WO2021217670A1 - 声音输出装置、调节声像的方法及调节音量的方法 - Google Patents

声音输出装置、调节声像的方法及调节音量的方法 Download PDF

Info

Publication number
WO2021217670A1
WO2021217670A1 PCT/CN2020/088524 CN2020088524W WO2021217670A1 WO 2021217670 A1 WO2021217670 A1 WO 2021217670A1 CN 2020088524 W CN2020088524 W CN 2020088524W WO 2021217670 A1 WO2021217670 A1 WO 2021217670A1
Authority
WO
WIPO (PCT)
Prior art keywords
speaker
sound
sound wave
volume
excitation
Prior art date
Application number
PCT/CN2020/088524
Other languages
English (en)
French (fr)
Inventor
付峻江
张磊
廖风云
齐心
Original Assignee
深圳市韶音科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市韶音科技有限公司 filed Critical 深圳市韶音科技有限公司
Priority to BR112022018744A priority Critical patent/BR112022018744A2/pt
Priority to PCT/CN2020/088524 priority patent/WO2021217670A1/zh
Priority to KR1020227037921A priority patent/KR102696599B1/ko
Priority to JP2022564494A priority patent/JP2023523739A/ja
Priority to EP20933329.3A priority patent/EP4124067A4/en
Priority to CN202080098386.8A priority patent/CN115280795A/zh
Publication of WO2021217670A1 publication Critical patent/WO2021217670A1/zh
Priority to US17/901,813 priority patent/US20230007399A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R5/00Stereophonic arrangements
    • H04R5/033Headphones for stereophonic communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones
    • H04R3/12Circuits for transducers, loudspeakers or microphones for distributing signals to two or more loudspeakers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/10Earpieces; Attachments therefor ; Earphones; Monophonic headphones
    • H04R1/1058Manufacture or assembly
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R25/00Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
    • H04R25/60Mounting or interconnection of hearing aid parts, e.g. inside tips, housings or to ossicles
    • H04R25/604Mounting or interconnection of hearing aid parts, e.g. inside tips, housings or to ossicles of acoustic or vibrational transducers
    • H04R25/606Mounting or interconnection of hearing aid parts, e.g. inside tips, housings or to ossicles of acoustic or vibrational transducers acting directly on the eardrum, the ossicles or the skull, e.g. mastoid, tooth, maxillary or mandibular bone, or mechanically stimulating the cochlea, e.g. at the oval window
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones
    • H04R3/04Circuits for transducers, loudspeakers or microphones for correcting frequency response
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R5/00Stereophonic arrangements
    • H04R5/04Circuit arrangements, e.g. for selective connection of amplifier inputs/outputs to loudspeakers, for loudspeaker detection, or for adaptation of settings to personal preferences or hearing impairments
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R9/00Transducers of moving-coil, moving-strip, or moving-wire type
    • H04R9/02Details
    • H04R9/04Construction, mounting, or centering of coil
    • H04R9/046Construction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/32Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only
    • H04R1/40Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only by combining a number of identical transducers
    • H04R1/403Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only by combining a number of identical transducers loud-speakers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2460/00Details of hearing devices, i.e. of ear- or headphones covered by H04R1/10 or H04R5/033 but not provided for in any of their subgroups, or of hearing aids covered by H04R25/00 but not provided for in any of its subgroups
    • H04R2460/13Hearing devices using bone conduction transducers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S2400/00Details of stereophonic systems covered by H04S but not provided for in its groups
    • H04S2400/13Aspects of volume control, not necessarily automatic, in stereophonic sound systems

Definitions

  • This application relates to the field of acoustics, in particular to a sound output device, a method for adjusting sound and image, and a method for adjusting volume.
  • the vibration amplitude of the bone conduction speaker is positively correlated with the volume it produces.
  • the shell quality of the bone conduction speaker has a significant impact on the amplitude of its vibration, which in turn affects the volume produced by the speaker.
  • additional functional modules such as a headset microphone (a microphone with an extension rod), buttons, etc.
  • the buttons arranged on the bone conduction speaker will change the mass distribution on the bone conduction speaker, which will affect the volume produced by the speaker.
  • the volume of the speakers on both sides is inconsistent (the volume of the speakers in one ear is large and the volume of the speakers in the other ear is small).
  • the sound image is shifted. If the volume difference between the left and right speakers is large, long-term use may cause hearing damage to the user. Therefore, it is necessary to adjust the sound image so that the sound image is centered, and/or adjust the volume of the speakers on both sides of the earphone so that the volume of the speakers on both sides is the same.
  • the functional module attached to the bone conduction speaker on one side increases the quality of the bone conduction speaker shell, which causes the volume of the side speaker to decrease, and the volume of the left and right bone conduction headphones is different.
  • the volume difference between the left and right earphones is large, the sound image of the earphones will be significantly shifted, and long-term use may even cause hearing damage.
  • this application discloses a sound output device, which includes: a signal processing circuit, which generates a first signal based on the target sound information during operation.
  • An electrical signal and a second electrical signal a first speaker, which is electrically connected to the signal processing circuit, receives the first electrical signal from the signal processing circuit during operation, and converts the first electrical signal into a first sound wave
  • a second speaker which is electrically connected to the signal processing circuit, receives a second electrical signal from the signal processing circuit during operation, and converts the second electrical signal into a second sound wave
  • the sound output device Converting the target sound information into the first sound wave requires a first time length
  • converting the target sound information into the second sound wave requires a second time length
  • the first time length is longer than the second time length. The length of time is shorter by a time difference.
  • the volume of the sound wave output by the first speaker is smaller than the volume of the sound wave output by the second speaker.
  • the difference between the volume of the first sound wave and the volume of the second sound wave is not more than 3 dB.
  • the first speaker generates the first sound wave by exciting a first mechanical structure; and the second speaker generates a second sound wave by exciting a second mechanical structure, wherein the The quality is greater than the quality of the second mechanical structure, resulting in that the volume of the sound wave output by the first speaker is smaller than the volume of the sound wave output by the second speaker under the input of the electrical signal of the same amplitude and frequency.
  • the first speaker includes at least one of a first bone conduction speaker and a first air conduction speaker; and the second speaker includes at least one of a second bone conduction speaker and a second air conduction speaker .
  • the time difference occurs when the sound output device converts the target sound information into the first electrical signal and the second electrical signal.
  • the time difference occurs when the first speaker converts the first electrical signal into the first sound wave and the second speaker converts the second electrical signal into a second sound wave. In the process.
  • the time difference is no more than 3ms.
  • the application also discloses a sound output device, including: a signal processing circuit, which generates a first electrical signal and a second electrical signal based on target sound information during operation; a first speaker, which is electrically connected to the signal processing circuit, and receives A first electrical signal from the signal processing circuit, and converting the first electrical signal into a first excitation to excite the first mechanical structure to generate a first sound wave; and a second speaker, which is electrically connected to the signal processing circuit, During operation, the second electrical signal from the signal processing circuit is received, and the second electrical signal is converted into a second excitation to excite the second mechanical structure to generate a second sound wave, wherein the volume of the first sound wave is the same as that of the second sound wave. The volume of the second sound wave is the same; and for the same excitation, the volume generated by the first mechanical structure is smaller than the volume generated by the second mechanical structure.
  • the mass of the first mechanical structure is greater than the mass of the second mechanical structure, resulting in that the volume generated by the first mechanical structure is less than the volume generated by the second mechanical structure under the same excitation.
  • the first speaker includes at least one of a first bone conduction speaker and a first air conduction speaker; and the second speaker includes at least one of a second bone conduction speaker and a second air conduction speaker .
  • the first speaker further includes a first electromagnetic excitation device that generates the first excitation, and the first excitation excites the first mechanical structure to vibrate to generate the first sound wave; and the The second speaker further includes a second electromagnetic excitation device to generate the second excitation, and the second excitation excites the second mechanical structure to vibrate to generate the second sound wave.
  • the first electromagnetic excitation device includes a first coil; and the second electromagnetic excitation device includes a second coil, wherein the diameter of the first coil winding is larger than the second coil winding diameter of.
  • the first electromagnetic excitation device includes a first coil; and the second electromagnetic excitation device includes a second coil, wherein the resistivity of the first coil is less than the resistivity of the second coil .
  • the first excitation generated by the first electromagnetic excitation device is greater than the second excitation generated by the second electromagnetic excitation device.
  • the first speaker includes a first resistance; and the second speaker includes a second resistance, wherein the first resistance is smaller than the second resistance.
  • the sound output device further includes: a power amplifier circuit connected to the first speaker and the signal processing circuit, the power amplifier circuit amplifies the first electrical signal, the first The speaker receives the amplified first electrical signal.
  • the sound output device further includes: a power attenuation circuit connected to the second speaker and the signal processing circuit, the power attenuation circuit attenuates the second electrical signal, and the second The speaker receives the attenuated second electrical signal.
  • the application also discloses a method for adjusting the sound image.
  • the method for adjusting the sound image is configured to adjust the sound image of the first speaker and the second speaker of the sound output device, including: obtaining a volume difference between the first sound wave and the second sound wave; and adjusting the time difference.
  • the volume difference between the first sound wave and the second sound wave is not more than 3 dB.
  • the adjusting the time difference between the first acoustic wave and the second acoustic wave includes adjusting the phase difference between the first acoustic wave and the second acoustic wave.
  • the application also discloses a method for adjusting the volume.
  • the method for adjusting the volume is configured to adjust the volume of the first speaker and the second speaker of the sound output device, including: obtaining the volume difference between the first sound wave and the second sound wave; and adjusting the first excitation and The amplitude difference of the second excitation.
  • this application provides a sound output device and a method for adjusting the sound image.
  • the time difference between the wave and the second sound wave corrects the deviation of the sound image perceived by the user due to the quality difference between the first mechanical structure and the second mechanical structure.
  • This application also provides a sound output device and a method for adjusting the volume.
  • the mechanical structure of the left and right ear speakers is corrected.
  • the difference in quality is caused by the difference in volume between the left and right speakers.
  • Fig. 1 shows a schematic diagram of the appearance of a sound output device according to some embodiments of the present application
  • Fig. 2 shows a schematic structural diagram of a sound output device according to some embodiments of the present application
  • Fig. 3 shows a schematic structural diagram of an electromagnetic excitation device according to some embodiments of the present application
  • Figure 4 shows a schematic structural diagram of a bone conduction speaker according to some embodiments of the present application
  • Fig. 5 shows a schematic diagram of a vibration model of a bone conduction speaker according to some embodiments of the present application
  • Fig. 6 shows a vibration test result of a shell during operation according to some embodiments of the present application
  • FIG. 7 shows a schematic structural diagram of a moving coil speaker according to some embodiments of the present application.
  • Fig. 8 shows a flow chart of a method for adjusting volume according to an embodiment of the present application.
  • Fig. 9 shows a flowchart of a method for adjusting sound and image according to an embodiment of the present application.
  • bone-conducted sound waves refer to sound waves that conduct mechanical vibration through bones into the ears (also known as bone conduction sound)
  • air-conducted sound waves refer to sound waves that mechanical vibration conduct through air to the ear (also known as air conduction sound). sound).
  • the volume adjustment method can be used to adjust the volume of the sound wave output by the sound output device.
  • the acoustic waves may include bone-conducted acoustic waves and/or air-conducted acoustic waves.
  • the sound output device may include, but is not limited to, earphones, hearing aids, helmets, and so on.
  • the earphones may include, but are not limited to, wired earphones, wireless earphones, Bluetooth earphones, and so on.
  • the earphone may include, but is not limited to, a bone conduction speaker and an air conduction speaker.
  • FIG. 1 shows a schematic diagram of the appearance of a sound output device 300 according to an embodiment of the application.
  • Fig. 2 shows a schematic structural diagram of a sound output device 300 according to an embodiment of the present application.
  • the sound output device 300 may include a first speaker 310, a second speaker 320 and a signal processing circuit 330.
  • the signal processing circuit 330 may receive the target sound information 10, process the target sound information 10, and generate the first electrical signal 11 and the second electrical signal 12.
  • the target sound information 10 may include a video or audio file with a specific data format, or data or files that can be converted into sound through a specific way.
  • the target sound information 10 may come from the storage component of the sound output device 300 itself, or may come from an information generation, storage or transmission system other than the sound output device 300.
  • the target sound information 10 may include one or a combination of electrical signals, optical signals, magnetic signals, and mechanical signals.
  • the target sound information 10 may come from one signal source or multiple signal sources. The multiple signal sources may be correlated or uncorrelated.
  • the signal processing circuit 330 may obtain the target sound information 10 in a variety of different ways.
  • the acquisition of the target sound information 10 may be wired or wireless, and may be real-time or delayed.
  • the sound output device 300 may receive the target sound information 10 in a wired or wireless manner, or may directly obtain data from a storage medium to generate the target sound signal 10.
  • the sound output device 300 may include a component with a sound collection function, which picks up the sound in the environment and converts the mechanical vibration of the sound into an electrical signal, and obtains an electrical signal that meets specific requirements through the amplifying processor.
  • the wired connection may include a metal cable, an optical cable, or a hybrid cable of metal and optical, for example, a coaxial cable, a communication cable, a flexible cable, a spiral cable, a non-metal sheathed cable, and a metal sheathed cable.
  • the wireless connection may include radio communication, free space optical communication, acoustic communication, electromagnetic induction, and the like.
  • radio communication can include IEEE802.11 series standards, IEEE802.15 series standards (such as Bluetooth technology and cellular technology, etc.), first-generation mobile communication technology, second-generation mobile communication technology (such as FDMA, TDMA, SDMA, CDMA, and SSMA, etc.), general packet radio service technology, third-generation mobile communication technologies (such as CDMA2000, WCDMA, TD-SCDMA, and WiMAX, etc.), fourth-generation mobile communication technologies (such as TD-LTE and FDD-LTE, etc.), satellites Communication (such as GPS technology, etc.), near field communication (NFC) and other technologies operating in the ISM frequency band (such as 2.4GHz, etc.); free space optical communication can include visible light, infrared signals, etc.; acoustic communication can include sound waves, ultrasonic signals, etc.
  • Electromagnetic induction can include near field communication technology and so on.
  • the examples described above are only for illustrative purposes.
  • the wireless connection medium can also be of other types, such as Z-wave technology, other fee-based civil radio frequency bands, and military radio frequency bands.
  • the sound output device 300 may obtain the target sound information 10 from other devices through Bluetooth technology.
  • the signal processing circuit 330 may process the target sound information 10 so that the signal The first electrical signal 11 and the second electrical signal 12 output by the processing circuit 330 respectively contain specific frequency components.
  • the signal processing circuit 330 may be provided with several filters/filter banks 331.
  • the plurality of filters/filter banks 331 can process the received electrical signals and output electrical signals containing different frequencies.
  • the filter/filter bank 331 includes, but is not limited to, an analog filter, a digital filter, a passive filter, an active filter, and the like.
  • the signal processing circuit 330 may be provided with a dynamic range controller 332.
  • the dynamic range controller 332 may be configured to compress and amplify the input signal to make the sound sound softer or louder.
  • the signal processing circuit 330 may be provided with an active sound leakage reduction circuit 333 to reduce the sound leakage of the sound output device 300.
  • a feedback circuit 334 may be provided in the signal processing circuit 330.
  • the feedback circuit 334 can feed back sound field information to the signal processing circuit 330.
  • the signal processing circuit 330 may be provided with a power adjustment circuit 335 to adjust the amplitude of the received electrical signal.
  • the power adjusting circuit 335 may include a power amplifying circuit to amplify the signal of the first electrical signal 11 and/or the second electrical signal 12.
  • the power adjustment circuit 335 may further include a power attenuation circuit to attenuate the signal amplitude of the first electrical signal 11 and/or the second electrical signal 12.
  • an equalizer 338 may be provided in the signal processing circuit 330.
  • the equalizer 338 may be configured to individually gain or attenuate the received signal according to a specific frequency band.
  • the signal processing circuit 330 may include a frequency dividing circuit 339. The frequency dividing circuit can decompose the received electrical signal into high-frequency signal components and low-frequency signal components.
  • the first speaker 310 is electrically connected to the signal processing circuit 330.
  • the first speaker 310 can receive the first electrical signal 11 from the signal processing circuit 330 and convert the first electrical signal 11 into the first sound wave 21.
  • the first speaker 310 may be a kind of transducer device.
  • the first speaker 310 may convert the received first electrical signal 11 into mechanical vibration.
  • the first sound wave 21 is generated by the mechanical vibration.
  • the first speaker 310 may include a first mechanical structure 311 and a first excitation device 312.
  • the first speaker 310 may be a bone conduction speaker; the first speaker 310 may also include an air conduction speaker, or a combination of a bone conduction speaker and an air conduction speaker.
  • the first excitation device 312 may be the input end of the energy conversion device.
  • the first excitation device 312 receives the first electrical signal 11 from the signal processing circuit 330 and converts the first electrical signal 11 into a first excitation.
  • the first excitation excites the first mechanical structure 311 to vibrate. That is, through the first excitation device 312 and the first mechanical structure 311, the first speaker 310 converts the received electrical energy of the first electrical signal 11 into mechanical energy for the vibration of the first mechanical structure 311.
  • the first excitation device 412 generates the first excitation to excite the first mechanical structure 411 to vibrate.
  • the first excitation device 412 may be an electromagnetic excitation device.
  • the first excitation may be magnetic field force, electromagnetic force and/or ampere force generated by the electromagnetic excitation device.
  • the first excitation device 412 may also be other types of excitation devices, which are not specifically limited in this application.
  • the excitation device receives the first electrical signal 11 from the signal processing circuit 430 and generates a first excitation.
  • the method for generating the first excitation by the excitation device may include, but is not limited to, a moving coil type, an electrostatic type, a piezoelectric type, a moving iron type, a pneumatic type, an electromagnetic type, and so on.
  • FIG. 3 shows a schematic structural diagram of a first excitation device 412 according to an embodiment of the present application.
  • the first excitation device 412 shown in FIG. 3 may be an electromagnetic excitation device.
  • the first excitation device 412 may include a magnetic member 610 and a coil 620.
  • the magnetic member 610 can generate a magnetic field.
  • the magnetic member 610 may be magnetic.
  • the magnetic properties may be constant.
  • the magnetic member 610 may include or be made of a permanent magnet.
  • the permanent magnet can be a natural magnet or an artificial magnet.
  • the permanent magnets may include, but are not limited to, neodymium iron boron magnets, samarium cobalt magnets, alnico magnets, and the like.
  • the permanent magnet should have as high a coercive force, remanence and maximum energy product as possible to ensure that the permanent magnet has stable magnetism and can store the maximum magnetic energy.
  • the coil 620 may be a group of winding wires wound in a certain direction.
  • the coil 620 may be disposed in the magnetic field generated by the magnetic member 610.
  • the coil 620 may include a first end 621 and a second end 622.
  • the electrical signal may enter the coil 620 from the first end 621, flow through the coil 620, and flow out of the coil 620 from the second end 622 in the form of current.
  • the F drive coil 620 vibrates.
  • the coil 620 can be connected to the mechanical structure 630, and further, the coil 620 drives the mechanical structure 630 to vibrate.
  • the mechanical structure 630 may be the first mechanical structure 311 that generates the first sound wave 21. That is, F can be used as an external excitation signal to excite the first mechanical structure 311 to vibrate.
  • the magnitude of the magnetic field strength of the magnetic field generated by the magnetic element 610 is related to the material of the magnetic element 610. In some embodiments, the magnitude of the intensity B of the magnetic field generated by the magnetic element 610 is positively correlated with the coercive force, remanence, and maximum magnetic energy product of the magnetic element 610.
  • I is the magnitude of the current passing through the coil 620.
  • I is related to the electrical signal received by the first excitation device 412.
  • the electrical signal is input to the coil 620 in the form of a pulse voltage.
  • U t represents the magnitude of the pulse voltage between the first end 621 and the second end 622 of the coil 620 (that is, the electrical signal input to the electromagnetic excitation device 600).
  • R represents the magnitude of the resistance between the first terminal 621 and the second terminal 622.
  • the resistance between the first terminal 621 and the second terminal 622 can be based on Calculated.
  • represents the resistivity of the winding of the coil 620
  • L represents the length of the coil 620
  • S represents the diameter of the winding of the coil 620.
  • the magnitude of the excitation F (that is, the ampere force received by the coil) generated in the first excitation device 412 can be obtained as:
  • the first mechanical structure 311 may be the output end of the energy conversion device.
  • the first mechanical structure 311 vibrates to generate the first sound wave 21.
  • the first mechanical structure 311 can generate mechanical vibration under the action of the first excitation; further, the first sound wave 21 is generated based on the mechanical vibration.
  • the first mechanical structure 311 may be a component that directly emits sound through vibration after being excited.
  • the first speaker is a bone conduction speaker
  • the first mechanical structure 311 may be the shell of the bone conduction speaker.
  • the first mechanical structure 311 may include a woolen cone or a paper cone of the dynamic air conduction speaker.
  • the present application analyzes the vibration process of the first mechanical structure 311 by taking the first speaker 310 as a bone conduction speaker as an example.
  • Fig. 4 shows a schematic structural diagram of a bone conduction speaker 100 provided according to some embodiments of the present application.
  • the bone conduction speaker 100 may include a housing 120 and a magnetic circuit 130.
  • the magnetic circuit 130 can be used as an excitation device to generate excitation f.
  • the magnetic circuit 130 and the housing 120 are connected by a vibration transmission plate 140.
  • the housing 120 may be connected to the ear hook 110.
  • the top point P of the ear hook 110 fits well with the head. Therefore, the top point P can be regarded as a fixed point.
  • the housing 120 can vibrate under the action of the excitation f and generate sound waves.
  • the magnetic circuit 130 will also receive a force of the same magnitude and opposite direction as f (ie, "-f" as shown in the figure).
  • the housing 120 and the magnetic circuit 130 can be simplified into a two-degree-of-freedom vibration system.
  • Fig. 5 shows a model of a two-degree-of-freedom vibration system provided according to an embodiment of the present application.
  • the mass m 1 can represent the housing 120; the mass m 2 can represent the magnetic circuit 130; the elastic connection k 1 can represent the vibration transmission plate 140; the elastic connection k 2 can represent the ear hook 110.
  • the damping of the elastic connectors k 1 and k 2 are c 1 and c 2, respectively .
  • the housing 120 and the magnetic circuit 130 are subjected to force f and force-f, respectively, to generate vibration.
  • f is the magnitude of system excitation; the direction of f is shown in Figure 5.
  • the composite vibration system composed of the housing 120, the magnetic circuit 130, the vibration transmission plate 140 and the earhook 110 is fixed at the top point P of the earhook 110.
  • any excitation f can be expressed in the frequency domain as the sum of a series of simple harmonic vibrations, so suppose Where F 0 is the excitation amplitude; the steady-state response of the system can be expressed as in Is the response amplitude.
  • the response amplitude of the vibration system can be obtained as:
  • the housing 120 vibrates to generate sound waves. Therefore, the shell 120 (i.e., the mass m 1 ) is analyzed. Substituting the mechanical impedance matrix Z( ⁇ ) into formula (4), the response amplitude of the housing 120 is obtained:
  • the vibration amplitude X 1 of the shell 120 is simultaneously affected by the following parameters: the frequency of excitation f (the magnitude is equal to 1/ ⁇ ), the amplitude of excitation f F 0 , and the shell m 1 mass body 120, the magnetic circuit 130. the mass m 2, the stiffness of the vibration conductive plate 1 and k 140 of damping c 1 and k 2 of the earhook 110 and the damping c 2.
  • the amplitude F 0 of the excitation f is proportional to the vibration amplitude X 1 of the casing 120. The greater the amplitude F 0 of the excitation f, the greater the amplitude X 1 of the housing 120.
  • the amplitude X 1 of the housing 120 is positively correlated with the volume of the sound wave generated by the vibration of the housing 120. The greater the amplitude X 1, the greater the volume of the sound wave; the smaller the amplitude X 1, the lower the volume of the sound wave.
  • FIG. 6 shows the vibration test result of the shell 120 when the bone conduction speaker 100 is in operation according to some embodiments of the present application.
  • the physical quantity used to evaluate the magnitude of vibration or volume may include, but is not limited to, the speed, displacement, sound pressure level, etc. of the vibration source.
  • the acceleration level (unit: dB) of the vibration source is used as the physical quantity for evaluating vibration.
  • the solid line represents mass housing 120 is vibration acceleration level of the bone conduction speaker 100 as the excitation frequency variation curve f for the case where m is 1; dashed line represents the mass m of the housing 120 of the bone 1 50% The curve of the vibration acceleration level of the guide speaker 100 with the frequency of the excitation f.
  • the acceleration level of the vibration of the housing 120 is related to frequency and mass. Relative to the initial shell mass m 1 , when the shell 120 mass m 1 becomes 1.5m 1 , the acceleration level of the shell vibration does not significantly decrease only in the low frequency range below 160 Hz, and decreases by about 3 in both the mid and high frequency bands. ⁇ 4dB. That is, in the mid-frequency and high-frequency ranges, when the mass of the casing 120 is increased by 0.5 times, the amplitude of the vibration of the casing 120 will drop by 3-4 dB.
  • the low frequency can refer to the frequency band generally from 20Hz to 150Hz
  • the intermediate frequency can refer to the frequency band generally from 150Hz to 5KHz
  • the high frequency band can refer to the frequency band generally from 5KHz to 20KHz.
  • the low frequency can refer to the frequency band generally from 150 Hz to 500 Hz
  • the mid-to-high frequency refers to the frequency band from 500 Hz to 5 KHz.
  • low frequency refers to the frequency band generally from 20Hz to 80Hz
  • medium and low frequency can refer to the frequency band generally between 80Hz-160Hz
  • intermediate frequency can refer to the frequency band generally from 160Hz to 1280Hz
  • medium and high frequency can refer to generally On the frequency band of 1280Hz-2560Hz
  • the high frequency band can refer to the frequency band of generally 2560Hz to 20KHz.
  • the first speaker 310 described in this application is not limited to the bone conduction speaker.
  • the performance of the first speaker 310 still satisfies the above analysis.
  • FIG. 7 shows a schematic structural diagram of a moving coil speaker 500 according to an embodiment of the present application.
  • the moving coil speaker shown in FIG. 7 may be an air conduction speaker.
  • the moving coil speaker 500 may include a magnetic circuit assembly 520, a vibration assembly 530, and a supporting auxiliary assembly 510.
  • the support auxiliary assembly 510 can provide support for the vibration assembly 530 and the magnetic circuit assembly 520.
  • the supporting auxiliary assembly 510 may include an elastic member 511. As shown in FIG.
  • the vibration component 530 may be fixed on the supporting auxiliary component 510 through the elastic member 511.
  • the magnetic circuit assembly 520 can convert an electrical signal into an excitation F.
  • the excitation F can act on the vibration component 530.
  • the vibration component 530 can vibrate under the action of the excitation F and generate sound waves.
  • the vibration amplitude of the vibration component 530 in the moving coil speaker 500 under the action of excitation F is the same as the equivalent mass m, excitation F, and damping c of the vibration component 530 Related to stiffness k.
  • the equivalent mass of the vibration component 530 the smaller the vibration amplitude.
  • the greater the excitation F the greater the amplitude of vibration.
  • the process of kinetic analysis will not be repeated.
  • the volume of the first sound wave 21 generated by the vibration of the first mechanical structure 311 is related to the frequency of the first electrical signal 11 and the quality of the first mechanical structure 311. Wherein, the greater the mass of the first mechanical structure 311, the lower the volume of the first sound wave 21.
  • the second speaker 320 is electrically connected to the signal processing circuit 330.
  • the second speaker 320 can receive the second electrical signal 12 from the signal processing circuit 330 and convert the second electrical signal 12 into a second sound wave 22.
  • the second speaker 320 may be a kind of energy transducing device.
  • the second speaker 320 may convert the received electrical signal into mechanical vibration.
  • the second sound wave 22 is generated by the mechanical vibration.
  • the second speaker 320 may include a second mechanical structure 321 and a second excitation device 322.
  • the structure and function of the second mechanical structure 321 may be the same as or similar to the first mechanical structure 311; the structure and function of the second excitation device 322 may be the same or similar to the first excitation device 312.
  • the structure and function of the second mechanical structure 321 and the second excitation device 322 will not be described in detail.
  • the volume of the second sound wave 22 generated by the vibration of the second mechanical structure 321 in the second speaker 320 is related to the frequency of the second electrical signal 21 and the quality of the second mechanical structure 321. Among them, the greater the mass of the second mechanical structure 321, the lower the volume of the second sound wave 22.
  • an additional device 940 is provided on one end of the first speaker 310.
  • the additional device 940 may include a function key provided on a housing on one side of the bone conduction headset.
  • the additional device 940 may include a headset microphone provided on a housing on one side of the bone conduction headset.
  • the headset microphone may include, but is not limited to, components such as a base, a microphone rod, and a microphone. The setting of the headset microphone can improve the call quality of the bone conduction headset. Compared with the quality of the sound output device 300, the quality of the additional device 940 cannot be ignored.
  • the additional device 940 is arranged on one side of the sound output device 300 (that is, one side of the first speaker 310), this will cause the quality of the first mechanical structure 311 in the first speaker 310 to be greater than that of the second mechanical structure in the second speaker 310.
  • the quality of structure 311. For example, the mass of the housing of the bone conduction speaker on one side with the headset microphone is greater than the mass of the housing of the bone conduction speaker on the other side without the headset microphone.
  • the mass of the first mechanical structure 311 is greater than the mass of the second mechanical structure 321, which will cause the amplitude of the vibration of the first mechanical structure 311.
  • the value is smaller than the amplitude of the vibration of the second mechanical structure 321. If the difference between the transmission medium and the transmission distance is not considered, the volume of the first sound wave emitted by the first speaker 310 heard by the user will be less than the volume of the second sound wave emitted by the second speaker 320.
  • the volume difference the difference between the volume of the first sound wave and the volume of the second sound wave heard by the user (hereinafter referred to as the volume difference) persists for a long time, the user's hearing may be damaged.
  • the volume difference between the sound heard by the user's ears is greater than 3dB for a long time, it will cause damage to the user's ears.
  • the volume difference between the first sound wave and the second sound wave heard by the user will also cause the user There is a deviation between the perceived sound image and the actual sound image. Therefore, it is necessary to adjust the volume of the first sound wave and the second sound wave, so that the volume of the first sound wave and the volume of the second sound wave are as consistent as possible, so as to avoid hearing damage and sound image shift caused by the sound volume difference. .
  • Fig. 8 shows a flow chart of a method S200 for adjusting volume according to an embodiment of the present application.
  • the process S200 may be used to adjust the volume of the sound output by the first speaker 310 and the second speaker 320 of the sound output device 300.
  • the process S200 can also be used to adjust the sound image of the sound output device 300 perceived by the user.
  • the process S200 may include: S210, acquiring the volume difference between the first sound wave and the second sound wave; and S220, adjusting the amplitude difference between the first excitation and the second excitation.
  • the volume difference is greater than 3dB.
  • S220 Adjust the amplitude difference between the first excitation and the second excitation.
  • the quality of the first mechanical structure is greater than that of the second mechanical structure, causing the amplitude of the vibration of the first mechanical structure to be smaller than that of the second mechanical structure, which further causes the volume of the first sound wave to be smaller than that of the second sound wave. volume. Therefore, the amplitude of the first mechanical structure can be adjusted by adjusting the amplitude of the first excitation; the amplitude of the second mechanical structure can be adjusted by adjusting the amplitude of the second excitation; and the amplitude of the first mechanical structure and the second mechanical structure can be corrected. Poor volume caused by quality differences.
  • M 1 represents the mass in the first mechanical structure to M 2 represents a second mechanical structure
  • S 1 the mass of the first coil
  • S 2 the cross-sectional area of the second coil
  • ⁇ 1 the resistivity of the first coil
  • ⁇ 2 the resistivity of the winding
  • B 1 represents the magnetic field intensity of the first magnetic element
  • B 2 represents the magnetic field intensity of the second magnetic element
  • R 1 represents the resistance of the first coil winding (hereinafter referred to as the first resistance)
  • R 2 represents the resistance of the second coil winding (hereinafter referred to as the second resistance).
  • the magnitude of the first excitation F 1 and/or the second excitation F 2 can be adjusted so that the vibration amplitude X 1 of the first mechanical structure 311 is the same as that of the second mechanical structure 321.
  • the amplitude X 2 is consistent, so that the volume of the first sound wave 21 is consistent with the volume of the second sound wave 22.
  • the diameter of the winding of the first coil and/or the diameter of the winding of the second coil can be adjusted to obtain the first excitation F 1 and the second excitation F 2 of different sizes, thereby making the first acoustic
  • the volume of the wave 21 is the same as the volume of the second sound wave 22. Since M 1 >M 2 , the diameter of the first coil winding can be increased and/or the diameter of the second coil winding can be reduced to make S 1 >S 2 . According to formula (1), the first excitation F 1 generated by the first excitation device 312 is greater than the second excitation F 2 generated by the second excitation device 422.
  • the first excitation F 1 is greater than the second excitation F 2 , and X 1 can be made consistent with X 2.
  • the power of the first sound wave 21 is the same as the power of the second sound wave 22
  • the volume of the first sound wave 21 heard by the user is the same as the volume of the second sound wave 22.
  • the sound volume difference caused by the quality difference (M 1 >M 2 ) between the first mechanical structure 311 and the second mechanical structure 321 is corrected.
  • the sound image shift caused by the difference in volume is also avoided.
  • the method of adjusting the volume by adjusting the diameter of the coil keeps the output volume consistent while keeping the overall size of the coil unchanged. In this way, the structure and size of each component in the sound output device can be maintained unchanged.
  • the bone conduction speaker on the side with additional equipment uses a coil with a larger wire diameter than the speaker wire on the side without additional equipment.
  • the ratio of the wire diameter of the thick wire used in the speaker coil with additional equipment to the wire diameter of the wire used in the speaker coil without additional equipment is not less than any of the following values or the range between any two values: 1.01, 1.02, 1.03, 1.04, 1.05, 1.06, 1.07, 1.08, 1.09, 2.0.
  • the bone conduction speaker on the side without additional equipment uses a coil with a wire diameter smaller than that of the speaker on the side with additional equipment.
  • the ratio of the wire diameter of the thin wire used in the speaker coil without additional equipment to the wire diameter of the wire used in the speaker coil without additional equipment is not greater than any of the following values or the range between any two values: 0.90, 0.91, 0.92, 0.93 , 0.94, 0.95, 0.96, 0.97, 0.98, 0.99.
  • the resistivity of the first coil and/or the resistivity of the second coil can be adjusted to obtain the first excitation F 1 and the second excitation F 2 of different sizes, so that the volume of the first sound wave 21 is the same as that of the second excitation.
  • the volume of the two sound waves 22 is the same. Since M 1 >M 2 , it is possible to reduce the resistivity ⁇ 1 of the first coil and/or increase the resistivity ⁇ 2 of the second coil to make ⁇ 1 ⁇ 2 .
  • a specific winding material can be selected such that ⁇ 1 ⁇ 2 .
  • the first excitation F 1 generated by the first excitation device 312 is greater than the second excitation F 2 generated by the second excitation device 422.
  • the first excitation F 1 is greater than the second excitation F 2 , and X 1 can be made consistent with X 2.
  • the power of the first sound wave 21 is the same as the power of the second sound wave 22
  • the volume of the first sound wave 21 heard by the user is the same as the volume of the second sound wave 22.
  • the sound volume difference caused by the quality difference (M 1 >M 2 ) between the first mechanical structure 311 and the second mechanical structure 321 is corrected.
  • the sound image shift caused by the volume difference is also corrected.
  • the magnetic field strength B 1 of the first magnetic member and/or the magnetic field strength B 2 of the second magnetic member can be adjusted to obtain the first excitation F 1 and the second excitation F 2 of different sizes, thereby making the first sound
  • the volume of the wave 21 is the same as the volume of the second sound wave 22. Since M 1 > M 2 , the magnetic field strength B 1 of the first magnetic member can be increased and/or the magnetic field strength B 2 of the second magnetic member can be reduced to make B 1 > B 2 . Under the condition that other independent variables remain unchanged, according to formula (1), the first excitation F 1 generated by the first excitation device 312 is greater than the second excitation F 2 generated by the second excitation device 422.
  • the first excitation F 1 is greater than the second excitation F 2 , and X 1 can be made consistent with X 2.
  • the power of the first sound wave 21 is the same as the power of the second sound wave 22
  • the volume of the first sound wave 21 heard by the user is the same as the volume of the second sound wave 22.
  • the sound volume difference caused by the quality difference (M 1 >M 2 ) between the first mechanical structure 311 and the second mechanical structure 321 is corrected.
  • the sound image shift caused by the volume difference is also corrected.
  • the size of the first magnetic member can be increased and/or the size of the second magnetic member can be reduced, so that B 1 >B 2 .
  • magnetic parts made of materials with different magnetic properties can be selected to make B 1 > B 2 .
  • the first magnetic part is made of materials with stronger magnetic properties; the second magnetic part is made of materials with weaker magnetic properties.
  • the remanence of the first magnetic member is greater than the remanence of the second magnetic member, so that the magnetic field intensity B 1 generated by the first electromagnetic excitation device is greater than that generated by the second electromagnetic excitation device.
  • the magnetic field strength B 2 .
  • the coercive force of the first magnetic element is greater than the coercive force of the second magnetic element, so that the magnetic field strength B 1 generated by the first electromagnetic excitation device is greater than that of the second electromagnetic excitation device.
  • the intensity of the magnetic field generated by the device B 2 is greater than the magnetic energy product of the second magnetic element, so that the magnetic field intensity B 1 generated by the first electromagnetic excitation device is greater than that generated by the second electromagnetic excitation device.
  • the magnetic field strength B 2 is greater than that generated by the second electromagnetic excitation device.
  • the size of the first resistor R 1 and/or the second resistor R 2 can be adjusted to obtain the first excitation F 1 and the second excitation F 2 of different sizes, so that the first acoustic wave 21
  • the volume is the same as the volume of the second sound wave 22.
  • the first resistance R 1 refers to the overall resistance of the first speaker, including the internal resistance of the first speaker and possible additional resistance
  • the second resistance R 2 refers to the overall resistance of the second speaker, including the first speaker 2.
  • the first excitation F 1 generated by the first excitation device 312 is greater than the second excitation F 2 generated by the second excitation device 422.
  • the first excitation F 1 is greater than the second excitation F 2 , and X 1 can be made consistent with X 2.
  • the power of the first sound wave 21 is the same as the power of the second sound wave 22, and the volume of the first sound wave 21 heard by the user is the same as the volume of the second sound wave 22. In this way, the sound volume difference caused by the quality difference (M 1 >M 2 ) between the first mechanical structure 311 and the second mechanical structure 321 is corrected.
  • the bone conduction speaker on the side without additional equipment is connected in series with a resistor.
  • the resistance value of the series resistance of the bone conduction speaker on the side without additional equipment is not less than 1 ⁇ .
  • the resistor connected in series is not necessarily a separate resistor device, and the same effect can also be achieved by controlling the resistance of the wire used in the circuit (such as the back-hanging wire).
  • the resistivity of the first coil can be reduced and/or the resistivity of the second coil can be increased to make the resistance of the first coil smaller than the resistance of the second coil.
  • the resistance of the first coil is smaller than the resistance of the second coil.
  • the diameter of the winding of the first coil and/or increase the diameter of the winding of the second coil it is possible to reduce the diameter of the winding of the first coil and/or increase the diameter of the winding of the second coil to make the resistance of the first coil smaller than the resistance of the second coil. It should be noted that when the resistivity, winding length and/or winding diameter of the first coil and/or the second coil are increased and/or decreased, the quality of the first coil and/or the second coil is It may also change. The quality of the first coil and the second coil will also affect the vibration of the first mechanical structure and the second mechanical structure.
  • the amplitude of the first electrical signal 11 and/or the second electrical signal 12 can also be adjusted to obtain the first excitation F 1 and the second excitation F with different amplitudes. 2 , so that the volume of the first sound wave 21 is consistent with the volume of the second sound wave 22.
  • the power adjusting circuit 335 may be the power amplifying circuit.
  • the power amplifier circuit can amplify the first electrical signal 11 so that the power of the first electrical signal 11 is greater than the power of the second electrical signal 12. In this way, if the amplitude of the first electrical signal 11 and the second electrical signal 12 are the same without passing through the power adjusting circuit 335, the amplitude of the first electrical signal 11 after passing through the power adjusting circuit 335 is greater than the amplitude of the second electrical signal 12 value.
  • the first speaker 310 receives the amplified first electrical signal, so that the first excitation F 1 generated by the first speaker 310 will be greater than the magnitude of the second excitation F 2 generated by the second speaker 320 (ie F 1 > F 2 ) .
  • the power adjustment circuit 335 may be the power attenuation circuit.
  • the power attenuation circuit can attenuate the second electrical signal 12. In this way, the amplitude of the first electrical signal 11 is greater than the amplitude of the second electrical signal 12.
  • the second speaker 320 receives the attenuated second electrical signal 12. In this way, if the amplitude of the first electrical signal 11 and the second electrical signal 12 are the same without passing through the power adjusting circuit 335, the second speaker 320 generates the signal based on the attenuated second electrical signal 12 after passing through the power adjusting circuit 335.
  • the second excitation F 2 will be smaller than the first excitation F 1 (ie F 1 >F 2 ).
  • the first excitation F 1 is greater than the second excitation F 2 , and X 1 can be made consistent with X 2.
  • the power of the first sound wave 21 is the same as the power of the second sound wave 22, and the volume of the first sound wave 21 heard by the user is the same as the volume of the second sound wave 22.
  • the chip control software in the bone conduction headset can also be used to adjust the gain of the audio signal of the bone conduction speakers on both sides of the bone conduction headset to make the volume on both sides of the bone conduction headset consistent.
  • the quality of the first mechanical structure 311 and/or the second mechanical structure 321 can be directly adjusted to make the quality of the first mechanical structure 311 consistent with the quality of the second mechanical structure 321 to correct The difference in volume between the first sound wave 21 and the second sound wave 22 due to the difference in quality.
  • the headset microphone, function keys, etc. are arranged on one side of the first speaker 310, resulting in the mass of the first mechanical structure 311 being greater than the mass of the second mechanical structure 321.
  • volume and power mentioned in the above-mentioned volume adjustment solution and/or the embodiments are all based on the volume and power of the sound emitted by the speaker on the earphone, not the power consumption of the earphone.
  • the foregoing solutions and/or embodiments for adjusting the volume are not isolated.
  • the aforementioned solutions and/or embodiments for adjusting the volume can be used alone to adjust the volume at both ends of the sound output device 300.
  • the aforementioned solutions and/or embodiments for adjusting the volume can also be combined and used to adjust the volume at both ends of the sound output device 300. For example, quality adjustment and incentive adjustment can be carried out at the same time.
  • the methods of "increasing the mass of the second mechanical structure 311", “increasing the first excitation”, and “increasing the diameter of the first coil” can be used at the same time to make The volume of the first speaker 310 and the second speaker 320 are the same.
  • Sample 1 The bone conduction speaker on the side with low volume uses a coil with a thicker wire diameter, and the other side uses a normal coil
  • Sample 2 The bone conduction speaker on the side with high volume uses a coil with a thinner wire diameter. A normal coil is used on one side
  • Sample 3 The bone conduction speaker on the loud side is connected in series with a resistor of a certain resistance.
  • the above three samples all have the same functional module attached to the bone conduction speaker on one side, and no functional module on the other side.
  • the total current at the battery end of the three earphone samples with additional functional modules are all increased compared to normal earphones.
  • sample 2 the loudspeaker on the loud side uses a coil with a thinner wire diameter, and the other side uses a normal coil
  • the total current is the smallest
  • sample 1 the loudspeaker on the lower side uses a larger wire diameter
  • the total current is the largest.
  • sample 3 (the bone conduction speaker on the loud side is connected in series with a resistor of a certain resistance) only needs to connect a resistor in series on the circuit board or achieve the effect of series resistance by other means. There is no need to add materials during the production and design process. Less impact on production and design.
  • the difference in volume between the two earphones can be compensated by adjusting the earphone design structure.
  • the difference in the volume of the earphones can also be adjusted for the sound image formed by the earphones.
  • the sound image refers to the sounding position of the sound source in the sound field, that is, the sound image is the direction of the sound.
  • the user's brain will determine that the sounding position of the target sound information (that is, the sound image perceived by the user) is biased to the side of the second sound wave 22 with a louder volume, that is, the side of the second speaker 320.
  • the distance between the first speaker 310 and the second speaker 320 from the user can be considered to be the same, that is, the actual sound image of the target sound information 10 is centered (that is, from directly in front of or directly behind the user). That is, there is a deviation between the sound image perceived by the user and the actual sound image.
  • the present application provides a method for adjusting the sound image, which can make the sound image perceived by the user as close to the actual sound image as possible, thereby reducing the deviation of the sound image perceived by the user from the actual sound image.
  • the sound image adjustment method can be independently applied to the earphone described in this application, or can be combined with the above-mentioned volume compensation solution and/or embodiment.
  • Fig. 9 shows a flowchart of a method S100 for adjusting sound and image according to an embodiment of the present application.
  • the process S100 may be used to adjust the sound image output by the first speaker 310 and the second speaker 320 of the sound output device 300.
  • the process S100 may include: S110, acquiring the volume difference between the first sound wave and the second sound wave; S120, adjusting the time difference between the sounding of the first sound wave and the second sound wave.
  • the "binaural effect” is the effect of people relying on the volume difference, time difference, phase difference and timbre difference between the two ears to determine the sound direction. Because there is a certain distance between the left and right ears, in addition to the sound from the front and the rear, the volume, time, phase, and tone of the same sound from other directions reach the two ears, which causes the volume. Difference, time difference, phase difference and tone color difference. As an example, if the sound source is to the right, the sound must first reach the right ear and then the left ear. The more the sound is to one side, the greater the time difference.
  • the sound source is to the right, the sound source is closer to the right ear than the left ear, and the volume reaching the right ear is louder than the left ear. The more the sound is to one side, the greater the difference in volume.
  • sound propagates in the form of waves, and the phase of sound waves at different positions in space is different. Due to the spatial distance between the two ears, the phase of sound waves reaching the two ears may be different.
  • the tympanic membrane inside the eardrum vibrates with sound waves. The phase difference of this vibration becomes a factor for the user's brain to determine the location of the sound source.
  • the listener's brain will perceive that the sound is coming from the left (the side where the sound is heard first), that is, the sound image perceived by the listener's brain is shifted to the left. vice versa. This phenomenon is called the "time difference effect" between the left and right ears.
  • volume difference effect The sound image shift caused by the difference between the quality of the first mechanical structure and the quality of the second mechanical structure described above can also be understood essentially as the "volume difference effect”.
  • S110 Acquire the volume difference between the first sound wave and the second sound wave.
  • the value of the sound image shift caused by the volume difference can be obtained. For example, if the volume of the first sound wave 21 is smaller than the volume of the second sound wave 22 by ⁇ , the sound image perceived by the user will shift from the center position to the direction of the second speaker 320 by ⁇ .
  • the deviation of the sound image perceived by the user due to the difference in quality between the first mechanical structure 311 and the second mechanical structure can be adjusted by adjusting the time difference between the sounding of the first sound wave 21 and the second sound wave 22.
  • the sound output device 300 needs a first time length t 1 to convert the target sound information 10 into the first sound wave 21; the sound output device 300 needs a second time length t 2 to convert the target sound information 10 into the second sound wave 22; and The first time length t 1 is shorter than the second time length t 2 .
  • the sounding time of the first speaker 310 will be earlier than the sounding time of the second speaker 320.
  • the pronunciation time of the first speaker 310 is earlier than the pronunciation time of the second speaker 320 by a time difference. In some embodiments, the time difference is no more than 3ms.
  • the time difference may be any value among the following values or any value between any two values: 0.1ms, 0.2ms, 0.3ms, 0.4ms, 0.5ms, 0.6ms, 0.7ms, 0.8ms, 0.9 ms, 1.0ms, 1.1ms, 1.2ms, 1.3ms, 1.4ms, 1.5ms, 1.6ms, 1.7ms, 1.8ms, 1.9ms, 2.0ms, 2.1ms, 2.2ms, 2.3ms, 2.4ms, 2.5ms, 2.6ms, 2.7ms, 2.8ms, 2.9ms, 3.0ms.
  • the first sound wave 21 and the second sound wave 22 have the same information except for the sounding time.
  • the time when the first sound wave 21 is heard by the user's left ear is earlier than the time when the second sound wave 22 is heard by the right ear.
  • the user's brain will determine that the source position of the target sound information 10 is biased to the side of the first sound wave 21 that was pronounced earlier, that is, the user's left side.
  • the source position of the target sound information 10 that is, the sound image perceived by the user heard by the end user will also be adjusted To the middle position.
  • the right shift of the sound image caused by the mass of the first mechanical structure 311 being greater than the mass of the second mechanical structure 321 is solved.
  • the sound image position of the earphone can be adjusted by controlling the time difference between the audio signals of the speakers on both sides (that is, the time difference between the left and right channels of the audio signal).
  • the sound image position of the earphone can be adjusted by controlling the time difference of the sound waves output by the speakers on both sides.
  • the first sound wave output by the first speaker is made earlier than the second sound wave output by the second speaker.
  • the first sound wave is ahead of the second sound wave by a time difference.
  • the time difference is no more than 3ms.
  • the time difference may be any value among the following values or any value between any two values: 0.1ms, 0.2ms, 0.3ms, 0.4ms, 0.5ms, 0.6ms, 0.7ms, 0.8ms, 0.9 ms, 1.0ms, 1.1ms, 1.2ms, 1.3ms, 1.4ms, 1.5ms, 1.6ms, 1.7ms, 1.8ms, 1.9ms, 2.0ms, 2.1ms, 2.2ms, 2.3ms, 2.4ms, 2.5ms, 2.6ms, 2.7ms, 2.8ms, 2.9ms, 3.0ms.
  • the time difference may be 1.0 ms, or a value slightly greater than 1.0 ms.
  • the sound image position of the earphone can be adjusted by controlling the time difference between the audio signals inputted to the speakers on both sides (that is, the time difference between the first electrical signal and the second electrical signal). For example, through the action of the signal processing circuit, the first electrical signal input to the first speaker is made earlier than the second electrical signal input to the second speaker. In some embodiments, the first electrical signal is ahead of the second electrical signal by a time difference. In some embodiments, the time difference is no more than 3ms.
  • the time difference may be any value among the following values or any value between any two values: 0.1ms, 0.2ms, 0.3ms, 0.4ms, 0.5ms, 0.6ms, 0.7ms, 0.8ms, 0.9 ms, 1.0ms, 1.1ms, 1.2ms, 1.3ms, 1.4ms, 1.5ms, 1.6ms, 1.7ms, 1.8ms, 1.9ms, 2.0ms, 2.1ms, 2.2ms, 2.3ms, 2.4ms, 2.5ms, 2.6ms, 2.7ms, 2.8ms, 2.9ms, 3.0ms.
  • the time difference may be 1.0 ms, or a value slightly greater than 1.0 ms.
  • the offset value ⁇ of the sound image perceived by the user is obtained, and the sound image perceived by the user can be adjusted by adjusting the phase difference between the first sound wave 21 and the second sound wave 22 to center the sound image perceived by the user.
  • the phase of the first acoustic wave 21 needs to be greater than the phase of the second acoustic wave 22 by ⁇ w 2 in order to shift the acoustic image toward the direction of the first acoustic wave 21 by ⁇ .
  • phase delay circuit in the signal processing circuit 330 and/or the first speaker 310 and/or the second speaker 320.
  • a phase delay circuit can be provided in the second speaker 320 so that the phase of the first sound wave 21 is larger than the phase of the second sound wave 22 by ⁇ w 2 .
  • the signal processing circuit 330 processes the target sound information 10 so that the generated first electrical signal 11 and the second electrical signal 12 have the same phase.
  • the second speaker 320 may be provided with a phase delay circuit.
  • the second speaker 320 can delay the phase of the second electrical signal 12 by ⁇ w 2 and generate the second sound wave 22 whose phase is also delayed by ⁇ w 2. That is, finally, the phase of the first acoustic wave 21 is larger than the phase of the second acoustic wave 22 by ⁇ w 2 .
  • the sound image perceived by the user will shift to the direction of the first sound wave 21 with a greater phase.
  • the deviation of the sound image in the direction of the second sound wave 22 caused by the mass m 1 of the first mechanical structure 311 being greater than the mass m 2 of the second mechanical structure 321 can be offset.
  • the sound image perceived by the user is centered.
  • a phase delay circuit can also be provided in the signal processing circuit 330 so that the phase of the first acoustic wave 21 is larger than the phase of the second acoustic wave 22 by ⁇ w 2 .
  • the signal processing circuit 330 may process the target sound information 10 to obtain the first electrical signal 11 and the second electrical signal 12.
  • the phase of the first electrical signal 11 is larger than the phase of the second electrical signal 12 by ⁇ w 1 .
  • ⁇ w 1 ⁇ w 2 .
  • the first speaker 310 performs the same phase processing on the phase of the first electrical signal 11 and the second speaker 320 on the second electrical signal 12 (for example, the first speaker 310 does not process the phase of the first electrical signal 11; the second speaker 320 The phase of the second electrical signal 12 is not processed).
  • the phase of the first sound wave 21 generated by the first speaker 310 is larger than the phase of the second sound wave 22 generated by the second speaker 320 by ⁇ w 2 .
  • the sound image perceived by the user will shift to the direction of the first sound wave 21 with a greater phase.
  • the deviation of the sound image in the direction of the second sound wave 22 caused by the mass m 1 of the first mechanical structure 311 being greater than the mass m 2 of the second mechanical structure 321 can be offset.
  • the sound image perceived by the user is centered.
  • the volume difference between the first sound wave and the second sound wave is not more than 3 dB.
  • using "time difference” and/or "phase difference” to adjust the deviation of the sound image perceived by the user due to the "volume difference” adjusts the sound image perceived by the user, on the other hand, it will not affect the user Affect your hearing. This is because, by adjusting the phase difference/time difference to center the sound image, only the sound image perceived by the user is adjusted, and the volume of the first sound wave and the second sound wave actually heard by the left and right ears is not changed. If the volume difference of the sound waves heard by the left and right ears is too large, long-term use may cause damage to both ears of the listener.
  • the present application provides a sound image adjustment method S100 and a volume adjustment method S200.
  • the sound image adjustment method S100 of the present application includes: S110, acquiring the volume difference between the first sound wave and the second sound wave; S120, adjusting the sounding time difference between the first sound wave and the second sound wave.
  • the volume adjustment method S200 of the present application includes: S210, acquiring the volume difference between the first sound wave and the second sound wave; and S220, adjusting the amplitude difference between the first excitation and the second excitation.
  • the sound image adjustment method S100 described in this application corrects the deviation of the sound image perceived by the user due to the quality difference between the first mechanical structure and the second mechanical structure by setting the time difference between the first sound wave and the second sound wave .
  • the volume adjustment method S200 described in this application by setting different coil resistivity, coil winding diameter, magnetic field strength and/or resistance, corrects the first speaker and the speaker caused by the difference in quality between the first mechanical structure and the second mechanical structure.
  • the volume difference between the second speakers by setting different coil resistivity, coil winding diameter, magnetic field strength and/or resistance, corrects the first speaker and the speaker caused by the difference in quality between the first mechanical structure and the second mechanical structure. The volume difference between the second speakers.
  • the volume of the sound wave generated by the speaker is positively correlated with the amplitude of the mechanical structure in the speaker.
  • the greater the amplitude of the mechanical structure the greater the volume of the sound wave.
  • the amplitude of the mechanical structure is positively correlated with the excitation of the mechanical structure.
  • the greater the excitation of the mechanical structure the greater the amplitude of the mechanical structure.
  • the volume of the first sound wave generated by the first mechanical structure in the sound output device and the volume of the second sound wave generated by the second mechanical structure may be different.
  • the setting of the additional device 940 causes the mass of the first mechanical structure 311 to be greater than the mass of the second mechanical structure 321 (ie, M 1 > M 2 ).
  • the amplitude of the vibration of the first mechanical structure is smaller than the amplitude of the vibration of the second mechanical structure. Regardless of the difference between the transmission medium and the transmission distance, the volume of the first sound wave perceived by the user is less than the volume of the second sound wave.
  • the cause of the difference in the volume of the sound waves output by the sound output device may also be other.
  • a common earphone without a headset microphone may cause a difference in quality at both ends due to water intake or other reasons. This will cause differences in the volume of the sound from both ends of the headset.
  • the volume of the sound wave generated by the speaker in the sound output device is related to the excitation based on the electrical signal, the mass M of the mechanical structure that generates the vibration, the damping C and the stiffness K of the vibration system.
  • the volume of the sound wave generated by the bone conduction speaker 100 is simultaneously affected by the following parameters: the frequency of excitation f (the magnitude is equal to 1/ ⁇ ), the amplitude of excitation f F 0, a mass m of the housing 120, the mass m 2 of the magnetic circuit 130, pass the stiffness k and a vibration damping sheet 140, c 1 and k 2 of the earhook 110 and the damping c 2.
  • the amplitude F 0 of the excitation f is proportional to the vibration amplitude X 1 of the casing 120.
  • the amplitude X 1 of the housing 120 is positively correlated with the volume of the sound wave generated by the vibration of the housing 120. The greater the amplitude X 1, the greater the volume of the sound wave; the smaller the amplitude X 1, the lower the volume of the sound wave.
  • the excitation F and the mass M of the mechanical structure can be balanced reasonably, the desired vibration amplitude X can be obtained. Even if there are differences in the mechanical structure quality of the two ends of the sound output device (for example, a headset microphone is provided on one side of the bone conduction headset), the volume output from the two ends of the sound output device can be consistent.
  • the sound output device may include, but is not limited to, earphones, hearing aids, helmets, and so on.
  • the earphones may include, but are not limited to, wired earphones, wireless earphones, Bluetooth earphones, and so on.
  • the sound output device may include a first speaker, a second speaker, and a signal processing circuit.
  • the signal processing circuit may receive target sound information, process the target sound information, and generate a first electrical signal and a second electrical signal.
  • the first speaker is electrically connected with the signal processing circuit.
  • the first speaker may receive the first electric signal from the signal processing circuit, and convert the first electric signal into a first sound wave.
  • the first speaker includes a first bone conduction speaker, and the first sound wave includes a first bone conduction sound wave.
  • the first speaker may convert the received first electrical signal into mechanical vibration. Further, the first sound wave is generated by the mechanical vibration.
  • the first speaker may include a first mechanical structure and a first excitation device.
  • the first excitation device generates a first excitation based on the first electrical signal. The first excitation acts as an external force to excite the first mechanical structure to vibrate, and further, the first mechanical structure vibrates to generate a first sound wave.
  • the second speaker is electrically connected with the signal processing circuit.
  • the second speaker may receive the second electric signal from the signal processing circuit and convert the second electric signal into a second sound wave.
  • the second speaker includes a second bone conduction speaker, and the second sound wave includes a second bone conduction sound wave.
  • the second speaker can convert the received second electrical signal into mechanical vibration. Further, the second sound wave is generated by the mechanical vibration.
  • the second speaker may include a second mechanical structure and a second excitation device.
  • the second excitation device generates a second excitation based on the second electrical signal. The second excitation acts as an external force to excite the second mechanical structure to vibrate, and further, the second mechanical structure vibrates to generate a second sound wave.
  • the first excitation device and the second excitation device may be electromagnetic excitation devices.
  • the magnitude of the first excitation and the magnitude of the second excitation can be calculated by formula (1); the vibration process of the first mechanical structure and the second mechanical structure can be expressed by formula (6).
  • M 1 represents the mass in the first mechanical structure to M 2 represents a second mechanical structure
  • S 1 the cross-sectional area of the second coil
  • ⁇ 1 the resistivity of the first coil
  • ⁇ 2 the resistivity of the winding
  • B 1 represents the magnetic field intensity of the first magnetic element
  • B 2 represents the magnetic field intensity of the second magnetic element
  • R 1 represents the resistance of the first coil winding (hereinafter referred to as the first resistance)
  • R 2 represents the resistance of the second coil winding (hereinafter referred to as the second resistance)
  • X 1 represents the vibration amplitude of the first mechanical structure
  • X 2 represents the vibration amplitude of the second mechanical structure.
  • the volume generated by the first mechanical structure is smaller than the volume generated by the second mechanical structure.
  • the mass M 1 of the first mechanical structure is greater than the mass M 2 of the second mechanical structure, resulting in the first acoustic wave generated by the vibration of the first mechanical structure under the same excitation.
  • the volume is smaller than the volume of the second sound wave generated by the vibration of the second mechanical structure.
  • the volume of the first sound wave is the same as the volume of the second sound wave.
  • the diameter of the first coil wire is larger than the diameter of the second coil wire, that is, S 1 >S 2 .
  • first excitation means generates a first excitation F. 1 greater than the second excitation means generates a second excitation F 2, so that it can be made consistent with 2 X 1 with X.
  • the power of the first sound wave is the same as the power of the second sound wave
  • the volume of the first sound wave heard by the user is the same as the volume of the second sound wave. In this way, the difference in volume caused by the difference in quality between the first mechanical structure and the second mechanical structure (M 1 >M 2) is corrected.
  • the resistivity of the first coil is less than the resistivity of the second coil, that is, ⁇ 1 ⁇ 2 .
  • first excitation means generates a first excitation F. 1 greater than the second excitation means generates a second excitation F 2, X 1 can be made consistent with X 2.
  • the power of the first sound wave is the same as the power of the second sound wave, and the volume of the first sound heard by the user is the same as the volume of the second sound wave. This corrects the difference in volume caused by the difference in quality between the first mechanical structure and the second mechanical structure.
  • the magnetic field strength B 1 generated by the first electromagnetic excitation device is greater than the magnetic field strength B 2 generated by the second electromagnetic excitation device.
  • a first excitation means for generating a second excitation F. 1 greater than the second excitation means generates a second excitation F 2
  • X 1 can be made consistent with X 2.
  • the power of the first sound wave is the same as the power of the second sound wave
  • the volume of the first sound wave heard by the user is the same as the volume of the second sound wave. This corrects the difference in volume caused by the difference in quality between the first mechanical structure and the second mechanical structure.
  • the remanence of the first magnetic member is greater than the remanence of the second magnetic member, so that the magnetic field intensity B 1 generated by the first electromagnetic excitation device is greater than that generated by the second electromagnetic excitation device.
  • the magnetic field strength B 2 is greater.
  • the coercive force of the first magnetic element is greater than the coercive force of the second magnetic element, so that the magnetic field strength B 1 generated by the first electromagnetic excitation device is greater than that of the second electromagnetic excitation device.
  • the intensity of the magnetic field generated by the device B 2 is the intensity of the magnetic field generated by the device B 2 .
  • the magnetic energy product of the first magnetic element is greater than the magnetic energy product of the second magnetic element, so that the magnetic field intensity B 1 generated by the first electromagnetic excitation device is greater than that generated by the second electromagnetic excitation device.
  • the magnetic field strength B 2 is greater than that generated by the second electromagnetic excitation device.
  • first resistance R 1 is smaller than the second resistance R 2 .
  • first excitation means generates a first excitation F. 1 greater than the second excitation means generates a second excitation F 2, X 1 can be made consistent with X 2.
  • the power of the first sound wave is the same as the power of the second sound wave, and the volume of the first sound wave heard by the user is the same as the volume of the second sound wave. This corrects the difference in volume caused by the difference in quality between the first mechanical structure and the second mechanical structure.
  • a resistor can be connected in series outside the second coil to make the first resistor R 1 smaller than the second resistor R 2 , thereby correcting the difference in volume caused by the difference in quality between the first mechanical structure and the second mechanical structure.
  • the resistivity of the first coil can be increased and/or the resistivity of the second coil can be decreased, so that the resistance of the first coil is smaller than the resistance of the second coil.
  • the resistance of the first coil can be smaller than that of the second coil by increasing the length of the winding of the first coil and/or reducing the length of the winding of the second coil.
  • the resistance of the coil is the resistance of the coil.
  • the resistance of the first coil can be lower than that of the second coil by reducing the diameter of the winding of the first coil and/or increasing the diameter of the winding of the second coil.
  • the resistance of the coil in some embodiments, the resistance of the first coil can be lower than that of the second coil by reducing the diameter of the winding of the first coil and/or increasing the diameter of the winding of the second coil.
  • the quality of the first coil and/or the second coil is It may also change.
  • the quality of the coil will also affect the vibration of the first mechanical structure. Therefore, when adjusting parameters such as resistivity, winding length and/or winding diameter, we also need to consider the influence of other parameters, so that the final vibration amplitude of the first mechanical structure is consistent with the vibration amplitude of the second mechanical structure.
  • a power amplifier circuit may be provided in the sound output device.
  • the power amplifier circuit may be provided between the first speaker and the signal processing circuit.
  • the first electrical signal output by the signal processing circuit passes through the power amplifier circuit.
  • the power amplifier circuit amplifies the first electrical signal and outputs it to the first speaker.
  • the first speaker receives the amplified first electrical signal.
  • a first speaker to generate a first excitation. 1 F F will be larger than the second size of the second excitation generated by a speaker 2 (i.e., F 1> F 2).
  • the first excitation F 1 is greater than the second excitation F 2 , and X 1 can be made consistent with X 2.
  • the power of the first sound wave is the same as the power of the second sound wave
  • the volume of the first sound wave heard by the user is the same as the volume of the second sound wave. This corrects the difference in volume caused by the difference in quality between the first mechanical structure and the second mechanical structure.
  • a power attenuation circuit may be provided in the sound output device.
  • the power attenuation circuit may be provided between the second speaker and the signal processing circuit.
  • the second electrical signal output by the signal processing circuit passes through the power attenuation circuit.
  • the power attenuation circuit attenuates the second electrical signal and outputs it to the second speaker.
  • the second speaker receives the attenuated second electrical signal.
  • the second speaker to generate a second excitation F 2 F will be smaller than the first size of the first excitation generated by a speaker (i.e., F 1> F 2).
  • the first excitation F 1 is greater than the second excitation F 2
  • X 1 can be made consistent with X 2.
  • the power of the first sound wave is the same as the power of the second sound wave
  • the volume of the first sound wave heard by the user is the same as the volume of the second sound wave. This corrects the difference in volume caused by the difference in quality between the first mechanical structure and the second mechanical structure.
  • the sound output device may include, but is not limited to, earphones, hearing aids, helmets, and so on.
  • the earphones may include, but are not limited to, wired earphones, wireless earphones, Bluetooth earphones, and so on.
  • the sound output device may include a first speaker, a second speaker, and a signal processing circuit.
  • the signal processing circuit may receive target sound information, process the target sound information, and generate a first electrical signal and a second electrical signal.
  • the first speaker is electrically connected with the signal processing circuit.
  • the first speaker may receive the first electric signal from the signal processing circuit, and convert the first electric signal into a first sound wave.
  • the first speaker includes a first bone conduction speaker, and the first sound wave includes a first bone conduction sound wave.
  • the first speaker may convert the received first electrical signal into mechanical vibration. Further, the first sound wave is generated by the mechanical vibration.
  • the first speaker may include a first mechanical structure and a first excitation device.
  • the first excitation device generates a first excitation based on the first electrical signal. The first excitation acts as an external force to excite the first mechanical structure to vibrate, and further, the first mechanical structure vibrates to generate a first sound wave.
  • the second speaker is electrically connected with the signal processing circuit.
  • the second speaker may receive the second electric signal from the signal processing circuit and convert the second electric signal into a second sound wave.
  • the second speaker includes a second bone conduction speaker, and the second sound wave includes a second bone conduction sound wave.
  • the second speaker can convert the received second electrical signal into mechanical vibration. Further, the second sound wave is generated by the mechanical vibration.
  • the second speaker may include a second mechanical structure and a second excitation device.
  • the second excitation device generates a second excitation based on the second electrical signal. The second excitation acts as an external force to excite the second mechanical structure to vibrate, and further, the second mechanical structure vibrates to generate a second sound wave.
  • the first excitation device and the second excitation device may be electromagnetic excitation devices.
  • the magnitude of the first excitation and the magnitude of the second excitation can be calculated by formula (1); the vibration process of the first mechanical structure and the second mechanical structure can be expressed by formula (6).
  • M 1 represents the mass in the first mechanical structure to M 2 represents a second mechanical structure
  • S 1 the cross-sectional area of the second coil
  • ⁇ 1 the resistivity of the first coil
  • ⁇ 2 the resistivity of the winding
  • B 1 represents the magnetic field intensity of the first magnetic element
  • B 2 represents the magnetic field intensity of the second magnetic element
  • R 1 represents the resistance of the first coil winding (hereinafter referred to as the first resistance)
  • R 2 represents the resistance of the second coil winding (hereinafter referred to as the second resistance)
  • X 1 represents the vibration amplitude of the first mechanical structure
  • X 2 represents the vibration amplitude of the second mechanical structure.
  • the volume of the sound wave output by the first speaker is smaller than the volume of the sound wave output by the second speaker.
  • the mass M 1 of the first mechanical structure is greater than the mass M 2 of the second mechanical structure.
  • the volume of the sound wave is smaller than the volume of the sound wave output by the second speaker.
  • the amplitude of the vibration of the first mechanical structure is smaller than the amplitude of the vibration of the second mechanical structure.
  • the volume of the sound wave emitted by the first speaker heard by the user will be less than the volume of the sound wave emitted by the second speaker.
  • the difference between the volume of the first sound wave and the volume of the second sound wave is not more than 3 dB.
  • the first sound wave is transmitted to the user's left ear and the second sound wave is transmitted to the user's right ear as examples to describe the user's perception of target sound information.
  • the volume of the first sound wave heard by the user’s left ear is less than the volume of the second sound wave heard by the user’s right ear.
  • the user's brain will determine that the sounding position of the target sound information (that is, the sound image perceived by the user) is biased to the right, that is, the side of the second sound wave with the louder volume.
  • the "phase difference” and/or “time difference” can be used to solve the sound image shift caused by the "volume difference”.
  • the sound output device 300 requires a first time length t 1 to convert the target sound information 10 into the first sound wave 21, and a second time length t 2 is required to convert the target sound information 10 into the second sound wave 22.
  • a time length t 1 is shorter than the second time length t 2 by a time difference ⁇ t. In this way, for the target sound information 10, the sounding time of the first speaker 310 will be ahead of the sounding time of the second speaker 320 by a time difference ⁇ t.
  • the time difference ⁇ t is not greater than 3ms.
  • the time difference ⁇ t may be any value among the following values or any value between any two values: 0.1ms, 0.2ms, 0.3ms, 0.4ms, 0.5ms, 0.6ms, 0.7ms, 0.8ms, 0.9ms, 1.0ms, 1.1ms, 1.2ms, 1.3ms, 1.4ms, 1.5ms, 1.6ms, 1.7ms, 1.8ms, 1.9ms, 2.0ms, 2.1ms, 2.2ms, 2.3ms, 2.4ms, 2.5ms , 2.6ms, 2.7ms, 2.8ms, 2.9ms, 3.0ms.
  • the time difference ⁇ t may be 1.0 ms, or a value slightly greater than 1.0 ms. It is assumed that the first sound wave 21 and the second sound wave 22 have the same information except for the sounding time. When the transmission medium and the transmission distance are the same, the time when the first sound wave 21 is heard by the user's left ear is earlier than the time when the second sound wave 22 is heard by the right ear. According to the binaural effect, the source position of the target sound information 10 heard by the user (that is, the sound image perceived by the user) is corrected.
  • the time difference occurs when the first speaker converts the first electrical signal into the first sound wave and the second speaker converts the second electrical signal into a second sound wave.
  • a time advance circuit may be provided in the first speaker and/or a time delay circuit may be provided in the second speaker, so that the first sound wave output by the first speaker is earlier than the second sound wave output by the second speaker.
  • the first sound wave is ahead of the second sound wave by a time difference ⁇ t.
  • the time difference occurs when the sound output device converts the target sound information into the first electrical signal and the second electrical signal.
  • a time processing circuit can be provided in the signal processing circuit so that the first electrical signal input to the first speaker is earlier than the second electrical signal input to the second speaker.
  • the first electrical signal is ahead of the second electrical signal by a time difference ⁇ t.
  • the phase of the first acoustic wave is greater than the phase of the second acoustic wave by ⁇ w 1 .
  • the user's brain will determine the location of the target sound information source (that is, the sound image perceived by the user) is biased toward the first sound wave with a larger phase. The side of the user-that is, the left side of the user.
  • the second electrical signal has the same phase as the first electrical signal.
  • the signal processing circuit may process the target sound information so that the generated first electrical signal and the second electrical signal have the same phase.
  • a phase delay circuit can be provided in the second speaker. The phase delay circuit can delay the phase of the second electrical signal by ⁇ w 1 , and generate a second acoustic wave whose phase is also delayed by ⁇ w 1. In this way, the phase of the first acoustic wave can be made larger by ⁇ w 1 than the phase of the second acoustic wave. In this way, the sound image shift caused by the mass of the first mechanical structure being greater than the mass of the second mechanical structure can be solved.
  • phase difference ⁇ w 2 there is a second phase difference ⁇ w 2 between the second electrical signal and the first electrical signal; and the second phase difference ⁇ w 2 is the same as the first phase difference ⁇ w 1.
  • a phase delay circuit may be provided in the signal processing circuit.
  • the signal processing circuit can process the target sound information to obtain the first electrical signal and the second electrical signal.
  • the phase of the first electrical signal is larger than the phase of the second electrical signal by ⁇ w 2 .
  • the first speaker and the second speaker do not change the phase of the first electrical signal and the phase of the second electrical signal.
  • the first sound wave generated by the first speaker has a phase greater than that of the second sound wave generated by the second speaker by ⁇ w 2 .
  • ⁇ w 2 is the same as ⁇ w 1 , that is, finally, the phase of the first sound wave is larger than the phase of the second sound wave by ⁇ w 1 .
  • This can also solve the sound image shift caused by the mass of the first mechanical structure being greater than the mass of the second mechanical structure.
  • the pronunciation time of the first speaker will be earlier than the pronunciation time of the second speaker. It is assumed that the first sound wave and the second sound wave have the same information except for the sounding time.
  • the time of the first sound wave heard by the left ear of the user will be earlier than the time of the second sound wave heard by the right ear.
  • the user's brain will determine that the source position of the target sound information is biased to the side of the first sound wave that was pronounced earlier-that is, the user's left side.
  • the source position of the target sound information heard by the end user (that is, the sound image perceived by the user) will also be adjusted to the middle position .
  • the present application provides a sound image adjustment method S100, a volume adjustment method S200, and two sound output devices.
  • the sound image adjustment method S100 of the present application includes: S110, acquiring the volume difference between the first sound wave and the second sound wave; S120, adjusting the sounding time difference between the first sound wave and the second sound wave.
  • the volume adjustment method S200 of the present application includes: S210, acquiring the volume difference between the first sound wave and the second sound wave; and S220, adjusting the amplitude difference between the first excitation and the second excitation.
  • the sound output device and sound image adjustment method S100 described in this application corrects the sound perceived by the user due to the difference in quality between the first mechanical structure and the second mechanical structure by setting the time difference between the first sound wave and the second sound wave.
  • the sound output device and volume adjustment method described in this application correct the first mechanical structure caused by the difference in quality between the first mechanical structure and the second mechanical structure by setting different coil resistivity, coil winding diameter, magnetic field strength and/or resistance.
  • the volume difference between a speaker and a second speaker is a parameter that controls the volume of the image.
  • the propagation medium of the first acoustic wave and/or the second acoustic wave described in the present application does not limit the scope of the present application.
  • the first sound wave and/or the second sound wave described in the present application may be propagated through a solid body (for example, bone), and the first sound wave and/or the second sound wave may also be propagated by gas (for example, air).
  • the propagation medium may include one or a combination of air and bone.
  • the volume adjustment method, the sound image adjustment method, and the sound output device described in this application can be used in combination to achieve the required adjustment effect.
  • the sound image adjustment method S100 may be used alone to adjust the sound image output by the sound output device.
  • the volume adjustment method S200 and the sound image adjustment method S100 may be used at the same time to adjust the sound image and volume of the sound output by the sound output device.
  • quality adjustment and incentive adjustment can be carried out at the same time.
  • methods such as "increasing the mass of the second mechanical structure 311", “increasing the first excitation”, and “increasing the diameter of the first coil” can be used simultaneously to make the first speaker
  • the volume of 310 and the second speaker 320 are the same.
  • the methods of "increasing the mass of the second mechanical structure 311", “increasing the first excitation”, and “decreasing the diameter of the second coil” can be used at the same time to make the first speaker
  • the volume difference between 310 and the second speaker 320 is kept within the target volume difference range; after that, the method of setting the phase difference can be used to adjust the sound image at the same time.
  • the “consistent” or “same” volume of the first speaker and the second speaker described in this application are only for analysis and do not limit the scope of protection of this application.
  • the keeping the volume of the first speaker and the volume of the second speaker consistent or the same may be keeping the volume difference between the first speaker and the second speaker within the target volume difference range.
  • centering of the sound image of the sound output device described in this application is only for analysis and does not limit the scope of protection of this application.
  • the centering of the sound image may be to keep the sound image within the range of the target position.
  • a on B means that A is directly adjacent to B (above or below), or it can mean that A and B are indirectly adjacent to each other (that is, between A and B).
  • a is in B means that all A is in B, or part of A is in B.
  • numbers expressing quantities or properties used to describe and claim certain embodiments of this application should be understood as modified by the terms “about”, “approximately” or “substantially” in some cases. For example, unless otherwise stated, “about”, “approximately” or “substantially” may mean a ⁇ 20% variation of the value described. Therefore, in some embodiments, the numerical parameters listed in the written description and appended claims are approximations, which may vary according to the desired properties that a particular embodiment is attempting to achieve. In some embodiments, the numerical parameters should be interpreted based on the number of significant figures reported and by applying common rounding techniques. Although some embodiments described in this application list a wide range of numerical ranges and the parameters are approximate values, the specific examples all list as precise numerical values as possible.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Otolaryngology (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Neurosurgery (AREA)
  • Manufacturing & Machinery (AREA)
  • Details Of Audible-Bandwidth Transducers (AREA)
  • Circuit For Audible Band Transducer (AREA)
  • Headphones And Earphones (AREA)
  • Stereophonic System (AREA)

Abstract

本申请提供一种声音输出装置以及调节声像的方法、一种声音输出装置以及调节音量的方法。本申请所述调节声像的方法包括:获取所述第一声波和所述第二声波的音量差;以及调节所述第一声波和所述第二声波发音的时间差。本申请所述调节音量的方法包括:获取所述第一声波和所述第二声波的音量差;以及调节所述第一激励和所述第二激励的幅值差。本申请所述声音输出装置以及调节声像的方法可以修正由于第一机械结构和第二机械结构的质量差异造成的用户感知的声像的偏移;本申请所述声音输出装置以及调节音量的方法可以修正由于第一机械结构和第二机械结构的质量差异造成的第一扬声器和第二扬声器之间的音量差异。

Description

声音输出装置、调节声像的方法及调节音量的方法 技术领域
本申请涉及声学领域,特别涉及声音输出装置、调节声像的方法及调节音量的方法。
背景技术
在骨导耳机工作时,骨导扬声器的振动幅度与其产生的音量呈正相关。其中,骨导扬声器的外壳质量对其振动的幅度有明显影响,进而影响扬声器所产生的音量。在骨导耳机的产品设计中,有时需要在一侧骨导扬声器上布置附加的功能模块,如耳麦麦克风(增加了延伸杆的麦克风)、按键等。骨导扬声器上布置的按键会改变骨导扬声器上的质量分布,从而会影响扬声器所产生的音量。同时,由于耳麦麦克风或按键等功能模块只需要在一侧布置,而另一侧不布置,导致两侧扬声器音量大小不一致(一只耳朵的扬声器音量大另一只耳朵的扬声器音量小),造成声像偏移。若左右两侧的扬声器音量相差较大,长期使用可能会对使用者听力造成损伤。因此,需对声像进行调节,使得声像居中,和/或调节耳机两侧扬声器的音量大小,使得两侧扬声器音量一致。
发明内容
在下文中给出了关于本申请的简要概述,以便提供关于本申请的某些方面的基本理解。应当理解,该部分并不意图确定本申请的关键或重要部分,也不是意图限定本申请的范围。其目的仅仅是以简化的形式给出本申请中的某些概 念。更多细节会在本申请其他部分详细解释。
如前所述,对于骨导耳机,附加于一侧骨导扬声器上的功能模块增加了该骨导扬声器外壳质量,导致该侧扬声器音量降低,左右骨导耳机音量不相同。当左右两侧耳机音量差异较大时,会使得耳机的声像产生明显偏移,长期使用甚至会造成听力损伤。
为解决骨导耳机两侧扬声器质量不均带来的音量差异和声像偏移的技术问题,本申请公开了一种声音输出装置,包括:信号处理电路,运行时基于目标声音信息生成第一电信号和第二电信号;第一扬声器,同所述信号处理电路电连接,运行时接收来自所述信号处理电路的第一电信号,并将所述第一电信号转换为第一声波;以及第二扬声器,同所述信号处理电路电连接,运行时接收来自所述信号处理电路的第二电信号,并将所述第二电信号转换为第二声波,其中所述声音输出装置将所述目标声音信息转换成所述第一声波需要第一时间长度,将所述目标声音信息转换成所述第二声波需要第二时间长度,所述第一时间长度比所述第二时间长度短一个时间差。
在一些实施例中,在相同幅值和频率的电信号输入下,所述第一扬声器输出的声波的音量小于所述第二扬声器输出的声波的音量。
在一些实施例中,在相同幅值和频率的电信号输入下,所述第一声波的音量同所述第二声波的音量之差不大于3dB。
在一些实施例中,所述第一扬声器通过激励第一机械结构产生所述第一声波;以及所述第二扬声器通过激励第二机械结构产生第二声波,其中所述第一机械结构的质量大于所述第二机械结构的质量,导致在相同幅值和频率的电信号输入下所述第一扬声器输出的声波的音量小于所述第二扬声器输出的声波的音量。
在一些实施例中,所述第一扬声器包括第一骨导扬声器和第一气导扬声器中的至少一个;以及所述第二扬声器包括第二骨导扬声器和第二气导扬声器中的至少一个。
在一些实施例中,所述时间差发生在所述声音输出装置将所述目标声音信息转换成所述第一电信号和所述第二电信号的过程中。
在一些实施例中,所述时间差发生在所述第一扬声器将所述第一电信号转换成所述第一声波和所述第二扬声器将所述第二电信号转换成第二声波的过程中。
在一些实施例中,所述时间差不大于3ms。
本申请还公开了一种声音输出装置,包括:信号处理电路,运行时基于目标声音信息生成第一电信号和第二电信号;第一扬声器,同所述信号处理电路电连接,运行时接收来自所述信号处理电路的第一电信号,并将所述第一电信号转换为第一激励激励第一机械结构产生第一声波;以及第二扬声器,同所述信号处理电路电连接,运行时接收来自所述信号处理电路的第二电信号,并将所述第二电信号转换为第二激励激励第二机械结构产生第二声波,其中,所述第一声波的音量同所述第二声波的音量相同;以及对相同的激励,所述第一机械结构产生的音量小于第二机械结构产生的音量。
在一些实施例中,所述第一机械结构的质量大于所述第二机械结构的质量,导致在相同激励下所述第一机械结构产生的音量小于第二机械结构产生的音量。
在一些实施例中,所述第一扬声器包括第一骨导扬声器和第一气导扬声器中的至少一个;以及所述第二扬声器包括第二骨导扬声器和第二气导扬声器中的至少一个。
在一些实施例中,所述第一扬声器还包括第一电磁激励装置,产生所述第 一激励,所述第一激励激励所述第一机械结构振动产生所述第一声波;以及所述第二扬声器还包括第二电磁激励装置,产生所述第二激励,所述第二激励激励所述第二机械结构振动产生所述第二声波。
在一些实施例中,所述第一电磁激励装置包括第一线圈;以及所述第二电磁激励装置包括第二线圈,其中,所述第一线圈绕线的直径大于所述第二线圈绕线的直径。
在一些实施例中,所述第一电磁激励装置包括第一线圈;以及所述第二电磁激励装置包括第二线圈,其中,所述第一线圈的电阻率小于所述第二线圈的电阻率。
在一些实施例中,在相同输入电流下,所述第一电磁激励装置产生的所述第一激励大于所述第二电磁激励装置产生的第二激励。
在一些实施例中,所述第一扬声器包括第一电阻;以及所述第二扬声器包括第二电阻,其中,所述第一电阻小于所述第二电阻。
在一些实施例中,所述声音输出装置还包括:功率放大电路,连接所述第一扬声器和所述信号处理电路,所述功率放大电路对所述第一电信号进行放大,所述第一扬声器接收放大后的所述第一电信号。
在一些实施例中,所述声音输出装置还包括:功率衰减电路,连接所述第二扬声器和所述信号处理电路,所述功率衰减电路对所述第二电信号进行衰减,所述第二扬声器接收衰减后的所述第二电信号。
本申请还公开了一种调节声像的方法。所述调节声像的方法被配置为调节声音输出装置第一扬声器和第二扬声器的声像,包括:获取所述第一声波和所述第二声波的音量差;以及调节所述时间差。
在一些实施例中,所述第一声波和所述第二声波的音量差不大于3dB。
在一些实施例中,所述调节所述第一声波和所述第二声波的时间差包括:调节所述第一声波和所述第二声波的相位差。
本申请还公开了一种调节音量的方法。所述调节音量的方法被配置为调节声音输出装置第一扬声器和第二扬声器的音量,包括:获取所述第一声波和所述第二声波的音量差;以及调节所述第一激励和所述第二激励的幅值差。
综上,针对骨导耳机两侧扬声器质量不均带来的音量差异和声像偏移的技术问题,本申请提供了一种声音输出装置及一种调节声像的方法,通过设置第一声波和第二声波之间的时间差,修正了由于第一机械结构和第二机械结构的质量差异造成的用户感知的声像的偏移。
本申请还提供了一种声音输出装置及一种调节音量的方法,通过设置不同的线圈电阻率、线圈绕线直径、磁场强度和/或电阻,修正了由于左右两耳的扬声器在机械结构上的质量差异造成的左右扬声器之间的音量差异。
附图说明
以下附图详细描述了本申请中披露的示例性实施例。其中相同的附图标记在附图的若干视图中表示类似的结构。本领域的一般技术人员将理解这些实施例是非限制性的、示例性的实施例,附图仅用于说明和描述的目的,并不旨在限制本公开的范围,其他方式的实施例也可能同样的完成本申请中的发明意图。应当理解,附图未按比例绘制。其中:
图1示出了根据本申请的一些实施例提供的一种声音输出装置的外观示意图;
图2示出了根据本申请的一些实施例提供的一种声音输出装置的结构示意图;
图3示出了根据本申请的一些实施例提供的一种电磁激励装置的结构示意图;
图4示出了根据本申请的一些实施例提供的一种骨导扬声器的结构示意图;
图5示出了根据本申请的一些实施例提供的一种骨导扬声器的振动模型示意图;
图6示出了根据本申请的一些实施例提供的一种工作时壳体的振动测试结果;
图7示出了根据本申请的一些实施例提供的一种动圈式扬声器的结构示意图;
图8示出了根据本申请实施例提供的一种调节音量的方法的流程图;以及
图9示出了根据本申请实施例提供的一种调节声像的方法的流程图。
具体实施方式
以下描述提供了本申请的特定应用场景和要求,目的是使本领域技术人员能够制造和使用本申请中的内容。考虑到以下描述,本公开的这些特征和其他特征、以及结构的相关元件的操作和功能、以及部件的组合和制造的经济性可以得到明显提高。参考附图,所有这些形成本公开的一部分。然而,应该清楚地理解,附图仅用于说明和描述的目的,并不旨在限制本公开的范围。对于本领域技术人员来说,对所公开的实施例的各种局部修改是显而易见的,并且在不脱离本公开的精神和范围的情况下,可以将这里定义的一般原理应用于其他实施例和应用。因此,本公开不限于所示的实施例,而是与权利要求一致的最宽范围。
在本申请中,骨导声波指的是机械振动经由骨骼传导至耳朵内的声波(又 称骨导声音),气导声波指的是机械振动经由气导至耳朵内的声波(又称气导声音)。
本申请提供一种音量调节方法。所述音量调节方法可以用于调节声音输出装置输出的声波的音量。所述声波可以包括骨导声波和/或气导声波。所述声音输出装置可以包括,但不限于,耳机,助听器,头盔,等等。所述耳机可以包括,但不限于,有线耳机,无线耳机,蓝牙耳机,等等。所述耳机可以包括,但不限于,骨导扬声器,气导扬声器。
图1示出了根据申请实施例提供的一种声音输出装置300的外观示意图。图2示出了根据本申请实施例提供的一种声音输出装置300的结构示意图。参考图2,声音输出装置300可以包括第一扬声器310、第二扬声器320以及信号处理电路330。
信号处理电路330可以接收目标声音信息10,对目标声音信息10进行处理,并生成第一电信号11和第二电信号12。
目标声音信息10可以包括具有特定数据格式的视频、音频文件或者可以通过特定途径转化为声音的数据或文件。所述目标声音信息10可以来自于声音输出装置300本身的存储组件,也可以来自于声音输出装置300以外的信息产生、存储或者传递系统。所述目标声音信息10可以包括电信号、光信号、磁信号、机械信号等一种或者多种的组合。所述目标声音信息10可以来自一个信号源或者多个信号源。所述多个信号源可以相关也可以不相关。在一些实施例中,信号处理电路330可以通过多种不同的方式获取所述目标声音信息10。所述目标声音信息10的获取可以是有线的或者无线的,可以是实时的或者延时的。例如,声音输出装置300可以通过有线或者无线的方式接收所述目标声音信息10,也可以直接从存储介质上获取数据,产生所述目标声音信号10。又例如,声音输 出装置300中可以包括具有声音采集功能的组件,通过拾取环境中的声音并将所述声音的机械振动转换成电信号,通过放大处理器后获得满足特定要求的电信号。在一些实施例中,所述有线连接可以包括金属电缆、光学电缆或者金属和光学的混合电缆,例如,同轴电缆、通信电缆、软性电缆、螺旋电缆、非金属护皮电缆、金属护皮电缆、多芯电缆、双绞线电缆、带状电缆、屏蔽电缆、电芯电缆、双股电缆、平行双芯导线、双绞线等一种或多种的组合。以上描述的例子仅作为方便说明只用,有线连接的媒介还可以是其他类型,例如,其他电信号或光信号等的传输载体。所述无线连接可以包括无线电通信、自由空间光通信、声通讯、和电磁感应等。其中无线电通讯可以包括IEEE802.11系列标准、IEEE802.15系列标准(例如蓝牙技术和蜂窝技术等)、第一代移动通信技术、第二代移动通信技术(例如FDMA、TDMA、SDMA、CDMA、和SSMA等)、通用分组无线服务技术、第三代移动通信技术(例如CDMA2000、WCDMA、TD-SCDMA、和WiMAX等)、第四代移动通信技术(例如TD-LTE和FDD-LTE等)、卫星通信(例如GPS技术等)、近场通信(NFC)和其它运行在ISM频段(例如2.4GHz等)的技术;自由空间光通信可以包括可见光、红外线讯号等;声通讯可以包括声波、超声波讯号等;电磁感应可以包括近场通讯技术等。以上描述的例子仅作为方便说明之用,无线连接的媒介还可以是其它类型,例如,Z-wave技术、其它收费的民用无线电频段和军用无线电频段等。例如,作为本申请的一些应用场景,声音输出装置300可以通过蓝牙技术从其他设备获取所述目标声音信息10。
在一些实施例中,为了使第一声波21和第二声波22具有特定的输出特性(例如,频率、相位、幅值等),信号处理电路330可以对目标声音信息10进行处理,使得信号处理电路330输出的第一电信号11和第二电信号12分别包 含特定的频率成分。
在一些实施例中,信号处理电路330中可以设置若干滤波器/滤波器组331。所述若干滤波器/滤波器组331可以对接收到的电信号进行处理并输出包含不同频率的电信号。所述滤波器/滤波器组331包括,但不限于,模拟滤波器、数字滤波器、无源滤波器、有源滤波器等。在一些实施例中,信号处理电路330中可以设置有动态范围控制器332。所述动态范围控制器332可被配置为压缩和放大输入信号,以使声音听起来更加柔和或更大声。在一些实施例中,信号处理电路330中可设置有主动降漏音电路333以降低声音输出装置300的漏音。在一些实施例中,信号处理电路330中可设置有反馈电路334。所述反馈电路334可以将声场信息反馈给信号处理电路330。在一些实施例中,信号处理电路330中可设置有功率调节电路335将接收到的电信号的幅值进行调节。所述功率调节电路335可以包括功率放大电路来放大对第一电信号11和/或第二电信号12的信号。所述功率调节电路335还可以包括功率衰减电路来对第一电信号11和/或第二电信号12的信号幅值进行衰减。在一些实施例中,信号处理电路330中可设置有均衡器338。所述均衡器338可被配置为对接收的信号按照特定的频段进行单独的增益或衰减。在一些实施例中,信号处理电路330中可以包括分频电路339。所述分频电路可以将接收的电信号分解成高频信号分量和低频信号分量。
第一扬声器310同信号处理电路330电连接。第一扬声器310可以接收来自信号处理电路330的第一电信号11,并将所述第一电信号11转换为第一声波21。第一扬声器310可以是一种换能装置。在一些实施例中,第一扬声器310可以将接收到的第一电信号11转换为机械振动。进一步地,第一声波21由所述机械振动产生。比如,第一扬声器310可以包括第一机械结构311和第 一激励装置312。在一些实施例中,第一扬声器310可以是骨导扬声器;第一扬声器310也可以包括气导扬声器,或者骨导扬声器和气导扬声器的结合。
第一激励装置312可以是所述能量装换装置的输入端。第一激励装置312接收来自信号处理电路330的第一电信号11,并将所述第一电信号11转换为第一激励。所述第一激励激励第一机械结构311振动。也就是,通过第一激励装置312和第一机械结构311,第一扬声器310将接收到的第一电信号11的电能转换为了第一机械结构311振动的机械能。
第一激励装置412产生所述第一激励以激励第一机械结构411振动。在一些实施例中,第一激励装置412可以为电磁激励装置。所述第一激励可以是所述电磁激励装置产生的磁场力、电磁力和/或安培力。当然,第一激励装置412还可以是其他类型的激励装置,本申请不做具体限制。所述激励装置接收来自信号处理电路430的第一电信号11并生成第一激励。所述激励装置产生第一激励的方式可以包括,但不限于,动圈式,静电式,压电式,动铁式,气动式,电磁式,等等。
作为示例,图3示出了根据本申请实施例提供的一种第一激励装置412的结构示意图。图3所示第一激励装置412可以是一种电磁激励装置。具体地,第一激励装置412可以包括磁性件610和线圈620。
磁性件610可以产生磁场。比如,磁性件610可以带有磁性。在一些实施例中,所述磁性可以是恒定的。磁性件610可以包括永磁铁或者由永磁铁制造。所述永磁铁可以是天然磁石,也可以是人造磁石。作为示例,所述永磁铁可以包括,但不限于,钕铁硼磁铁,钐钴磁铁,铝镍钴磁铁,等等。所述永磁铁应具有尽可能高的矫顽力、剩磁与最大磁能积,以保证所述永磁铁具有稳定的磁性并且能够储存最大的磁能。
线圈620可以是以一定的方向环绕成组的绕线。线圈620可以设置在磁性件610产生的磁场内。线圈620可以包括第一端621和第二端622。电信号可以以电流的形式从第一端621进入线圈620,流经线圈620,并从第二端622流出线圈620。
由电磁学知识可知,通电的线圈620在磁场中会受到安培力。并且,所述安培力的大小可以由F=B·I·L确定。其中,F表示线圈620受到的安培力的大小;F的方向可以根据安培定则确定。F驱动线圈620振动。线圈620可以连接机械结构630,进一步地,线圈620带动机械结构630产生振动。作为示例,机械结构630可以是产生第一声波21的第一机械结构311。也就是,F可以作为外部激励信号激励第一机械结构311产生振动。
B为磁性件610产生的磁场的磁场强度。磁性件610产生的磁场的磁场强度的大小同磁性件610的材料相关。在一些实施例中,磁性件610产生的磁场的强度B的大小同磁性件610的矫顽力、剩磁与最大磁能积正相关。
I为线圈620中通过的电流的大小。I同第一激励装置412接收到的电信号相关。通常,电信号会以脉冲电压的形式输入线圈620。以U t表示线圈620的第一端621和第二端622之间脉冲电压的大小(即输入电磁激励装置600的电信号)。那么流经线圈620的电流I可以表示为I=U t/R。其中,R表示第一端621同第二端622之间的电阻的大小。而根据物理学知识,第一端621同第二端622之间的电阻的大小可以根据
Figure PCTCN2020088524-appb-000001
计算得到。其中,ρ表示线圈620的绕线的电阻率;L表示线圈620的长度;S表示线圈620的绕线的直径。
综上,可以得到第一激励装置412中产生的激励F(即线圈受到的安培力)的大小为:
Figure PCTCN2020088524-appb-000002
继续参考图2,第一机械结构311可以是所述能量转换装置的输出端。第一机械结构311振动产生第一声波21。第一机械结构311可以在第一激励的作用下产生机械振动;进一步地,第一声波21基于所述机械振动产生。在一些实施例中,第一机械结构311可以是受到激励后直接通过振动发出声音的部件。比如,所述第一扬声器为骨导扬声器的时候,第一机械结构311可以是所述骨导扬声器的壳体。而当第一扬声器为动圈式气导扬声器的时候,第一机械结构311可以包括所述动圈式气导扬声器的羊毛盆或纸盆。
由于第一声波21由第一机械结构311振动产生,为了分析第一声波21的特性,需要对第一机械结构311的振动过程进行分析。接下来,本申请以第一扬声器310为骨导扬声器为例对第一机械结构311的振动过程进行分析。
图4示出了根据本申请的一些实施例提供的一种骨导扬声器100的结构示意图。骨导扬声器100可以包括壳体120和磁路130。
磁路130可以作为激励装置产生激励f。磁路130和壳体120通过传振片140连接。
壳体120可以连接在耳挂110上。耳挂110的顶端P点与头部良好贴合。因此,顶端P点可以被认为是固定点。在骨导扬声器100工作的时候,壳体120可以在激励f的作用下振动,并产生声波。根据力的相互作用,在壳体120振动的过程中,磁路130也会受到一个同f大小相同、方向相反的作用力(即图中所示″-f″)。为了便于分析骨导扬声器100产生的声波同壳体120和磁路130之间的关系,壳体120和磁路130可以被简化为一个二自由度的振动系统。
图5示出了根据本申请实施例提供的一种二自由度振动系统的模型。在图5所示的模型中:质量块m 1可以代表壳体120;质量块m 2可以代表磁路130;弹性连接件k 1可以代表传振片140;弹性连接件k 2可以代表耳挂110。弹性连 接件k 1和k 2的阻尼分别为c 1和c 2。壳体120和磁路130分别受到力f和力-f的作用而产生振动。f为系统激励的大小;f的方向如图5中所示。壳体120、磁路130、传振片140以及耳挂110组成的复合振动系统固定于耳挂110的顶端P点。
分别以壳体120和磁路130为对象进行动力学分析,可以得到图5所示二自由度振动模型的动力学方程:
Figure PCTCN2020088524-appb-000003
根据傅里叶变换可知任何激励f都可以在频域表达成一系列的简谐振动之和,因此假设
Figure PCTCN2020088524-appb-000004
其中F 0是激励幅值;系统的稳态响应可表示为
Figure PCTCN2020088524-appb-000005
其中
Figure PCTCN2020088524-appb-000006
是响应幅值。
将F和X带入公式(2)得到公式(3)。
Figure PCTCN2020088524-appb-000007
引入机械阻抗矩阵Z(ω):
Figure PCTCN2020088524-appb-000008
将机械阻抗矩阵Z(ω)带入公式(3),求解得到振动系统的响应幅值为:
Figure PCTCN2020088524-appb-000009
其中,
Figure PCTCN2020088524-appb-000010
由此,可以得到振动系统的响应幅值为:
Figure PCTCN2020088524-appb-000011
Figure PCTCN2020088524-appb-000012
壳体120振动产生声波。因此,对壳体120(即质量块m 1)进行分析。将机械阻抗矩阵Z(ω)带入公式(4),得到壳体120的响应幅值为:
Figure PCTCN2020088524-appb-000013
从公式(6)可以看出,受迫振动下,壳体120振动的振幅X 1同时受以下参数的影响:激励f的频率(大小等于1/ω)、激励f的幅值F 0、壳体120的质量m 1、磁路130的质量m 2、传振片140的刚度k 1和阻尼c 1以及耳挂110的刚度k 2和阻尼c 2。比如说,在保持其他参数不变的情况下,激励f的幅值F 0同壳体120的振动幅值X 1呈正比关系。激励f的幅值F 0越大则壳体120的振幅X 1越大。再比如,在保持其他参数不变的情况下,骨导扬声器100的壳体120的质量m 1越大,则壳体120的振幅X 1越小;磁路130的质量m 2越大,则壳体120的振幅X 1越大。因此,当上述参数发生变化时,壳体120的振幅X 1随之也会发生变化。在不考虑传输介质和传输距离的差异时,壳体120的振幅X 1同壳体120振动产生的声波的音量正相关。振幅X 1越大,声波的音量越大;振幅X 1越小,声波的音量越小。
图6示出了根据本申请的一些实施例提供的一种骨导扬声器100工作时壳体120的振动测试结果。在振动测试中,用于评价振动或音量大小的物理量可以包括,但不限于,振动源的速度,位移,声压级,等等。作为示例,图6所示的振动测试中以振动源的加速度级(单位:dB)来作为评价振动的物理量。在图6中,实线表示壳体120质量为m 1的情况下骨导扬声器100的振动加速度级随着激励f的频率变化的曲线;虚线表示壳体120的质量m 1增加50%后 骨导扬声器100的振动加速度级随着激励f的频率变化的曲线。
从图6中可以看出,壳体120振动的加速度级同频率和质量相关。相对初始壳体质量m 1,当壳体120质量m 1变成1.5m 1时的壳体振动的加速度级只有在160Hz以下的低频段才没有明显下降、在中频段和高频段均下降约3~4dB。也就是,在中频段和高频段,壳体120的质量增加0.5倍时,壳体120振动的幅值会下降3-4dB。
上述结论是基于扬声器建模得到的结果。在人耳的听觉范围之内,低频可以指的是大体上20Hz至150Hz的频段,中频可以指的是大体上150Hz至5KHz的频段,高频段可以指的是大体上5KHz至20KHz的频段,中低频可以指的是大体上150Hz至500Hz的频段,中高频指的是500Hz至5KHz的频段。本领域普通技术人员将会理解,上述频段的区分只是作为一个例子大概给出区间。上述频段的定义可以随着不同行业、不同的应用场景和不同分类标准而改变。比如在另外一些应用场景下,低频指的是大体上20Hz至80Hz的频段,中低频可以指大体上80Hz-160Hz之间的频段,中频可以指大体上160Hz至1280Hz的频段,中高频可以指大体上1280Hz-2560Hz的频段,高频段可以指大体上2560Hz至20KHz的频段。
需要说明的是,虽然前面的描述仅仅描述了骨导扬声器产生的音量同壳体的质量之间的关系,但本申请所述第一扬声器310不限制于骨导扬声器。比如,在气导扬声器的情况下,所述第一扬声器310的表现仍然满足上述分析。
作为示例,图7示出了根据本申请实施例提供的一种动圈式扬声器500的结构示意图。图7所示的动圈式扬声器可以是一种气导扬声器。具体地,动圈式扬声器500可以包括磁路组件520、振动组件530以及支撑辅助组件510。
支撑辅助组件510可以为振动组件530和磁路组件520提供支撑。支撑辅 助组件510可以包括弹性件511。振动组件530可以通过弹性件511固定在支撑辅助组件510上面。
磁路组件520可以将电信号转化为激励F。激励F可以作用在振动组件530上。
振动组件530可以在激励F的作用下振动并产生声波。
通过动力学分析,可以得出:同骨导扬声器100类似,动圈式扬声器500中的振动组件530在激励F的作用下振动的振幅同振动组件530的等效质量m、激励F、阻尼c和刚度k相关。其中,在其他参数不变的情况下,振动组件530的等效质量越大,振动的振幅越小。在其他参数不变的情况下,激励F越大,振动的振幅越大。为了简洁,动力学分析的过程不再赘述。
综上可知,第一机械结构311振动产生的第一声波21的音量的大小同第一电信号11的频率以及第一机械结构311的质量相关。其中,第一机械结构311的质量越大,第一声波21的音量越小。
继续参考图2,第二扬声器320同信号处理电路330电连接。第二扬声器320可以接收来自信号处理电路330的第二电信号12,并将所述第二电信号12转换为第二声波22。第二扬声器320可以是一种换能装置。在一些实施例中,第二扬声器320可以将接收到的电信号转换为机械振动。进一步地,第二声波22由所述机械振动产生。在一些实施例中,第二扬声器320可以包括第二机械结构321和第二激励装置322。第二机械结构321的结构和功能可以同第一机械结构311相同或者相似;第二激励装置322的结构和功能可以同第一激励装置312相同或者相似。为了简洁,第二机械结构321和第二激励装置322的结构和功能不再赘述。
同第一扬声器310相同,第二扬声器320中的第二机械结构321振动产生 的第二声波22的音量的大小同第二电信号21的频率以及第二机械结构321的质量相关。其中,第二机械结构321的质量越大,第二声波22的音量越小。
继续参考图1,在一些实施例中,第一扬声器310的一端上设置有附加设备940。作为示例,附加设备940可以包括设置在骨导耳机一侧壳体上的功能键。作为示例,附加设备940可以包括设置在骨导耳机一侧壳体上的耳麦麦克风。所述耳麦麦克风可以包括,但不限于,底座、麦克风连杆以及麦克风等部件。所述耳麦麦克风的设置可以提升所述骨导耳机的通话质量。附加设备940的质量相比于声音输出装置300的质量不可以忽略。由于附加设备940设置在声音输出装置300的单侧(即第一扬声器310的一侧),这会造成第一扬声器310中的第一机械结构311的质量大于第二扬声器310中的第二机械结构311的质量。比如,设置有耳麦麦克风一侧的骨导扬声器的壳体的质量大于另一侧没有设置耳麦麦克风的骨导扬声器的壳体的质量。
根据前面的描述可知,若不考虑阻尼和刚度等的差异,在相同的电信号输入下,第一机械结构311的质量大于第二机械结构321的质量,会造成第一机械结构311振动的幅值小于第二机械结构321振动的幅值。若不考虑传输介质和传输距离的差异,用户听到的第一扬声器310发出的第一声波的音量就会小于第二扬声器320发出的第二声波的音量。
如果用户听到的第一声波的音量和第二声波的音量的差异(以下简称音量差)长期存在,用户的听力会受到损伤。(比如,当用户双耳听到的声音的音量差长期大于3dB会对用户的双耳造成损伤。)此外,用户听到的第一声波和第二声波之间存在音量差也会造成用户感知的声像同实际声像之间产生偏移。因此,需要对第一声波和第二声波的音量进行调节,以使第一声波的音量和第二声波的音量尽可能一致,以避免所述音量差造成的听力损伤以及声像偏移。
图8示出了根据本申请实施例提供的一种调节音量的方法S200的流程图。流程S200可以用来调节声音输出装置300的第一扬声器310和第二扬声器320输出的声音的音量。流程S200同时可以用来调节用户感知的声音输出装置300的声像。具体地,流程S200可以包括:S210,获取所述第一声波和所述第二声波的音量差;以及S220,调节所述第一激励和所述第二激励的幅值差。
S210,获取所述第一声波和所述第二声波的音量差。在一些实施例中,所述音量差大于3dB。
S220,调节所述第一激励和所述第二激励的幅值差。根据前面的描述可知第一机械结构的质量大于第二机械结构的质量,造成第一机械结构振动的振幅小于第二机械结构振动的振幅,进一步导致了第一声波的音量小于第二声波的音量。因此,可以通过调节第一激励的幅值来调节第一机械结构的振幅;可以通过调节第二激励的幅值来调节第二机械结构的振幅;进而修正由于第一机械结构和第二机械结构质量差异造成的音量差。
为了便于理解,本申请下面的描述中,以F 1表示第一激励的大小,以F 2表示第二激励的大小,以M 1表示第一机械结构的质量,以M 2表示第二机械结构的质量,以S 1表示第一线圈绕线的截面积,以S 2表示第二线圈的绕线的截面积,以ρ 1表示第一线圈绕线的电阻率,以ρ 2表示第二线圈绕线的电阻率,以B 1表示第一磁性件的磁场强度,以B 2表示第二磁性件的磁场强度,以R 1表示第一线圈绕线的电阻(以下简称第一电阻),以R 2表示第二线圈绕线的电阻(以下简称第二电阻)。
参考公式(1)和公式(6),可以通过调整第一激励F 1和/或第二激励F 2的大小,以使第一机械结构311振动的振幅X 1同第二机械结构321振动的振幅X 2一致,进而使第一声波21的音量同第二声波22的音量一致。
在一些实施例中,可以通过调整第一线圈绕线的直径和/或第二线圈的绕线的直径,以获得不同大小的第一激励F 1和第二激励F 2,进而使第一声波21的音量同第二声波22的音量一致。由于M 1>M 2,可以通过增大第一线圈绕线的直径和/或减小第二线圈绕线的直径,使S 1>S 2。根据公式(1),第一激励装置312产生的第一激励F 1大于第二激励装置422产生的第二激励F 2。结合公式(6),第一激励F 1大于第二激励F 2,可以使X 1同X 2一致。那么,第一声波21的功率同第二声波22的功率相同,用户听到的第一声波21的音量同第二声波22的音量相同。这样就修正了由于第一机械结构311和第二机械结构321质量差异(M 1>M 2)造成的音量差。进一步地,也避免了由于音量差造成的声像偏移。
进一步地,通过调整线圈直径的方式来调节音量的方法在使输出音量一致的同时,线圈的总体尺寸保持不变。这样,声音输出装置中各部件的结构和尺寸可以维持不变。
作为示例,当耳机要求最大音量比较大时,有附加设备的一侧的骨导扬声器使用导线的线径比无附加设备的一侧扬声器导线线径更粗的线圈。比如,有附加设备侧扬声器线圈使用的粗导线与无附加设备侧扬声器线圈使用的导线的线径之比不小于以下任意值或者任意两个值之间的范围:1.01、1.02、1.03、1.04、1.05、1.06、1.07、1.08、1.09、2.0。
作为示例,当耳机要求功耗比较小时,无附加设备的一侧的骨导扬声器使用导线线径比有附加设备侧扬声器导线线径更细的线圈。作为示例,无附加设备侧扬声器线圈使用的细导线与无附加设备侧扬声器线圈使用的导线的线径之比不大于以下任意值或者任意两个值之间的范围:0.90、0.91、0.92、0.93、0.94、0.95、0.96、0.97、0.98、0.99。
此外,还可以通过调整第一线圈的电阻率和/或第二线圈的电阻率,以获得 不同大小的第一激励F 1和第二激励F 2,进而使第一声波21的音量同第二声波22的音量一致。由于M 1>M 2,可以通过减小第一线圈的电阻率ρ 1和/或增大第二线圈的电阻率ρ 2,使ρ 1<ρ 2。作为示例,可以选定特定的绕线材料,使ρ 1<ρ 2。在其他自变量不变的情况下,根据公式(1),第一激励装置312产生的第一激励F 1大于第二激励装置422产生的第二激励F 2。结合公式(6),第一激励F 1大于第二激励F 2,可以使X 1同X 2一致。那么,第一声波21的功率同第二声波22的功率相同,用户听到的第一声波21的音量同第二声波22的音量相同。这样就修正了由于第一机械结构311和第二机械结构321质量差异(M 1>M 2)造成的音量差。进一步地,也修正了由于音量差造成的声像偏移。
此外,还可以通过调整第一磁性件的磁场强度B 1和/或第二磁性件的磁场强度B 2,以获得不同大小的第一激励F 1和第二激励F 2,进而使第一声波21的音量同第二声波22的音量一致。由于M 1>M 2,可以通过增大第一磁性件的磁场强度B 1和/或减小第二磁性件的磁场强度B 2,使B 1>B 2。在其他自变量不变的情况下,根据公式(1),第一激励装置312产生的第一激励F 1大于第二激励装置422产生的第二激励F 2。结合公式(6),第一激励F 1大于第二激励F 2,可以使X 1同X 2一致。那么,第一声波21的功率同第二声波22的功率相同,用户听到的第一声波21的音量同第二声波22的音量相同。这样就修正了由于第一机械结构311和第二机械结构321质量差异(M 1>M 2)造成的音量差。进一步地,也修正了由于音量差造成的声像偏移。
此外,还可以增大第一磁性件的尺寸和/减小第二磁性件的尺寸,以使B 1>B 2
比如,可以选用由磁性不同的材料制成的磁性件,来使B 1>B 2。比如,第一磁性件选用磁性更强的材料;第二磁性件选用磁性较弱的材料。在一些实施例中,所述第一磁性件的剩磁大于所述第二磁性件的剩磁,以使所述第一电磁 激励装置产生的磁场强度B 1大于所述第二电磁激励装置产生的磁场强度B 2。在一些实施例中,所述第一磁性件的矫顽力大于所述第二磁性件的矫顽力,以使所述第一电磁激励装置产生的磁场强度B 1大于所述第二电磁激励装置产生的磁场强度B 2。在一些实施例中,所述第一磁性件的磁能积大于所述第二磁性件的磁能积,以使所述第一电磁激励装置产生的磁场强度B 1大于所述第二电磁激励装置产生的磁场强度B 2
在一些实施例中,可以通过调整第一电阻R 1和/或第二电阻R 2的大小,以获得不同大小的第一激励F 1和第二激励F 2,进而使第一声波21的音量同第二声波22的音量一致。在本申请中,所述第一电阻R 1是指第一扬声器的整体电阻,包括第一扬声器的内阻和可能的附加电阻;第二电阻R 2是指第二扬声器的整体电阻,包括第二扬声器的内阻和可能的附加电阻。由于M 1>M 2,可以通过减小第一电阻R 1和/或增大第二电阻R 2,使R 1<R 2。在其他自变量不变的情况下,根据公式(1),第一激励装置312产生的第一激励F 1大于第二激励装置422产生的第二激励F 2。结合公式(6),第一激励F 1大于第二激励F 2,可以使X 1同X 2一致。那么,第一声波21的功率同第二声波22的功率相同,用户听到的第一声波21的音量同第二声波22的音量相同。这样就修正了由于第一机械结构311和第二机械结构321质量差异(M 1>M 2)造成的音量差。作为示例,当耳机对最大音量和功耗无特别严苛的要求时,无附加设备(比如耳麦麦克风)的一侧的骨导扬声器串联一个电阻。作为示例,无附加设备的一侧的骨导扬声器串联的电阻的阻值不小于1Ω。需要说明的是,串联的电阻不一定是一个单独的电阻器件,也可以通过控制电路中使用的线材(如后挂导线)的电阻实现相同的效果。
此外,还可以通过在所述第二线圈之外串联电阻以使第一电阻R 1小于第二 电阻R 2(即R 1<R 2),进而修正由于第一机械结构311和第二机械结构321质量差异造成的音量差。进一步地,采用串联外接电阻的方法,生产和设计过程中不需要增加物料,对生产和设计影响较小。
此外,还可以通过直接减小第一线圈的电阻R 1和/或增大第二线圈的电阻R 2以使第一电阻R 1小于第二电阻R 2(即R 1<R 2),进而修正由于第一机械结构311和第二机械结构321质量差异造成的音量差。根据公式R=ρL/S,在一些实施例中,可以通过减小第一线圈的电阻率和/或增大第二线圈的电阻率,以使第一线圈的电阻小于第二线圈的电阻。在一些实施例中,可以通过增大第一线圈的绕线的长度和/或减小第二线圈的绕线的长度,以使第一线圈的电阻小于第二线圈的电阻。在一些实施例中,可以通过减小第一线圈的绕线的直径和/或增大第二线圈的绕线的直径,以使第一线圈的电阻小于第二线圈的电阻。需要说明的是,在对第一线圈和/或第二线圈的电阻率、绕线长度和/或绕线直径进行增大和/或减小的时候,第一线圈和/或第二线圈的质量也可能发生变化。而第一线圈和第二线圈的质量也会对第一机械结构和第二机械结构的振动产生影响。因此,在调节电阻率、绕线长度和/或绕线直径等参数时,还需要考虑其他参数的影响,使最终第一机械结构311振动的幅值同第二机械结构321振动的幅值一致。
参考公式(6),在一些实施例中,还可以通过调节第一电信号11和/或第二电信号12的幅值,以获得幅值不相同的第一激励F 1和第二激励F 2,进而使第一声波21的音量同第二声波22的音量一致。
作为示例,由于M 1>M 2,我们可以在信号处理电路330中设置功率放大电路。比如,功率调节电路335可以是所述功率放大电路。所述功率放大电路可以对第一电信号11进行放大,以使第一电信号11的功率大于第二电信号12 的功率。这样,假如未经过功率调节电路335时第一电信号11同第二电信号12的幅值相同,则经过功率调节电路335之后第一电信号11的幅值就大于第二电信号12的幅值。第一扬声器310接收放大后的第一电信号,这样,第一扬声器310生成的第一激励F 1就会大于第二扬声器320生成的第二激励F 2的大小(即F 1>F 2)。
作为示例,由于M 1>M 2,我们可以在信号处理电路330中设置功率衰减电路。比如,功率调节电路335可以是所述功率衰减电路。所述功率衰减电路可以对第二电信号12进行衰减。这样,第一电信号11的幅值就大于第二电信号12的幅值。第二扬声器320接收衰减后的第二电信号12。这样,假如未经过功率调节电路335时第一电信号11同第二电信号12的幅值相同,则经过功率调节电路335之后第二扬声器320基于所述衰减后的第二电信号12生成的第二激励F 2就会小于第一激励F 1(即F 1>F 2)。在其他自变量不变的情况下,结合公式(6),第一激励F 1大于第二激励F 2,可以使X 1同X 2一致。那么,第一声波21的功率同第二声波22的功率相同,用户听到的第一声波21的音量同第二声波22的音量相同。这样就修正了由于第一机械结构311和第二机械结构321质量差异(M 1>M 2)造成的音量差。作为示例,还可以通过骨导耳机中的芯片控制软件,调节骨导耳机两侧的骨导扬声器的音频信号的增益,使骨导耳机两侧音量一致。
此外,在一些实施例中,还可以直接通过调整第一机械结构311和/或第二机械结构321的质量,以使第一机械结构311的质量同第二机械结构321的质量一致,以修正由于质量差异造成的第一声波21和第二声波22的音量的差异。例如,耳麦麦克风、功能键等设置在第一扬声器310的一侧,导致第一机械结构311的质量比第二机械结构321的质量大,我们可以通过在第二扬声器320 的一侧增加附重,以使第二机械结构321的质量增大到同第一机械结构311的质量相同。这样,第一机械结构311和第二机械结构321质量相同,最终,第一声波21的音量就和第二声波22的音量相同。
需要说明的是,上述调节音量的方案和/或实施例中提及的音量、功率都是针对耳机上的扬声器发出的声音的音量和功率而言,而不是耳机的耗电量。上述调节音量的方案和/或实施例不是孤立的。上述调节音量的方案和/或实施例可以单独使用以调节声音输出装置300两端的音量。上述调节音量的方案和/或实施例也可以合并配合使用以调节声音输出装置300两端的音量。比如,可以同时进行质量调整和激励调整。比如,当M 1>M 2时,可同时使用″增大第二机械结构311的质量″、″增大第一激励″、″增大第一线圈的直径″等方案结合的方法,以使第一扬声器310和第二扬声器320的音量一致。
上述方案和/或实施例在实际生产中产生了良好的技术效果。作为示例,下面列举对三种耳机样品进行测试的结果。样品1:音量小的一侧的骨导扬声器使用导线线径更粗的线圈,另一侧使用正常线圈;样品2:音量大的一侧的骨导扬声器使用导线线径更细的线圈,另一侧使用正常线圈;样品3:音量大的一侧的骨导扬声器串联一定阻值的电阻。以上三种样品均在一侧骨导扬声器上附加了相同的功能模块,另一侧没有功能模块。使用手机播放白噪信号,通过蓝牙连接需要测试的耳机样品,测试相同音量下各耳机电池端的总电流。测试结果如表1所示。测试过程中,电池端的输出电压基本不变(4.0-4.2V)。
表1耳机样品在相同音量下电池端的总电流
Figure PCTCN2020088524-appb-000014
Figure PCTCN2020088524-appb-000015
根据表1中的测试结果可知,在相同听音音量下,三种有附加功能模块的耳机样品(样品1、样品2、样品3)电池端的总电流相比正常耳机均增大。三种样品中,样品2(音量大的一侧的扬声器使用导线线径更细的线圈,另一侧使用正常线圈)总电流最小;样品1(音量小的一侧的扬声器使用导线线径更粗的线圈,另一侧使用正常线圈)总电流最大。其中,样品3(音量大的一侧的骨导扬声器串联一定阻值的电阻)只需要在电路板上串联一个电阻或者通过其他方式达到串联电阻的效果,生产和设计过程中不需要增加物料,对生产和设计影响较小。
此外,测试不同样品的电池使用时间。在相同听音音量(85dB)下测试,使用手机播放白噪信号,通过蓝牙连接需要测试的耳机样品,不同耳机样品使用相同容量的电池,测试开始时电池均处于充满电的状态,不同样品实际使用时间如表2所示。
表2耳机样品电池使用时间
Figure PCTCN2020088524-appb-000016
根据表2中的测试结果可知,在相同听音音量下,三种样品电池使用时长 相比正常样品明显减少,样品1使用时间最短,样品3使用时间比样品2稍短,但是差异不大。以上结果与之前的电池电流测试结果吻合。
根据前面的描述可知,如果用户听到的第一声波21的音量小于听到的第二声波22的音量,可以通过调整耳机设计结构来补偿两个耳机音量的差异。此外,对于所述耳机音量上的差异,还可以针对耳机形成的声像进行调整。
声像是指声源在声场中的发声位置点,即,声像就是声音的方位。对于用户来说,用户的大脑会判定目标声音信息的发声位置(即用户感知的声像)偏向音量更大的第二声波22的一侧——即第二扬声器320的一侧。而实际上,第一扬声器310和第二扬声器320距离用户的距离可以认为是相同的,也就是,目标声音信息10的实际声像是居中的(即来自用户的正前方或者正后方的)。也就是,用户感知的声像同实际声像之间产生了偏移。本申请提供了一种声像的调节方法,能够使用户感知的声像尽可能的接近实际声像,因此减少了用户感知的声像对比实际声像的偏移。所述声像调节方法可以独立地应用在本申请描述的耳机上,也可以同上述音量补偿的方案和/或实施例相结合。
图9示出了根据本申请实施例提供的一种调节声像的方法S100的流程图。流程S100可以用于调节声音输出装置300的第一扬声器310和第二扬声器320输出的声像。具体地,流程S100可以包括:S110,获取所述第一声波和所述第二声波的音量差;S120,调节所述第一声波和所述第二声波发音的时间差。
″双耳效应″是人们依靠双耳间的音量差、时间差、相位差和音色差别判别声音方位的效应。由于左右耳之间有一定的距离,因此,除了来自正前方和正后方的声音之外,由其他方向传来的同一个声音到达两耳的音量、时间、相位以及音色就有先后,从而造成音量差、时间差、相位差以及音色差。作为示 例,如果声源偏右,则声音必先到达右耳后到达左耳。声音越是偏向一侧,则时间差也越大。作为示例,如果声源偏右,则声源距离右耳的距离比左耳近,到达右耳的音量比左耳大。声音越是偏向一侧,则音量差也越大。作为示例,声音是以波的形式传播,而声波在空间不同位置上的相位是不同的。由于两耳在空间上的距离,所以声波到达两耳的相位就可能有差别。耳膜内的鼓膜随声波振动。这个振动的相位差也就成了用户的大脑判别声源方位的一个因素。
人们的大脑依靠″双耳效应″来判断声源的位置(即声像)。
如果左耳先听到声音,那么听者的大脑就会感知这个声音是从左边(先听到声音的一侧)来的,也就是,听者大脑感知的声像偏向左侧。反之亦然。这种现象称为左右耳之间的″时间差效应″。
如果左耳听到的声音比右耳大,那么,听音者的大脑会认为声音来自左侧方向,反之亦然。这种现象称为左右耳之间的″音量差效应″。前文所述由于第一机械结构质量和第二机械结构质量差异造成的声像偏移本质上也可以理解为″音量差效应″。
因此,我们可以利用″时间差″和/或″相位差″来调节由于″音量差″造成的用户感知的声像的偏移。
5110,获取所述第一声波和所述第二声波的音量差。首先,我们获得第一声波21和第二声波22的音量差。根据所述音量差可以获得由于音量差造成的声像偏移的值。比如,第一声波21的音量比第二声波22的音量小β,那么用户感知的声像就会从居中的位置向第二扬声器320的方向偏移δ。
5120,调节所述第一声波和所述第二声波的发音时间差。
在一些实施例中,可以通过调节第一声波21和第二声波22发音的时间差来调节由于第一机械结构311和第二机械结构的质量差异造成的用户感知的声 像的偏移。
以第一声波21的音量小于第二声波22的音量为例。声音输出装置300将目标声音信息10转换成第一声波21需要第一时间长度t 1;声音输出装置300将目标声音信息10转换成第二声波22需要第二时间长度t 2;以及所述第一时间长度t 1短于所述第二时间长度t 2。这样,对于目标声音信息10,第一扬声器310的发音时间就会早于第二扬声器320的发音时间。在一些实施例中,第一扬声器310的发音时间比第二扬声器320的发音时间提前一个时间差。在一些实施例中,所述时间差不大于3ms。具体地,所述时间差可以是以下数值中的任意值或者任意两个数值之间的任意值:0.1ms,0.2ms,0.3ms,0.4ms,0.5ms,0.6ms,0.7ms,0.8ms,0.9ms,1.0ms,1.1ms,1.2ms,1.3ms,1.4ms,1.5ms,1.6ms,1.7ms,1.8ms,1.9ms,2.0ms,2.1ms,2.2ms,2.3ms,2.4ms,2.5ms,2.6ms,2.7ms,2.8ms,2.9ms,3.0ms。假设第一声波21和第二声波22除发音时间以外其他信息均相同。在传输介质和传输距离相同的情况下,用户的左耳听到的第一声波21的时间就会早于右耳听到的第二声波22的时间。根据双耳效应,用户的大脑会判断目标声音信息10的来源位置偏向更早发音的第一声波21的一侧——也就是用户的左侧。这样,同时考虑第一声波21的音量小于第二声波22的音量造成的声像的右移,最终用户听到的目标声音信息10的来源位置(即用户感知的声像)同样会被调整至中间位置。这样就解决了由于第一机械结构311的质量大于第二机械结构321的质量造成的声像右移。
在一些实施例中,可以通过控制两侧扬声器的音频信号的时间差(即音频信号左右声道的时间差)的方式调节耳机的声像位置。比如,可以通过控制两侧扬声器输出的声波的时间差的方式调节耳机的声像位置。比如,通过第一扬 声器的作用和第二扬声器的作用,使得第一扬声器输出的第一声波比第二扬声器输出的第二声波提前。在一些实施例中,第一声波比第二声波提前一个时间差。在一些实施例中,所述时间差不大于3ms。具体地,所述时间差可以是以下数值中的任意值或者任意两个数值之间的任意值:0.1ms,0.2ms,0.3ms,0.4ms,0.5ms,0.6ms,0.7ms,0.8ms,0.9ms,1.0ms,1.1ms,1.2ms,1.3ms,1.4ms,1.5ms,1.6ms,1.7ms,1.8ms,1.9ms,2.0ms,2.1ms,2.2ms,2.3ms,2.4ms,2.5ms,2.6ms,2.7ms,2.8ms,2.9ms,3.0ms。比如,所述时间差可以是1.0ms,或者是略大于1.0ms的数值。
在一些实施例中,可以通过控制输入两侧扬声器的音频信号的时间差(即第一电信号和第二电信号的时间差)的方式调节耳机的声像位置。比如,通过信号处理电路的作用,使得输入第一扬声器的第一电信号比输入第二扬声器的第二电信号提前。在一些实施例中,第一电信号比第二电信号提前一个时间差。在一些实施例中,所述时间差不大于3ms。具体地,所述时间差可以是以下数值中的任意值或者任意两个数值之间的任意值:0.1ms,0.2ms,0.3ms,0.4ms,0.5ms,0.6ms,0.7ms,0.8ms,0.9ms,1.0ms,1.1ms,1.2ms,1.3ms,1.4ms,1.5ms,1.6ms,1.7ms,1.8ms,1.9ms,2.0ms,2.1ms,2.2ms,2.3ms,2.4ms,2.5ms,2.6ms,2.7ms,2.8ms,2.9ms,3.0ms。比如,所述时间差可以是1.0ms,或者是略大于1.0ms的数值。
此外,获得了用户感知的声像的偏移值δ,还可以通过调节第一声波21和第二声波22的相位差来调节用户感知的声像,以使用户感知的声像居中。作为示例,假设第一声波21的相位需要比第二声波22的相位大δw 2才能使声像朝向第一声波21的方向偏移δ。
为了使第一声波21的相位比第二声波22的相位大δw 2,我们可以在信号 处理电路330和/或第一扬声器310和/或第二扬声器320中设置相位延迟电路。
比如,可以通过在第二扬声器320中设置相位延迟电路,以使第一声波21的相位比第二声波22的相位大δw 2。例如,信号处理电路330对目标声音信息10进行处理,使生成的第一电信号11同第二电信号12的相位相同。第二扬声器320中可以设置有相位延迟电路。第二扬声器320可以将第二电信号12的相位延迟δw 2,并生成相位同样延迟δw 2的第二声波22。也就是,最终第一声波21的相位比第二声波22的相位大δw 2。根据双耳效应,用户感知的声像就会向相位更大的第一声波21的方向偏移。这样,就可以抵消由于第一机械结构311的质量m 1大于第二机械结构321的质量m 2造成的声像向第二声波22的方向的偏移。最终,用户感知的声像居中。
比如,还可以通过在信号处理电路330中设置相位延迟电路,以使第一声波21的相位比第二声波22的相位大δw 2。例如,信号处理电路330可以对目标声音信息10进行处理获得第一电信号11和第二电信号12。第一电信号11的相位比第二电信号12的相位大δw 1。并且δw 1=δw 2。第一扬声器310对第一电信号11、第二扬声器320对第二电信号12的相位进行相同的相位处理(比如,第一扬声器310不对第一电信号11的相位进行处理;第二扬声器320不对第二电信号12的相位进行处理)。这样,最终第一扬声器310生成的第一声波21的相位就比第二扬声器320生成的第二声波22的相位大δw 2。根据双耳效应,用户感知的声像就会向相位更大的第一声波21的方向偏移。这样,就可以抵消由于第一机械结构311的质量m 1大于第二机械结构321的质量m 2造成的声像向第二声波22的方向的偏移。最终,用户感知的声像居中。
在一些实施例中,所述第一声波和所述第二声波的音量差不大于3dB。这样,利用″时间差″和/或″相位差″来调节由于″音量差″造成的用户感知 的声像的偏移,一方面调整了用户感知的声像,另一方面,也不会对用户的听力造成影响。这是因为,通过调整相位差/时间差使得声像居中,仅仅对用户感知的声像进行了调节,并没有改变左右耳实际上听到的第一声波和第二声波的音量。如果左右耳听到的声波的音量差异过大,长期使用可能对听音者双耳造成损伤。
综上,本申请提供一种声像调节方法S100以及一种音量调节方法S200。本申请所述声像调节方法S100包括:S110,获取所述第一声波和所述第二声波的音量差;S120,调节所述第一声波和所述第二声波的发音时间差。本申请所述音量调节方法S200包括:S210,获取所述第一声波和所述第二声波的音量差;以及S220,调节所述第一激励和所述第二激励的幅值差。本申请所述声像调节方法S100,通过设置第一声波和第二声波之间的时间差,修正了由于第一机械结构和第二机械结构的质量差异造成的用户感知的声像的偏移。本申请所述音量调节方法S200,通过设置不同的线圈电阻率、线圈绕线直径、磁场强度和/或电阻,修正了由于第一机械结构和第二机械结构的质量差异造成的第一扬声器和第二扬声器之间的音量差异。
根据前文的描述可知:而在不考虑传输介质和传输距离的差异时,扬声器产生的声波的音量同扬声器中的机械结构的振幅正相关。机械结构的振幅越大,声波的音量就越大。而机械结构的振幅同机械结构受到的激励正相关。对于同样的机械结构,机械结构受到的激励越大,机械结构的振幅就越大。
在一些实施例中,在相同的激励下,声音输出装置中的第一机械结构产生的第一声波的音量和第二机械结构产生的第二声波的音量会不同。比如,图1所示的声音输出装置300中,附加设备940的设置造成第一机械结构311的质量大于第二机械结构321的质量(即M 1>M 2)。参考公式(6),在相同的激励 f下,第一机械结构振动的振幅小于第二机械结构振动的振幅。不考虑传输介质和传输距离的差异,用户感知的第一声波的音量小于第二声波的音量。当然,在一些实施例中,造成声音输出装置两端输出声波的音量差异的原因也可能是其他,比如,没有设置耳麦麦克风的普通耳机由于进水或者其他原因造成两端质量出现差异,最终也会造成耳机两端发出的声音的音量出现差异。为了便于理解,下面的描述中,我们以骨导扬声器为例进行描述。
在实际中,为了不影响用户的使用体验,我们需要使用户的双耳听到的声音的音量尽可能一致。根据前文的描述可知,声音输出装置中扬声器产生的声波的音量同基于电信号生成的激励、产生振动的机械结构的质量M、振动系统的阻尼C和刚度K等相关。
比如,以骨导扬声器100为例,根据公式(6),骨导扬声器100产生的声波的音量同时受到以下参数的影响:激励f的频率(大小等于1/ω)、激励f的幅值F 0、壳体120的质量m 1、磁路130的质量m 2、传振片140的刚度k 1和阻尼c 1以及耳挂110的刚度k 2和阻尼c 2。比如说,在保持其他参数不变的情况下,激励f的幅值F 0同壳体120的振动幅值X 1呈正比关系。激励f的幅值F 0越大则壳体120的振幅X 1越大。再比如,在保持其他参数不变的情况下,骨导扬声器100的壳体120的质量m 1越大,则壳体120的振幅X 1越小。因此,当上述参数发生变化时,壳体120的振幅X 1随之也会发生变化。在不考虑传输介质和传输距离的差异时,壳体120的振幅X 1同壳体120振动产生的声波的音量正相关。振幅X 1越大,声波的音量越大;振幅X 1越小,声波的音量越小。
因此,如果能够合理平衡激励F和机械结构的质量M,就能够获得想要的振动幅值X。即使声音输出装置两端的机械结构质量存在差异(比如,骨导耳机的单侧设置有耳麦麦克风),也能够使声音输出装置两端输出的音量一致。
因此,本申请还提供一种声音输出装置。所述声音输出装置可以包括,但不限于,耳机,助听器,头盔,等等。所述耳机可以包括,但不限于,有线耳机,无线耳机,蓝牙耳机,等等。具体地,所述声音输出装置可以包括第一扬声器、第二扬声器以及信号处理电路。
所述信号处理电路可以接收目标声音信息,对所述目标声音信息进行处理,并生成第一电信号和第二电信号。
所述第一扬声器同所述信号处理电路电连接。所述第一扬声器可以接收来自所述信号处理电路的第一电信号,并将所述第一电信号转换为第一声波。在一些实施例中,所述第一扬声器包括第一骨导扬声器,所述第一声波包括第一骨导声波。在一些实施例中,所述第一扬声器可以将接收到的第一电信号转换为机械振动。进一步地,所述第一声波由所述机械振动产生。在一些实施例中,所述第一扬声器可以包括第一机械结构和第一激励装置。所述第一激励装置基于所述第一电信号生成第一激励。所述第一激励作为外力激励所述第一机械结构振动,进一步地,第一机械结构振动产生第一声波。
所述第二扬声器同所述信号处理电路电连接。所述第二扬声器可以接收来自所述信号处理电路的第二电信号,并将所述第二电信号转换为第二声波。在一些实施例中,所述第二扬声器包括第二骨导扬声器,所述第二声波包括第二骨导声波。在一些实施例中,所述第二扬声器可以将接收到的第二电信号转换为机械振动。进一步地,所述第二声波由所述机械振动产生。在一些实施例中,所述第二扬声器可以包括第二机械结构和第二激励装置。所述第二激励装置基于所述第二电信号生成第二激励。所述第二激励作为外力激励所述第二机械结构振动,进一步地,第二机械结构振动产生第二声波。
在一些实施例中,第一激励装置和第二激励装置可以是电磁激励装置。第 一激励的大小和第二激励的大小可以通过公式(1)计算得到;第一机械结构和第二机械结构的振动过程可以用公式(6)表示。
为了便于描述,本申请下面的描述中,以F 1表示第一激励的大小,以F 2表示第二激励的大小,以M 1表示第一机械结构的质量,以M 2表示第二机械结构的质量,以S 1表示第一线圈绕线的截面积,以S 2表示第二线圈的绕线的截面积,以ρ 1表示第一线圈绕线的电阻率,以ρ 2表示第二线圈绕线的电阻率,以B 1表示第一磁性件的磁场强度,以B 2表示第二磁性件的磁场强度,以R 1表示第一线圈绕线的电阻(以下简称第一电阻),以R 2表示第二线圈绕线的电阻(以下简称第二电阻),以X 1表示第一机械结构振动的振幅,以X 2表示第二机械结构振动的振幅。
对于相同的激励,所述第一机械结构产生的音量小于所述第二机械结构产生的音量。作为示例,在一些实施例中,所述第一机械结构的质量M 1大于所述第二机械结构的质量M 2,导致在相同激励下所述第一机械结构振动产生的第一声波的音量小于所述第二机械结构振动产生的第二声波的音量。参考公式(1)和公式(6),我们假设第一电信号和第二电信号相同(U 1=U 2),并且,第一激励装置和第二激励装置相同(即B 1=B 2,S 1=S 2,ρ 1=ρ 2,R 1=R 2),不考虑阻尼和刚度的差异(即C 1=C 2,K 1=K 2),那么,根据公式(1)和公式(6),可以得出第一激励F 1和第二激励F 2相同(F 1=F 2)。基于上述假设,由于M 1>M 2,根据质量同振幅的关系可知,第一机械结构振动的幅值小于第二机械结构振动的振幅。在传播介质和传播距离相同的情况下,用户听到的第一扬声器发出的声波的音量就会小于第二扬声器发出的声波的音量。
第一声波的音量同第二声波的音量相同。
为了便于描述,我们以用户的左耳听到第一声波、右耳听第二声波为例描 述。通常,我们希望用户左耳听到的第一声波的音量同右耳听到的第二声波的音量尽可能相同,以避免音量差对双耳造成损伤。也就是,在传输距离和传输介质相同的情况下,我们希望第一机械结构振动的振幅同第二机械结构振动的振幅尽可能一致。
在一些实施例中,所述第一线圈绕线的直径大于第二线圈绕线的直径,也就是S 1>S 2。根据公式(1)和公式(6),第一激励装置产生的第一激励F 1大于第二激励装置产生的第二激励F 2,这样,就可以使X 1同X 2一致。那么,第一声波的功率同第二声波的功率相同,用户听到的第一声波的音量同第二声波的音量相同。这样就修正了由于第一机械结构和第二机械结构质量差异(M 1>M 2)造成的音量差。
在一些实施例中,所述第一线圈的电阻率小于所述第二线圈的电阻率,也就是ρ 1<ρ 2。根据公式(1)和公式(6),第一激励装置产生的第一激励F 1大于第二激励装置产生的第二激励F 2,可以使X 1同X 2一致。那么,第一声波的功率同第二声波的功率相同,用户听到的第一声的音量同第二声波的音量相同。这样就修正了由于第一机械结构和第二机械结构质量差异造成的音量差。
在一些实施例中,在相同输入电流下,所述第一电磁激励装置产生的磁场强度B 1大于所述第二电磁激励装置产生的磁场强度B 2。根据公式(1)和公式(6),第一激励装置产生的第二激励F 1大于第二激励装置产生的第二激励F 2,可以使X 1同X 2一致。那么,第一声波的功率同第二声波的功率相同,用户听到的第一声波的音量同第二声波的音量相同。这样就修正了由于第一机械结构和第二机械结构质量差异造成的音量差。在一些实施例中,所述第一磁性件的剩磁大于所述第二磁性件的剩磁,以使所述第一电磁激励装置产生的磁场强度B 1大于所述第二电磁激励装置产生的磁场强度B 2。在一些实施例中,所述第一磁 性件的矫顽力大于所述第二磁性件的矫顽力,以使所述第一电磁激励装置产生的磁场强度B 1大于所述第二电磁激励装置产生的磁场强度B 2。在一些实施例中,所述第一磁性件的磁能积大于所述第二磁性件的磁能积,以使所述第一电磁激励装置产生的磁场强度B 1大于所述第二电磁激励装置产生的磁场强度B 2
在一些实施例中,所述第一电阻R 1小于所述第二电阻R 2。根据公式(1)和公式(6),第一激励装置产生的第一激励F 1大于第二激励装置产生的第二激励F 2,可以使X 1同X 2一致。那么,第一声波的功率同第二声波的功率相同,用户听到的第一声波的音量同第二声波的音量相同。这样就修正了由于第一机械结构和第二机械结构质量差异造成的音量差。
在一些实施例中,可以通过在所述第二线圈之外串联电阻以使第一电阻R 1小于第二电阻R 2,进而修正由于第一机械结构和第二机械结构质量差异造成的音量差。
在一些实施例中,可以通过减小第一线圈的电阻R 1和/或增大第二线圈的电阻R 2以使第一电阻R 1小于第二电阻R 2,进而修正由于第一机械结构和第二机械结构质量差异造成的音量差。
根据公式R=ρL/S,在一些实施例中,可以通过增大第一线圈的电阻率和/或减小第二线圈的电阻率,以使第一线圈的电阻小于第二线圈的电阻。
根据公式R=ρL/S,在一些实施例中,可以通过增大第一线圈的绕线的长度和/或减小第二线圈的绕线的长度,以使第一线圈的电阻小于第二线圈的电阻。
根据公式R=ρL/S,在一些实施例中,可以通过减小第一线圈的绕线的直径和/或增大第二线圈的绕线的直径,以使第一线圈的电阻小于第二线圈的电阻。
需要说明的是,在对第一线圈和/或第二线圈的电阻率、绕线长度和/或绕线直径进行增大和/或减小的时候,第一线圈和/或第二线圈的质量也可能发生变化。 而线圈的质量也会对第一机械结构的振动产生影响。因此,在调节电阻率、绕线长度和/或绕线直径等参数时,我们还需要考虑其他参数的影响,使最终第一机械结构振动的幅度同第二机械结构振动的幅度一致。
在一些实施例中,声音输出装置中可以设置功率放大电路。所述功率放大电路可以设置在所述第一扬声器和所述信号处理电路之间。所述信号处理电路输出的第一电信号通过所述功率放大电路。所述功率放大电路对所述第一电信号进行放大并输出给所述第一扬声器。所述第一扬声器接收放大后的所述第一电信号。这样,第一扬声器生成的第一激励F 1就会大于第二扬声器生成的第二激励F 2的大小(即F 1>F 2)。结合公式(6),第一激励F 1大于第二激励F 2,可以使X 1同X 2一致。那么,第一声波的功率同第二声波的功率相同,用户听到的第一声波的音量同第二声波的音量相同。这样就修正了由于第一机械结构和第二机械结构质量差异造成的音量差。
在一些实施例中,声音输出装置中可以设置功率衰减电路。所述功率衰减电路可以设置在所述第二扬声器和所述信号处理电路之间。所述信号处理电路输出的第二电信号通过所述功率衰减电路。所述功率衰减电路对所述第二电信号进行衰减并输出给所述第二扬声器。所述第二扬声器接收衰减后的所述第二电信号。这样,第二扬声器生成的第二激励F 2就会小于第一扬声器生成的第一激励F 1的大小(即F 1>F 2)。结合公式(6),第一激励F 1大于第二激励F 2,可以使X 1同X 2一致。那么,第一声波的功率同第二声波的功率相同,用户听到的第一声波的音量同第二声波的音量相同。这样就修正了由于第一机械结构和第二机械结构质量差异造成的音量差。
根据前面的描述,当耳机的两端出现音量差时,用户感受到的声像会出现偏移。因此,就需要对声音输出装置进行合理的设计,使得声音输出装置输出 的声像尽可能不发生偏移。
因此,本申请还提供一种声音输出装置。所述声音输出装置可以包括,但不限于,耳机,助听器,头盔,等等。所述耳机可以包括,但不限于,有线耳机,无线耳机,蓝牙耳机,等等。具体地,所述声音输出装置可以包括第一扬声器、第二扬声器以及信号处理电路。
所述信号处理电路可以接收目标声音信息,对所述目标声音信息进行处理,并生成第一电信号和第二电信号。
所述第一扬声器同所述信号处理电路电连接。所述第一扬声器可以接收来自所述信号处理电路的第一电信号,并将所述第一电信号转换为第一声波。在一些实施例中,所述第一扬声器包括第一骨导扬声器,所述第一声波包括第一骨导声波。在一些实施例中,所述第一扬声器可以将接收到的第一电信号转换为机械振动。进一步地,所述第一声波由所述机械振动产生。在一些实施例中,所述第一扬声器可以包括第一机械结构和第一激励装置。所述第一激励装置基于所述第一电信号生成第一激励。所述第一激励作为外力激励所述第一机械结构振动,进一步地,第一机械结构振动产生第一声波。
所述第二扬声器同所述信号处理电路电连接。所述第二扬声器可以接收来自所述信号处理电路的第二电信号,并将所述第二电信号转换为第二声波。在一些实施例中,所述第二扬声器包括第二骨导扬声器,所述第二声波包括第二骨导声波。在一些实施例中,所述第二扬声器可以将接收到的第二电信号转换为机械振动。进一步地,所述第二声波由所述机械振动产生。在一些实施例中,所述第二扬声器可以包括第二机械结构和第二激励装置。所述第二激励装置基于所述第二电信号生成第二激励。所述第二激励作为外力激励所述第二机械结构振动,进一步地,第二机械结构振动产生第二声波。
在一些实施例中,第一激励装置和第二激励装置可以是电磁激励装置。第一激励的大小和第二激励的大小可以通过公式(1)计算得到;第一机械结构和第二机械结构的振动过程可以用公式(6)表示。
为了便于描述,本申请下面的描述中,以F 1表示第一激励的大小,以F 2表示第二激励的大小,以M 1表示第一机械结构的质量,以M 2表示第二机械结构的质量,以S 1表示第一线圈绕线的截面积,以S 2表示第二线圈的绕线的截面积,以ρ 1表示第一线圈绕线的电阻率,以ρ 2表示第二线圈绕线的电阻率,以B 1表示第一磁性件的磁场强度,以B 2表示第二磁性件的磁场强度,以R 1表示第一线圈绕线的电阻(以下简称第一电阻),以R 2表示第二线圈绕线的电阻(以下简称第二电阻),以X 1表示第一机械结构振动的振幅,以X 2表示第二机械结构振动的振幅。
在相同幅值和频率的电信号输入下,所述第一扬声器输出的声波的音量小于所述第二扬声器输出的声波的音量。作为示例,在一些实施例中,所述第一机械结构的质量M 1大于所述第二机械结构的质量M 2,导致在相同幅值和频率的电信号输入下所述第一扬声器输出的声波的音量小于所述第二扬声器输出的声波的音量。参考公式(1)和公式(6),我们假设第一电信号和第二电信号的幅值和频率均相同(即,U 1=U 2),并且,第一激励装置和第二激励装置相同(即B 1=B 2,S 1=S 2,ρ 1=ρ 2,R 1=R 2),不考虑阻尼和刚度的差异(即C 1=C 2,K 1=K 2),那么根据公式(1)和公式(6),可以得出第一激励F 1和第二激励F 2相同(F 1=F 2)。基于上述假设,由于M 1>M 2,根据质量同振幅的关系可知,第一机械结构振动的幅值小于第二机械结构振动的振幅。在传播介质和传播距离相同的情况下,用户听到的第一扬声器发出的声波的音量就会小于第二扬声器发出的声波的音量。作为示例,在相同幅值和频率的电信号输入下,所述第一声波的音量同所 述第二声波的音量之差不大于3dB。
为了便于说明,在本申请下面的描述中,以第一声波传输到用户的左耳、第二声波传输到用户的右耳为例来描述用户对目标声音信息的感知。假设第一声波和第二声波除了音量之外其他信息均相同,根据双耳效应,用户的左耳听到的第一声波的音量小于用户的右耳听到的第二声波的音量,那么,用户的大脑会判定目标声音信息的发声位置(即用户感知的声像)偏向右侧——即音量更大的第二声波的一侧。
根据双耳效应,可以利用″相位差″和/或″时间差″来解决由于″音量差″造成的声像偏移。
在一些实施例中,声音输出装置300将目标声音信息10转换成第一声波21需要第一时间长度t 1,将目标声音信息10转换成第二声波22需要第二时间长度t 2,第一时间长度t 1比第二时间长度t 2短一个时间差δt。这样,对于目标声音信息10,第一扬声器310的发音时间就会比第二扬声器320的发音时间提前时间差δt。在一些实施例中,所述时间差δt不大于3ms。具体地,所述时间差δt可以是以下数值中的任意值或者任意两个数值之间的任意值:0.1ms,0.2ms,0.3ms,0.4ms,0.5ms,0.6ms,0.7ms,0.8ms,0.9ms,1.0ms,1.1ms,1.2ms,1.3ms,1.4ms,1.5ms,1.6ms,1.7ms,1.8ms,1.9ms,2.0ms,2.1ms,2.2ms,2.3ms,2.4ms,2.5ms,2.6ms,2.7ms,2.8ms,2.9ms,3.0ms。比如,所述时间差δt可以是1.0ms,或者是略大于1.0ms的数值。假设第一声波21和第二声波22除发音时间以外其他信息均相同。在传输介质和传输距离相同的情况下,用户的左耳听到的第一声波21的时间就会早于右耳听到的第二声波22的时间。根据双耳效应,就修正了用户听到的目标声音信息10的来源位置(即用户感知的声像)。
在一些实施例中,所述时间差发生在所述第一扬声器将所述第一电信号转换成所述第一声波和所述第二扬声器将所述第二电信号转换成第二声波的过程中。比如,可以在第一扬声器中设置时间提前电路和/或在第二扬声器中设置时间延迟电路,使得第一扬声器输出的第一声波比第二扬声器输出的第二声波提前。在一些实施例中,第一声波比第二声波提前一个时间差δt。
在一些实施例中,所述时间差发生在所述声音输出装置将所述目标声音信息转换成所述第一电信号和所述第二电信号的过程中。比如,可以在信号处理电路中设置时间处理电路,使得输入第一扬声器的第一电信号比输入第二扬声器的第二电信号提前。在一些实施例中,第一电信号比第二电信号提前一个时间差δt。
在一些实施例中,第二声波与第一声波之间存在第一相位差δw 1。在一些实施例中,第一声波的相位比第二声波的相位大δw 1。假设第一声波和第二声波除相位以外其他信息均相同,根据双耳效应,用户的大脑会判断目标声音信息来源的位置(即用户感知的声像)偏向相位更大的第一声波的一侧——也就是用户的左侧。这样,考虑到第一声波的音量小于第二声波的音量造成的声像的右移,最终,用户听到的目标声音信息的来源位置就会被调整至中间位置。这样就解决了由于第一机械结构的质量大于第二机械结构的质量造成的声像偏移。
在一些实施例中,第二电信号同第一电信号相位相同。作为示例,信号处理电路可以对目标声音信息进行处理,以使生成的第一电信号同第二电信号的相位相同。进一步地,第二扬声器中可以设置相位延迟电路。所述相位延迟电路可以将第二电信号的相位延迟δw 1,并生成相位同样延迟δw 1的第二声波。这样,就可以使第一声波的相位比第二声波的相位大δw 1。这样,就可以解决由于第一机械结构的质量大于第二机械结构的质量造成的声像偏移。
在一些实施例中,第二电信号同第一电信号之间有第二相位差δw 2;以及第二相位差δw 2与第一相位差δw 1相同。作为示例,信号处理电路中可以设置有相位延迟电路。信号处理电路可以对目标声音信息进行处理获得第一电信号和第二电信号。并且,第一电信号同第二电信号之间有第二相位差δw 2。比如,第一电信号的相位比第二电信号的相位大δw 2。第一扬声器和第二扬声器不改变第一电信号的相位以及第二电信号的相位,这样,第一扬声器产生的第一声波就比第二扬声器产生的第二声波的相位大δw 2。而δw 2同δw 1相同,也就是,最终,第一声波的相位比第二声波的相位大δw 1。这样也可以解决由于第一机械结构的质量大于第二机械结构的质量造成的声像偏移。
这样,对于目标声音信息,第一扬声器的发音时间就会早于第二扬声器的发音时间。假设第一声波和第二声波除发音时间以外其他信息均相同。在传输介质和传输距离相同的情况下,用户的左耳听到的第一声波的时间就会早于右耳听到的第二声波的时间。根据双耳效应,用户的大脑会判断目标声音信息的来源位置偏向更早发音的第一声波的一侧——也就是用户的左侧。这样,同时考虑第一声波的音量小于第二声波的音量造成的声像的右移,最终用户听到的目标声音信息的来源位置(即用户感知的声像)同样会被调整至中间位置。这样就解决了由于第一机械结构的质量大于第二机械结构的质量造成的声像右移。
综上,本申请提供一种声像调节方法S100、一种音量调节方法S200以及两种声音输出装置。本申请所述声像调节方法S100包括:S110,获取所述第一声波和所述第二声波的音量差;S120,调节所述第一声波和所述第二声波的发音时间差。本申请所述音量调节方法S200包括:S210,获取所述第一声波和所述第二声波的音量差;以及S220,调节所述第一激励和所述第二激励的幅值差。本申请所述声音输出装置和声像调节方法S100,通过设置第一声波和第 二声波之间的时间差,修正了由于第一机械结构和第二机械结构的质量差异造成的用户感知的声像的偏移。本申请所述声音输出装置和音量调节方法,通过设置不同的线圈电阻率、线圈绕线直径、磁场强度和/或电阻,修正了由于第一机械结构和第二机械结构的质量差异造成的第一扬声器和第二扬声器之间的音量差异。
需要说明的是,本申请所述的第一声波和/或第二声波的传播介质不限制本申请的范围。本申请所述第一声波和/或第二声波可以通过固体传播(比如,骨骼),所述第一声波和/或第二声波也可以通过气体传播(比如,空气)。在一些实施例中,所述传播介质可以包括空气和骨骼中的一种或其组合。
需要说明的是,在实际的设计和生产中,本申请所述音量调节方法、所述声像调节方法以及声音输出装置可以联合使用,已达到需要的调节效果。比如,在一些实施例中,可以单独使用声像调节方法S100对声音输出装置输出的声像进行调节。比如,在一些实施例中,可以同时使用音量调节方法S200和声像调节方法S100对声音输出装置输出的声音的声像和音量进行调节。
比如,可以同时进行质量调整和激励调整。比如,当M 1>M 2时,可同时使用″增大第二机械结构311的质量″、″增大第一激励″、″增大第一线圈的直径″等方法,以使第一扬声器310和第二扬声器320的音量一致。
比如,当M 1>M 2时,可同时使用″增大第二机械结构311的质量″、″增大第一激励″、″减小第二线圈的直径″等方法,以使第一扬声器310和第二扬声器320的音量差保持在目标音量差范围内;之后,可同时采用设置相位差的方法来调节声像。
需要说明的是,本申请所述的使第一扬声器的音量和第二扬声器的音量保持″一致″或者″相同″,仅仅是为了分析的需要,并不对本申请保护的范围构 成限制。所述使第一扬声器的音量和第二扬声器的音量保持一致或者相同,可以是使第一扬声器和第二扬声器的音量差保持在目标音量差范围内。
需要说明的是,本申请所述的使声音输出装置的声像″居中″,也仅仅是为了分析的需要,并不对本申请保护的范围构成限制。所述使声像居中,可以是使声像保持在目标位置范围内。
综上所述,在阅读本详细公开内容之后,本领域技术人员可以明白,前述详细公开内容可以仅以示例的方式呈现,并且可以不是限制性的。尽管这里没有明确说明,本领域技术人员可以理解本申请意图囊括对实施例的各种合理改变,改进和修改。这些改变,改进和修改旨在由本公开提出,并且在本公开的示例性实施例的精神和范围内。
这里使用的术语仅用于描述特定示例实施例的目的,而不是限制性的。比如,除非上下文另有明确说明,这里所使用的,单数形式″一″、″一个″、″所述″和″该″也可以包括复数形式。当在本说明书中使用时,术语″包括″、″包含″和/或″含有″意思是指所关联的整数,步骤、操作、元素和/或组件存在,但不排除一个或多个其他特征、整数、步骤、操作、元素、组件和/或组的存在或在该系统/方法中可以添加其他特征、整数、步骤、操作、元素、组件和/或组。当在本说明书中使用时,术语″A在B上″意思可以是A直接与B相邻(之上或者之下),也可以指A与B间接相邻(即A与B之间还隔了一些物质);术语″A在B内″意思可以是A全部在B里面,也可以是A部分的在B里面。
此外,本申请中的某些术语已被用于描述本公开的实施例。例如,″一个实施例″,″实施例″和/或″一些实施例″意味着结合该实施例描述的特定特征,结构或特性可以包括在本公开的至少一个实施例中。因此,可以强调并且应当理解,在本说明书的各个部分中对″实施例″或″一个实施例″或″替代 实施例″的两个或更多个引用不一定都指代相同的实施例。此外,特定特征,结构或特性可以在本公开的一个或多个实施例中适当地组合。
应当理解,在本公开的实施例的前述描述中,为了帮助理解一个特征,出于简化本公开的目的,本申请有时将各种特征组合在单个实施例、附图或其描述中。或者,本申请又是将各种特征分散在多个本发明的实施例中。然而,这并不是说这些特征的组合是必须的,本领域技术人员在阅读本申请的时候完全有可能将其中一部分特征提取出来作为单独的实施例来理解。也就是说,本申请中的实施例也可以理解为多个次级实施例的整合。而每个次级实施例的内容在于少于单个前述公开实施例的所有特征的时候也是成立的。
在一些实施方案中,表达用于描述和要求保护本申请的某些实施方案的数量或性质的数字应理解为在某些情况下通过术语″约″,″近似″或″基本上″修饰。例如,除非另有说明,否则″约″,″近似″或″基本上″可表示其描述的值的±20%变化。因此,在一些实施方案中,书面描述和所附权利要求书中列出的数值参数是近似值,其可以根据特定实施方案试图获得的所需性质而变化。在一些实施方案中,数值参数应根据报告的有效数字的数量并通过应用普通的舍入技术来解释。尽管阐述本申请的一些实施方案列出了广泛范围的数值范围和参数是近似值,但具体实施例中都列出了尽可能精确的数值。
本文引用的每个专利,专利申请,专利申请的出版物和其他材料,例如文章,书籍,说明书,出版物,文件,物品等,可以通过引用结合于此。用于所有目的的全部内容,除了与其相关的任何起诉文件历史,可能与本文件不一致或相冲突的任何相同的,或者任何可能对权利要求的最宽范围具有限制性影响的任何相同的起诉文件历史。现在或以后与本文件相关联。举例来说,如果在与任何所包含的材料相关联的术语的描述、定义和/或使用与本文档相关的术语 的描述、定义和/或使用之间存在任何不一致或冲突时,以本文件中的术语为准。
最后,应理解,本文公开的申请的实施方案是对本申请的实施方案的原理的说明。其他修改后的实施例也在本申请的范围内。因此,本申请披露的实施例仅仅作为示例而非限制。本领域技术人员可以根据本申请中的实施例采取替代配置来实现本申请中的发明。因此,本申请的实施例不限于申请中被精确地描述过的那些实施例。

Claims (22)

  1. 一种声音输出装置,其特征在于,包括:
    信号处理电路,运行时基于目标声音信息生成第一电信号和第二电信号;
    第一扬声器,同所述信号处理电路电连接,运行时接收来自所述信号处理电路的第一电信号,并将所述第一电信号转换为第一声波;以及
    第二扬声器,同所述信号处理电路电连接,运行时接收来自所述信号处理电路的第二电信号,并将所述第二电信号转换为第二声波,其中
    所述声音输出装置将所述目标声音信息转换成所述第一声波需要第一时间长度,将所述目标声音信息转换成所述第二声波需要第二时间长度,
    所述第一时间长度比所述第二时间长度短一个时间差。
  2. 如权利要求1所述声音输出装置,其特征在于,在相同幅值和频率的电信号输入下,所述第一扬声器输出的声波的音量小于所述第二扬声器输出的声波的音量。
  3. 如权利要求2所述声音输出装置,其特征在于,在相同幅值和频率的电信号输入下,所述第一声波的音量同所述第二声波的音量之差不大于3dB。
  4. 如权利要求2所述声音输出装置,其特征在于,所述第一扬声器通过激励第一机械结构产生所述第一声波;以及
    所述第二扬声器通过激励第二机械结构产生第二声波,其中
    所述第一机械结构的质量大于所述第二机械结构的质量,导致在相同幅值和频率的电信号输入下所述第一扬声器输出的声波的音量小于所述第二扬声器输出的声波的音量。
  5. 如权利要求2所述声音输出装置,其特征在于,所述第一扬声器包括第一骨导扬声器和第一气导扬声器中的至少一个;以及
    所述第二扬声器包括第二骨导扬声器和第二气导扬声器中的至少一个。
  6. 如权利要求1所述声音输出装置,其特征在于,所述时间差发生在所述声音输出装置将所述目标声音信息转换成所述第一电信号和所述第二电信号的过程中。
  7. 如权利要求1所述声音输出装置,其特征在于,所述时间差发生在所述第一扬声器将所述第一电信号转换成所述第一声波和所述第二扬声器将所述第二电信号转换成第二声波的过程中。
  8. 如权利要求1所述声音输出装置,其特征在于,所述时间差不大于3ms。
  9. 一种声音输出装置,其特征在于,包括:
    信号处理电路,运行时基于目标声音信息生成第一电信号和第二电信号;
    第一扬声器,同所述信号处理电路电连接,运行时接收来自所述信号处理电路的第一电信号,并将所述第一电信号转换为第一激励激励第一机械结构产生第一声波;以及
    第二扬声器,同所述信号处理电路电连接,运行时接收来自所述信号处理电路的第二电信号,并将所述第二电信号转换为第二激励激励第二机械结构产生第二声波,其中,
    所述第一声波的音量同所述第二声波的音量相同;以及
    对相同的激励,所述第一机械结构产生的音量小于第二机械结构产生的音量。
  10. 如权利要求9所述声音输出装置,其特征在于,所述第一机械结构的质量大于所述第二机械结构的质量,导致在相同激励下所述第一机械结构产生的音量小于第二机械结构产生的音量。
  11. 如权利要求10所述声音输出装置,其特征在于,所述第一扬声器包括第一骨导扬声器和第一气导扬声器中的至少一个;以及
    所述第二扬声器包括第二骨导扬声器和第二气导扬声器中的至少一个。
  12. 如权利要求10所述声音输出装置,其特征在于,
    所述第一扬声器还包括第一电磁激励装置,产生所述第一激励,所述第一激励激励所述第一机械结构振动产生所述第一声波;以及
    所述第二扬声器还包括第二电磁激励装置,产生所述第二激励,所述第二激励激励所述第二机械结构振动产生所述第二声波。
  13. 如权利要求12所述声音输出装置,其特征在于,
    所述第一电磁激励装置包括第一线圈;以及
    所述第二电磁激励装置包括第二线圈,其中,
    所述第一线圈绕线的直径大于所述第二线圈绕线的直径。
  14. 如权利要求12所述声音输出装置,其特征在于,
    所述第一电磁激励装置包括第一线圈;以及
    所述第二电磁激励装置包括第二线圈,其中,
    所述第一线圈的电阻率小于所述第二线圈的电阻率。
  15. 如权利要求12所述声音输出装置,其特征在于,在相同输入电流下,所述第一电磁激励装置产生的所述第一激励大于所述第二电磁激励装置产生的第二激励。
  16. 如权利要求12所述声音输出装置,其特征在于,
    所述第一扬声器包括第一电阻;以及
    所述第二扬声器包括第二电阻,其中,
    所述第一电阻小于所述第二电阻。
  17. 如权利要求12所述声音输出装置,其特征在于,还包括功率放大电路,连接所述第一扬声器和所述信号处理电路,
    所述功率放大电路对所述第一电信号进行放大,
    所述第一扬声器接收放大后的所述第一电信号。
  18. 如权利要求12所述声音输出装置,其特征在于,还包括功率衰减电路,连接所述第二扬声器和所述信号处理电路,
    所述功率衰减电路对所述第二电信号进行衰减,
    所述第二扬声器接收衰减后的所述第二电信号。
  19. 一种调节声像的方法,其特征在于,被配置为调节如权利要求1至8中任意一个权利要求所述的声音输出装置第一扬声器和第二扬声器的声像,包括:
    获取所述第一声波和所述第二声波的音量差;以及
    调节所述时间差。
  20. 如权利要求19所述调节声像的方法,其特征在于,所述第一声波和所述第二声波的音量差不大于3dB。
  21. 如权利要求19所述调节声像的方法,其特征在于,所述调节所述第一声波和所述第二声波的时间差包括:
    调节所述第一声波和所述第二声波的相位差。
  22. 一种调节音量的方法,其特征在于,被配置为调节如权利要求9至18中任意一个权利要求所述的声音输出装置第一扬声器和第二扬声器的音量,包括:
    获取所述第一声波和所述第二声波的音量差;以及
    调节所述第一激励和所述第二激励的幅值差。
PCT/CN2020/088524 2020-04-30 2020-04-30 声音输出装置、调节声像的方法及调节音量的方法 WO2021217670A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
BR112022018744A BR112022018744A2 (pt) 2020-04-30 2020-04-30 Dispositivo de saída de som, método de ajuste de fonte sonora sensorial e método de ajuste de volume
PCT/CN2020/088524 WO2021217670A1 (zh) 2020-04-30 2020-04-30 声音输出装置、调节声像的方法及调节音量的方法
KR1020227037921A KR102696599B1 (ko) 2020-04-30 2020-04-30 음성출력장치, 가상음원을 조절하는 방법 및 음량을 조절하는 방법
JP2022564494A JP2023523739A (ja) 2020-04-30 2020-04-30 音声出力装置、音像調整方法及び音量調整方法
EP20933329.3A EP4124067A4 (en) 2020-04-30 2020-04-30 SOUND OUTPUT DEVICE, SOUND PICTURE ADJUSTMENT METHOD AND VOLUME ADJUSTMENT METHOD
CN202080098386.8A CN115280795A (zh) 2020-04-30 2020-04-30 声音输出装置、调节声像的方法及调节音量的方法
US17/901,813 US20230007399A1 (en) 2020-04-30 2022-09-01 Sound output device, sensory sound source adjustment method, and volume adjustment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/088524 WO2021217670A1 (zh) 2020-04-30 2020-04-30 声音输出装置、调节声像的方法及调节音量的方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/901,813 Continuation US20230007399A1 (en) 2020-04-30 2022-09-01 Sound output device, sensory sound source adjustment method, and volume adjustment method

Publications (1)

Publication Number Publication Date
WO2021217670A1 true WO2021217670A1 (zh) 2021-11-04

Family

ID=78373162

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/088524 WO2021217670A1 (zh) 2020-04-30 2020-04-30 声音输出装置、调节声像的方法及调节音量的方法

Country Status (7)

Country Link
US (1) US20230007399A1 (zh)
EP (1) EP4124067A4 (zh)
JP (1) JP2023523739A (zh)
KR (1) KR102696599B1 (zh)
CN (1) CN115280795A (zh)
BR (1) BR112022018744A2 (zh)
WO (1) WO2021217670A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150170633A1 (en) * 2013-12-17 2015-06-18 Kabushiki Kaisha Toshiba Bone-conduction noise cancelling headphones
CN106105255A (zh) * 2014-03-19 2016-11-09 索尼公司 声学输出装置
US20170127183A1 (en) * 2015-05-29 2017-05-04 Boe Technology Group Co., Ltd. Bone-Conduction Sound Transmission Device and Method
CN109547906A (zh) * 2019-01-05 2019-03-29 深圳市韶音科技有限公司 骨传导扬声装置
CN209358770U (zh) * 2018-06-15 2019-09-06 深圳市韶音科技有限公司 一种骨传导扬声器及耳机

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7031474B1 (en) * 1999-10-04 2006-04-18 Srs Labs, Inc. Acoustic correction apparatus
US7551749B2 (en) * 2002-08-23 2009-06-23 Bose Corporation Baffle vibration reducing
JP2006157106A (ja) * 2004-11-25 2006-06-15 Victor Co Of Japan Ltd 音響再生装置及び音響再生システム
CN101867852A (zh) * 2010-07-01 2010-10-20 深圳市特灵通数码通讯发展有限公司 基于双声道的频差和短音刺激双重作用的骨传导耳机
DK3337185T3 (da) * 2015-08-13 2021-08-23 Shenzhen Voxtech Co Ltd Knogleledningshøjtaler
KR20170062853A (ko) * 2015-11-30 2017-06-08 삼성전자주식회사 전자 장치 및 그의 동작 방법
US9774979B1 (en) * 2016-03-03 2017-09-26 Google Inc. Systems and methods for spatial audio adjustment

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150170633A1 (en) * 2013-12-17 2015-06-18 Kabushiki Kaisha Toshiba Bone-conduction noise cancelling headphones
CN106105255A (zh) * 2014-03-19 2016-11-09 索尼公司 声学输出装置
US20170127183A1 (en) * 2015-05-29 2017-05-04 Boe Technology Group Co., Ltd. Bone-Conduction Sound Transmission Device and Method
CN209358770U (zh) * 2018-06-15 2019-09-06 深圳市韶音科技有限公司 一种骨传导扬声器及耳机
CN109547906A (zh) * 2019-01-05 2019-03-29 深圳市韶音科技有限公司 骨传导扬声装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4124067A4 *

Also Published As

Publication number Publication date
KR102696599B1 (ko) 2024-08-21
EP4124067A4 (en) 2024-04-10
JP2023523739A (ja) 2023-06-07
CN115280795A (zh) 2022-11-01
EP4124067A1 (en) 2023-01-25
KR20220161447A (ko) 2022-12-06
US20230007399A1 (en) 2023-01-05
BR112022018744A2 (pt) 2022-11-08

Similar Documents

Publication Publication Date Title
US11956591B2 (en) Acoustic output device
US11956603B2 (en) Sound-output device
CN115334435A (zh) 一种听力辅助装置
JP5610903B2 (ja) 電気音響変換器
CN113068091A (zh) 噪声消除来自触觉振动驱动器的声学噪声的耳机
CN112995825A (zh) 声音输出装置
CN113596647B (zh) 声音输出装置及调节声像的方法
CN111193983A (zh) 耳机声音编码调控装置及其应用方法
CN113596684B (zh) 声音输出装置及调节音量的方法
KR20230043940A (ko) 보청장치들
WO2021217670A1 (zh) 声音输出装置、调节声像的方法及调节音量的方法
US20230014930A1 (en) Assistive listening devices
RU2804725C1 (ru) Устройство вывода звука, способ регулировки мнимого источника и способ регулировки громкости
US20220277726A1 (en) Control apparatus, loudspeaker apparatus, and audio output method
JP5781194B2 (ja) マイクロホン
Pawar et al. Parametric simulation study of miniature loudspeaker for performance evaluation and improvement
RU2790965C1 (ru) Акустическое выходное устройство
CN214544761U (zh) 音箱
US20240163607A1 (en) Dynamic impedance balancing system
US20230387718A1 (en) Harvest Transducer
WO2024119393A1 (zh) 开放式可穿戴声学设备及主动降噪方法
Abatbaeva et al. ACOUSTIC SYSTEM: EVOLUTION AND ADVANCEMENTS IN SPEAKERS AND HEADPHONES
CN114143658A (zh) 双振谐式耳机振片单元及具有该结构的耳机
CN201904903U (zh) 一种电磁助推式低频声压补偿扬声器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20933329

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022018744

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2022564494

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227037921

Country of ref document: KR

Kind code of ref document: A

Ref document number: 2020933329

Country of ref document: EP

Effective date: 20221019

WWE Wipo information: entry into national phase

Ref document number: 202217062183

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 112022018744

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20220919

NENP Non-entry into the national phase

Ref country code: DE