WO2016189932A1 - 有機エレクトロルミネッセンスモジュール、スマートデバイス、および照明装置 - Google Patents

有機エレクトロルミネッセンスモジュール、スマートデバイス、および照明装置 Download PDF

Info

Publication number
WO2016189932A1
WO2016189932A1 PCT/JP2016/057969 JP2016057969W WO2016189932A1 WO 2016189932 A1 WO2016189932 A1 WO 2016189932A1 JP 2016057969 W JP2016057969 W JP 2016057969W WO 2016189932 A1 WO2016189932 A1 WO 2016189932A1
Authority
WO
WIPO (PCT)
Prior art keywords
touch position
position detection
organic electroluminescence
circuit unit
electrode
Prior art date
Application number
PCT/JP2016/057969
Other languages
English (en)
French (fr)
Inventor
一由 小俣
司 八木
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to EP16799640.4A priority Critical patent/EP3306447A4/en
Priority to KR1020177028791A priority patent/KR102008602B1/ko
Priority to CN201680029718.0A priority patent/CN107850956A/zh
Priority to JP2017520265A priority patent/JP6737267B2/ja
Priority to US15/569,332 priority patent/US10185425B2/en
Publication of WO2016189932A1 publication Critical patent/WO2016189932A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/04166Details of scanning methods, e.g. sampling time, grouping of sub areas or time sharing with display driving
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0444Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a single conductive element covering the whole sensing surface, e.g. by sensing the electrical current flowing at the corners
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/045Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using resistive elements, e.g. a single continuous surface or two parallel surfaces put in contact
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • G09G3/3233Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the current through the light-emitting element
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/40OLEDs integrated with touch screens
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0421Structural details of the set of electrodes
    • G09G2300/0426Layout of electrodes and connections
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/0626Adjustment of display parameters for control of overall brightness
    • G09G2320/064Adjustment of display parameters for control of overall brightness by time modulation of the brightness of the illumination source

Definitions

  • the present invention relates to an organic electroluminescence module having a touch detection function, a smart device including the same, and a lighting device.
  • Smart devices such as smartphones and tablets are required to include a touch sensor for enabling information input from the display unit.
  • the touch sensor is provided so as to overlap the display unit.
  • smart devices have common function keys such as the “Home key” displayed with a mark such as a rectangle and the “Return key” displayed with an arrow mark in addition to the main display.
  • a button (so-called icon) may be provided.
  • the common function key button is configured by using a planar light source body according to the pattern shape of the mark to be displayed from the viewpoint of improving visibility.
  • an LED guide combining an LED (Light Emitting Diode) and a light guide plate is used.
  • the structure which installs an optical plate in the inside of a smart device is disclosed (for example, refer the following patent document 1).
  • a touch sensor common to the main display unit configured by using a liquid crystal display device is provided.
  • a circuit board on which a sensor electrode is formed is provided between a front panel on which an icon is provided and an LED light guide plate, and an icon forming portion on this circuit board
  • a structure has been disclosed in which a hole is provided in the surface and an adhesive layer having a high dielectric constant is provided between the front panel and the circuit board, thereby improving the detection accuracy of the electrostatic capacitance by the sensor electrode (for example, see Patent Document 2 below).
  • An organic electroluminescence device is a surface-emitting element in which an organic light-emitting functional layer is sandwiched between an anode and a cathode, and can obtain surface light emission with lower power consumption and high uniformity of light emission luminance.
  • an object of the present invention is to provide an organic electroluminescence module with a touch function, a smart device using the same, and a lighting device that can achieve a reduction in thickness and a reduction in manufacturing man-hours.
  • the present invention provides an organic electroluminescent device in which an organic light emitting functional layer is provided between a pair of electrodes, and a light emitting device that is connected to the pair of electrodes and controls light emission of the organic electroluminescent device.
  • a drive circuit unit, and a touch position detection circuit unit connected to both ends of the detection electrode in the touch position detection direction using any one of the pair of electrodes as a detection electrode, and the touch position detection circuit unit includes: An organic electroluminescence module that detects a touch position by detecting one of the two ends of the detection electrode as an input end and the other as an output end and detecting an electric signal input from the input end at the output end.
  • the present invention is a smart device and a lighting device provided with the organic electroluminescence module having such a configuration.
  • an organic electroluminescence module with a touch function it is possible to obtain an organic electroluminescence module with a touch function, a smart device using the same, and a lighting device that can achieve a reduction in thickness and a reduction in manufacturing man-hours.
  • the organic electroluminescence module described here is a device in which an organic electroluminescence device is provided with a capacitive touch detection function, and information is input by touching a display surface with a finger or the like.
  • a smart device and a lighting device are provided with this organic electroluminescence module.
  • description will be made in order from the embodiment of the organic electroluminescence module.
  • FIG. 1 is a configuration diagram for explaining an organic electroluminescence module 1 of the first embodiment.
  • the organic electroluminescence module 1 shown in this figure includes an organic electroluminescent element EL provided on one main surface of a support substrate 10, a light emitting element drive circuit unit 20, and a touch position detection circuit unit 30. And has a touch detection function of detecting a touch position P on the surface of the support substrate 10. Details of these components will be described below.
  • Organic electroluminescent element EL has a configuration in which a lower electrode 11, an organic light emitting functional layer 13, and an upper electrode 15 are laminated in order from the support substrate 10 side, and an organic light emitting functional layer is interposed between the lower electrode 11 and the upper electrode 15. 13 is provided.
  • a portion where the organic light emitting functional layer 13 is sandwiched between the lower electrode 11 and the upper electrode 15 is a light emitting region.
  • the organic electroluminescent element EL has a capacitor configuration, it has a parasitic capacitance Cel.
  • the organic electroluminescent element EL is covered and sealed with the sealing adhesive 17 from the upper electrode 15 side, and further prevents penetration of harmful gases (oxygen, moisture, etc.) from the external environment into the surface.
  • a sealing member 19 is arranged to constitute one display panel.
  • one of the lower electrode 11 and the upper electrode 15 is used as an anode and the other is used as a cathode, and a forward current is passed between them, whereby light is emitted from the organic light emitting functional layer 13. Light is generated.
  • a constant current or a constant voltage in the forward direction to the organic electroluminescent element EL is a state in which a voltage is applied with the anode being positive and the cathode being negative, and so on.
  • the support substrate 10 is made of, for example, a light-transmitting material, and the surface thereof is a display surface from which emitted light generated in the organic light emitting functional layer 13 is extracted.
  • the display surface is also a touch surface 10a on which information is input by contact with a fingertip, a touch pen or the like (hereinafter referred to as fingertip F).
  • fingertip F information input by the contact of the fingertip F with respect to the touch surface 10a is referred to as a touch operation.
  • the transparent substrate material constituting the support substrate 10 as described above examples include transparent substrate materials such as glass and plastic.
  • the transparent substrate material preferably used include glass, quartz, and a resin film from the viewpoint of flexible flexibility.
  • the support substrate 10 may have a configuration in which a gas barrier layer is provided as necessary.
  • a cover glass may be bonded to the display surface side of the support substrate 10 as necessary. In this case, the surface of the cover glass becomes the touch surface 10a.
  • the lower electrode 11 is configured as a transparent electrode on the light extraction side.
  • the lower electrode 11 is provided as an anode or a cathode for the organic light emitting functional layer 13, and is used as an anode when the upper electrode 15 is a cathode, and is used as a cathode when the upper electrode 15 is an anode.
  • Such a lower electrode 11 is comprised using the electroconductive material excellent in the light transmittance from the electroconductive material suitable for each.
  • the lower electrode 11 is preferably used as the detection electrode Ed for detecting the touch position P because the lower electrode 11 is disposed closer to the touch surface 10a than the upper electrode 15. For this reason, the touch position detection circuit unit 30 is connected to the lower electrode 11 serving as the detection electrode Ed together with the light emitting element drive circuit unit 20. These connection states will be described later.
  • the organic light emitting functional layer 13 is a layer including a light emitting layer made of at least an organic material.
  • the overall layer structure of the organic light emitting functional layer 13 is not limited and may be a general layer structure.
  • An example of the organic light emitting functional layer 13 is shown below, but the present invention is not limited thereto.
  • the light emitting layer may have a laminated structure, and may have a non-light emitting intermediate layer between each light emitting layer.
  • the intermediate layer may be a charge generation layer or a multi-photon unit configuration.
  • the upper electrode 15 is provided as a cathode or an anode for the organic light emitting functional layer 13, and is used as a cathode when the lower electrode 11 is an anode, and as an anode when the lower electrode 11 is a cathode.
  • Such an upper electrode 15 is configured as a transparent electrode when the organic electroluminescent element EL is one that extracts emitted light from the upper electrode 15 side.
  • the upper electrode 15 is configured by using a conductive material excellent in light transmittance or light reflectivity among conductive materials suitable as a cathode or an anode.
  • Such an upper electrode 15 is connected to the light emitting element driving circuit unit 20 together with the lower electrode 11.
  • the connection state of the light emitting element drive circuit unit 20 to the upper electrode 15 will be described later.
  • the upper electrode 15 also serves as a counter electrode Eo with respect to the detection electrode Ed including the lower electrode 11.
  • the surface facing the outside in the support substrate 10 is the touch surface 10a, but the surface facing the outside of the sealing member 19 opposite to the support substrate 10 may be a touch surface. In this case, the surface is close to the touch surface.
  • the upper electrode 15 is preferably used as the detection electrode Ed. In this case, the upper electrode 15 is configured as a transparent electrode, and the lower electrode 11 is a counter electrode.
  • the sealing adhesive 17 is used as a sealing agent for sealing the organic electroluminescent element EL sandwiched between the sealing member 19 and the support substrate 10.
  • a sealing adhesive 17 is a photocuring and thermosetting adhesive having a reactive vinyl group of an acrylic acid-based oligomer or a methacrylic acid-based oligomer, moisture such as 2-cyanoacrylate ester, etc.
  • a curable adhesive, an epoxy-based heat and chemical curable (two-component mixed) adhesive, or the like may be used, and a desiccant may be dispersed.
  • the sealing member 19 only needs to be disposed so as to cover the display region of the organic electroluminescent element EL, and may be concave or flat. Further, transparency and electrical insulation are not particularly limited. Specific examples include a glass plate, a polymer plate, a film, a metal plate, and a film. From the viewpoint that the organic electroluminescence module 1 can be thinned, a polymer film and a metal film can be preferably used. . However, when using a polymer film, it is important to use a film having a low water vapor permeability.
  • the gap between the sealing member 19 and the organic electroluminescent element EL is not limited to being filled with the sealing adhesive 17, and particularly in the display region (light emitting region), nitrogen or It is preferable to enclose an inert gas such as argon and inject an inert liquid such as fluorinated hydrocarbon or silicon oil in the liquid phase.
  • an inert gas such as argon
  • an inert liquid such as fluorinated hydrocarbon or silicon oil in the liquid phase.
  • the gap between the sealing member 19 and the display area of the organic electroluminescent element EL can be evacuated, or a hygroscopic compound can be sealed in the gap.
  • the surface facing the outer side of the support substrate 10 is the touch surface 10a, but the surface facing the outer side of the sealing member 19 may be a touch surface.
  • the sealing member 19 is a light-transmitting material. Consists of.
  • the light emitting element driving circuit unit 20 can control the light emission of the organic electroluminescent element EL and can set the upper electrode 15 as the counter electrode Eo to a floating potential.
  • the light emitting element drive circuit unit 20 is configured to be freely disconnected from the lower electrode 11 and the upper electrode 15.
  • Such a light emitting element driving circuit unit 20 includes a light emitting driving circuit 21 connected to the lower electrode 11 and the upper electrode 15 of the organic electroluminescent element EL, and a switch provided between the light emitting driving circuit 21 and the lower electrode 11. SW1 and a switch SW2 provided between the light emission drive circuit 21 and the upper electrode 15 are provided.
  • the light emission drive circuit 21 is connected to the ground 23. Details of each component are as follows.
  • the light emission drive circuit 21 controls light emission in the organic electroluminescent element EL by applying a voltage between the lower electrode 11 and the upper electrode 15.
  • Control of light emission of the organic electroluminescence element EL by the light emission driving circuit 21 may be either constant current driving or constant voltage driving, and a constant current driving circuit or a constant voltage driving circuit in a normal organic electroluminescence element EL is applied. Is done.
  • the switches SW1 and SW2 are for freely controlling the connection state between the light emission drive circuit 21 and the lower electrode 11 and the connection state between the light emission drive circuit 21 and the upper electrode 15.
  • Such switches SW1 and SW2 are composed of, for example, a thin film transistor (TFT) and a control circuit that controls driving thereof.
  • the switches SW1 and SW2 have a configuration in which one of the source / drain of the TFT is connected to the light emission drive circuit 21, the other is connected to the lower electrode 11 or the upper electrode 15, and the gate electrode of the TFT is connected to the control circuit. It becomes. Thereby, the connection state between the light emission drive circuit 21 and the lower electrode 11 and the connection state between the light emission drive circuit 21 and the upper electrode 15 are freely controlled by the voltage applied to the gate electrode of the TFT.
  • switches SW1 and SW2 are in the “ON” state when the light emission drive circuit 21 and the lower electrode 11 and the upper electrode 15 are connected by driving the switches SW1 and SW2.
  • switches SW1 and SW2 are in the “OFF” state when the connection between the light emission drive circuit 21 and the lower electrode 11 and the upper electrode 15 is released by driving the switches SW1 and SW2.
  • the light emission drive circuit 21 can control the light emission of the organic electroluminescence element EL. Further, when the switches SW1 and SW2 are in the “OFF” state, the connection between the light emission drive circuit 21 and the lower electrode 11 and the upper electrode 15 of the organic electroluminescence element EL is released. Thereby, the upper electrode 15 as the counter electrode Eo can be set to a floating potential.
  • the control of “ON” / “OFF” of the switches SW1 and SW2 as described above is performed in synchronization with the switches SW11 and SW12 of the touch position detection circuit unit 30, as will be described in the following timing charts.
  • the light emission drive circuit 21 and the switches SW1 and SW2 are shown as independent structures. However, the light emission drive circuit 21 is configured with the switches SW1 and SW2 as necessary. May be.
  • the control circuit for the switches SW1 and SW2 may be an external arithmetic device.
  • the ground 23 may be a signal ground configured by a circuit pattern, or may be a frame ground such as a metal case in which the organic electroluminescence module 1 is provided.
  • the touch position detection circuit unit 30 is connected to both ends of the touch position detection direction x in the lower electrode 11 used as the detection electrode Ed among the lower electrode 11 or the upper electrode 15 constituting the organic electroluminescence element EL. .
  • the touch position detection circuit unit 30 has one end of the detection electrode Ed (lower electrode 11) in the touch position detection direction x as an input end Ed (in) and the other end as an output end Ed (out). Perform detection.
  • Such a touch position detection circuit unit 30 includes switches SW11 and SW12 connected to both ends of the detection electrode Ed, a detector 33 connected to the detection electrode Ed via the switches SW11 and SW12, a calculation unit 35, and A power source 37 is provided.
  • the detector 33 and the power source 37 are connected to the ground 39. Details of each component are as follows.
  • the switches SW11 and SW12 are a switch SW11 connected to the input end Ed (in) of the detection electrode Ed and a switch SW12 connected to the output end Ed (out).
  • These switches SW11 and SW12 are composed of, for example, a thin film transistor (TFT) and a control circuit that controls driving thereof.
  • the switches SW11 and SW12 have a configuration in which one of the source / drain of the TFT is connected to the detection electrode Ed, the other is connected to the detector 33, and the gate electrode of the TFT is connected to the control circuit.
  • connection state between the input terminal Ed (in) of the output electrode Ed and one detector 33 and the output terminal Ed (out) of the detection electrode Ed and the other are determined by the voltage applied to the gate electrode of the TFT.
  • the connection state with the detector 33 is freely controlled.
  • switches SW11 and SW12 are in the “ON” state when the detection electrode Ed and the detector 33 are connected by driving the switches SW11 and SW12 (see FIG. 2).
  • switches SW11 and SW12 are in the “OFF” state when the connection between the detection electrode Ed and the detector 33 is released by driving the switches SW11 and SW12.
  • Such switches SW11 and SW12 are driven in synchronization with the switches SW1 and SW2 of the light emitting element driving circuit unit 20, and when the switches SW1 and SW2 are in the “ON” state, the switches SW11 and SW12 are in the “OFF” state. It becomes. On the other hand, when the switches SW1 and SW2 are in the “OFF” state, the switches SW11 and SW12 are in the “ON” state.
  • the control circuit for the switches SW11 and SW12 may be an external arithmetic device.
  • the detector 33 is connected to the input end Ed (in) and the output end Ed (out) of the detection electrode Ed via the switches SW11 and SW12, respectively. These detectors 33 are either voltmeters or ammeters, and the voltage value or current value applied to the input end Ed (in) and the output end Ed (out) of the detection electrode Ed is used as an electrical signal. taking measurement.
  • the computing unit 35 detects a so-called touch position P that detects which position in the touch position detection direction on the touch surface 10 a is touched from the electrical signals measured by the two detectors 33.
  • the touch position is determined based on the waveform of the electrical signal detected by the detector 33 on the input end Ed (in) side and the waveform of the electrical signal detected by the detector 33 on the output end Ed (out) side. P is detected.
  • the calculation unit 35 includes the input voltage waveform Vi detected by the detector 33 on the input end Ed (in) side and the detector 33 on the output end Ed (out) side.
  • the touch position P is detected on the basis of the output voltage waveform Vo detected in.
  • the calculation unit 35 uses the input current waveform Ii detected by the detector 33 on the input end Ed (in) side and the detector 33 on the output end Ed (out) side.
  • the touch position P is detected based on the detected output current waveform Io.
  • the power source 37 is connected to the detector 33 connected to the input end Ed (in) of the detection electrode Ed among the two detectors 33.
  • the power source 37 may be an AC power source or a DC power source as long as a predetermined voltage can be applied.
  • the ground 39 is connected to the detector 33 connected to the output end Ed (out) of the detection electrode Ed and the power source 37.
  • the ground 39 may be a signal ground configured by a circuit pattern, or may be a frame ground such as a metal case in which the organic electroluminescence module 1 is provided.
  • the ground 39 may be the same as or different from the ground 23 on the light emitting element driving circuit unit 20 side.
  • FIG. 3 is a timing chart showing a first example of the operation of the organic electroluminescence module 1 configured as described above.
  • the organic electroluminescence is implemented by the light emitting element driving circuit unit 20 and the touch position detection circuit unit 30.
  • FIG. 3 is a diagram illustrating the operation of the module 1.
  • FIG. 3 shows the following graphs.
  • FIG. (2) A graph showing the operation timing of “ON” / “OFF” of the switches SW11 and SW12 in the touch position detection circuit unit 30.
  • the operation period of the organic electroluminescence module 1 includes a light emission period LT in which the organic electroluminescence element EL emits light and a touch position detection period ST in which the touch position P is detected every frame period FT. Repeat alternately.
  • the driving method of the light emitting element driving circuit unit 20 and the touch position detection circuit unit 30 in each period, and the detection method of the touch position P executed by the calculation unit 35 of the touch position detection circuit unit 30 are as follows.
  • the light emitting element drive circuit unit 20 (1) turns the switches SW1 and SW2 to the “ON” state.
  • the touch position detection circuit unit 30 (2) sets the switches SW11 and SW12 to the “OFF” state.
  • the organic electroluminescence element EL and the light emission drive circuit 21 are connected, and the light emission control of the organic electroluminescence element EL by the light emission drive circuit 21 becomes possible.
  • the light emission drive circuit 21 applies a constant current or a constant voltage in the forward direction to the organic electroluminescence element EL in synchronization with the switches SW1 and SW2 being turned on.
  • the applied voltage of the organic electroluminescent element EL rises from the “OFF” potential, and light emission starts when the current value or voltage value necessary for light emission is reached. .
  • the connection state between the detection electrode Ed and the detector 33 is released. For this reason, the electrical signal is not measured by the detector 33 and the touch position P cannot be detected.
  • the light emitting element drive circuit unit 20 (1) sets the switches SW1 and SW2 to the “OFF” state.
  • the touch position detection circuit unit 30 (2) turns on the switches SW11 and SW12.
  • the detection electrode Ed and the detector 33 are connected. Thereby, the detector 33 can measure (4) the input voltage waveform Vi (dashed line) and the output voltage waveform Vo (solid line), or (5) the input current waveform Ii (dashed line) and the output current waveform Io (solid line).
  • the touch position P is detected based on the measured electrical signals.
  • the calculation unit 35 detects the touch position P based on the waveform of the electrical signal measured at the output terminal Ed (out).
  • the rising delay time td of the electric signal is detected from the waveform of the electric signal measured at the output terminal Ed (out).
  • the resistance value r1, the resistance value r2 between the touch position P and the output terminal Ed (out), the delay time td, and the time t are in a relationship as shown in the following formula (1).
  • I ⁇ exp [ ⁇ rt / (r1 ⁇ r2)] exp ( ⁇ t / td) (1)
  • the switches SW1 and SW2 of the light emitting element drive circuit unit 20 are set to the “OFF” state at the start of the period.
  • the organic electroluminescence element EL does not instantaneously drop to the “OFF” potential and goes off, and the discharge time constant ⁇ ( According to 1 / e), the light is extinguished after a certain time. Therefore, in the touch position detection period ST, a predetermined standby period t1 is provided after the start of the touch position detection period ST, and when the standby period t1 has elapsed, the switches SW11 and SW12 of the touch position detection circuit unit 30 are turned on. “ON” state.
  • the standby period t1 is within a range of 5 times or less of the discharge time constant ⁇ of the organic electroluminescent element EL, thereby completely discharging the organic electroluminescent element EL while minimizing the standby period t1.
  • the ammeter 33 can measure a stable current value, and the touch position P can be detected based on this result.
  • the light emission period LT, the touch position detection period ST, and the one frame period FT in the organic electroluminescence module 1 are not particularly limited in length, and conditions suitable for the environment to be applied can be selected as appropriate.
  • the light emission period LT of the organic electroluminescent element EL is 0.1 to 2.0 msec.
  • the touch position detection period ST is 0.05 to 0.3 msec.
  • the one frame period FT can be in the range of 0.15 to 2.3 msec. Further, one frame period FT is preferably set to 60 Hz or more for the purpose of reducing flicker, and a general image display cycle may be applied.
  • the ratio between the light emission period LT and the touch position detection period ST in the one frame period FT takes into account the accuracy of touch position detection in the organic electroluminescence module 1.
  • the configuration may be arbitrarily set.
  • FIG. 4 is a timing chart showing a second example of the operation of the organic electroluminescence module 1 configured as described above.
  • the second example shown in FIG. 4 is different from the first example shown in FIG. 3 in that a reverse voltage is applied to the organic electroluminescent element EL at the last timing t2 of the light emission period LT.
  • the light emission period LT in which the organic electroluminescence element EL emits light and the touch position detection period ST in which touch position detection is performed are alternately performed every frame period FT.
  • the process of repeating is the same as in the first example. The following driving is performed in each period.
  • the light emission drive circuit 21 of the light emission element drive circuit unit 20 applies (3) a reverse voltage to the organic electroluminescence element EL.
  • the light emitting element drive circuit unit 20 (1) keeps the switches SW1 and SW2 in the “ON” state
  • the touch position detection circuit unit 30 (2) keeps the switches SW11 and SW12 in the “OFF” state.
  • the organic electroluminescent element EL instantaneously becomes “OFF” potential, which is completely discharged, and turns off.
  • the touch position detection circuit unit 30 sets (2) the switches SW11 and SW12 to the “ON” state.
  • the organic electroluminescent element EL is at the “OFF” potential due to the application of the reverse voltage described above. For this reason, without requiring the standby period t1 (see FIG. 3) as provided in the first example, at the time when the light emission period LT starts the touch position detection period ST, (2) the switches SW11 and SW12 are set to “ Even in the “ON” state, a stable electrical signal is measured by the detector 33, and the touch position P can be detected based on this result.
  • the detection method of the touch position P executed by the calculation unit 35 of the touch position detection circuit unit 30 is the same as that in the first example.
  • the organic electroluminescence module 1 of the first embodiment described above uses the lower electrode 11 of the organic electroluminescent element EL as the detection electrode Ed, and the input end Ed (in) and the output end of the detection electrode Ed in the touch position detection direction x.
  • One-dimensional touch position detection can be performed based on the electrical signal detected by Ed (out). Thereby, it is not necessary to provide a separate touch sensor on the organic electroluminescent element EL, and an organic electroluminescence module with a touch function in which a reduction in thickness and a reduction in the number of manufacturing steps can be obtained can be obtained.
  • the touch position detection period ST and the light emission period LT of the organic electroluminescence element EL are separated.
  • the connection between the upper electrode 15 of the organic electroluminescence element EL and the light emitting element driving circuit unit 20 is performed. It was set as the structure which cancels
  • the upper electrode 15 as the counter electrode Eo with respect to the detection electrode Ed becomes a floating potential, and the parasitic capacitance Cel is completely canceled after the discharge time constant ⁇ of the organic electroluminescence element EL has elapsed. be able to.
  • the parasitic capacitance Cel between the lower electrode 11 and the upper electrode 15 of the organic electroluminescence element EL is compared with the electrostatic capacitance Cf between the fingertip F touching the touch surface 10a and the detection electrode Ed.
  • An extremely large value When the organic electroluminescence element EL and the light emission driving circuit 21 are connected, the capacitance C detected by the detection electrode Ed when the fingertip F is touched on the touch surface 10a is the fingertip F and the detection electrode Ed.
  • Cf + Cel which is the sum of the parasitic capacitance Cel between the lower electrode 11 and the upper electrode 15 of the organic electroluminescent element EL. Therefore, it is difficult to detect the capacitance Cf between the fingertip F and the detection electrode Ed, and it is difficult to detect the touch position P.
  • the touch position detection period ST and the light emission period LT are separated, and in the touch position detection period ST, the upper electrode 15 is used as a floating potential to cancel the parasitic capacitance Cel. Can be detected with high accuracy.
  • the switch SW1 is set to the “OFF” state, so that the connection between the lower electrode 11 as the detection electrode Ed and the light emitting element drive circuit unit 20 is released. Thereby, in the touch position detection period ST, it is possible to prevent the potential of the detection electrode Ed from being affected by the parasitic capacitance generated in each part of the light emitting element driving circuit unit 20.
  • the switches SW1 and SW2 are provided on the lower electrode 11 and the upper electrode 15 of the organic electroluminescent element EL, so that the connection with the light emitting element driving circuit unit 20 is freely released.
  • the configuration if the potential of the detection electrode Ed is not easily affected by the light emitting element drive circuit unit 20, the switch SW2 is provided only in the counter electrode Eo with respect to the detection electrode Ed, and the detection electrode Ed is always set to the light emitting element drive circuit unit.
  • the structure connected to 20 may be sufficient.
  • the calculating part 35 of 1st Embodiment it touches based on the electrical signal of the input terminal Ed (in) of the detection electrode P comprised by the lower electrode 11 of organic electroluminescent element EL, and the output terminal Ed (out).
  • the position P is detected.
  • the calculation unit 35 may be configured to detect the touch position P based only on the electrical signal of the output end Ed (out). In this case, for example, the output voltage waveform Vo or output current waveform Io on the output terminal Ed (out) side when there is no touch operation on the touch surface 10a is used as a reference waveform, and based on the delay time td with respect to this reference waveform.
  • the touch position P is detected.
  • FIG. 5 is a configuration diagram for explaining the organic electroluminescence module 2 of the second embodiment.
  • the organic electroluminescence module 2 of the second embodiment shown in this figure is different from the organic electroluminescence module 1 of the first embodiment described with reference to FIGS. 1 to 2 in the configuration of the light emitting element driving circuit unit 20 ′.
  • Other configurations are the same as those of the first embodiment. For this reason, below, the structure of light emitting element drive circuit unit 20 'is demonstrated, and the overlapping description of another component is abbreviate
  • the light emitting element drive circuit unit 20 ′ is configured to control light emission of the organic electroluminescent element EL and to short-circuit the lower electrode 11 and the upper electrode 15 of the organic electroluminescent element EL.
  • Such a light emitting element driving circuit unit 20 ′ includes a light emitting driving circuit 21 connected to the lower electrode 11 and the upper electrode 15 of the organic electroluminescent element EL, and a switch SW3 for short-circuiting the lower electrode 11 and the upper electrode 15. And.
  • the light emission drive circuit 21 is connected to the ground 23, and these configurations are the same as those in the first embodiment.
  • the configuration of the switch SW3 is as follows.
  • the switch SW3 is for freely controlling the connection state between the lower electrode 11 and the upper electrode 15.
  • a switch SW3 is composed of, for example, a thin film transistor (TFT) and a control circuit that controls driving thereof.
  • the switch SW3 has a configuration in which one of the source / drain of the TFT is connected to the lower electrode 11, the other is connected to the upper electrode 15, and the gate electrode of the TFT is connected to the control circuit. Thereby, the connection state between the lower electrode 11 and the upper electrode 15 is freely controlled by the voltage applied to the gate electrode of the TFT.
  • the switch SW3 is in the “ON” state when the lower electrode 11 and the upper electrode 15 are connected and short-circuited by driving the switch SW3.
  • the switch SW3 is in the “OFF” state when the connection between the lower electrode 11 and the upper electrode 15 is released by driving the switch SW3.
  • the control of “ON” / “OFF” of the switch SW3 as described above is performed in synchronization with the driving of the switches SW11 and SW12 of the touch position detection circuit unit 30, as will be described in the following timing charts. That is, when the switches SW11 and SW12 are in the “OFF” state, the switch SW3 is set in the “OFF” state (see FIG. 5). On the other hand, when the switches SW11 and W12 are in the “ON” state, the switch SW3 is set in the “ON” state (see FIG. 6).
  • the light emission drive circuit 21 and the switch SW3 are shown as independent components, but the light emission drive circuit 21 may be configured to incorporate the switch SW3 as necessary. Good. Further, the control circuit of the switch SW3 may be an external arithmetic device.
  • FIG. 7 is a timing chart showing an operation example of the organic electroluminescence module 2 configured as described above, and the organic electroluminescence module 2 implemented by the light emitting element drive circuit unit 20 ′ and the touch position detection circuit unit 30.
  • FIG. 7 is a timing chart showing an operation example of the organic electroluminescence module 2 configured as described above, and the organic electroluminescence module 2 implemented by the light emitting element drive circuit unit 20 ′ and the touch position detection circuit unit 30.
  • Each graph of (1) to (5) of FIG. 7 is the same as the graph of the timing chart of FIG. 3 described in the first embodiment.
  • the graph (1) is a graph showing the operation timing of “ON” / “OFF” of the switch SW3 in the light emitting element driving circuit unit 20.
  • the operation period of the organic electroluminescence module 2 includes a light emission period LT in which the organic electroluminescence element EL emits light and a touch position detection period ST in which touch position detection is performed every frame period FT. Repeat alternately.
  • the lengths of one frame period FT, light emission period LT, and touch position detection period ST are the same as those in the first embodiment.
  • the light emitting element drive circuit unit 20 ′ sets (1) the switch SW3 to the “OFF” state. Further, the touch position detection circuit unit 30 (2) sets the switches SW11 and SW12 to the “OFF” state.
  • the light emitting element driving circuit unit 20 ′ in the light emitting element driving circuit unit 20 ′, the lower electrode 11 and the upper electrode 15 in the organic electroluminescent element EL are connected to the light emitting driving circuit 21 while being insulated. Therefore, light emission control of the organic electroluminescence element EL by the light emission driving circuit 21 is possible.
  • the light emission drive circuit 21 applies a constant current or a constant voltage in the forward direction to the organic electroluminescence element EL in synchronization with the switch SW3 being in the “OFF” state.
  • the applied voltage of the organic electroluminescent element EL rises from the “OFF” potential, and light emission starts when the current value or voltage value necessary for light emission is reached. .
  • the connection state between the detection electrode Ed and the detector 33 is released. For this reason, the electrical signal is not measured by the detector 33 and the touch position P cannot be detected.
  • the light emission drive circuit 21 of the light emitting element drive circuit unit 20 ′ applies the same potential to the lower electrode 11 and the upper electrode 15 at the last timing t 2 of the light emission period LT.
  • the organic electroluminescent element EL is turned off when the lower electrode 11 and the upper electrode 15 are in the “OFF” state in which the potential difference is “zero”.
  • the light emitting element drive circuit unit 20 ′ matches the start of the period (1) the switch SW3 is in the “ON” state. And The touch position detection circuit unit 30 sets the switches SW11 and SW12 to the “ON” state in accordance with the start of the period (2). Further, the light emitting element driving circuit unit 20 ′ continues to apply the same potential to the lower electrode 11 and the upper electrode 15.
  • the lower electrode 11 and the upper electrode 15 in the organic electroluminescent element EL are short-circuited. Therefore, the light emission control of the organic electroluminescence element EL by the light emission driving circuit 21 becomes impossible.
  • the applied voltage of the organic electroluminescent element EL is “OFF” in which the potential difference between the lower electrode 11 and the upper electrode 15 is “zero”. Is kept off.
  • the detection electrode Ed and the detector 33 are connected. Thereby, the detector 33 can measure (4) the input voltage waveform Vi (dashed line) and the output voltage waveform Vo (solid line), or (5) the input current waveform Ii (dashed line) and the output current waveform Io (solid line).
  • the touch position P is detected based on the measured electrical signals.
  • the potential difference between the lower electrode 11 and the upper electrode 15 of the organic electroluminescent element EL is “zero”, and the parasitic capacitance Cel of the organic electroluminescent element EL is Canceled state. Therefore, the switches SW11 and SW12 are turned “ON” when the touch position detection period ST is started without requiring the standby period t1 (see FIG. 3) as provided in the first example of the first embodiment. Even in the state, stable touch position detection can be performed.
  • the method for detecting the touch position P that is performed in the calculation unit 35 based on the measured electrical signal is the same as that in the first embodiment.
  • the connection state between the lower electrode 11 and the upper electrode 15 is changed. It was set as the structure controlled freely. However, when the potential difference between the lower electrode 11 and the upper electrode 15 is “zero” and the parasitic capacitance Cel of the organic electroluminescent element EL is canceled, the potential of the detection electrode Ed formed of the lower electrode 11 is sufficiently stabilized. If there is, there is no need to provide the switch SW3. In this case, the light emitting element drive circuit unit 20 ′ is configured to control only the voltage applied to the lower electrode 11 and the upper electrode 15 by the light emission drive circuit 21, as described with reference to FIG. If it is.
  • the organic electroluminescence module 2 of the second embodiment described above also performs one-dimensional touch position detection by using the lower electrode 11 of the organic electroluminescent element EL as the detection electrode Ed, as in the first embodiment. Therefore, the organic electroluminescence module with a touch function can be achieved in which the thickness is reduced and the number of manufacturing steps is reduced.
  • the touch position detection period ST and the light emission period LT of the organic electroluminescence element EL are separated, and the upper part of the organic electroluminescence element EL is separated in the touch position detection period ST.
  • the electrode 15 and the lower electrode 11 are configured to be short-circuited. Thereby, the parasitic capacitance Cel of the organic electroluminescent element EL is canceled in the touch position detection period ST. Therefore, as in the first embodiment, the touch position is not affected by the parasitic capacitance Cel of the organic electroluminescent element EL while using the lower electrode 11 that is a component of the organic electroluminescent element EL as the detection electrode Ed. The detection accuracy can be improved.
  • FIG. 8 is a configuration diagram for explaining the organic electroluminescence module 2a in which the second embodiment and the first embodiment are combined, and is a configuration diagram for explaining the touch position detection period ST.
  • the light emitting element drive circuit unit 20a ′ of the organic electroluminescence module 2a in which the second embodiment and the first embodiment are combined includes a light emission drive circuit 21 and a switch SW3.
  • a switch SW1 provided between the electrode 11 and a switch SW2 provided between the light emission drive circuit 21 and the upper electrode 15 are provided.
  • the configuration of the switch SW3 and the control of “ON” / “OFF” are the same as in the second embodiment, the configuration of the switches SW1 and SW2 and the control of “ON” / “OFF” are the same as in the first embodiment, Each is driven synchronously.
  • the effect of the first embodiment can be obtained in addition to the effect of the second embodiment.
  • the touch position detection period ST by setting the switch SW2 to the “OFF” state, the upper electrode 15 as the counter electrode Eo with respect to the detection electrode Ed can be set to the floating potential, and the parasitic capacitance Cel can be completely canceled. Further, in the touch position detection period ST, by setting the switch SW1 to the “OFF” state, the connection between the lower electrode 11 as the detection electrode Ed and the light emitting element driving circuit unit 20a ′ is released, and the potential of the detection electrode Ed is It can be prevented from being influenced by the parasitic capacitance generated in each part of the light emission drive circuit 21.
  • the switch SW2 is provided only on the counter electrode Eo with respect to the detection electrode Ed, and the detection electrode A configuration in which Ed is always connected to the light emitting element driving circuit unit 20a ′ may be employed. This is the same as in the first embodiment.
  • the same potential is applied to the lower electrode 11 and the upper electrode 15 from the light emitting element drive circuit unit 20a ′ at the last timing t2 of the light emission period LT as in the second embodiment. May be.
  • the same potential is not applied at the last timing t2, it is preferable to provide a standby period t1 within the touch detection period ST, as in the first example of the first embodiment.
  • FIG. 9 is a configuration diagram for explaining the organic electroluminescence module 3 of the third embodiment.
  • the organic electroluminescence module 3 of the third embodiment shown in this figure is different from the organic electroluminescence module 1 of the first embodiment described with reference to FIGS. 1 to 2 in the configuration of the light emitting element driving circuit unit 20 ′′. Therefore, the other configuration is the same as that of the first embodiment. Therefore, in the following, the configuration of the light emitting element driving circuit unit 20 ′′ will be described, and the redundant description of other components will be omitted.
  • the light emitting element driving circuit unit 20 ′′ controls light emission of the organic electroluminescent element EL.
  • the light emitting element driving circuit unit 20 ′′ is connected to the lower electrode 11 and the upper electrode 15 of the organic electroluminescent element EL.
  • a light emission drive circuit 21 is provided.
  • the configuration of the light emission drive circuit 21 is the same as that of the first embodiment.
  • the light emission drive circuit 21 is connected to the following ground 23 ′′.
  • the ground 23 ′′ may be a signal ground constituted by a circuit pattern, or may be a frame ground such as a metal case provided with the organic electroluminescence module 3.
  • the touch position detection circuit unit 30 is provided. It is important that the ground is different from the ground 39 on the side.
  • FIG. 11 is a timing chart showing an example of the operation of the organic electroluminescence module 3 configured as described above.
  • the organic electroluminescence module 3 is implemented by the light emitting element driving circuit unit 20 ′′ and the touch position detection circuit unit 30.
  • FIG. 11 is a timing chart showing an example of the operation of the organic electroluminescence module 3 configured as described above.
  • the organic electroluminescence module 3 is implemented by the light emitting element driving circuit unit 20 ′′ and the touch position detection circuit unit 30.
  • Each graph of (2) to (5) of FIG. 11 is the same as the graph of the timing chart of FIG. 3 described in the first embodiment.
  • the organic electroluminescent element EL is caused to emit light continuously during the operation period.
  • the touch position detection period ST which implements a touch position detection periodically is provided between the continuous light emission periods LT.
  • the touch position detection period ST is periodically repeated every frame period FT.
  • the first half of one frame period FT is a light emission period LT in which only light emission of the organic electroluminescent element EL is performed without performing touch position detection
  • the second half is a touch position detection period ST in which touch position detection is performed.
  • the lengths of one frame period FT, light emission period LT, and touch position detection period ST are the same as those in the first embodiment.
  • the touch position detection circuit unit 30 (2) sets the switches SW11 and SW12 to the “OFF” state.
  • the light emission drive circuit 21 can control the light emission of the organic electroluminescent element EL.
  • the applied voltage of the organic electroluminescent element EL rose from the “OFF” potential immediately after the start of the driving period, and became a current value or voltage value necessary for light emission. Light emission starts at that time.
  • the connection state between the detection electrode Ed and the detector 33 is released. For this reason, the electrical signal is not measured by the detector 33 and the touch position P cannot be detected.
  • the touch position detection circuit unit 30 sets the switches SW11 and SW12 to the “ON” state.
  • the detection electrode Ed and the detector 33 are connected. Thereby, the detector 33 can measure (4) the input voltage waveform Vi (dashed line) and the output voltage waveform Vo (solid line), or (5) the input current waveform Ii (dashed line) and the output current waveform Io (solid line).
  • the touch position P is detected based on the measured electrical signals.
  • the method for detecting the touch position P that is performed in the calculation unit 35 based on the measured electrical signal is the same as that in the first embodiment.
  • the organic electroluminescence module 3 of the third embodiment described above also performs one-dimensional touch position detection by using the lower electrode 11 of the organic electroluminescent element EL as the detection electrode Ed, as in the first embodiment. Therefore, the organic electroluminescence module with a touch function can be achieved in which the thickness is reduced and the number of manufacturing steps is reduced.
  • the light emission driving circuit 21 of the light emitting element driving circuit unit 20 ′′ for driving the organic electroluminescence element EL is connected to the detection electrode Ed.
  • the unit 30 is connected to a ground 23 ′′ different from the unit 30.
  • the configuration of the organic electroluminescence module 3 of the third embodiment can be combined with the configuration of the first embodiment or the configuration of the second embodiment, and both the configurations of the first embodiment and the second embodiment. Can be combined. When combined, the effects of the combined embodiments can be obtained.
  • FIG. 12 is a configuration diagram for explaining the organic electroluminescence module 4 of the fourth embodiment.
  • the organic electroluminescence module 4 of the fourth embodiment shown in this figure is different from the organic electroluminescence module 1 of the first embodiment described with reference to FIGS. 1 to 2 in the configuration of the touch position detection circuit unit 40. There are other configurations similar to those of the first embodiment. For this reason, below, the structure of the touch position detection circuit unit 40 is demonstrated, and the description which overlaps another component is abbreviate
  • the touch position detection circuit unit 40 is connected to the four corners including both ends of the detection electrode Ed in the two-dimensional direction with the two-dimensional direction in the detection electrode Ed as the touch position detection directions x and y.
  • the detection electrode Ed that is, the lower electrode 11 in the organic electroluminescence element EL as an example here, is a planar square.
  • the touch position detection circuit unit 40 is connected to the four corners of the planar quadrangular detection electrode Ed.
  • the touch position detection circuit unit 40 includes both ends on one side among the four corners of the detection electrode Ed (lower electrode 11) as a first input end Ed (in1) and a second input end Ed (in2). Each of the two ends is defined as a first output end Ed (out1) and a second output end Ed (out2).
  • first input end Ed (in1) is defined as the first input end Ed (in1)
  • second input end Ed (in2) is defined as the second output. Let it be the end Ed (out2).
  • Such a touch position detection circuit unit 40 includes switches SW11, SW21, SW22 connected to the four corners of the detection electrode Ed, three detectors 43 connected to the switches SW11, SW21, SW22, and each detector 43.
  • a connected arithmetic unit 45 and a power source 47 are provided.
  • the detector 43 and the power source 47 are connected to the ground 49. Details of each component are as follows.
  • the switches SW11, SW21, SW22- are for freely controlling the connection state between the four corners of the detection electrode Ed and each detector 43.
  • the switch SW11 is connected to the first input end Ed (in1) and the second input end Ed (in2) of the detection electrode Ed.
  • the switch SW21 is connected to the first output end Ed (out1) of the detection electrode Ed, and the switch SW22 is connected to the second output end Ed (out2) of the detection electrode Ed.
  • These switches SW11, SW21, and SW22 are composed of, for example, a thin film transistor (TFT) and a control circuit that controls driving thereof.
  • the switches SW11, SW21, and SW22 have a configuration in which one of the source / drain of the TFT is connected to the four corners of the detection electrode Ed, the other is connected to the detector 43, and the gate electrode of the TFT is connected to the control circuit. Become. Thereby, the connection state between each of the four corners of the detection electrode Ed and each detector 43 is freely controlled by the voltage applied to the gate electrode of the TFT.
  • switches SW11, SW21, and SW22 are in the “ON” state when the four corners of the detection electrode Ed and the detectors 43 are connected by driving the switches SW11, SW21, and SW22 as described above.
  • the switch SW11, SW21, SW22 is in the “OFF” state when the connection between the detection electrode Ed and the detector 43 is released by driving the switches SW11, SW21, SW22.
  • switches SW11, SW21, and SW22 are driven in synchronization with the switches SW1 and SW2 of the light emitting element driving circuit unit 20.
  • the switches SW1 and SW2 are in the “ON” state
  • the switches SW11, SW21, and SW22 are “OFF” state.
  • the switches SW1, W2 are in the “OFF” state
  • the switches SW11, SW21, SW22 are in the “ON” state.
  • the control circuit for the switches SW11, SW21, and SW22 may be an external arithmetic device.
  • the detectors 43 are three detectors 43 connected to the four corners of the detection electrode Ed via switches SW11, SW21, and SW22.
  • One of the three detectors 43 is connected to the first input terminal Ed (in1) and the second input terminal Ed (in2) of the detection electrode Ed via the switch SW11. Further, another one of the three detectors 43 is connected to the first output terminal Ed (out1) via the switch SW21, and another one is connected to the second output terminal Ed (out2) via the SW22. )It is connected to the.
  • These detectors 43 are either voltmeters or ammeters, and the first input terminal Ed (in1) and the second input terminal Ed (in2) of the detection electrode Ed, and further the first output terminal Ed ( The voltage value or current value applied to out1) and the second output terminal Ed (out2) is measured as an electrical signal.
  • the calculation unit 45 performs so-called touch position P detection, which detects which position in the touch position detection direction on the touch surface 10a is touched from the electrical signals measured by the three detectors 43.
  • touch position P detection detects which position in the touch position detection direction on the touch surface 10a is touched from the electrical signals measured by the three detectors 43.
  • the waveform of the electrical signal detected by one detector 43 connected to the first input end Ed (in1) and the second input end Ed (in2), the first output end Ed (out1) and the second The touch position P is detected based on the waveform of each angular electric signal detected by the two detectors 43 connected to the output terminal Ed (out2).
  • the arithmetic unit 45 may detect the input voltage waveform Vi detected by the detector 43 connected to the first input terminal Ed (in1) and the second input terminal Ed (in2).
  • the touch position P is detected based on the output voltage waveforms Vo1 and Vo2 detected by the two detectors 43 connected to the first output terminal Ed (out1) and the second output terminal Ed (out2).
  • the calculation unit 45 calculates the input current waveform Ii detected by the detector 43 connected to the first input end Ed (in1) and the second input end Ed (in2).
  • the touch position P is detected based on the output current waveforms Io1 and Io2 detected by the two detectors 43 connected to the first output terminal Ed (out1) and the second output terminal Ed (out2).
  • the power supply 47 is connected to the detector 43 connected to the first input end Ed (in1) and the second input end Ed (in2) of the detection electrode Ed among the three detectors 43.
  • the power source 47 may be an AC power source or a DC power source as long as a predetermined voltage can be applied.
  • the ground 49 is connected to two detectors 43 connected to the first input terminal Ed (in1) and the second input terminal Ed (in2) of the detection electrode Ed and the power source 47 among the three detectors 43. ing.
  • the ground 49 may be a signal ground configured by a circuit pattern, or may be a frame ground such as a metal case in which the organic electroluminescence module 4 is provided.
  • the detection method of the touch position P performed in the calculation unit 45 based on the measured electrical signal is the same as the method described in the first embodiment except that the first output terminal Ed (out1) and the second output terminal Ed (out2). This is a method applied to the waveforms of the two electrical signals detected in (1).
  • the method for detecting the touch position P taking as an example the case where a voltage waveform is obtained as an electrical signal, is as follows.
  • the arithmetic unit 45 has a first output terminal Ed (out1 located diagonally with respect to the time until the input voltage waveform Vi at the first input terminal Ed (in1) reaches a predetermined value. ) Is detected, and the touch position P is detected in the same manner as described in the first embodiment. At this time, the detected touch positions P are two positions, touch positions P1 and P2.
  • the calculation unit 45 has a second output terminal Ed (out2 located diagonally to the time until the input voltage waveform Vi at the second input terminal Ed (in2) reaches a predetermined value. ) Is detected, and the touch position P is detected in the same manner as described in the first embodiment. At this time, the detected touch positions P are two positions, touch positions P1 and P3.
  • the calculation unit 45 selects the touch position P1 detected in common in the detection of the two touch positions P described above as the touch position P.
  • the above method is the same when a current waveform is obtained as an electric signal.
  • the organic electroluminescence module 4 of the fourth embodiment as described above has a touch function capable of detecting a touch position in a two-dimensional direction, and can obtain the same effects as those of the first embodiment.
  • the configuration of the organic electroluminescence module 4 of the fourth embodiment can be combined with the configuration of the second embodiment, and can be combined with the configuration of the third embodiment. It is possible to combine with both of the configurations of the three embodiments.
  • the light-emitting element driving circuit unit 20 shown in FIG. 12 may be replaced with the light-emitting element driving circuit unit having the configuration according to the second embodiment, the third embodiment, or a combination thereof. Can be played.
  • FIG. 14 is a plan view for explaining an application example 1 of the organic electroluminescence module.
  • the organic electroluminescence module 5 shown in this figure has a configuration in which the upper electrode 15 of the organic electroluminescence module 1 according to the first embodiment described with reference to FIG. 1 is divided into a plurality of touch position detection directions x. .
  • FIG. 14 is a plan view of the organic electroluminescence module 5 as viewed from the detection electrode Ed side constituted by the lower electrode 11, and illustration of a support substrate and the like is omitted.
  • Each upper electrode 15 (counter electrode Eo) divided into three as described above is connected to a light emitting element driving circuit unit (not shown here), and voltage is applied individually. ing.
  • the detection electrode Ed constituted by the lower electrode 11 has a configuration in which both ends of the touch position detection direction x are connected to the touch position detection circuit unit not shown here.
  • the touch position detection circuit unit detects which position in the touch position detection direction x corresponds to which position of the upper electrode 15 is touched. Therefore, the touch position detection circuit unit is configured to feed back the detected touch position P to the light emission drive circuit of the light emitting element drive circuit unit.
  • the light emission driving circuit generates a voltage for causing the organic electroluminescence device to emit light to the upper electrode 15 and the lower electrode 11 corresponding to the detected touch position P when the organic electroluminescence device emits light. It is set as the structure to apply. Thereby, it is possible to make it the structure which light-emits only the part corresponding to the touch position P of the touch position detection direction x.
  • the organic electroluminescence module 5 includes the upper electrode 15 of the organic electroluminescence module 2 of the second embodiment described with reference to FIG. 5, the upper electrode 15 of the organic electroluminescence module 2a described with reference to FIG. 9 may be configured such that the upper electrode 15 of the organic electroluminescence module 3 of the third embodiment described with reference to 9 is divided into a plurality of touch position detection directions x.
  • FIG. 15 is a plan view for explaining an application example 2 of the organic electroluminescence module.
  • the organic electroluminescence module 6 shown in this figure has a configuration in which, for example, the upper electrode 15 of the organic electroluminescence module 4 according to the fourth embodiment described with reference to FIG. 12 is divided into a plurality of touch position detection directions x and y. is there.
  • a configuration is shown in which the upper electrode 15 is divided into three in the touch position detection direction x and two in the touch position detection direction y, for a total of six.
  • FIG. 15 is a plan view of the organic electroluminescence module 6 as viewed from the detection electrode Ed side constituted by the lower electrode 11, and illustration of a support substrate and the like is omitted.
  • each of the upper electrodes 15 (counter electrode Eo) divided into six parts is connected to the light emitting element driving circuit unit (not shown here) and individually applied with a voltage.
  • the detection electrode Ed constituted by the lower electrode 11 has a configuration in which the four corners of the touch position detection directions x and y are connected to the touch position detection circuit unit not shown here.
  • the touch position detection circuit unit detects, for example, which position in the touch position detection direction x, y the position corresponding to the upper electrode 15 is touched. Then, as in Application Example 1, the detected touch position P is fed back to the light emission drive circuit of the light emitting element drive circuit unit, and the upper electrode 15 and the lower electrode 11 corresponding to the detected touch position P are fed back.
  • a voltage for causing the organic electroluminescent element to emit light from the light emitting element driving circuit unit it is possible to have a configuration in which only the portion corresponding to the touch position emits light.
  • the organic electroluminescence module 6 includes the upper electrode 15 of the organic electroluminescence module 2 according to the second embodiment described with reference to FIG. 5, the upper electrode 15 of the organic electroluminescence module 2a described with reference to FIG. 9 may be configured such that the upper electrode 15 of the organic electroluminescence module 3 of the third embodiment described using 9 is divided into a plurality of touch position detection directions x and y.
  • FIG. 16 is a plan view of a smart device using an organic electroluminescence module.
  • a smart device 7 shown in this figure includes the organic electroluminescence module of the present invention described in the first to fourth embodiments and application examples 1 and 2.
  • the smart device 7 includes a main display unit 71 and icons 73 and 75 serving as function key buttons.
  • the icons 73 and 75 will be described in the first to fourth embodiments and application examples 1 and 2.
  • One of the organic electroluminescence modules of the present invention is used.
  • the organic electroluminescence module 1 of the first embodiment is used.
  • the main display unit 71 is composed of, for example, a liquid crystal display device, and has a built-in sensor function as an “in-cell” type or an “on-cell” type.
  • the organic electroluminescence module 1 constituting the icons 73 and 75 is arranged with the touch surface 10a side facing the front.
  • the icons 73 and 75 may be patterned into various display patterns such as a “home key” displayed with a square mark or a “return key” displayed with an arrow mark.
  • the icons 73 and 75 may be used as a screen scroll key, volume control key, brightness control key, or the like, and may be configured to emit light at the control position by feeding back the detected touch position.
  • Such icons 73 and 75 are, for example, when the organic electroluminescence module 1 is in a non-light emitting state, the display pattern is not visually recognized, and the organic electroluminescence module is touched by touching the surface (that is, the touch surface 10a).
  • a configuration in which 1 is in a light emitting state and the display pattern is visually recognized may be used.
  • the organic electroluminescence module of the present invention can also be applied to a lighting device.
  • the lighting device provided with the organic electroluminescence module of the present invention is also useful for display devices such as household lighting, interior lighting, and backlights of liquid crystal display devices.
  • backlights such as clocks, signboard advertisements, traffic lights, light sources such as optical storage media, light sources for electrophotographic copying machines, light sources for optical communication processing machines, light sources for optical sensors, etc.
  • backlights such as clocks, signboard advertisements, traffic lights, light sources such as optical storage media, light sources for electrophotographic copying machines, light sources for optical communication processing machines, light sources for optical sensors, etc.
  • There are a wide range of uses such as household appliances.
  • the touch surface 10a of the pair of electrodes (the lower electrode 11 and the upper electrode 15) constituting the organic electroluminescent element EL is applied to the touch surface 10a.
  • the configuration of the organic electroluminescence module in which the close electrode is the detection electrode Ed has been described.
  • the organic electroluminescence module of the present invention is not limited to this, and even an electrode far from the touch surface 10a may have a portion protruding in plan view from an electrode near the touch surface 10a.
  • the same effect can be obtained by setting the touch position detection direction in that portion and using it as the detection electrode Ed in the same operation.

Abstract

一対の電極間に有機発光機能層を設けた有機電界発光素子と、前記一対の電極に接続され前記有機電界発光素子の発光を制御する発光素子駆動回路ユニットと、前記一対の電極の何れか一方の電極を検出電極とし当該検出電極におけるタッチ位置検出方向の両端に接続されたタッチ位置検出回路ユニットとを備え、前記タッチ位置検出回路ユニットは、前記検出電極の両端のうちの一方を入力端とし他方を出力端とし、当該入力端から入力した電気信号を当該出力端で検出することによってタッチ位置検出を行う有機エレクトロルミネッセンスモジュールである。

Description

有機エレクトロルミネッセンスモジュール、スマートデバイス、および照明装置
 本発明は、タッチ検出機能を有する有機エレクトロルミネッセンスモジュールと、それを具備したスマートデバイス、および照明装置に関する。
 スマートフォン、タブレット等のスマートデバイスは、表示部からの情報入力を可能とするためのタッチセンサーを備えることが必須であり、例えば表示部に重ねる状態で、タッチセンサーが設けられている。
 またスマートデバイスには、その操作性の観点から、主たる表示部の他に、四角形などのマークで表示された「ホームキー」や、矢印マークなどで表示された「戻るキー」などの共通機能キーボタン(いわゆるアイコン)が設けられている場合がある。共通機能キーボタンは、視認性向上の観点から、表示するマークのパターン形状に応じた平面状の光源体を用いて構成され、一例としてLED(Light Emitting Diode)と導光板とを組み合わせたLED導光板を、スマートデバイスの内部に設置する構成が開示されている(例えば、下記特許文献1参照)。
 スマートデバイスにおいては、以上のような共通機能キーボタンに対しても、例えば液晶表示装置を用いて構成された主たる表示部と共通のタッチセンサーが重ねて設けられている。
 しかしながら、近年、主たる表示部として用いられている液晶表示装置として、センサー電極を内蔵した「インセル」型、あるいは「オンセル」型のものが登場した。これにより、共通機能キーボタンを構成する平面状の光源体に対しては、独自にタッチ検出機能を設けることが強く求められている。
 タッチ検出機能を備えた平面状の光源体として、例えば、アイコンが設けられた表面パネルとLED導光板との間に、センサー電極が形成された回路基板を設け、この回路基板におけるアイコンの形成部に抜き穴を設け、表面パネルと回路基板との間に誘電率の高い接着剤の層を設け、これによってセンサー電極による静電容量の検出精度の向上を図る構成のものが開示されている(例えば、下記特許文献2参照)。
特開2012-194291号公報 特開2013-065429号公報
 ところで近年、上述したアイコン部分に適用する平面状の光源体として、LED導光板に換えて、有機エレクトロルミネッセンスデバイスを利用する動きがある。有機エレクトロルミネッセンスデバイスは、陽極と陰極との間に有機発光機能層を挟持した面発光型の素子であり、より低消費電力で発光輝度の均一性が高い面発光を得ることができる。
 しかしながら、有機エレクトロルミネッセンスデバイスにタッチセンサーを重ねて設けた場合、陽極、陰極、あるいは保護のために利用されるメタルホイル層が、センサー電極とタッチ面との間に発生する静電容量の変化の検出に悪影響を与える。このため、有機エレクトロルミネッセンスデバイスに静電容量式のタッチ機能を付与する場合は、有機エレクトロルミネッセンスデバイスを設けた表示パネルとは別体として、タッチセンサーを設けたタッチパネルを配置する必要があり、デバイスの薄型化および製造工数の削減を妨げる要因となっていた。
 そこで本発明は、薄型化および製造工数の削減を達成することが可能な、タッチ機能付きの有機エレクトロルミネッセンスモジュール、これを用いたスマートデバイス、および照明装置を提供することを目的とする。
 このような目的を達成するための本発明は、一対の電極間に有機発光機能層を設けた有機電界発光素子と、前記一対の電極に接続され前記有機電界発光素子の発光を制御する発光素子駆動回路ユニットと、前記一対の電極の何れか一方の電極を検出電極とし当該検出電極におけるタッチ位置検出方向の両端に接続されたタッチ位置検出回路ユニットとを備え、前記タッチ位置検出回路ユニットは、前記検出電極の両端のうちの一方を入力端とし他方を出力端とし、当該入力端から入力した電気信号を当該出力端で検出することによってタッチ位置検出を行う有機エレクトロルミネッセンスモジュールである。
 また本発明は、このような構成の有機エレクトロルミネッセンスモジュールを備えたスマートデバイスおよび照明装置である。
 以上のような本発明によれば、薄型化および製造工数の削減を達成することが可能な、タッチ機能付きの有機エレクトロルミネッセンスモジュール、これを用いたスマートデバイス、および照明装置を得ることができる。
第1実施形態の有機エレクトロルミネッセンスモジュールを説明するための構成図であり、発光期間を説明するための構成図である。 第1実施形態におけるタッチ位置検出期間を説明するための構成図である。 第1実施形態の有機エレクトロルミネッセンスモジュールの動作(第1例)を説明するためのタイミングチャート図である。 第1実施形態の有機エレクトロルミネッセンスモジュールの動作(第2例)を説明するためのタイミングチャート図である。 第2実施形態の有機エレクトロルミネッセンスモジュールを説明するための構成図であり、発光期間を説明するための構成図である。 第2実施形態におけるタッチ位置検出期間を説明するための構成図である。 第2実施形態の有機エレクトロルミネッセンスモジュールの動作を説明するためのタイミングチャート図である。 第2実施形態と第1実施形態とを組み合わせた有機エレクトロルミネッセンスモジュールを説明するための構成図であり、発光期間を説明するための構成図である。 第3実施形態の有機エレクトロルミネッセンスモジュールを説明するための構成図であり、発光期間を説明するための構成図である。 第3実施形態におけるタッチ位置検出期間を説明するための構成図である。 第3実施形態の有機エレクトロルミネッセンスモジュールの動作例を説明するためのタイミングチャート図である。 第4実施形態の有機エレクトロルミネッセンスモジュールを説明するための構成図である。 第4実施形態の有機エレクトロルミネッセンスモジュールにおけるタッチ位置の検出方法を説明する図である。 本発明の有機エレクトロルミネッセンスモジュールの応用例1を説明するための平面図である。 本発明の有機エレクトロルミネッセンスモジュールの応用例2を説明するための平面図である。 本発明の有機エレクトロルミネッセンスモジュールを具備したスマートデバイスの一例を示す平面図である。
 以下、本発明の有機エレクトロルミネッセンスモジュール、スマートデバイス、および照明装置の実施の形態を図面に基づいて説明する。ここで説明する有機エレクトロルミネッセンスモジュールは、有機エレクトロルミネッセンスデバイスに静電容量方式のタッチ検出機能を設けたものであり、表示面に対する指などの接触によって情報入力がなされるものである。またスマートデバイスおよび照明装置は、この有機エレクトロルミネッセンスモジュールを備えたものである。以下、有機エレクトロルミネッセンスモジュールの実施形態から順に説明を行う。
≪第1実施形態≫
 図1は、第1実施形態の有機エレクトロルミネッセンスモジュール1を説明するための構成図である。この図に示す有機エレクトロルミネッセンスモジュール1は、支持基板10の一主面上に設けられた有機電界発光素子ELと、発光素子駆動回路ユニット20と、タッチ位置検出回路ユニット30とを備えたものであり、支持基板10の表面におけるタッチ位置Pを検出するタッチ検出機能を有する。以下、これらの構成要素の詳細を説明する。
<有機電界発光素子EL>
 有機電界発光素子ELは、支持基板10側から順に、下部電極11、有機発光機能層13、および上部電極15を積層した構成であり、下部電極11と上部電極15との間に有機発光機能層13を設けたものである。このような有機電界発光素子ELは、下部電極11と上部電極15との間に有機発光機能層13が挟持された部分が発光領域となる。また有機電界発光素子ELはキャパシタ構成となっているため、寄生容量Celを有する。
 また有機電界発光素子ELは、上部電極15側から封止用接着剤17で覆われて封止され、さらにその表面に、外部環境からの有害ガス(酸素、水分等)の浸透を防止することを目的として封止部材19が配置されて1枚の表示パネルを構成している。このような有機電界発光素子ELにおいては、下部電極11および上部電極15の何れか一方を陽極とし他方を陰極とし、これらの間に順方向の電流を流すことにより、有機発光機能層13において発光光が生じる。以下、各有機電界発光素子ELの各構成要素の詳細を説明する。尚、有機電界発光素子ELに対して順方向に定電流または定電圧を印加するとは、陽極をプラス、陰極をマイナスとして電圧を印加する状態であり、以降同様である。
-支持基板10-
 支持基板10は、ここでは例えば光透過性を有する材料で構成されたものであり、その表面は、有機発光機能層13において発生した発光光が取り出される表示面となっている。また表示面は、指先やタッチペン等(以下、指先F)の接触によって情報入力がなされるタッチ面10aともなっている。尚、以降においてはタッチ面10aに対しての、指先Fの接触による情報入力を、タッチ操作と称する。
 以上のような支持基板10を構成する透明な基板材料としては、例えば、ガラス、プラスチック等の透明基板材料を挙げることができる。好ましく用いられる透明基板材料としては、ガラス、石英、またフレキシブルな可撓性を有する観点から樹脂フィルムを挙げることができる。また支持基板10は、必要に応じてガスバリア層を設けた構成であってもよい。またさらに、支持基板10における表示面側には必要に応じてカバーガラスを貼り合わせてもよく、この場合にはカバーガラスの表面がタッチ面10aとなる。
-下部電極11-
 下部電極11は、ここでは光取り出し側の透明電極として構成される。この下部電極11は、有機発光機能層13に対する陽極または陰極として設けられるものであり、上部電極15が陰極の場合には陽極として用いられ、上部電極15が陽極の場合には陰極として用いられる。このような下部電極11は、それぞれに適切な導電性材料のなかから、光透過性に優れた導電性材料を用いて構成される。
 またここでは特に、この下部電極11は、上部電極15よりもタッチ面10aに近く配置されているため、タッチ位置Pを検出するための検出電極Edとして好ましく用いられる。このため検出電極Edとなる下部電極11には、発光素子駆動回路ユニット20と共に、タッチ位置検出回路ユニット30が接続される。これらの接続状態は、以降に説明する。
-有機発光機能層13-
 有機発光機能層13は、少なくとも有機材料で構成された発光層を含む層である。このよう有機発光機能層13の全体的な層構造が限定されることはなく、一般的な層構造であって良い。有機発光機能層13の一例を以下に示すが、本発明はこれらに限定されることはない。
 (i)(陽極)/正孔注入輸送層/発光層/電子注入輸送層/(陰極)
 (ii)(陽極)/正孔注入輸送層/発光層/正孔阻止層/電子注入輸送層/(陰極)
 (iii)陽極/正孔注入輸送層/電子阻止層/発光層/正孔阻止層/電子注入輸送層/(陰極)
 (iv)(陽極)/正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層/(陰極)
 (v)(陽極)/正孔注入層/正孔輸送層/発光層/正孔阻止層/電子輸送層/電子注入層/(陰極)
 (vi)(陽極)/正孔注入層/正孔輸送層/電子阻止層/発光層/正孔阻止層/電子輸送層/電子注入層/(陰極)
 尚、発光層は積層構造であってもよく、各発光層間には非発光性の中間層を有していてもよい。中間層は電荷発生層であってもよく、マルチフォトンユニット構成であってもよい。
-上部電極15-
 上部電極15は、有機発光機能層13に対する陰極または陽極として設けられるものであり、下部電極11が陽極の場合には陰極となり、下部電極11が陰極の場合には陽極として用いられる。このような上部電極15は、有機電界発光素子ELが、上部電極15側からも発光光を取り出すものである場合には、透明電極として構成される。一方、下部電極11からのみ発光光を取り出すものである場合には反射電極として構成される。したがって、上部電極15は、陰極または陽極として適切な導電性材料のなかから、光透過性または光反射性に優れた導電性材料を用いて構成される。
 このような上部電極15は、下部電極11と共に、発光素子駆動回路ユニット20に接続される。上部電極15に対する発光素子駆動回路ユニット20の接続状態は、以降に説明する。また上部電極15は、下部電極11からなる検出電極Edに対する対向電極Eoともなる。
 尚、ここでは支持基板10において外側に向かう面をタッチ面10aとしたが、支持基板10とは逆の封止部材19の外側に向かう面をタッチ面としてもよく、この場合、タッチ面に近い上部電極15を検出電極Edとすることが好ましい。またこの場合、上部電極15は、透明電極として構成されることになり、下部電極11が対向電極となる。
-封止用接着剤17-
 封止用接着剤17は、封止部材19と支持基板10との間に挟持された有機電界発光素子ELを封止するためのシール剤として用いられる。このような封止用接着剤17は、具体的には、アクリル酸系オリゴマー、メタクリル酸系オリゴマーの反応性ビニル基を有する光硬化及び熱硬化型接着剤、2-シアノアクリル酸エステル等の湿気硬化型等の接着剤、エポキシ系等の熱及び化学硬化型(二液混合)の接着剤等が用いられ、乾燥剤を分散させて用いてもよい。
-封止部材19-
 封止部材19は、有機電界発光素子ELの表示領域を覆うように配置されていればよく、凹板状でも、平板状でもよい。また透明性、および電気絶縁性は特に限定されない。具体的には、ガラス板、ポリマー板、フィルム、金属板、フィルム等が挙げられるが、有機エレクトロルミネッセンスモジュール1を薄膜化することできる観点から、ポリマーフィルム、および金属フィルムを好ましく使用することができる。ただしポリマーフィルムを用いる場合には、水蒸気透過度が低いものを用いることが重要である。
 尚、封止部材19と有機電界発光素子ELとの間隙には、封止用接着剤17を充填することに限定されず、特に表示領域(発光領域)には、気相であれば窒素やアルゴン等の不活性気体を封入し、液相であればフッ化炭化水素やシリコンオイルのような不活性液体を注入することが好ましい。また、封止部材19と有機電界発光素子ELの表示領域との間隙を真空とすることや、この間隙に吸湿性化合物を封入することもできる。
 尚、ここでは支持基板10において外側に向かう面をタッチ面10aとしたが、封止部材19の外側に向かう面をタッチ面としてもよく、この場合、封止部材19は光透過性を有する材料で構成される。
<発光素子駆動回路ユニット20>
 発光素子駆動回路ユニット20は、有機電界発光素子ELの発光を制御すると共に、対向電極Eoとしての上部電極15をフローティング電位とすることが可能である。ここでは、発光素子駆動回路ユニット20は、下部電極11および上部電極15との接続が自在に解除される構成のものである。このような発光素子駆動回路ユニット20は、有機電界発光素子ELの下部電極11および上部電極15に接続された発光駆動回路21と、発光駆動回路21と下部電極11との間に設けられたスイッチSW1、および発光駆動回路21と上部電極15との間に設けられたスイッチSW2を備えている。発光駆動回路21は、グランド23に接続されている。各構成要素の詳細は次のようである。
-発光駆動回路21-
 発光駆動回路21は、下部電極11と上部電極15との間に電圧を印加することにより、有機電界発光素子ELにおける発光を制御する。発光駆動回路21による有機電界発光素子ELの発光の制御は、定電流駆動または定電圧駆動の何れであってもよく、通常の有機電界発光素子ELにおける定電流駆動回路または定電圧駆動回路が適用される。 
-スイッチSW1,SW2-
 スイッチSW1,SW2は、発光駆動回路21と下部電極11との間の接続状態、および発光駆動回路21と上部電極15との間の接続状態を自在に制御するためのものである。このようなスイッチSW1,SW2は、例えば薄膜トランジスタ(TFT)とその駆動を制御する制御回路とで構成される。この場合のスイッチSW1,SW2は、TFTのソース/ドレインの一方が発光駆動回路21に接続され、他方が下部電極11または上部電極15に接続され、TFTのゲート電極が制御回路に接続された構成となる。これにより、TFTのゲート電極への印加電圧によって、発光駆動回路21と下部電極11との間の接続状態、および発光駆動回路21と上部電極15との間の接続状態が自在に制御される。
 ここで、スイッチSW1,SW2の駆動によって発光駆動回路21と下部電極11および上部電極15との間が接続された状態を、スイッチSW1,SW2が「ON」状態であるとする。これに対して、スイッチSW1,SW2の駆動によって発光駆動回路21と下部電極11および上部電極15との間の接続が解除された状態を、スイッチSW1,SW2が「OFF」状態であるとする。
 スイッチSW1,SW2が「ON」状態となることにより、発光駆動回路21による有機電界発光素子ELの発光の制御が可能になる。またスイッチSW1,SW2が「OFF」状態となることにより、発光駆動回路21と有機電界発光素子ELの下部電極11および上部電極15との接続が解除される。これにより、対向電極Eoとしての上部電極15をフローティング電位とすることが可能である。
 以上のようなスイッチSW1,SW2の「ON」/「OFF」の制御は、以降のタイミングチャート図で説明するように、タッチ位置検出回路ユニット30のスイッチSW11,SW12に同期させて実施される。尚、図1においては、発光駆動回路21と、スイッチSW1,SW2とがそれぞれ独立した構成で示してあるが、必要に応じて、発光駆動回路21にスイッチSW1,SW2が組み込まれた構成であってもよい。またスイッチSW1,SW2の制御回路は、外部の演算装置であってもよい。
-グランド23-
 グランド23は、回路パターンで構成されたシグナルグランドであってもよく、この有機エレクトロルミネッセンスモジュール1が設けられる金属ケースなどのフレームグランドであってもよい。
<タッチ位置検出回路ユニット30>
 タッチ位置検出回路ユニット30は、有機電界発光素子ELを構成する下部電極11または上部電極15のうち、検出電極Edとして用いられる下部電極11におけるタッチ位置検出方向xの両端に接続されたものである。このタッチ位置検出回路ユニット30は、検出電極Ed(下部電極11)におけるタッチ位置検出方向xの両端のうちの一方を入力端Ed(in)とし、他方を出力端Ed(out)してタッチ位置検出を行う。
 このようなタッチ位置検出回路ユニット30は、検出電極Edの両端に接続されたスイッチSW11,SW12、これらのスイッチSW11,SW12を介して検出電極Edに接続された検出器33、演算部35、および電源37を備えている。検出器33および電源37はグランド39に接続されている。各構成要素の詳細は次のようである。
-スイッチSW11,SW12-
 スイッチSW11,SW12は、検出電極Edの入力端Ed(in)に接続されたスイッチSW11と、出力端Ed(out)に接続されたスイッチSW12とである。これらのスイッチSW11,SW12は、例えば薄膜トランジスタ(TFT)とその駆動を制御する制御回路とで構成される。この場合のスイッチSW11,SW12は、TFTのソース/ドレインの一方が検出電極Edに接続され、他方が検出器33に接続され、TFTのゲート電極が制御回路に接続された構成となる。これにより、TFTのゲート電極への印加電圧によって、出電極Edの入力端Ed(in)と一方の検出器33との間の接続状態、および検出電極Edの出力端Ed(out)と他方の検出器33との間の接続状態が自在に制御される。
 ここで、スイッチSW11,SW12の駆動によって検出電極Edと検出器33との間が接続された状態を、スイッチSW11,SW12が「ON」状態であるとする(図2参照)。これに対して、スイッチSW11,SW12の駆動によって検出電極Edと検出器33との間の接続が解除された状態を、スイッチSW11,SW12が「OFF」状態であるとする。
 このようなスイッチSW11,SW12は、発光素子駆動回路ユニット20のスイッチSW1,SW2と同期して駆動され、スイッチSW1,W2が「ON」状態の場合には、スイッチSW11,SW12は「OFF」状態となる。一方、スイッチSW1,W2が「OFF」状態の場合には、スイッチSW11,SW12は「ON」状態となる。尚、スイッチSW11,SW12の制御回路は、外部の演算装置であってもよい。
-検出器33-
 検出器33は、スイッチSW11,SW12を介して検出電極Edの入力端Ed(in)と出力端Ed(out)とに、それぞれ接続されている。これらの検出器33は、電圧計または電流計の何れか一方であって、検出電極Edの入力端Ed(in)および出力端Ed(out)に印加される電圧値または電流値を電気信号として測定する。
-演算部35-
 演算部35は、2つの検出器33で測定された電気信号から、タッチ面10aにおけるタッチ位置検出方向のどの位置にタッチ操作がなされたかを検知する、いわゆるタッチ位置Pの検出を実施する。ここでは、入力端Ed(in)側の検出器33で検出された電気信号の波形と、出力端Ed(out)側の検出器33で検出された電気信号の波形とに基づいて、タッチ位置Pを検出する。
 この場合、検出器33が電圧計であれば、演算部35は、入力端Ed(in)側の検出器33で検出された入力電圧波形Viと、出力端Ed(out)側の検出器33で検出された出力電圧波形Voとに基づいて、タッチ位置Pを検出する。
 一方、検出器33が電流計であれば、演算部35は、入力端Ed(in)側の検出器33で検出された入力電流波形Iiと、出力端Ed(out)側の検出器33で検出された出力電流波形Ioとに基づいて、タッチ位置Pを検出する。
 以上の演算部35においてのタッチ位置Pの検出方法は、以降に詳細に説明する。
-電源37-
 電源37は、2つの検出器33のうち、検出電極Edの入力端Ed(in)に接続された検出器33に対して接続されている。この電源37は、所定の電圧を印加することが可能であれば、交流電源であってもよく、また直流電源であってもよい。
-グランド39-
 グランド39は、2つの検出器33のうち、検出電極Edの出力端Ed(out)に接続された検出器33と、電源37とに接続されている。このグランド39は、回路パターンで構成されたシグナルグランドであってもよく、この有機エレクトロルミネッセンスモジュール1が設けられる金属ケースなどのフレームグランドであってもよい。このグランド39は、発光素子駆動回路ユニット20側のグランド23と同一であっても異なるものであってもよい。
<有機エレクトロルミネッセンスモジュール1の動作(第1例)>
 図3は、以上のように構成された有機エレクトロルミネッセンスモジュール1の動作の第1例を示すタイミングチャート図であり、発光素子駆動回路ユニット20およびタッチ位置検出回路ユニット30によって実施される有機エレクトロルミネッセンスモジュール1の動作を示す図である。
 図3には、次の各グラフを示す。
(1)発光素子駆動回路ユニット20におけるスイッチSW1,SW2の「ON」/「OFF」の作動タイミングを示すグラフ。
(2)タッチ位置検出回路ユニット30におけるスイッチSW11,SW12の「ON」/「OFF」の動作タイミングを示すグラフ。
(3)有機電界発光素子ELにおける印加電圧の履歴を示すグラフ。
(4)タッチ位置検出回路ユニット30における検出器33で検出された入力電圧波形Vi(波線)および出力電圧波形Vo(実線)のグラフ。
(5)タッチ位置検出回路ユニット30における検出器33で検出された入力電流波形Ii(波線)および出力電流波形Io(実線)のグラフ。
 以上の図3に示す(1)~(3)のグラフにおいては、ハイ期間が「ON」状態を示し、ロウ期間が「OFF」状態を示している。これは、以降に説明する他のタイミングチャート図でも同様である。
 以下、図3のタイミングチャート図に基づき、図1~図2を参照して有機エレクトロルミネッセンスモジュール1の動作の第1例を説明する。
 図3に示すように、有機エレクトロルミネッセンスモジュール1における動作期間は、有機電界発光素子ELを発光させる発光期間LTと、タッチ位置Pの検出を実施するタッチ位置検出期間STとを1フレーム期間FT毎に交互に繰り返す。各期間においての発光素子駆動回路ユニット20およびタッチ位置検出回路ユニット30の駆動、およびタッチ位置検出回路ユニット30の演算部35において実行されるタッチ位置Pの検出方法は、次のようである。
-発光期間LT-
 1フレーム期間FTの前半に割り当てられた発光期間LTにおいて、発光素子駆動回路ユニット20は(1)スイッチSW1,SW2を「ON」状態とする。一方、タッチ位置検出回路ユニット30は(2)スイッチSW11,SW12を「OFF」状態とする。
 これにより、図1に示すように、有機電界発光素子ELと発光駆動回路21とが接続され、発光駆動回路21による有機電界発光素子ELの発光制御が可能となる。ここで、発光駆動回路21は、スイッチSW1,SW2が「ON」状態となるのに同期させ、有機電界発光素子ELに対して順方向に定電流または定電圧を印加する。これにより、図3に示すように、(3)有機電界発光素子ELの印加電圧は、「OFF」電位から上昇し、発光に必要な電流値または電圧値となった時点で発光が開始される。
 一方、タッチ位置検出回路ユニット30においては、検出電極Edと検出器33との接続状態が解除される。このため、検出器33では電気信号が測定されることはなく、タッチ位置Pを検出することはできない。
-タッチ位置検出期間ST-
 図3に示すように、1フレーム期間Tの後半に割り当てられたタッチ位置検出期間STにおいて、発光素子駆動回路ユニット20は、(1)スイッチSW1,SW2を「OFF」状態とする。一方、タッチ位置検出回路ユニット30は、(2)スイッチSW11,SW12を「ON」状態とする。
 これにより、図2に示すように、発光素子駆動回路ユニット20においては、有機電界発光素子ELと発光駆動回路21との接続が解除され、有機電界発光素子ELへの電圧印加が停止される。したがって、図3に示すように、(3)有機電界発光素子ELの印加電圧は、「OFF」電位にまで低下し、有機電界発光素子ELが消灯する。
 一方、タッチ位置検出回路ユニット30においては、検出電極Edと検出器33とが接続状態となる。これにより、検出器33では、(4)入力電圧波形Vi(波線)および出力電圧波形Vo(実線)、または(5)入力電流波形Ii(波線)および出力電流波形Io(実線)の測定が可能になり、測定されたこれらの電気信号に基づいたタッチ位置Pの検出が実施される。
-タッチ位置Pの検出方法-
 次に、測定された電気信号に基づいて演算部35において実施されるタッチ位置Pの検出方法を説明する。
 すなわち演算部35は、出力端Ed(out)で測定された電気信号の波形に基づいてタッチ位置Pの検出を行う。ここでは、出力端Ed(out)で測定された電気信号の波形から、電気信号の立ち上がりの遅れ時間tdを検知する。
 例えば、電気信号として(4)入力電圧波形Vi(波線)および出力電圧波形Vo(実線)が得られる場合、入力電圧波形Vi(波線)が所定値に達するまでの時間に対して、出力電圧波形Vo(実線)が所定値に達するまでの遅れ時間tdを検知する。また、電気信号として(5)入力電流波形Ii(波線)および出力電流波形Io(実線)が得られる場合、入力電流波形Ii(波線)が所定値に達するまでの時間に対して、出力電流波形Io(実線)が所定値に達するまでの遅れ時間tdを検知する。
 ここで、出力端Ed(out)で測定される出力電流値I、入力端Ed(in)から出力端Ed(out)までの間の抵抗値r、入力端Ed(in)からタッチ位置Pまでの間の抵抗値r1、タッチ位置Pから出力端Ed(out)までの間の抵抗値r2、遅れ時間td、および時間tは、下記式(1)のような関係にある。
 I∝exp[-rt/(r1×r2)]=exp(-t/td)・・・式(1)
 上記式(1)により、遅れ時間tdに基づいて、入力端Ed(in)からタッチ位置Pまでの間の抵抗値r1と、タッチ位置Pから出力端Ed(out)までの間の抵抗値r2との比を算出し、この抵抗比に対応したタッチ位置検出方向xのタッチ位置Pを得る。
 ここで、タッチ位置検出期間STでは、例えば期間の開始に一致させて発光素子駆動回路ユニット20のスイッチSW1,SW2が「OFF」状態となる。しかしながら、スイッチSW1,SW2が「OFF」状態となっても、有機電界発光素子ELが瞬時に「OFF」電位にまで低下して消灯することはなく、有機電界発光素子ELの放電時定数τ(1/e)に従い、一定の時間を要して消灯する。そこで、タッチ位置検出期間STにおいては、タッチ位置検出期間STが開始してから所定の待機期間t1を設け、この待機期間t1が経過した時点で、タッチ位置検出回路ユニット30のスイッチSW11,SW12を「ON」状態とする。この待機期間t1は、有機電界発光素子ELの放電時定数τの5倍以下の範囲内であることとし、これにより待機期間t1を最小限に抑えつつ、有機電界発光素子ELを完全に放電させた「OFF」電位とするにより、電流計33において安定した電流値の測定を行い、この結果に基づいてタッチ位置Pの検出を実施することができる。
 尚、有機エレクトロルミネッセンスモジュール1における発光期間LT、タッチ位置検出期間ST、および1フレーム期間FTは、その長さに特に制限はなく、適用する環境に適した条件を適宜選択することができるが、一例として、有機電界発光素子ELの発光期間LTは0.1~2.0msec.の範囲内であり、タッチ位置検出期間STは0.05~0.3msec.の範囲内であり、1フレーム期間FTは0.15~2.3msecの範囲内を挙げることができる。また、1フレーム期間FTは、フリッカ低減の目的からは、60Hz以上とすることが好ましく、一般的な画像表示の周期を適用してもよい。
 また1フレーム期間FTの長さが決められている場合、1フレーム期間FT中における発光期間LTとタッチ位置検出期間STの割合は、この有機エレクトロルミネッセンスモジュール1におけるタッチ位置検出の精度を考慮して任意に設定される構成であってよい。
<有機エレクトロルミネッセンスモジュール1の動作(第2例)>
 図4は、以上のように構成された有機エレクトロルミネッセンスモジュール1の動作の第2例を示すタイミングチャート図である。図4に示す第2例が、図3に示した第1例と異なるところは、発光期間LTの最後のタイミングt2において、有機電界発光素子ELに対して逆電圧を印加するところにある。
 以下、図4のタイミングチャート図に基づき、図1~図2を参照して有機エレクトロルミネッセンスモジュール1の動作の第2例を説明する。尚、第1例と同様の動作の重複する説明は一部を省略する。
 図4に示すように、有機エレクトロルミネッセンスモジュール1における動作期間は、有機電界発光素子ELを発光させる発光期間LTと、タッチ位置検出を実施するタッチ位置検出期間STとを1フレーム期間FT毎に交互に繰り返すところは、第1例と同様である。各期間では次のような駆動がなされる。
-発光期間LT-
 本第2例では、発光期間LTの最後のタイミングt2において、発光素子駆動回路ユニット20の発光駆動回路21は、(3)有機電界発光素子ELに逆電圧を印加する。この際、発光素子駆動回路ユニット20は(1)スイッチSW1,SW2を「ON」状態、タッチ位置検出回路ユニット30は(2)スイッチSW11,SW12を「OFF」状態に保つ。これにより、有機電界発光素子ELが瞬時に放電を完了した「OFF」電位となり、消灯する。
-タッチ位置検出期間ST-
 本第2例では、タッチ位置検出期間STの開始に一致させて、タッチ位置検出回路ユニット30は、(2)スイッチSW11,SW12を「ON」状態とする。タッチ位置検出期間STを開始した時点においては、上述した逆電圧の印加によって(3)有機電界発光素子ELは「OFF」電位となっている。このため、第1例で設けたような待機期間t1(図3参照)を必要とすることなく、発光期間LTがタッチ位置検出期間STの開始した時点で、(2)スイッチSW11,SW12を「ON」状態としても、検出器33において安定した電気信号の測定が行なわれる、この結果に基づいてタッチ位置Pの検出を実施することができる。
-タッチ位置Pの検出方法-
 本第2例においても、タッチ位置検出回路ユニット30の演算部35において実行されるタッチ位置Pの検出方法は、第1例と同様である。
<第1実施形態の効果>
 以上説明した第1実施形態の有機エレクトロルミネッセンスモジュール1は、有機電界発光素子ELの下部電極11を検出電極Edとして用い、検出電極Edにおけるタッチ位置検出方向xの入力端Ed(in)および出力端Ed(out)で検出された電気信号に基づいて、一次元のタッチ位置検出を実施することが可能である。これにより、有機電界発光素子ELに対して、別体としたタッチセンサーを重ねて設ける必要がなく、薄型化および製造工数の削減が達成されたタッチ機能付き有機エレクトロルミネッセンスモジュールを得ることができる。
 しかも、タッチ位置検出期間STと、有機電界発光素子ELの発光期間LTとを分離し、タッチ位置検出期間STにおいては、有機電界発光素子ELの上部電極15と発光素子駆動回路ユニット20との接続を解除する構成とした。これにより、タッチ位置検出期間STにおいては、検出電極Edに対する対向電極Eoとしての上部電極15がフローティング電位となり、有機電界発光素子ELの放電時定数τ経過後には、寄生容量Celを完全にキャンセルすることができる。
 ここで、有機電界発光素子ELの下部電極11と上部電極15との間の寄生容量Celは、タッチ面10aにタッチした指先Fと検出電極Edとの間の静電容量Cfと比較して、桁違いに大きい値である。そして、有機電界発光素子ELと発光駆動回路21とを接続させた状態では、指先Fをタッチ面10aにタッチした場合に検出電極Edで検出される静電容量Cは、指先Fと検出電極Edとの間の静電容量Cfと、有機電界発光素子ELの下部電極11と上部電極15との間の寄生容量Celとの合計である「Cf+Cel」となる。したがって、指先Fと検出電極Edとの間の静電容量Cfを検知し難く、タッチ位置Pの検出が困難であった。
 このため上述したように、タッチ位置検出期間STと発光期間LTとを分離し、タッチ位置検出期間STにおいては上部電極15をフローティング電位として寄生容量Celをキャンセルする構成とすることにより、タッチ位置Pの検出を高精度に実施することが可能となる。
 またタッチ位置検出期間STにおいては、スイッチSW1を「OFF」状態とすることで、検出電極Edとしての下部電極11と発光素子駆動回路ユニット20との接続を解除する構成とした。これにより、タッチ位置検出期間STにおいては、検出電極Edの電位が、発光素子駆動回路ユニット20の各部に発生する寄生容量に影響されることを防止できる。
 したがって、有機電界発光素子ELの構成要素である下部電極11を検出電極Edとして用いながらも、タッチ面10aにおける指先Fと間の静電容量Cfを精度良好に検出することが可能であり、タッチ位置検出の精度の向上を図ることができる。
 尚、以上説明した第1実施形態においては、有機電界発光素子ELの下部電極11および上部電極15にスイッチSW1,SW2を設けることで、発光素子駆動回路ユニット20との接続が自在に解除される構成とした。しかしながら、検出電極Edの電位が、発光素子駆動回路ユニット20からの影響を受け難い場合であれば、検出電極Edに対する対向電極EoのみにスイッチSW2を設け、検出電極Edを常に発光素子駆動回路ユニット20に接続させた構成であってもよい。
 また、第1実施形態の演算部35においては、有機電界発光素子ELの下部電極11で構成された検出電極Pの入力端Ed(in)および出力端Ed(out)の電気信号に基づいてタッチ位置Pを検出する構成とした。しかしながら、演算部35は、出力端Ed(out)の電気信号のみに基づいてタッチ位置Pを検出する構成であってもよい。この場合、例えばタッチ面10aに対してのタッチ操作がない場合においての出力端Ed(out)側の出力電圧波形Voまたは出力電流波形Ioをリファレンス波形とし、このリファレンス波形に対する遅れ時間tdに基づいてタッチ位置Pを検出する。
≪第2実施形態≫
 図5は、第2実施形態の有機エレクトロルミネッセンスモジュール2を説明するための構成図である。この図に示す第2実施形態の有機エレクトロルミネッセンスモジュール2が、図1~図2を用いて説明した第1実施形態の有機エレクトロルミネッセンスモジュール1と異なるところは、発光素子駆動回路ユニット20’の構成にあり、他の構成は第1実施形態と同様である。このため、以下においては発光素子駆動回路ユニット20’の構成を説明し、他の構成要素の重複する説明は省略する。
<発光素子駆動回路ユニット20’>
 発光素子駆動回路ユニット20’は、有機電界発光素子ELの発光を制御すると共に、有機電界発光素子ELの下部電極11および上部電極15とを短絡させる構成のものである。このような発光素子駆動回路ユニット20’は、有機電界発光素子ELの下部電極11および上部電極15に接続された発光駆動回路21と、下部電極11と上部電極15とを短絡させるためのスイッチSW3とを備えている。発光駆動回路21は、グランド23に接続されており、これらの構成は第1実施形態と同様である。スイッチSW3の構成は次のようである。
-スイッチSW3-
 スイッチSW3は、下部電極11と上部電極15との間の接続状態を自在に制御するためのものである。このようなスイッチSW3は、例えば薄膜トランジスタ(TFT)とその駆動を制御する制御回路とで構成される。この場合のスイッチSW3は、TFTのソース/ドレインの一方が下部電極11に接続され、他方が上部電極15に接続され、TFTのゲート電極が制御回路に接続された構成となる。これにより、TFTのゲート電極への印加電圧によって、下部電極11と上部電極15との間の接続状態が自在に制御される。
 ここで、スイッチSW3の駆動によって下部電極11と上部電極15との間が接続されて短絡した状態を、スイッチSW3が「ON」状態であるとする。これに対して、スイッチSW3の駆動によって下部電極11と上部電極15との間の接続が解除された状態を、スイッチSW3が「OFF」状態であるとする。
 以上のようなスイッチSW3の「ON」/「OFF」の制御は、以降のタイミングチャート図で説明するように、タッチ位置検出回路ユニット30のスイッチSW11,SW12の駆動に同期させて実施される。つまり、スイッチSW11,SW12が「OFF」状態の場合には、スイッチSW3を「OFF」状態とする(図5参照)。一方、スイッチSW11,W12が「ON」状態の場合には、スイッチSW3を「ON」状態とする(図6参照)。
 尚、図5および図6においては、発光駆動回路21と、スイッチSW3がそれぞれ独立した構成で示してあるが、必要に応じて、発光駆動回路21にスイッチSW3が組み込まれた構成であってもよい。またスイッチSW3の制御回路は、外部の演算装置であってもよい。
<有機エレクトロルミネッセンスモジュール2の動作例>
 図7は、以上のように構成された有機エレクトロルミネッセンスモジュール2の動作例を示すタイミングチャート図であり、発光素子駆動回路ユニット20’およびタッチ位置検出回路ユニット30によって実施される有機エレクトロルミネッセンスモジュール2の動作を示す図である。
 図7の(1)~(5)の各グラフは、第1実施形態で説明したと図3のタイミングチャート図のグラフと同様である。ただし、(1)のグラフは、発光素子駆動回路ユニット20におけるスイッチSW3の「ON」/「OFF」の作動タイミングを示すグラフである。
 以下、図7のタイミングチャート図に基づき、図5および図6を参照して有機エレクトロルミネッセンスモジュール2の動作例を説明する。
 この有機エレクトロルミネッセンスモジュール2における動作期間は、第1実施形態と同様に、有機電界発光素子ELを発光させる発光期間LTと、タッチ位置検出を実施するタッチ位置検出期間STとを1フレーム期間FT毎に交互に繰り返す。1フレーム期間FT、発光期間LT、およびタッチ位置検出期間STの長さは第1実施形態と同様である。
-発光期間LT-
 1フレーム期間FTの前半に割り当てられた発光期間LTでは、発光素子駆動回路ユニット20’は、(1)スイッチSW3を「OFF」状態とする。またタッチ位置検出回路ユニット30は、(2)スイッチSW11,SW12を「OFF」状態とする。
 これにより、図5に示すように、発光素子駆動回路ユニット20’においては、有機電界発光素子ELにおける下部電極11と上部電極15とは絶縁状態を保って発光駆動回路21に接続される。したがって、発光駆動回路21による有機電界発光素子ELの発光制御が可能となる。ここで、発光駆動回路21は、スイッチSW3が「OFF」状態となるのに同期させ、有機電界発光素子ELに対して順方向に定電流または定電圧を印加する。これにより、図7に示すように、(3)有機電界発光素子ELの印加電圧は、「OFF」電位から上昇し、発光に必要な電流値または電圧値となった時点で発光が開始される。
 一方、タッチ位置検出回路ユニット30においては、検出電極Edと検出器33との接続状態が解除される。このため、検出器33では電気信号が測定されることはなく、タッチ位置Pを検出することはできない。
 また図7に示すように、この発光期間LTの最後のタイミングt2では、発光素子駆動回路ユニット20’の発光駆動回路21は、下部電極11と上部電極15とに対して同電位を印加する。これにより、有機電界発光素子ELは、下部電極11と上部電極15とが電位差「ゼロ」の「OFF」状態となって消灯する。
-タッチ位置検出期間ST-
 図7に示すように、1フレーム期間FTの後半に割り当てられたタッチ位置検出期間STでは、発光素子駆動回路ユニット20’は、期間の開始に一致させて(1)スイッチSW3を「ON」状態とする。またタッチ位置検出回路ユニット30は、期間の開始に一致させて(2)スイッチSW11,SW12を「ON」状態とする。さらに発光素子駆動回路ユニット20’は、下部電極11と上部電極15に同電位を印可し続ける。
 これにより、図6に示すように、発光素子駆動回路ユニット20’においては、有機電界発光素子ELにおける下部電極11と上部電極15とが短絡した状態となる。したがって、発光駆動回路21による有機電界発光素子ELの発光制御は不可能となる。また図7に示すように、(3)有機電界発光素子ELの印加電圧は、下部電極11と上部電極15とが電位差「ゼロ」の「OFF」状態となっているため、有機電界発光素子ELの消灯状態が維持される。
 一方、タッチ位置検出回路ユニット30においては、検出電極Edと検出器33とが接続状態となる。これにより、検出器33では、(4)入力電圧波形Vi(波線)および出力電圧波形Vo(実線)、または(5)入力電流波形Ii(波線)および出力電流波形Io(実線)の測定が可能になり、測定されたこれらの電気信号に基づいたタッチ位置Pの検出が実施される。ここで、タッチ位置検出期間STを開始した時点においては、上述した通り有機電界発光素子ELの下部電極11と上部電極15とは電位差「ゼロ」であり、有機電界発光素子ELの寄生容量Celがキャンセルされた状態となっている。このため、第1実施形態の第1例で設けたような待機期間t1(図3参照)を必要とすることなく、タッチ位置検出期間STを開始した時点で、スイッチSW11,SW12を「ON」状態としても、安定したタッチ位置検出を実施することができる。
-タッチ位置Pの検出方法-
 測定された電気信号に基づいて演算部35において実施されるタッチ位置Pの検出方法は、第1実施形態と同様である。
 尚、以上説明した第2実施形態においては、有機電界発光素子ELの下部電極11と上部電極15との間にスイッチSW3を設けることで、下部電極11と上部電極15との間の接続状態を自在に制御する構成とした。しかしながら、下部電極11と上部電極15との電位差「ゼロ」として有機電界発光素子ELの寄生容量Celをキャンセルすることで、下部電極11で構成された検出電極Edの電位が十分に安定する場合であれば、スイッチSW3を設ける必要はない。この場合、発光素子駆動回路ユニット20’は、先の動作例で図7を用いて説明したように、発光駆動回路21によって下部電極11と上部電極15とに対する印加電圧の制御のみを実施する構成であればよい。
<第2実施形態の効果>
 以上説明した第2実施形態の有機エレクトロルミネッセンスモジュール2も、第1実施形態と同様に、有機電界発光素子ELの下部電極11を検出電極Edとして用いることにより、一次元のタッチ位置検出を実施することが可能であり、薄型化および製造工数の削減が達成されたタッチ機能付き有機エレクトロルミネッセンスモジュールとなる。
 また本第2実施形態の有機エレクトロルミネッセンスモジュール2においては、タッチ位置検出期間STと、有機電界発光素子ELの発光期間LTとを分離し、タッチ位置検出期間STにおいては有機電界発光素子ELの上部電極15と下部電極11とを短絡させる構成とした。これにより、タッチ位置検出期間STにおいては有機電界発光素子ELの寄生容量Celがキャンセルされる。したがって、第1実施形態と同様に、有機電界発光素子ELの構成要素である下部電極11を検出電極Edとして用いながらも、有機電界発光素子ELの寄生容量Celに影響されることなく、タッチ位置検出の精度の向上を図ることができる。
<第2実施形態の構成に対する組み合わせ>
 本第2実施形態の有機エレクトロルミネッセンスモジュール2の構成は、第1実施形態の構成と組み合わせることも可能である。図8は、第2実施形態と第1実施形態とを組み合わせた有機エレクトロルミネッセンスモジュール2aを説明するための構成図であり、タッチ位置検出期間STを説明するための構成図である。
 図8に示すように、第2実施形態と第1実施形態とを組み合わせた有機エレクトロルミネッセンスモジュール2aの発光素子駆動回路ユニット20a’は、発光駆動回路21およびスイッチSW3と共に、発光駆動回路21と下部電極11との間に設けられたスイッチSW1および、発光駆動回路21と上部電極15との間に設けられたスイッチSW2を備えている。
 スイッチSW3の構成および「ON」/「OFF」の制御は第2実施形態と同様であり、スイッチSW1,SW2の構成および「ON」/「OFF」の制御は第1実施形態と同様であり、それぞれ同期して駆動される。
 このような構成の有機エレクトロルミネッセンスモジュール2aでは、第2実施形態の効果に加え、第1実施形態の効果を得ることができる。
 すなわち、タッチ位置検出期間STにおいて、スイッチSW2を「OFF」状態とすることで、検出電極Edに対する対向電極Eoとしての上部電極15をフローティング電位とし、寄生容量Celを完全にキャンセルすることができる。またタッチ位置検出期間STにおいて、スイッチSW1を「OFF」状態とすることで、検出電極Edとしての下部電極11と発光素子駆動回路ユニット20a’との接続を解除し、検出電極Edの電位が、発光駆動回路21の各部に発生する寄生容量に影響されることを防止できる。
 したがって、有機電界発光素子ELの構成要素である下部電極11を検出電極Edとして用いながらも、タッチ面10aにおける指先Fと間の静電容量Cfを精度良好に検出することが可能であり、タッチ位置検出の精度の向上を図ることができる。
 尚、以上説明した構成においては、検出電極Edの電位が、発光素子駆動回路ユニット20a’からの影響を受け難い場合であれば、検出電極Edに対する対向電極EoのみにスイッチSW2を設け、検出電極Edを常に発光素子駆動回路ユニット20a’に接続させた構成であってもよい。これは、第1実施形態と同様である。
 また、このような構成においては、第2実施形態と同様に発光期間LTの最後のタイミングt2で、発光素子駆動回路ユニット20a’から下部電極11と上部電極15とに対して同電位を印可しても良い。また、最後のタイミングt2で同電位を印可しない場合は、第1実施形態の第1例と同様に、タッチ検出期間ST内には待機期間t1を設けることが好ましい。
≪第3実施形態≫
 図9は、第3実施形態の有機エレクトロルミネッセンスモジュール3を説明するための構成図である。この図に示す第3実施形態の有機エレクトロルミネッセンスモジュール3が、図1~図2を用いて説明した第1実施形態の有機エレクトロルミネッセンスモジュール1と異なるところは、発光素子駆動回路ユニット20”の構成にあり、他の構成は第1実施形態と同様である。このため、以下においては発光素子駆動回路ユニット20”の構成を説明し、他の構成要素の重複する説明は省略する。
<発光素子駆動回路ユニット20”>
 発光素子駆動回路ユニット20”は、有機電界発光素子ELの発光を制御するものである。この発光素子駆動回路ユニット20”は、有機電界発光素子ELの下部電極11および上部電極15に接続された発光駆動回路21を備えている。発光駆動回路21の構成は第1実施形態と同様である。この発光駆動回路21は、次のようなグランド23”に接続されている。
-グランド23”-
 グランド23”は、回路パターンで構成されたシグナルグランドであってもよく、この有機エレクトロルミネッセンスモジュール3が設けられる金属ケースなどのフレームグランドであってもよい。ここでは特に、タッチ位置検出回路ユニット30側のグランド39とは異なるグランドであるところが重要である。
<有機エレクトロルミネッセンスモジュール3の動作例>
 図11は、以上のように構成された有機エレクトロルミネッセンスモジュール3の動作例を示すタイミングチャート図であり、発光素子駆動回路ユニット20”およびタッチ位置検出回路ユニット30によって実施される有機エレクトロルミネッセンスモジュール3の動作を示す図である。
 図11の(2)~(5)の各グラフは、第1実施形態で説明したと図3のタイミングチャート図のグラフと同様である。
 以下、図11のタイミングチャート図に基づき、図9および図10を参照して有機エレクトロルミネッセンスモジュール3の動作例を説明する。
 この有機エレクトロルミネッセンスモジュール3においては、動作期間中に有機電界発光素子ELを連続して発光させる。そして、連続した発光期間LTの間に、周期的にタッチ位置検出を実施するタッチ位置検出期間STを設ける。タッチ位置検出期間STは、1フレーム期間FT毎に周期的に繰り返す。これにより、例えば1フレーム期間FTの前半は、タッチ位置検出を実施せずに有機電界発光素子ELの発光のみを実施する発光期間LTとなり、後半はタッチ位置検出を実施するタッチ位置検出期間STとなる。1フレーム期間FT、発光期間LT、およびタッチ位置検出期間STの長さは第1実施形態と同様である。
-発光期間LT-
 1フレーム期間FTの前半に割り当てられた発光期間LTでは、タッチ位置検出回路ユニット30は、(2)スイッチSW11,SW12を「OFF」状態とする。
 このような発光期間LTでは、図9に示すように、発光駆動回路21による有機電界発光素子ELの発光制御が可能である。これにより、図11に示すように、(3)有機電界発光素子ELの印加電圧は、駆動期間の開始した直後に「OFF」電位から上昇し、発光に必要な電流値または電圧値となった時点で発光が開始される。
 一方、タッチ位置検出回路ユニット30では、検出電極Edと検出器33との接続状態が解除される。このため、検出器33では電気信号が測定されることはなく、タッチ位置Pを検出することはできない。
-タッチ位置検出期間ST-
 図11に示すように、1フレーム期間FTの後半に割り当てられたタッチ位置検出期間STでは、タッチ位置検出回路ユニット30は、(3)スイッチSW11,SW12を「ON」状態とする。
 このようなタッチ位置検出期間STでは、図10に示すように、引き続き発光駆動回路21による有機電界発光素子ELの発光制御が可能である。このため、図11に示すように、(3)有機電界発光素子ELの印加電圧が発光状態に維持される。
 一方、タッチ位置検出回路ユニット30においては、検出電極Edと検出器33とが接続状態となる。これにより、検出器33では、(4)入力電圧波形Vi(波線)および出力電圧波形Vo(実線)、または(5)入力電流波形Ii(波線)および出力電流波形Io(実線)の測定が可能になり、測定されたこれらの電気信号に基づいたタッチ位置Pの検出が実施される。
-タッチ位置Pの検出方法-
 測定された電気信号に基づいて演算部35において実施されるタッチ位置Pの検出方法は、第1実施形態と同様である。
<第3実施形態の効果>
 以上説明した第3実施形態の有機エレクトロルミネッセンスモジュール3も、第1実施形態と同様に、有機電界発光素子ELの下部電極11を検出電極Edとして用いることにより、一次元のタッチ位置検出を実施することが可能であり、薄型化および製造工数の削減が達成されたタッチ機能付き有機エレクトロルミネッセンスモジュールとなる。
 また本第3実施形態の有機エレクトロルミネッセンスモジュール3においては、有機電界発光素子ELを駆動するための発光素子駆動回路ユニット20”の発光駆動回路21が、検出電極Edに接続されたタッチ位置検出回路ユニット30とは別のグランド23”に接続された構成である。これにより、有機電界発光素子ELの寄生容量Celが、下部電極11からなる検出電極Edとタッチ面10aにおける指先Fと間の静電容量Cfに対して影響を及ぼすことがなく、タッチ位置検出の精度の向上を図ることができる。
<第3実施形態の構成に対する組み合わせ>
 本第3実施形態の有機エレクトロルミネッセンスモジュール3の構成は、第1実施形態の構成または第2実施形態の構成と組み合わせることも可能であり、さらに第1実施形態および第2実施形態の構成の両方と組み合わせることが可能である。組み合わせた場合には、組み合わせた各実施形態の効果をプラスして得ることができる。
≪第4実施形態≫
 図12は、第4実施形態の有機エレクトロルミネッセンスモジュール4を説明するための構成図である。この図に示す第4実施形態の有機エレクトロルミネッセンスモジュール4が、図1~図2を用いて説明した第1実施形態の有機エレクトロルミネッセンスモジュール1と異なるところは、タッチ位置検出回路ユニット40の構成にあり、他の構成は第1実施形態と同様である。このため、以下においてはタッチ位置検出回路ユニット40の構成を説明し、他の構成要素の重複する説明は省略する。
<タッチ位置検出回路ユニット40>
 タッチ位置検出回路ユニット40は、検出電極Edにおける二次元方向のそれぞれをタッチ位置検出方向x,yとし、検出電極Edにおける二次元方向のそれぞれの両端を含む四隅に接続されたものである。ここで、検出電極Ed、すなわちここでは一例として有機電界発光素子ELにおける下部電極11は、平面四角形であることとする。そしてタッチ位置検出回路ユニット40は、平面四角形の検出電極Edの4つの角部に接続されていることとする。
 このタッチ位置検出回路ユニット40は、検出電極Ed(下部電極11)の四隅のうち、一方向側の両端を第1入力端Ed(in1)および第2入力端Ed(in2)とし、他方向側の両端のそれぞれを第1出力端Ed(out1)および第2出力端Ed(out2)とする。ここでは、第1入力端Ed(in1)の対角に位置する端部を第1出力端Ed(out1)とし、第2入力端Ed(in2)の対角に位置する端部を第2出力端Ed(out2)とする。
 そして、第1入力端Ed(in1)および第2入力端Ed(in2)から入力した電気信号を、第1出力端Ed(out1)および第2出力端Ed(out2)で検出することによってタッチ位置Pを検出する。
 このようなタッチ位置検出回路ユニット40は、検出電極Edの四隅に接続されたスイッチSW11,SW21,SW22、これらのスイッチSW11,SW21,SW22に接続された3つの検出器43、各検出器43に接続された演算部45、および電源47を備えている。検出器43および電源47はグランド49に接続されている。各構成要素の詳細は次のようである。
-スイッチSW11,SW21,SW22-
 スイッチSW11,SW21,SW22は、検出電極Edの四隅と各検出器43との間の接続状態を自在に制御するためのものである。このうち、スイッチSW11は、検出電極Edにおける第1入力端Ed(in1)および第2入力端Ed(in2)に接続されている。これに対して、スイッチSW21は検出電極Edにおける第1出力端Ed(out1)に接続され、スイッチSW22は検出電極Edにおける第2出力端Ed(out2)に接続されている。
 これらのスイッチSW11,SW21,SW22は、例えば薄膜トランジスタ(TFT)とその駆動を制御する制御回路とで構成される。この場合のスイッチSW11,SW21,SW22は、TFTのソース/ドレインの一方が検出電極Edの四隅に接続され、他方が検出器43に接続され、TFTのゲート電極が制御回路に接続された構成となる。これにより、TFTのゲート電極への印加電圧によって、検出電極Edの四隅のそれぞれと、各検出器43との間の接続状態が自在に制御される。
 以上のようなスイッチSW11,SW21,SW22の駆動によって検出電極Edの四隅と各検出器43との間が接続された状態を、スイッチSW11,SW21,SW22が「ON」状態であるとする。これに対して、スイッチSW11,SW21,SW22の駆動によって検出電極Edと検出器43との間の接続が解除された状態を、スイッチSW11,SW21,SW22が「OFF」状態であるとする。
 これらのスイッチSW11,SW21,SW22は、発光素子駆動回路ユニット20のスイッチSW1,SW2と同期して駆動され、スイッチSW1,SW2が「ON」状態の場合には、スイッチSW11,SW21,SW22は「OFF」状態となる。一方、スイッチSW1,W2が「OFF」状態の場合には、スイッチSW11,SW21,SW22は「ON」状態となる。尚、スイッチSW11,SW21,SW22の制御回路は、外部の演算装置であってもよい。
-検出器43-
 検出器43は、スイッチSW11,SW21,SW22を介して検出電極Edの四隅に接続された3つの検出器43である。3つの検出器43のうちの1つは、スイッチSW11を介して検出電極Edの第1入力端Ed(in1)および第2入力端Ed(in2)に接続されている。また、3つの検出器43のうちの別の1つは、スイッチSW21を介して第1出力端Ed(out1)に接続され、さらに別の1つはSW22を介して第2出力端Ed(out2)に接続されている。
 これらの検出器43は、電圧計または電流計の何れか一方であって、検出電極Edにおける第1入力端Ed(in1)および第2入力端Ed(in2)、さらには第1出力端Ed(out1)および第2出力端Ed(out2)に印加される電圧値または電流値を電気信号として測定する。
-演算部45-
 演算部45は、3つの検出器43で測定された電気信号から、タッチ面10aにおけるタッチ位置検出方向のどの位置にタッチ操作がなされたかを検知する、いわゆるタッチ位置Pの検出を実施する。ここでは、第1入力端Ed(in1)および第2入力端Ed(in2)に接続された1つの検出器43で検出された電気信号の波形と、第1出力端Ed(out1)および第2出力端Ed(out2)に接続された2つの検出器43で検出された各角電気信号の波形とに基づいて、タッチ位置Pを検出する。
 この場合、検出器43が電圧計であれば、演算部45は、第1入力端Ed(in1)および第2入力端Ed(in2)に接続された検出器43で検出された入力電圧波形Viと、第1出力端Ed(out1)および第2出力端Ed(out2)に接続された2つの検出器43で検出された出力電圧波形Vo1,Vo2とに基づいて、タッチ位置Pを検出する。
 一方、検出器43が電流計であれば、演算部45は、第1入力端Ed(in1)および第2入力端Ed(in2)に接続された検出器43で検出された入力電流波形Iiと、第1出力端Ed(out1)および第2出力端Ed(out2)に接続された2つの検出器43で検出された出力電流波形Io1,Io2とに基づいて、タッチ位置Pを検出する。
 以上の演算部45においてのタッチ位置Pの検出方法は、以降に詳細に説明する。
-電源47-
 電源47は、3つの検出器43のうち、検出電極Edの第1入力端Ed(in1)および第2入力端Ed(in2)に接続された検出器43に対して接続されている。この電源47は、所定の電圧を印加することが可能であれば、交流電源であってもよく、また直流電源であってもよい。
-グランド49-
 グランド49は、3つの検出器43のうち、検出電極Edの第1入力端Ed(in1)および第2入力端Ed(in2)に接続された2つの検出器43と、電源47とに接続されている。このグランド49は、回路パターンで構成されたシグナルグランドであってもよく、この有機エレクトロルミネッセンスモジュール4が設けられる金属ケースなどのフレームグランドであってもよい。
<有機エレクトロルミネッセンスモジュール4の動作>
 以上のような構成の有機エレクトロルミネッセンスモジュール4の駆動は、第1実施形態で説明した動作の第1例および第2例と同様に実施される。この場合、第1実施形態における動作の説明中のスイッチSW11,SW12を、スイッチSW11,SW21,SW22と読み替えればよい。
-タッチ位置Pの検出方法-
 測定された電気信号に基づいて演算部45において実施されるタッチ位置Pの検出方法は、第1実施形態で説明した方法を、第1出力端Ed(out1)および第2出力端Ed(out2)で検出された2つの電気信号の波形に対して適用する方法である。電気信号として電圧波形が得られる場合を例にしたタッチ位置Pの検出方法は、次のようである。
 すなわち演算部45は、図13Aに示すように、第1入力端Ed(in1)の入力電圧波形Viが所定値に達するまでの時間に対して、対角に位置する第1出力端Ed(out1)の出力電圧波形Voが所定値に達するまでの遅れ時間tdを検知し、第1実施形態で説明したと同様にタッチ位置Pの検出を行う。この際、検出されるタッチ位置Pは、タッチ位置P1,P2の2箇所となる。
 また演算部45は、図13Bに示すように、第2入力端Ed(in2)の入力電圧波形Viが所定値に達するまでの時間に対して、対角に位置する第2出力端Ed(out2)の出力電圧波形Voが所定値に達するまでの遅れ時間tdを検知し、第1実施形態で説明したと同様にタッチ位置Pの検出を行う。この際、検出されるタッチ位置Pは、タッチ位置P1,P3の2箇所となる。
 そこで演算部45は、上述した2つのタッチ位置Pの検出において共通して検出されたタッチ位置P1を、タッチ位置Pとして選択する。
 以上の方法は、電気信号として電流波形が得られる場合にも同様である。
<第4実施形態の効果>
 以上のような第4実施形態の有機エレクトロルミネッセンスモジュール4は、二次元方向のタッチ位置検出が可能なタッチ機能を有するものであり、第1実施形態と同様の効果を得ることができる。
<第4実施形態の構成に対する組み合わせ>
 本第4実施形態の有機エレクトロルミネッセンスモジュール4の構成は、第2実施形態の構成と組み合わせることも可能であり、第3実施形態の構成と組み合わせることも可能であり、さらに第2実施形態および第3実施形態の構成の両方と組み合わせることが可能である。この場合、図12に示した発光素子駆動回路ユニット20を、第2実施形態または第3実施形態さらにはこれらを組み合わせた構成の発光素子駆動回路ユニットに置き換えればよく、各実施形態に特有の効果を奏することができる。
≪有機エレクトロルミネッセンスモジュールの応用例1≫
 図14は、有機エレクトロルミネッセンスモジュールの応用例1を説明するための平面図である。この図に示す有機エレクトロルミネッセンスモジュール5は、例えば図1を用いて説明した第1実施形態の有機エレクトロルミネッセンスモジュール1の上部電極15を、タッチ位置検出方向xに複数に分割した構成のものである。ここでは一例として、上部電極15を、タッチ位置検出方向xに3分割した構成を示した。尚、図14は、有機エレクトロルミネッセンスモジュール5を、下部電極11で構成された検出電極Ed側から見た平面図となっており、支持基板などの図示は省略している。
 以上のように3分割された各上部電極15(対向電極Eo)は、それぞれが、ここでの図示を省略した発光素子駆動回路ユニットに対して接続され、個別に電圧印加がなされる構成となっている。これに対して下部電極11で構成された検出電極Edは、ここでの図示を省略したタッチ位置検出回路ユニットに対してタッチ位置検出方向xの両端が接続された構成となっている。
 このような構成とすることにより、例えばタッチ位置検出方向xのどの上部電極15に対応する位置に対してタッチ操作がなされたのかが、タッチ位置検出回路ユニットによって検出される。そこで、タッチ位置検出回路ユニットは、検出されたタッチ位置Pを、発光素子駆動回路ユニットの発光駆動回路にフィードバックさせる構成とする。そして、発光駆動回路は、有機電界発光素子を発光させる際に、検出されたタッチ位置Pに対応する上部電極15と、下部電極11とに対して、有機電界発光素子を発光させるための電圧を印加する構成とする。これにより、タッチ位置検出方向xのタッチ位置Pに対応する部分だけを発光させる構成とすることが可能である。
 尚、有機エレクトロルミネッセンスモジュール5は、図5を用いて説明した第2実施形態の有機エレクトロルミネッセンスモジュール2の上部電極15、図8を用いて説明した有機エレクトロルミネッセンスモジュール2aの上部電極15、または図9を用いて説明した第3実施形態の有機エレクトロルミネッセンスモジュール3の上部電極15を、タッチ位置検出方向xに複数分割した構成のものでもよい。
≪有機エレクトロルミネッセンスモジュールの応用例2≫
 図15は、有機エレクトロルミネッセンスモジュールの応用例2を説明するための平面図である。この図に示す有機エレクトロルミネッセンスモジュール6は、例えば図12を用いて説明した第4実施形態の有機エレクトロルミネッセンスモジュール4の上部電極15を、タッチ位置検出方向x,yに複数分割した構成のものである。ここでは一例として、上部電極15を、タッチ位置検出方向xに3分割、タッチ位置検出方向yに2分割、合計6分割した構成を示した。尚、図15は、有機エレクトロルミネッセンスモジュール6を、下部電極11で構成された検出電極Ed側から見た平面図となっており、支持基板などの図示は省略している。
 以上のように6分割された各上部電極15(対向電極Eo)は、それぞれが、ここでの図示を省略した発光素子駆動回路ユニットに対して接続され、個別に電圧印加がなされる構成となっている。これに対して下部電極11で構成された検出電極Edは、ここでの図示を省略したタッチ位置検出回路ユニットに対してタッチ位置検出方向x,yの四隅が接続された構成となっている。
 このような構成とすることにより、例えばタッチ位置検出方向x,yのどの上部電極15に対応する位置に対してタッチ操作がなされたのかが、タッチ位置検出回路ユニットによって検出される。そして応用例1と同様に、検出されたタッチ位置Pを、発光素子駆動回路ユニットの発光駆動回路にフィードバックし、検出されたタッチ位置Pに対応する上部電極15と、下部電極11とに対して、発光素子駆動回路ユニットから有機電界発光素子を発光させるための電圧を印加することで、タッチ位置に対応する部分だけを発光させる構成とすることが可能である。
 尚、有機エレクトロルミネッセンスモジュール6は、図5を用いて説明した第2実施形態の有機エレクトロルミネッセンスモジュール2の上部電極15、図8を用いて説明した有機エレクトロルミネッセンスモジュール2aの上部電極15、または図9を用いて説明した第3実施形態の有機エレクトロルミネッセンスモジュール3の上部電極15を、タッチ位置検出方向x,yに複数分割した構成のものでもよい。
≪スマートデバイス≫
 図16は、有機エレクトロルミネッセンスモジュールを用いたスマートデバイスの平面図である。この図に示すスマートデバイス7は、第1実施形態~第4実施形態および応用例1,2で説明した本発明の有機エレクトロルミネッセンスモジュールを具備したものである。
 このスマートデバイス7は、主表示部71と、機能キーボタンとなるアイコン73,75を備えており、このアイコン73,75として、第1実施形態~第4実施形態および応用例1,2で説明した本発明の有機エレクトロルミネッセンスモジュールの何れかが用いられている。ここでは例えば第1実施形態の有機エレクトロルミネッセンスモジュール1が用いられていることとする。
 主表示部71は、例えば液晶表示装置で構成されており、「インセル」型、あるいは「オンセル」型としてセンサー機能を内蔵した構成である。またアイコン73,75を構成する有機エレクトロルミネッセンスモジュール1は、タッチ面10a側を前面に向けた状態で配置されている。
 このアイコン73,75は、例えば、四角形などのマークで表示された「ホームキー」や、矢印マークなどで表示された「戻るキー」などの各種の表示パターンにパターニングされていてもよい。また、アイコン73,75は、画面スクロールキー、ボリュームコントロールキー、輝度コントロールキー等として用いてもよく、検出されたタッチ位置をフィードバックしてコントロール位置を発光させる構成としてもよい。
 このようなアイコン73,75は、例えば有機エレクトロルミネッセンスモジュール1が非発光状態である場合には、表示パターンが視認されず、その表面(すなわちタッチ面10a)にタッチすることにより、有機エレクトロルミネッセンスモジュール1が発光状態となって表示パターンが視認される構成であってもよい。
≪照明装置≫
 本発明の有機エレクトロルミネッセンスモジュールは、照明装置にも適用が可能である。本発明の有機エレクトロルミネッセンスモジュールを具備した照明装置としては、家庭用照明、車内照明、液晶表示装置のバックライト等、表示装置にも有用に用いられる。その他、時計等のバックライト、看板広告、信号機、光記憶媒体等の光源、電子写真複写機の光源、光通信処理機の光源、光センサーの光源等、さらには表示装置を必要とする一般の家庭用電気器具等広い範囲の用途が挙げられる。
 このような照明装置に、本発明の有機エレクトロルミネッセンスモジュールを適用してタッチ位置検出機能を付加することにより、例えばタッチ操作の情報をフィードバックした輝度調整を実施できる。
 尚、以上説明した第1実施形態~第4実施形態および応用例1,2においては、有機電界発光素子ELを構成する一対の電極(下部電極11および上部電極15)のうちのタッチ面10aに近い電極を検出電極Edとする有機エレクトロルミネッセンスモジュールの構成を説明した。しかしながら、本発明の有機エレクトロルミネッセンスモジュールはこれに限定されることはなく、タッチ面10aから遠い側の電極であっても、タッチ面10aに近い側の電極から平面視的に突出した部分があれば、その部分においてタッチ位置検方向を設定して検出電極Edとして同様の動作で用いることにより、同様の効果を得ることができる。
 1,2,2a,3,4,5,6…有機エレクトロルミネッセンスモジュール(照明装置)、7…スマートデバイス、11…下部電極、13…有機発光機能層、15…上部電極、20,20’,20a’,20”…発光素子駆動回路ユニット、30,40…タッチ位置検出回路ユニット、23,23”…グランド(発光素子駆動回路ユニット)、39,49…グランド(タッチ位置検出回路ユニット)、EL…有機電界発光素子、Ed…検出電極、Eo…対向電極、Ed(in)…入力端、Ed(in1)…第1入力端、Ed(in2)…第2入力端、Ed(out)…出力端、Ed(out1)…第1出力端、Ed(out2)…第2出力端、P…タッチ位置、LT…発光期間、ST…タッチ位置検出期間、x、y…タッチ位置検出方向

Claims (13)

  1.  一対の電極間に有機発光機能層を設けた有機電界発光素子と、
     前記一対の電極に接続され前記有機電界発光素子の発光を制御する発光素子駆動回路ユニットと、
     前記一対の電極の何れか一方の電極を検出電極とし当該検出電極におけるタッチ位置検出方向の両端に接続されたタッチ位置検出回路ユニットとを備え、
     前記タッチ位置検出回路ユニットは、前記検出電極の両端のうちの一方を入力端とし他方を出力端とし、当該入力端から入力した電気信号を当該出力端で検出することによってタッチ位置検出を行う
     有機エレクトロルミネッセンスモジュール。
  2.  前記タッチ位置検出回路ユニットは、周期的なタッチ位置検出期間において、前記タッチ位置検出を行う
     請求項1記載の有機エレクトロルミネッセンスモジュール。
  3.  前記発光素子駆動回路ユニットは、前記タッチ位置検出期間において、前記一対の電極のうちの他方を対向電極としてフローティング電位にする
     請求項2記載の有機エレクトロルミネッセンスモジュール。
  4.  前記発光素子駆動回路ユニットは、前記タッチ位置検出期間において、前記一対の電極との接続を解除する
     請求項2または3記載の有機エレクトロルミネッセンスモジュール。
  5.  前記発光素子駆動回路ユニットは、前記タッチ位置検出期間とタッチ位置検出期間との間を発光期間として前記有機電界発光素子を発光させ、当該発光期間の最後に、前記有機電界発光素子に対して逆電圧を印加する
     請求項2~4の何れかに記載の有機エレクトロルミネッセンスモジュール。
  6.  前記発光素子駆動回路ユニットは、前記タッチ位置検出期間において、前記一対の電極間を短絡させる
     請求項2~4の何れかに記載の有機エレクトロルミネッセンスモジュール。
  7.  前記発光素子駆動回路ユニットは、前記タッチ位置検出期間とタッチ位置検出期間との間を発光期間として前記有機電界発光素子を発光させ、当該発光期間の最後に、前記一対の電極に同電位を印加する
     請求項6記載の有機エレクトロルミネッセンスモジュール。
  8.  前記発光素子駆動回路ユニットと前記タッチ位置検出回路ユニットとは、それぞれ独立したグランドに接続されている
     請求項2~7の何れかに記載の有機エレクトロルミネッセンスモジュール。
  9.  前記タッチ位置検出回路ユニットは、前記出力端で検出した前記電気信号の波形に基づいてタッチ位置検出を行う
     請求項1~8の何れかに記載の有機エレクトロルミネッセンスモジュール。
  10.  前記タッチ位置検出回路ユニットは、前記検出電極の二次元方向のそれぞれを前記タッチ位置検出方向とし、当該検出電極における二次元方向の四隅のうち、一方向側の両端を入力端とし他方向側の両端を出力端とし、当該2つの入力端から入力した電気信号を当該2つの出力端で検出することによってタッチ位置検出を行う
     請求項1~9の何れかに記載の有機エレクトロルミネッセンスモジュール。
  11.  前記有機電界発光素子における前記一対の電極のうちの何れか一方側に、前記タッチ位置が検出されるタッチ面が設定され、
     前記一対の電極のうち、前記タッチ面に近く配置された電極を前記検出電極とする
     請求項1~10の何れかに記載の有機エレクトロルミネッセンスモジュール。
  12.  請求項1~11の何れかに記載の有機エレクトロルミネッセンスモジュールを備えた
     スマートデバイス。
  13.  請求項1~11の何れかに記載の有機エレクトロルミネッセンスモジュールを備えた
     照明装置。
PCT/JP2016/057969 2015-05-26 2016-03-14 有機エレクトロルミネッセンスモジュール、スマートデバイス、および照明装置 WO2016189932A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP16799640.4A EP3306447A4 (en) 2015-05-26 2016-03-14 Organic electroluminescence module, smart device, and lighting apparatus
KR1020177028791A KR102008602B1 (ko) 2015-05-26 2016-03-14 유기 일렉트로루미네센스 모듈, 스마트 디바이스 및 조명 장치
CN201680029718.0A CN107850956A (zh) 2015-05-26 2016-03-14 有机电致发光模组、智能设备及照明装置
JP2017520265A JP6737267B2 (ja) 2015-05-26 2016-03-14 有機エレクトロルミネッセンスモジュール、スマートデバイス、および照明装置
US15/569,332 US10185425B2 (en) 2015-05-26 2016-03-14 Organic electroluminescence module, smart device, and lighting apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-106052 2015-05-26
JP2015106052 2015-05-26

Publications (1)

Publication Number Publication Date
WO2016189932A1 true WO2016189932A1 (ja) 2016-12-01

Family

ID=57393168

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/057969 WO2016189932A1 (ja) 2015-05-26 2016-03-14 有機エレクトロルミネッセンスモジュール、スマートデバイス、および照明装置

Country Status (6)

Country Link
US (1) US10185425B2 (ja)
EP (1) EP3306447A4 (ja)
JP (1) JP6737267B2 (ja)
KR (1) KR102008602B1 (ja)
CN (1) CN107850956A (ja)
WO (1) WO2016189932A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017119226B3 (de) * 2017-08-23 2018-10-18 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Schalterintegration in Verkleidungen
CN109213370B (zh) * 2018-08-09 2021-03-12 京东方科技集团股份有限公司 一种触控面板及其驱动方法、触控装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007534070A (ja) * 2004-04-22 2007-11-22 ソニー エリクソン モバイル コミュニケーションズ, エービー 電子機器のための制御インタフェース装置
WO2013153609A1 (ja) * 2012-04-09 2013-10-17 株式会社JJtech 位置検出装置及びその制御方法、並びにそのシステム
JP2015509621A (ja) * 2012-02-06 2015-03-30 カナツ オサケユフティオCanatu Oy タッチ検知デバイスおよび検出方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4290061A (en) * 1979-08-23 1981-09-15 General Electric Company Electrically integrated touch input and output display system
JP3281848B2 (ja) * 1996-11-29 2002-05-13 三洋電機株式会社 表示装置
US7361860B2 (en) * 2001-11-20 2008-04-22 Touchsensor Technologies, Llc Integrated touch sensor and light apparatus
KR20050083833A (ko) * 2002-10-31 2005-08-26 해럴드 필립 전하전송 용량성 위치센서
JP4464985B2 (ja) * 2007-04-27 2010-05-19 ビステオン・ジャパン株式会社 El発光式タッチスイッチ
JP5171132B2 (ja) * 2007-07-03 2013-03-27 株式会社ジャパンディスプレイイースト タッチパネル付き表示装置
KR101414042B1 (ko) * 2007-12-07 2014-08-06 삼성디스플레이 주식회사 터치패널 액정표시장치
TWI479714B (zh) * 2008-01-29 2015-04-01 Koninkl Philips Electronics Nv 具整合式之鄰近感測器的有機發光二極體照明裝置
US20090277696A1 (en) * 2008-05-09 2009-11-12 Reynolds Joseph K Gradient sensors
WO2010038179A2 (en) * 2008-10-01 2010-04-08 Philips Intellectual Property & Standards Gmbh An oled device and an electronic circuit
US8638314B2 (en) * 2008-10-17 2014-01-28 Atmel Corporation Capacitive touch buttons combined with electroluminescent lighting
JP4683135B2 (ja) * 2009-03-04 2011-05-11 エプソンイメージングデバイス株式会社 位置検出機能付き表示装置および電子機器
CN101609647A (zh) * 2009-07-30 2009-12-23 友达光电股份有限公司 触控式有机发光二极管显示装置及影像单元
JP5664369B2 (ja) 2011-03-15 2015-02-04 オムロン株式会社 面光源装置
JP5752795B2 (ja) * 2011-07-29 2015-07-22 シャープ株式会社 表示装置
JP2013065429A (ja) 2011-09-16 2013-04-11 Nec Casio Mobile Communications Ltd 静電容量式情報入力ユニット、携帯型端末装置、及び静電容量式情報入力ユニットの製造方法
KR101424331B1 (ko) * 2012-06-21 2014-07-31 엘지디스플레이 주식회사 터치 센싱 장치와 그 구동 방법
JP2015072663A (ja) * 2013-10-04 2015-04-16 株式会社ジャパンディスプレイ 表示装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007534070A (ja) * 2004-04-22 2007-11-22 ソニー エリクソン モバイル コミュニケーションズ, エービー 電子機器のための制御インタフェース装置
JP2015509621A (ja) * 2012-02-06 2015-03-30 カナツ オサケユフティオCanatu Oy タッチ検知デバイスおよび検出方法
WO2013153609A1 (ja) * 2012-04-09 2013-10-17 株式会社JJtech 位置検出装置及びその制御方法、並びにそのシステム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3306447A4 *

Also Published As

Publication number Publication date
KR20170124594A (ko) 2017-11-10
EP3306447A4 (en) 2018-05-23
EP3306447A1 (en) 2018-04-11
KR102008602B1 (ko) 2019-08-07
CN107850956A (zh) 2018-03-27
JPWO2016189932A1 (ja) 2018-04-05
US10185425B2 (en) 2019-01-22
US20180113544A1 (en) 2018-04-26
JP6737267B2 (ja) 2020-08-05

Similar Documents

Publication Publication Date Title
KR102011435B1 (ko) 터치스크린패널 일체형 표시장치 및 그 구동방법
US9501162B2 (en) Display device integrated with touch screen panel and driving method thereof
US10355057B2 (en) OLED interface
US9766733B2 (en) TFT display, OLED interface and method for detecting the spatial position of extremities in a spatial region located in front of the display
KR102088416B1 (ko) 터치 스크린 표시 장치
US20090085890A1 (en) Touch Panel and Touch Panel Manufacturing Method
WO2016189932A1 (ja) 有機エレクトロルミネッセンスモジュール、スマートデバイス、および照明装置
JP6737268B2 (ja) 有機エレクトロルミネッセンスモジュール、スマートデバイス、および照明装置
CN100555201C (zh) 输入装置、电子设备及输入装置的控制方法
JP6737269B2 (ja) 有機エレクトロルミネッセンスモジュール、スマートデバイス、および照明装置
WO2016185775A1 (ja) 有機エレクトロルミネッセンスモジュール、スマートデバイス、および照明装置
JP2011007832A (ja) 照明装置、画像表示装置および電子機器
CN109857285B (zh) 触摸显示面板、触摸检测电路、显示装置和电子设备
CN209842578U (zh) Pmoled触摸显示面板、触摸检测电路、显示装置及电子设备
CN110032302B (zh) 一种触摸检测方法
CN210402295U (zh) 一种触摸显示面板和触摸检测电路及电子设备
CN210402294U (zh) Pmoled显示装置及电子设备
WO2018101385A1 (ja) 電子機器
JP2010257671A (ja) 照明装置、画像表示装置および電子機器
JP2010257672A (ja) 照明装置、画像表示装置および電子機器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16799640

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177028791

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15569332

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2017520265

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE