WO2016190596A2 - 폴리케톤 섬유를 포함하는 산업용 폴리케톤 산업 제품 및 그 제조방법 - Google Patents

폴리케톤 섬유를 포함하는 산업용 폴리케톤 산업 제품 및 그 제조방법 Download PDF

Info

Publication number
WO2016190596A2
WO2016190596A2 PCT/KR2016/005248 KR2016005248W WO2016190596A2 WO 2016190596 A2 WO2016190596 A2 WO 2016190596A2 KR 2016005248 W KR2016005248 W KR 2016005248W WO 2016190596 A2 WO2016190596 A2 WO 2016190596A2
Authority
WO
WIPO (PCT)
Prior art keywords
polyketone
fiber
drying
fibers
stretching
Prior art date
Application number
PCT/KR2016/005248
Other languages
English (en)
French (fr)
Other versions
WO2016190596A3 (ko
Inventor
이득진
최영민
황순동
구교성
차준호
Original Assignee
(주)효성
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020150074157A external-priority patent/KR101705650B1/ko
Priority claimed from KR1020150074173A external-priority patent/KR101716201B1/ko
Priority claimed from KR1020150074158A external-priority patent/KR101716226B1/ko
Priority claimed from KR1020150074171A external-priority patent/KR101675288B1/ko
Priority claimed from KR1020150074167A external-priority patent/KR101716230B1/ko
Priority claimed from KR1020150074174A external-priority patent/KR101716202B1/ko
Priority claimed from KR1020150074176A external-priority patent/KR101664912B1/ko
Priority claimed from KR1020150074178A external-priority patent/KR101765791B1/ko
Priority claimed from KR1020150074161A external-priority patent/KR101716228B1/ko
Priority claimed from KR1020150074172A external-priority patent/KR101716200B1/ko
Priority claimed from KR1020150074164A external-priority patent/KR101725825B1/ko
Priority claimed from KR1020150074156A external-priority patent/KR101716225B1/ko
Priority claimed from KR1020150074175A external-priority patent/KR101725827B1/ko
Priority claimed from KR1020150074162A external-priority patent/KR101716229B1/ko
Priority claimed from KR1020150074163A external-priority patent/KR101725824B1/ko
Priority claimed from KR1020150074166A external-priority patent/KR101796978B1/ko
Priority claimed from KR1020150074160A external-priority patent/KR101716227B1/ko
Priority claimed from KR1020150074159A external-priority patent/KR101705638B1/ko
Priority claimed from KR1020150074169A external-priority patent/KR101675289B1/ko
Priority claimed from KR1020150074165A external-priority patent/KR101725826B1/ko
Priority claimed from KR1020150074168A external-priority patent/KR101716231B1/ko
Application filed by (주)효성 filed Critical (주)효성
Publication of WO2016190596A2 publication Critical patent/WO2016190596A2/ko
Publication of WO2016190596A3 publication Critical patent/WO2016190596A3/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D19/00Gloves
    • A41D19/015Protective gloves
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B51/00Stringing tennis, badminton or like rackets; Strings therefor; Maintenance of racket strings
    • A63B51/02Strings; String substitutes; Products applied on strings, e.g. for protection against humidity or wear
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63CSKATES; SKIS; ROLLER SKATES; DESIGN OR LAYOUT OF COURTS, RINKS OR THE LIKE
    • A63C5/00Skis or snowboards
    • A63C5/03Mono skis; Snowboards
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/58Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
    • D01F6/76Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from other polycondensation products
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41HARMOUR; ARMOURED TURRETS; ARMOURED OR ARMED VEHICLES; MEANS OF ATTACK OR DEFENCE, e.g. CAMOUFLAGE, IN GENERAL
    • F41H1/00Personal protection gear
    • F41H1/02Armoured or projectile- or missile-resistant garments; Composite protection fabrics

Definitions

  • the present invention provides a bulletproof garment, a bulletproof helmet, a debris protection material, a polyketone bulletproof material for an aircraft or a military aircraft, an aircraft wing tip device, a helicopter interior material, including a polyketone fiber having a markedly improved shock absorption performance and excellent mechanical properties and work performance.
  • industries such as cables, skiboards, wires for tennis rackets, yacht structures, yacht sails, racing bicycles, polyketone-coated fabrics for parachute or paragliding, safety gloves, etc.
  • each material does not satisfy all of the various functions to be equipped as a number of industrial fibers, it is used to determine the use according to the unique properties of each material.
  • the basic performance of the reinforcing fiber required for the industry includes high strength, high elongation, vibration and high impact resistance, heat resistance, not deterioration in dry and wet heat, bending resistance, shape stability, and adhesion to rubber.
  • high strength high elongation, vibration and high impact resistance
  • heat resistance not deterioration in dry and wet heat
  • bending resistance not deterioration in dry and wet heat
  • shape stability not deterioration in dry and wet heat
  • adhesion to rubber There is a need for excellent, light weight, excellent mechanical properties, and the like, and there is an increasing demand for developing an industrial fiber having such performance and being widely used in various fields.
  • polyketones having a structure in which a repeating unit derived from carbon monoxide and a repeating unit derived from an ethylenically unsaturated compound are alternately connected are excellent in mechanical properties and thermal properties, have high wear resistance, chemical resistance, gas barrier property, and various fields.
  • polyketone is a material useful as a high strength, high heat resistant resin, fiber, or film.
  • fibers or films having very high strength and elastic modulus can be obtained.
  • Such fibers and films are expected to be widely used for construction materials and industrial materials, such as rubber reinforcements such as belts, hoses and tire cords, protective articles, ropes and concrete reinforcements.
  • polyketone Since polyketone is easy to thermally crosslink when melted, it is preferable to use wet spinning when fiberizing.
  • polyketone poly (1-oxotrimethylene)
  • fibers containing substantially only carbon monoxide and ethylene, which have excellent physical properties, are susceptible to thermal crosslinking.
  • this fiber is very difficult to produce by melt spinning and can only be obtained substantially by wet spinning.
  • solvents used are hexafluoroisopropanol and m-cresol, phenolic solvents such as resorcinol / water, and organic solvents such as resorcinol / carbonate (Japanese Patent Laid-Open).
  • Japanese Patent Application Laid-Open No. 2-112413, Japanese Patent Application Laid-Open No. 4-228613, and Japanese Patent Application Laid-open No. Hei 7-508317 Japanese Patent Application Laid-Open No. 2-112413, Japanese Patent Application Laid-Open No. 4-228613, and Japanese Patent Application Laid-open No. Hei 7-508317.
  • fibers obtained by wet spinning using such solvents are likely to be dispersed, and have insufficient fatigue resistance and processability for use as industrial materials.
  • such solvents are highly toxic and flammable, and there is a problem in that extensive measures for the toxicity and flammability of the solvent are required to make industrial-scale spinning equipment.
  • a method of spinning using a polyketone solution prepared by dissolving polyketone in an aqueous solution containing zinc halides such as zinc chloride and zinc bromide or lithium salts such as lithium chloride, lithium iodide, lithium thiocyanate, etc. Is proposed (WO99 / 18143, USP5955019). These aqueous solutions are relatively inexpensive, less toxic and nonflammable and are excellent solvents for polyketones.
  • the present invention includes a polyketone copolymer consisting of carbon monoxide and at least one olefinically unsaturated hydrocarbon, and before stretching in the manufacturing process of the multifilament, hot roll drying method and heat stabilizer It is an object of the present invention to provide a polyketone industrial product having excellent strength.
  • the present invention consists of a repeating unit represented by the following general formula (1) and (2), y / x is 0 to 0.1, intrinsic viscosity of 4 to 8 dl / g Bulletproof clothing, bulletproof helmets, debris protection material, polyketone bulletproof material for aircraft or military aircraft, aircraft wing tip, characterized in that the ketone copolymer comprising a polyketone fiber produced by spinning, washing, drying, and stretching processes Device, Helicopter Interior, Automobile Structural Materials, Ship Platform, Submersible Structural Materials, Optical Cable Cladding, Radar Dome Structural Materials, Bobbins of Superconducting Coils, Cryogenic Superconducting Cables, Skiboards, Wires for Tennis Rackets, Yacht Structural Materials, Yacht Sails, Racing Bikes, Parachuting Or it provides a polyketone fiber product selected from the group consisting of polyketone coating fabric, safety gloves for paraglide.
  • the stretching step is 1.0 times to 2.0 times the stretching process
  • the drying process is characterized in that the stretching is 1.0 times to 2.0 times
  • the drying process is hot roll dry type at 100 to 230 °C
  • the stretching process is 230 It is characterized in that the heating chamber (heating chamber) stretching formula at 300 °C, the heat stabilizer before the drying process and stretching process.
  • Polyketone bulletproof clothing is characterized in that it is produced by weaving the fabric in plain weave using polyketone fibers, and then treated with a surfactant, washed with water and dried.
  • the polyketone bulletproof clothing is 20 to 35 parts by weight of dipropylene glycol, 0.5 to 5.5 parts by weight of silicone oil, relative to 100 parts by weight of hardoxylated perfluoroalkylethyl acrylate copolymer.
  • Isopropyl alcohol is characterized in that it is prepared through a manufacturing step further comprising the step of immersing in a water repellent consisting of 0.5 to 10 parts by weight.
  • the polyketone bulletproof clothing is characterized in that the bulletproof performance (V50) is 590 to 700m / s on the basis of 5.56mm fragmented coal (FSP).
  • V50 bulletproof performance
  • FSP 5.56mm fragmented coal
  • the polyketone copolymer has a molar ratio of ethylene and propylene of 100: 0 to 90:10, molecular weight distribution of 2.5 to 3.5,
  • the polyketone fiber is characterized in that the fineness of the monofilament is 1 to 10d, the cross-sectional variation rate is 8 to 15%.
  • the polyketone bulletproof helmet is manufactured by applying polyketone fibers to warp and weft yarns and weaving them in plain weave, and then applying a pressure in the chamber by adhering thermoplastic or thermosetting resins, and then laminating and curing the lower mold for helmet manufacturing. It is done.
  • the polyketone bulletproof helmet had an average speed (V50) of 590 to 700 kPa measured according to MIL-STD-662F regulation, and the average speed was completely penetrated using Cal. 22-caliber fragmentation bullet (FSP). It was measured from the average value of the speed at the time and the speed at the time of partial penetration.
  • the monofilament of the polyketone fiber has an initial modulus value of 200 g / d or more, elongation of 2.5 to 3.5% at 10.0 g / d, elongation of at least 0.5% at 19.0 g / d or more,
  • the monofilament of the polyketone fiber is characterized in that the fineness of 0.5 to 8.0 denier.
  • Polyketone fragment protection material is characterized in that the polyketone multifilament is impregnated in the elastic matrix stock solution, to obtain an elastic sheet, laminated, heated and pressurized, bulletproof performance (V50) 5.56mm fragmentation bullet (FSP) is characterized in that the 590 to 700m / s.
  • the molar ratio of ethylene and propylene of the polyketone copolymer of polyketone fragment protection material is 100: 0 to 90:10, molecular weight distribution is 2.5 to 3.5,
  • the polyketone multifilament is characterized in that the fineness of the monofilament is 1 to 10d, the cross-sectional variation rate is 8 to 15%.
  • Polyketone anti-ballistic material for aircraft or military aircraft is characterized by being produced by weaving polyketone fibers to cut the fabric mat and then laminated and put into a liquid resin molding apparatus to form a molded product and cut it in a predetermined length and width direction.
  • the aircraft or military aircraft polyketone bulletproof material is characterized in that the bulletproof performance (V50) is 590 to 700m / s based on 5.56mm fragmented coal (FSP), the molecular weight distribution of the polyketone copolymer is 2.5 to 3.5 ,
  • the ligand of the catalyst composition used in the polymerization of the polyketone copolymer is ((2,2-dimethyl-1,3-dioxane-5,5-diyl) bis (methylene)) bis (bis (2-methoxyphenyl) Phosphine).
  • the polyketone multifilament of the polyketone bulletproof material for aircraft or air conditioner has an initial modulus value of 200g / d or more, elongation of 2.5 to 3.5% at 10.0g / d, elongation of at least 0.5% at 19.0g / d or more ,
  • the polyketone monofilament is characterized in that the fineness of 0.5 to 8.0 denier.
  • the polyketone aircraft wing tip device is manufactured by applying polyketone multifilament to warp and weft yarns to make plain weaves, impregnating them into an elastic matrix stock solution, and then laminating them on a wing tip manufacturing mold to bond them with thermoplastic or thermosetting resins to heat and press. Characterized in that,
  • the polyketone multifilament has an initial modulus value of 200 g / d or more, elongation of 2.5 to 3.5% at 10.0 g / d, elongation of at least 0.5% at 19.0 g / d or more, and monofilament of 0.5 to 8.0 denier It is characterized by that.
  • the polyketone helicopter interior material is produced by applying the polyketone multifilament to the warp and weft yarn is made of plain weave, laminated to a mold and bonded with a thermoplastic or thermosetting resin, characterized in that it is produced by heating and pressing,
  • the molecular weight distribution of the polyketone copolymer of the polyketone helicopter interior material is 2.5 to 3.5,
  • the ligand of the catalyst composition used in the polymerization of the polyketone copolymer is ((2,2-dimethyl-1,3-dioxane-5,5-diyl) bis (methylene)) bis (bis (2-methoxyphenyl) Phosphine).
  • the polyketone multifilament has an initial modulus value of 200g / d or more, elongation of 2.5 to 3.5% at 10.0g / d, elongation of at least 0.5% at 19.0g / d or more,
  • the polyketone monofilament is characterized in that the fineness of 0.5 to 8.0 denier.
  • Polyketone automotive structural material is characterized in that the polyketone filament is applied to warp and weft yarn and woven into a plain weave, then bonded by thermoplastic or thermosetting resin to apply pressure in the chamber, and then laminated to the mold and cured.
  • the polyketone copolymer has a molar ratio of ethylene and propylene of 100: 0 to 90:10, molecular weight distribution of 2.5 to 3.5,
  • the polyketone multifilament is characterized in that the monofilament has a fineness of 1 to 10d, the cross-sectional variation rate index is 8 to 15%.
  • Polyketone ship platform is a frame installed on one side of the vessel to be movable in the outward direction from the inside of the vessel;
  • the ship platform consisting of,
  • the body is composed of a repeating unit represented by the following general formula (1) and (2), spinning process, water washing a polyketone copolymer of y / x 0 to 0.1, intrinsic viscosity 4 to 8 dl / g It characterized in that it comprises a polyketone fiber produced through a process, drying process and stretching process.
  • the polyketone ship platform is characterized in that the strong maintenance rate of 70 to 90% immersion for 24 hours at room temperature in 15L of chlorine water of 3ppm active chlorine concentration, pH 7.5.
  • the monofilament of the polyketone fibers has an initial modulus value of 200 g / d or more, elongation of 2.5 to 3.5% at 10.0 g / d, elongation of at least 0.5% at 19.0 g / d or more,
  • the polyketone monofilament is characterized in that the fineness of 0.5 to 8.0 denier.
  • the polyketone submersible structural material is manufactured by injecting polyketone multifilament together with a foam foam into a manufacturing mold, and heating and pressing to foam the foam.
  • the molecular weight distribution of the polyketone copolymer is 2.5 to 3.5,
  • the ligand of the catalyst composition used in the polymerization of the polyketone copolymer is ((2,2-dimethyl-1,3-dioxane-5,5-diyl) bis (methylene)) bis (bis (2-methoxyphenyl) Phosphine).
  • the polyketone multifilament has an initial modulus value of 200g / d or more, elongation of 2.5 to 3.5% at 10.0g / d, elongation of at least 0.5% at 19.0g / d or more,
  • the polyketone monofilament is characterized in that the fineness of 0.5 to 8.0 denier.
  • Polyketone optical cable coating material is characterized in that the moisture absorption rate according to the following general formula (3) measured after drying for 30 minutes at 105 °C.
  • moisture absorption rate (mass after absorption-mass before absorption) / (mass before absorption)
  • the polyketone multifilament has an initial modulus value of 200g / d or more, elongation of 2.5 to 3.5% at 10.0g / d, elongation of at least 0.5% at 19.0g / d or more, the polyketone monofilament Is characterized in that the fineness of 0.5 to 8.0 denier.
  • the polyketone radar dome structure material is manufactured by applying the polyketone fibers to warp and weft yarns and weaving them in plain weave, then applying a pressure in a chamber by adhering a thermoplastic or thermosetting resin, and then laminating and curing the mold. do.
  • the polyketone multifilament is characterized in that the initial modulus value is more than 200g / d, elongation is 2.5 to 3.5% at 10.0g / d, elongation of at least 0.5% at 19.0g / d or more.
  • the drying process is characterized in that stretching to 1.0 times to 2.0 times.
  • the bobbin of the polyketone superconducting coil is manufactured by applying polyketone fibers to warp and weft yarns and weaving them in plain weave, and then applying a pressure in the chamber by bonding thermoplastic or thermosetting resins, and then laminating them in the lower mold for manufacturing bobbins to manufacture them It is characterized by.
  • the polyketone copolymer of the bobbin of the polyketone superconducting coil has a molar ratio of ethylene and propylene of 100: 0 to 90:10, molecular weight distribution of 2.5 to 3.5,
  • the polyketone fiber is characterized in that the fineness of the monofilament is 1 to 10d, the cross-sectional variation rate is 8 to 15%.
  • the ligand of the catalyst composition used in the polymerization of the polyketone copolymer is ((2,2-dimethyl-1,3-dioxane-5,5-diyl) bis (methylene)) bis (bis (2-methoxy Phenyl) phosphine),
  • the polyketone copolymer has a molar ratio of ethylene and propylene of 100: 0 to 90:10, molecular weight distribution of 2.5 to 3.5,
  • the polyketone fiber is characterized in that the fineness of the monofilament is 1 to 10d, the cross-sectional variation rate is 8 to 15%.
  • the skiboard is manufactured by forming a curved surface by laminating polyketone fibers and thermoplastic resin or thermosetting resin by thermocompression, then pressing and warming and pressing through a press.
  • the polyketone copolymer has a molar ratio of ethylene and propylene of 100: 0 to 90:10, molecular weight distribution of 2.5 to 3.5,
  • the polyketone fiber is characterized in that the fineness of the monofilament is 1 to 10d, the cross-sectional variation rate is 8 to 15%.
  • the polyketone fiber multifilament of the wire for tennis rackets is characterized by consisting of 100 to 2200 individual filaments with a total denier range of 500 to 3,500 and a fineness of 5 to 16 deniers with a cutting load of 6.0 to 40.0 kg.
  • the initial modulus of the monofilament of the polyketone fiber is 200g / d or more, elongation is 2.5 to 3.5% at 10.0 g / d, characterized in that elongation of at least 0.5% or more at 19.0g / d or more. .
  • the yacht structural member is manufactured by laminating a polyketone fiber and a thermoplastic resin or a thermosetting resin, followed by thermocompression, then cutting and warming and pressing through a press to form a curved surface.
  • the molar ratio of ethylene and propylene constituting the polyketone copolymer of the polymethone fiber is 100: 0 to 90:10, the molecular weight distribution of the copolymer is 2.5 to 3.5,
  • the ligand of the catalyst composition used in the polymerization of the polyketone copolymer is ((2,2-dimethyl-1,3-dioxane-5,5-diyl) bis (methylene)) bis (bis (2-methoxyphenyl) Phosphine).
  • the polyketone fiber is characterized in that the fineness of the monofilament is 1 to 10d, the cross-sectional variation rate is 8 to 15%.
  • the bicycle for racing made of polyketone fibers comprises the steps of laminating the polyketone fibers and a thermoplastic resin to form a laminate;
  • the manufacturing including the step of heating and pressing the laminate.
  • the heating is carried out at a temperature of 150 to 220 °C
  • the press is characterized in that carried out by applying a pressure of 5 to 20MPa for 10 to 20 minutes.
  • the monofilament of racing bicycle polyketone fibers has an initial modulus value of 200 g / d or more, elongation of 2.5 to 3.5% at 10.0 g / d, elongation of at least 0.5% at 19.0 g / d or more,
  • the polyketone monofilament is characterized in that the fineness of 0.5 to 8.0 denier.
  • the polyketone coated fabric for parachute or paraglide comprises the steps of: weaving plain weave fabric using polyketone fibers as warp and weft yarns; And manufacturing a coating fabric by coating the thermoplastic polyurethane resin on both sides of the fabric.
  • the monofilament of the polyketone fiber has an initial modulus value of 200 g / d or more, elongation of 2.5 to 3.5% at 10.0 g / d, elongation of at least 0.5% at 19.0 g / d or more,
  • the polyketone monofilament is characterized in that the fineness of 0.5 to 8.0 denier.
  • Polyketone copolymer of polyketone safety gloves is made of ethylene, propylene, the molar ratio of the ethylene and propylene is from 100: 0 to 90:10,
  • the polyketone fiber is characterized in that the fineness of the monofilament is 1 to 10d, the cross-sectional variation rate is 8 to 15%.
  • the polyketone safety gloves are characterized in that the strength is more than 15g / d, the molecular weight distribution of the polyketone copolymer is characterized in that 2.5 to 3.5.
  • Safety protective shoes are characterized in that the rubber sheet and the polyketone fibers are laminated and pressed to form a sole, and then put them in a mold together with the upper and molded at the same time in the mold.
  • the monofilament of the safety protective shoes polyketone fiber has an initial modulus value of 200 g / d or more, elongation of 2.5 to 3.5% at 10.0 g / d, elongation of at least 0.5% at 19.0 g / d or more, the poly Ketone monofilament is characterized in that the fineness of 0.5 to 8.0 denier.
  • Preparing a polyketone solution by injecting an aqueous metal salt solution and polyketone into an extruder to dissolve the polyketone solution;
  • It provides a method for producing a polyketone fiber using a disk filter comprising the step of producing a polyketone fiber through a spinning process, water washing process, drying process and stretching process.
  • the polyketone is a catalyst composition comprising a Group 9, Group 10 or 11 transition metal compound, a ligand comprising an element of Group 15 and an anion of an acid having a pKa of 4 or less; And polymerizing carbon monoxide and an ethylenically unsaturated compound in the presence of a mixed solvent.
  • the stretch in the water washing step is 1.0 times to 2.0 times, characterized in that the stretching process in the 1.0 times to 2.0 times.
  • the drying process is a hot roll dry type at 100 to 230 °C
  • the stretching process is characterized in that the heating chamber (heating chamber) stretching at 230 to 300 °C.
  • the heat-resistant stabilizer is characterized in that before the drying step and the stretching step.
  • the present invention is to prepare a polyketone solution from carbon monoxide, ethylene and propylene copolymers, and to provide a polyketone industrial product having excellent strength and water resistance from the polyketone solution.
  • FIG. 1 is a view schematically showing a candle filter according to the prior art.
  • FIG. 2 is a view schematically showing a disk filter according to the present invention.
  • FIG. 3 is a view schematically showing the upper end of the candle filter and the disk filter.
  • FIG. 4 is a view schematically showing a role of a heat stabilizer according to the prior art.
  • FIG. 5 is a view of a schematic diagram of a hot air drying type dryer according to the prior art.
  • FIG. 6 is a schematic view of a hot roll drying method according to the present invention.
  • FIG. 7 is a cross-sectional view of the dry yarn according to the prior art hot air drying method.
  • FIG. 8 is a cross-sectional view of the dry yarn according to the hot roll drying method of the present invention.
  • FIG. 9 is a view schematically showing a disk filter according to the present invention.
  • the present invention comprises the steps of preparing a polyketone solution by dissolving a metal salt aqueous solution and polyketone in an extruder; Filtering the polyketone solution through a disk filter to remove impurities; And it provides a method for producing a polyketone fiber using a disk filter, characterized in that it comprises a step of producing a polyketone fiber through a spinning process, water washing process, drying process and stretching process.
  • the polyketone is a catalyst composition comprising a Group 9, Group 10 or 11 transition metal compound, a ligand containing an element of Group 15 and an anion of an acid having a pKa of 4 or less; And it is preferably prepared by polymerizing carbon monoxide and ethylenically unsaturated compounds in the presence of a mixed solvent, but is not limited thereto.
  • the stretch in the water washing step is 1.0 times to 2.0 times
  • the stretching process is characterized in that the stretching is 1.0 times to 2.0 times.
  • drying process is a hot roll dry type at 100 to 230 °C
  • stretching process is preferably a heating chamber (heating chamber) stretching at 230 to 300 °C.
  • the monomer units are alternating, so that the polymer is composed of one or more olefinically unsaturated compounds (simplified as A), wherein the polymer consists of units of the formula-(CO) -A'- where A 'represents a monomeric unit derived from monomer A applied.
  • High molecular weight linear polymer of carbon monoxide can be prepared by contacting a monomer with a palladium-containing catalyst composition solution in a diluent in which the polymer is insoluble or not actually dissolved. During the polymerization process, the polymer is obtained in the form of a suspension in diluent. Polymer preparation is mainly carried out batchwise.
  • Batch preparation of the polymer is usually carried out by introducing a catalyst into the reactor containing the diluent and monomer and having the desired temperature and pressure. As the polymerization proceeds, the pressure drops, the polymer concentration in the diluent rises and the viscosity of the suspension increases. The polymerization is continued until the viscosity of the suspension reaches a high value, for example causing difficulties with heat removal.
  • monomers can be added to the reactor during the polymerization if desired to maintain a constant pressure as well as temperature.
  • a liquid medium not only methanol, dichloromethane or nitromethane, which have been mainly used in the production of polyketone, but also a mixed solvent of acetic acid and water, ethanol and propanol, and isopropanol can be used.
  • a mixed solvent of acetic acid and water is used as the liquid medium in the production of the polyketone, it is possible to improve the catalytic activity while reducing the production cost of the polyketone.
  • a mixed solvent of acetic acid and water is used as the liquid medium
  • the concentration of water is less than 10% by volume
  • the catalytic activity is less affected.
  • the concentration is more than 10% by volume
  • the catalytic activity rapidly increases.
  • the concentration of water exceeds 30% by volume
  • catalytic activity tends to decrease.
  • the organometallic complex catalyst contains (a) Group 9, Group 10 or Group 11 transition metal compound of the periodic table (IUPAC inorganic chemical nomenclature revision, 1989), and (b) Group 15 elements. Ligands, and (c) anions of acids with a pKa of 4 or less.
  • Examples of the Group 9 transition metal compound among Group 9, Group 10 or Group 11 transition metal compounds (a) include complexes of cobalt or ruthenium, carbonates, phosphates, carbamate salts, sulfonates, and the like. Specific examples thereof include cobalt acetate, cobalt acetylacetate, ruthenium acetate, trifluoro ruthenium acetate, ruthenium acetylacetate, and trifluoromethane sulfonic acid ruthenium.
  • Examples of the Group 10 transition metal compound include a complex of nickel or palladium, carbonate, phosphate, carbamate, sulfonate, and the like, and specific examples thereof include nickel acetate, nickel acetylacetate, palladium acetate, and palladium trifluoroacetate. , Palladium acetylacetate, palladium chloride, bis (N, N-diethylcarbamate) bis (diethylamine) palladium, palladium sulfate and the like.
  • Examples of the Group 11 transition metal compound include a complex of copper floating silver, carbonate, phosphate, carbamate, sulfonate, and the like, and specific examples thereof include copper acetate, trifluoro copper acetate, copper acetylacetate, silver acetate, Trifluoro silver acetate, silver acetyl acetate, silver trifluoromethane sulfonic acid, etc. are mentioned.
  • transition metal compounds (a) are nickel and copper compounds
  • preferred transition metal compounds (a) in terms of yield and molecular weight of polyketones are palladium compounds, and in terms of improving catalytic activity and intrinsic viscosity. Palladium acetate is most preferably used.
  • Examples of the ligand (b) having a group 15 atom include 2,2-bipyridyl, 4,4-dimethyl-2,2-bipyridyl, 2,2-bi-4-picolin, 2,2 Nitrogen ligands such as bikinolin, 1,2-bis (diphenylphosphino) ethane, 1,3-bis (diphenylphosphino) propane, 1,4-bis (diphenylphosphino) butane, 1,3 -Bis [di (2-methyl) phosphino] propane, 1,3-bis [di (2-isopropyl) phosphino] propane, 1,3-bis [di (2-methoxyphenyl) phosphino] propane , 1,3-bis [di (2-methoxy-4-sulfonic acid-phenyl) phosphino] propane, 1,2-bis (diphenylphosphino) cyclohexane, 1,2-bis (diphenylphosphino)
  • the ligand (b) having an element of Group 15 is a phosphorus ligand having an atom of Group 15, and particularly, in view of the yield of polyketone, a phosphorus ligand is preferably 1,3-bis [di (2- Methoxyphenyl) phosphino] propane, 1,2-bis [[di (2-methoxyphenyl) phosphino] methyl] benzene, and 2-hydroxy-1,3-bis [in terms of molecular weight of the polyketone.
  • Ligand (b) having a Group 15 atom which is preferred in the present invention, which focuses on improving the intrinsic viscosity and the catalytic activity of polyketone, is selected from 1,3-bis- [di (2-methoxyphenyl) phosphino] propane or ((2,2-dimethyl-1,3-dioxane-5,5-diyl) bis (methylene)) bis (bis (2-methoxyphenyl) phosphine), more preferably 1,3-bis -[Di (2-methoxyphenyl) phosphino] propane or ((2,2-dimethyl-1,3-dioxane-5,5-diyl) bis (methylene)) bis (bis (2-methoxyphenyl Phosphine) is better.
  • the method for preparing a ligand for a polyketone polymerization catalyst is as follows. Using bis (2-methoxyphenyl) phosphine, 5,5-bis (bromomethyl) -2,2-dimethyl-1,3-dioxane and sodium hydride (NaH) ((2,2-dimethyl) ((2,2-dimethyl) ((2,2-dimethyl) ((2,2-dimethyl) Provided is a method for producing a ligand for a polyketone polymerization catalyst, characterized by obtaining -1,3-dioxane-5,5-diyl) bis (methylene)) bis (bis (2-methoxyphenyl) phosphine). .
  • the method for preparing a ligand for a polyketone polymerization catalyst of the present invention is conventionally 3,3-bis- [bis- (2-methoxyphenyl) phosphanylmethyl] -1,5-dioxa-spiro [5,5] undecane Unlike the synthesis method of ((2,2-dimethyl-1,3-dioxane-5,5-diyl) bis (methylene)) bis (bis (2- Methoxyphenyl) phosphine) can be commercially synthesized in bulk.
  • the method for preparing a ligand for a polyketone polymerization catalyst of the present invention is (a) adding bis (2-methoxyphenyl) phosphine and dimethyl sulfoxide (DMSO) to a reaction vessel under a nitrogen atmosphere and hydrogenated at room temperature.
  • DMSO dimethyl sulfoxide
  • the amount of the Group 9, Group 10 or Group 11 transition metal compound (a) to be used may be limited, since the appropriate value varies depending on the type of ethylenically unsaturated compound selected or other polymerization conditions. Although it is not possible, it is usually 0.01-100 mmol, preferably 0.01-10 mmol, per liter of the capacity of the reaction zone.
  • the capacity of the reaction zone means the capacity of the liquid phase of the reactor.
  • Examples of the anion (c) of an acid having a pKa of 4 or less include anions of an organic acid having a pKa of 4 or less, such as trifluoroacetic acid, trifluoromethane sulfonic acid, p-toluene sulfonic acid, and m-toluene sulfonic acid; Anions of inorganic acids having a pKa of 4 or less, such as perchloric acid, sulfuric acid, nitric acid, phosphoric acid, heteropoly acid, tetrafluoroboric acid, hexafluorophosphoric acid, and fluorosilicic acid; And anions of boron compounds such as trispentafluorophenylborane, trisphenylcarbenium tetrakis (pentafluorophenyl) borate, and N, N-dimethylarinium tetrakis (pentafluorophenyl) borate
  • Particularly preferred anion (c) of an acid having a pKa of 4 or less in the present invention is p-toluene sulfonic acid, which has a high catalytic activity when used with a mixed solvent of acetic acid and water as a liquid medium, as well as a ship rope. It is possible to produce polyketones having a suitable high intrinsic viscosity.
  • the molar ratio of the ligands having the (a) Group 9, 10 or 11 transition metal compound and (b) Group 15 element is 0.1 to 20 moles of Group 15 element of ligand per mole of palladium element, preferably Is preferably added in a proportion of 0.1 to 10 moles, more preferably 0.1 to 5 moles.
  • the ligand is added less than 0.1 mole relative to the elemental palladium, the binding force between the ligand and the transition metal is lowered to accelerate the desorption of palladium during the reaction, and the reaction is terminated quickly, and the ligand exceeds 20 moles relative to the elemental palladium.
  • the ligand may cause a screening effect on the polymerization reaction by the organometallic complex catalyst, which may cause a disadvantage that the reaction rate is significantly lowered.
  • the molar ratio of (a) the Group 9, 10 or 11 transition metal compound and (c) the anion of the acid having a pKa of 4 or less is 0.1 to 20 moles, preferably 0.1 to 10 moles of acid per mole of palladium element. Moles, more preferably from 0.1 to 5 moles are added. If the acid is added less than 0.1 mole relative to the elemental palladium, the effect of improving the intrinsic viscosity of the polyketone is not satisfactory, and if the acid is added more than 20 mole relative to the elemental palladium, the catalyst activity for polyketone production tends to be rather reduced, which is undesirable. not.
  • reaction gas to be reacted with the polyketone production catalyst is preferably used by appropriately mixing carbon monoxide and ethylenically unsaturated compounds.
  • examples of the ethylenically unsaturated compound copolymerized with carbon monoxide include ethylene, propylene, 1-butene, 1-hexene, 4-methyl-1-pentene, 1-octene, 1-decene, 1-dodecene, 1 C2-C20 ⁇ -olefins including tetradecene, 1-hexadecene, vinylcyclohexane; C2 to C20 alkenyl aromatic compound including styrene and (alpha) -methylstyrene; Cyclopentene, norbornene, 5-methylnorbornene, 5-phenylnorbornene, tetracyclododecene, tricyclododecene, tricycloundecene, pentacyclopentadecene, pentacyclohexadecene, 8-ethyltetra C4 to C40 cyclic olefin
  • ethylenically unsaturated compounds are used individually or in mixture of multiple types.
  • preferred ethylenically unsaturated compounds are ⁇ -olefins, more preferably ⁇ -olefins having 2 to 4 carbon atoms, and most preferably ethylene.
  • the ratio of carbon monoxide to ethylenically unsaturated compound is generally 1: 1, but in the present invention, the ratio of carbon monoxide to ethylenically unsaturated compound is adjusted to a molar ratio of 1:10 to 10: 1. It is preferable.
  • the ethylenically unsaturated compound and carbon monoxide are mixed and used in an appropriate ratio as in the present invention, it is effective in terms of catalytic activity, and the effect of improving the intrinsic viscosity of the produced polyketone can be simultaneously achieved.
  • carbon monoxide or ethylene is added in an amount of less than 5 mol% or more than 95 mol%, the reactivity may be lowered and the physical properties of the manufactured polyketone may be deteriorated.
  • the polyketone copolymer used as the fiber may be composed of ethylene, propylene and carbon monoxide.
  • the molar ratio of propylene increases, it is not suitable as a ship rope, and the molar ratio of ethylene and propylene is preferably 100: 0 to 90:10. Do.
  • the molecular weight distribution of the polyketone is preferably 1.5 to 4.0, less than 1.5 has a problem of poor polymerization yield, 4.0 or more is poor workability.
  • the molecular weight distribution of the most preferred polyketones is 2.5 to 3.5.
  • polyketone polymers having a number average molecular weight of 100 to 200,000, particularly 20,000 to 90,000, as measured by gel permeation chromatography are particularly preferred.
  • the physical properties of the polymer depend on the molecular weight, on whether the polymer is a copolymer or terpolymer, and in the case of terpolymers, on the nature of the second hydrocarbon moiety present. Melting
  • HFIP Hexafluoroisopropylalcohol
  • the solution extruded from the spinning nozzle passes through the air gap in the vertical direction and solidifies in the coagulation bath.
  • the air gap is spun in a range of about 1 to 300 mm in order to obtain a dense and uniform fiber and to impart a smooth cooling effect.
  • the filament passed through the coagulation bath is passed through the washing tank.
  • the temperature of the coagulation bath and the washing tank is maintained at about 0 ⁇ 80 °C in order to prevent the deterioration of physical properties due to the formation of pores (pore) in the fiber tissue due to the rapid desolvent.
  • the fiber passed through the washing tank is washed with acid in an aqueous solution containing acid, and then passed through a second washing bath to remove the acid, and then passed through a dryer to contain an oil and an additive in an emulsion treatment apparatus. do.
  • the coagulation bath is characterized in that the temperature is -10 to 40 °C and the metal salt concentration is 1 to 30% by weight, the water washing bath is preferably 0 to 40 °C temperature and metal salt concentration is 1 to 30% by weight.
  • aqueous metal salt solution recovered as described above may be reused as an aqueous metal salt solution for dissolving polyketone.
  • the air pressure was supplied at 0.5 to 4.0 kg / cm 2 and the number of entanglements per meter of filament was 2 to 40 times.
  • the filament yarn passing through the interlace nozzle is dried while passing through the drying apparatus.
  • the drying temperature and drying method have a great influence on the post process and the physical properties of the filament.
  • the filament which passed the drying apparatus is finally wound up by a winding machine via a secondary tanning apparatus.
  • the stretching process in the polyketone fibers of the present invention is very important for high strength and hot water resistance improvement.
  • the heating method of the stretching process includes hot air heating and roller heating.
  • hot air heating was more effective for producing high-strength polyketone fibers because the filament is easily damaged by contact with the roller surface.
  • the inventors of the present invention apply a heat stabilizer using a roller heating type, especially a hot roll drying method, and stretch the process 1.0 to 2.0 times, preferably 1.2 to 1.6 times, and more preferably 1.4 times during the cleaning of the fibers. Through high strength multifilament could be obtained. At this time, the strength of the fiber at the time of stretching below 1.0 times decreases, and the workability at the time of stretching above 2.0 times falls.
  • the present invention is characterized in that the stretching process is performed using a method of passing through a heating chamber (heating chamber) of 230 °C to 300 °C.
  • an aqueous solution containing at least one metal salt selected from the group consisting of zinc salts, calcium salts, lithium salts, thiocyanates and iron salts as a solvent for dissolving the polyketone.
  • zinc salts include zinc bromide, zinc chloride, zinc iodide, and the like
  • calcium salts include calcium bromide, calcium chloride, calcium iodide, and the like
  • lithium salts such as lithium bromide, lithium chloride, and lithium iodide.
  • the iron salts include iron bromide and iron iodide.
  • metal salts it is particularly preferable to use at least one member selected from the group consisting of zinc bromide, calcium bromide, lithium bromide and iron bromide in view of solubility of the raw polyketone and homogeneity of the polyketone solution.
  • concentration of metal salt in the metal salt aqueous solution of this invention is 30-80 weight. If the concentration of the metal salt is less than 30% by weight solubility is lowered, if the concentration of the metal salt is more than 80% by weight the cost of concentration increases disadvantageous economically.
  • Water, methanol, ethanol and the like may be used as a solvent for dissolving the metal salt, but in particular, water is used in the present invention because it is advantageous in terms of economics and solvent recovery.
  • an aqueous solution containing zinc bromide is preferable, and the composition ratio of zinc bromide in the metal salt is an important factor.
  • the weight ratio of zinc bromide and calcium bromide is 80/20 to 50/50, more preferably 80/20 to 60/40.
  • the weight ratio of the sum of zinc bromide, calcium bromide and lithium bromide is 80/20 to 50/50, more preferably 80/20 to 60/40.
  • the weight ratio of calcium bromide and lithium bromide at the time is 40/60 to 90/10, preferably 60/40 to 85/15.
  • the polyketone polymer After degassing the aqueous metal salt solution maintained at 20 to 40 °C at 200torr or less, the polyketone polymer is heated to 60 to 100 °C in a vacuum of 200torr or less and stirred for 0.5 to 10 hours to prepare a homogeneous dope sufficiently dissolved. .
  • the polyketone polymer may be used by mixing other polymer materials or additives.
  • Polymeric materials include polyvinyl alcohol, carboxymethyl polyketone, polyethylene glycol, and the like, and additives include viscosity enhancing agents, titanium dioxide, silica dioxide, carbon, and ammonium chloride.
  • polyketone fibers including the steps of spinning, washing, drying and stretching the prepared homogeneous polyketone solution of the present invention will be described in more detail.
  • the polyketone fibers claimed in the present invention are not limited by the following process.
  • an orifice having a diameter of 100 to 500 ⁇ m and a length of 100 to 1500 ⁇ m, wherein the ratio (L / D) of the diameter and the length is 1 to 3 to 8 times, and the orifice
  • the spinning nozzle used is usually circular in shape and has a nozzle diameter of 50 to 200 mm, more preferably 80 to 130 mm.
  • the nozzle diameter is less than 50 mm, the distance between the orifices is too short, so that adhesion may occur before the discharged solution is solidified.
  • peripheral devices such as a spinning pack and a nozzle are enlarged, which is disadvantageous to the installation surface.
  • the diameter of the nozzle orifice is less than 100 ⁇ m, a large number of trimmings occur during spinning, which adversely affects radioactivity. If the nozzle orifice exceeds 500 ⁇ m, the solidification rate of the solution in the coagulation bath after spinning is slow, and the solvent is removed from the metal salt solution. And washing with water becomes difficult.
  • the number of orifices is 100 to 2,200, more preferably 300 to 1,400.
  • the number of orifices is less than 100, the fineness of each filament becomes thick, so that the solvent cannot be sufficiently released within a short time, so that solidification and washing with water are not completed.
  • the number of orifices exceeds 2,200, the filament and affixes close to the filament are likely to occur in the air layer section, and the stability of each filament decreases after spinning, which leads to the deterioration of physical properties. Can cause.
  • the air layer is preferably 5 to 50 mm, more preferably 10 to 20 mm. Too short air gap distances increase the rate of micropores generated during rapid surface layer solidification and desolvation, which hinders the increase in elongation ratio, while too long air gap distances are associated with filament adhesion, atmospheric temperature, and humidity. It is difficult to maintain process stability by receiving a lot.
  • the composition of the coagulation bath used in the present invention is such that the concentration of the aqueous metal salt solution is 1 to 20% by weight.
  • the coagulation bath temperature is maintained at -10 to 60 ° C, more preferably -5 to 20 ° C.
  • the coagulation fluid shakes due to friction between the filament and the coagulation solution.
  • such a phenomenon is a factor that impairs process stability, it is necessary to minimize it.
  • the coagulation bath is characterized in that the temperature is -10 to 40 °C and the metal salt concentration is 1 to 30% by weight, the water washing bath is preferably 0 to 40 °C temperature and metal salt concentration is 1 to 30% by weight.
  • the dryer temperature is 100 °C or more, preferably 200 °C or more to impart an emulsion, heat-resistant agent, antioxidant or stabilizer to the fiber passed through the dryer.
  • the stretching process in the polyketone fibers of the present invention is very important for high strength and hot water resistance improvement.
  • the present invention provides a high-strength fiber through the heat-resistant stability and direct drying method during wet spinning of polyketone.
  • the maximum strength is 13g / d, but the present invention optimizes the heating method and the temperature profile of the drying method to form a dense structure by fusion of the cross section of the dry yarn, This improves the draw ratio and strength.
  • the stretching ratio and the strength is improved through a process including a heat stabilizer during drying and stretching to prevent thermal degradation of the polyketone during heating.
  • Polyketone fibers have an oxidation or deterioration mechanism at high temperatures.
  • a radical oxidation mechanism polyketones emit carbon dioxide when exposed to oxygen above 90 ° C, resulting in oxidative degradation.
  • polyketones due to radical deterioration mechanisms, polyketones emit carbon monoxide and ethylene when exposed to high temperatures of 200 ° C. or higher, and thermal degradation occurs.
  • Heat stabilizers are used to prevent oxidation and degradation of polyketones at these high temperatures. As the heat stabilizer, both antioxidants which can prevent radical oxidation and deterioration may be used.
  • a phenolic heat stabilizer is used, and one or more kinds of heat stabilizers may be used alone or in combination.
  • the oxidation and deterioration prevention mechanism prevents the chain reaction by radicals by trapping an alkyl radical generated by heat or ultraviolet rays with a heat stabilizer as a heat stabilizer (see FIG. 1).
  • the heat stabilizer may be used before drying or stretching, and the method may be a dipping method or a coating method alone or one or more. Specifically, 0.1% of the solution of the phenolic heat stabilizer in which the phenolic heat stabilizer is mixed with a methanol solvent in the pre-drying and stretching steps is applied in the pre-drying and stretching steps, and is present on the fiber in the pre-drying step.
  • the heat stabilizer was 250 ppm, but after the drying and stretching step, 25 ppm remain.
  • the heat stabilizer should be used in an appropriate amount depending on the process, but the workability is low in many, and the heat stability is not sufficient in a small amount.
  • Heat stabilizers can be used in one or two dips or more.
  • the present invention is to use the direct drying method of hot roller drying method instead of the indirect drying method of the conventional hot air drying method to increase the strength of the fiber.
  • the conventional hot air drying method used the hot air drying method as shown in Figure 2 for a residence time of about 3 minutes 30 seconds at a temperature of 180 °C. It is possible to dry uniformly and has the effect of improving affix, but tangling, loops, static electricity generated a lot of fusion (fusion) structure is difficult to generate a tissue (see Fig. 4).
  • the present invention uses a hot roll drying method as shown in Figure 3 for a residence time of about 1 minute 30 seconds at a temperature of 220 to 230 °C by hot roll drying method. When the drying method is used, there is no tangling, little static electricity is generated, and the tissue is dense due to the formation of a fusion structure, and it is easy to apply to commercialization (see FIG. 5).
  • the present invention is subjected to the stretching process, the fiber is stretched by 15 to 18 times because of the stretching.
  • the stretching is carried out in one or two or more stages of multistage for stretching the polyketone fibers.
  • the temperature-stretching at which the stretching temperature gradually increases as the draw ratio is increased.
  • the stretching process is carried out at a temperature of 240 to 270 °C, the residence time is within about 1 minute 30 seconds, and undergoes the first and second stages. Stretching is performed 7 times in the 1st stage and 2.5 times in the 2nd stage, and stretching is performed step by step in the 2nd stage.
  • the polyketone fiber After the first stage, the polyketone fiber has 10% elongation and 8g / d strength, but after the second stage, the elongation is about 5.2% and 20g / d polyketone fiber is obtained.
  • heat stabilizer may be applied before drying or stretching, and in the present invention, either one dip or two dip may be used. In general, when the two-dip or more is performed, the elongation of the fiber is lowered apart from the increase in strength, but in the case of the hot roll drying method according to the present invention, there is almost no elongation.
  • the multifilaments produced by the process according to the invention are polyketone multifilaments with a total denier range of 500 to 3,500 and a cutting load of 6.0 to 40.0 kg.
  • the multifilament is composed of 100 to 2200 individual filaments having a fineness of 0.5 to 8.0 denier.
  • the fiber density of the monofilament is 1.295-1.310 g / cm3 by the process of adding the hot roll drying method and the heat stabilizer of the present invention, and the structure shows a dense structure as shown in FIG.
  • the initial modulus of the polyketone monofilament produced by the above process is 200 g / d or more
  • elongation is 2.5 to 3.5% at 10.0 g / d
  • elongates at least 0.5% or more at 19.0 g / d or more.
  • the polyketone body armor of the present invention is manufactured through a process of weaving a fabric, a process of refining the fabric, and a water repellent treatment of the fabric using the polyketone fibers produced by the above method as warp and weft yarns.
  • the process of weaving the fabric may include a process of weaving the polyketone multifilament with warp and weft yarns and weaving with plain or basket weaving.
  • the inclined density and weft density may be 10 to 25 bone / cm respectively.
  • the process of refining the fabric is to remove the oil or foreign matter adhering to the polyketone multifilament constituting the fabric, in order to improve the flexibility of the fabric.
  • the process of refining the fabric may be carried out using a surfactant such as NaOH or Na 2 CO 3 at 40 °C to 100 °C.
  • a surfactant such as NaOH or Na 2 CO 3 at 40 °C to 100 °C.
  • the process of water repellent treatment of the fabric is a process of treating the fabric so as not to absorb moisture, and to prevent property degradation due to moisture absorption during long-term use, after removing the foreign matter attached to the surface of the fabric through the refining process, This is done by dipping the fabric in a water repellent and drying.
  • the water repellent is 20 to 35 parts by weight of dipropylene glycol, 0.5 to 5.5 parts by weight of silicone oil and isopropyl alcohol, relative to 100 parts by weight of hardoxylated perfluoroalkylethyl acrylate copolymer. (isopropylalcohol) is prepared to contain 0.5 to 10 parts by weight.
  • Polyketone fibers produced by the present invention can be produced by a bulletproof helmet.
  • a bulletproof helmet can be manufactured by coating a thermoplastic resin on a polyketone fiber as described above, laminating a polyketone fiber coated with a thermosetting resin or thermoplastic resin on an outer layer in a helmet-shaped mold, and then pressing it. have.
  • thermosetting resin is not particularly limited, but a phenol resin, urea resin, melamine resin, silicone resin, epoxy resin, polyurethane resin, or the like may be used.
  • the thermoplastic resin is preferably an acrylic resin, vinyl chloride resin, vinylacetyl resin, polymethacrylic resin, polystyrene resin, polyethylene resin, nylon, or the like. However, it is not necessarily limited thereto.
  • Polyketone fibers produced by the present invention may be made of a polyketone bulletproof material for aircraft or military aircraft.
  • the polyketone multifilament prepared by the above method is applied to warp and weft yarns to make plain weave, and then impregnated in the elastic matrix stock solution, then laminated on a wing tip manufacturing mold, bonded with a thermoplastic or thermosetting resin, and heated and pressurized to polyketone Manufacture aircraft wing tip devices.
  • the elastic matrix stock solution is prepared by mixing 5 to 15 parts by weight of anti-aging agent, 3 to 8 parts by weight of carbon black and 20 to 30 parts by weight of inorganic fillers relative to 100 parts by weight of rubber chloride.
  • the rubber chloride is made of chloroprene rubber, acrylonitrile butadiene rubber, acrylic rubber, or a mixture of two or more thereof.
  • the anti-aging agent is a phenol-based, phosphorus-based, thio-based antioxidant.
  • magnesium oxide magnesium hydroxide, zinc oxide, or the like may be used.
  • thermosetting resin is not particularly limited, but a phenol resin, urea resin, melamine resin, silicone resin, epoxy resin, polyurethane resin, or the like may be used.
  • the thermoplastic resin is preferably an acrylic resin, vinyl chloride resin, vinylacetyl resin, polymethacrylic resin, polystyrene resin, polyethylene resin, nylon, or the like. However, it is not necessarily limited thereto.
  • the polyketone multifilament prepared above is applied to warp and weft yarns, and then manufactured in plain weave, and then laminated on a mold to be bonded with a thermoplastic or thermosetting resin to heat and pressurize to prepare a polyketone helicopter interior.
  • the polyketone fibers produced by the present invention are polyketone automotive structural materials, marine platforms, submersible structural materials, optical cable sheathing materials, radar dome structural materials, bobbins of superconducting coils, cryogenic insulation materials, wires for tennis rackets, yacht structural materials, yacht sails, competition It can be made of bicycles, coated fabrics for paraglides, safety gloves.
  • a 60% by weight zinc bromide solution was injected into the extruder maintained at an injection temperature of 25 ° C. and 30 ° C. at a speed of 13000 g / hour with a gear pump, and had a molecular weight distribution of 3.0 and an intrinsic viscosity of 6.0 dl / g.
  • the extruder was injected at 1160g / hour with a silver screw type feeder, so that the residence time in the extruder swelling zone was 0.8 minutes and the temperature was raised to 40 ° C, so that the polyketone powder was sufficiently dissolved in the metal salt solution.
  • the temperature was maintained at 55-60 ° C. and the screw was operated at 110 rpm to produce polyketone fibers by wet and dry spinning.
  • the nozzle odd number and hole diameter were 667 and 0.18 mm, respectively, and a circular nozzle having an L / D of 1 was used and the air gap was 10 mm.
  • the concentration of polyketone in the discharged solution was 8.2% by weight and homogeneous without undissolved polyketone particles.
  • the obtained fiber was stretched 1.2 times in the washing process, and before drying, the heat stabilizer was immersed in a 0.1% solution of a mixed solution of Adeka's AO80 and methanol with a phenolic heat stabilizer.
  • the drying process after stretching 1.2 times by hot roll drying method, fibers were produced by heating chamber method with total draw ratio of 16.8 times, 1 to 7 times stretching, 2 to 2.4 times stretching, and 2 stages respectively.
  • a polyketone powder with a zinc bromide solution having a concentration of 60% by weight was injected at an injection temperature of 25 ° C. at an internal temperature of 30 ° C. with a gear pump at a speed of 13000 g / hour, having a molecular weight distribution of 3.0 and an intrinsic viscosity of 5.7 dl / g.
  • the extruder was injected at 1160g / hour with a silver screw type feeder, so that the residence time in the extruder swelling zone was 0.8 minutes and the temperature was raised to 40 ° C, so that the polyketone powder was sufficiently dissolved in the metal salt solution.
  • the temperature was maintained at 55-60 ° C. and the screw was operated at 110 rpm to produce polyketone fibers by wet and dry spinning.
  • the nozzle odd number and hole diameter were 667 and 0.18 mm, respectively, and a circular nozzle having an L / D of 1 was used and the air gap was 10 mm.
  • the concentration of polyketone in the discharged solution was 8.2% by weight and homogeneous without undissolved polyketone particles.
  • the obtained fiber was stretched 1.2 times in the washing process, and before drying, the heat stabilizer was immersed in a 0.1% solution of a mixed solution of Adeka's AO80 and methanol with a phenolic heat stabilizer.
  • the drying process after stretching 1.2 times by hot roll drying method, fibers were produced by heating chamber method with total draw ratio of 16.8 times, 1 to 7 times stretching, 2 to 2.4 times stretching, and 2 stages respectively.
  • the intrinsic viscosity of the polyketone polymer was adjusted to 6.3 dl / g as in Production Example 4.
  • a polyketone powder with a molecular weight distribution of 2.5 and an intrinsic viscosity of 6.0 dl / g is injected into the extruder with a concentration of 60% by weight of a zinc bromide solution at an injection temperature of 25 ° C. at a speed of 13000 g / hour using a gear pump.
  • the extruder was injected at 1160g / hour with a silver screw type feeder, so that the residence time in the extruder swelling zone was 0.8 minutes and the temperature was raised to 40 ° C, so that the polyketone powder was sufficiently dissolved in the metal salt solution.
  • the temperature was maintained at 55-60 ° C. and the screw was operated at 110 rpm to produce polyketone fibers by wet and dry spinning.
  • the nozzle odd number and hole diameter were 667 and 0.18 mm, respectively, and a circular nozzle having an L / D of 1 was used and the air gap was 10 mm.
  • the concentration of polyketone in the discharged solution was 8.2% by weight and homogeneous without undissolved polyketone particles.
  • the obtained fiber was stretched 1.2 times in the washing process, and before drying, the heat stabilizer was immersed in a 0.1% solution of a mixed solution of Adeka's AO80 and methanol with a phenolic heat stabilizer.
  • the drying process after stretching 1.2 times by hot roll drying method, fibers were produced by heating chamber method with total draw ratio of 16.8 times, 1 to 7 times stretching, 2 to 2.4 times stretching, and 2 stages respectively.
  • the molecular weight distribution of the polyketone polymer was adjusted to 3.5, which is the same as in Production Example 8.
  • a phenolic heat stabilizer was prepared in the same manner as in Preparation Example 1 except that a 0.1% solution of Adeka's AO80 and methanol solution was subjected to one dip before drying.
  • a phenolic heat stabilizer was prepared in the same manner as in Preparation Example 1, except that a 0.1% solution of Adeka's AO80 and methanol was subjected to two dips before drying and before stretching.
  • I.V. 1/4 ⁇ [(R.V.-1) / C] + 3/4 ⁇ (In R.V./C)
  • C represents the concentration of the sample in solution (g / 100ml).
  • the polyketone was dissolved in a hexafluoroisopropanol solution containing 0.01 N sodium trifluoroacetate so that the polyketone concentration was 0.01% by weight, and measured under the following conditions.
  • the sample After leaving the yarn in a standard condition, that is, a constant temperature and humidity chamber at a temperature of 25 ° C. and a relative humidity of 65% for 24 hours, the sample is measured by a tensile tester using the ASTM 2256 method. The physical properties of the samples were measured with the remaining eight average values except one of the maximum and the minimum of 10 values measured from the 10 samples. Initial modulus represents the slope of the graph before the yield point.
  • the average speed (V50) indirectly indicating the degree of bulletproof performance of the bulletproof helmet was measured according to MIL-STD-662F specification, and the average speed (m ⁇ s) was completely penetrated using a Cal. 22-caliber fragmented bullet (FSP). The speed at the time of carrying out and the speed at the time of partial penetration were calculated
  • the cross-sectional variation rate (CV%) of the multifilament manufactured in Examples and Comparative Examples was obtained by measuring the cross-sectional state of the fiber manufactured by using a cross-section cutting copper plate and a microscope, and then the relative filaments corresponding to 90% or more of the filaments. The area was quantified. In this case, the area of each filament need not be an absolute area, and relative units such as pixels obtained from image analysis software may be used. In the present invention, three points were specified at the interface of each circular filament, and the relative area of the filament was calculated using the circumscribed circle of the triangle. This operation is preferably performed using as large a magnification and image magnification as possible to reduce errors in the selection of interface points.
  • the section variation rate was calculated as follows.
  • the dendritic load was defined by the denier in Vibrojet using Vibrojet 2000's monofilament tensile tester. About monodenier x 50 (mg)) was added, and the sample length was measured at 20 mm and tensile strength 20 mm / min. The monofilament properties were measured with the remaining 22 average values except one of the maximum and the minimum of 24 measured values. Initial modulus represents the slope of the graph before the yield point.
  • the stretched yarns prepared according to the above Examples and Comparative Examples were measured to measure the strength before and after deposition for 24 hours at room temperature in 15 L of chlorine water with an active chlorine concentration of 3 ppm and pH 7.5, respectively. Retention rate was calculated. Instron 4301 (Instron, USA) was used for the strength measurement. The sample length was 5 centimeters, and the cell was measured at a cross head speed of 300 mm / min using 1 Kg. The results are shown in Table 3.
  • Specimens (100 mm) were prepared, and each of the specimens was dried at 105 ° C. for 30 minutes, and then the respective masses were measured. Subsequently, the specimens were immersed in distilled water at room temperature for 24 hours, taken out, wiped off the moisture on the surface of each specimen, and the respective masses were measured, which was referred to as 'mass after absorption'. Thereafter, the moisture absorption rate was obtained from Equation 1 below.
  • Moisture absorption rate (%) (mass after absorption-mass before absorption) / (mass before absorption)
  • the burned length (cm) of the specimens was measured by evaluating flame retardancy according to the IEC 332-3C flame retardant test (combustion length 240 cm or less).
  • the polyketone fibers produced by the examples of the present invention were excellent in elongation and strength, and excellent in water resistance, heat resistance, toughness, dry heat shrinkage ratio, and the like.
  • the fabric was woven into a plain weave with a polyketone multifilament inclined density and weft density of 1,000 pieces each having a fineness of 1.5 deniers of 10 bones / cm. Subsequently, the fabric was treated with a surfactant, washed with water and dried, and then 20 to 35 parts by weight of dipropylene glycol, relative to 100 parts by weight of hardoxylated perfluoroalkylethyl acrylate copolymer.
  • Example 2 It is the same as Example 1 except the temperature of each step of 1st stage and 2nd stage was adjusted to 240, 250, 260, and 268 degreeC in extending
  • Example 2 It is the same as Example 1 except the temperature of each step of 1st stage and 2nd stage was adjusted to 240, 255, 265, and 272 degreeC in extending
  • the fabric was woven into a plain weave with a polyketone multifilament inclination density and weft density of 1,000 pieces of 1.5 deniers of 10 bone / cm, respectively. Subsequently, the fabric was treated with a surfactant, washed with water, and dried, and then 20 to 35 parts by weight of dipropylene glycol relative to 100 parts by weight of the hardoxylated perfluoroalkylethyl acrylate copolymer.
  • Example 4 It is the same as Example 4 except adjusting the intrinsic viscosity of polyketone polymer to 6.1 dl / g.
  • the intrinsic viscosity of the polyketone polymer was adjusted to 6.3 dl / g as in Example 4.
  • the fabric was woven into a plain weave of 1,500 polyketone multifilament of denier 8.0 with a warp density and a weft density of 10 bones / cm, respectively. Subsequently, the fabric was treated with a surfactant, washed with water and dried, and then 20 to 35 parts by weight of dipropylene glycol, relative to 100 parts by weight of hardoxylated perfluoroalkylethyl acrylate copolymer.
  • the molecular weight distribution of the polyketone polymer was adjusted to 3.5, which is the same as in Example 7.
  • a phenolic heat stabilizer was the same as in Example 1 except that a 0.1% solution of Adeka's AO80 and methanol solution was subjected to one dip before drying.
  • a phenolic heat stabilizer was the same as in Example 1 except that a 0.1% solution of Adeka's AO80 and methanol solution was subjected to two dips before drying and before stretching.
  • Comparative Example 1 Comparative Example 2 Comparative Example 3 Hot Air Dryer Temperature (°C) 240 °C 260 °C 280 °C Drawing ratio in water washing process (times) 1.0x 1.0x 1.0x
  • the epoxy resin was bonded and coated by applying a pressure of 1.5 bar in an 80 ° C. chamber, followed by a helmet After lamination to the lower mold for production, a bulletproof helmet was prepared by curing for 20 minutes at a pressure of 160 bar and a temperature of 130 °C.
  • Example 12 It is the same as Example 12 except the temperature of each step of 1st stage and 2nd stage was adjusted to 240, 250, 260, and 268 degreeC in extending
  • 1,000 denier polyketone filaments obtained through the process of Preparation Example 4 were applied to warp and weft yarns and weaved in plain weave, and then coated with acrylic resin by applying a pressure of 1.5 bar in an 80 ° C. chamber, followed by a helmet After lamination to the lower mold for production, a bulletproof helmet was prepared by curing for 20 minutes at a pressure of 160 bar and a temperature of 130 °C.
  • the intrinsic viscosity of the polyketone polymer was adjusted to 6.3 dl / g as in Example 15.
  • the polyamide resin was bonded and coated by applying a pressure of 1.5 bar in an 80 ° C. chamber.
  • a bulletproof helmet was prepared by curing at a pressure of 160 bar and a temperature of 130 ° C. for 20 minutes.
  • Example 18 Same as Example 18, except that the molecular weight distribution of the polyketone polymer was adjusted to 2.8.
  • the molecular weight distribution of the polyketone polymer was adjusted to 3.5, which is the same as in Example 18.
  • a phenolic heat stabilizer was the same as in Example 12 except that a 0.1% solution of Adeka's AO80 and methanol solution was subjected to one dip before drying.
  • Example 12 As a phenolic heat stabilizer, the same procedure as in Example 12 was carried out except that a 0.1% solution of Adeka's AO80 and methanol solution was subjected to two dips before drying and before stretching.
  • Comparative Example 4 Comparative Example 5 Comparative Example 6 Hot Air Dryer Temperature (°C) 240 °C 260 °C 280 °C Drawing ratio in water washing process (times) 1.0x 1.0x 1.0x
  • Example 23 Except that the temperature of each step of the first and second stages in the stretching of the heating chamber system was adjusted to 240, 250, 260 and 268 °C, it is the same as in Example 23.
  • Example 23 Except that the temperature of each step of the first stage and the second stage in the stretching of the heating chamber system was adjusted to 240, 255, 265 and 272 °C, it is the same as in Example 23.
  • Example 26 The same as in Example 26 except that the intrinsic viscosity of the polyketone polymer was adjusted to 6.1 dl / g.
  • the intrinsic viscosity of the polyketone polymer was adjusted to 6.3 dl / g as in Example 26.
  • Example 29 Same as Example 29, except that the molecular weight distribution of the polyketone polymer was adjusted to 2.8.
  • the molecular weight distribution of the polyketone polymer was adjusted to 3.5, which is the same as in Example 29.
  • Example 23 As a phenolic heat stabilizer, the same procedure as in Example 23 was carried out except that a 0.1% solution of the mixed solution of Adeka AO80 and methanol was subjected to one dip before drying.
  • Example 23 As a phenolic heat stabilizer, the same procedure as in Example 23 was carried out except that a 0.1% solution of Adeka's AO80 and methanol solution was subjected to two dips before drying and before stretching.
  • the polyketone filaments produced by the examples of the present invention were found to have excellent strength, elongation and cross-sectional variation, and the fragment protection material including the polyketone filaments was found to have excellent ballistic performance.
  • Example 34 It is the same as Example 34 except the temperature of each step of 1st stage and 2nd stage was adjusted to 240, 250, 260, and 268 degreeC in extending
  • Example 34 Except that the temperature of each step of the first stage and the second stage in the stretching of the heating chamber system was adjusted to 240, 255, 265 and 272 °C, the same as in Example 34.
  • Example 37 The same as in Example 37, except that the intrinsic viscosity of the polyketone polymer was adjusted to 6.1 dl / g.
  • the intrinsic viscosity of the polyketone polymer was adjusted to 6.3 dl / g as in Example 37.
  • Example 40 Same as Example 40 except that the molecular weight distribution of the polyketone polymer was adjusted to 2.8.
  • the molecular weight distribution of the polyketone polymer was adjusted to 3.5, which is the same as in Example 40.
  • Example 34 As a phenolic heat stabilizer, the same procedure as in Example 34 was carried out except that a 0.1% solution of the mixed solution of Adeka AO80 and methanol was subjected to one dip before drying.
  • Example 34 As a phenolic heat stabilizer, the same procedure as in Example 34 was carried out except that a 0.1% solution of Adeka's AO80 and methanol solution was subjected to two dips before drying and before stretching.
  • Example 34 In the manufacture of bulletproof materials for aircraft or military aircraft, it was carried out in the same manner as in Example 34 except that aramid fibers were used, the draw ratio was 1.0 times in the washing process, and the hot air drying method was performed instead of the hot roll drying method. It was carried out under the spinning condition of.
  • Comparative Example 10 Comparative Example 11 Comparative Example 12 Hot Air Dryer Temperature (°C) 240 °C 260 °C 280 °C Drawing ratio in water washing process (times) 1.0x 1.0x 1.0x
  • the polyketone multifilament prepared by the embodiments of the present invention is excellent in strength and elongation, and the polyketone bulletproof material including the same has excellent antiballistic performance and is suitable for use as a bulletproof material for aircraft or military aircraft. appear.
  • the polyketone multifilament obtained through the process of Preparation Example 1 was impregnated with an elastic matrix solution mixed with 100 parts by weight of chloroprene rubber, 10 parts by weight of phenolic antioxidant, 5 parts by weight of carbon black, and 20 parts by weight of magnesium oxide.
  • the aircraft wingtip device was manufactured by heating and pressing at a temperature of 100 to 150 ° C. and a pressure of 15 to 25 bar.
  • Example 45 It is the same as Example 45 except the temperature of each step of 1st stage and 2nd stage was adjusted to 240, 250, 260, and 268 degreeC in extending
  • Example 45 Except that the temperature of each step of the first and second stages in the stretching of the heating chamber method was adjusted to 240, 255, 265 and 272 °C, it is the same as in Example 45.
  • the polyketone multifilament obtained through the process of Preparation Example 4 was impregnated in an elastic matrix solution mixed with 100 parts by weight of chloroprene rubber, 10 parts by weight of a phenolic antioxidant, 5 parts by weight of carbon black, and 20 parts by weight of magnesium oxide.
  • the aircraft wingtip device was manufactured by heating and pressing at a temperature of 100 to 150 ° C. and a pressure of 15 to 25 bar.
  • Example 48 Same as Example 48 except that the intrinsic viscosity of the polyketone polymer was adjusted to 6.1 dl / g.
  • the intrinsic viscosity of the polyketone polymer was adjusted to 6.3 dl / g as in Example 48.
  • the polyketone multifilament obtained through the process of Preparation Example 7 was impregnated with an elastic matrix solution mixed with 100 parts by weight of chloroprene rubber, 10 parts by weight of a phenolic antioxidant, 5 parts by weight of carbon black, and 20 parts by weight of magnesium oxide.
  • the aircraft wingtip device was manufactured by heating and pressing at a temperature of 100 to 150 ° C. and a pressure of 15 to 25 bar.
  • Example 51 Same as Example 51 except that the molecular weight distribution of the polyketone polymer was adjusted to 2.8.
  • the molecular weight distribution of the polyketone polymer was adjusted to 3.5, which is the same as in Example 51.
  • a phenolic heat stabilizer was the same as in Example 45 except that a 0.1% solution of Adeka's AO80 and methanol solution was subjected to one dip before drying.
  • Example 45 As a phenolic heat stabilizer, the same procedure as in Example 45 was carried out except that a 0.1% solution of Adeka's AO80 and methanol solution was subjected to two dips before drying and before stretching.
  • Comparative Example 13 Comparative Example 14 Comparative Example 15 Hot Air Dryer Temperature (°C) 240 °C 260 °C 280 °C Drawing ratio in water washing process (times) 1.0x 1.0x 1.0x
  • the polyketone multifilament manufactured according to the embodiment of the present invention is excellent in strength and elongation, and the aircraft wing tip device to which the same is applied has been found to have excellent flexibility.
  • Example 56 It is the same as Example 56 except the temperature of each step of 1st stage and 2nd stage was adjusted to 240, 250, 260, and 268 degreeC in extending
  • Example 56 Except that the temperature of each step of the first and second stages in the stretching of the heating chamber system was adjusted to 240, 255, 265 and 272 °C, it is the same as in Example 56.
  • Example 59 Same as Example 59 except that the intrinsic viscosity of the polyketone polymer was adjusted to 6.1 dl / g.
  • the intrinsic viscosity of the polyketone polymer was adjusted to 6.3 dl / g as in Example 59.
  • the polyketone multifilament prepared above is applied to warp and weft yarns, and then manufactured in plain weave, laminated to a mold, bonded to an acrylic resin, and then heat treated with a heat press roll at 150 ° C. and 2.5 bar for 30 minutes. Prepared.
  • Example 62 Same as Example 62 except that the molecular weight distribution of the polyketone polymer was adjusted to 2.8.
  • the molecular weight distribution of the polyketone polymer was adjusted to 3.5, which is the same as in Example 62.
  • Example 56 As a phenolic heat stabilizer, the same procedure as in Example 56 was carried out except that a 0.1% solution of Adeka's AO80 and methanol solution was subjected to one dip before drying.
  • Example 56 As a phenolic heat stabilizer, the same procedure as in Example 56 was carried out except that a 0.1% solution of Adeka's AO80 and methanol solution was subjected to two dips before drying and before stretching.
  • Comparative Example 16 Comparative Example 17 Comparative Example 18 Hot Air Dryer Temperature (°C) 240 °C 260 °C 280 °C Drawing ratio in water washing process (times) 1.0x 1.0x 1.0x
  • the polyketone fibers produced by the examples of the present invention were found to be excellent in strength and elongation, and were suitable for use as helicopter interior materials.
  • the polyketone fiber obtained through the above Preparation Example 1 process was adjusted to 1.5 denier final monofilament fineness.
  • 1,000 denier polyketone filaments obtained through the above process were applied to warp and weft yarns, and then woven into plain weave.
  • epoxy resin was bonded and coated by applying a pressure of 1.5 bar in an 80 ° C. chamber, and then laminated on a mold. , Cured for 20 minutes at a pressure of 160 bar and a temperature of 130 °C to prepare an automobile structural material.
  • the polyketone fiber obtained through the above Preparation Example 4 process was adjusted to 1.5 denier final monofilament fineness.
  • 1,000 denier polyketone filaments obtained through the above process were applied to warp and weft yarns, and then woven into plain weave.
  • epoxy resin was bonded and coated by applying a pressure of 1.5 bar in an 80 ° C. chamber, and then laminated on a mold. , Cured for 20 minutes at a pressure of 160 bar and a temperature of 130 °C to prepare an automobile structural material.
  • Example 70 The same as in Example 70, except that the intrinsic viscosity of the polyketone polymer was adjusted to 6.1 dl / g.
  • the intrinsic viscosity of the polyketone polymer was adjusted to 6.3 dl / g as in Example 70.
  • the polyketone fibers obtained through the above Preparation Example 7 were adjusted to 1.5 denier final monofilament fineness.
  • 1,000 denier polyketone filaments obtained through the above process were applied to warp and weft yarns, and then woven into plain weave.
  • epoxy resin was bonded and coated by applying a pressure of 1.5 bar in an 80 ° C. chamber, and then laminated on a mold. , Cured for 20 minutes at a pressure of 160 bar and a temperature of 130 °C to prepare an automobile structural material.
  • Example 73 Same as Example 73, except that the molecular weight distribution of the polyketone polymer was adjusted to 2.8.
  • the molecular weight distribution of the polyketone polymer was adjusted to 3.5, which is the same as in Example 73.
  • Example 67 As a phenolic heat stabilizer, the same procedure as in Example 67 was carried out except that a 0.1% solution of Adeka's AO80 and methanol solution was subjected to one dip before drying.
  • Example 67 As a phenolic heat stabilizer, the same procedure as in Example 67 was carried out except that a 0.1% solution of Adeka's AO80 and methanol solution was subjected to two dips before drying and before stretching.
  • the draw ratio is 1.0 times in the washing process and the hot air drying method instead of hot roll drying method was carried out in the same manner as in Example 67, the spinning conditions of Table 1 was performed.
  • Comparative Example 19 Comparative Example 20 Comparative Example 21 Hot Air Dryer Temperature (°C) 240 °C 260 °C 280 °C Drawing ratio in water washing process (times) 1.0x 1.0x 1.0x
  • the automobile structural member including the polyketone multifilament manufactured by the embodiment of the present invention was found to be suitable for use as an automobile structural member due to its excellent strength and elongation.
  • thermoplastic or thermosetting resin After applying the polyketone multifilament obtained through the manufacturing example 1 to the warp and weft yarn, and woven into plain weave, the thermoplastic or thermosetting resin is bonded to apply pressure in the chamber, and then laminated to the mold to cure the ship platform Was prepared.
  • Example 78 Except that the temperature of each step of the first stage and the second stage in the stretching of the heating chamber system was adjusted to 240, 250, 260 and 268 °C, it is the same as in Example 78.
  • Example 78 Except that the temperature of each step of the first stage and the second stage in the stretching of the heating chamber system is adjusted to 240, 255, 265 and 272 °C, it is the same as in Example 78.
  • An airbag was manufactured using the polyketone fibers obtained through the preparation example 4 above.
  • Example 81 Same as Example 81 except that the intrinsic viscosity of the polyketone polymer was adjusted to 6.1 dl / g.
  • the intrinsic viscosity of the polyketone polymer was adjusted to 6.3 dl / g as in Example 81.
  • the polyketone multifilament obtained through the process of Preparation Example 7 was applied to warp and weft yarns, and then woven into plain weave. Was prepared.
  • Example 84 Same as Example 84 except that the molecular weight distribution of the polyketone polymer was adjusted to 2.8.
  • the molecular weight distribution of the polyketone polymer was adjusted to 3.5, which is the same as in Example 84.
  • Example 78 As a phenolic heat stabilizer, the same procedure as in Example 78 was carried out except that a 0.1% solution of Adeka's AO80 and methanol solution was subjected to one dip before drying.
  • Example 78 As a phenolic heat stabilizer, the same procedure as in Example 78 was carried out except that a 0.1% solution of Adeka's AO80 and methanol solution was subjected to two dips before drying and before stretching.
  • Comparative Example 22 Comparative Example 23 Comparative Example 24 Hot Air Dryer Temperature (°C) 240 °C 260 °C 280 °C Drawing ratio in water washing process (times) 1.0x 1.0x 1.0x
  • the polyketone multifilament prepared by the examples of the present invention was found to be suitable for use as a ship platform because of its excellent strength, water resistance and chlorine resistance.
  • the polyketone multifilament obtained through the process of Preparation Example 1 was injected into a manufacturing mold together with a polyurethane resin, and heated and pressurized at 50 ° C. and 3.5 bar for 1 hour to prepare a submersible structure.
  • Example 89 The same procedure as in Example 89 was carried out except that the temperature of each step of the first and second stages was adjusted to 240, 250, 260 and 268 ° C in the stretching of the heating chamber method.
  • Example 89 The same procedure as in Example 89 was carried out except that the temperature of each step of the first and second stages was adjusted to 240, 255, 265, and 272 ° C in the stretching of the heating chamber method.
  • the polyketone multifilament obtained through the process of Preparation Example 4 was injected into a production mold together with a polyurethane resin, and heated and pressurized at 50 ° C. and 3.5 bar for 1 hour to prepare a submersible structure.
  • Example 92 Same as Example 92 except that the intrinsic viscosity of the polyketone polymer was adjusted to 6.1 dl / g.
  • the intrinsic viscosity of the polyketone polymer was adjusted to 6.3 dl / g as in Example 92.
  • the polyketone multifilament obtained through the process of Preparation Example 7 was injected into a production mold together with a polyurethane resin, and heated and pressurized at 50 ° C. and 3.5 bar for 1 hour to prepare a submersible structure.
  • Example 95 Same as Example 95 except that the molecular weight distribution of the polyketone polymer was adjusted to 2.8.
  • the molecular weight distribution of the polyketone polymer was adjusted to 3.5, which is the same as in Example 95.
  • Example 89 As a phenolic heat stabilizer, the same procedure as in Example 89 was carried out except that a 0.1% solution of the mixed solution of Adeka AO80 and methanol was subjected to one dip before drying.
  • Example 89 As a phenolic heat stabilizer, the same procedure as in Example 89 was carried out except that a 0.1% solution of Adeka's AO80 and methanol was subjected to two dips before drying and before stretching.
  • Comparative Example 25 Comparative Example 26 Comparative Example 27 Hot Air Dryer Temperature (°C) 240 °C 260 °C 280 °C Drawing ratio in water washing process (times) 1.0x 1.0x 1.0x
  • the submersible structural material including the polyketone fiber prepared by the examples of the present invention was found to be suitable for use as a submersible structural material because of its excellent strength.
  • Example 100 It is the same as Example 100 except the temperature of each step of 1st stage and 2nd stage was adjusted to 240, 250, 260, and 268 degreeC in extending
  • Example 100 Except that the temperature of each step of the first and second stages in the stretching of the heating chamber method is adjusted to 240, 255, 265 and 272 °C, it is the same as in Example 100.
  • Example 103 The same as in Example 103 except that the intrinsic viscosity of the polyketone polymer was adjusted to 6.1 dl / g.
  • the intrinsic viscosity of the polyketone polymer was adjusted to 6.3 dl / g as in Example 103.
  • Example 106 Same as Example 106 except that the molecular weight distribution of the polyketone polymer was adjusted to 2.8.
  • the molecular weight distribution of the polyketone polymer was adjusted to 3.5, which is the same as in Example 106.
  • Example 100 As a phenolic heat stabilizer, the same procedure as in Example 100 was carried out except that a 0.1% solution of Adeka's AO80 and methanol solution was subjected to one dip before drying.
  • Example 100 As a phenolic heat stabilizer, the same procedure as in Example 100 was carried out except that a 0.1% solution of Adeka's AO80 and methanol solution was subjected to two dips before drying and before stretching.
  • the draw ratio is 1.0 times in the washing process and the hot air drying method instead of hot roll drying method was carried out in the same manner as in Example 100, the spinning conditions of Table 20 was performed.
  • Comparative Example 28 Comparative Example 29 Comparative Example 30 Hot Air Dryer Temperature (°C) 240 °C 260 °C 280 °C Drawing ratio in water washing process (times) 1.0x 1.0x 1.0x
  • Example 100 20.75 5.9 0.01 45 220 2.4 1.8
  • Example 101 21.00 5.6 0.01 48 280 2.5 2.1
  • Example 102 20.84 5.7 0.02 43 205 2.3 1.7
  • Example 103 19.95 6.3 0.01 42 250 2.9 2.0
  • Example 104 20.55 6.0 0.03 50 290 3.1 1.0
  • Example 105 20.13 6.1 0.01 52 212 2.8 1.4
  • Example 106 19.74 6.3 0.02 44 210 2.7 1.2
  • Example 107 20.87 5.7 0.01 46 230 3.2 1.3
  • Example 108 20.14 6.1 0.02 50 220 3.1 1.3
  • Example 109 20.20 6.0 0.01 44 260 3.4 1.4
  • Example 110 21.04 5.6 0.01 46 230 2.8 1.2
  • the optical cable covering material including the polyketone multifilament prepared according to the embodiment of the present invention was excellent in strength, elongation, low hygroscopicity, and was excellent in flame retardancy and thus suitable for use as an optical cable covering material.
  • the acrylic resin is bonded and coated by applying pressure in a chamber, and then laminated to the mold to harden A polyketone radar dome structure was fabricated.
  • Example 111 Except that the temperature of each step of the first stage and the second stage in the stretching of the heating chamber method was adjusted to 240, 250, 260 and 268 °C, it is the same as Example 111.
  • Example 111 Except that the temperature of each step of the first and second stages in the stretching of the heating chamber method is adjusted to 240, 255, 265 and 272 °C, it is the same as in Example 111.
  • Example 114 Same as Example 114 except that the intrinsic viscosity of the polyketone polymer was adjusted to 6.1 dl / g.
  • the intrinsic viscosity of the polyketone polymer was adjusted to 6.3 dl / g as in Example 114.
  • Example 117 Same as Example 117 except that the molecular weight distribution of the polyketone polymer was adjusted to 2.8.
  • the molecular weight distribution of the polyketone polymer was adjusted to 3.5, which is the same as in Example 117.
  • Example 111 As a phenolic heat stabilizer, the same procedure as in Example 111 was carried out except that a 0.1% solution of Adeka's AO80 and methanol solution was subjected to one dip before drying.
  • Example 111 As a phenolic heat stabilizer, the same procedure as in Example 111 was carried out except that a 0.1% solution of Adeka's AO80 and methanol solution was subjected to two dips before drying and before stretching.
  • Comparative Example 31 Comparative Example 32 Comparative Example 33 Hot Air Dryer Temperature (°C) 240 °C 260 °C 280 °C Drawing ratio in water washing process (times) 1.0x 1.0x 1.0x
  • the polyketone multifilament manufactured by the embodiments of the present invention was excellent in strength, elongation, and initial modulus, and the radar dome structural material including the same was found to be suitable for use as a radar dome structural material.
  • thermoplastic or thermosetting resin was bonded to apply pressure in the chamber, and then laminated to the lower mold for bobbin manufacturing and injection molding To prepare a bobbin of the polyketone superconducting coil.
  • Example 122 Except that the temperature of each step of the first stage and the second stage in the stretching of the heating chamber system was adjusted to 240, 250, 260 and 268 °C, it is the same as Example 122.
  • Example 122 Except that the temperature of each step of the first and second stages in the stretching of the heating chamber method was adjusted to 240, 255, 265 and 272 °C, it is the same as Example 122.
  • thermoplastic or thermosetting resin was bonded to apply pressure in the chamber, and then laminated to the lower mold for bobbin injection molding To prepare a bobbin of the polyketone superconducting coil.
  • Example 125 It is the same as Example 125 except the intrinsic viscosity of polyketone polymer was adjusted to 6.1 dl / g.
  • the intrinsic viscosity of the polyketone polymer was adjusted to 6.3 dl / g as in Example 125.
  • thermoplastic or thermosetting resin After applying the polyketone fibers obtained through the process of Preparation Example 7 to the warp and weft yarn, and woven into plain weave, the thermoplastic or thermosetting resin is bonded to apply pressure in the chamber, and then laminated to the lower mold for bobbin injection molding To prepare a bobbin of the polyketone superconducting coil.
  • Example 128 Same as Example 128 except that the molecular weight distribution of the polyketone polymer was adjusted to 2.8.
  • the molecular weight distribution of the polyketone polymer was adjusted to 3.5, which is the same as in Example 128.
  • Example 122 As a phenolic heat stabilizer, the same procedure as in Example 122 was carried out except that a 0.1% solution of the mixed solution of Adeka AO80 and methanol was subjected to one dip before drying.
  • Example 122 As a phenolic heat stabilizer, the same procedure as in Example 122 was carried out except that a 0.1% solution of Adeka's AO80 and methanol solution was subjected to two dips before drying and before stretching.
  • Example 122 In the preparation of the bobbin of the superconducting coil, it was carried out in the same manner as in Example 122 except that the aramid fibers were used, the draw ratio was 1.0 times in the washing step and the hot air drying method, not the hot roll drying method, was performed. It was performed under spinning conditions.
  • Comparative Example 34 Comparative Example 35 Comparative Example 36 Hot Air Dryer Temperature (°C) 240 °C 260 °C 280 °C Drawing ratio in water washing process (times) 1.0x 1.0x 1.0x
  • the bobbin of the superconducting coil including the polyketone fiber prepared according to the embodiment of the present invention was found to be suitable for use as a bobbin of the superconducting coil due to its excellent strength.
  • it has been found to be suitable for use as a coating material for superconducting coils instead of bobbins for superconducting coils.
  • the cryogenic insulation material was manufactured using the polyketone fiber obtained through the process of Preparation Example 1.
  • Example 133 It is the same as Example 133 except the temperature of each step of 1st stage and 2nd stage was adjusted to 240, 250, 260, and 268 degreeC in extending
  • Example 133 Except that the temperature of each step of the first stage and the second stage in the stretching of the heating chamber method is adjusted to 240, 255, 265 and 272 °C, it is the same as in Example 133.
  • the cryogenic insulation material was manufactured using the polyketone fiber obtained through the process of Preparation Example 4.
  • Example 136 Same as Example 136 except that the intrinsic viscosity of the polyketone polymer was adjusted to 6.1 dl / g.
  • the intrinsic viscosity of the polyketone polymer was adjusted to 6.3 dl / g as in Example 136.
  • the cryogenic insulation material was manufactured using the polyketone fiber obtained through the process of Preparation Example 7.
  • Example 139 Same as Example 139 except that the molecular weight distribution of the polyketone polymer was adjusted to 2.8.
  • the molecular weight distribution of the polyketone polymer was adjusted to 3.5, which is the same as in Example 141.
  • Example 133 As a phenolic heat stabilizer, the same procedure as in Example 133 was carried out except that a 0.1% solution of Adeka's AO80 and methanol solution was subjected to one dip before drying.
  • Example 133 As a phenolic heat stabilizer, the same solution as in Example 133 was carried out except that a 0.1% solution of Adeka AO80 and methanol solution was applied before drying and stretching.
  • cryogenic insulation material was carried out in the same manner as in Example 133, except that aramid fibers were used, the draw ratio was 1.0 times in the water washing process and the hot air drying method is carried out instead of the hot roll drying method, spinning of Table 26 Carried out under conditions.
  • the cryogenic insulation material including the polyketone fiber manufactured according to the embodiment of the present invention was found to be suitable for use as a cryogenic insulation material due to its excellent strength.
  • Melamine resin was laminated on the polyketone fibers obtained through the process of Preparation Example 1, followed by thermocompression, followed by cutting and warming and pressing through a press to form a curved surface to manufacture a ski board including polyketone fibers.
  • Example 144 Except that the temperature of each step of the first stage and the second stage in the stretching of the heating chamber method is adjusted to 240, 250, 260 and 268 °C, it is the same as in Example 144.
  • Example 144 Except that the temperature of each step of the first stage and the second stage in the stretching of the heating chamber method is adjusted to 240, 255, 265 and 272 °C, it is the same as in Example 144.
  • Melamine resin was laminated on the polyketone fibers obtained through the process of Preparation Example 4, followed by thermocompression, followed by cutting and warming and pressing through a press to form a curved surface to manufacture a ski board including polyketone fibers.
  • Example 147 Same as Example 147 except that the intrinsic viscosity of the polyketone polymer was adjusted to 6.1 dl / g.
  • the intrinsic viscosity of the polyketone polymer was adjusted to 6.3 dl / g as in Example 147.
  • Melamine resin was laminated on the polyketone fibers obtained through the process of Preparation Example 7, followed by thermocompression, followed by cutting and warming and pressing through a press to form a curved surface to manufacture a ski board including polyketone fibers.
  • Example 150 It is the same as Example 150 except the molecular weight distribution of the polyketone polymer was adjusted to 2.8.
  • the molecular weight distribution of the polyketone polymer was adjusted to 3.5, which is the same as in Example 150.
  • Example 153 As a phenolic heat stabilizer, the same procedure as in Example 153 was performed except that a 0.1% solution of Adeka's AO80 and methanol solution was subjected to one dip before drying.
  • Example 153 As a phenolic heat stabilizer, the same procedure as in Example 153 was carried out except that a 0.1% solution of Adeka's AO80 and methanol solution was subjected to two dips before drying and before stretching.
  • Aramid fiber was used in the manufacture of the ski board, the draw ratio in the washing process was carried out in the same manner as in Example 144, except that the draw ratio is 1.0 times and the hot air drying method, not hot roll drying method, the spinning conditions of Table 28 was performed.
  • Comparative Example 40 Comparative Example 41 Comparative Example 42 Hot Air Dryer Temperature (°C) 240 °C 260 °C 280 °C Drawing ratio in water washing process (times) 1.0x 1.0x 1.0x
  • the skiboard including the polyketone fiber prepared according to the embodiment of the present invention was found to be suitable for use as a skiboard because of excellent strength of the polyketone fiber.
  • Example 155 It is the same as Example 155 except for adjusting the temperature of each step of 1st stage and 2nd stage to 240, 250, 260, and 268 degreeC in extending
  • Example 155 It is the same as Example 155 except the temperature of each step of 1st and 2nd stage was adjusted to 240, 255, 265, and 272 degreeC in extending
  • Example 158 Same as Example 158 except that the inherent viscosity of the polyketone polymer was adjusted to 6.1 dl / g.
  • the intrinsic viscosity of the polyketone polymer was adjusted to 6.3 dl / g as in Example 158.
  • Example 161 It is the same as Example 161 except the molecular weight distribution of the polyketone polymer was adjusted to 2.8.
  • the molecular weight distribution of the polyketone polymer was adjusted to 3.5, which is the same as in Example 161.
  • Example 155 As a phenolic heat stabilizer, the same procedure as in Example 155 was carried out except that a 0.1% solution of the mixed solution of Adeka AO80 and methanol was subjected to one dip before drying.
  • Example 155 As a phenolic heat stabilizer, the same procedure as in Example 155 was carried out except that a 0.1% solution of Adeka's AO80 and methanol solution was subjected to two dips before drying and before stretching.
  • Aramid fiber was used in the manufacture of the tennis racket wire, the draw ratio in the washing process was carried out in the same manner as in Example 155, except that the draw ratio is 1.0 times and the hot air drying method instead of the hot roll drying method, It was performed under spinning conditions.
  • the skiboard including the polyketone fiber prepared according to the embodiment of the present invention was found to be suitable for use as a wire for tennis rackets due to the excellent strength of the polyketone fiber.
  • Melamine resin was laminated on the polyketone fibers obtained through the process of Preparation Example 1, followed by thermocompression, followed by heating and pressing through a press to prepare a yacht structural material including the polyketone fibers.
  • Example 166 It is the same as Example 166 except the temperature of each step of 1st stage and 2nd stage was adjusted to 240, 250, 260, and 268 degreeC in extending

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Physical Education & Sports Medicine (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Woven Fabrics (AREA)
  • Polyethers (AREA)
  • Artificial Filaments (AREA)

Abstract

일산화탄소, 에틸렌 및 프로필렌 공중합체로부터 폴리케톤 용액을 제조하고, 상기 폴리케톤 용액으로부터 강도 및 내수성이 우수한 폴리케톤 섬유 및 이의 제조방법을 제공하기 위한 것이다. 본 발명에 따라 제조된 폴리케톤 산업용 섬유는 강도, 신도, 내수성, 내열성 및 열전도율이 우수한 바, 선박용 로프, 호스, 방호용품, Geotextile, FRP 복합재료 보강용 섬유, 케이블, 어망, 에어백, 단열재, 시트벨트, 안전네트, roung sling, 비행성 막재, 부직포, 스판본드, 콘베어 벨트, flexible 컨테이너, 낚시줄, 스포츠코드, 탄소섬유 복합재료, 연승, 카펫트로 사용하기에 적합하다.

Description

폴리케톤 섬유를 포함하는 산업용 폴리케톤 산업 제품 및 그 제조방법
본 발명은 충격 흡수 성능을 현저히 향상시키고 우수한 기계적 물성 및 작업 성능을 갖는 폴리케톤 섬유를 포함하는 방탄의류, 방탄헬멧, 파편방호 소재, 항공기 또는 군항기용 폴리케톤 방탄재, 항공기 윙팁장치, 헬리콥터 내장재, 자동차 구조재, 선박플랫폼, 잠수정 구조재, 광케이블 피복재, 레이더돔 구조재, 초전도 코일의 보빈, 극저온성 초전도 케이블, 스키보드, 테니스 라켓용 와이어, 요트 구조재, 요트 돛, 경기용 자전거, 낙하산 또는 패러글라이드용 폴리케톤 코팅 직물, 안전장갑 등으로 사용할 수 있는 폴리케톤 산업 제품에 관한 것이다.
방탄의류, 방탄헬멧, 파편방호 소재, 항공기 또는 군항기용 폴리케톤 방탄재, 항공기 윙팁장치, 헬리콥터 내장재, 자동차 구조재, 선박플랫폼, 잠수정 구조재, 광케이블 피복재, 레이더돔 구조재, 초전도 코일의 보빈, 극저온성 초전도 케이블, 스키보드, 테니스 라켓용 와이어, 요트 구조재, 요트 돛, 경기용 자전거, 낙하산 또는 패러글라이드용 폴리케톤 코팅 직물, 안전장갑 등의 다양한 산업분야에서는 통상적으로 다이니마, 파라아라미드 등과 같은 소재가 사용되고 있으나, 각각의 소재는 여러 산업용 섬유로서 갖추어야 할 다양한 기능을 모두 만족시키지는 못하므로, 각 소재의 고유물성에 따라 그 용도를 정하여 사용되고 있다. 이렇게 산업에 필요한 보강섬유가 갖추어야할 기본 성능으로는 고강도, 고신도, 진동 및 고내충격성을 가지며, 내열성이 있고, 건·습열에서 열화되지 않을 것, 내굴곡성, 형태안정성 및 고무와의 접착성이 우수할 것, 경량이고, 우수한 기계적 특성 등이 필요하며, 이러한 성능을 가지면서 여러 분야에 폭넓게 사용할 수 있는 산업용 섬유를 개발하기 위한 요구가 가중되고 있다.
한편, 일산화탄소 유래의 반복 단위와 에틸렌성 불포화 화합물 유래의 반복 단위가 실질적으로 교대로 연결된 구조를 갖는 폴리케톤은 기계적 성질 및 열적 성질이 우수하고, 내마모성, 내약품성, 가스 배리어성도 높고, 여러가지 분야로의 전개가 기대된다. 예를 들면 폴리케톤은 고강도, 고내열성의 수지나 섬유, 필름으로서 유용한 재료이다. 특히, 고유 점도가 2.5 dl/g 이상인 고분자량의 폴리케톤을 원료로서 사용하면 매우 높은 강도, 탄성률을 갖는 섬유나 필름을 얻을 수 있다. 이러한 섬유나 필름은 벨트, 호스나 타이어 코드 등의 고무 보강재나, 방호용품, 로프 및 콘트리트 보강재 등, 건축 재료나 산업 자재 용도로의 광범위한 활용이 기대된다.
일산화탄소와 에틸렌, 프로필렌과 같은 올레핀을 팔라듐이나 니켈 등과 같은 전이 금속 착체를 촉매로 사용하여 중합시키면 일산화탄소와 올레핀이 교대하는 폴리케톤이 얻어진다는 것은 알려진 사실이다.
폴리케톤은 용융하면 열 가교하기 쉽기 때문에 섬유화하는 경우 습식 방사를 이용하는 것이 바람직하다. 특히, 탁월한 물성을 갖는, 실질적으로 일산화탄소와 에틸렌만을 포함하는 폴리케톤 (폴리(1-옥소트리메틸렌)) 섬유는 열 가교하기 쉽다. 따라서, 이 섬유는 용융 방사로 제조하기 매우 어려우며 실질적으로 습식 방사에 의해서만 얻을 수 있다.
폴리케톤을 습식 방사하는 경우, 사용하는 용매로는 헥사플루오로이소프로판올 및 m-크레졸, 레조르시놀/물과 같은 폐놀계 용매, 및 레조르시놀/카보네이트와 같은 유기 용매가 알려져 있다 (일본 특허 공개 (평)2-112413호 공보, 일본 특허공개 (평)4-228613호 공보, 일본 특허 공개 평7-508317호 공보). 그러나, 이러한 용매를 사용하여 습식 방사에 의해서 얻어진 섬유는 분섬되기 쉽고, 산업 자재로서 사용하기에는 내피로성 및 가공성이 불충분하다. 또한, 이러한 용매는 독성이나 가연성이 높고, 공업적 규모의 방사 설비를 만드는 데에는 용매의 독성 및 가연성에 대한 방대한 대책이 필요해지는 문제가 있다.
또한, 특정 농도의 염화아연, 브롬화아연 등의 할로겐화아연 또는 염화리튬, 요오드화리튬, 티오시안산리튬 등의 리튬염을 포함하는 수용액에 폴리케톤을 용해시켜 제조한 폴리케톤 용액을 사용하여 방사하는 방법이 제안되어 있다 (WO99/18143, USP5955019). 이들 수용액은 비교적 저가이며 독성도 적고 비가연성으로 폴리케톤의 용매로는 우수한 것이다.
이에 상기한 문제점을 해결하기 위하여, 본 발명은 일산화탄소와 적어도 1종의 올레핀계 불포화 탄화수소로 이루어진 폴리케톤 공중합체를 포함하고, 멀티필라멘트의 제조과정에서 세정 전 연신, 핫롤건조방식 및 내열안정제를 사용함으로써 강도가 우수한 폴리케톤 산업용 제품을 제공하는 것을 목적으로 한다.
상기한 목적을 달성하기 위하여, 본 발명은 하기 일반식(1)과 (2)로 표시되는 반복단위로 이루어지고, y/x가 0 내지 0.1이며, 고유 점도가 4 내지 8 dl/g인 폴리케톤 공중합체를 방사공정, 수세공정, 건조공정 및 연신공정을 거쳐 제조되는 폴리케톤 섬유를 포함하는 것을 특징으로 하는 방탄의류, 방탄헬멧, 파편방호 소재, 항공기 또는 군항기용 폴리케톤 방탄재, 항공기 윙팁장치, 헬리콥터 내장재, 자동차 구조재, 선박플랫폼, 잠수정 구조재, 광케이블 피복재, 레이더돔 구조재, 초전도 코일의 보빈, 극저온성 초전도 케이블, 스키보드, 테니스 라켓용 와이어, 요트 구조재, 요트 돛, 경기용 자전거, 낙하산 또는 패러글라이드용 폴리케톤 코팅 직물, 안전장갑로 이루어진 군에서 선택 된 하나의 폴리케톤 섬유 제품을 제공한다.
-[-CH2CH2-CO-]x- (1)
-[-CH2-CH(CH3)-CO-]y- (2)
(x, y는 폴리머 중의 일반식 (1) 및 (2) 각각의 몰%)
이 때, 상기 수세공정 시 1.0배 내지 2.0 배 연신하고, 상기 건조과정 시 1.0배 내지 2.0 배 연신하는 것을 특징으로 하며, 상기 건조공정은 100 내지 230℃에서 핫롤건조식이고, 상기 연신공정은 230 내지 300℃에서 히팅 챔버(heating chamber) 연신식이고, 건조공정 및 연신공정 전에 내열안정제를 처리하는 것을 특징으로 한다.
폴리케톤 방탄의류는 폴리케톤 섬유를 사용하여 평직으로 직물을 제직한 후, 계면활성제 처리하고 수세한 후 건조하는 단계를 거쳐 제조되는 것을 특징으로 하며,
상기 폴리케톤 방탄의류는 하드록실레이티드 퍼르플루오로알킬 에틸 아크릴레이트 코폴리머(Hydroxylated perfluoroalkylethyl acrylate copolymer) 100중량부 대비 디프로필렌 글리콜(Dipropylene glycol) 20 ~ 35중량부, 실리콘 오일 0.5 ~ 5.5 중량부 및 이소프로필알콜(isopropylalcohol) 0.5 ~ 10 중량부로 구성되는 발수제에 침지하는 단계를 더 포함한 제조단계를 거쳐 제조되는 것을 특징으로 한다.
아울러, 상기 폴리케톤 방탄의류는 방탄성능(V50)이 5.56mm 파편탄(FSP) 기준으로 590 내지 700m/s인 것을 특징으로 한다.
또한, 상기 폴리케톤 공중합체는 에틸렌 및 프로필렌의 몰비%가 100:0내지 90:10이고, 분자량 분포가 2.5 내지 3.5이며,
상기 폴리케톤 섬유는 모노 필라멘트의 섬도가 1내지 10d이고, 단면 변동률 지수가 8 내지 15%인 것을 특징으로 한다.
폴리케톤 방탄헬멧은 폴리케톤 섬유를 경사 및 위사에 적용하고 평직으로 직조한 후, 열가소성 또는 열경화성 수지를 접착시켜 챔버에서 압력을 가하여 코팅한 후, 헬멧 제조용 하부 몰드에 적층하여 경화시켜 제조되는 것을 특징으로 한다.
이 때, 폴리케톤 방탄헬멧은 MIL-STD-662F 규정에 따라 측정된 평균 속도(V50)가 590~700㎧이고, 상기 평균 속도는 Cal.22구경 파편모의탄(FSP)을 이용하여 완전 관통했을 때의 속도와 부분 관통했을 때의 속도를 평균한 값으로부터 측정되었다.
이 때, 상기 폴리케톤 섬유의 모노필라멘트는 초기 모듈러스 값이 200g/d 이상이고, 10.0g/d에서 신도가 2.5 내지 3.5%이며, 19.0g/d 이상에서 최소한 0.5%이상 신장하며,
상기 폴리케톤 섬유의 모노필라멘트는 섬도가 0.5 내지 8.0 데니어인 것을 특징으로 한다.
폴리케톤 파편방호 소재는 폴리케톤 멀티 필라멘트를 탄성 매트릭스원액에 함침시킨 후, 탄성시트를 수득하고, 이를 적층하고, 가열 및 가압하여 제조되는 것을 특징으로 하며, 방탄성능(V50)이 5.56mm 파편탄(FSP) 기준으로 590 내지 700m/s인 것을 특징으로 한다.
또한, 폴리케톤 파편방호 소재의 폴리케톤 공중합체의 에틸렌 및 프로필렌의 몰비%가 100:0 내지 90:10이고, 분자량 분포가 2.5 내지 3.5이며,
상기 폴리케톤 멀티필라멘트는 모노필라멘트의 섬도가 1 내지 10d이고, 단면 변동률 지수가 8 내지 15%인 것을 특징으로 한다.
항공기 또는 군항기용 폴리케톤 방탄재는 폴리케톤 섬유를 직조하여 직물매트를 재단한 후 적층하여 액상수지 성형장치에 넣고 성형품을 형성하여 이를 소정의 길이 및 폭 방향으로 재단하여 제조되는 것을 특징으로 한다.
이 때, 상기 항공기 또는 군항기용 폴리케톤 방탄재는 방탄성능(V50)이 5.56mm 파편탄(FSP) 기준으로 590 내지 700m/s인 것을 특징으로 하며, 폴리케톤 공중합체의 분자량 분포는 2.5 내지 3.5이고,
상기 폴리케톤 공중합체 중합시 사용되는 촉매조성물의 리간드는 ((2,2-디메틸-1,3-디옥산-5,5-디일)비스(메틸렌))비스(비스(2-메톡시페닐)포스핀)인 것을 특징으로 한다.
이 때, 항공기 또는 궁항기용 폴리케톤 방탄재의 폴리케톤 멀티필라멘트는 초기 모듈러스 값이 200g/d이상이고, 10.0g/d에서 신도가 2.5 내지 3.5%이며, 19.0g/d이상에서 최소한 0.5%이상 신장하며,
상기 폴리케톤 모노필라멘트는 섬도 0.5 내지 8.0 데니어인 것을 특징으로 한다.
폴리케톤 항공기 윙팁장치는 폴리케톤 멀티필라멘트를 경사 및 위사에 적용하여 평직으로 제조한 후, 탄성 매트릭스원액에 함침시킨 후, 윙팁 제조용 몰드에 적층하여 열가소성 또는 열경화성 수지와 접착시켜 가열 및 가압하여 제조되는 것을 특징으로 하며,
상기 폴리케톤 멀티필라멘트는 초기 모듈러스 값이 200g/d이상이고, 10.0g/d에서 신도가 2.5 내지 3.5%이며, 19.0g/d이상에서 최소한 0.5%이상 신장하고, 모노필라멘트는 섬도 0.5 내지 8.0 데니어인 것을 특징으로 한다.
폴리케톤 헬리콥터 내장재는 상기 폴리케톤 멀티필라멘트를 경사 및 위사에 적용하여 평직으로 제조한 후, 몰드에 적층하여 열가소성 또는 열경화성 수지와 접착시켜 가열 및 가압하여 제조되는 것을 특징으로 하며,
폴리케톤 헬리콥터 내장재의 폴리케톤 공중합체의 분자량 분포는 2.5 내지 3.5이고,
상기 폴리케톤 공중합체 중합시 사용되는 촉매조성물의 리간드는 ((2,2-디메틸-1,3-디옥산-5,5-디일)비스(메틸렌))비스(비스(2-메톡시페닐)포스핀)인 것을 특징으로 한다.
이 때, 상기 폴리케톤 멀티필라멘트는 초기 모듈러스 값이 200g/d이상이고, 10.0g/d에서 신도가 2.5 내지 3.5%이며, 19.0g/d이상에서 최소한 0.5%이상 신장하며,
상기 폴리케톤 모노필라멘트는 섬도 0.5 내지 8.0 데니어인 것을 특징으로 한다.
폴리케톤 자동차 구조재는 폴리케톤 필라멘트를 경사 및 위사에 적용하고 평직으로 직조한 후, 열가소성 또는 열경화성 수지를 접착시켜 챔버에서 압력을 가하여 코팅한 후, 몰드에 적층하여 경화시켜 제조되는 것을 특징으로 한다.
이 때, 상기 폴리케톤 공중합체는 에틸렌 및 프로필렌의 몰비%가 100:0내지 90:10이고, 분자량 분포가 2.5 내지 3.5이며,
상기 폴리케톤 멀티 필라멘트는 모노 필라멘트의 섬도가 1내지 10d이고, 단면 변동률 지수가 8 내지 15%인 것으로 이루어진 것을 특징으로 한다.
폴리케톤 선박 플랫폼은 선박의 내부로부터 외부 방향으로 이동 가능하도록 상기 선박의 일측부에 설치되는 프레임;
상기 프레임에 결합되는 몸체; 로 구성되는 선박 플랫폼에 있어서,
상기 몸체는 하기 일반식(1)과 (2)로 표시되는 반복단위로 이루어지고, y/x가 0 내지 0.1이며, 고유 점도가 4 내지 8 dl/g인 폴리케톤 공중합체를 방사공정, 수세공정, 건조공정 및 연신공정을 거쳐 제조되는 폴리케톤 섬유를 포함하는 것을 특징으로 한다.
-[-CH2CH2-CO-]x- (1)
-[-CH2-CH(CH3)-CO-]y- (2)
(x, y는 폴리머 중의 일반식 (1) 및 (2) 각각의 몰%)
이 때, 상기 폴리케톤 선박 플랫폼은 활성염소농도 3ppm, pH 7.5의 염소수 15L에 상온에서 24시간 동안 침적한 강력유지율이 70 내지 90%인 것을 특징으로 한다.
또한, 상기 폴리케톤 섬유의 모노필라멘트는 초기 모듈러스 값이 200g/d 이상이고, 10.0g/d에서 신도가 2.5 내지 3.5%이며, 19.0g/d 이상에서 최소한 0.5%이상 신장하며,
상기 폴리케톤 모노필라멘트는 섬도 0.5 내지 8.0 데니어인 것을 특징으로 한다.
폴리케톤 잠수정 구조재는 폴리케톤 멀티 필라멘트를 발포 폼과 함께 제조 금형에 주입하여 가열, 가압하여 발포시켜 제조되는 것을 특징으로 하며,
상기 폴리케톤 공중합체의 분자량 분포는 2.5 내지 3.5이며,
상기 폴리케톤 공중합체 중합시 사용되는 촉매조성물의 리간드는 ((2,2-디메틸-1,3-디옥산-5,5-디일)비스(메틸렌))비스(비스(2-메톡시페닐)포스핀)인 것을 특징으로 한다.
또한, 상기 폴리케톤 멀티필라멘트는 초기 모듈러스 값이 200g/d이상이고, 10.0g/d에서 신도가 2.5 내지 3.5%이며, 19.0g/d이상에서 최소한 0.5%이상 신장하며,
상기 폴리케톤 모노필라멘트는 섬도 0.5 내지 8.0 데니어인 것을 특징으로 한다.
폴리케톤 광케이블 피복재는 105℃에서 30분 건조한 후 측정된 하기 일반식 (3)에 의한 흡습율이 0.01 내지 0.03인 것을 특징으로 한다.
일반식 (3) 흡습율=(흡습후 질량-흡습전 질량)/(흡습전 질량)
이 때, 상기 폴리케톤 멀티필라멘트는 초기 모듈러스 값이 200g/d이상이고, 10.0g/d에서 신도가 2.5 내지 3.5%이며, 19.0g/d이상에서 최소한 0.5%이상 신장하고, 상기 폴리케톤 모노필라멘트는 섬도 0.5 내지 8.0 데니어인 것을 특징으로 한다.
폴리케톤 레이더 돔구조재는 상기 폴리케톤 섬유를 경사 및 위사에 적용하고 평직으로 직조한 후, 열가소성 또는 열경화성 수지를 접착시켜 챔버에서 압력을 가하여 코팅한 후, 몰드에 적층하여 경화시켜 제조되는 것을 특징으로 한다.
이 때, 상기 폴리케톤 멀티필라멘트는 초기 모듈러스 값이 200g/d이상이고, 10.0g/d에서 신도가 2.5 내지 3.5%이며, 19.0g/d이상에서 최소한 0.5%이상 신장하는 것을 특징으로 한다.
또한, 수세공정 시 1.0배 내지 2.0 배 연신하고, 상기 건조과정 시 1.0 배 내지 2.0 배 연신하는 것을 특징으로 한다.
폴리케톤 초전도 코일의 보빈은 폴리케톤 섬유를 경사 및 위사에 적용하고 평직으로 직조한 후, 열가소성 또는 열경화성 수지를 접착시켜 챔버에서 압력을 가하여 코팅한 후, 보빈 제조용 하부 몰드에 적층하여 사출 성형하여 제조되는 것을 특징으로 한다.
폴리케톤 초전도 코일의 보빈의 폴리케톤 공중합체는 에틸렌 및 프로필렌의 몰비%가 100:0내지 90:10이고, 분자량 분포가 2.5 내지 3.5이며,
상기 폴리케톤 섬유는 모노 필라멘트의 섬도가 1내지 10d이고, 단면 변동률 지수가 8 내지 15%인 것을 특징으로 한다.
또한, 상기 폴리케톤 공중합체 중합시 사용되는 촉매조성물의 리간드는 ((2,2-디메틸-1,3-디옥산-5,5-디일)비스(메틸렌))비스(비스(2-메톡시페닐)포스핀)인 것을 특징으로 하며,
상기 폴리케톤 공중합체는 에틸렌 및 프로필렌의 몰비%가 100:0내지 90:10이고, 분자량 분포가 2.5 내지 3.5이며,
상기 폴리케톤 섬유는 모노 필라멘트의 섬도가 1내지 10d이고, 단면 변동률 지수가 8 내지 15%인 것을 특징으로 한다.
스키보드는 폴리케톤 섬유와 열가소성 수지 또는 열경화성 수지를 적층하여 열압착한 후, 제단하여 프레스를 통해 가온, 가압하여 곡면을 형성하여 제조되는 것을 특징으로 하며,
상기 폴리케톤 공중합체는 에틸렌 및 프로필렌의 몰비%가 100:0내지 90:10이고, 분자량 분포가 2.5 내지 3.5이며,
상기 폴리케톤 섬유는 모노 필라멘트의 섬도가 1내지 10d이고, 단면 변동률 지수가 8 내지 15%인 것을 특징으로 한다.
테니스 라켓용 와이어의 폴리케톤 섬유 멀티 필라멘트는 총 데니어 범위 500 내지 3,500이고, 절단 하중이 6.0 내지 40.0kg인, 섬도 5 내지 16 데니어인, 100 내지 2200개의 개개의 필라멘트로 구성된 것을 특징으로 한다.
이 때, 상기 폴리케톤 섬유의 모노필라멘트의 초기 모듈러스값은 200g/d 이상이고, 10.0 g/d 에서 신도가 2.5 내지 3.5%이며, 19.0g/d 이상에서 최소한 0.5% 이상 신장하는 것을 특징으로 한다.
요트 구조재는 폴리케톤 섬유와 열가소성 수지 또는 열경화성 수지를 적층하여 열압착한 후, 제단하여 프레스를 통해 가온, 가압하여 곡면을 형성하여 제조되는 것을 특징으로 한다.
이 때, 상기 폴리메톤 섬유의 폴리케톤 공중합체를 구성하는 에틸렌 및 프로필렌의 몰비%는 100:0 내지 90:10, 공중합체의 분자량 분포는 2.5 내지 3.5이고,
상기 폴리케톤 공중합체 중합시 사용되는 촉매조성물의 리간드는 ((2,2-디메틸-1,3-디옥산-5,5-디일)비스(메틸렌))비스(비스(2-메톡시페닐)포스핀)인 것을 특징으로 한다.
상기 폴리케톤 섬유는 모노 필라멘트의 섬도가 1내지 10d이고, 단면 변동률 지수가 8 내지 15%인 것을 특징으로 한다.
폴리케톤 요트돛은 폴리케톤 섬유를 직물로 제직하는 단계; 및
상기 직물에 코팅제를 사용하여 코팅하는 단계를 포함하여 제조되는 것을 특징으로 한다.
폴리케톤 섬유로 이루어진 경기용 자전거는 상기 폴리케톤 섬유와 열가소성 수지를 적층하여 적층체를 형성하는 단계; 및
상기 적층체를 가열 및 가압하는 단계를 포함하여 제조되는 것을 특징으로 한다.
이 때, 가열은 150 내지 220℃의 온도로 수행되고, 상기 가압은 5 내지 20MPa의 압력을 10 내지 20분간 가하여 수행되는 것을 특징으로 한다.
경기용 자전거 폴리케톤 섬유의 모노필라멘트는 초기 모듈러스 값이 200g/d 이상이고, 10.0g/d에서 신도가 2.5 내지 3.5%이며, 19.0g/d 이상에서 최소한 0.5%이상 신장하며,
상기 폴리케톤 모노필라멘트는 섬도 0.5 내지 8.0 데니어인 것을 특징으로 한다.
낙하산 또는 패러글라이드용 폴리케톤 코팅 직물은 폴리케톤 섬유를 경사와 위사로 사용하여 평직 원단을 제직하는 단계; 및 상기 원단 양면에 열가소성 폴리우레탄 수지를 코팅하여 코팅원단을 제조하는 단계를 포함하여 제조되는 것을 특징으로 한다.
이 때, 상기 폴리케톤 섬유의 모노필라멘트는 초기 모듈러스 값이 200g/d 이상이고, 10.0g/d에서 신도가 2.5 내지 3.5%이며, 19.0g/d 이상에서 최소한 0.5%이상 신장하며,
상기 폴리케톤 모노필라멘트는 섬도 0.5 내지 8.0 데니어인 것을 특징으로 한다.
폴리케톤 안전장갑의 폴리케톤 공중합체는 에틸렌, 프로필렌으로 이루어지고, 상기 에틸렌 및 프로필렌의 몰비%가 100:0 내지 90:10이고,
상기 폴리케톤 섬유는 모노 필라멘트의 섬도가 1내지 10d이고, 단면 변동률 지수가 8 내지 15%인 것을 특징으로 한다.
상기 폴리케톤 안전장갑은 강도가 15g/d 이상인 것을 특징으로 하며, 상기 폴리케톤 공중합체의 분자량 분포는 2.5 내지 3.5인 것을 특징으로 한다.
안전보호용 신발은 고무시트와 폴리케톤 섬유를 적층시켜 프레싱하여 밑창을 성형한 후, 이를 갑피와 함께 금형에 투입하여 금형에서 동시에 성형하여 제조되는 것을 특징으로 한다.
또한, 안전보호용 신발 폴리케톤 섬유의 모노필라멘트는 초기 모듈러스 값이 200g/d 이상이고, 10.0g/d에서 신도가 2.5 내지 3.5%이며, 19.0g/d 이상에서 최소한 0.5%이상 신장하며, 상기 폴리케톤 모노필라멘트는 섬도 0.5 내지 8.0 데니어인 것을 특징으로 한다.
금속염 수용액 및 폴리케톤을 압출기에 주입하여 용해시켜 폴리케톤 용액을 제조하는 단계;
상기 폴리케톤 용액을 디스크 필터에 여과시켜 불순물을 제거하는 단계; 및
방사공정, 수세공정, 건조 공정 및 연신공정을 거쳐 폴리케톤 섬유를 제조하는 단계를 포함하는 것을 특징으로 하는 디스크 필터를 이용한 폴리케톤 섬유의 제조방법을 제공한다.
아울러, 폴리케톤은 제9족, 제10족 또는 제11족 전이금속 화합물, 제15족의 원소를 포함하는 리간드 및 pKa가 4 이하인 산의 음이온을 포함하는 촉매 조성물; 및 혼합용매의 존재 하에서 일산화탄소와 에틸렌성 불포화 화합물을 중합하여 제조되는 것을 특징으로 한다.
또한, 상기 수세공정 시 1.0배 내지 2.0 배 연신하고, 상기 건조과정 시 1.0배 내지 2.0 배 연신하는 것을 특징으로 한다.
이 때, 상기 건조공정은 100 내지 230℃에서 핫롤건조식이고, 상기 연신공정은 230 내지 300℃에서 히팅 챔버(heating chamber) 연신식인 것을 특징으로 한다.
또한, 상기 건조공정 및 연신공정 전에 내열안정제를 처리하는 것을 특징으로 한다.
본 발명은 일산화탄소, 에틸렌 및 프로필렌 공중합체로부터 폴리케톤 용액을 제조하고, 상기 폴리케톤 용액으로부터 강도가 우수하며, 내수성이 우수한 폴리케톤 산업용 제품을 제공하기 위한 것이다.
도 1은 종래 기술에 따른 캔들 필터를 개략적으로 나타내는 도면이다.
도 2는 본 발명에 따른 디스크 필터를 개략적으로 나타내는 도면이다.
도 3은 캔들 필터와 디스크 필터의 상단부를 개략적으로 나타내는 도면이다.
도 4는 종래 기술에 따른 내열안정제 역할을 개략적으로 나타내는 도면이다.
도 5는 종래 기술에 따른 열풍 건조 방식 건조기의 개략도에 관한 도면이다.
도 6은 본 발명에 따른 핫롤 건조 방식의 개략도에 관한 도면이다.
도 7은 종래 기술인 열풍 건조 방식에 따른 건조사 단면이다.
도 8은 본 발명의 핫롤 건조 방식에 따른 건조사 단면이다.
도 9는 본 발명에 따른 디스크 필터를 개략적으로 나타내는 도면이다.
본 발명은 금속염 수용액 및 폴리케톤을 압출기에 주입하여 용해시켜 폴리케톤 용액을 제조하는 단계; 상기 폴리케톤 용액을 디스크 필터에 여과시켜 불순물을 제거하는 단계; 및 방사공정, 수세공정, 건조 공정 및 연신공정을 거쳐 폴리케톤 섬유를 제조하는 단계를 포함하는 것을 특징으로 하는 디스크 필터를 이용한 폴리케톤 섬유의 제조방법을 제공한다.
이때, 상기 폴리케톤은 제9족, 제10족 또는 제11족 전이금속 화합물, 제15족의 원소를 포함하는 리간드 및 pKa가 4 이하인 산의 음이온을 포함하는 촉매 조성물; 및 혼합용매의 존재 하에서 일산화탄소와 에틸렌성 불포화 화합물을 중합하여 제조되는 것이 바람직하나, 이에 한정되는 것은 아니다.
하기 일반식(1)과 (2)로 표시되는 반복단위로 이루어지고, y/x가 0 내지 0.1이며, 고유 점도가 4 내지 8 dl/g인 폴리케톤 공중합체를 방사공정, 수세공정, 건조공정 및 연신공정을 거쳐 제조되는 폴리케톤 섬유를 포함하는 것을 특징으로 하는 폴리케톤 산업용 섬유를 제공한다.
-[-CH2CH2-CO-]x- (1)
-[-CH2-CH(CH3)-CO-]y- (2)
(x, y는 폴리머 중의 일반식 (1) 및 (2) 각각의 몰%)
또한, 상기 수세공정 시 1.0배 내지 2.0배 연신하고, 상기 건조과정 시 1.0배 내지 2.0배 연신하는 것을 특징으로 한다.
또한, 상기 건조공정은 100 내지 230℃에서 핫롤건조식이고, 상기 연신공정은 230 내지 300℃에서 히팅 챔버(heating chamber) 연신식인 것이 바람직하다.
아울러, 상기 건조공정 및 연신공정 전에 내열안정제를 처리하는 것이 바람직하다.
이하, 본 발명에 사용되는 폴리케톤의 중합방법에 대해 상세히 설명한다.
단량체 단위가 교대로 있고, 따라서 중합체가 일반식-(CO)-A'-(여기서 A'는 적용된 단량체 A로부터 유래된 단량체 단위를 나타냄) 단위로 구성된, 하나 이상의 올레핀형 불포화 화합물(간단히 A로 나타냄)과 일산화탄소의 고분자량 선형중합체는, 중합체가 녹지 않거나 실제로 녹지 않는 희석액 내에서 단량체를 팔라듐-함유 촉매 조성물 용액과 접촉시켜 제조할 수 있다. 중합 과정 동안, 중합체는 희석액 내에서 현탁액의 형태로 얻어진다. 중합체 제조는 주로 배치식(batchwise)으로 수행된다.
중합체의 배치식 제조는 통상적으로 희석액 및 단량체를 함유하고 원하는 온도 및 압력을 갖는 반응기에 촉매를 도입시킴으로써 수행한다. 중합이 진행됨에 따라 압력이 떨어지고 희석액 내 중합체의 농도가 올라가며 현탁액의 점성이 높아진다. 현탁액의 점성이, 예를 들어 열 제거와 관련한 어려움이 생길 정도까지 높은 값에 도달할 때까지, 중합을 계속한다. 배치식 중합체 제조 동안, 원한다면 중합 동안 반응기에 단량체를 첨가하여 온도뿐만 아니라 압력을 일정하게 유지할 수 있다.
본 발명에서는 액상 매체로서 종래 폴리케톤의 제조에 주로 사용되어 오던 메탄올, 디클로로메탄 또는 니트로메탄 뿐 아니라, 초산과 물로 이루어지는 혼합용매, 에탄올과 프로파놀, 이소프로파놀 등을 사용할 수 있다. 특히 폴리케톤의 제조에 액상 매체로서 초산과 물의 혼합용매를 사용하면, 폴리케톤의 제조비용을 절감시키면서 촉매활성도 향상시킬 수 있다. 또한, 메탄올 또는 디클로로메탄 용매의 사용은 중합 단계 중 정지 반응을 유발하는 메카니즘을 형성하므로 용매에서 메탄올 또는 디클로로메탄을 제외한 초산, 물의 사용은 확률적으로 촉매 활성의 중단 효과를 가지고 있지 않으므로 중합 활성의 향상에 지대한 역할을 한다.
액상매체로서 초산과 물의 혼합용매를 사용시, 물의 농도가 10용량% 미만으로 적을 때는 촉매활성에 영향을 덜 미치지만, 10용량% 이상의 농도가 되면 촉매활성이 급격히 증가한다. 반면, 물의 농도가 30용량%를 초과하면 촉매활성은 감소하는 경향을 보인다. 본 발명에서는 액상매체로서 70~90용량%의 초산과 30~10용량%의 물로 이루어지는 혼합용매를 사용하는 것이 바람직하다.
본 발명에 있어서 유기금속착체 촉매는, 주기율표 (IUPAC 무기화학 명명법 개정판, 1989)의 (a) 제9족, 제10족 또는 제11족 전이금속 화합물, (b) 제15족의 원소를 포함하는 리간드, 및 (c) pKa가 4 이하인 산의 음이온으로 이루어진다.
제9족, 제10족 또는 제11족 전이금속 화합물(a) 중 제 9족 전이금속 화합물의 예로서는, 코발트 또는 루테늄의 착체, 카본산염, 인산염, 카바민산염, 술폰산염 등을 들 수 있고, 그 구체적인 예로서는 초산 코발트, 코발트 아세틸아세테이트, 초산 루테늄, 트리플루오로 초산 루테늄, 루테늄 아세틸아세테이트, 트리플루오로메탄 술폰산 루테늄 등을 들 수 있다.
제 10족 전이금속 화합물의 예로서는, 니켈 또는 팔라듐의 착체, 카본산염, 인산염, 카바민산염, 술폰산염 등을 들 수 있고, 그 구체적인 예로서는 초산 니켈, 니켈 아세틸아세테이트, 초산 팔라듐, 트리플루오로 초산 팔라듐, 팔라듐 아세틸아세테이트, 염화 팔라듐, 비스(N,N-디에틸카바메이트)비스(디에틸아민)팔라듐, 황산 팔라듐 등을 들 수 있다.
제11족 전이금속 화합물의 예로서는, 구리 떠는 은의 착체, 카본산염, 인산염, 카바민산염, 술폰산염 등을 들 수 있고, 그 구체적인 예로서는 초산 구리, 트리플루오로 초산 구리, 구리 아세틸아세테이트, 초산 은, 트리플루오로 초산 은, 은 아세틸아세테이트, 트리플루오로메탄 술폰산 은 등을 들 수 있다.
이들 중에서 값싸고 경제적으로 바람직한 전이금속 화합물 (a)는 니켈 및 구리 화합물이고, 폴리케톤의 수득량 및 분자량의 면에서 바람직한 전이금속 화합물 (a)는 팔라듐 화합물이며, 촉매활성 및 고유점도 향상의 면에서는 초산 팔라듐을 사용하는 것이 가장 바람직하다.
제 15족의 원자를 가지는 리간드(b)의 예로서는, 2,2-비피리딜, 4,4-디메틸-2,2-비피리딜, 2,2-비-4-피콜린, 2,2-비키놀린 등의 질소 리간드, 1,2-비스(디페닐포스피노)에탄, 1,3-비스(디페닐포스피노)프로판, 1,4-비스(디페닐포스피노)부탄, 1,3-비스[디(2-메틸)포스피노]프로판, 1,3-비스[디(2-이소프로필)포스피노]프로판, 1,3-비스[디(2-메톡시페닐) 포스피노]프로판, 1,3-비스[디(2-메톡시-4-술폰산나트륨-페닐)포스피노] 프로판, 1,2-비스(디페닐포스피노)시클로헥산, 1,2-비스(디페닐포스피노)벤젠, 1,2-비스[(디페닐포스피노)메틸]벤젠, 1,2-비스[[디(2-메톡시페닐)포스피노] 메틸]벤젠, 1,2-비스[[디(2-메톡시-4-술폰산나트륨-페닐)포스피노]메틸] 벤젠, 1,1-비스(디페닐포스피노)페로센, 2-히드록시-1,3-비스[디(2-메톡시페닐)포스피노]프로판, 2,2-디메틸-1,3-비스[디(2-메톡시페닐) 포스피노]프로판 등의 인 리간드를 들 수 있다.
이들 중에서 바람직한 제 15족의 원소를 가지는 리간드(b)는, 제 15족의 원자를 가지는 인 리간드이고, 특히 폴리케톤의 수득량의 면에서 바람직한 인 리간드는 1,3-비스[디(2-메톡시페닐)포스피노]프로판, 1,2-비스[[디(2-메톡시페닐)포스피노]메틸]벤젠이고, 폴리케톤의 분자량의 측면에서는 2-히드록시-1,3-비스[디(2-메톡시페닐)포스피노]프로판, 2,2-디메틸-1,3-비스[디(2-메톡시페닐)포스피노]프로판이고, 유기용제를 필요로 하지 않고 안전하다는 면에서는 수용성의 1,3-비스[디(2-메톡시-4-술폰산나트륨-페닐)포스피노]프로판, 1,2-비스[[디(2-메톡시-4-술폰산 나트륨-페닐)포스피노]메틸]벤젠이고, 합성이 용이하고 대량으로 입수가 가능하고 경제면에 있어서 바람직한 것은 1,3-비스(디페닐포스피노)프로판, 1,4-비스(디페닐포스피노)부탄이다.
폴리케톤의 고유점도 및 촉매활성의 향상에 중점을 둔 본 발명에 있어서 바람직한 제15족 원자를 가지는 리간드 (b)는 1,3-비스-[디(2-메톡시페닐)포스피노]프로판 또는 ((2,2-디메틸-1,3-디옥산-5,5-디일)비스(메틸렌))비스(비스(2-메톡시페닐)포스핀)이고, 보다 바람직하게는 1,3-비스-[디(2-메톡시페닐)포스피노]프로판 또는 ((2,2-디메틸-1,3-디옥산-5,5-디일)비스(메틸렌))비스(비스(2-메톡시페닐)포스핀)이 더 좋다.
[화학식 1]
Figure PCTKR2016005248-appb-I000001
.
상기 화학식 1의 ((2,2-디메틸-1,3-디옥산-5,5-디일)비스(메틸렌))비스(비스(2-메톡시페닐)포스핀)은 현재까지 소개된 폴리케톤 중합촉매 중 최고활성을 보이는 것으로 알려진 3,3-비스-[비스-(2-메톡시페닐)포스파닐메틸]-1,5-디옥사-스파이로[5,5]운데칸과 동등한 활성 발현을 보이되 그 구조는 더욱 단순하고 분자량 또한 더욱 낮은 물질이다. 그 결과, 본 발명은 당분야의 폴리케톤 중합촉매로서 최고활성을 확보하면서도 그 제조비용 및 원가는 더욱 절감된 신규한 폴리케톤 중합촉매를 제공할 수 있게 되었다. 폴리케톤 중합촉매용 리간드의 제조방법은 다음과 같다. 비스(2-메톡시페닐)포스핀, 5,5-비스(브로모메틸)-2,2-디메틸-1,3-디옥산 및 수소화나트륨(NaH)을 사용하여 ((2,2-디메틸-1,3-디옥산-5,5-디일)비스(메틸렌))비스(비스(2-메톡시페닐)포스핀)을 얻는 것을 특징으로 하는 폴리케톤 중합촉매용 리간드의 제조방법이 제공된다. 본 발명의 폴리케톤 중합촉매용 리간드 제조방법은 종래 3,3-비스-[비스-(2-메톡시페닐)포스파닐메틸]-1,5-디옥사-스파이로[5,5]운데칸의 합성법과는 달리 리튬이 사용되지 않는 안전한 환경 하에서 용이한 프로세스를 통해 ((2,2-디메틸-1,3-디옥산-5,5-디일)비스(메틸렌))비스(비스(2-메톡시페닐)포스핀)을 상업적으로 대량 합성할 수 있다.
바람직한 일 구체예에서, 본 발명의 폴리케톤 중합촉매용 리간드 제조방법은 (a) 질소 대기 하에서 비스(2-메톡시페닐)포스핀 및 디메틸설폭시드(DMSO)를 반응용기에 투입하고 상온에서 수소화나트륨을 가한 뒤 교반하는 단계; (b) 얻어진 혼합액에 5,5-비스(브로모메틸)-2,2-디메틸-1,3-디옥산 및 디메틸설폭시드를 가한 뒤 교반하여 반응시키는 단계; (c) 반응 완료 후 메탄올을 투입하고 교반하는 단계;(d) 톨루엔 및 물을 투입하고 층분리 후, 유층을 물로 세척한 다음 무수황산나트륨으로 건조 후 감압 여과를 하고 감압 농축하는 단계; 및 (e) 잔류물을 메탄올 하에서 재결정하여 ((2,2-디메틸-1,3-디옥산-5,5-디일)비스(메틸렌))비스(비스(2-메톡시페닐)포스핀)를 얻는 단계를 거쳐 수행될 수 있다.
제 9족, 제 10족 또는 제 11족 전이금속 화합물 (a)의 사용량은, 선택되는 에틸렌성 불포화 화합물의 종류나 다른 중합조건에 따라 그 적합한 값이 달라지기 때문에, 일률적으로 그 범위를 한정할 수는 없으나, 통상 반응대역의 용량 1리터당 0.01~100밀리몰, 바람직하게는 0.01~10밀리몰이다. 반응대역의 용량이라는 것은, 반응기의 액상의 용량을 말한다.
pKa가 4 이하인 산의 음이온(c)의 예로서는, 트리플루오로 초산, 트리플루오로메탄 술폰산, p-톨루엔 술폰산, m-톨루엔 술폰산 등의 pKa가 4 이하인 유기산의 음이온; 과염소산, 황산, 질산, 인산, 헤테로폴리산, 테트라플루오로붕산, 헥사플루오로인산, 플루오로규산 등의 pKa가 4 이하인 무기산의 음이온; 트리스펜타플루오로페닐보란, 트리스페닐카르베늄 테트라키스(펜타플루오로 페닐)보레이트, N,N-디메틸아리늄 테트라키스(펜타플루오로페닐)보레이트 등의 붕소화합물의 음이온을 들 수 있다.
특히 본 발명에 있어서 바람직한 pKa가 4 이하인 산의 음이온 (c)는 p-톨루엔 술폰산인데, 이는 액상매체로서 초산과 물의 혼합용매와 함께 사용하는 경우에, 높은 촉매 활성을 가질 뿐 아니라, 선박용 로프로 적합한 높은 고유점도를 가지는 폴리케톤의 제조가 가능해진다.
상기 (a) 제 9족, 제 10족 또는 제 11족 전이금속 화합물과 (b) 제15족의 원소를 가지는 리간드의 몰비는 팔라듐 원소 1몰당 리간드의 제 15족 원소 0.1 내지 20몰, 바람직하게는 0.1 내지 10몰, 더욱 바람직하게는 0.1 내지 5몰의 비율로 첨가되는 것이 좋다. 리간드가 팔라듐 원소 대비 0.1몰 미만으로 첨가되면, 리간드와 전이금속간의 결속력이 저하되어 반응 도중 팔라듐의 탈착이 가속화되며, 반응이 빨리 종결되는 단점이 발생하고, 리간드가 팔라듐 원소 대비 20몰을 초과하여 첨가되면, 유기금속 착체 촉매에 의한 중합반응에 리간드가 가리움 효과를 발생시켜 반응속도가 현저히 저하되는 단점이 생길 수 있다.
(a) 제 9족, 제 10족 또는 제 11족 전이금속 화합물과 (c) pKa가 4 이하인 산의 음이온의 몰비는 팔라듐 원소 1몰당 산의 몰비가 0.1 내지 20몰, 바람직하게는 0.1 내지 10몰, 더욱 바람직하게는 0.1 내지 5몰의 비율로 첨가되는 것이 좋다. 산이 팔라듐 원소 대비 0.1몰 미만으로 첨가되면, 폴리케톤의 고유점도 향상의 효과가 만족스럽지 못하고, 산이 팔라듐 원소 대비 20몰을 초과하여 첨가되면, 폴리케톤 제조용 촉매 활성이 오히려 감소하는 경향이 있으므로 바람직하지 않다.
본 발명에 있어서, 상기 폴리케톤 제조용 촉매와 반응시키는 반응가스는 일산화탄소와 에틸렌성 불포화 화합물을 적절히 혼합하여 사용하는 것이 바람직하다.
본 발명에 있어서, 일산화탄소와 공중합하는 에틸렌성 불포화 화합물의 예로서는, 에틸렌, 프로필렌, 1-부텐, 1-헥센, 4-메틸-1-펜텐, 1-옥텐, 1-데센, 1-도데센, 1-테트라데센, 1-헥사데센, 비닐시클로헥산을 포함하는 C2 내지 C20의 α-올레핀; 스티렌, α-메틸스티렌을 포함하는 C2 내지 C20의 알케닐 방향족 화합물; 시클로펜텐, 노르보르넨, 5-메틸노르보르넨, 5-페닐노르보르넨, 테트라시클로도데센, 트리시클로도데센, 트리시클로운데센, 펜타시클로펜타데센, 펜타시클로헥사데센, 8-에틸테트라시클로도데센을 포함하는 C4 내지 C40의 환상 올레핀; 염화비닐을 포함하는 C2 내지 C10의 할로겐화 비닐; 에틸아크릴레이트, 메틸아크릴레이트를 포함하는 C3 내지 C30의 아크릴산 에스테르 중 선택되는 어느 하나 또는 둘 이상의 혼합물을 선택하여 사용할 수 있다. 이들 에틸렌성 불포화 화합물은 단독 또는 복수종의 혼합물로서 사용된다. 이들 중에서 바람직한 에틸렌성 불포화 화합물은 α-올레핀이고, 더욱 바람직하게는 탄소수가 2 내지 4인 α-올레핀, 가장 바람직하게는 에틸렌이다.
폴리케톤의 제조시, 일산화탄소와 에틸렌성 불포화 화합물의 투입비를 1:1로 하는 것이 일반적이지만, 본 발명에서는 일산화탄소와 에틸렌성 불포화 화합물의 투입비는 몰비율 1:10 내지 10:1로 조절하여 사용하는 것이 바람직하다. 본 발명에서와 같이 에틸렌성 불포화 화합물과 일산화탄소를 적절한 비율로 혼합하여 사용할 경우, 촉매활성 면에서도 효과적이며, 제조된 폴리케톤의 고유점도 향상 효과를 동시에 달성할 수 있다. 일산화탄소 또는 에틸렌을 5몰% 미만 또는 95몰%를 초과하여 투입할 경우, 반응성이 떨어지며, 제조된 폴리케톤의 물성이 나빠질 수 있다.
한편, 섬유로 사용되는 폴리케톤 공중합체는 에틸렌, 프로필렌 및 일산화탄소로 이루어질 수 있는데 프로필렌의 몰비가 커질수록 선박용 로프로서는 부적합하며, 상기 에틸렌 및 프로필렌의 몰비%가 100:0 내지 90:10인 것이 바람직하다.
한편, 폴리케톤의 분자량 분포는 1.5 내지 4.0인 것이 바람직한데, 1.5 미만은 중합수율이 떨어지며, 4.0 이상은 가공성이 떨어지는 문제점이 있었다. 상기 분자량 분포를 조절하기 위해서는 팔라듐 촉매의 양과 중합온도에 따라 비례하여 조절이 가능하다. 즉, 팔라듐 촉매의 양이 많아지거나, 중합온도가 100 이상이면 분자량 분포가 커지는 양상을 보인다. 가장 바람직한 폴리케톤의 분자량 분포는 2.5 내지 3.5 이다.
또한, 겔 투과 크로마토그래피(chromatography)에 의하여 측정한 수평균 분자량이 100~200,000 특별히 20,000~90,000의 폴리케톤 폴리머가 특히 바람직하다. 폴리머의 물리적 특성은 분자량에 따라서, 폴리머가 코폴리머인, 또는 터폴리머인 것에 따라서, 또 터폴리머의 경우에는 존재하는 제2의 탄화 수소부분의 성질에 따라서 정해진다. 본 발명에서 사용하는 폴리머의 통산의 융점은 175~300℃이고, 또한 일반적으로는 210~270℃ 이다. 표준 세관점도 측정장치를 사용하고 HFIP(Hexafluoroisopropylalcohol)로 60℃에 측정한 폴리머의 극한 점도 수(LVN)는0.5dl/g~10dl/g, 또한 바람직하게는 5.0dl/g~7.0dl/g이다. 이 때, 폴리케톤 폴리머의 고유점도가 5.0 미만일 경우 섬유로의 제조시 기계적 강도가 떨어지며, 7.0을 초과하는 경우 작업성이 떨어진다.
본 발명의 폴리케톤 섬유의 제조 방법에 대해서 설명하기로 한다.
먼저, 방사노즐로부터 압출된 용액은 수직방향으로 에어 갭(air gap)을 통과하고 응고욕에서 응고된다. 이 때 에어 갭은 치밀하고 균일한 섬유를 얻기 위해서, 또 원활한 냉각효과를 부여하기 위해서 약 1~300mm의 범위 내에서 방사가 이루어진다.
이후, 응고욕을 통과한 필라멘트는 수세조을 통과하게 된다. 이 때 응고욕과 수세조의 온도는 급격한 탈용매로 인한 섬유조직 내의 공극(pore)등의 형성으로 인한 물성의 저하를 막기 위해서 0~80℃정도로 유지 관리된다.
그리고 수세조를 통과한 섬유는 산이 포함된 수용액내에서 산수세를 한 다음, 상기 산 제거를 위하여 2차 수세욕을 통과시킨 후, 건조기를 통과 한 다음, 유제처리장치에서 유제 및 첨가제를 함유하게 된다.
본 발명에서 응고욕은 온도가 -10 내지 40℃이고 금속염 농도가 1 내지 30중량%인 것이 특징이며, 수세욕은 온도가 0 내지 40℃이고 금속염 농도가 1 내지 30중량%인 것이 바람직하다.
이때, 상기 응고욕 및 수세조에서 사용된 금속염 수용액을 회수하여, 역삼투압 멤브레인에 통과시킴으로써, 고농도의 금속염 수용액을 회수할 수 있다. 상기와 같이 회수된 금속염 수용액은 폴리케톤을 용해시키기 위한 금속염 수용액으로 재사용될 수 있다.
또한, 편평성을 개선하여 집속성을 향상시키기 위하여 인터레이스 노즐을 통과하였다. 이 때 공기 압력은 0.5~4.0kg/cm2로 공급하였으며 필라멘트의 미터당 교락의 수를 2~40회로 하였다.
이후, 인터레이스 노즐을 통과한 필라멘트사는 건조장치를 거치면서 건조되어진다. 이 때 건조온도와 건조 방식 등은 필라멘트의 후공정 및 물성에 큰 영향을 미치게 된다.
그리고, 건조장치을 통과한 필라멘트는 2차 유제처리장치을 거쳐서 최종적으로 권취기에서 권취된다.
또한, 본 발명의 폴리케톤 섬유에서 연신공정은 고강도 및 내열수성 향상을 위하여 매우 중요하다. 연신공정의 가열방식은 열풍가열식과 롤러가열식이 있지만 롤러가열식에서는 필라멘트가 롤러면과 접촉하여 섬유 표면이 손상되기 쉽기 때문에 기존의 방식으로는 고강도 폴리케톤 섬유제조에는 열풍가열식이 더 효과적이었다. 그러나 본원 발명의 발명자들은 롤러가열식 특히 핫롤건조방식을 사용하면서, 내열안정제를 적용하고, 섬유의 세정과정에서 1.0 내지 2.0배, 바람직하게는 1.2 내지 1.6배, 더욱 바람직하게는 1.4배의 연신하는 공정을 통해 고강도의 멀티필라멘트를 얻을 수 있었다. 이때, 1.0배 미만의 연신 시 섬유의 강도가 저하되고, 2.0배 초과의 연신 시 작업성이 저하 된다.
즉, 본 발명에서는 230℃ 내지 300℃의 히팅 챔버(heating chamber)를 통과하는 방식을 사용하여 연신공정을 수행하는 것을 특징으로 한다.
한편, 폴리케톤을 용해하는 용매로는 아연염, 칼슘염, 리튬염, 티오시안산염 및 철염으로 이루어지는 군으로부터 선택되는 1종 이상의 금속염을 함유하는 수용액을 사용하는 것이 바람직하다. 구체적으로, 아연염으로는 브롬화아연, 염화아연, 요오드화아연 등을 들 수 있고, 칼슘염으로는 브롬화칼슘, 염화칼슘, 요오드화칼슘 등을 들 수 있으며, 리튬염으로는 브롬화리튬, 염화리튬, 요오드화리튬 등을 들 수 있으며, 철염으로는 브롬화철, 요오드화철 등을 들 수 있다. 이들 금속염 중에서 원료 폴리케톤의 용해성, 폴리케톤 용액의 균질성이라는 측면에서 브롬화아연, 브롬화칼슘, 브롬화리튬, 브롬화철로 이루어지는 군으로부터 선택되는 1종 이상을 사용하는 것이 특히 바람직하다.
또한, 본 발명의 금속염 수용액 중 금속염의 농도가 30 내지 80 중량인 것이 바람직하다. 이는 금속염의 농도가 30중량%이하이면 용해성이 떨어지게 되며, 금속염의 농도가 80중량% 이상이면 농축하는데 드는 비용이 증가하여 경제적인 면에서 불리하다. 상기 금속염을 용해시키기 위한 용매로는 물, 메탄올, 에탄올 등을 사용할 수 있으나, 특히 물을 사용하는 것이 경제적인 측면이나 용매 회수에 유리하므로 본 발명에서는 물을 사용하였다.
본 발명에서 핵심적인 기술 사항으로서 고강도를 가지며, 내피로성 및 치수 안정성이 우수한 폴리케톤 섬유를 얻기 위해서는 브롬화아연을 포함하는 수용액이 바람직하며, 금속염내의 브롬화아연의 조성비가 중요한 인자이다. 예를 들면, 브롬화아연 및 브롬화칼슘만을 함유하는 수용액에서는 브롬화아연과 브롬화칼슘의 중량비가 80/20 내지 50/50, 더욱 바람직하게 80/20 내지 60/40이다. 또한, 브롬화아연, 브롬화칼슘 및 브롬화리튬을 함유하는 수용액에서는 브롬화아연과 브롬화칼슘 및 브롬화리튬의 합계의 중량비가 80/20내지 50/50, 더욱 바람직하게는 80/20 내지 60/40이고, 이 때의 브롬화칼슘과 브롬화리튬의 중량비가 40/60 내지 90/10, 바람직하게는 60/40 내지 85/15이다.
폴리케톤 용액의 제조 방법으로는 특히 제한되지 않지만, 이하에서 바람직한 제조 방법의 예에 대해 설명한다.
20 내지 40℃로 유지된 금속염 수용액을 200torr이하에서 탈포시킨 후 폴리케톤 중합체를 200torr이하의 진공상태에서 60 내지 100℃로 승온시켜 0.5 내지 10시간 교반시킨 후 충분히 용해된 균질한 도우프를 제조한다.
이때, 상기 폴리케톤 중합체를 도 2와 같은 디스크 필터에 여과시켜 불순물을 제거하는 것이 바람직하다.
불순물을 제거하는데 있어서 디스크 필터를 사용할 경우, Low Flow 또는 Dead area가 존재하지 않아 균일한 압력 분배로 방사용액의 흐름성이 강화되어, 필터 수명이 향상될 수 있다. 종래에 사용하던 캔들 필터(도 1)를 사용할 경우는 필터의 수명은 최대 9일인데 반해, 디스크 필터의 경우는 용해 공정 최적화로 인하여 45일 이상으로 향상될 수 있다. 또한, 필터의 수명 향상으로 인하여 안정적인 연속 운전이 가능할 수 있다.
또한 본 발명에서는 상기 폴리케톤 중합체는 다른 고분자 물질 또는 첨가제를 혼합하여 사용할 수 있다. 고분자 물질로는 폴리비닐알콜, 카르복실메틸폴리케톤, 폴리에틸렌글리콜 등이 있으며, 첨가제로서는 점도강화제, 이산화티탄, 이산화실리카, 카본, 염화암모늄 등이 있다.
이하 본 발명의 상기 제조된 균질한 폴리케톤 용액으로 방사, 수세, 건조 및 연신하는 단계를 포함하는 폴리케톤 섬유의 제조방법을 보다 구체적으로 설명한다. 그러나 본 발명에서 청구되는 폴리케톤 섬유가 하기 공정에 의해 제한되는 것은 아니다.
본 발명에 따른 방법의 방사공정을 좀 더 구체적으로 설명하면, 직경 100 내지 500μm이고, 길이 100 내지 1500μm인 오리피스로서, 상기 직경과 길이의 비(L/D)가 1~3 내지 8배이고, 오리피스간 간격은 1.0 내지 5.0mm인 복수개의 오리피스를 포함한 방사 노즐을 통해 상기 방사원액을 압출 방사하여, 섬유상의 방사원액이 공기층을 통과하여 응고욕에 도달하도록 한 후, 이를 응고시켜 멀티필라멘트를 수득한다.
사용한 방사노즐의 형태는 통상 원형이고, 노즐 직경이 50 내지 200mm, 더욱 바람직하게는 80 내지 130mm이다. 노즐 직경이 50mm 미만인 경우, 오리피스간 거리가 너무 짧아 토출된 용액이 응고되기 전에 점착이 일어날 수 있으며, 너무 크면 방사용 팩 및 노즐 등의 주변장치가 커져 설비 면에 불리하다. 또한, 노즐 오리피스의 직경이 100μm 미만이면 방사 시 사절(絲切)이 다수 발생하는 등 방사성에 나쁜 영향을 미치며, 500μm를 초과하면 방사 후 응고욕에서 용액의 응고 속도가 늦고, 금속염 수용액의 탈용매 및 수세가 힘들게 된다.
용도 면에서 산업용 섬유임을 감안하고, 용액의 균일한 냉각을 위한 오리피스 간격을 고려하여, 오리피스 개수는 100 내지 2,200, 더욱 바람직하게는 300내지 1,400로 한다.
오리피스 개수가 100 미만이면 각 필라멘트의 섬도가 굵어져서 짧은 시간 내에 용매가 충분히 빠져나오지 못해 응고와 수세가 완전히 이루어지지 못한다. 그리고 오리피스 개수가 2,200개 초과이면 공기층 구간에서 인접 필라멘트와 접사가 생기기 쉬우며, 방사 후 각 필라멘트의 안정성이 떨어지게 되어 오히려 물성 저하가 생길 뿐만 아니라 이후 산업용 섬유로 적용하기 위한 연사 및 열처리 공정에서 문제를 야기시킬 수 있다.
방사노즐을 통과한 섬유상의 방사원액이 상부 응고액 속에서 응고될 때, 유체의 직경이 크게 되면 표면과 내부 사이에 응고속도의 차이가 커지므로 치밀하고 균일한 조직의 섬유를 얻기가 힘들어진다. 그러므로 폴리케톤 용액을 방사할 때에는 동일한 토출량이라도 적절한 공기층을 유지하면서 방사된 섬유가 보다 가는 직경을 지니며 응고액 속으로 입수할 수 있다.
상기 공기층은 바람직하게는 5 내지 50mm, 더욱 바람직하게는 10 내지 20mm 이다. 너무 짧은 공기층 거리는 빠른 표면층 응고와 탈용매 과정에서 발생하는 미세공극 발생분율이 증가하여 연신비 증가에 방해가 되므로 방사속도를 높이기 힘든 반면, 너무 긴 공기층 거리는 필라멘트의 점착과 분위기 온도, 습도의 영향을 상대적으로 많이 받아 공정안정성을 유지하기 힘들다.
본 발명에서 사용하는 응고욕의 조성은 금속염 수용액의 농도가 1~20 중량%가 되도록 한다. 응고욕 온도는 -10~60℃ 더욱 바람직하게는 -5~20℃로 유지한다. 응고욕에서 멀티필라멘트는 응고욕을 필라멘트가 통과할 때, 방사속도가 500m/min 이상 증가하면 필라멘트와 응고액과의 마찰에 의해 응고액의 흔들림이 심해진다. 연신배향을 통해 우수한 물성과 방사속도를 증가시켜 생산성을 향상시키는 데 있어 이와 같은 현상은 공정안정성을 저해하는 요인이 되므로 최소화하도록 할 필요가 있다.
본 발명에서 응고욕은 온도가 -10 내지 40℃이고 금속염 농도가 1 내지 30중량%인 것이 특징이며, 수세욕은 온도가 0 내지 40℃이고 금속염 농도가 1 내지 30중량%인 것이 바람직하다.
또한 본 발명에서 건조기온도는 100℃이상이며, 바람직하게는 200℃이상이며 건조기를 통과한 섬유에 유제, 내열제, 항산화제 또는 안정제를 부여한다.
또한, 본 발명의 폴리케톤 섬유에서 연신공정은 고강도 및 내열수성 향상을 위하여 매우 중요하다.
이하 본 발명에서 중요한 연신공정 및 건조방식에 대해 설명한다.
본 발명은 폴리케톤의 습식방사시 내열 안정성 확보와 직접건조방식을 통해 고강도 섬유를 제공한다. 기존 방사공정에서는 균인건조 및 연신 온도 최적화시에도 최고 강도는 13g/d 수준이나, 본 발명은 건조방법중 히팅방법과 온도 프로파일을 최적화 하여 건조사 단면을 퓨전(fusion)하여 치밀한 구조를 형성하며, 이로 인해 연신 배율 및 강도가 향상된다. 또한, 히팅시에 폴리케톤의 열열화 방지를 위해 건조와 연신시 내열안정제를 포함하는 공정을 통해 연신배율 및 강도향상이 이루어진다.
폴리케톤 섬유는 높은 온도에서 산화 또는 열화 메커니즘을 가진다. 라디칼에 의한 산화 메커니즘으로 폴리케톤은 90℃ 이상에서 산소에 노출 될 경우, 이산화탄소를 방출하며 산화성 열화(oxidative degradation)가 발생한다. 또한, 라디칼에 의한 열화 메커니즘으로 폴리케톤은 200℃ 이상의 고온에 노출될 경우, 일산화탄소 및 에틸렌을 방출하며 열열화(thermal degradation)가 발생한다. 이러한 높은 온도에서 폴리케톤의 산화 및 열화를 방지하기 위해 내열안정제를 사용한다. 내열 안정제로는 라디칼 산화 및 열화를 방지할 수 있는 내열안정제(antioxidant) 모두가 사용될 수 있다.
바람직하게는 페놀계 내열안정제가 사용되며, 내열안정제는 한 종류 이상이 혼합 혹은 단독으로 사용될 수 있다. 산화 및 열화 방지 메커니즘은 열 또는 자외선에 의해 발생되는 알킬 라디칼(alkyl radical)을 내열안정제로 라디칼을 잡아줌으로써 라디칼에 의한 연쇄반응을 방지한다(도 1참조). 내열안정제는 건조 전이나 연신 전에 사용할 수 있으며, 방식은 침지방식 또는 도포방식 단독 혹은 하나 이상이 사용될 수 있다. 구체적으로 본 발명의 일예로 건조 전 단계와 연신단계에서 페놀계 내열안정제를 메탄올 용매와 혼합한 페놀계 내열안정제의 용액 0.1%를 건조 전 단계와 연신단계에서 적용하고, 건조 전 단계에서 섬유상에 존재하는 내열 안정제는 250ppm 이었으나, 건조와 연신단계를 거친 후에는 25ppm이 잔존한다. 내열안정제는 공정에 따라 적절한 양을 사용하여야 하는데, 많으면 작업성이 떨어지며, 적으면 내열 안정효과가 충분하지 못하다. 내열 안정제는 원딥 혹은 투딥 또는 그 이상으로 사용할 수 있다.
한편, 본원발명은 섬유의 강도를 높이기 위해 기존에 열풍건조방식의 간접 건조방식이 아닌 핫롤러 건조방식의 직접 건조방식이 사용된다. 기존의 열풍 건조방식은 180℃의 온도로 체류시간 약 3분 30초 동안 도 2와 같은 열풍 건조방식을 사용하였다. 이는 균일건조가 가능하고 접사가 개선되는 효과가 있으나, 사엉킴이나, 루프(loop), 정전기 발생이 많고 퓨전(fusion)구조 발생이 어려워 조직이 치밀하지 못했다(도 4 참조). 본 발명은 핫 롤 건조방식으로 220 내지 230℃의 온도에서 체류시간 약 1분 30초 동안 도 3와 같은 핫 롤 건조방식을 사용한다. 이러한 건조방식을 이용하는 경우 사엉킴이 없고, 정전기 발생이 적으며, 퓨전(fusion)구조의 형성으로 조직이 치밀하고, 상용화 적용에 용이하다(도 5참조).
또한, 본 발명은 연신과정을 거치게 되는데 연신으로 인해 섬유는 15 내지 18 배 연신이 된다. 폴리케톤 섬유의 연신을 위해 1단 또는 2단 이상의 다단으로 연신을 수행한다. 또한, 다단 연신을 행하는 경우에는 연신 배율의 증가에 따라서 연신 온도가 서서히 높아져 가는 승온 연신이 바람직하다. 구체적으로 연신과정은 240 내지 270℃의 온도에서 수행하며, 체류시간은 약 1분 30초 이내이고, 1단과 2단의 과정을 거친다. 1단에서 7배, 2단에서 2.5배의 연신을 거치며, 2단에서는 3step 형식으로 단계적으로 연신을 수행한다. 1단을 거친 후 폴리케톤 섬유의 신도는 10%, 강도는 8g/d 이나, 2단을 거친 후에는 신도는 약 5.2%, 강도 20g/d의 폴리케톤 섬유를 얻는다.
이에 더해, 상기와 같은 건조와 연신과정으로 인해 높은 온도에서 폴리케톤의 열열화 등이 생기는 바 내열안정제를 첨가하게 되는데, 건조 전 또는 연신 전에 적용 되며, 본 발명에서는 원딥 혹은 투딥 모두 사용할 수 있다. 통상적으로 투딥 이상을 수행하는 경우 강도 증가와는 별개로 섬유의 신도는 떨어지나, 본 발명에 따른 핫 롤 건조방식의 경우 신도 저하가 거의 없다.
본 발명에 따른 방법에 의해 제조된 멀티 필라멘트는 총 데니어 범위 500 내지 3,500이고, 절단 하중이 6.0 내지 40.0kg인 폴리케톤 멀티 필라멘트이다. 상기 멀티 필라멘트는 섬도 0.5 내지 8.0 데니어인, 100 내지 2200개의 개개의 필라멘트로 구성되어 있다.
본 발명의 핫롤 건조방식과 내열안정제를 첨가하는 공정에 의해 모노필라멘트의 섬유밀도는 1.295 내지 1.310 g/cm3을 보이며 그 구조는 도 5에서와 같은 치밀한 구성을 보인다. 그 결과 상기 공정에 의해 제조된 폴리케톤 모노필라멘트의 초기 모듈러스값은 200g/d 이상이고, 10.0 g/d 에서 신도가 2.5 내지 3.5%이며, 19.0g/d 이상에서 최소한 0.5% 이상 신장한다.
본 발명의 폴리케톤 방탄복은 상기한 방법에 의해 제조된 폴리케톤 섬유를 경사 및 위사로 하여 직물을 제직하는 공정, 직물을 정련하는 공정, 및 직물을 발수처리하는 공정을 거쳐 제조된다.
상기 직물을 제직하는 공정은 상기 폴리케톤 멀티 필라멘트를 경사 및 위사로 하며 평직(plain) 또는 바스켓직(basket)을 직물조직으로 하여 제직하는 공정으로 이루어질 수 있다. 상기 경사밀도 및 위사밀도는 각각 10~ 25본/cm 이 좋다.
상기 직물을 정련하는 공정은 직물을 구성하는 폴리케톤 멀티필라멘트에 부착되어 있는 유제나 이물질을 제거하는 공정인데, 직물의 유연성을 향상시키기 위함이다.
상기 직물을 정련하는 공정은 40℃-100℃에서 NaOH 또는 Na2CO3와 같은 계면활성제를 이용하여 수행할 수 있다.
상기 직물을 발수처리하는 공정은 직물이 수분을 흡수하지 않도록 처리하는 공정으로서, 장기간 사용시 수분흡수에 따른 물성저하를 방지하기 위한 것으로 상기 정련 공정을 통해 직물의 표면에 부착된 이물질을 완전히 제거한 후, 발수제에 직물을 침지시키고, 건조하여 수행된다.
상기 발수제는 하드록실레이티드 퍼르플루오로알킬 에틸 아크릴레이트 코폴리머(Hydroxylated perfluoroalkylethyl acrylate copolymer) 100중량부 대비 디프로필렌 글리콜(Dipropylene glycol) 20 ~ 35중량부, 실리콘 오일 0.5 ~ 5.5 중량부 및 이소프로필알콜(isopropylalcohol) 0.5 ~ 10 중량부가 포함되어 제조된다.
본 발명에 의해 제조된 폴리케톤 섬유는 방탄헬멧으로 제조될 수 있다.
예를 들어, 전술한 바와 같은 폴리케톤 섬유에 열가소성 수지를 코팅하고, 외층에 열경화성 수지 또는 열가소성 수지가 코팅된 폴리케톤 섬유를 헬멧형상의 몰드에 적층한 후, 가압함으로써, 방탄 헬멧을 제조할 수 있다.
상기 열경화성 수지는 특별히 제한되지 않는데 페놀수지, 요소수지, 멜라민수지, 실리콘수지, 에폭시수지, 폴리우레탄 수지 등이 사용될 수 있다.
상기 열가소성 수지는 아크릴 수지, 염화비닐 수지, 비닐아세틸 수지, 폴리메타크릴수지, 폴리스티렌 수지, 폴리에틸렌 수지, 나일론 등이 바람직하다. 그러나 반드시 이에 한정되지는 않는다.
본 발명에 의해 제조된 폴리케톤 섬유는 항공기 또는 군항기용 폴리케톤 방탄재로 제조될 수 있다.
상기한 방법으로 제조된 폴리케톤 멀티 필라멘트를 경사 및 위사에 적용하여 평직으로 제조한 후, 탄성 매트릭스원액에 함침시킨 후, 윙팁 제조용 몰드에 적층하여 열가소성 또는 열경화성 수지와 접착시켜 가열 및 가압하여 폴리케톤 항공기 윙팁장치를 제조한다.
상기 탄성 매트릭스 원액은 염화고무 100중량부 대비 5 내지 15 중량부의 노화방지제, 3 내지 8 중량부의 카본블랙과 20 내지 30 중량부의 무기물 필러를 혼합하여 제조된다.
상기 염화고무는 클로로프렌 고무(chloroprene rubber), 아크릴로니트릴 부타디엔 고무(acrylonitrile butadiene rubber), 아크릴계 고무(acrylic rubber) 또는 이들 중 2이상의 혼합물로 이루어진다.
상기 노화방지제는 페놀계, 인계, thio계 노화방지제가 사용된다.
상기 무기물 필러는 산화마그네슘, 수산화마그네슘, 산화아연 등이 사용될 수 있다.
상기 열경화성 수지는 특별히 제한되지 않는데 페놀수지, 요소수지, 멜라민수지, 실리콘수지, 에폭시수지, 폴리우레탄 수지 등이 사용될 수 있다.
상기 열가소성 수지는 아크릴 수지, 염화비닐 수지, 비닐아세틸 수지, 폴리메타크릴수지, 폴리스티렌 수지, 폴리에틸렌 수지, 나일론 등이 바람직하다. 그러나 반드시 이에 한정되지는 않는다.
상기 제조된 폴리케톤 멀티필라멘트를 경사 및 위사에 적용하여 평직으로 제조한 후, 몰드에 적층하여 열가소성 또는 열경화성 수지와 접착시켜 가열 및 가압하여 폴리케톤 헬리콥터 내장재를 제조한다.
본 발명에 의해 제조된 폴리케톤 섬유는 폴리케톤 자동차 구조재, 선박플랫폼, 잠수정 구조재, 광케이블 피복재, 레이더돔 구조재, 초전도 코일의 보빈, 극저온 절연소재, 테니 라켓용 와이어, 요트구조재, 요트 돛, 경기용 자전거, 패러글라이드용 코팅 직물, 안전장갑으로 제조될 수 있다.
이하, 본 발명을 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명하기로 한다. 그러나 본 발명에 따른 실시예는 여러가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상술하는 실시예들에 한정되는 것으로 해석되어져서는 안된다. 본 발명의 실시예들은 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다.
제조예 1
농도가 60중량%인 브롬화아연 수용액을 주입온도 25℃로 내부가 30℃로 유지된 압출기에 기어펌프로 13000g/시간 속도로 주입하며 분자량 분포가 3.0, 고유점도가 6.0 ㎗/g인 폴리케톤 분말은 스크류식 공급기로 1160g/시간으로 압출기 주입하여 압출기 팽윤구역에서 체류시간은 0.8분으로 하고 온도는 40℃로 상승하게 하여 폴리케톤 분말을 금속염 용액에 충분히 용해시킨 다음, 압출기의 용해구역에서 각 블록온도를 55 내지 60℃로 유지하고, 스크류를 110rpm으로 작동시켜 건습식 방사법에 의해서 폴리케톤 섬유를 제조하였다.
이때 노즐 홀수 및 홀 직경은 각각 667개 및 0.18mm이며 L/D가 1인 원형 노즐을 사용하였고 에어갭은 10mm이었다. 배출된 용액의 폴리케톤의 농도는 8.2중량%였으며, 미용해된 폴리케톤 입자가 함유되지 않은 균질한 상태였다.
얻어진 섬유를 세정과정에서 1.2배 연신을 수행하고, 건조 전에 페놀계 내열안정제로 Adeka사의 AO80와 메탄올의 혼합용액 0.1%용액으로 침지방식으로 내열안정제를 딥핑한다. 건조과정에서 핫롤 건조방식으로 1.2배 연신을 수행한 후에 heating chamber방식으로 Total연신배율 16.8배로 섬유를 제조하고, 1단에서 7배의 연신, 2단에서 2.4배의 연신을 거치며, 2단은 각각 1.5, 1.3, 1.23배의 3step 연신을 포함하며, 각 step은 240, 255, 265 및 268℃의 온도에서 수행한다. 최종 모노 필라멘트 섬도가 1.5 데니어로 조절되었다.
제조예 2
heating chamber 방식의 연신에서 1단 및 2단의 각 step의 온도를 240, 250, 260 및 268℃로 조절한 것을 제외하고는 제조예 1과 동일하다.
제조예 3
heating chamber 방식의 연신에서 1단 및 2단의 각 step의 온도를 240, 255, 265 및 272℃로 조절한 것을 제외하고는 제조예 1과 동일하다.
제조예 4
농도가 60중량%인 브롬화아연 수용액을 주입온도 25℃로 내부가 30℃로 유지된 압출기에 기어펌프로 13000g/시간 속도로 주입하며 분자량 분포가 3.0, 고유점도가 5.7 ㎗/g인 폴리케톤 분말은 스크류식 공급기로 1160g/시간으로 압출기 주입하여 압출기 팽윤구역에서 체류시간은 0.8분으로 하고 온도는 40℃로 상승하게 하여 폴리케톤 분말을 금속염 용액에 충분히 용해시킨 다음, 압출기의 용해구역에서 각 블록온도를 55 내지 60℃로 유지하고, 스크류를 110rpm으로 작동시켜 건습식 방사법에 의해서 폴리케톤 섬유를 제조하였다.
이때 노즐 홀수 및 홀 직경은 각각 667개 및 0.18mm이며 L/D가 1인 원형 노즐을 사용하였고 에어갭은 10mm이었다. 배출된 용액의 폴리케톤의 농도는 8.2중량%였으며, 미용해된 폴리케톤 입자가 함유되지 않은 균질한 상태였다.
얻어진 섬유를 세정과정에서 1.2배 연신을 수행하고, 건조 전에 페놀계 내열안정제로 Adeka사의 AO80와 메탄올의 혼합용액 0.1%용액으로 침지방식으로 내열안정제를 딥핑한다. 건조과정에서 핫롤 건조방식으로 1.2배 연신을 수행한 후에 heating chamber방식으로 Total연신배율 16.8배로 섬유를 제조하고, 1단에서 7배의 연신, 2단에서 2.4배의 연신을 거치며, 2단은 각각 1.5, 1.3, 1.23배의 3step 연신을 포함하며, 각 step은 240, 255, 265 및 268℃의 온도에서 수행한다.
제조예 5
폴리케톤 폴리머의 고유점도를 6.1㎗/g으로 조절한 것을 제외하고는 제조예 4와 동일하다.
제조예 6
폴리케톤 폴리머의 고유점도를 6.3㎗/g으로 조절한 것을 제조예 4와 동일하다.
제조예 7
농도가 60중량%인 브롬화아연 수용액을 주입온도 25℃로 내부가 30℃로 유지된 압출기에 기어펌프로 13000g/시간 속도로 주입하며 분자량 분포가 2.5, 고유점도가 6.0 ㎗/g인 폴리케톤 분말은 스크류식 공급기로 1160g/시간으로 압출기 주입하여 압출기 팽윤구역에서 체류시간은 0.8분으로 하고 온도는 40℃로 상승하게 하여 폴리케톤 분말을 금속염 용액에 충분히 용해시킨 다음, 압출기의 용해구역에서 각 블록온도를 55 내지 60℃로 유지하고, 스크류를 110rpm으로 작동시켜 건습식 방사법에 의해서 폴리케톤 섬유를 제조하였다.
이때 노즐 홀수 및 홀 직경은 각각 667개 및 0.18mm이며 L/D가 1인 원형 노즐을 사용하였고 에어갭은 10mm이었다. 배출된 용액의 폴리케톤의 농도는 8.2중량%였으며, 미용해된 폴리케톤 입자가 함유되지 않은 균질한 상태였다.
얻어진 섬유를 세정과정에서 1.2배 연신을 수행하고, 건조 전에 페놀계 내열안정제로 Adeka사의 AO80와 메탄올의 혼합용액 0.1%용액으로 침지방식으로 내열안정제를 딥핑한다. 건조과정에서 핫롤 건조방식으로 1.2배 연신을 수행한 후에 heating chamber방식으로 Total연신배율 16.8배로 섬유를 제조하고, 1단에서 7배의 연신, 2단에서 2.4배의 연신을 거치며, 2단은 각각 1.5, 1.3, 1.23배의 3step 연신을 포함하며, 각 step은 240, 255, 265 및 268℃의 온도에서 수행한다.
제조예 8
폴리케톤 폴리머의 분자량 분포를 2.8로 조절한 것을 제외하고는 제조예 7와 동일하다.
제조예 9
폴리케톤 폴리머의분자량 분포를 3.5로 조절한 것을 제조예 8와 동일하다.
제조예 10
페놀계 내열안정제로 Adeka사의 AO80와 메탄올의 혼합용액 0.1%용액을 건조 전 1 딥을 시행한 것을 제외하고는 제조예 1과 동일하다.
제조예 11
페놀계 내열안정제로 Adeka사의 AO80와 메탄올의 혼합용액 0.1%용액을 건조 전과 연신 전 2 딥을 시행한 것을 제외하고는 제조예 1과 동일하다.
물성평가
(1) 고유 점도
페놀과 1,1,2,2-테트라클로로에탄올 6:4(무게비)로 혼합한 시약(90℃)에 시료 0.1g을 90분간 용해시킨 후 우베로데(Ubbelohde) 점도계에 옮겨 담아 30℃ 항온조에서 10분간 유지시키고, 점도계와 애스피레이터(Aspirator)를 이용하여 용액의 낙하초수를 구한다. 솔벤트의 낙하초수도 상기와 같은 방법으로 구한 아래의 수학식에 의해 R.V.값 및 I.V. 값을 계산하였다
R.V. = 시료의 낙하초수/솔벤트 낙하초수
I.V. = 1/4 ×[(R.V.- 1)/C] + 3/4 ×(In R.V./C)
상기 식에서 ,C는 용액중의 시료의 농도(g/100㎖)를나타낸다.
(2) 분자량 분포
0.01 N의 트리플루오로아세트산나트륨을 함유하는 헥사플루오로이소프로판올 용액에 폴리케톤을 폴리케톤 농도가0.01 중량%가 되도록 용해하고, 이하의 조건으로 측정했다.
장치: SHIMADZU LC-10Advp
컬럼: 하기의 컬럼을 (가), (나) 및 (다)의 순서로 연결하여 사용.
(가): Shodex GPCHFIP-G
(나): Shodex HFIP-606M
(다): Shodex HFIP-606M
컬럼 온도: 40 ℃
이동상: 0.01 N의 트리플루오로아세트산나트륨을 함유하는 헥사플루오로이소프로판올 용액
유량: 0.5 ㎖/분
검출기: 시차 굴절계
주입량: 30 ㎕
표준 시료로는 단분산인 분자량 분포를 갖는 폴리메틸 메타크릴레이트 (PMMA)를 이용하고 (농도 0.01 중량%), 상기 측정 조건과 동일한 조건으로 얻어진 PMMA의 검량선으로부터 측정한 폴리케톤의 PMMA 환산의 중량 평균 분자량 (Mw)과 수 평균 분자량 (Mn)을 구하여, Mw/Mn을 분자량 분포로 하였다.
(3) 모듈러스와 강신도 측정방법
원사를 표준상태인 조건, 즉 25℃ 온도와 상대습도 65%인 상태인 항온 항습실에서 24시간 방치 후 ASTM 2256 방법으로 시료를 인장 시험기를 통해 측정한다. 10개의 시료로부터 측정된 10개의 값 중에서 최대값 및 최소값을 각각 1개씩 제외한 나머지 8개의 평균값으로 시료의 물성을 측정하였다. 초기 모듈러스는 항복점 이전의 그래프의 기울기를 나타낸다.
(4) 방탄성능 측정방법
방탄헬멧의 방탄 성능의 정도를 간접적으로 나타내는 평균 속도(V50)를 MIL-STD-662F 규정에 따라 측정하였고, 상기 평균 속도(㎧)는 Cal.22구경 파편모의탄(FSP)을 이용하여 완전 관통했을 때의 속도와 부분 관통했을 때의 속도를 평균한 값으로부터 구하였다.
(5) 단면변동률(CV%) 측정방법
실시예 및 비교예에서 제조된 멀티 필라멘트의 단면변동률( CV%)는 단면절단용 동판과 현미경을 이용하여 제조된 섬유의 단면 상태를 촬영한 후, 전체 필라멘트 중 90% 이상에 해당하는 필라멘트들의 상대적인 면적을 수치화하였다. 이때, 각 필라멘트의 면적은 절대면적일 필요는 없으며, 이미지 분석 소프트웨어에서 얻어지는 픽셀(pixel) 등의 상대적 단위도 이용될 수 있다. 본 발명에서는 각 원형 필라멘트의 계면에 세 개의 점을 지정하고 이로 이루어지는 삼각형의 외접원을 이용하여 해당 필라멘트의 상대면적을 계산하였다. 이러한 작업은 계면지점 선택 등에서 오차를 줄이기 위해 가능한 큰 배율 및 이미지 확대 기능을 이용하여 수행하는 것이 바람직하다. 단면변동률은 다음과 같이 계산하였다.
Figure PCTKR2016005248-appb-I000002
×100(%)
(6) 모노필라멘트의 강도(g/d), 신도(%) 및 모듈러스(g/d)
온도 25℃, 상대 습도 55RH%에서 24시간 동안 방치한 원사(멀티필라멘트)에서 24개의 모노필라멘트를 추출한 후, 렌징사의 모노필라멘트 인장시험기 Vibrojet 2000을 이용하여 초하중을 Vibrojet에서 데니어별로 규정하는 하중(약, 모노데니어x50 (mg))을 가한 후, 시료장 20㎜, 인장강도 20㎜/min로 측정한다. 측정된 24개의 값 중에서 최대값 및 최소값을 각각 1개씩 제외한 나머지 22개의 평균값으로 모노필라멘트 물성을 측정하였다. 초기 모듈러스는 항복점 이전의 그래프의 기울기를 나타낸다.
(5) 내수성과 내염소성 실험
내수성 실험
상기 실시예 및 비교예에 의하여 제조된 연신사를 15개 적층하여 압착한 후, 시편을 제조하여 100mm로 자르고 무게(W1)를 측정하였다. Water Bath내 물의 온도를 21℃로 조절한 후, 시료의 윗면이 3 inch(75mm)정도 물에 잠기도록 물을 붓고, 시료가 물에 뜨지 않도록 Screen을 이용하여 누른 후, 시료가 Water Bath의 바닥으로부터 최소한 2 inch 이상이 되도록 한 상태에서 24시간 동안 유지시켰다.
그런 다음 24시간 분 후 제품을 꺼내 한쪽을 Clamp로 쥐고 30분 동안 수직으로 세워 흡수된 물이 자연적으로 떨어지게 한 후, 무게(W2)를 측정하여 평균값을 취하고, 흡수율은 다음 식에 따라 구하였다. 그 결과를 표 3을 통해 나타내었다.
흡수율(%) = (W2 - W1) / W1 ×100%
내염소성 실험
상기 실시예 및 비교예에 의하여 제조된 연신사를 신장하여 활성염소농도 3ppm, pH 7.5의 염소수 15L에 상온에서 24시간 동안 침적하기 전과 침적한 후의 강력을 각각 측정한 다음, 하기식에 따라 강력 유지율을 계산하였다. 강력 측정에는 Instron 4301(인스트론사, 미국)을 이용했으며, 시료길이는 5 센티미터로 하였고 셀(Cell)은 1 Kg를 이용하여 300 mm/min의 인장속도(Cross Head Speed)로 측정하였다. 그 결과를 표 3을 통해 나타내었다.
강력 유지율 = S/So % (So : 처리 전 강력; S: 처리 후 강력)
(6) 흡습율의 측정
시편(100mm)을 준비하고, 상기 각 시편을 105℃에서 30분 건조한 후 각각의 질량을 측정하여, 이를 ‘흡습전 질량’이라고 하였다. 이어서, 상기 각 시편을 상온의 증류수에 24시간 동안 침적시킨 후 꺼내어 각 시편 표면의 수분을 닦아낸 다음 각각의 질량을 측정하여, 이를 ‘흡습후 질량’이라고 하였다. 이후, 하기 수학식 1로부터 흡습율을 구하였다.
[수학식 1]
흡습율(%)=(흡습후 질량-흡습전 질량)/(흡습전 질량)
(7) 난연성 시험
제조된 시편을 IEC 332-3C 난연시험(연소길이 240cm이하)에 준하여 난연성을 평가하여 시편의 연소된 길이(cm)를 측정하였다.
멀티 필라멘트 물성 모노 필라멘트 물성
강도(g/d) 신도(%) 흡습 후 물성 유지율(%) 내열성(%) Toughness 건열수축률(%) 초기 모듈러스(g/d) 10.0g/d응력 받을 때 신장률(%) 19.0g/d~절단까지 응력 받을 때 신장률(%)
제조예 1 20.75 5.9 94.3 94.3 53.54 1.25 220 2.4 1.8
제조예 2 21.00 5.6 93.1 93.1 54.02 1.14 280 2.5 2.1
제조예 3 20.84 5.7 92.3 92.3 53.65 1.15 205 2.3 1.7
제조예 4 19.95 6.3 94.0 94.0 52.95 1.35 250 2.9 2.0
제조예 5 20.55 6.0 92.4 92.4 53.55 1.26 290 3.1 1.0
제조예 6 20.13 6.1 92.3 92.3 53.13 1.06 212 2.8 1.4
제조예 7 19.74 6.3 91.1 91.1 52.74 1.37 210 2.7 1.2
제조예 8 20.87 5.7 90.7 90.7 53.87 1.15 230 3.2 1.3
제조예 9 20.14 6.1 93.1 93.1 53.14 1.27 220 3.1 1.3
제조예 10 20.20 6.0 91.5 91.5 53.20 1.29 260 3.4 1.4
제조예 11 21.04 5.6 91.3 91.3 54.04 1.11 230 2.8 1.2
상기 표 1와 같이 본원발명의 실시예에 의해 제조된 폴리케톤 섬유는 신도와 강도가 우수하고, 내수성, 내열성, Toughness, 건열수축율 등이 우수한 것으로 나타났다.
실시예 1
상기의 제조예1 과정을 통해 얻은 폴리케톤 섬유를 사용하여 섬도 1.5 데니어인 1,000개로 이루어진 폴리케톤 멀티필라멘트 경사밀도 및 위사밀도를 각각 10본/㎝로 하여 평직으로 직물을 제직하였다. 그 후, 직물을 계면활성제 처리하고 수세한 후 건조한 다음, 하드록실레이티드 퍼르플루오로알킬 에틸 아크릴레이트 코폴리머(Hydroxylated perfluoroalkylethyl acrylate copolymer) 100중량부 대비 디프로필렌 글리콜(Dipropylene glycol) 20 ~ 35중량부, 실리콘 오일 0.5 ~ 5.5 중량부 및 이소프로필알콜(isopropylalcohol) 0.5 ~ 10 중량부로 이루어진 발수제를 준비하여 상기 직물을 침지하여 발수제를 함침시킨 후 패딩(padding) 공정을 거쳐 건조하여 방탄 의류를 제조하였다
실시예 2
heating chamber 방식의 연신에서 1단 및 2단의 각 step의 온도를 240, 250, 260 및 268℃로 조절한 것을 제외하고는 실시예 1과 동일하다.
실시예 3
heating chamber 방식의 연신에서 1단 및 2단의 각 step의 온도를 240, 255, 265 및 272℃로 조절한 것을 제외하고는 실시예 1과 동일하다.
실시예 4
상기의 제조예4 과정을 통해 얻은 폴리케톤 섬유를 사용하여 1.5 데니어인 1,000개로 이루어진 폴리케톤 멀티필라멘트 경사밀도 및 위사밀도를 각각 10본/㎝로 하여 평직으로 직물을 제직하였다. 그 후, 직물을 계면활성제 처리하고 수세한 후 건조한 다음, 하드록실레이티드 퍼르플루오로알킬 에틸 아크릴레이트 코폴리머(Hydroxylated perfluoroalkylethyl acrylate copolymer) 100중량부 대비 디프로필렌 글리콜(Dipropylene glycol) 20 ~ 35중량부, 실리콘 오일 0.5 ~ 5.5 중량부 및 이소프로필알콜(isopropylalcohol) 0.5 ~ 10 중량부로 이루어진 발수제를 준비하여 상기 직물을 침지하여 발수제를 함침시킨 후 패딩(padding) 공정을 거쳐 건조하여 방탄 의류를 제조하였다.
실시예 5
폴리케톤 폴리머의 고유점도를 6.1㎗/g으로 조절한 것을 제외하고는 실시예 4와 동일하다.
실시예 6
폴리케톤 폴리머의 고유점도를 6.3㎗/g으로 조절한 것을 실시예 4와 동일하다.
실시예 7
상기의 제조예7 과정을 통해 얻은 폴리케톤 섬유를 사용하여 데니어 8.0 인 1,500개로 이루어진 폴리케톤 멀티필라멘트를 경사밀도 및 위사밀도를 각각 10본/㎝로 하여 평직으로 직물을 제직하였다. 그 후, 직물을 계면활성제 처리하고 수세한 후 건조한 다음, 하드록실레이티드 퍼르플루오로알킬 에틸 아크릴레이트 코폴리머(Hydroxylated perfluoroalkylethyl acrylate copolymer) 100중량부 대비 디프로필렌 글리콜(Dipropylene glycol) 20 ~ 35중량부, 실리콘 오일 0.5 ~ 5.5 중량부 및 이소프로필알콜(isopropylalcohol) 0.5 ~ 10 중량부로 이루어진 발수제를 준비하여 상기 직물을 침지하여 발수제를 함침시킨 후 패딩(padding) 공정을 거쳐 건조하여 방탄의류를 제조하였다.
실시예 8
폴리케톤 폴리머의 분자량 분포를 2.8로 조절한 것을 제외하고는 실시예 7와 동일하다.
실시예 9
폴리케톤 폴리머의분자량 분포를 3.5로 조절한 것을 실시예 7와 동일하다.
실시예 10
페놀계 내열안정제로 Adeka사의 AO80와 메탄올의 혼합용액 0.1%용액을 건조 전 1 딥을 시행한 것을 제외하고는 실시예 1과 동일하다.
실시예 11
페놀계 내열안정제로 Adeka사의 AO80와 메탄올의 혼합용액 0.1%용액을 건조 전과 연신 전 2 딥을 시행한 것을 제외하고는 실시예 1과 동일하다.
비교예 1 내지 3
방탄의류의 제조에 있어 아라미드 섬유를 사용하고, 수세공정에서 연신비를 1.0 배로 하고 핫롤 건조방식이 아닌 열풍 건조방식을 수행하는 것을 제외하고는 실시예 1과 동일한 방법으로 수행하였고, 표 1의 방사조건으로 수행하였다.
비교예 1 비교예 2 비교예 3
열풍건조기 온도(℃) 240℃ 260℃ 280℃
수세 공정에서 연신 비(배) 1.0배 1.0배 1.0배
연신사 강도(g/d) 신도(%) 방탄성능(V50 FSP) 단면 변동률(%)
실시예 1 20.75 5.9 590 9
실시예 2 21.00 5.6 610 8
실시예 3 20.84 5.7 590 7
실시예 4 19.95 6.3 610 11
실시예 5 20.55 6.0 700 12
실시예 6 20.13 6.1 550 10
실시예 7 19.74 6.3 600 8
실시예 8 20.87 5.7 570 13
실시예 9 20.14 6.1 590 12
실시예 10 20.20 6.0 600 8
실시예 11 21.04 5.6 580 9
비교예 1 10.8 1.9 470 22
비교예 2 11.2 2.1 510 21
비교예 3 9.6 1.7 560 18
상기 표 3과 같이 본원발명의 실시예에 의해 제조된 폴리케톤 필라멘트는
강도, 신도 및 단면 변동률이 우수한 것으로 판명되었고, 상기 폴리케톤 필라멘트를 포함하는 방탄의류는 방탄성능이 우수한 것으로 나타났다.
실시예 12
상기 제조예1의 과정을 통해 얻은 1.5데니어인 폴리케톤 필라멘트 1,000개를 경사 및 위사에 적용하고 평직으로 직조한 후, 에폭시 수지를 접착시켜 80℃ 챔버에서 1.5bar의 압력을 가하여 코팅한 후, 헬멧 제조용 하부 몰드에 적층 후, 160bar의 압력 및 130℃의 온도에서 20분간 경화시켜 방탄헬멧을 제조하였다.
실시예 13
heating chamber 방식의 연신에서 1단 및 2단의 각 step의 온도를 240, 250, 260 및 268℃로 조절한 것을 제외하고는 실시예 12과 동일하다.
실시예 14
heating chamber 방식의 연신에서 1단 및 2단의 각 step의 온도를 240, 255, 265 및 272℃로 조절한 것을 제외하고는 실시예 12과 동일하다.
실시예 15
상기 제조예4의 과정을 통해 얻은 1.5 데니어인 폴리케톤 필라멘트 1,000개를 경사 및 위사에 적용하고 평직으로 직조한 후, 아크릴 수지를 접착시켜 80℃ 챔버에서 1.5bar의 압력을 가하여 코팅한 후, 헬멧 제조용 하부 몰드에 적층 후, 160bar의 압력 및 130℃의 온도에서 20분간 경화시켜 방탄헬멧을 제조하였다.
실시예 16
폴리케톤 폴리머의 고유점도를 6.1㎗/g으로 조절한 것을 제외하고는 실시예 15와 동일하다.
실시예 17
폴리케톤 폴리머의 고유점도를 6.3㎗/g으로 조절한 것을 실시예 15와 동일하다.
실시예 18
상기 제조예7의 과정을 통해 얻은 1.5데니어인 폴리케톤 필라멘트 1,000개를 경사 및 위사에 적용하고 평직으로 직조한 후, 폴리아미드 수지를 접착시켜 80℃ 챔버에서 1.5bar의 압력을 가하여 코팅한 후, 헬멧 제조용 하부 몰드에 적층 후, 160bar의 압력 및 130℃의 온도에서 20분간 경화시켜 방탄헬멧을 제조하였다.
실시예 19
폴리케톤 폴리머의 분자량 분포를 2.8로 조절한 것을 제외하고는 실시예 18와 동일하다.
실시예 20
폴리케톤 폴리머의분자량 분포를 3.5로 조절한 것을 실시예 18와 동일하다.
실시예 21
페놀계 내열안정제로 Adeka사의 AO80와 메탄올의 혼합용액 0.1%용액을 건조 전 1 딥을 시행한 것을 제외하고는 실시예 12과 동일하다.
실시예 22
페놀계 내열안정제로 Adeka사의 AO80와 메탄올의 혼합용액 0.1%용액을 건조 전과 연신 전 2 딥을 시행한 것을 제외하고는 실시예 12과 동일하다.
비교예 4 내지 6
방탄헬멧의 제조에 있어 아라미드 섬유를 사용하고, 수세공정에서 연신비를 1.0 배로 하고 핫롤 건조방식이 아닌 열풍 건조방식을 수행하는 것을 제외하고는 실시예 12과 동일한 방법으로 수행하였고, 표 4의 방사조건으로 수행하였다.
비교예 4 비교예 5 비교예 6
열풍건조기 온도(℃) 240℃ 260℃ 280℃
수세 공정에서 연신 비(배) 1.0배 1.0배 1.0배
멀티 필라멘트 물성 방탄헬멧 물성 모노 필라멘트 물성
강도(g/d) 신도(%) 방탄성능(V50 FSP) 초기 모듈러스(g/d) 10.0g/d응력 받을 때 신장률(%) 19.0g/d~절단까지 응력 받을 때 신장률(%)
실시예 12 20.75 5.9 590 220 2.4 1.8
실시예 13 21.00 5.6 610 280 2.5 2.1
실시예 14 20.84 5.7 590 205 2.3 1.7
실시예 15 19.95 6.3 610 250 2.9 2.0
실시예 16 20.55 6.0 700 290 3.1 1.0
실시예 17 20.13 6.1 550 212 2.8 1.4
실시예 18 19.74 6.3 600 210 2.7 1.2
실시예 19 20.87 5.7 570 230 3.2 1.3
실시예 20 20.14 6.1 590 220 3.1 1.3
실시예 21 20.20 6.0 600 260 3.4 1.4
실시예 22 21.04 5.6 580 230 2.8 1.2
비교예 4 10.8 1.9 470 210 3.1 0
비교예 5 11.2 2.1 510 200 3.2 0
비교예 6 9.6 1.7 560 215 3.0 0
상기 표 5와 같이 본원발명의 실시예에 의해 제조된 폴리케톤 필라멘트는
강도, 신도 및 단면 변동률이 우수한 것으로 판명되었고, 상기 폴리케톤 필라멘트를 포함하는 방탄헬멧은 방탄성능이 우수한 것으로 나타났다.
실시예 23
상기 제조예1의 과정을 통해 얻은 폴리케톤 멀티 필라멘트를 상기 클로로프렌 고무 100중량부 대비 10 중량부의 페놀계 노화방지제, 5 중량부의 카본블랙 및 30 중량부의 산화마그네슘을 혼합한 탄성매트릭스원액에 함침시킨 후, 건조시켜 탄성시트를 수득하고, 이를 20층으로 적층하고, 155℃의 온도 및 150㎏f/㎠의 압력으로 가열 및 가압하여 방탄시험편을 제조하였다.
실시예 24
heating chamber 방식의 연신에서 1단 및 2단의 각 step의 온도를 240, 250, 260 및 268℃로 조절한 것을 제외하고는 실시예 23과 동일하다.
실시예 25
heating chamber 방식의 연신에서 1단 및 2단의 각 step의 온도를 240, 255, 265 및 272℃로 조절한 것을 제외하고는 실시예 23과 동일하다.
실시예 26
상기 제조예4의 과정을 통해 얻은 폴리케톤 멀티 필라멘트를 상기 클로로프렌 고무 100중량부 대비 10 중량부의 페놀계 노화방지제, 5 중량부의 카본블랙 및 30 중량부의 산화마그네슘을 혼합한 탄성매트릭스원액에 함침시킨 후, 건조시켜 탄성시트를 수득하고, 이를 20층으로 적층하고, 155℃의 온도 및 150㎏f/㎠의 압력으로 가열 및 가압하여 방탄시험편을 제조하였다.
실시예 27
폴리케톤 폴리머의 고유점도를 6.1㎗/g으로 조절한 것을 제외하고는 실시예 26와 동일하다.
실시예 28
폴리케톤 폴리머의 고유점도를 6.3㎗/g으로 조절한 것을 실시예 26와 동일하다.
실시예 29
상기 제조예7의 과정을 통해 얻은 폴리케톤 멀티 필라멘트를 상기 클로로프렌 고무 100중량부 대비 10 중량부의 페놀계 노화방지제, 5 중량부의 카본블랙 및 30 중량부의 산화마그네슘을 혼합한 탄성매트릭스원액에 함침시킨 후, 건조시켜 탄성시트를 수득하고, 이를 20층으로 적층하고, 155℃의 온도 및 150㎏f/㎠의 압력으로 가열 및 가압하여 방탄시험편을 제조하였다.
실시예 30
폴리케톤 폴리머의 분자량 분포를 2.8로 조절한 것을 제외하고는 실시예 29와 동일하다.
실시예 31
폴리케톤 폴리머의분자량 분포를 3.5로 조절한 것을 실시예 29와 동일하다.
실시예 32
페놀계 내열안정제로 Adeka사의 AO80와 메탄올의 혼합용액 0.1%용액을 건조 전 1 딥을 시행한 것을 제외하고는 실시예 23과 동일하다.
실시예 33
페놀계 내열안정제로 Adeka사의 AO80와 메탄올의 혼합용액 0.1%용액을 건조 전과 연신 전 2 딥을 시행한 것을 제외하고는 실시예 23과 동일하다.
비교예 7 내지 9
파편방호 소재의 제조에 있어 아라미드 섬유를 사용하고, 수세공정에서 연신비를 1.0 배로 하고 핫롤 건조방식이 아닌 열풍 건조방식을 수행하는 것을 제외하고는 실시예 23과 동일한 방법으로 수행하였고, 표 6의 방사조건으로 수행하였다.
비교예 7 비교예 8 비교예 9
열풍건조기 온도(℃) 240℃ 260℃ 280℃
수세 공정에서 연신 비(배) 1.0배 1.0배 1.0배
연신사 강도(g/d) 신도(%) 방탄성능(V50 FSP) 단면 변동률(%)
실시예 23 20.75 5.9 590 9
실시예 24 21.00 5.6 610 8
실시예 25 20.84 5.7 590 7
실시예 26 19.95 6.3 610 11
실시예 27 20.55 6.0 700 12
실시예 28 20.13 6.1 550 10
실시예 29 19.74 6.3 600 8
실시예 30 20.87 5.7 570 13
실시예 31 20.14 6.1 590 12
실시예 32 20.20 6.0 600 8
실시예 33 21.04 5.6 580 9
비교예 7 10.8 1.9 470 22
비교예 8 11.2 2.1 510 21
비교예 9 9.6 1.7 560 18
상기 표 7과 같이 본원발명의 실시예에 의해 제조된 폴리케톤 필라멘트는 강도, 신도 및 단면 변동률이 우수한 것으로 판명되었고, 상기 폴리케톤 필라멘트를 포함하는 파편 방호소재는 방탄성능이 우수한 것으로 나타났다.
실시예 34
상기 제조예1의 과정을 통해 얻은 폴리케톤 필라멘트를 직조하여 직물매트를 재단한 후, 상기 직물매트 15매를 적층하여 성형장치에 넣고 성형품을 형성하여 이를 소정의 길이 및 폭 방향으로 재단하여 항공기 또는 군항기용 폴리케톤 방탄재를 제조하였다.
실시예 35
heating chamber 방식의 연신에서 1단 및 2단의 각 step의 온도를 240, 250, 260 및 268℃로 조절한 것을 제외하고는 실시예 34과 동일하다.
실시예 36
heating chamber 방식의 연신에서 1단 및 2단의 각 step의 온도를 240, 255, 265 및 272℃로 조절한 것을 제외하고는 실시예 34과 동일하다.
실시예 37
상기 제조예4의 과정을 통해 얻은 폴리케톤 필라멘트를 직조하여 직물매트를 재단한 후, 상기 직물매트 15매를 적층하여 성형장치에 넣고 성형품을 형성하여 이를 소정의 길이 및 폭 방향으로 재단하여 항공기 또는 군항기용 폴리케톤 방탄재를 제조하였다.
실시예 38
폴리케톤 폴리머의 고유점도를 6.1㎗/g으로 조절한 것을 제외하고는 실시예 37와 동일하다.
실시예 39
폴리케톤 폴리머의 고유점도를 6.3㎗/g으로 조절한 것을 실시예 37와 동일하다.
실시예 40
상기 제조예7의 과정을 통해 얻은 폴리케톤 필라멘트를 직조하여 직물매트를 재단한 후, 상기 직물매트 15매를 적층하여 성형장치에 넣고 성형품을 형성하여 이를 소정의 길이 및 폭 방향으로 재단하여 항공기 또는 군항기용 폴리케톤 방탄재를 제조하였다.
실시예 41
폴리케톤 폴리머의 분자량 분포를 2.8로 조절한 것을 제외하고는 실시예 40와 동일하다.
실시예 42
폴리케톤 폴리머의분자량 분포를 3.5로 조절한 것을 실시예 40와 동일하다.
실시예 43
페놀계 내열안정제로 Adeka사의 AO80와 메탄올의 혼합용액 0.1%용액을 건조 전 1 딥을 시행한 것을 제외하고는 실시예 34과 동일하다.
실시예 44
페놀계 내열안정제로 Adeka사의 AO80와 메탄올의 혼합용액 0.1%용액을 건조 전과 연신 전 2 딥을 시행한 것을 제외하고는 실시예 34과 동일하다.
비교예 10 내지 12
항공기 또는 군항기용 방탄재의 제조에 있어 아라미드 섬유를 사용하고, 수세공정에서 연신비를 1.0 배로 하고 핫롤 건조방식이 아닌 열풍 건조방식을 수행하는 것을 제외하고는 실시예 34과 동일한 방법으로 수행하였고, 표 8의 방사조건으로 수행하였다.
비교예 10 비교예 11 비교예 12
열풍건조기 온도(℃) 240℃ 260℃ 280℃
수세 공정에서 연신 비(배) 1.0배 1.0배 1.0배
멀티 필라멘트 물성 모노 필라멘트 물성 방탄재 물성
강도(g/d) 신도(%) 초기모듈러스(g/d) 10g/d응력시신장률(%) 19.0g/d~절단까지 응력 받을 때 신장률(%) 방탄성능(V50 FSP)
실시예 34 20.75 5.9 220 2.4 1.8 590
실시예 35 21.00 5.6 280 2.5 2.1 610
실시예 36 20.84 5.7 205 2.3 1.7 590
실시예 37 19.95 6.3 250 2.9 2.0 610
실시예 38 20.55 6.0 290 3.1 1.0 700
실시예 39 20.13 6.1 212 2.8 1.4 550
실시예 40 19.74 6.3 210 2.7 1.2 600
실시예 41 20.87 5.7 230 3.2 1.3 570
실시예 42 20.14 6.1 220 3.1 1.3 590
실시예 43 20.20 6.0 260 3.4 1.4 600
실시예 44 21.04 5.6 230 2.8 1.2 580
비교예 10 10.8 1.9 210 3.1 0 470
비교예 11 11.2 2.1 200 3.2 0 510
비교예 12 9.6 1.7 215 3.0 0 560
상기 표 9과 같이 본원발명의 실시예에 의해 제조된 폴리케톤 멀티 필라멘트는 강도와 신도가 우수하고 이를 포함하는 폴리케톤 방탄재는 방탄성능이 매우 우수하여 항공기 또는 군항기용 방탄재로 사용하기에 적합한 것으로 나타났다.
실시예 45
상기 제조예1의 과정을 통해 얻은 폴리케톤 멀티필라멘트를 클로로프렌 고무 100중량부 대비, 페놀계 노화방지제 10중량부, 카본블랙 5중량부, 산화마그네슘 20중량부를 혼합한 탄성매트릭스 용액에 3일간 함침시킨 후 꺼내어 윙팁 제조용 몰드 적층한 후, 100 내지 150℃의 온도 및 15 내지 25 bar의 압력으로 가열 및 가압하여 항공기 윙팁장치를 제조하였다
실시예 46
heating chamber 방식의 연신에서 1단 및 2단의 각 step의 온도를 240, 250, 260 및 268℃로 조절한 것을 제외하고는 실시예 45과 동일하다.
실시예 47
heating chamber 방식의 연신에서 1단 및 2단의 각 step의 온도를 240, 255, 265 및 272℃로 조절한 것을 제외하고는 실시예 45과 동일하다.
실시예 48
상기 제조예4의 과정을 통해 얻은 폴리케톤 멀티필라멘트를 클로로프렌 고무 100중량부 대비, 페놀계 노화방지제 10중량부, 카본블랙 5중량부, 산화마그네슘 20중량부를 혼합한 탄성매트릭스 용액에 3일간 함침시킨 후 꺼내어 윙팁 제조용 몰드 적층한 후, 100 내지 150℃의 온도 및 15 내지 25 bar의 압력으로 가열 및 가압하여 항공기 윙팁장치를 제조하였다.
실시예 49
폴리케톤 폴리머의 고유점도를 6.1㎗/g으로 조절한 것을 제외하고는 실시예 48와 동일하다.
실시예 50
폴리케톤 폴리머의 고유점도를 6.3㎗/g으로 조절한 것을 실시예 48와 동일하다.
실시예 51
상기 제조예7의 과정을 통해 얻은 폴리케톤 멀티필라멘트를 클로로프렌 고무 100중량부 대비, 페놀계 노화방지제 10중량부, 카본블랙 5중량부, 산화마그네슘 20중량부를 혼합한 탄성매트릭스 용액에 3일간 함침시킨 후 꺼내어 윙팁 제조용 몰드 적층한 후, 100 내지 150℃의 온도 및 15 내지 25 bar의 압력으로 가열 및 가압하여 항공기 윙팁장치를 제조하였다.
실시예 52
폴리케톤 폴리머의 분자량 분포를 2.8로 조절한 것을 제외하고는 실시예 51와 동일하다.
실시예 53
폴리케톤 폴리머의분자량 분포를 3.5로 조절한 것을 실시예 51와 동일하다.
실시예 54
페놀계 내열안정제로 Adeka사의 AO80와 메탄올의 혼합용액 0.1%용액을 건조 전 1 딥을 시행한 것을 제외하고는 실시예 45과 동일하다.
실시예 55
페놀계 내열안정제로 Adeka사의 AO80와 메탄올의 혼합용액 0.1%용액을 건조 전과 연신 전 2 딥을 시행한 것을 제외하고는 실시예 45과 동일하다.
비교예 13 내지 15
항공기 윙팁장치의 제조에 있어 아라미드 섬유를 사용하고, 수세공정에서 연신비를 1.0 배로 하고 핫롤 건조방식이 아닌 열풍 건조방식을 수행하는 것을 제외하고는 실시예 45과 동일한 방법으로 수행하였고, 표 10의 방사조건으로 수행하였다.
비교예 13 비교예 14 비교예 15
열풍건조기 온도(℃) 240℃ 260℃ 280℃
수세 공정에서 연신 비(배) 1.0배 1.0배 1.0배
멀티 필라멘트 물성 모노 필라멘트 물성
강도(g/d) 신도(%) 초기모듈러스(g/d) 10g/d응력시신장률(%) 19.0g/d~절단까지 응력 받을 때 신장률(%)
실시예 45 20.75 5.9 220 2.4 1.8
실시예 46 21.00 5.6 280 2.5 2.1
실시예 47 20.84 5.7 205 2.3 1.7
실시예 48 19.95 6.3 250 2.9 2.0
실시예 49 20.55 6.0 290 3.1 1.0
실시예 50 20.13 6.1 212 2.8 1.4
실시예 51 19.74 6.3 210 2.7 1.2
실시예 52 20.87 5.7 230 3.2 1.3
실시예 53 20.14 6.1 220 3.1 1.3
실시예 54 20.20 6.0 260 3.4 1.4
실시예 55 21.04 5.6 230 2.8 1.2
비교예 13 10.8 1.9 210 3.1 0
비교예 14 11.2 2.1 200 3.2 0
비교예 15 9.6 1.7 215 3.0 0
상기 표 11와 같이 본원발명의 실시예에 의해 제조된 폴리케톤 멀티필라멘트는 강도와 신도가 우수하며, 이를 적용한 항공기 윙팁장치는 가요성이 우수한 것으로 판명되었다.
실시예 56
상기 제조예1 과정을 통해 얻은 폴리케톤 멀티필라멘트를 경사 및 위사에 적용하여 평직으로 제조한 후, 몰드에 적층하여 아크릴 수지와 접착시켜 150℃, 2.5bar의 히트프레스롤로 30분간 열처리하는 공정을 거쳐서 폴리케톤 헬리콥터 내장재를 제조하였다
실시예 57
heating chamber 방식의 연신에서 1단 및 2단의 각 step의 온도를 240, 250, 260 및 268℃로 조절한 것을 제외하고는 실시예 56과 동일하다.
실시예 58
heating chamber 방식의 연신에서 1단 및 2단의 각 step의 온도를 240, 255, 265 및 272℃로 조절한 것을 제외하고는 실시예 56과 동일하다.
실시예 59
상기 제조예4 과정을 통해 얻은 폴리케톤 멀티필라멘트를 경사 및 위사에 적용하여 평직으로 제조한 후, 몰드에 적층하여 아크릴 수지와 접착시켜 150℃, 2.5bar의 히트프레스롤로 30분간 열처리하는 공정을 거쳐서 폴리케톤 헬리콥터 내장재를 제조하였다.
실시예 60
폴리케톤 폴리머의 고유점도를 6.1㎗/g으로 조절한 것을 제외하고는 실시예 59와 동일하다.
실시예 61
폴리케톤 폴리머의 고유점도를 6.3㎗/g으로 조절한 것을 실시예 59와 동일하다.
실시예 62
상기 제조된 폴리케톤 멀티필라멘트를 경사 및 위사에 적용하여 평직으로 제조한 후, 몰드에 적층하여 아크릴 수지와 접착시켜 150℃, 2.5bar의 히트프레스롤로 30분간 열처리하는 공정을 거쳐서 폴리케톤 헬리콥터 내장재를 제조하였다.
실시예 63
폴리케톤 폴리머의 분자량 분포를 2.8로 조절한 것을 제외하고는 실시예 62와 동일하다.
실시예 64
폴리케톤 폴리머의분자량 분포를 3.5로 조절한 것을 실시예 62와 동일하다.
실시예 65
페놀계 내열안정제로 Adeka사의 AO80와 메탄올의 혼합용액 0.1%용액을 건조 전 1 딥을 시행한 것을 제외하고는 실시예 56과 동일하다.
실시예 66
페놀계 내열안정제로 Adeka사의 AO80와 메탄올의 혼합용액 0.1%용액을 건조 전과 연신 전 2 딥을 시행한 것을 제외하고는 실시예 56과 동일하다.
비교예 16 내지 18
헬리콥터 내장재의 제조에 있어 아라미드 섬유를 사용하고, 수세공정에서 연신비를 1.0 배로 하고 핫롤 건조방식이 아닌 열풍 건조방식을 수행하는 것을 제외하고는 실시예 56과 동일한 방법으로 수행하였고, 표 12의 방사조건으로 수행하였다.
비교예 16 비교예 17 비교예 18
열풍건조기 온도(℃) 240℃ 260℃ 280℃
수세 공정에서 연신 비(배) 1.0배 1.0배 1.0배
연신사 강도(g/d) 신도(%) 초기모듈러스(g/d) 10g/d응력시신장률(%) 19.0g/d~절단까지 응력 받을 때 신장률(%)
실시예 56 20.75 5.9 220 2.4 1.8
실시예 57 21.00 5.6 280 2.5 2.1
실시예 58 20.84 5.7 205 2.3 1.7
실시예 59 19.95 6.3 250 2.9 2.0
실시예 60 20.55 6.0 290 3.1 1.0
실시예 61 20.13 6.1 212 2.8 1.4
실시예 62 19.74 6.3 210 2.7 1.2
실시예 63 20.87 5.7 230 3.2 1.3
실시예 64 20.14 6.1 220 3.1 1.3
실시예 65 20.20 6.0 260 3.4 1.4
실시예 66 21.04 5.6 230 2.8 1.2
비교예 16 10.8 1.9 210 3.1 0
비교예 17 11.2 2.1 200 3.2 0
비교예 18 9.6 1.7 215 3.0 0
상기 표 13와 같이 본원발명의 실시예에 의해 제조된 폴리케톤 섬유는 강도와 신도가 우수한 것으로 판명되어 헬리콥터 내장재로 사용하기에 적합한 것으로 나타났다.
실시예 67
상기의 제조예1 과정을 통해 얻은 폴리케톤 섬유는 최종 모노 필라멘트 섬도가 1.5 데니어로 조절되었다. 상기의 과정을 통해 얻은 1.5데니어인 폴리케톤 필라멘트 1,000개를 경사 및 위사에 적용하고 평직으로 직조한 후, 에폭시 수지를 접착시켜 80℃ 챔버에서 1.5bar의 압력을 가하여 코팅한 후, 몰드에 적층 후, 160bar의 압력 및 130℃의 온도에서 20분간 경화시켜 자동차 구조재를 제조하였다.
실시예 68
heating chamber 방식의 연신에서 1단 및 2단의 각 step의 온도를 240, 250, 260 및 268℃로 조절한 것을 제외하고는 실시예 67과 동일하다.
실시예 69
heating chamber 방식의 연신에서 1단 및 2단의 각 step의 온도를 240, 255, 265 및 272℃로 조절한 것을 제외하고는 실시예 67과 동일하다.
실시예 70
상기의 제조예4 과정을 통해 얻은 폴리케톤 섬유는 최종 모노 필라멘트 섬도가 1.5 데니어로 조절되었다. 상기의 과정을 통해 얻은 1.5데니어인 폴리케톤 필라멘트 1,000개를 경사 및 위사에 적용하고 평직으로 직조한 후, 에폭시 수지를 접착시켜 80℃ 챔버에서 1.5bar의 압력을 가하여 코팅한 후, 몰드에 적층 후, 160bar의 압력 및 130℃의 온도에서 20분간 경화시켜 자동차 구조재를 제조하였다.
실시예 71
폴리케톤 폴리머의 고유점도를 6.1㎗/g으로 조절한 것을 제외하고는 실시예 70와 동일하다.
실시예 72
폴리케톤 폴리머의 고유점도를 6.3㎗/g으로 조절한 것을 실시예 70와 동일하다.
실시예 73
상기의 제조예7 과정을 통해 얻은 폴리케톤 섬유는 최종 모노 필라멘트 섬도가 1.5 데니어로 조절되었다. 상기의 과정을 통해 얻은 1.5데니어인 폴리케톤 필라멘트 1,000개를 경사 및 위사에 적용하고 평직으로 직조한 후, 에폭시 수지를 접착시켜 80℃ 챔버에서 1.5bar의 압력을 가하여 코팅한 후, 몰드에 적층 후, 160bar의 압력 및 130℃의 온도에서 20분간 경화시켜 자동차 구조재를 제조하였다.
실시예 74
폴리케톤 폴리머의 분자량 분포를 2.8로 조절한 것을 제외하고는 실시예 73와 동일하다.
실시예 75
폴리케톤 폴리머의분자량 분포를 3.5로 조절한 것을 실시예 73와 동일하다.
실시예 76
페놀계 내열안정제로 Adeka사의 AO80와 메탄올의 혼합용액 0.1%용액을 건조 전 1 딥을 시행한 것을 제외하고는 실시예 67과 동일하다.
실시예 77
페놀계 내열안정제로 Adeka사의 AO80와 메탄올의 혼합용액 0.1%용액을 건조 전과 연신 전 2 딥을 시행한 것을 제외하고는 실시예 67과 동일하다.
비교예 19 내지 21
자동차 구조재의 제조에 있어 아라미드 섬유를 사용하고, 수세공정에서 연신비를 1.0 배로 하고 핫롤 건조방식이 아닌 열풍 건조방식을 수행하는 것을 제외하고는 실시예 67과 동일한 방법으로 수행하였고, 표 1의 방사조건으로 수행하였다.
비교예 19 비교예 20 비교예 21
열풍건조기 온도(℃) 240℃ 260℃ 280℃
수세 공정에서 연신 비(배) 1.0배 1.0배 1.0배
연신사 강도(g/d) 신도(%) 단면 변동률(%)
실시예 67 20.75 5.9 9
실시예 68 21.00 5.6 8
실시예 69 20.84 5.7 7
실시예 70 19.95 6.3 11
실시예 71 20.55 6.0 12
실시예 72 20.13 6.1 10
실시예 73 19.74 6.3 8
실시예 74 20.87 5.7 13
실시예 75 20.14 6.1 12
실시예 76 20.20 6.0 8
실시예 77 21.04 5.6 9
비교예 19 10.8 1.9 22
비교예 20 11.2 2.1 21
비교예 21 9.6 1.7 18
상기 표 15와 같이 본원발명의 실시예에 의해 제조된 폴리케톤 멀티필라멘트를 포함하는 자동차 구조재는 강도, 신도가 우수하여 자동차 구조재로 사용하기에 적합한 것으로 나타났다.
실시예 78
상기의 제조예1 과정을 통해 얻은 폴리케톤 멀티필라멘트를 경사 및 위사에 적용하고 평직으로 직조한 후, 열가소성 또는 열경화성 수지를 접착시켜 챔버에서 압력을 가하여 코팅한 후, 몰드에 적층하여 경화시켜 선박 플랫폼을 제조하였다.
실시예 79
heating chamber 방식의 연신에서 1단 및 2단의 각 step의 온도를 240, 250, 260 및 268℃로 조절한 것을 제외하고는 실시예 78과 동일하다.
실시예 80
heating chamber 방식의 연신에서 1단 및 2단의 각 step의 온도를 240, 255, 265 및 272℃로 조절한 것을 제외하고는 실시예 78과 동일하다.
실시예 81
상기의 제조예4 과정을 통해 얻은 폴리케톤 섬유를 사용하여 에어백을 제조하였다.
실시예 82
폴리케톤 폴리머의 고유점도를 6.1㎗/g으로 조절한 것을 제외하고는 실시예 81와 동일하다.
실시예 83
폴리케톤 폴리머의 고유점도를 6.3㎗/g으로 조절한 것을 실시예 81와 동일하다.
실시예 84
상기 제조예7의 과정을 통해 얻은 폴리케톤 멀티필라멘트를 경사 및 위사에 적용하고 평직으로 직조한 후, 열가소성 또는 열경화성 수지를 접착시켜 챔버에서 압력을 가하여 코팅한 후, 몰드에 적층하여 경화시켜 선박 플랫폼을 제조하였다.
실시예 85
폴리케톤 폴리머의 분자량 분포를 2.8로 조절한 것을 제외하고는 실시예 84와 동일하다.
실시예 86
폴리케톤 폴리머의분자량 분포를 3.5로 조절한 것을 실시예 84와 동일하다.
실시예 87
페놀계 내열안정제로 Adeka사의 AO80와 메탄올의 혼합용액 0.1%용액을 건조 전 1 딥을 시행한 것을 제외하고는 실시예 78과 동일하다.
실시예 88
페놀계 내열안정제로 Adeka사의 AO80와 메탄올의 혼합용액 0.1%용액을 건조 전과 연신 전 2 딥을 시행한 것을 제외하고는 실시예 78과 동일하다.
비교예 22 내지 24
선박 플랫폼의 제조에 있어 아라미드 섬유를 사용하고, 수세공정에서 연신비를 1.0 배로 하고 핫롤 건조방식이 아닌 열풍 건조방식을 수행하는 것을 제외하고는 실시예 78과 동일한 방법으로 수행하였고, 표 16의 방사조건으로 수행하였다.
비교예 22 비교예 23 비교예 24
열풍건조기 온도(℃) 240℃ 260℃ 280℃
수세 공정에서 연신 비(배) 1.0배 1.0배 1.0배
멀티 필라멘트 물성 모노 필라멘트 물성 연신사
강도(g/d) 신도(%) 초기 모듈러스(g/d) 10.0g/d응력 받을 때 신장률(%) 19.0g/d~절단까지 응력 받을 때 신장률(%) 흡수율(%) 24시간 후강력유지율
실시예 78 20.75 5.9 220 2.4 1.8 158 88
실시예 79 21.00 5.6 280 2.5 2.1 162 86
실시예 80 20.84 5.7 205 2.3 1.7 144 84
실시예 81 19.95 6.3 250 2.9 2.0 154 87
실시예 82 20.55 6.0 290 3.1 1.0 138 85
실시예 83 20.13 6.1 212 2.8 1.4 150 82
실시예 84 19.74 6.3 210 2.7 1.2 155 84
실시예 85 20.87 5.7 230 3.2 1.3 162 80
실시예 86 20.14 6.1 220 3.1 1.3 168 88
실시예 87 20.20 6.0 260 3.4 1.4 154 82
실시예 88 21.04 5.6 230 2.8 1.2 167 78
비교예 22 10.8 1.9 210 3.1 0 425 55
비교예 23 11.2 2.1 200 3.2 0 408 48
비교예 24 9.6 1.7 215 3.0 0 398 52
상기 표 17에 나타난 바와 같이 본원발명의 실시예에 의해 제조된 폴리케톤 멀티 필라멘트는 강도, 내수성 및 내염소성이 우수하여 선박 플랫폼으로 사용하기에 적합한 것으로 나타났다.
실시예 89
상기 제조예1의 과정을 통해 얻은 폴리케톤 멀티 필라멘트를 폴리우레탄 수지와 함께 제조 금형에 주입하여 50℃, 3.5bar에서 1시간 동안 가열, 가압하여 잠수정 구조물을 제조하였다.
실시예 90
heating chamber 방식의 연신에서 1단 및 2단의 각 step의 온도를 240, 250, 260 및 268℃로 조절한 것을 제외하고는 실시예 89과 동일하다.
실시예 91
heating chamber 방식의 연신에서 1단 및 2단의 각 step의 온도를 240, 255, 265 및 272℃로 조절한 것을 제외하고는 실시예 89과 동일하다.
실시예 92
상기 제조예4의 과정을 통해 얻은 폴리케톤 멀티 필라멘트를 폴리우레탄 수지와 함께 제조 금형에 주입하여 50℃, 3.5bar에서 1시간 동안 가열, 가압하여 잠수정 구조물을 제조하였다.
실시예 93
폴리케톤 폴리머의 고유점도를 6.1㎗/g으로 조절한 것을 제외하고는 실시예 92와 동일하다.
실시예 94
폴리케톤 폴리머의 고유점도를 6.3㎗/g으로 조절한 것을 실시예 92와 동일하다.
실시예 95
상기 제조예7의 과정을 통해 얻은 폴리케톤 멀티 필라멘트를 폴리우레탄 수지와 함께 제조 금형에 주입하여 50℃, 3.5bar에서 1시간 동안 가열, 가압하여 잠수정 구조물을 제조하였다.
실시예 96
폴리케톤 폴리머의 분자량 분포를 2.8로 조절한 것을 제외하고는 실시예 95와 동일하다.
실시예 97
폴리케톤 폴리머의분자량 분포를 3.5로 조절한 것을 실시예 95와 동일하다.
실시예 98
페놀계 내열안정제로 Adeka사의 AO80와 메탄올의 혼합용액 0.1%용액을 건조 전 1 딥을 시행한 것을 제외하고는 실시예 89과 동일하다.
실시예 99
페놀계 내열안정제로 Adeka사의 AO80와 메탄올의 혼합용액 0.1%용액을 건조 전과 연신 전 2 딥을 시행한 것을 제외하고는 실시예 89과 동일하다.
비교예 25 내지 27
잠수정 구조재의 제조에 있어 아라미드 섬유를 사용하고, 수세공정에서 연신비를 1.0 배로 하고 핫롤 건조방식이 아닌 열풍 건조방식을 수행하는 것을 제외하고는 실시예 89과 동일한 방법으로 수행하였고, 표 18의 방사조건으로 수행하였다.
비교예 25 비교예 26 비교예 27
열풍건조기 온도(℃) 240℃ 260℃ 280℃
수세 공정에서 연신 비(배) 1.0배 1.0배 1.0배
멀티 필라멘트 물성 모노 필라멘트 물성
강도(g/d) 신도(%) 초기모듈러스(g/d) 10g/d응력시신장률(%) 19.0g/d~절단까지 응력 받을 때 신장률(%)
실시예 89 20.75 5.9 220 2.4 1.8
실시예 90 21.00 5.6 280 2.5 2.1
실시예 91 20.84 5.7 205 2.3 1.7
실시예 92 19.95 6.3 250 2.9 2.0
실시예 93 20.55 6.0 290 3.1 1.0
실시예 94 20.13 6.1 212 2.8 1.4
실시예 95 19.74 6.3 210 2.7 1.2
실시예 96 20.87 5.7 230 3.2 1.3
실시예 97 20.14 6.1 220 3.1 1.3
실시예 98 20.20 6.0 260 3.4 1.4
실시예 99 21.04 5.6 230 2.8 1.2
비교예 25 10.8 1.9 210 3.1 0
비교예 26 11.2 2.1 200 3.2 0
비교예 27 9.6 1.7 215 3.0 0
상기 표 19와 같이 본원발명의 실시예에 의해 제조된 폴리케톤 섬유를 포함하는 잠수정 구조재는 강도가 우수하여 잠수정 구조재로 사용하기에 적합한 것으로 나타났다.
실시예 100
상기 제조예1의 과정을 통해 얻은 폴리케톤 섬유를 사용하여 광케이블 피복재를 제조하였다.
실시예 101
heating chamber 방식의 연신에서 1단 및 2단의 각 step의 온도를 240, 250, 260 및 268℃로 조절한 것을 제외하고는 실시예 100과 동일하다.
실시예 102
heating chamber 방식의 연신에서 1단 및 2단의 각 step의 온도를 240, 255, 265 및 272℃로 조절한 것을 제외하고는 실시예 100과 동일하다.
실시예 103
상기 제조예4의 과정을 통해 얻은 폴리케톤 섬유를 사용하여 광케이블 피복재를 제조하였다.
실시예 104
폴리케톤 폴리머의 고유점도를 6.1㎗/g으로 조절한 것을 제외하고는 실시예103와 동일하다.
실시예 105
폴리케톤 폴리머의 고유점도를 6.3㎗/g으로 조절한 것을 실시예 103와 동일하다.
실시예 106
상기 제조예7의 과정을 통해 얻은 폴리케톤 섬유를 사용하여 광케이블 피복재를 제조하였다.
실시예 107
폴리케톤 폴리머의 분자량 분포를 2.8로 조절한 것을 제외하고는 실시예 106와 동일하다.
실시예 108
폴리케톤 폴리머의분자량 분포를 3.5로 조절한 것을 실시예 106와 동일하다.
실시예 109
페놀계 내열안정제로 Adeka사의 AO80와 메탄올의 혼합용액 0.1%용액을 건조 전 1 딥을 시행한 것을 제외하고는 실시예 100과 동일하다.
실시예 110
페놀계 내열안정제로 Adeka사의 AO80와 메탄올의 혼합용액 0.1%용액을 건조 전과 연신 전 2 딥을 시행한 것을 제외하고는 실시예 100과 동일하다.
비교예 28 내지 30
광케이블 피복재의 제조에 있어 아라미드 섬유를 사용하고, 수세공정에서 연신비를 1.0 배로 하고 핫롤 건조방식이 아닌 열풍 건조방식을 수행하는 것을 제외하고는 실시예 100과 동일한 방법으로 수행하였고, 표 20의 방사조건으로 수행하였다.
비교예 28 비교예 29 비교예 30
열풍건조기 온도(℃) 240℃ 260℃ 280℃
수세 공정에서 연신 비(배) 1.0배 1.0배 1.0배
멀티 필라멘트 물성 모노 필라멘트 물성
강도(g/d) 신도(%) 흡습율(%) 난연성(cm) 초기모듈러스(g/d) 10g/d응력시신장률(%) 19.0g/d~절단까지 응력 받을 때 신장률(%)
실시예 100 20.75 5.9 0.01 45 220 2.4 1.8
실시예 101 21.00 5.6 0.01 48 280 2.5 2.1
실시예 102 20.84 5.7 0.02 43 205 2.3 1.7
실시예 103 19.95 6.3 0.01 42 250 2.9 2.0
실시예 104 20.55 6.0 0.03 50 290 3.1 1.0
실시예 105 20.13 6.1 0.01 52 212 2.8 1.4
실시예 106 19.74 6.3 0.02 44 210 2.7 1.2
실시예 107 20.87 5.7 0.01 46 230 3.2 1.3
실시예 108 20.14 6.1 0.02 50 220 3.1 1.3
실시예 109 20.20 6.0 0.01 44 260 3.4 1.4
실시예 110 21.04 5.6 0.01 46 230 2.8 1.2
비교예 28 10.8 1.9 0.30 120 210 3.1 0
비교예 29 11.2 2.1 0.32 138 200 3.2 0
비교예 30 9.6 1.7 0.31 132 215 3.0 0
상기 표 21와 같이 본원발명의 실시예에 의해 제조된 폴리케톤 멀티필라멘트를 포함하는 광케이블 피복재는 강도, 신도가 우수하고 흡습율이 낮을 뿐만 아니라 난연성이 우수하여 광케이블 피복재로 사용하기에 적합한 것으로 나타났다.
실시예 111
상기 제조예1의 과정을 통해 얻은 폴리케톤 섬유를 경사 및 위사에 적용하고 평직으로 직조한 후, 아크릴 수지를 접착시켜 챔버에서 압력을 가하여 코팅한 후, 몰드에 적층하여 경화시켜 제조되는 것을 특징으로 한 폴리케톤 레이더돔 구조재를 제작하였다.
실시예 112
heating chamber 방식의 연신에서 1단 및 2단의 각 step의 온도를 240, 250, 260 및 268℃로 조절한 것을 제외하고는 실시예 111과 동일하다.
실시예 113
heating chamber 방식의 연신에서 1단 및 2단의 각 step의 온도를 240, 255, 265 및 272℃로 조절한 것을 제외하고는 실시예 111과 동일하다.
실시예 114
상기 제조예4의 과정을 통해 얻은 폴리케톤 섬유를 경사 및 위사에 적용하고 평직으로 직조한 후, 아크릴 수지를 접착시켜 챔버에서 압력을 가하여 코팅한 후, 몰드에 적층하여 경화시켜 제조되는 것을 특징으로 한 폴리케톤 레이더돔 구조재를 제작하였다.
실시예 115
폴리케톤 폴리머의 고유점도를 6.1㎗/g으로 조절한 것을 제외하고는 실시예 114와 동일하다.
실시예 116
폴리케톤 폴리머의 고유점도를 6.3㎗/g으로 조절한 것을 실시예 114와 동일하다.
실시예 117
상기 제조예7의 과정을 통해 얻은 폴리케톤 섬유를 경사 및 위사에 적용하고 평직으로 직조한 후, 아크릴 수지를 접착시켜 챔버에서 압력을 가하여 코팅한 후, 몰드에 적층하여 경화시켜 제조되는 것을 특징으로 한 폴리케톤 레이더돔 구조재를 제작하였다.
실시예 118
폴리케톤 폴리머의 분자량 분포를 2.8로 조절한 것을 제외하고는 실시예 117와 동일하다.
실시예 119
폴리케톤 폴리머의분자량 분포를 3.5로 조절한 것을 실시예 117와 동일하다.
실시예 120
페놀계 내열안정제로 Adeka사의 AO80와 메탄올의 혼합용액 0.1%용액을 건조 전 1 딥을 시행한 것을 제외하고는 실시예 111과 동일하다.
실시예 121
페놀계 내열안정제로 Adeka사의 AO80와 메탄올의 혼합용액 0.1%용액을 건조 전과 연신 전 2 딥을 시행한 것을 제외하고는 실시예 111과 동일하다.
비교예 31 내지 33
레이더돔 구조재의 제조에 있어 아라미드 섬유를 사용하고, 수세공정에서 연신비를 1.0 배로 하고 핫롤 건조방식이 아닌 열풍 건조방식을 수행하는 것을 제외하고는 실시예 111과 동일한 방법으로 수행하였고, 표 22의 방사조건으로 수행하였다.
비교예 31 비교예 32 비교예 33
열풍건조기 온도(℃) 240℃ 260℃ 280℃
수세 공정에서 연신 비(배) 1.0배 1.0배 1.0배
멀티 필라멘트 물성 모노 필라멘트 물성
강도(g/d) 신도(%) 초기모듈러스(g/d) 10g/d응력시신장률(%) 19.0g/d~절단까지 응력 받을 때 신장률(%)
실시예 111 20.75 5.9 220 2.4 1.8
실시예 112 21.00 5.6 280 2.5 2.1
실시예 113 20.84 5.7 205 2.3 1.7
실시예 114 19.95 6.3 250 2.9 2.0
실시예 115 20.55 6.0 290 3.1 1.0
실시예 116 20.13 6.1 212 2.8 1.4
실시예 117 19.74 6.3 210 2.7 1.2
실시예 118 20.87 5.7 230 3.2 1.3
실시예 119 20.14 6.1 220 3.1 1.3
실시예 120 20.20 6.0 260 3.4 1.4
실시예 121 21.04 5.6 230 2.8 1.2
비교예 31 10.8 1.9 210 3.1 0
비교예 32 11.2 2.1 200 3.2 0
비교예 33 9.6 1.7 215 3.0 0
상기 표 23와 같이 본원발명의 실시예에 의해 제조된 폴리케톤 멀티 필라멘트는 강도, 신도, 초기 모듈러스가 우수하여 이를 포함하는 레이더돔 구조재는 레이더돔 구조재로 사용하기에 적합한 것으로 판명되었다.
실시예 122
상기 제조예1의 과정을 통해 얻은 폴리케톤 섬유를 경사 및 위사에 적용하고 평직으로 직조한 후, 열가소성 또는 열경화성 수지를 접착시켜 챔버에서 압력을 가하여 코팅한 후, 보빈 제조용 하부 몰드에 적층하여 사출 성형하여 폴리케톤 초전도 코일의 보빈을 제조하였다.
실시예 123
heating chamber 방식의 연신에서 1단 및 2단의 각 step의 온도를 240, 250, 260 및 268℃로 조절한 것을 제외하고는 실시예 122과 동일하다.
실시예 124
heating chamber 방식의 연신에서 1단 및 2단의 각 step의 온도를 240, 255, 265 및 272℃로 조절한 것을 제외하고는 실시예 122과 동일하다.
실시예 125
상기 제조예4의 과정을 통해 얻은 폴리케톤 섬유를 경사 및 위사에 적용하고 평직으로 직조한 후, 열가소성 또는 열경화성 수지를 접착시켜 챔버에서 압력을 가하여 코팅한 후, 보빈 제조용 하부 몰드에 적층하여 사출 성형하여 폴리케톤 초전도 코일의 보빈을 제조하였다.
실시예 126
폴리케톤 폴리머의 고유점도를 6.1㎗/g으로 조절한 것을 제외하고는 실시예 125와 동일하다.
실시예 127
폴리케톤 폴리머의 고유점도를 6.3㎗/g으로 조절한 것을 실시예 125와 동일하다.
실시예 128
상기 제조예7의 과정을 통해 얻은 폴리케톤 섬유를 경사 및 위사에 적용하고 평직으로 직조한 후, 열가소성 또는 열경화성 수지를 접착시켜 챔버에서 압력을 가하여 코팅한 후, 보빈 제조용 하부 몰드에 적층하여 사출 성형하여 폴리케톤 초전도 코일의 보빈을 제조하였다.
실시예 129
폴리케톤 폴리머의 분자량 분포를 2.8로 조절한 것을 제외하고는 실시예 128와 동일하다.
실시예 130
폴리케톤 폴리머의분자량 분포를 3.5로 조절한 것을 실시예 128와 동일하다.
실시예 131
페놀계 내열안정제로 Adeka사의 AO80와 메탄올의 혼합용액 0.1%용액을 건조 전 1 딥을 시행한 것을 제외하고는 실시예122 과 동일하다.
실시예 132
페놀계 내열안정제로 Adeka사의 AO80와 메탄올의 혼합용액 0.1%용액을 건조 전과 연신 전 2 딥을 시행한 것을 제외하고는 실시예 122과 동일하다.
비교예 34 내지 36
초전도 코일의 보빈의 제조에 있어 아라미드 섬유를 사용하고, 수세공정에서 연신비를 1.0 배로 하고 핫롤 건조방식이 아닌 열풍 건조방식을 수행하는 것을 제외하고는 실시예 122과 동일한 방법으로 수행하였고, 표 24의 방사조건으로 수행하였다.
비교예 34 비교예 35 비교예 36
열풍건조기 온도(℃) 240℃ 260℃ 280℃
수세 공정에서 연신 비(배) 1.0배 1.0배 1.0배
강도(g/d) 신도(%) 단면 변동률(%)
실시예 122 20.75 5.9 9
실시예 123 21.00 5.6 8
실시예 124 20.84 5.7 7
실시예 125 19.95 6.3 11
실시예 126 20.55 6.0 12
실시예 127 20.13 6.1 10
실시예 128 19.74 6.3 8
실시예 129 20.87 5.7 13
실시예 130 20.14 6.1 12
실시예 131 20.20 6.0 8
실시예 132 21.04 5.6 9
비교예 34 10.8 1.9 22
비교예 35 11.2 2.1 21
비교예 36 9.6 1.7 18
상기 표 25와 같이 본원발명의 실시예에 의해 제조된 폴리케톤 섬유를 포함하는 초전도 코일의 보빈은 강도가 우수하여 초전도 코일의 보빈으로 사용하기에 적합한 것으로 나타났다. 아울러, 초전도 코일의 보빈 대신에 초전도 코일의 피복재로로도 사용하기에 적합한 것으로 나타났다.
실시예 133
상기 제조예1의 과정을 통해 얻은 폴리케톤 섬유를 사용하여 극저온 절연소재를 제조하였다.
실시예 134
heating chamber 방식의 연신에서 1단 및 2단의 각 step의 온도를 240, 250, 260 및 268℃로 조절한 것을 제외하고는 실시예 133과 동일하다.
실시예 135
heating chamber 방식의 연신에서 1단 및 2단의 각 step의 온도를 240, 255, 265 및 272℃로 조절한 것을 제외하고는 실시예 133과 동일하다.
실시예 136
상기 제조예4의 과정을 통해 얻은 폴리케톤 섬유를 사용하여 극저온 절연소재를 제조하였다.
실시예 137
폴리케톤 폴리머의 고유점도를 6.1㎗/g으로 조절한 것을 제외하고는 실시예 136와 동일하다.
실시예 138
폴리케톤 폴리머의 고유점도를 6.3㎗/g으로 조절한 것을 실시예 136와 동일하다.
실시예 139
상기 제조예7의 과정을 통해 얻은 폴리케톤 섬유를 사용하여 극저온 절연소재를 제조하였다.
실시예 140
폴리케톤 폴리머의 분자량 분포를 2.8로 조절한 것을 제외하고는 실시예 139와 동일하다.
실시예 141
폴리케톤 폴리머의분자량 분포를 3.5로 조절한 것을 실시예 141와 동일하다.
실시예 142
페놀계 내열안정제로 Adeka사의 AO80와 메탄올의 혼합용액 0.1%용액을 건조 전 1 딥을 시행한 것을 제외하고는 실시예 133과 동일하다.
실시예 143
페놀계 내열안정제로 Adeka사의 AO80와 메탄올의 혼합용액 0.1%용액을 건조 전과 연신 전 2 딥을 시행한 것을 제외하고는 실시예 133과 동일하다.
비교예 37 내지 39
극저온 절연소재의 제조에 있어 아라미드 섬유를 사용하고, 수세공정에서 연신비를 1.0 배로 하고 핫롤 건조방식이 아닌 열풍 건조방식을 수행하는 것을 제외하고는 실시예 133과 동일한 방법으로 수행하였고, 표 26의 방사조건으로 수행하였다.
비교예 37 비교예 38 비교예 39
열풍건조기 온도(℃) 240℃ 260℃ 280℃
수세 공정에서 연신 비(배) 1.0배 1.0배 1.0배
강도(g/d) 신도(%) 절연 테스트 단면 변동률(%)
실시예 133 20.75 5.9 OK 9
실시예 134 21.00 5.6 OK 8
실시예 135 20.84 5.7 OK 7
실시예 136 19.95 6.3 OK 11
실시예 137 20.55 6.0 OK 12
실시예 138 20.13 6.1 OK 10
실시예 139 19.74 6.3 OK 8
실시예 140 20.87 5.7 OK 13
실시예 141 20.14 6.1 OK 12
실시예 142 20.20 6.0 OK 8
실시예 143 21.04 5.6 OK 9
비교예 37 10.8 1.9 OK 22
비교예 38 11.2 2.1 OK 21
비교예 39 9.6 1.7 OK 18
상기 표 27와 같이 본원발명의 실시예에 의해 제조된 폴리케톤 섬유를 포함하는 극저온 절연소재는 강도가 우수하여 극저온 절연소재로 사용하기에 적합한 것으로 나타났다.
실시예 144
상기 제조예1의 과정을 통해 얻은 폴리케톤 섬유에 멜라민 수지를 적층하여 열압착한 후, 제단하여 프레스를 통해 가온, 가압하여 곡면을 형성하여 폴리케톤 섬유를 포함하는 스키보드를 제조하였다.
실시예 145
heating chamber 방식의 연신에서 1단 및 2단의 각 step의 온도를 240, 250, 260 및 268℃로 조절한 것을 제외하고는 실시예 144과 동일하다.
실시예 146
heating chamber 방식의 연신에서 1단 및 2단의 각 step의 온도를 240, 255, 265 및 272℃로 조절한 것을 제외하고는 실시예 144과 동일하다.
실시예 147
상기 제조예4의 과정을 통해 얻은 폴리케톤 섬유에 멜라민 수지를 적층하여 열압착한 후, 제단하여 프레스를 통해 가온, 가압하여 곡면을 형성하여 폴리케톤 섬유를 포함하는 스키보드를 제조하였다.
실시예 148
폴리케톤 폴리머의 고유점도를 6.1㎗/g으로 조절한 것을 제외하고는 실시예 147와 동일하다.
실시예 149
폴리케톤 폴리머의 고유점도를 6.3㎗/g으로 조절한 것을 실시예 147와 동일하다.
실시예 150
상기 제조예7의 과정을 통해 얻은 폴리케톤 섬유에 멜라민 수지를 적층하여 열압착한 후, 제단하여 프레스를 통해 가온, 가압하여 곡면을 형성하여 폴리케톤 섬유를 포함하는 스키보드를 제조하였다.
실시예 151
폴리케톤 폴리머의 분자량 분포를 2.8로 조절한 것을 제외하고는 실시예 150와 동일하다.
실시예 152
폴리케톤 폴리머의분자량 분포를 3.5로 조절한 것을 실시예 150와 동일하다.
실시예 153
페놀계 내열안정제로 Adeka사의 AO80와 메탄올의 혼합용액 0.1%용액을 건조 전 1 딥을 시행한 것을 제외하고는 실시예 153과 동일하다.
실시예 154
페놀계 내열안정제로 Adeka사의 AO80와 메탄올의 혼합용액 0.1%용액을 건조 전과 연신 전 2 딥을 시행한 것을 제외하고는 실시예 153과 동일하다.
비교예 40 내지 42
스키보드의 제조에 있어 아라미드 섬유를 사용하고, 수세공정에서 연신비를 1.0 배로 하고 핫롤 건조방식이 아닌 열풍 건조방식을 수행하는 것을 제외하고는 실시예 144과 동일한 방법으로 수행하였고, 표 28의 방사조건으로 수행하였다.
비교예 40 비교예 41 비교예 42
열풍건조기 온도(℃) 240℃ 260℃ 280℃
수세 공정에서 연신 비(배) 1.0배 1.0배 1.0배
연신사 강도(g/d) 신도(%) 단면 변동률(%)
실시예 144 20.75 5.9 9
실시예 145 21.00 5.6 8
실시예 146 20.84 5.7 7
실시예 147 19.95 6.3 11
실시예 148 20.55 6.0 12
실시예 149 20.13 6.1 10
실시예 150 19.74 6.3 8
실시예 151 20.87 5.7 13
실시예 152 20.14 6.1 12
실시예 153 20.20 6.0 8
실시예 154 21.04 5.6 9
비교예 40 10.8 1.9 22
비교예 41 11.2 2.1 21
비교예 42 9.6 1.7 18
상기 표 29와 같이 본원발명의 실시예에 의해 제조된 폴리케톤 섬유를 포함하는 스키보드는 폴리케톤 섬유의 강도가 우수하여 스키보드로 사용하기에 적합한 것으로 나타났다.
실시예 155
상기 제조예1의 과정을 통해 얻은 폴리케톤 섬유를 사용하여 테니스 라켓용 와이어를 제조하였다.
실시예 156
heating chamber 방식의 연신에서 1단 및 2단의 각 step의 온도를 240, 250, 260 및 268℃로 조절한 것을 제외하고는 실시예 155과 동일하다.
실시예 157
heating chamber 방식의 연신에서 1단 및 2단의 각 step의 온도를 240, 255, 265 및 272℃로 조절한 것을 제외하고는 실시예 155과 동일하다.
실시예 158
상기 제조예4의 과정을 통해 얻은 폴리케톤 섬유를 사용하여 테니스 라켓용 와이어를 제조하였다.
실시예 159
폴리케톤 폴리머의 고유점도를 6.1㎗/g으로 조절한 것을 제외하고는 실시예 158와 동일하다.
실시예 160
폴리케톤 폴리머의 고유점도를 6.3㎗/g으로 조절한 것을 실시예 158와 동일하다.
실시예 161
상기 제조예7의 과정을 통해 얻은 폴리케톤 섬유를 사용하여 테니스 라켓용 와이어를 제조하였다.
실시예 162
폴리케톤 폴리머의 분자량 분포를 2.8로 조절한 것을 제외하고는 실시예 161와 동일하다.
실시예 163
폴리케톤 폴리머의분자량 분포를 3.5로 조절한 것을 실시예 161와 동일하다.
실시예 164
페놀계 내열안정제로 Adeka사의 AO80와 메탄올의 혼합용액 0.1%용액을 건조 전 1 딥을 시행한 것을 제외하고는 실시예 155과 동일하다.
실시예 165
페놀계 내열안정제로 Adeka사의 AO80와 메탄올의 혼합용액 0.1%용액을 건조 전과 연신 전 2 딥을 시행한 것을 제외하고는 실시예 155과 동일하다.
비교예 43 내지 45
테니스 라켓용 와이어의 제조에 있어 아라미드 섬유를 사용하고, 수세공정에서 연신비를 1.0 배로 하고 핫롤 건조방식이 아닌 열풍 건조방식을 수행하는 것을 제외하고는 실시예 155과 동일한 방법으로 수행하였고, 표 30의 방사조건으로 수행하였다.
비교예 43 비교예 44 비교예 45
열풍건조기 온도(℃) 240℃ 260℃ 280℃
수세 공정에서 연신 비(배) 1.0배 1.0배 1.0배
멀티 필라멘트 물성 모노 필라멘트 물성
강도(g/d) 신도(%) 초기모듈러스(g/d) 10g/d응력시신장률(%) 19.0g/d~절단까지 응력 받을 때 신장률(%)
실시예 155 20.75 5.9 220 2.4 1.8
실시예 156 21.00 5.6 280 2.5 2.1
실시예 157 20.84 5.7 205 2.3 1.7
실시예 158 19.95 6.3 250 2.9 2.0
실시예 159 20.55 6.0 290 3.1 1.0
실시예 160 20.13 6.1 212 2.8 1.4
실시예 161 19.74 6.3 210 2.7 1.2
실시예 162 20.87 5.7 230 3.2 1.3
실시예 163 20.14 6.1 220 3.1 1.3
실시예 164 20.20 6.0 260 3.4 1.4
실시예 165 21.04 5.6 230 2.8 1.2
비교예 43 10.8 1.9 210 3.1 0
비교예 44 11.2 2.1 200 3.2 0
비교예 45 9.6 1.7 215 3.0 0
상기 표 31와 같이 본원발명의 실시예에 의해 제조된 폴리케톤 섬유를 포함하는 스키보드는 폴리케톤 섬유의 강도가 우수하여 테니스 라켓용 와이어로 사용하기에 적합한 것으로 나타났다.
실시예 166
상기 제조예1의 과정을 통해 얻은 폴리케톤 섬유에 멜라민 수지를 적층하여 열압착한 후, 제단하여 프레스를 통해 가온, 가압하여 폴리케톤 섬유를 포함하는 요트 구조재를 제조하였다.
실시예 167
heating chamber 방식의 연신에서 1단 및 2단의 각 step의 온도를 240, 250, 260 및 268℃로 조절한 것을 제외하고는 실시예 166과 동일하다.
실시예 168
heating chamber 방식의 연신에서 1단 및 2단의 각 step의 온도를 240, 255, 265 및 272℃로 조절한 것을 제외하고는 실시예 166과 동일하다.
실시예 169
상기 제조예4의 과정을 통해 얻은 폴리케톤 섬유에 멜라민 수지를 적층하여 열압착한 후, 제단하여 프레스를 통해 가온, 가압하여 폴리케톤 섬유를 포함하는 요트 구조재를 제조하였다.
실시예 170
폴리케톤 폴리머의 고유점도를 6.1㎗/g으로 조절한 것을 제외하고는 실시예 169와 동일하다.
실시예 171
폴리케톤 폴리머의 고유점도를 6.3㎗/g으로 조절한 것을 실시예 169와 동일하다.
실시예 172
상기 제조예7의 과정을 통해 얻은 폴리케톤 섬유에 멜라민 수지를 적층하여 열압착한 후, 제단하여 프레스를 통해 가온, 가압하여 폴리케톤 섬유를 포함하는 요트 구조재를 제조하였다.
실시예 173
폴리케톤 폴리머의 분자량 분포를 2.8로 조절한 것을 제외하고는 실시예 172와 동일하다.
실시예 174
폴리케톤 폴리머의분자량 분포를 3.5로 조절한 것을 실시예 172와 동일하다.
실시예 175
페놀계 내열안정제로 Adeka사의 AO80와 메탄올의 혼합용액 0.1%용액을 건조 전 1 딥을 시행한 것을 제외하고는 실시예 166과 동일하다.
실시예 176
페놀계 내열안정제로 Adeka사의 AO80와 메탄올의 혼합용액 0.1%용액을 건조 전과 연신 전 2 딥을 시행한 것을 제외하고는 실시예 16과 동일하다.
비교예 46 내지 48
요트 구조재의 제조에 있어 아라미드 섬유를 사용하고, 수세공정에서 연신비를 1.0 배로 하고 핫롤 건조방식이 아닌 열풍 건조방식을 수행하는 것을 제외하고는 실시예 166과 동일한 방법으로 수행하였고, 표 32의 방사조건으로 수행하였다.
비교예 46 비교예 47 비교예 48
열풍건조기 온도(℃) 240℃ 260℃ 280℃
수세 공정에서 연신 비(배) 1.0배 1.0배 1.0배
연신사 강도(g/d) 신도(%) 단면 변동률(%)
실시예 166 20.75 5.9 9
실시예 167 21.00 5.6 8
실시예 168 20.84 5.7 7
실시예 169 19.95 6.3 11
실시예 170 20.55 6.0 12
실시예 171 20.13 6.1 10
실시예 172 19.74 6.3 8
실시예 173 20.87 5.7 13
실시예 174 20.14 6.1 12
실시예 175 20.20 6.0 8
실시예 176 21.04 5.6 9
비교예 46 10.8 1.9 22
비교예 47 11.2 2.1 21
비교예 48 9.6 1.7 18
상기 표 33과 같이 본원발명의 실시예에 의해 제조된 폴리케톤 섬유를 포함하는 요트 구조재는 강도가 우수하여 요트 구조재로 사용하기에 적합한 것으로 나타났다.
실시예 177
상기 제조예1의 과정을 통해 얻은 폴리케톤 섬유를 사용하여 요트 돛을 제조하였다.
실시예 178
heating chamber 방식의 연신에서 1단 및 2단의 각 step의 온도를 240, 250, 260 및 268℃로 조절한 것을 제외하고는 실시예 177과 동일하다.
실시예 179
heating chamber 방식의 연신에서 1단 및 2단의 각 step의 온도를 240, 255, 265 및 272℃로 조절한 것을 제외하고는 실시예 177과 동일하다.
실시예 180
상기 제조예4의 과정을 통해 얻은 폴리케톤 섬유를 사용하여 요트 돛을 제조하였다.
실시예 181
폴리케톤 폴리머의 고유점도를 6.1㎗/g으로 조절한 것을 제외하고는 실시예 180와 동일하다.
실시예 182
폴리케톤 폴리머의 고유점도를 6.3㎗/g으로 조절한 것을 실시예 180와 동일하다.
실시예 183
상기 제조예7 과정을 통해 얻은 섬유를 권취하여 플렉시블 컨테이너 제조용 섬유를 제조하였다.
실시예 184
폴리케톤 폴리머의 분자량 분포를 2.8로 조절한 것을 제외하고는 실시예 183와 동일하다.
실시예 185
폴리케톤 폴리머의분자량 분포를 3.5로 조절한 것을 실시예 183와 동일하다.
실시예 186
페놀계 내열안정제로 Adeka사의 AO80와 메탄올의 혼합용액 0.1%용액을 건조 전 1 딥을 시행한 것을 제외하고는 실시예 177과 동일하다.
실시예 187
페놀계 내열안정제로 Adeka사의 AO80와 메탄올의 혼합용액 0.1%용액을 건조 전과 연신 전 2 딥을 시행한 것을 제외하고는 실시예 177과 동일하다.
비교예 49 내지 51
요트 돛의 제조에 있어 아라미드 섬유를 사용하고, 수세공정에서 연신비를 1.0 배로 하고 핫롤 건조방식이 아닌 열풍 건조방식을 수행하는 것을 제외하고는 실시예 177과 동일한 방법으로 수행하였고, 표 34의 방사조건으로 수행하였다.
비교예 49 비교예 50 비교예 51
열풍건조기 온도(℃) 240℃ 260℃ 280℃
수세 공정에서 연신 비(배) 1.0배 1.0배 1.0배
연신사 강도(g/d) 신도(%)
실시예 177 20.75 5.9
실시예 178 21.00 5.6
실시예 179 20.84 5.7
실시예 180 19.95 6.3
실시예 181 20.55 6.0
실시예 182 20.13 6.1
실시예 183 19.74 6.3
실시예 184 20.87 5.7
실시예 185 20.14 6.1
실시예 186 20.20 6.0
실시예 187 21.04 5.6
비교예 49 10.8 1.9
비교예 50 11.2 2.1
비교예 51 9.6 1.7
상기 표 35와 같이 본원발명의 실시예에 의해 제조된 폴리케톤 섬유를 포함하는 요트 돛은 강도가 우수하여 요트 돛으로 사용하기에 적합한 것으로 나타났다.
실시예 188
상기 제조예1의 과정을 통해 얻은 폴리케톤 섬유를 아크릴 수지와 적층하여 형틀에 넣고 150℃, 5bar로 가열, 가압하여 경기용 자전거용 프레임을 제조하였다.
실시예 189
heating chamber 방식의 연신에서 1단 및 2단의 각 step의 온도를 240, 250, 260 및 268℃로 조절한 것을 제외하고는 실시예 188과 동일하다.
실시예 190
heating chamber 방식의 연신에서 1단 및 2단의 각 step의 온도를 240, 255, 265 및 272℃로 조절한 것을 제외하고는 실시예 188과 동일하다.
실시예 191
상기 제조예4의 과정을 통해 얻은 폴리케톤 섬유를 아크릴 수지와 적층하여 형틀에 넣고 150℃, 5bar로 가열, 가압하여 경기용 자전거용 프레임을 제조하였다.
실시예 192
폴리케톤 폴리머의 고유점도를 6.1㎗/g으로 조절한 것을 제외하고는 실시예 191와 동일하다.
실시예 193
폴리케톤 폴리머의 고유점도를 6.3㎗/g으로 조절한 것을 실시예 191와 동일하다.
실시예 194
상기 제조예7의 과정을 통해 얻은 폴리케톤 섬유를 아크릴 수지와 적층하여 형틀에 넣고 150℃, 5bar로 가열, 가압하여 경기용 자전거용 프레임을 제조하였다.
실시예 195
폴리케톤 폴리머의 분자량 분포를 2.8로 조절한 것을 제외하고는 실시예 194와 동일하다.
실시예 196
폴리케톤 폴리머의분자량 분포를 3.5로 조절한 것을 실시예 194와 동일하다.
실시예 197
페놀계 내열안정제로 Adeka사의 AO80와 메탄올의 혼합용액 0.1%용액을 건조 전 1 딥을 시행한 것을 제외하고는 실시예 188과 동일하다.
실시예 198
페놀계 내열안정제로 Adeka사의 AO80와 메탄올의 혼합용액 0.1%용액을 건조 전과 연신 전 2 딥을 시행한 것을 제외하고는 실시예 188과 동일하다.
비교예 52 내지 54
경기용 자전거의 제조에 있어 아라미드 섬유를 사용하고, 수세공정에서 연신비를 1.0 배로 하고 핫롤 건조방식이 아닌 열풍 건조방식을 수행하는 것을 제외하고는 실시예 188과 동일한 방법으로 수행하였고, 표 36의 방사조건으로 수행하였다.
비교예 52 비교예 53 비교예 54
열풍건조기 온도(℃) 240℃ 260℃ 280℃
수세 공정에서 연신 비(배) 1.0배 1.0배 1.0배
멀티 필라멘트 물성 모노 필라멘트 물성
강도(g/d) 신도(%) 초기 모듈러스(g/d) 10.0g/d응력 받을 때 신장률(%) 19.0g/d~절단까지 응력 받을 때 신장률(%)
실시예 188 20.75 5.9 220 2.4 1.8
실시예 189 21.00 5.6 280 2.5 2.1
실시예 190 20.84 5.7 205 2.3 1.7
실시예 191 19.95 6.3 250 2.9 2.0
실시예 192 20.55 6.0 290 3.1 1.0
실시예 193 20.13 6.1 212 2.8 1.4
실시예 194 19.74 6.3 210 2.7 1.2
실시예 195 20.87 5.7 230 3.2 1.3
실시예 196 20.14 6.1 220 3.1 1.3
실시예 197 20.20 6.0 260 3.4 1.4
실시예 198 21.04 5.6 230 2.8 1.2
비교예 52 10.8 1.9 210 3.1 0
비교예 53 11.2 2.1 200 3.2 0
비교예 54 9.6 1.7 215 3.0 0
상기 표 37과 같이 본원발명의 실시예에 의해 제조된 폴리케톤 섬유를 포함하는 경기용 자전거는 강도가 우수하여 경기용 자전거로 사용하기에 적합한 것으로 나타났다.
실시예 199
상기 제조예1 과정을 통해 얻은 섬유를 경사와 위사로 사용하여 경사밀도 및 위사밀도가 모두 70본/인치인 평직 원단을 제직하였다. 제직된 원단 양면에 산화티탄이 첨가된 열가소성 폴리우레탄 수지를 코팅하여 코팅원단을 제조하였다.
실시예 200
세정과정에서 1.2배 연신을 수행하여 폴리케톤 섬유를 제조한 것을 제외하고는 실시예 1과 동일하게 낙하산 또는 페러글라이드용 폴리케톤 코팅 직물을 제조하였다.
실시예 201
세정과정에서 1.6배 연신을 수행하여 폴리케톤 섬유를 제조한 것을 제외하고는 실시예 1과 동일하게 낙하산 또는 페러글라이드용 폴리케톤 코팅 직물을 제조하였다.
비교예 55
1000 데니어의 폴리에스테르 섬유를 경사와 위사로 사용하여 경사밀도 및 위사밀도가 모두 22본/인치인 평직 원단을 제직하였다. 제직된 원단 양면에 열가소성 폴리우레탄 수지를 코팅하여 코팅원단을 제조하였다. 계속해서, 상기 코팅원단의 한쪽면에 우레탄계 접착제를 사용하여 폴리에스테르 필름을 라미네이팅하여 낙하산 막재를 제조하였다.
실험예 1
실시예 199 내지 201 및 비교예 55에서 각각 제조한 비행선 막재의 인장강도 및 헬륨누수도를 평가하였으며, 그 결과는 하기 표 1에 나타내었다.
멀티 필라멘트 물성 모노 필라멘트 물성
인장강도(kg/cm) 중량 (g/m2) 헬륨누수도(l/m2시간· 초기 모듈러스(g/d) 10.0g/d응력 받을 때 신장률(%) 19.0g/d~절단까지 응력 받을 때 신장률(%)
실시예 199 108 187 1.8 220 2.4 1.8
실시예 200 157 192 1.1 280 2.5 2.1
실시예 201 171 195 1.3 205 2.3 1.7
비교예 55 78 238 3.8 210 3.1 0
상기 표 38과 같이 본원발명의 실시예에 의해 제조된 폴리케톤 섬유를 포함하는 낙하산은 강도가 우수하여 낙하산으로 사용하기에 적합한 것으로 나타났다.
실시예 202
상기 제조예1 과정을 통해 얻은 폴리케톤 섬유를 사용하여 안전장갑을 제조하였다.
실시예 203
heating chamber 방식의 연신에서 1단 및 2단의 각 step의 온도를 240, 250, 260 및 268℃로 조절한 것을 제외하고는 실시예 202과 동일하다.
실시예 204
heating chamber 방식의 연신에서 1단 및 2단의 각 step의 온도를 240, 255, 265 및 272℃로 조절한 것을 제외하고는 실시예 202과 동일하다.
실시예 205
상기 제조예4 과정을 통해 얻은 폴리케톤 섬유를 사용하여 안전장갑을 제조하였다.
실시예 206
폴리케톤 폴리머의 고유점도를 6.1㎗/g으로 조절한 것을 제외하고는 실시예 205와 동일하다.
실시예 207
폴리케톤 폴리머의 고유점도를 6.3㎗/g으로 조절한 것을 실시예 205와 동일하다.
실시예 208
상기 제조예7 과정을 통해 얻은 폴리케톤 섬유를 사용하여 안전장갑을 제조하였다.
실시예 209
폴리케톤 폴리머의 분자량 분포를 2.8로 조절한 것을 제외하고는 실시예 208와 동일하다.
실시예 210
폴리케톤 폴리머의분자량 분포를 3.5로 조절한 것을 실시예 208와 동일하다.
실시예 211
페놀계 내열안정제로 Adeka사의 AO80와 메탄올의 혼합용액 0.1%용액을 건조 전 1 딥을 시행한 것을 제외하고는 실시예 202과 동일하다.
실시예 212
페놀계 내열안정제로 Adeka사의 AO80와 메탄올의 혼합용액 0.1%용액을 건조 전과 연신 전 2 딥을 시행한 것을 제외하고는 실시예 202과 동일하다.
비교예 56 내지 58
안전장갑의 제조에 있어 아라미드 섬유를 사용하고, 수세공정에서 연신비를 1.0 배로 하고 핫롤 건조방식이 아닌 열풍 건조방식을 수행하는 것을 제외하고는 실시예 202과 동일한 방법으로 수행하였고, 표 39의 방사조건으로 수행하였다.
비교예 56 비교예 57 비교예 58
열풍건조기 온도(℃) 240℃ 260℃ 280℃
수세 공정에서 연신 비(배) 1.0배 1.0배 1.0배
연신사 강도(g/d) 신도(%) 단면 변동률(%)
실시예 202 20.75 5.9 9
실시예 203 21.00 5.6 8
실시예 204 20.84 5.7 7
실시예 205 19.95 6.3 11
실시예 206 20.55 6.0 12
실시예 207 20.13 6.1 10
실시예 208 19.74 6.3 8
실시예 209 20.87 5.7 13
실시예 210 20.14 6.1 12
실시예 211 20.20 6.0 8
실시예 212 21.04 5.6 9
비교예 56 10.8 1.9 22
비교예 57 11.2 2.1 21
비교예 58 9.6 1.7 18
상기 표 40과 같이 본원발명의 실시예에 의해 제조된 폴리케톤 섬유를 포함하는 안전장갑은 강도가 우수하여 안전장갑으로 사용하기에 적합한 것으로 나타났다.다.
실시예 213
상기 제조예1 과정을 통해 얻은 폴리케톤 섬유를 고무시트와 적층하여 프레싱하여 밑창을 성형한 후, 이를 갑피와 함께 금형에 투입하여 동시에 성형함으로써 안전 보호용 신발을 제조하였다.
실시예 214
heating chamber 방식의 연신에서 1단 및 2단의 각 step의 온도를 240, 250, 260 및 268℃로 조절한 것을 제외하고는 실시예 213과 동일하다.
실시예 215
heating chamber 방식의 연신에서 1단 및 2단의 각 step의 온도를 240, 255, 265 및 272℃로 조절한 것을 제외하고는 실시예 213과 동일하다.
실시예 216
상기 제조예4 과정을 통해 얻은 폴리케톤 섬유를 고무시트와 적층하여 프레싱하여 밑창을 성형한 후, 이를 갑피와 함께 금형에 투입하여 동시에 성형함으로써 안전 보호용 신발을 제조하였다.
실시예 217
폴리케톤 폴리머의 고유점도를 6.1㎗/g으로 조절한 것을 제외하고는 실시예 216와 동일하다.
실시예 218
폴리케톤 폴리머의 고유점도를 6.3㎗/g으로 조절한 것을 실시예 216와 동일하다.
실시예 219
상기 제조예7 과정을 통해 얻은 폴리케톤 섬유를 고무시트와 적층하여 프레싱하여 밑창을 성형한 후, 이를 갑피와 함께 금형에 투입하여 동시에 성형함으로써 안전 보호용 신발을 제조하였다.
실시예 220
폴리케톤 폴리머의 분자량 분포를 2.8로 조절한 것을 제외하고는 실시예 219와 동일하다.
실시예 221
폴리케톤 폴리머의분자량 분포를 3.5로 조절한 것을 실시예 219와 동일하다.
실시예 222
페놀계 내열안정제로 Adeka사의 AO80와 메탄올의 혼합용액 0.1%용액을 건조 전 1 딥을 시행한 것을 제외하고는 실시예 213과 동일하다.
실시예 223
페놀계 내열안정제로 Adeka사의 AO80와 메탄올의 혼합용액 0.1%용액을 건조 전과 연신 전 2 딥을 시행한 것을 제외하고는 실시예 213과 동일하다.
비교예 59 내지 61
복합재료의 제조에 있어 폴리프로필렌 필름과 PAN계의 탄소 직물를 사용하고, 수세공정에서 연신비를 1.0 배로 하고 핫롤 건조방식이 아닌 열풍 건조방식을 수행하는 것을 제외하고는 실시예 205과 동일한 방법으로 수행하였고, 표 41의 방사조건으로 수행하였다.
비교예 59 비교예 60 비교예 61
열풍건조기 온도(℃) 240℃ 260℃ 280℃
수세 공정에서 연신 비(배) 1.0배 1.0배 1.0배
멀티 필라멘트 물성 모노 필라멘트 물성
강도(g/d) 신도(%) 초기 모듈러스(g/d) 10.0g/d응력 받을 때 신장률(%) 19.0g/d~절단까지 응력 받을 때 신장률(%)
실시예 213 20.75 5.9 220 2.4 1.8
실시예 214 21.00 5.6 280 2.5 2.1
실시예 215 20.84 5.7 205 2.3 1.7
실시예 216 19.95 6.3 250 2.9 2.0
실시예 217 20.55 6.0 290 3.1 1.0
실시예 218 20.13 6.1 212 2.8 1.4
실시예 219 19.74 6.3 210 2.7 1.2
실시예 220 20.87 5.7 230 3.2 1.3
실시예 221 20.14 6.1 220 3.1 1.3
실시예 222 20.20 6.0 260 3.4 1.4
실시예 223 21.04 5.6 230 2.8 1.2
비교예 59 10.8 1.9 210 3.1 0
비교예 60 11.2 2.1 200 3.2 0
비교예 61 9.6 1.7 215 3.0 0
상기 표 42와 같이 본원발명의 실시예에 의해 제조된 폴리케톤 섬유를 포함하는 신발은 강도가 우수하여 산업안전보호용 신발으로 사용하기에 적합한 것으로 나타났다.
실시예 224
농도가 60중량%인 브롬화아연 수용액을 주입온도 25℃로 내부가 30℃로 유지된 압출기에 기어펌프로 13000g/시간 속도로 주입하며 분자량 분포가 3.0, 고유점도가 6.0 ㎗/g인 폴리케톤 분말은 스크류식 공급기로 1160g/시간으로 압출기 주입하여 압출기 팽윤구역에서 체류시간은 0.8분으로 하고 온도는 40℃로 상승하게 하여 폴리케톤 분말을 금속염 용액에 충분히 용해시킨 다음, 압출기의 용해구역에서 각 블록온도를 55 내지 60℃로 유지하고, 탈포한 다음, 폴리케톤 용액을 디스크 필터에 여과시켜 불순물을 제거한 후 G/P를 거쳐 습식 방사법에 의해서 폴리케톤 섬유를 제조하였다.
이때 노즐 홀수 및 홀 직경은 각각 667개 및 0.18mm이며 L/D가 1인 원형 노즐을 사용하였고 에어갭은 10mm이었다. 배출된 용액의 폴리케톤의 농도는 8.2중량%였으며, 미용해된 폴리케톤 입자가 함유되지 않은 균질한 상태였다.
얻어진 섬유를 세정과정에서 1.2배 연신을 수행하고, 건조 전에 페놀계 내열안정제로 Adeka사의 AO80와 메탄올의 혼합용액 0.1%용액으로 침지방식으로 내열안정제를 딥핑한다. 건조과정에서 핫롤 건조방식으로 1.2배 연신을 수행한 후에 heating chamber방식으로 Total연신배율 16.8배로 섬유를 제조하고, 1단에서 7배의 연신, 2단에서 2.4배의 연신을 거치며, 2단은 각각 1.5, 1.3, 1.23배의 3step 연신을 포함하며, 각 step은 240, 255, 265 및 268℃의 온도에서 수행한다.
실시예 225
heating chamber 방식의 연신에서 1단 및 2단의 각 step의 온도를 240, 250, 260 및 268℃로 조절한 것을 제외하고는 실시예 224과 동일하다.
실시예 226
heating chamber 방식의 연신에서 1단 및 2단의 각 step의 온도를 240, 255, 265 및 272℃로 조절한 것을 제외하고는 실시예 224과 동일하다.
실시예 227
농도가 60중량%인 브롬화아연 수용액을 주입온도 25℃로 내부가 30℃로 유지된 압출기에 기어펌프로 13000g/시간 속도로 주입하며 분자량 분포가 3.0, 고유점도가 5.7 ㎗/g인 폴리케톤 분말은 스크류식 공급기로 1160g/시간으로 압출기 주입하여 압출기 팽윤구역에서 체류시간은 0.8분으로 하고 온도는 40℃로 상승하게 하여 폴리케톤 분말을 금속염 용액에 충분히 용해시킨 다음, 압출기의 용해구역에서 각 블록온도를 55 내지 60℃로 유지하고, 탈포한 다음, 폴리케톤 용액을 디스크 필터에 여과시켜 불순물을 제거한 후 G/P를 거쳐 습식 방사법에 의해서 폴리케톤 섬유를 제조하였다.
이때 노즐 홀수 및 홀 직경은 각각 667개 및 0.18mm이며 L/D가 1인 원형 노즐을 사용하였고 에어갭은 10mm이었다. 배출된 용액의 폴리케톤의 농도는 8.2중량%였으며, 미용해된 폴리케톤 입자가 함유되지 않은 균질한 상태였다.
얻어진 섬유를 세정과정에서 1.2배 연신을 수행하고, 건조 전에 페놀계 내열안정제로 Adeka사의 AO80와 메탄올의 혼합용액 0.1%용액으로 침지방식으로 내열안정제를 딥핑한다. 건조과정에서 핫롤 건조방식으로 1.2배 연신을 수행한 후에 heating chamber방식으로 Total연신배율 16.8배로 섬유를 제조하고, 1단에서 7배의 연신, 2단에서 2.4배의 연신을 거치며, 2단은 각각 1.5, 1.3, 1.23배의 3step 연신을 포함하며, 각 step은 240, 255, 265 및 268℃의 온도에서 수행한다.
실시예 228
폴리케톤 폴리머의 고유점도를 6.1㎗/g으로 조절한 것을 제외하고는 실시예 7와 동일하다.
실시예 229
폴리케톤 폴리머의 고유점도를 6.3㎗/g으로 조절한 것을 실시예 227와 동일하다.
실시예 230
농도가 60중량%인 브롬화아연 수용액을 주입온도 25℃로 내부가 30℃로 유지된 압출기에 기어펌프로 13000g/시간 속도로 주입하며 분자량 분포가 2.5, 고유점도가 6.0 ㎗/g인 폴리케톤 분말은 스크류식 공급기로 1160g/시간으로 압출기 주입하여 압출기 팽윤구역에서 체류시간은 0.8분으로 하고 온도는 40℃로 상승하게 하여 폴리케톤 분말을 금속염 용액에 충분히 용해시킨 다음, 압출기의 용해구역에서 각 블록온도를 55 내지 60℃로 유지하고, 탈포한 다음, 폴리케톤 용액을 디스크 필터에 여과시켜 불순물을 제거한 후 G/P를 거쳐 습식 방사법에 의해서 폴리케톤 섬유를 제조하였다.
이때 노즐 홀수 및 홀 직경은 각각 667개 및 0.18mm이며 L/D가 1인 원형 노즐을 사용하였고 에어갭은 10mm이었다. 배출된 용액의 폴리케톤의 농도는 8.2중량%였으며, 미용해된 폴리케톤 입자가 함유되지 않은 균질한 상태였다.
얻어진 섬유를 세정과정에서 1.2배 연신을 수행하고, 건조 전에 페놀계 내열안정제로 Adeka사의 AO80와 메탄올의 혼합용액 0.1%용액으로 침지방식으로 내열안정제를 딥핑한다. 건조과정에서 핫롤 건조방식으로 1.2배 연신을 수행한 후에 heating chamber방식으로 Total연신배율 16.8배로 섬유를 제조하고, 1단에서 7배의 연신, 2단에서 2.4배의 연신을 거치며, 2단은 각각 1.5, 1.3, 1.23배의 3step 연신을 포함하며, 각 step은 240, 255, 265 및 268℃의 온도에서 수행한다.
실시예 231
폴리케톤 폴리머의 분자량 분포를 2.8로 조절한 것을 제외하고는 실시예 230와 동일하다.
실시예 232
폴리케톤 폴리머의분자량 분포를 3.5로 조절한 것을 실시예 230와 동일하다.
실시예 233
페놀계 내열안정제로 Adeka사의 AO80와 메탄올의 혼합용액 0.1%용액을 건조 전 1 딥을 시행한 것을 제외하고는 실시예 224과 동일하다.
실시예 234
페놀계 내열안정제로 Adeka사의 AO80와 메탄올의 혼합용액 0.1%용액을 건조 전과 연신 전 2 딥을 시행한 것을 제외하고는 실시예 224과 동일하다.
비교예 62
불순물을 제거하는데 있어서, 실시예 224에서 사용한 디스크 필터 대신 캔들 필터를 사용한 것을 제외하고는, 실시예 224과 동일한 과정을 통하여 폴리케톤 섬유를 제조하였다.
물성평가
필터의 교체 주기는 필터의 전단과 후단의 Differential Pressure 값으로 판단하며 Disk Filter의 경우 한계차압이 40 bar로 이와 같은 값에 도달할 때 교체가 이루어지게 됨
필터 교체 주기 연속 운전
실시예 224 45일 이상 45일 이상
실시예 225 45일 이상 45일 이상
실시예 226 45일 이상 45일 이상
실시예 227 45일 이상 45일 이상
실시예 228 45일 이상 45일 이상
실시예 229 45일 이상 45일 이상
실시예 230 45일 이상 45일 이상
실시예 231 45일 이상 45일 이상
실시예 232 45일 이상 45일 이상
실시예 233 45일 이상 45일 이상
실시예 234 45일 이상 45일 이상
비교예 62 9일 이내 9일 이내
상기 표 43과 같이, 실시예의 경우 필터의 수명이 45일 이상으로 향상되어, 연속 운전 또한 45일 이상 가능하였다.

Claims (85)

  1. 하기 일반식(1)과 (2)로 표시되는 반복단위로 이루어지고, y/x가 0 내지 0.1이며, 고유 점도가 4 내지 8 dl/g인 폴리케톤 공중합체를 방사공정, 수세공정, 건조공정 및 연신공정을 거쳐 제조되는 폴리케톤 섬유를 포함하는 것을 특징으로 하는 방탄의류, 방탄헬멧, 파편방호 소재, 항공기 또는 군항기용 폴리케톤 방탄재, 항공기 윙팁장치, 헬리콥터 내장재, 자동차 구조재, 선박플랫폼, 잠수정 구조재, 광케이블 피복재, 레이더돔 구조재, 초전도 코일의 보빈, 극저온성 초전도 케이블, 스키보드, 테니스 라켓용 와이어, 요트 구조재, 요트 돛, 경기용 자전거, 낙하산 폴리케톤 코팅 직물, 패러글라이드용 폴리케톤 코팅 직물 및 안전장갑으로 이루어진 군에서 선택 된 하나의 폴리케톤 섬유 제품.
    -[-CH2CH2-CO-]x- (1)
    -[-CH2-CH(CH3)-CO-]y- (2)
    (x, y는 폴리머 중의 일반식 (1) 및 (2) 각각의 몰%)
  2. 제 1항에 있어서,
    상기 수세공정 시 1.0배 내지 2.0 배 연신하고, 상기 건조과정 시 1.0배 내지 2.0 배 연신하는 것을 특징으로 하는 폴리케톤 섬유제품.
  3. 제 1 항에 있어서,
    상기 건조공정은 100 내지 230℃에서 핫롤건조식이고, 상기 연신공정은 230 내지 300℃에서 히팅 챔버(heating chamber) 연신식인 것을 특징으로 하는 폴리케톤 섬유제품.
  4. 제 1 항에 있어서,
    상기 건조공정 및 연신공정 전에 내열안정제를 처리하는 것을 특징으로 하는 폴리케톤 섬유제품.
  5. 하기 일반식(1)과 (2)로 표시되는 반복단위로 이루어지고, y/x가 0 내지 0.1이며, 고유 점도가 4 내지 8 dl/g인 폴리케톤 공중합체를 방사공정, 수세공정, 건조공정 및 연신공정을 거쳐 제조되는 폴리케톤 섬유를 포함하는 것을 특징으로 하는 폴리케톤 방탄의류.
    -[-CH2CH2-CO-]x- (1)
    -[-CH2-CH(CH3)-CO-]y- (2)
    (x, y는 폴리머 중의 일반식 (1) 및 (2) 각각의 몰%)
  6. 제 5항에 있어서,
    상기 폴리케톤 방탄의류는 폴리케톤 섬유를 사용하여 평직으로 직물을 제직한 후, 계면활성제 처리하고 수세한 후 건조하는 단계를 거쳐 제조되는 것을 특징으로 한 폴리케톤 방탄의류.
  7. 제 5항에 있어서,
    상기 폴리케톤 방탄의류는 하드록실레이티드 퍼르플루오로알킬 에틸 아크릴레이트 코폴리머(Hydroxylated perfluoroalkylethyl acrylate copolymer) 100중량부 대비 디프로필렌 글리콜(Dipropylene glycol) 20 ~ 35중량부, 실리콘 오일 0.5 ~ 5.5 중량부 및 이소프로필알콜(isopropylalcohol) 0.5 ~ 10 중량부로 구성되는 발수제에 침지하는 단계를 더 포함한 제조단계를 거쳐 제조되는 것을 특징으로 한 폴리케톤 방탄의류
  8. 제 5항 내지 제7항 중 어느 하나의 항에 있어서,
    상기 폴리케톤 방탄의류는 방탄성능(V50)이 5.56mm 파편탄(FSP) 기준으로 590 내지 700m/s인 것을 특징으로 하는 폴리케톤 방탄의류.
  9. 제 5 항에 있어서,
    상기 폴리케톤 공중합체는 에틸렌 및 프로필렌의 몰비%가 100:0내지 90:10이고, 분자량 분포가 2.5 내지 3.5이며,
    상기 폴리케톤 섬유는 모노 필라멘트의 섬도가 1내지 10d이고, 단면 변동률 지수가 8 내지 15%인 것을 특징으로 하는 폴리케톤 방탄의류.
  10. 하기 일반식(1)과 (2)로 표시되는 반복단위로 이루어지고, y/x가 0 내지 0.1이며, 고유 점도가 4 내지 8 dl/g인 폴리케톤 공중합체를 방사공정, 수세공정, 건조공정 및 연신공정을 거쳐 제조되는 폴리케톤 섬유를 포함하는 것을 특징으로 하는 폴리케톤 방탄헬멧.
    -[-CH2CH2-CO-]x- (1)
    -[-CH2-CH(CH3)-CO-]y- (2)
    (x, y는 폴리머 중의 일반식 (1) 및 (2) 각각의 몰%)
  11. 제 10 항에 있어서,
    상기 폴리케톤 방탄헬멧은 폴리케톤 섬유를 경사 및 위사에 적용하고 평직으로 직조한 후, 열가소성 또는 열경화성 수지를 접착시켜 챔버에서 압력을 가하여 코팅한 후, 헬멧 제조용 하부 몰드에 적층하여 경화시켜 제조되는 것을 특징으로 한 폴리케톤 방탄헬멧
  12. 제 10항 또는 제 11항 중 어느 하나의 항에 있어서,
    상기 폴리케톤 방탄헬멧은 MIL-STD-662F 규정에 따라 측정된 평균 속도(V50)가 590~700㎧이고,
    상기 평균 속도는 Cal.22구경 파편모의탄(FSP)을 이용하여 완전 관통했을 때의 속도와 부분 관통했을 때의 속도를 평균한 값으로부터 측정된 것을 특징으로 하는 폴리케톤 방탄헬멧.
  13. 제 10 항에 있어서,
    상기 폴리케톤 섬유의 모노필라멘트는 초기 모듈러스 값이 200g/d 이상이고, 10.0g/d에서 신도가 2.5 내지 3.5%이며, 19.0g/d 이상에서 최소한 0.5%이상 신장하며,
    상기 폴리케톤 섬유의 모노필라멘트는 섬도가 0.5 내지 8.0 데니어인 것을 특징으로 하는 폴리케톤 방탄헬멧
  14. 하기 일반식(1)과 (2)로 표시되는 반복단위로 이루어지고, y/x가 0 내지 0.1이며, 고유 점도가 4 내지 8 dl/g인 폴리케톤 공중합체를 방사공정, 수세공정, 건조공정 및 연신공정을 거쳐 제조되는 폴리케톤 섬유를 포함하는 것을 특징으로 하는폴리케톤 파편방호 소재.
    -[-CH2CH2-CO-]x- (1)
    -[-CH2-CH(CH3)-CO-]y- (2)
    (x, y는 폴리머 중의 일반식 (1) 및 (2) 각각의 몰%)
  15. 제 14항에 있어서,
    상기 폴리케톤 파편방호 소재는 폴리케톤 멀티 필라멘트를 탄성 매트릭스원액에 함침시킨 후, 탄성시트를 수득하고, 이를 적층하고, 가열 및 가압하여 제조되는 것을 특징으로 한 폴리케톤 파편방호 소재
  16. 제 14 항에 있어서,
    상기 폴리케톤 파편방호 소재는 방탄성능(V50)이 5.56mm 파편탄(FSP) 기준으로 590 내지 700m/s인 것을 특징으로 하는 폴리케톤 파편방호 소재.
  17. 제 14 항에 있어서,
    상기 폴리케톤 공중합체는 에틸렌 및 프로필렌의 몰비%가 100:0 내지 90:10이고, 분자량 분포가 2.5 내지 3.5이며,
    상기 폴리케톤 멀티필라멘트는 모노필라멘트의 섬도가 1 내지 10d이고, 단면 변동률 지수가 8 내지 15%인 것을 특징으로 하는 폴리케톤 파편방호 소재
  18. 하기 일반식(1)과 (2)로 표시되는 반복단위로 이루어지고, y/x가 0 내지 0.1이며, 고유 점도가 4 내지 8 dl/g인 폴리케톤 공중합체를 방사공정, 수세공정, 건조공정 및 연신공정을 거쳐 제조되는 폴리케톤 섬유를 포함하는 것을 특징으로 하는 폴리케톤 항공기 또는 군항기용 폴리케톤 방탄재
    -[-CH2CH2-CO-]x- (1)
    -[-CH2-CH(CH3)-CO-]y- (2)
    (x, y는 폴리머 중의 일반식 (1) 및 (2) 각각의 몰%)
  19. 제 18 항에 있어서,
    상기 항공기 또는 군항기용 폴리케톤 방탄재는 폴리케톤 섬유를 직조하여 직물매트를 재단한 후 적층하여 액상수지 성형장치에 넣고 성형품을 형성하여 이를 소정의 길이 및 폭 방향으로 재단하여 제조되는 것을 특징으로 한 항공기 또는 군항기용 폴리케톤 방탄재.
  20. 제 18 항에 있어서,
    상기 항공기 또는 군항기용 폴리케톤 방탄재는 방탄성능(V50)이 5.56mm 파편탄(FSP) 기준으로 590 내지 700m/s인 것을 특징으로 하는 항공기 또는 군항기용 폴리케톤 방탄재.
  21. 제 18 항에 있어서,
    상기 폴리케톤 공중합체의 분자량 분포는 2.5 내지 3.5이고,
    상기 폴리케톤 공중합체 중합시 사용되는 촉매조성물의 리간드는 ((2,2-디메틸-1,3-디옥산-5,5-디일)비스(메틸렌))비스(비스(2-메톡시페닐)포스핀)인 것을 특징으로 한 항공기 또는 군항기용 폴리케톤 방탄재.
  22. 제 18항에 있어서,
    상기 폴리케톤 멀티필라멘트는 초기 모듈러스 값이 200g/d이상이고, 10.0g/d에서 신도가 2.5 내지 3.5%이며, 19.0g/d이상에서 최소한 0.5%이상 신장하며,
    상기 폴리케톤 모노필라멘트는 섬도 0.5 내지 8.0 데니어인 것을 특징으로 하는 항공기 또는 군항기용 폴리케톤 방탄재.
  23. 하기 일반식(1)과 (2)로 표시되는 반복단위로 이루어지고, y/x가 0 내지 0.1이며, 고유 점도가 4 내지 8 dl/g인 폴리케톤 공중합체를 방사공정, 수세공정, 건조공정 및 연신공정을 거쳐 제조되는 폴리케톤 섬유를 포함하는 것을 특징으로 하는폴리케톤 항공기 윙팁장치.
    -[-CH2CH2-CO-]x- (1)
    -[-CH2-CH(CH3)-CO-]y- (2)
    (x, y는 폴리머 중의 일반식 (1) 및 (2) 각각의 몰%)
  24. 제 23 항에 있어서,
    상기 폴리케톤 항공기 윙팁장치는 폴리케톤 멀티필라멘트를 경사 및 위사에 적용하여 평직으로 제조한 후, 탄성 매트릭스원액에 함침시킨 후, 윙팁 제조용 몰드에 적층하여 열가소성 또는 열경화성 수지와 접착시켜 가열 및 가압하여 제조되는 것을 특징으로 한 폴리케톤 항공기 윙팁장치.
  25. 제 23 항에 있어서,
    상기 폴리케톤 멀티필라멘트는 초기 모듈러스 값이 200g/d이상이고, 10.0g/d에서 신도가 2.5 내지 3.5%이며, 19.0g/d이상에서 최소한 0.5%이상 신장하는 폴리케톤 모노필라멘트로 이루어진 것을 특징으로 하는 폴리케톤 항공기 윙팁장치.
  26. 제 23 항에 있어서,
    상기 폴리케톤 모노필라멘트는 섬도 0.5 내지 8.0 데니어인 것을 특징으로 하는 폴리케톤 항공기 윙팁장치.
  27. 하기 일반식(1)과 (2)로 표시되는 반복단위로 이루어지고, y/x가 0 내지 0.1이며, 고유 점도가 4 내지 8 dl/g인 폴리케톤 공중합체를 방사공정, 수세공정, 건조공정 및 연신공정을 거쳐 제조되는 폴리케톤 섬유를 포함하는 것을 특징으로 하는 폴리케톤 헬리콥터 내장재
    -[-CH2CH2-CO-]x- (1)
    -[-CH2-CH(CH3)-CO-]y- (2)
    (x, y는 폴리머 중의 일반식 (1) 및 (2) 각각의 몰%)
  28. 제 27 항에 있어서,
    상기 폴리케톤 헬리콥터 내장재는 상기 폴리케톤 멀티필라멘트를 경사 및 위사에 적용하여 평직으로 제조한 후, 몰드에 적층하여 열가소성 또는 열경화성 수지와 접착시켜 가열 및 가압하여 제조되는 것을 특징으로 한 폴리케톤 헬리콥터 내장재
  29. 제 27 항에 있어서,
    상기 폴리케톤 공중합체의 분자량 분포는 2.5 내지 3.5이고,
    상기 폴리케톤 공중합체 중합시 사용되는 촉매조성물의 리간드는 ((2,2-디메틸-1,3-디옥산-5,5-디일)비스(메틸렌))비스(비스(2-메톡시페닐)포스핀)인 것을 특징으로 하는 폴리케톤 헬리콥터 내장재
  30. 제 27항에 있어서,
    상기 폴리케톤 멀티필라멘트는 초기 모듈러스 값이 200g/d이상이고, 10.0g/d에서 신도가 2.5 내지 3.5%이며, 19.0g/d이상에서 최소한 0.5%이상 신장하며,
    상기 폴리케톤 모노필라멘트는 섬도 0.5 내지 8.0 데니어인 것을 특징으로 하는 폴리케톤 헬리콥터 내장재
  31. 하기 일반식(1)과 (2)로 표시되는 반복단위로 이루어지고, y/x가 0 내지 0.1이며, 고유 점도가 4 내지 8 dl/g인 폴리케톤 공중합체를 방사공정, 수세공정, 건조공정 및 연신공정을 거쳐 제조되는 폴리케톤 섬유를 포함하는 것을 특징으로 하는폴리케톤 자동차 구조재.
    -[-CH2CH2-CO-]x- (1)
    -[-CH2-CH(CH3)-CO-]y- (2)
    (x, y는 폴리머 중의 일반식 (1) 및 (2) 각각의 몰%)
  32. 제 31항에 있어서,
    상기 폴리케톤 자동차 구조재는 폴리케톤 필라멘트를 경사 및 위사에 적용하고 평직으로 직조한 후, 열가소성 또는 열경화성 수지를 접착시켜 챔버에서 압력을 가하여 코팅한 후, 몰드에 적층하여 경화시켜 제조되는 것을 특징으로 한 폴리케톤 방탄헬멧 폴리케톤 자동차 구조재
  33. 제 31 항에 있어서,
    상기 폴리케톤 공중합체는 에틸렌 및 프로필렌의 몰비%가 100:0내지 90:10이고, 분자량 분포가 2.5 내지 3.5이며,
    상기 폴리케톤 멀티 필라멘트는 모노 필라멘트의 섬도가 1내지 10d이고, 단면 변동률 지수가 8 내지 15%인 것으로 이루어진 것을 특징으로 하는 폴리케톤 자동차 구조재
  34. 선박의 내부로부터 외부 방향으로 이동 가능하도록 상기 선박의 일측부에 설치되는 프레임;
    상기 프레임에 결합되는 몸체; 로 구성되는 선박 플랫폼에 있어서,
    상기 몸체는 하기 일반식(1)과 (2)로 표시되는 반복단위로 이루어지고, y/x가 0 내지 0.1이며, 고유 점도가 4 내지 8 dl/g인 폴리케톤 공중합체를 방사공정, 수세공정, 건조공정 및 연신공정을 거쳐 제조되는 폴리케톤 섬유를 포함하는 것을 특징으로 하는 폴리케톤 선박 플랫폼.
    -[-CH2CH2-CO-]x- (1)
    -[-CH2-CH(CH3)-CO-]y- (2)
    (x, y는 폴리머 중의 일반식 (1) 및 (2) 각각의 몰%)
  35. 제 34 항에 있어서,
    상기 폴리케톤 선박 플랫폼은 활성염소농도 3ppm, pH 7.5의 염소수 15L에 상온에서 24시간 동안 침적한 강력유지율이 70 내지 90%인 것을 특징으로 한 폴리케톤 선박 플랫폼.
  36. 제 34 항에 있어서,
    상기 폴리케톤 섬유의 모노필라멘트는 초기 모듈러스 값이 200g/d 이상이고, 10.0g/d에서 신도가 2.5 내지 3.5%이며, 19.0g/d 이상에서 최소한 0.5%이상 신장하며,
    상기 폴리케톤 모노필라멘트는 섬도 0.5 내지 8.0 데니어인 것을 특징으로 하는 폴리케톤 선박 플랫폼
  37. 하기 일반식(1)과 (2)로 표시되는 반복단위로 이루어지고, y/x가 0 내지 0.1이며, 고유 점도가 4 내지 8 dl/g인 폴리케톤 공중합체를 방사공정, 수세공정, 건조공정 및 연신공정을 거쳐 제조되는 폴리케톤 섬유를 포함하는 폴리케톤 잠수정 구조재.
    -[-CH2CH2-CO-]x- (1)
    -[-CH2-CH(CH3)-CO-]y- (2)
    (x, y는 폴리머 중의 일반식 (1) 및 (2) 각각의 몰%)
  38. 제 37항에 있어서,
    상기 폴리케톤 잠수정 구조재는 폴리케톤 멀티 필라멘트를 발포 폼과 함께 제조 금형에 주입하여 가열, 가압하여 발포시켜 제조되는 것을 특징으로 한 폴리케톤 잠수정 구조재.
  39. 제 37항에 있어서,
    상기 폴리케톤 공중합체의 분자량 분포는 2.5 내지 3.5이며,
    상기 폴리케톤 공중합체 중합시 사용되는 촉매조성물의 리간드는 ((2,2-디메틸-1,3-디옥산-5,5-디일)비스(메틸렌))비스(비스(2-메톡시페닐)포스핀)인 것을 특징으로 하는 폴리케톤 잠수정 구조재.
  40. 제 37항에 있어서,
    상기 폴리케톤 멀티필라멘트는 초기 모듈러스 값이 200g/d이상이고, 10.0g/d에서 신도가 2.5 내지 3.5%이며, 19.0g/d이상에서 최소한 0.5%이상 신장하며,
    상기 폴리케톤 모노필라멘트는 섬도 0.5 내지 8.0 데니어인 것을 특징으로 하는 폴리케톤 항 잠수정 구조재.
  41. 하기 일반식(1)과 (2)로 표시되는 반복단위로 이루어지고, y/x가 0 내지 0.1이며, 고유 점도가 4 내지 8 dl/g인 폴리케톤 공중합체를 방사공정, 수세공정, 건조공정 및 연신공정을 거쳐 제조되는 폴리케톤 섬유를 포함하는 폴리케톤 광케이블 피복재
    일반식 (1) -[-CH2CH2-CO-]x-
    일반식 (2) -[-CH2-CH(CH3)-CO-]y-
    (x, y는 폴리머 중의 일반식 (1) 및 (2) 각각의 몰%)
  42. 제 41항에 있어서,
    상기 폴리케톤 광케이블 피복재는 105℃에서 30분 건조한 후 측정된 하기 일반식 (3)에 의한 흡습율이 0.01 내지 0.03인 것을 특징으로 한 폴리케톤 광케이블 피복재.
    일반식 (3) 흡습율=(흡습후 질량-흡습전 질량)/(흡습전 질량)
  43. 제 41 항에 있어서,
    상기 폴리케톤 멀티필라멘트는 초기 모듈러스 값이 200g/d이상이고, 10.0g/d에서 신도가 2.5 내지 3.5%이며, 19.0g/d이상에서 최소한 0.5%이상 신장하는 폴리케톤 모노필라멘트로 이루어진 것을 특징으로 하는 폴리케톤 광케이블 피복재
  44. 제 43항에 있어서,
    상기 폴리케톤 모노필라멘트는 섬도 0.5 내지 8.0 데니어인 것을 특징으로 하는 폴리케톤 광케이블 피복재
  45. 하기 일반식(1)과 (2)로 표시되는 반복단위로 이루어지고, y/x가 0 내지 0.1이며, 고유 점도가 4 내지 8 dl/g인 폴리케톤 공중합체를 방사공정, 수세공정, 건조공정 및 연신공정을 거쳐 제조되는 폴리케톤 섬유를 포함하는 폴리케톤 레이더돔 구조재.
    -[-CH2CH2-CO-]x- (1)
    -[-CH2-CH(CH3)-CO-]y- (2)
    (x, y는 폴리머 중의 일반식 (1) 및 (2) 각각의 몰%)
  46. 제 45항에 있어서,
    상기 폴리케톤 레이더 돔구조재는 상기 폴리케톤 섬유를 경사 및 위사에 적용하고 평직으로 직조한 후, 열가소성 또는 열경화성 수지를 접착시켜 챔버에서 압력을 가하여 코팅한 후, 몰드에 적층하여 경화시켜 제조되는 것을 특징으로 한 폴리케톤 레이더돔 구조재.
  47. 제 45 항에 있어서,
    상기 폴리케톤 멀티필라멘트는 초기 모듈러스 값이 200g/d이상이고, 10.0g/d에서 신도가 2.5 내지 3.5%이며, 19.0g/d이상에서 최소한 0.5%이상 신장하는 폴리케톤 모노필라멘트로 이루어진 것을 특징으로 하는 폴리케톤 레이더돔 구조재.
  48. 제 45항에 있어서,
    상기 수세공정 시 1.0배 내지 2.0 배 연신하고, 상기 건조과정 시 1.0 배 내지 2.0 배 연신하는 것을 특징으로 하는 폴리케톤 레이더돔 구조재.
  49. 하기 일반식(1)과 (2)로 표시되는 반복단위로 이루어지고, y/x가 0 내지 0.1이며, 고유 점도가 4 내지 8 dl/g인 폴리케톤 공중합체를 방사공정, 수세공정, 건조공정 및 연신공정을 거쳐 제조되는 폴리케톤 섬유를 포함하는 폴리케톤 초전도 코일의 보빈.
    -[-CH2CH2-CO-]x- (1)
    -[-CH2-CH(CH3)-CO-]y- (2)
    (x, y는 폴리머 중의 일반식 (1) 및 (2) 각각의 몰%)
  50. 제 49항에 있어서,
    상기 폴리케톤 초전도 코일의 보빈은 폴리케톤 섬유를 경사 및 위사에 적용하고 평직으로 직조한 후, 열가소성 또는 열경화성 수지를 접착시켜 챔버에서 압력을 가하여 코팅한 후, 보빈 제조용 하부 몰드에 적층하여 사출 성형하여 제조되는 것을 특징으로 한 폴리케톤 초전도 코일의 보빈
  51. 제 49항에 있어서,
    상기 폴리케톤 공중합체는 에틸렌 및 프로필렌의 몰비%가 100:0내지 90:10이고, 분자량 분포가 2.5 내지 3.5이며,
    상기 폴리케톤 섬유는 모노 필라멘트의 섬도가 1내지 10d이고, 단면 변동률 지수가 8 내지 15%인 것을 특징으로 하는 폴리케톤 초전도 코일의 보빈
  52. 하기 일반식(1)과 (2)로 표시되는 반복단위로 이루어지고, y/x가 0 내지 0.1이며, 고유 점도가 4 내지 8 dl/g인 폴리케톤 공중합체를 방사공정, 수세공정, 건조공정 및 연신공정을 거쳐 제조되는 것을 특징으로 하는 폴리케톤 섬유를 포함하는 극저온성 초전도 케이블
    -[-CH2CH2-CO-]x- (1)
    -[-CH2-CH(CH3)-CO-]y- (2)
    (x, y는 폴리머 중의 일반식 (1) 및 (2) 각각의 몰%)
  53. 제 52항에 있어서,
    상기 폴리케톤 공중합체 중합시 사용되는 촉매조성물의 리간드는 ((2,2-디메틸-1,3-디옥산-5,5-디일)비스(메틸렌))비스(비스(2-메톡시페닐)포스핀)인 것을 특징으로 하는 폴리케톤 섬유를 포함하는 극저온성 초전도 케이블
  54. 제 52 항에 있어서,
    상기 폴리케톤 공중합체는 에틸렌 및 프로필렌의 몰비%가 100:0내지 90:10이고, 분자량 분포가 2.5 내지 3.5이며,
    상기 폴리케톤 섬유는 모노 필라멘트의 섬도가 1내지 10d이고, 단면 변동률 지수가 8 내지 15%인 것을 특징으로 하는 폴리케톤 섬유를 포함하는 극저온성 초전도 케이블
  55. 하기 일반식(1)과 (2)로 표시되는 반복단위로 이루어지고, y/x가 0 내지 0.1이며, 고유 점도가 4 내지 8 dl/g인 폴리케톤 공중합체를 방사공정, 수세공정, 건조공정 및 연신공정을 거쳐 제조되는 폴리케톤 섬유를 포함하는 스키보드.
    -[-CH2CH2-CO-]x- (1)
    -[-CH2-CH(CH3)-CO-]y- (2)
    (x, y는 폴리머 중의 일반식 (1) 및 (2) 각각의 몰%)
  56. 제 55 항에 있어서,
    상기 스키보드는 폴리케톤 섬유와 열가소성 수지 또는 열경화성 수지를 적층하여 열압착한 후, 제단하여 프레스를 통해 가온, 가압하여 곡면을 형성하여 제조되는 것을 특징으로 한 폴리케톤 섬유를 포함하는 스키보드.
  57. 제 55 항에 있어서,
    상기 폴리케톤 공중합체는 에틸렌 및 프로필렌의 몰비%가 100:0내지 90:10이고, 분자량 분포가 2.5 내지 3.5이며,
    상기 폴리케톤 섬유는 모노 필라멘트의 섬도가 1내지 10d이고, 단면 변동률 지수가 8 내지 15%인 것을 특징으로 하는 폴리케톤 섬유를 포함하는 스키보드.
  58. 하기 일반식(1)과 (2)로 표시되는 반복단위로 이루어지고, y/x가 0 내지 0.1이며, 고유 점도가 5 내지 7 dl/g인 폴리케톤 공중합체를 방사공정, 수세공정, 건조공정 및 연신공정을 거쳐 제조되는 것을 특징으로 하는 폴리케톤 섬유로 이루어진 테니스 라켓용 와이어.
    -[-CH2CH2-CO-]x- (1)
    -[-CH2-CH(CH3)-CO-]y- (2)
    (x, y는 폴리머 중의 일반식 (1) 및 (2) 각각의 몰%)
  59. 제 58항에 있어서,
    상기 폴리케톤 섬유의 멀티 필라멘트는 총 데니어 범위 500 내지 3,500이고, 절단 하중이 6.0 내지 40.0kg인, 섬도 5 내지 16 데니어인, 100 내지 2200개의 개개의 필라멘트로 구성된 것을 특징으로 하는 폴리케톤 섬유로 이루어진 테니스 라켓용 와이어.
  60. 제 58항에 있어서,
    상기 폴리케톤 섬유의 모노필라멘트의 초기 모듈러스값은 200g/d 이상이고, 10.0 g/d 에서 신도가 2.5 내지 3.5%이며, 19.0g/d 이상에서 최소한 0.5% 이상 신장하는 것을 특징으로 하는 폴리케톤 섬유로 이루어진 테니스 라켓용 와이어.
  61. 하기 일반식(1)과 (2)로 표시되는 반복단위로 이루어지고, y/x가 0 내지 0.1이며, 고유 점도가 4 내지 8 dl/g인 폴리케톤 공중합체를 방사공정, 수세공정, 건조공정 및 연신공정을 거쳐 제조되는 것을 특징으로 하는 폴리케톤 섬유를 포함하는 요트 구조재.
    -[-CH2CH2-CO-]x- (1)
    -[-CH2-CH(CH3)-CO-]y- (2)
    (x, y는 폴리머 중의 일반식 (1) 및 (2) 각각의 몰%)
  62. 제 61항에 있어서,
    상기 요트 구조재는 폴리케톤 섬유와 열가소성 수지 또는 열경화성 수지를 적층하여 열압착한 후, 제단하여 프레스를 통해 가온, 가압하여 곡면을 형성하여 제조되는 것을 특징으로 한 폴리케톤 섬유를 포함하는 요트 구조재.
  63. 제 61항에 있어서,
    상기 폴리케톤 공중합체를 구성하는 에틸렌 및 프로필렌의 몰비%는 100:0 내지 90:10이고,
    상기 폴리케톤 섬유는 모노 필라멘트의 섬도가 1내지 10d이고, 단면 변동률 지수가 8 내지 15%인 것을 특징으로 하는 폴리케톤 섬유를 포함하는 요트 구조재.
  64. 하기 일반식(1)과 (2)로 표시되는 반복단위로 이루어지고, y/x가 0 내지 0.1이며, 고유 점도가 5 내지 7 dl/g인 폴리케톤 공중합체를 방사공정, 수세공정, 건조공정 및 연신공정을 거쳐 제조되는 것을 특징으로 하는 폴리케톤 섬유로 이루어진 요트 돛.
    -[-CH2CH2-CO-]x- (1)
    -[-CH2-CH(CH3)-CO-]y- (2)
    (x, y는 폴리머 중의 일반식 (1) 및 (2) 각각의 몰%)
  65. 제 64항에 있어서,
    상기 폴리케톤 공중합체의 분자량 분포는 2.5 내지 3.5이고,
    상기 폴리케톤 공중합체 중합시 사용되는 촉매조성물의 리간드는 ((2,2-디메틸-1,3-디옥산-5,5-디일)비스(메틸렌))비스(비스(2-메톡시페닐)포스핀)인 것을 특징으로 하는 폴리케톤 섬유로 이루어진 요트 돛.
  66. 제 64 항에 있어서,
    상기 폴리케톤 섬유를 직물로 제직하는 단계; 및
    상기 직물에 코팅제를 사용하여 코팅하는 단계를 포함하여 제조되는 것을 특징으로 하는 폴리케톤 요트 돛.
  67. 하기 일반식(1)과 (2)로 표시되는 반복단위로 이루어지고, y/x가 0 내지 0.1이며, 고유 점도가 5 내지 7 dl/g인 폴리케톤 공중합체를 방사공정, 수세공정, 건조공정 및 연신공정을 거쳐 제조되는 것을 특징으로 하는 폴리케톤 섬유로 이루어진 경기용 자전거.
    -[-CH2CH2-CO-]x- (1)
    -[-CH2-CH(CH3)-CO-]y- (2)
    (x, y는 폴리머 중의 일반식 (1) 및 (2) 각각의 몰%)
  68. 제 67항에 있어서,
    상기 폴리케톤 섬유를 포함하는 복합재료는 상기 폴리케톤 섬유와 열가소성 수지를 적층하여 적층체를 형성하는 단계; 및 상기 적층체를 가열 및 가압하는 단계를 포함하여 제조되는 것을 특징으로 하는 폴리케톤 섬유로 이루어진 경기용 자전거.
  69. 제 67항에 있어서,
    상기 가열은 150 내지 220℃의 온도로 수행되고, 상기 가압은 5 내지 20MPa의 압력을 10 내지 20분간 가하여 수행되는 것을 특징으로 폴리케톤 섬유로 이루어진 경기용 자전거.
  70. 제 67항에 있어서,
    상기 폴리케톤 섬유의 모노필라멘트는 초기 모듈러스 값이 200g/d 이상이고, 10.0g/d에서 신도가 2.5 내지 3.5%이며, 19.0g/d 이상에서 최소한 0.5%이상 신장하며,
    상기 폴리케톤 모노필라멘트는 섬도 0.5 내지 8.0 데니어인 것을 특징으로 하는 폴리케톤 섬유로 이루어진 경기용 자전거.
  71. 하기 일반식(1)과 (2)로 표시되는 반복단위로 이루어지고, y/x가 0 내지 0.1이며, 고유 점도가 5 내지 7 dl/g인 폴리케톤 공중합체를 방사공정, 수세공정, 건조공정 및 연신공정을 거쳐 제조되는 것을 특징으로 하는 폴리케톤 섬유로 이루어진 낙하산 또는 페러글라이드용 폴리케톤 코팅 직물.
    -[-CH2CH2-CO-]x- (1)
    -[-CH2-CH(CH3)-CO-]y- (2)
    (x, y는 폴리머 중의 일반식 (1) 및 (2) 각각의 몰%)
  72. 제 71항에 있어서,
    상기 폴리케톤 코팅 직물은 상기 폴리케톤 섬유를 경사와 위사로 사용하여 평직 원단을 제직하는 단계; 및 상기 원단 양면에 열가소성 폴리우레탄 수지를 코팅하여 코팅원단을 제조하는 단계를 포함하여 제조되는 것을 특징으로 하는 낙하산 또는 페러글라이드용 폴리케톤 코팅 직물.
  73. 제 71 항에 있어서,
    상기 폴리케톤 섬유의 모노필라멘트는 초기 모듈러스 값이 200g/d 이상이고, 10.0g/d에서 신도가 2.5 내지 3.5%이며, 19.0g/d 이상에서 최소한 0.5%이상 신장하며,
    상기 폴리케톤 모노필라멘트는 섬도 0.5 내지 8.0 데니어인 것을 특징으로 하는 폴리케톤 섬유로 이루어진 낙하산 또는 페러글라이드용 폴리케톤 코팅 직물.
  74. 하기 일반식(1)과 (2)로 표시되는 반복단위로 이루어지고, y/x가 0 내지 0.1이며, 고유 점도가 4 내지 8 dl/g인 폴리케톤 공중합체를 방사공정, 수세공정, 건조공정 및 연신공정을 거쳐 제조되는 것을 특징으로 하는 폴리케톤 섬유로 이루어진 안전장갑.
    -[-CH2CH2-CO-]x- (1)
    -[-CH2-CH(CH3)-CO-]y- (2)
    (x, y는 폴리머 중의 일반식 (1) 및 (2) 각각의 몰%)
  75. 제 74항에 있어서,
    상기 폴리케톤 공중합체는 에틸렌, 프로필렌으로 이루어지고, 상기 에틸렌 및 프로필렌의 몰비%가 100:0 내지 90:10이고,
    상기 폴리케톤 섬유는 모노 필라멘트의 섬도가 1내지 10d이고, 단면 변동률 지수가 8 내지 15%인 것을 특징으로 하는 폴리케톤 섬유로 이루어진 안전장갑.
  76. 제 74 항에 있어서,
    상기 폴리케톤 안전장갑은 강도가 15g/d 이상인 것을 특징으로 하는 폴리케톤 섬유로 이루어진 안전장갑.
  77. 제 74 항에 있어서,
    상기 폴리케톤 공중합체의 분자량 분포는 2.5 내지 3.5인 것을 특징으로 하는 폴리케톤 섬유로 이루어진 안전장갑.
  78. 하기 일반식(1)과 (2)로 표시되는 반복단위로 이루어지고, y/x가 0 내지 0.1이며, 고유 점도가 5 내지 7 dl/g인 폴리케톤 공중합체를 방사공정, 수세공정, 건조공정 및 연신공정을 거쳐 제조되는 것을 특징으로 하는 폴리케톤 섬유를 포함하는 안전보호용 신발.
    -[-CH2CH2-CO-]x- (1)
    -[-CH2-CH(CH3)-CO-]y- (2)
    (x, y는 폴리머 중의 일반식 (1) 및 (2) 각각의 몰%)
  79. 제 78항에 있어서,
    상기 신발은 고무시트와 폴리케톤 섬유를 적층시켜 프레싱하여 밑창을 성형한 후, 이를 갑피와 함께 금형에 투입하여 금형에서 동시에 성형하여 제조되는 것을 특징으로 한 폴리케톤 섬유를 포함하는 안전보호용 신발.
  80. 제 78 항에 있어서,
    상기 폴리케톤 섬유의 모노필라멘트는 초기 모듈러스 값이 200g/d 이상이고, 10.0g/d에서 신도가 2.5 내지 3.5%이며, 19.0g/d 이상에서 최소한 0.5%이상 신장하며, 상기 폴리케톤 모노필라멘트는 섬도 0.5 내지 8.0 데니어인 것을 특징으로 하는 폴리케톤 섬유를 포함하는 안전보호용 신발.
  81. 금속염 수용액 및 폴리케톤을 압출기에 주입하여 용해시켜 폴리케톤 용액을 제조하는 단계;
    상기 폴리케톤 용액을 디스크 필터에 여과시켜 불순물을 제거하는 단계; 및
    방사공정, 수세공정, 건조 공정 및 연신공정을 거쳐 폴리케톤 섬유를 제조하는 단계를 포함하는 것을 특징으로 하는 디스크 필터를 이용한 폴리케톤 섬유의 제조방법.
  82. 제 81항에 있어서,
    상기 폴리케톤은 제9족, 제10족 또는 제11족 전이금속 화합물, 제15족의 원소를 포함하는 리간드 및 pKa가 4 이하인 산의 음이온을 포함하는 촉매 조성물; 및 혼합용매의 존재 하에서 일산화탄소와 에틸렌성 불포화 화합물을 중합하여 제조되는 것을 특징으로 하는 디스크 필터를 이용한 폴리케톤 섬유의 제조방법.
  83. 제 81항에 있어서,
    상기 수세공정 시 1.0배 내지 2.0 배 연신하고, 상기 건조과정 시 1.0배 내지 2.0 배 연신하는 것을 특징으로 하는 디스크 필터를 이용한 폴리케톤 섬유의 제조방법.
  84. 제 81 항에 있어서,
    상기 건조공정은 100 내지 230℃에서 핫롤건조식이고, 상기 연신공정은 230 내지 300℃에서 히팅 챔버(heating chamber) 연신식인 것을 특징으로 하는 디스크 필터를 이용한 폴리케톤 섬유의 제조방법.
  85. 제 81 항에 있어서,
    상기 건조공정 및 연신공정 전에 내열안정제를 처리하는 것을 특징으로 하는 디스크 필터를 이용한 폴리케톤 섬유의 제조방법.
PCT/KR2016/005248 2015-05-27 2016-05-18 폴리케톤 섬유를 포함하는 산업용 폴리케톤 산업 제품 및 그 제조방법 WO2016190596A2 (ko)

Applications Claiming Priority (42)

Application Number Priority Date Filing Date Title
KR10-2015-0074158 2015-05-27
KR10-2015-0074178 2015-05-27
KR10-2015-0074172 2015-05-27
KR1020150074171A KR101675288B1 (ko) 2015-05-27 2015-05-27 폴리케톤 섬유로 이루어진 테니스 라켓용 와이어
KR1020150074167A KR101716230B1 (ko) 2015-05-27 2015-05-27 폴리케톤 섬유를 포함하는 초전도 코일의 보빈
KR1020150074174A KR101716202B1 (ko) 2015-05-27 2015-05-27 폴리케톤 섬유로 이루어진 경기용 자전거
KR1020150074176A KR101664912B1 (ko) 2015-05-27 2015-05-27 폴리케톤 섬유로 이루어진 안전장갑
KR10-2015-0074169 2015-05-27
KR10-2015-0074171 2015-05-27
KR10-2015-0074157 2015-05-27
KR1020150074178A KR101765791B1 (ko) 2015-05-27 2015-05-27 디스크 필터를 이용한 폴리케톤 섬유의 제조방법
KR1020150074161A KR101716228B1 (ko) 2015-05-27 2015-05-27 폴리케톤 섬유를 포함하는 폴리케톤 헬리콥터 내장재
KR10-2015-0074174 2015-05-27
KR1020150074172A KR101716200B1 (ko) 2015-05-27 2015-05-27 폴리케톤 섬유를 포함하는 요트 구조재
KR1020150074158A KR101716226B1 (ko) 2015-05-27 2015-05-27 폴리케톤 섬유를 포함하는 폴리케톤 파편방호 소재
KR10-2015-0074176 2015-05-27
KR10-2015-0074168 2015-05-27
KR1020150074163A KR101725824B1 (ko) 2015-05-27 2015-05-27 폴리케톤 섬유를 포함하는 폴리케톤 선박 플랫폼
KR10-2015-0074167 2015-05-27
KR1020150074157A KR101705650B1 (ko) 2015-05-27 2015-05-27 폴리케톤 섬유를 포함하는 폴리케톤 방탄헬멧
KR1020150074162A KR101716229B1 (ko) 2015-05-27 2015-05-27 폴리케톤 섬유를 포함하는 폴리케톤 자동차 구조재
KR10-2015-0074160 2015-05-27
KR10-2015-0074162 2015-05-27
KR10-2015-0074161 2015-05-27
KR10-2015-0074159 2015-05-27
KR1020150074175A KR101725827B1 (ko) 2015-05-27 2015-05-27 폴리케톤 섬유로 이루어진 낙하산 또는 페러글라이드용 폴리케톤 코팅 직물
KR1020150074166A KR101796978B1 (ko) 2015-05-27 2015-05-27 폴리케톤 섬유를 포함하는 폴리케톤 레이더돔 구조재
KR10-2015-0074173 2015-05-27
KR10-2015-0074165 2015-05-27
KR10-2015-0074164 2015-05-27
KR1020150074160A KR101716227B1 (ko) 2015-05-27 2015-05-27 폴리케톤 섬유를 포함하는 폴리케톤 항공기 윙팁장치
KR10-2015-0074175 2015-05-27
KR1020150074159A KR101705638B1 (ko) 2015-05-27 2015-05-27 폴리케톤 섬유를 포함하는 항공기 또는 군항기용 폴리케톤 방탄재
KR1020150074169A KR101675289B1 (ko) 2015-05-27 2015-05-27 폴리케톤 섬유를 포함하는 스키보드
KR1020150074165A KR101725826B1 (ko) 2015-05-27 2015-05-27 폴리케톤 섬유를 포함하는 폴리케톤 광케이블 피복재
KR10-2015-0074166 2015-05-27
KR10-2015-0074156 2015-05-27
KR1020150074168A KR101716231B1 (ko) 2015-05-27 2015-05-27 폴리케톤 섬유를 포함하는 극저온성 초전도 케이블
KR1020150074173A KR101716201B1 (ko) 2015-05-27 2015-05-27 폴리케톤 섬유로 이루어진 요트 돛
KR1020150074156A KR101716225B1 (ko) 2015-05-27 2015-05-27 폴리케톤 섬유를 포함하는 폴리케톤 방탄의류
KR10-2015-0074163 2015-05-27
KR1020150074164A KR101725825B1 (ko) 2015-05-27 2015-05-27 폴리케톤 섬유를 포함하는 폴리케톤 잠수정 구조재

Publications (2)

Publication Number Publication Date
WO2016190596A2 true WO2016190596A2 (ko) 2016-12-01
WO2016190596A3 WO2016190596A3 (ko) 2017-01-12

Family

ID=57394049

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/005248 WO2016190596A2 (ko) 2015-05-27 2016-05-18 폴리케톤 섬유를 포함하는 산업용 폴리케톤 산업 제품 및 그 제조방법

Country Status (1)

Country Link
WO (1) WO2016190596A2 (ko)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202017002839U1 (de) 2017-05-30 2018-08-31 Perlon Nextrusion Monofil GmbH Polyketonfasern, deren Herstellung und Verwendung
WO2019171194A1 (en) 2018-03-06 2019-09-12 Sapa S.P.A. Engine compartment component in co-molded layers for vehicles
IT201900008217A1 (it) 2019-06-06 2020-12-06 Agotex S R L Substrato composito termoisolante ininfiammabile per autoveicoli e metodo di produzione
IT202100001727A1 (it) 2021-01-28 2022-07-28 Sapa S P A Sistema di isolamento termico di un vano motore mediante l’utilizzo di materiali compositi
IT202100002696A1 (it) 2021-02-08 2022-08-08 Agotex S R L Metodo ottimizzato per la produzione di un termoisolante composito
WO2022198102A1 (en) * 2021-03-19 2022-09-22 Safari Belting Systems, Inc. Conveyor module, small fragments of which are magnetically and x-ray detectable

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4330741B2 (ja) * 1999-12-20 2009-09-16 旭化成せんい株式会社 ポリケトン繊維よりなる防弾防刃チョッキ
JP2004292992A (ja) * 2003-03-27 2004-10-21 Ichimura Sangyo Co Ltd 扁平織物、その積層体、それらを用いたプリプレグ、繊維強化プラスチック並びに複合成型物、及びこれらを用いた防護製品
KR100595990B1 (ko) * 2004-10-22 2006-07-03 주식회사 효성 폴리케톤 섬유 및 그의 제조 방법
KR100960049B1 (ko) * 2007-12-28 2010-05-31 주식회사 효성 폴리케톤 섬유의 제조방법
KR101154703B1 (ko) * 2008-08-22 2012-06-08 코오롱인더스트리 주식회사 방탄용 직물 및 그 제조방법, 및 그를 이용한 방탄복

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202017002839U1 (de) 2017-05-30 2018-08-31 Perlon Nextrusion Monofil GmbH Polyketonfasern, deren Herstellung und Verwendung
WO2018219495A1 (de) 2017-05-30 2018-12-06 Perlon Gmbh Borste aus einem kunststoff-filament, bürste mit solchen borsten sowie verfahren zur herstellung solcher borsten
WO2018219494A1 (de) 2017-05-30 2018-12-06 Perlon Gmbh Polyketonfasern, deren herstellung und verwendung
WO2019171194A1 (en) 2018-03-06 2019-09-12 Sapa S.P.A. Engine compartment component in co-molded layers for vehicles
IT201900008217A1 (it) 2019-06-06 2020-12-06 Agotex S R L Substrato composito termoisolante ininfiammabile per autoveicoli e metodo di produzione
WO2020245735A1 (en) 2019-06-06 2020-12-10 Agotex S.R.L. Non-flammable thermal insulating composite substrate for motor vehicles and production method
IT202100001727A1 (it) 2021-01-28 2022-07-28 Sapa S P A Sistema di isolamento termico di un vano motore mediante l’utilizzo di materiali compositi
EP4035889A1 (en) 2021-01-28 2022-08-03 Sapa S.p.A. System for the thermal insulation of an engine compartment by means of the use of composite materials
IT202100002696A1 (it) 2021-02-08 2022-08-08 Agotex S R L Metodo ottimizzato per la produzione di un termoisolante composito
WO2022167931A1 (en) 2021-02-08 2022-08-11 Agotex S.R.L. Optimized method for the production of a composite thermal insulation
WO2022198102A1 (en) * 2021-03-19 2022-09-22 Safari Belting Systems, Inc. Conveyor module, small fragments of which are magnetically and x-ray detectable

Also Published As

Publication number Publication date
WO2016190596A3 (ko) 2017-01-12

Similar Documents

Publication Publication Date Title
WO2016190596A2 (ko) 폴리케톤 섬유를 포함하는 산업용 폴리케톤 산업 제품 및 그 제조방법
WO2016072641A1 (ko) 내마모성이 우수한 폴리케톤 수지 조성물
WO2016010407A2 (ko) 내유성이 우수한 폴리케톤 수지 조성물
WO2016190594A2 (ko) 폴리케톤 섬유를 포함하는 산업용 폴리케톤 산업 제품 및 그 제조방법
WO2021241931A1 (ko) 생분해성 폴리에스테르 수지 조성물, 부직포 및 필름, 및 이의 제조방법
US9012543B2 (en) Benzoxazine compounds derivated from phenolphthalein having flame-retardant properties and a process for their preparation
WO2009134063A2 (ko) 아라미드 타이어 코드 및 그 제조방법
WO2015016675A1 (ko) C형 복합섬유, 이를 통한 c 형 중공섬유, 이를 포함하는 원단 및 이의 제조방법
WO2016010406A2 (ko) 내수성이 우수한 폴리케톤 수지 조성물
WO2016171327A1 (ko) 나노섬유를 포함하는 나노 멤브레인
EP2976348A1 (en) Method of preparing poly(alkylene carbonate) via copolymerization of carbon dioxide/epoxide in the presence of novel complex
JP2019194312A (ja) フェニレンエーテルオリゴマー、フェニレンエーテルオリゴマーを含む硬化性組成物、およびそれか得られる熱硬化組成物
WO2015053442A1 (ko) 나노섬유를 포함하는 필터 및 이의 제조방법
WO2018212488A1 (ko) 폴리케톤 얼로이 수지 조성물
WO2016060512A2 (ko) 폴리케톤 멀티필라멘트를 포함하는 산업용 제품 및 이의 제조방법
WO2020067658A1 (ko) 자동차 내장재용 인조가죽 및 이의 제조방법
WO2021054771A1 (ko) 말단이 불포화기로 캡핑된 인 함유 수지, 이의 제조방법 및 상기 말단이 불포화기로 캡핑된 인 함유 수지를 포함하는 수지 조성물
WO2016171331A1 (ko) 나노섬유를 포함하는 마스크팩
WO2023033596A1 (ko) 수지, 이의 제조방법, 수지 조성물 및 성형품
WO2018147606A1 (ko) 폴리아마이드-이미드 필름 및 이의 제조방법
WO2016060511A2 (ko) 전도성이 우수한 폴리케톤 수지 조성물
WO2016171328A1 (ko) 나노섬유를 포함하는 필터
WO2018147617A1 (ko) 폴리아마이드-이미드 필름 및 이의 제조방법
WO2022265249A1 (ko) 파라계 아라미드 섬유 및 이의 제조 방법
WO2016171326A1 (ko) 나노섬유를 포함하는 2층 나노 멤브레인

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16800236

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16800236

Country of ref document: EP

Kind code of ref document: A2