度;
所述信号反馈模块还根据公式(2)确定每个所述位置点的幅度补偿信号:
Bi=f(αi)                 (2)
其中,Bi是第i个所述位置点的幅度补偿信号,f(αi)为分段函数,以使得Bi为与αi成放大倍数关系的脉冲信号。
在另一实施例中,所述位置点的个数为N个,每个所述位置点处设置有一个用于检测所述振动信号传播到该位置点时的幅度的信号幅度检测件。
进一步地,在N个所述位置点中,第j个位置点与所述信号转换发射模块之间的距离大于第j-1个位置点与所述信号转换发射模块之间的距离,其中,j为正整数,且1<j≤N;
所述信号反馈模块根据公式(3)计算每个所述位置点处的幅度衰减系数:
αj=(Uj-1-Uj)/Uj-1           (3)
其中,αj是所述振动信号传播到第j个所述位置点时的幅度衰减系 数;
当j=1时,U0是所述振动信号从所述信号转换发射模块发射时的初始幅度;
当j>1时,Uj是所述振动信号传播到第j个所述位置点时的幅度;
所述信号反馈模块还根据公式(4)确定每个所述位置点的幅度补偿信号:
Bj=f(αj)               (4)
其中,Bj是第j个所述位置点的幅度补偿信号,f(αj)为分段函数,以使得Bj为与αj成放大倍数关系的脉冲信号。
在另一实施例中,所述信号转换发射模块还包括:
第一分频单元,用于对所述数字音频信号进行分频,将所述数字音频信号分为M个频段的分频音频信号,其中每个频段的所述分频音频信号的中心频率为fk,其中,M为正整数,k为选自1至M的正整数;
多频信号转换发射单元,用于分别将中心频率为fk的M个频段的所述分频音频信号转换为M组分频发射振动信号;
混合单元,用于将M组所述分频发射振动信号合成一个完整的振动信号。
进一步地,所述信号转换发射模块还包括:
第一滤波单元,用于对所述数字音频信号进行滤波;所述第一分频单元用于对滤波后的所述数字音频信号进行分频。
在又一实施例中,所述信号反馈模块还包括:
第二分频单元,用于对所述信号检测模块检测到的振动信号进行分频,将所述振动信号分为与所述数字音频信号频段相一致的M个频段的分频检测振动信号,且每个频段的所述分频检测振动信号的中心频率也为fk,其中,M为正整数,k为选自1至M的正整数;
多频信号反馈单元,用于分别计算中心频率为fk的M个频段的所述分频检测振动信号的衰减系数、根据M个所述衰减系数确定M组补偿信号、并用M组所述补偿信号补偿所述多频信号转换发射单元生成的M组所述分频发射振动信号。
进一步地,所述信号反馈模块还包括:
第二滤波单元,用于对所述信号检测模块检测到的振动信号进行滤波;所述第二分频单元用于对滤波后的所述振动信号进行分频。
进一步,在前述的各实施例中,所述信号输出模块可包括环境音频接收单元,所述环境音频接收单元用于接收环境音频信号,并将所述环境音频信号转换为所述数字音频信号。
作为本发明的第二个方面,还提供一种骨导声音传播方法,包括以下步骤:
提供数字音频信号;
将所述数字音频信号转换成振动信号、并发射所述振动信号;
检测从发射端至接收端的传播路径中至少一个位置点的振动信号;
计算每个所述位置点的振动信号的衰减系数、根据所述衰减系数确定补偿信号、并用所述补偿信号补偿所述振动信号。
在一个实施例中,检测从发射端至接收端的传播路径中至少一个位置点的振动信号的步骤包括:
检测从发射端至接收端的传播路径中至少一个位置点的振动信号的幅度;
计算每个所述位置点的振动信号的衰减系数的步骤包括:
计算每个所述位置点的振动信号的幅度衰减系数;
所述补偿信号包括幅度补偿信号,根据所述衰减系数确定补偿信号的步骤包括:
根据所述幅度衰减系数确定所述幅度补偿信号。
在一个实施例中,计算每个所述位置点的振动信号的幅度衰减系数的步骤包括:
根据公式(1)计算每个所述位置点的振动信号的幅度衰减系数:
αi=(U0-Ui)/U0              (1)
其中,αi是所述振动信号传播到第i个所述位置点时的幅度衰减系数;其中,i为正整数,且i的最大值为所述位置点的个数;
U0是所述振动信号从所述发射端发射时的初始幅度;
Ui是所述振动信号传播到第i个所述位置点时的幅度;
根据所述幅度衰减系数确定所述幅度补偿信号的步骤包括:
根据公式(2)确定每个所述位置点的幅度补偿信号:
Bi=f(αi)              (2)
其中,Bi是第i个所述位置点的幅度补偿信号,f(αi)为分段函数,以使得Bi为与αi成放大倍数关系的脉冲信号。
在另一实施例中,所述位置点的个数为N个,在N个所述位置点中,第j个位置点与所述发射端之间的距离大于第j-1个位置点与所述信号转换发射模块之间的距离,其中,j为正整数,且1<j≤N;
计算每个所述位置点的振动信号的幅度衰减系数的步骤包括:
根据公式(3)计算每个所述位置点处的幅度衰减系数:
αj=(Uj-1-Uj)/Uj-1            (3)
其中,αj是所述振动信号传播到第j个所述位置点时的幅度衰减系数;
当j=1时,U0是所述振动信号从所述发射端发射时的初始幅度;
当j>1时,Uj是所述振动信号传播到第j个所述位置点时的幅度;
根据所述幅度衰减系数确定所述幅度补偿信号的步骤包括:
根据公式(4)确定每个所述位置点的幅度补偿信号:
Bj=f(αj)              (4)
其中,Bj是第j个所述位置点的幅度补偿信号,f(αj)为分段函数,以使得Bj为与αj成放大倍数关系的脉冲信号。
进一步地,将所述数字音频信号转换成振动信号的步骤还可包括:
对所述数字音频信号进行分频,将所述数字音频信号分为M个频段的分频音频信号,其中每个频段的所述分频音频信号的中心频率为fk,其中,M为正整数,k为选自1至M的正整数;
分别将中心频率为fk的M个频段的所述分频音频信号转换为M组分频发射振动信号;
将M组所述分频发射振动信号合成一个完整的振动信号。
在另一实施例中,所述方法还包括:在对所述数字音频信号进行分频之前对所述数字音频信号进行滤波。
在又一实施例中,所述方法还包括:在计算每个所述位置点的振动信号的衰减系数之前,对检测到的振动信号进行分频,将所述振动信号分为与所述数字音频信号频段相一致的M个频段的分频检测振动 信号,且每个频段的所述分频检测振动信号的中心频率也为fk,其中,M为正整数,k为选自1至M的正整数;
以及,所述方法还包括:在对检测到的振动信号进行分频之后,分别计算中心频率为fk的M个频段的所述分频检测振动信号的衰减系数、根据M个所述衰减系数确定M组补偿信号、并用M组所述补偿信号分别补偿M组所述分频发射振动信号。
在又一实施例中,所述方法还包括:在对检测到的振动信号进行分频之前,对检测到的振动信号进行滤波。
进一步地,所述提供数字音频信号的步骤包括:
接收环境音频信号;
将所述环境音频信号转换为所述数字音频信号。
本发明的各实施例提供的骨导声音传播装置和骨导声音传播方法对骨传导过程中声音信号的衰减进行了精确的补偿,提高了声音信号的幅频响应特性,改善了声音信号在骨传导过程中的失真,使得用户听到的声音音质更好。
附图说明
附图是用来提供对本发明的实施例的进一步理解,并且构成说明书的一部分,与下面的具体实施例一起用于解释本发明,但并不构成对本发明的限制。
图1是本发明实施例所提供的骨导声音传播装置的示意图;
图2是本发明的一个实施例提供的信号检测模块的示意图;
图3是本发明的另一实施例提供的信号检测模块的示意图;
图4是振动信号的幅度随传播时间衰减的示意图;
图5是补偿前振动信号的幅度随时间的变化示意图;
图6是输出的补偿信号的示意图;
图7是补偿后振动信号的幅度随时间的变化示意图;
图8是本发明实施例中信号转换发射模块的示意图;
图9是信号分频示意图;
图10是本发明实施例中信号反馈模块的示意图;
图11是本发明实施例中信号输出模块的示意图。
在附图中,1-信号输出模块;11-环境音频接收单元;2-信号转换 发射模块;21-第一滤波单元;22-第一分频单元;23-多频信号转换发射单元;24-混合单元;3-信号检测模块;31-信号幅度检测单元;311-第一信号幅度检测件;312-第二信号幅度检测件;313-第三信号幅度检测件;4-信号反馈模块;41-第二滤波单元;42-第二分频单元;43-多频信号反馈单元;5-接收端。
具体实施方式
以下结合附图对本发明的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本发明,并不用于限制本发明。
本发明的实施例首先提供一种骨导声音传播装置,参考图1,所述骨导声音传播装置包括:
信号输出模块1,用于提供数字音频信号;
信号转换发射模块2,用于将所述数字音频信号转换成振动信号、并发射所述振动信号;
信号检测模块3,用于检测从信号转换发射模块2至接收端5的传播路径中至少一个位置点的振动信号;
信号反馈模块4,用于计算每个所述位置点的振动信号的衰减系数、根据所述衰减系数确定补偿信号、并用所述补偿信号补偿所述信号转换发射模块2生成的振动信号。
本发明的该实施例所提供的骨导声音传播装置工作时,信号转换发射模块2在接收到信号输出模块1发出的数字音频信号之后,可以将该数字音频信号转换成振动信号。在一个实施例中,信号输出模块1可包括数字音频信号发生器,信号转换发射模块可包括骨传导振动器和用于驱动骨传导振动器的骨传导驱动芯片,数字音频信号可以被传送给骨传动驱动芯片,骨传导驱动芯片从而可以驱动骨传导振动器产生振动,所产生的振动可以通过用户的骨骼以及皮肤被传递。
以骨传导耳机为例,如果信号转换发射模块2为耳塞的话,接收端5为用户,所述传播路径可以是传输振动信号的颅骨等骨骼,所述位置点可以是充当传播路径的骨骼上的任意位置点。
当然,骨导声音传播装置的实现方式并不限于此,还可以是其它的结构,这里不再赘述。
本发明的实施例通过计算各个位置点的振动信号的衰减系数,对骨传导过程中声音信号的衰减进行了精确的补偿,改善了声音信号在骨传导过程中的失真,使得接收端5的用户听到的声音音质更好。
通常,信号转换发射模块2包括振动发生部件,所述振动发生部件用于发射所述振动信号,信号反馈模块4可以将所述补偿信号施加在所述振动发生部件上,以对所述振动信号进行补偿。本发明对于振动发生部件的具体形式不做限定,例如,所述振动发生部件可以是具有类似耳机中的振膜、人耳的鼓膜功能的部件。
可以理解的是,所述补偿信号可以直接以振动信号的形式进行补偿,或者,所述补偿信号还可以是由各个位置点采集到的振动信号转换而成的电信号,通过导线将电信号模式的补偿信号发送至信号转换发射模块2,信号转换发射模块2根据电信号模式的补偿信号重新调节其所发射的振动信号的幅度,从而改善振动信号在传播过程中的失真。
进一步地,如图2所示,信号检测模块3可包括信号幅度检测单元31,所述补偿信号包括幅度补偿信号,信号幅度检测单元31用于检测从信号转换发射模块2至接收端5的传播路径中至少一个位置点的振动信号的幅度,信号反馈模块4可计算每个所述位置点的振动信号的幅度衰减系数,并根据所述幅度衰减系数确定所述幅度补偿信号。
本实施例通过对所述振动信号的幅度进行补偿,能够有效提高所述振动信号的幅频响应特性,从而使接收端5的用户收听到音质效果更好的声音信号。
进一步地,如图3所示,在一个实施例中,信号幅度检测单元31包括至少一个信号幅度检测件,所述信号幅度检测件与待检测的所述位置点对应设置,用于检测所述振动信号传播到相应的所述位置点时的幅度。
以图3为例,信号幅度检测单元31包括设置在第一位置点的第一信号幅度检测件311、设置在第二位置点的第二信号幅度检测件312、以及设置在第三位置点的第三信号幅度检测件313。其中,第一信号幅度检测件311、第二信号幅度检测件312和第三信号幅度检测件313分别用于检测所述振动信号传播到所述第一位置点、所述第二位置点和所述第三位置点时的幅度。
第一信号幅度检测件311、第二信号幅度检测件312和第三信号幅 度检测件313均与信号反馈模块4相连,并将检测到的所述第一位置点、所述第二位置点和所述第三位置点处的幅度发射给信号反馈模块4。信号反馈模块4根据接收到的各个位置点的振动信号的幅度来确定所述振动信号传播到相应位置点处的幅度衰减系数,并根据所述幅度衰减系数生成相应的幅度补偿信号。
作为本发明的一个实施方式,信号反馈模块4根据公式(1)计算每个所述位置点的振动信号的幅度衰减系数:
αi=(U0-Ui)/U0             (1)
其中,αi是所述振动信号传播到第i个所述位置点时的幅度衰减系数;其中,i为正整数,且i的最大值为所述位置点的个数;
U0是所述振动信号从信号转换发射模块2发射时的初始幅度;
Ui是所述振动信号传播到第i个所述位置点时的幅度;
信号反馈模块4还根据公式(2)确定每个所述位置点的幅度补偿信号:
Bi=f(αi)             (2)
其中,Bi是第i个所述位置点的幅度补偿信号,f(αi)为分段函数,以使得Bi为与αi成放大倍数关系的脉冲信号。例如,Bi可以是关于αi的非线性函数,对于较小的αi,Bi与αi之间的倍数较大,对于较大的αi,Bi与αi之间的倍数可以较小。
在一个实施例中,可以采用每个所述位置点的幅度Ui均与所述振动信号的初始幅度U0相比较的方式,以得出每个所述位置点的幅度衰减系数αi、以及每个所述位置点的幅度补偿信号Bi
作为本发明的另一实施例,所述位置点的个数为N个,每个所述位置点处设置有一个用于检测所述振动信号传播到该位置点时的幅度的信号幅度检测件。即,信号幅度检测单元31包括N个所述信号幅度检测件。
在N个所述位置点中,第j个位置点与信号转换发射模块2之间的距离大于第j-1个位置点与信号转换发射模块2之间的距离,其中,j为正整数,且1<j≤N。
在该实施例中,信号反馈模块4根据公式(3)计算每个所述位置点处的幅度衰减系数:
αj=(Uj-1-Uj)/Uj-1            (3)
其中,αj是所述振动信号传播到第j个所述位置点时的幅度衰减系数;
当j=1时,U0是所述振动信号从信号转换发射模块2发射时的初始幅度;
当j>1时,Uj是所述振动信号传播到第j个所述位置点时的幅度;
信号反馈模块4还根据公式(4)确定每个所述位置点的幅度补偿信号:
Bj=f(αj)              (4)
其中,Bj是第j个所述位置点的幅度补偿信号,f(αj)为分段函数,以使得Bj为与αj成放大倍数关系的脉冲信号。
在该实施例中,每个所述位置点的幅度Uj均与前一个位置点的幅度Uj-1相比较,这样,对传播路径的分段更细,且每一段路径的距离更短,因此这种计算方式具有更好的补偿效果。
以图3为例,假设需要检测三个位置点的振动信号(通常位置点越多精度越高),这三个位置点可分布在人体的颅骨上,第一位置点上设置有第一信号幅度检测件311,第二位置点上设置有第二信号幅度检测件312,第三位置点上设置有第三信号幅度检测件313。第一信号幅度检测件311、第二信号幅度检测件312和第三信号幅度检测件313到信号转换发射模块2距离分别为L1、L2、L3
参考图4,所述振动信号从信号转换发射模块2发出的时间为T0,传播至第一信号幅度检测件311、第二信号幅度检测件32和第三信号幅度检测件313的时间分别为T1、T2、T3。这里设定所述振动信号从信号转换发射模块2发出直至人耳听到的整个传播路径为一个周期T,那么T1、T2、T3均包括在T0-T的周期中。
所述振动信号从信号转换发射模块2发出时的初始幅度为U0,第一信号幅度检测件311、第二信号幅度检测件312和第三信号幅度检测件313分别检测到的第一位置点、第二位置点和第三位置点的振动信号的幅度分别为U1、U2、U3。补偿前,U0、U1、U2、U3随时间的变化如图5所示。
信号反馈模块4按照公式(5)、公式(6)、公式(7)分别计算所述振动信号从信号转换发射模块2发射后传播到所述第一位置点时的第一幅度衰减系数、所述振动信号从所述第一位置点传播到所述第二位置点时的第二幅度衰减系数、以及所述振动信号从所述第二位置点传播到所述第三位置点时的第三幅度衰减系数:
α1=(U0-U1)/U0             (5)
α2=(U1-U2)/U1             (6)
α3=(U2-U3)/U2             (7)
其中,α1是所述第一幅度衰减系数,α2是所述第二幅度衰减系数,α3是所述第三幅度衰减系数,
U0是所述振动信号从信号转换发射模块2发射时的初始幅度,U1是所述振动信号传播到所述第一位置点时的幅度,U2是所述振动信号传播到所述第二位置点时的幅度;U3是所述振动信号传播到所述第三位置点时的幅度。
并且,信号反馈模块4还根据公式(8)、公式(9)、公式(10)确定分别对应于第一位置点、第二位置点和第三位置点的第一幅度补偿信号、第二幅度补偿信号和第三幅度补偿信号:
B1=f(α1)               (8)
B2=f(α2)               (9)
B3=f(α3)               (10)
其中,B1是所述第一幅度补偿信号,且B1为与α1成放大倍数关系的脉冲信号;B2是所述第二幅度补偿信号,且B2为与α2成放大倍数关系的脉冲信号;B3是所述第三幅度补偿信号,且B3为与α3成放大倍数关系的脉冲信号。所述脉冲信号可以通过常规的放大器件,如比例放大器获得。
为了对各个位置点的信号衰减进行精确的补偿,如图6所示,可以大致在T1时刻输出第一幅度补偿信号B1,经过时间间隔T2-T1后输出第二幅度补偿信号B2,经过时间间隔T3-T2后输出第三幅度补偿信号B3。并且,信号反馈模块4可以T为周期输出上述补偿脉冲信号B1、B2、B3
经过上述补偿过程后,U1、U2、U3随时间的变化如图7所示。可 以看出,补偿后第一信号幅度检测件311、第二信号幅度检测件312和第三信号幅度检测件313检测到的振动信号U1、U2、U3的幅度均可以基本保持在U0,因此能够有效改善声音信号在骨传导过程中的失真。
进一步地,如图8所示,信号转换发射模块2还包括:
第一分频单元22,用于对所述数字音频信号进行分频,将所述数字音频信号分为M个频段的分频音频信号,其中每个频段的所述分频音频信号的中心频率为fk,其中,M为正整数,k为选自1至M的正整数;
多频信号转换发射单元23,用于分别将中心频率为fk的M个频段的所述分频音频信号转换为M组分频发射振动信号;
混合单元24,用于将M组所述分频发射振动信号合成一个完整的振动信号。
在信号转换发射模块2工作时,第一分频单元22接收从信号输出模块1发出的数字音频信号,并对所述数字音频信号进行分频,将所述数字音频信号分为M个频段的分频音频信号。之后,第一分频单元22将分频后的M个频段的分频音频信号发送给多频信号转换发射单元23。
多频信号转换发射单元23接收到M个频段的分频音频信号后,对这M个频段的分频音频信号进行转换,将音频信号转换成振动信号,得到M组分频发射振动信号。之后,多频信号转换发射单元23将M组分频发射振动信号发送给混合单元24,混合单元24接收到M组分频发射振动信号后,将这M组分频发射振动信号进行合并,合成为一个完整的振动信号,并将这个完整的振动信号发射出去。
在本发明的实施例中,根据人的听力特性,将数字音频信号划分为若干频段后再利用骨传感技术进行处理和传播,能够改善声音信号的音质效果。例如,在图9中,所述数字音频信号被划分为三个频段P1、P2、P3,三个频段的分频音频信号的中心频率分别为f1、f2、f3。通常,所划分的频段越多,精度越高,人耳收听到的声音信号的效果越好。
在另一实施例中,信号转换发射模块2还包括:
第一滤波单元21,用于对所述数字音频信号进行滤波,以滤除杂音;第一分频单元22用于对滤波后的所述数字音频信号进行分频。
这里,第一滤波单元21接收从信号输出模块1发出的数字音频信号,并对所述数字音频信号进行滤波,然后将滤波后的所述数字音频信号发送给第一分频单元22,第一分频单元22再对滤波后的所述数字音频信号进行分频。
进一步地,在另一实施例中,如图10所示,信号反馈模块4还包括:
第二分频单元42,用于对信号检测模块3检测到的振动信号进行分频,将所述振动信号分为与所述数字音频信号频段相一致的M个频段的分频检测振动信号,且每个频段的所述分频检测振动信号的中心频率也为fk,其中,M为正整数,k为选自1至M的正整数;
多频信号反馈单元43,用于分别计算中心频率为fk的M个频段的所述分频检测振动信号的衰减系数、根据M个所述衰减系数确定M组补偿信号、并用M组所述补偿信号补偿多频信号转换发射单元23生成的M组所述分频发射振动信号。
在本实施例中,信号检测模块3将检测到的振动信号发送给信号反馈模块4。在信号反馈模块4工作时,第二分频单元42接收所述振动信号,并将所述振动信号分为与所述数字音频信号频段相一致的M个频段的分频检测振动信号,之后将这M个频段的分频检测振动信号发送给多频信号反馈单元43。
多频信号反馈单元43接收到这M个频段的分频检测振动信号后,分别计算与这M个频段的分频检测振动信号相对应的M个衰减系数,并根据M个所述衰减系数确定M组补偿信号,然后将这M组补偿信号分别发送至多频信号转换发射单元23生成的M组所述分频发射振动信号中,对M组所述分频发射振动信号进行补偿,减少信号失真。
以图9为例,检测到的所述振动信号被划分为与所述数字音频信号相同的三个频段P1、P2、P3,并且,这三个频段的中心频率也分别为f1、f2、f3,以使得所述分频检测振动信号的频段与所述分频发射振动信号的频段保持一致。多频信号反馈单元43分别对中心频率为f1、f2、f3的分频检测振动信号计算衰减系数和补偿信号,之后用三组补偿信号分别补偿多频信号转换发射单元23生成的三组分频发射振动信号,从而保证补偿的准确性。
进一步地,信号反馈模块4还可包括:
第二滤波单元41,用于对信号检测模块3检测到的振动信号进行滤波,以滤除杂音;第二分频单元42用于对滤波后的所述振动信号进行分频。
这里,第二滤波单元41接收信号检测模块3检测到的振动信号,并对所述振动信号进行滤波,之后将滤波后的所述振动信号发送给第二分频单元42,第二分频单元42再对滤波后的所述振动信号进行分频。
下面以将振动信号划分为三个频段进行检测、并且检测三个位置点为例,对本发明的实施例进行详细的阐述。
首先,信号转换发射模块2中的第一分频单元22将数字音频信号分频为中心频率分别为f1、f2、f3的三个频段的分频音频信号;多频信号转换发射单元23将这三个频段的分频音频信号转换为中心频率分别为f1、f2、f3的三个频段的分频发射振动信号;混合单元24将这三个频段的分频发射振动信号混合成一个完整的振动信号。
之后,信号检测模块3检测传播至第一位置点、第二位置点和第三位置点的所述振动信号。
之后,信号反馈模块4中的第二分频单元42将检测到的振动信号分频为心频率分别为f1、f2、f3的三个频段的分频检测振动信号。其中,中心频率为f1的分频检测振动信号从信号转换发射模块2发出的时间为T0,传播至第一位置点上的第一信号幅度检测件311的时间为T11,传播至第二位置点上的第二信号幅度检测件312的时间为T12,传播至第三位置点上的第三信号幅度检测件313的时间为T13,所述分频检测振动信号从信号转换发射模块2发出直至人耳听到的整个传播路径为一个周期T。
并且,中心频率为f1的分频检测振动信号从信号转换发射模块2发出的初始幅度为U10,传播至第一位置点、第二位置点、第三位置点的幅度分别为U11、U12、U13
类似地,中心频率为f2的分频检测振动信号发出的初始幅度为U20,传播至第一位置点、第二位置点、第三位置点的幅度分别为U21、U22、U23;中心频率为f3的分频检测振动信号发出的初始幅度为U30,传播至第一位置点、第二位置点、第三位置点的幅度分别为U31、U32、U33
之后,信号反馈模块4分别计算中心频率为f1的分频检测振动信 号传播至第一位置点、第二位置点、第三位置点的幅度衰减系数α11、α12、α13,其中:α11=(U10-U11)/U10、α12=(U11-U12)/U11、α13=(U12-U13)/U12。之后再根据α11、α12、α13确定大致在T11时刻输出的幅度补偿信号B11、经过T12-T11时间之后输出的幅度补偿信号B12、经过T13-T12时间之后输出的幅度补偿信号B13,其中:B11=f(α11),B11为与α11成放大倍数关系的脉冲信号;B12=f(α12),B12为与α12成放大倍数关系的脉冲信号;B13=f(α13),B13为与α13成放大倍数关系的脉冲信号。
在本发明的实施例中,可以通过常规的放大器(如比例放大器)输出上述补偿脉冲信号,使得补偿后第一信号幅度检测件311、第二信号幅度检测件312、第三信号幅度检测件313检测到的幅度均基本为U10
类似地,信号反馈模块4可计算出中心频率为f2的分频检测振动信号传播至第一位置点、第二位置点、第三位置点的幅度衰减系数分别为α21、α22、α23,相应的幅度补偿信号分别为B21、B22、B23;中心频率为f3的分频检测振动信号传播至第一位置点、第二位置点、第三位置点的幅度衰减系数分别为α31、α32、α33,相应的幅度补偿信号分别为B31、B32、B33
然后,信号反馈模块4以T为周期,分别同时输出对应于中心频率为f1的频段的幅度补偿信号B11、B12、B13,对应于中心频率为f2的频段的幅度补偿信号B21、B22、B23,以及对应于中心频率为f3的频段的幅度补偿信号B31、B32、B33。可用上述幅度补偿信号分别补偿信号转换发射模块2中多频信号转换发射单元23所生成的相应频段的分频发射振动信号。
进一步地,如图11所示,信号输出模块1包括环境音频接收单元11,环境音频接收单元11用于接收环境音频信号,并将所述环境音频信号转换为所述数字音频信号。在这种实施方式中,环境音频接收单元11将转换得到的所述数字音频信号发送给信号转换发射模块2。
因此,本发明的实施例所提供的骨导声音传播装置能够增强人耳对于环境声音的接收效果,不仅可以用于耳机设备中,还可以用于助听器设备中。并且,本发明实施例所提供的上述骨导声音传播装置具有声音信号失真小、幅频响应特性好、音质效果好的优点。
本发明的另一实施例还提供了一种骨导声音传播方法,包括以下步骤:
提供数字音频信号;将所述数字音频信号转换成振动信号、并发射所述振动信号;检测从发射端至接收端的传播路径中至少一个位置点的振动信号;计算每个所述位置点的振动信号的衰减系数、根据所述衰减系数确定补偿信号、并用所述补偿信号补偿所转换的振动信号。
本发明的实施例通过计算各个位置点的振动信号的衰减系数,对骨传导过程中声音信号的衰减进行了补偿,改善了声音信号在骨传导过程中的失真,使得接收端的用户听到的声音音质更好。可以理解的是,这里提到的发射端可以是前述骨导声音传播装置的实施例中的信号转换发射模块2。
在一个实施例中,检测从发射端至接收端的传播路径中至少一个位置点的振动信号的步骤包括:
检测从发射端至接收端的传播路径中至少一个位置点的振动信号的幅度;
计算每个所述位置点的振动信号的衰减系数的步骤包括:
计算每个所述位置点的振动信号的幅度衰减系数;
所述补偿信号包括幅度补偿信号,根据所述衰减系数确定补偿信号的步骤包括:
根据所述幅度衰减系数确定所述幅度补偿信号。
作为本发明的一个实施例,计算至少一个所述位置点的振动信号的幅度衰减系数的步骤包括:
根据上述公式(1)计算每个所述位置点的振动信号的幅度衰减系数:
αi=(U0-Ui)/U0               (1)
其中,αi是所述振动信号传播到第i个所述位置点时的幅度衰减系数;其中,i为正整数,且i的最大值为所述位置点的个数;
U0是所述振动信号从所述发射端发射时的初始幅度;
Ui是所述振动信号传播到第i个所述位置点时的幅度;
根据所述幅度衰减系数确定所述幅度补偿信号的步骤包括:
根据上述公式(2)确定每个所述位置点的幅度补偿信号:
Bi=f(αi)                (2)
其中,Bi是第i个所述位置点的幅度补偿信号,f(αi)为分段函数,以使得Bi为与αi成放大倍数关系的脉冲信号。
在该实施例中,可以采用每个所述位置点的幅度Ui均与所述振动信号的初始幅度U0相比较的方式,以得出每个所述位置点的幅度衰减系数αi、以及每个所述位置点的幅度补偿信号Bi
作为本发明的另一实施例,所述位置点的个数为N个,在N个所述位置点中,第j个位置点与所述发射端之间的距离大于第j-1个位置点与所述发射端之间的距离,其中,j为正整数,且1<j≤N;
计算每个所述位置点的振动信号的幅度衰减系数的步骤包括:
根据上述公式(3)计算每个所述位置点处的幅度衰减系数:
αj=(Uj-1-Uj)/Uj-1            (3)
其中,αj是所述振动信号传播到第j个所述位置点时的幅度衰减系数;
当j=1时,U0是所述振动信号从所述发射端发射时的初始幅度;
当j>1时,Uj是所述振动信号传播到第j个所述位置点时的幅度;
根据所述幅度衰减系数确定所述幅度补偿信号的步骤包括:
根据上述公式(4)确定每个所述位置点的幅度补偿信号:
Bj=f(αj)               (4)
其中,Bj是第j个所述位置点的幅度补偿信号,f(αj)为分段函数,以使得Bj为与αj成放大倍数关系的脉冲信号。
在该实施例中,每个所述位置点的幅度Uj均与前一个位置点的幅度Uj-1相比较,对传播路径的分段更细,且每一段路径的距离更短,因此这种计算方式具有更好的补偿效果。
进一步地,将所述数字音频信号转换成振动信号的步骤还可包括:
对所述数字音频信号进行分频,将所述数字音频信号分为M个频段的分频音频信号,其中每个频段的所述分频音频信号的中心频率为fk,其中,M为正整数,k为选自1至M的正整数;
分别将中心频率为fk的M个频段的所述分频音频信号转换为M组分频发射振动信号;
将M组所述分频发射振动信号合成一个完整的振动信号。
本实施例根据人的听力特性,将数字音频信号划分为若干频段后再利用骨传感技术进行处理和传播,能够改善声音信号的音质效果。
在又一实施例中,所述方法还包括在对所述数字音频信号进行分频之前对所述数字音频信号进行滤波,以滤除杂音。
进一步地,所述方法还包括在计算至少一个所述位置点的振动信号的衰减系数之前:对检测到的振动信号进行分频,将所述振动信号分为与所述数字音频信号频段相一致的M个频段的分频检测振动信号,且每个频段的所述分频检测振动信号的中心频率也为fk,其中,M为正整数,k为选自1至M的正整数;
以及,所述方法还包括在对检测到的振动信号进行分频之后进行的:
分别计算中心频率为fk的M个频段的所述分频检测振动信号的衰减系数、根据M个所述衰减系数确定M组补偿信号、并将用M组所述补偿信号分别补偿M组所述分频发射振动信号。
本发明的该实施例分别对M个频段的分频检测振动信号计算衰减系数和补偿信号,之后将M组补偿信号分别补偿至M组分频发射振动信号,能够有效保证补偿的准确性。并且,所划分的频段越多,精度越高,人耳收听到的声音信号的效果越好。
进一步地,所述方法还包括在对检测到的振动信号进行分频之前进行的:
对检测到的振动信号进行滤波,以滤除杂音。
进一步地,所述提供数字音频信号的步骤包括:
接收环境音频信号;
将所述环境音频信号转换为所述数字音频信号。
因此,本发明的实施例能够增强人耳对于环境声音的接收效果,不仅可以用于耳机设备中,还可以用于助听器设备中。
可以理解的是,以上实施方式仅仅是为了说明本发明的原理而采用的示例性实施方式,然而本发明并不局限于此。对于本领域内的普通技术人员而言,在不脱离本发明的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本发明的保护范围。

Claims (21)

  1. 一种骨导声音传播装置,包括:
    信号输出模块,用于提供数字音频信号;
    信号转换发射模块,用于将所述数字音频信号转换成振动信号、并发射所述振动信号;
    信号检测模块,用于检测从所述信号转换发射模块至接收端的传播路径中至少一个位置点的振动信号;
    信号反馈模块,用于计算每个所述位置点的振动信号的衰减系数、根据所述衰减系数确定补偿信号、并用所述补偿信号补偿所述信号转换发射模块生成的振动信号。
  2. 根据权利要求1所述的骨导声音传播装置,其中所述信号转换发射模块包括振动发生部件,所述振动发生部件用于发射所述振动信号,所述信号反馈模块将所述补偿信号施加在所述振动发生部件上。
  3. 根据权利要求1所述的骨导声音传播装置,其中所述信号检测模块包括信号幅度检测单元,所述补偿信号包括幅度补偿信号,所述信号幅度检测单元用于检测从所述信号转换发射模块至所述接收端的传播路径中至少一个位置点的振动信号的幅度,所述信号反馈模块用于计算每个所述位置点的振动信号的幅度衰减系数,并根据所述幅度衰减系数确定所述幅度补偿信号。
  4. 根据权利要求3所述的骨导声音传播装置,其中所述信号幅度检测单元包括至少一个信号幅度检测件,所述信号幅度检测件与待检测的所述位置点对应设置,用于检测所述振动信号传播到相应的所述位置点时的幅度。
  5. 根据权利要求4所述的骨导声音传播装置,其中所述信号反馈模块根据公式(1)计算每个所述位置点的振动信号的幅度衰减系数:
    αi=(U0-Ui)/U0   (1)
    其中,αi是所述振动信号传播到第i个所述位置点时的幅度衰减系数;其中,i为正整数,且i的最大值为所述位置点的个数;
    U0是所述振动信号从所述信号转换发射模块发射时的初始幅度;
    Ui是所述振动信号传播到第i个所述位置点时的幅度;
    所述信号反馈模块还根据公式(2)确定每个所述位置点的幅度补偿信号:
    Bi=f(αi)   (2)
    其中,Bi是第i个所述位置点的幅度补偿信号,f(αi)为分段函数,以使得Bi为与αi成放大倍数关系的脉冲信号。
  6. 根据权利要求4所述的骨导声音传播装置,其中所述位置点的个数为N个,每个所述位置点处设置有一个用于检测所述振动信号传播到该位置点时的幅度的信号幅度检测件。
  7. 根据权利要求6所述的骨导声音传播装置,其中在N个所述位置点中,第j个位置点与所述信号转换发射模块之间的距离大于第j-1个位置点与所述信号转换发射模块之间的距离,其中,j为正整数,且1<j≤N;
    所述信号反馈模块根据公式(3)计算每个所述位置点处的幅度衰减系数:
    αj=(Uj-1-Uj)/Uj-1   (3)
    其中,αj是所述振动信号传播到第j个所述位置点时的幅度衰减系数;
    当j=1时,U0是所述振动信号从所述信号转换发射模块发射时的初始幅度;
    当j>1时,Uj是所述振动信号传播到第j个所述位置点时的幅度;
    所述信号反馈模块还根据公式(4)确定每个所述位置点的幅度补偿信号:
    Bj=f(αj)   (4)
    其中,Bj是第j个所述位置点的幅度补偿信号,f(αj)为分段函数,以使得Bj为与αj成放大倍数关系的脉冲信号。
  8. 根据权利要求1至7中任意一项所述的骨导声音传播装置,其中所述信号转换发射模块还包括:
    第一分频单元,用于对所述数字音频信号进行分频,将所述数字音频信号分为M个频段的分频音频信号,其中每个频段的所述分频音频信号的中心频率为fk,其中,M为正整数,k为选自1至M的正整数;
    多频信号转换发射单元,用于分别将中心频率为fk的M个频段的所述分频音频信号转换为M组分频发射振动信号;
    混合单元,用于将M组所述分频发射振动信号合成一个完整的振动信号。
  9. 根据权利要求8所述的骨导声音传播装置,其中所述信号转换发射模块还包括:
    第一滤波单元,用于对所述数字音频信号进行滤波;所述第一分频单元用于对滤波后的所述数字音频信号进行分频。
  10. 根据权利要求8所述的骨导声音传播装置,其中所述信号反馈模块还包括:
    第二分频单元,用于对所述信号检测模块检测到的振动信号进行分频,将所述振动信号分为与所述数字音频信号频段相一致的M个频段的分频检测振动信号,且每个频段的所述分频检测振动信号的中心频率也为fk,其中,M为正整数,k为选自1至M的正整数;
    多频信号反馈单元,用于分别计算中心频率为fk的M个频段的所述分频检测振动信号的衰减系数、根据M个所述衰减系数确定M组补偿信号、并用M组所述补偿信号补偿所述多频信号转换发射单元生成的M组所述分频发射振动信号。
  11. 根据权利要求10所述的骨导声音传播装置,其中所述信号反馈模块还包括:
    第二滤波单元,用于对所述信号检测模块检测到的振动信号进行滤波;所述第二分频单元用于对滤波后的所述振动信号进行分频。
  12. 根据权利要求1至7中任意一项所述的骨导声音传播装置,其中所述信号输出模块包括环境音频接收单元,所述环境音频接收单元用于接收环境音频信号,并将所述环境音频信号转换为所述数字音频信号。
  13. 一种骨导声音传播方法,包括以下步骤:
    提供数字音频信号;
    将所述数字音频信号转换成振动信号、并发射所述振动信号;
    检测从发射端至接收端的传播路径中至少一个位置点的振动信号;
    计算每个所述位置点的振动信号的衰减系数、根据所述衰减系数 确定补偿信号、并用所述补偿信号补偿所述振动信号。
  14. 根据权利要求13所述的骨导声音传播方法,其中检测从发射端至接收端的传播路径中至少一个位置点的振动信号的步骤包括:
    检测从发射端至接收端的传播路径中至少一个位置点的振动信号的幅度;
    计算每个所述位置点的振动信号的衰减系数的步骤包括:
    计算每个所述位置点的振动信号的幅度衰减系数;
    所述补偿信号包括幅度补偿信号,根据所述衰减系数确定补偿信号的步骤包括:
    根据所述幅度衰减系数确定所述幅度补偿信号。
  15. 根据权利要求14所述的骨导声音传播方法,其中计算每个所述位置点的振动信号的幅度衰减系数的步骤包括:
    根据公式(1)计算每个所述位置点的振动信号的幅度衰减系数:
    αi=(U0-Ui)/U0   (1)
    其中,αi是所述振动信号传播到第i个所述位置点时的幅度衰减系数;其中,i为正整数,且i的最大值为所述位置点的个数;
    U0是所述振动信号从所述发射端发射时的初始幅度;
    Ui是所述振动信号传播到第i个所述位置点时的幅度;
    根据所述幅度衰减系数确定所述幅度补偿信号的步骤包括:
    根据公式(2)确定每个所述位置点的幅度补偿信号:
    Bi=f(αi)   (2)
    其中,Bi是第i个所述位置点的幅度补偿信号,f(αi)为分段函数,以使得Bi为与αi成放大倍数关系的脉冲信号。
  16. 根据权利要求14所述的骨导声音传播方法,其中所述位置点的个数为N个,在N个所述位置点中,第j个位置点与所述发射端之间的距离大于第j-1个位置点与所述发射端之间的距离,其中,j为正整数,且1<j≤N;
    计算每个所述位置点的振动信号的幅度衰减系数的步骤包括:
    根据公式(3)计算每个所述位置点处的幅度衰减系数:
    αj=(Uj-1-Uj)/Uj-1   (3)
    其中,αj是所述振动信号传播到第j个所述位置点时的幅度衰减系 数;
    当j=1时,U0是所述振动信号从所述发射端发射时的初始幅度;
    当j>1时,Uj是所述振动信号传播到第j个所述位置点时的幅度;
    根据所述幅度衰减系数确定所述幅度补偿信号的步骤包括:
    根据公式(4)确定每个所述位置点的幅度补偿信号:
    Bj=f(αj)   (4)
    其中,Bj是第j个所述位置点的幅度补偿信号,f(αj)为分段函数,以使得Bj为与αj成放大倍数关系的脉冲信号。
  17. 根据权利要求13至16中任意一项所述的骨导声音传播方法,其中将所述数字音频信号转换成振动信号的步骤还包括:
    对所述数字音频信号进行分频,将所述数字音频信号分为M个频段的分频音频信号,其中每个频段的所述分频音频信号的中心频率为fk,其中,M为正整数,k为选自1至M的正整数;
    分别将中心频率为fk的M个频段的所述分频音频信号转换为M组分频发射振动信号;
    将M组所述分频发射振动信号合成一个完整的振动信号。
  18. 根据权利要求17所述的骨导声音传播方法,其中所述方法还包括:在对所述数字音频信号进行分频之前对所述数字音频信号进行滤波。
  19. 根据权利要求17所述的骨导声音传播方法,其中所述方法还包括:在计算每个所述位置点的振动信号的衰减系数之前,对检测到的振动信号进行分频,将所述振动信号分为与所述数字音频信号频段相一致的M个频段的分频检测振动信号,且每个频段的所述分频检测振动信号的中心频率也为fk,其中,M为正整数,k为选自1至M的正整数;
    以及,所述方法还包括:在对检测到的振动信号进行分频之后,分别计算中心频率为fk的M个频段的所述分频检测振动信号的衰减系数、根据M个所述衰减系数确定M组补偿信号、并用M组所述补偿信号分别补偿M组所述分频发射振动信号。
  20. 根据权利要求19所述的骨导声音传播方法,其中所述方法还包括:在对检测到的振动信号进行分频之前,对检测到的振动信号进 行滤波。
  21. 根据权利要求13至16中任意一项所述的骨导声音传播方法,其中所述提供数字音频信号的步骤包括:
    接收环境音频信号;
    将所述环境音频信号转换为所述数字音频信号。
PCT/CN2015/092672 2015-05-29 2015-10-23 骨导声音传播装置和方法 WO2016192277A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/037,643 US9986334B2 (en) 2015-05-29 2015-10-23 Bone-conduction sound transmission device and method
EP15859999.3A EP3306949B1 (en) 2015-05-29 2015-10-23 Bone conduction sound transmission device and method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510290409.6 2015-05-29
CN201510290409.6A CN104936096B (zh) 2015-05-29 2015-05-29 骨导声音传播装置和方法

Publications (1)

Publication Number Publication Date
WO2016192277A1 true WO2016192277A1 (zh) 2016-12-08

Family

ID=54123006

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/092672 WO2016192277A1 (zh) 2015-05-29 2015-10-23 骨导声音传播装置和方法

Country Status (4)

Country Link
US (1) US9986334B2 (zh)
EP (1) EP3306949B1 (zh)
CN (1) CN104936096B (zh)
WO (1) WO2016192277A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2804725C1 (ru) * 2020-04-30 2023-10-04 Шэньчжэнь Шокз Ко., Лтд. Устройство вывода звука, способ регулировки мнимого источника и способ регулировки громкости

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104936096B (zh) 2015-05-29 2018-07-17 京东方科技集团股份有限公司 骨导声音传播装置和方法
CN105721973B (zh) * 2016-01-26 2019-04-05 王泽玲 一种骨传导耳机及其音频处理方法
CN110958538A (zh) * 2019-12-05 2020-04-03 瑞声科技(南京)有限公司 用于智能头戴式穿戴设备的音频系统及音频处理方法
WO2021217670A1 (zh) * 2020-04-30 2021-11-04 深圳市韶音科技有限公司 声音输出装置、调节声像的方法及调节音量的方法
CN116473754B (zh) * 2023-04-27 2024-03-08 广东蕾特恩科技发展有限公司 一种用于美容仪的骨传导装置及控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101536549A (zh) * 2006-03-22 2009-09-16 骨声通信有限公司 用于骨导声音传播的方法和系统
WO2009134107A2 (en) * 2008-05-02 2009-11-05 Sorizen Corporation Noise cancelling apparatus
CN102421050A (zh) * 2010-09-17 2012-04-18 三星电子株式会社 使用麦克风的非均匀布局来增强音频质量的设备和方法
CN104936096A (zh) * 2015-05-29 2015-09-23 京东方科技集团股份有限公司 骨导声音传播装置和方法
CN204721589U (zh) * 2015-05-29 2015-10-21 京东方科技集团股份有限公司 骨导声音传播装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990044170A (ko) * 1995-09-02 1999-06-25 헨리 에이지마 패널형 라우드스피커
US20050141730A1 (en) * 2001-12-21 2005-06-30 Rti Tech Pte Ltd. Vibration-based talk-through method and apparatus
US7670278B2 (en) * 2006-01-02 2010-03-02 Oticon A/S Hearing aid system
CN203039850U (zh) * 2012-11-08 2013-07-03 长春芬达电子有限公司 骨导型耳机
US9596534B2 (en) * 2013-06-11 2017-03-14 Dsp Group Ltd. Equalization and power control of bone conduction elements

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101536549A (zh) * 2006-03-22 2009-09-16 骨声通信有限公司 用于骨导声音传播的方法和系统
WO2009134107A2 (en) * 2008-05-02 2009-11-05 Sorizen Corporation Noise cancelling apparatus
CN102421050A (zh) * 2010-09-17 2012-04-18 三星电子株式会社 使用麦克风的非均匀布局来增强音频质量的设备和方法
CN104936096A (zh) * 2015-05-29 2015-09-23 京东方科技集团股份有限公司 骨导声音传播装置和方法
CN204721589U (zh) * 2015-05-29 2015-10-21 京东方科技集团股份有限公司 骨导声音传播装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2804725C1 (ru) * 2020-04-30 2023-10-04 Шэньчжэнь Шокз Ко., Лтд. Устройство вывода звука, способ регулировки мнимого источника и способ регулировки громкости

Also Published As

Publication number Publication date
EP3306949A4 (en) 2019-01-09
CN104936096A (zh) 2015-09-23
US20170127183A1 (en) 2017-05-04
US9986334B2 (en) 2018-05-29
EP3306949A1 (en) 2018-04-11
CN104936096B (zh) 2018-07-17
EP3306949B1 (en) 2021-03-17

Similar Documents

Publication Publication Date Title
WO2016192277A1 (zh) 骨导声音传播装置和方法
US10540954B2 (en) Calibration and stabilization of an active noise cancelation system
DK2180726T4 (en) Direction determination using bineural hearing aids.
CN204721589U (zh) 骨导声音传播装置
US8948425B2 (en) Method and apparatus for in-situ testing, fitting and verification of hearing and hearing aids
US20100105447A1 (en) Ambient noise reduction
WO2016188270A1 (en) A hearing device and a method for operating thereof
TW201028023A (en) Phase calibration module, voice processing apparatus, and method for calibrating phase mismatch
JP6198765B2 (ja) 短縮された待ち時間で風雑音を低減した伝送信号を発生する方法
US11864886B2 (en) Hearing diagnostic system
US10412507B2 (en) Method for operating a hearing device, hearing device and binaural hearing device system
JP2010527176A (ja) 単一音源を用いた人体音響送信システム及びその方法
EP3480809B1 (en) Method for determining a response function of a noise cancellation enabled audio device
CN111866662B (zh) 用于主动式降噪的调校方法以及相关电路
JP2003264883A (ja) 音声処理装置および音声処理方法
US11109158B2 (en) Audio adjustment method and associated audio adjustment circuit for active noise cancellation
KR20180090227A (ko) 회절 및 골전도 음을 제공하는 보청기
CN113038322A (zh) 一种以听觉增强环境感知的方法与装置
CN217064005U (zh) 听力设备
Otsuka et al. Improved low-frequency crosstalk cancellation in bone conduction using bone transducers and probe microphone
CN111669676B (zh) 一种基于刺激频率耳声发射的骨导耳机均衡方法
KR100723309B1 (ko) 음향 송신 시스템
JP2017143459A (ja) 伝搬遅延特性の測定方法および装置
KR20160056366A (ko) 공간정보 전달 방법 및 장치
GB2519976A (en) Improvements in and relating to noise cancelling devices

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15037643

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015859999

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15859999

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2015859999

Country of ref document: EP