WO2016189930A1 - Dynamic characteristic test apparatus and dynamic characteristic test method - Google Patents

Dynamic characteristic test apparatus and dynamic characteristic test method Download PDF

Info

Publication number
WO2016189930A1
WO2016189930A1 PCT/JP2016/057893 JP2016057893W WO2016189930A1 WO 2016189930 A1 WO2016189930 A1 WO 2016189930A1 JP 2016057893 W JP2016057893 W JP 2016057893W WO 2016189930 A1 WO2016189930 A1 WO 2016189930A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor
transistor
diode
electrically connected
current
Prior art date
Application number
PCT/JP2016/057893
Other languages
French (fr)
Japanese (ja)
Inventor
陽一 坂本
伸幸 瀧田
Original Assignee
新東工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新東工業株式会社 filed Critical 新東工業株式会社
Priority to CN201680008073.2A priority Critical patent/CN107873084B/en
Publication of WO2016189930A1 publication Critical patent/WO2016189930A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/26Testing of individual semiconductor devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/28Surgical forceps
    • A61B17/29Forceps for use in minimally invasive surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00131Accessories for endoscopes
    • A61B1/00135Oversleeves mounted on the endoscope prior to insertion
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/012Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor characterised by internal passages or accessories therefor
    • A61B1/015Control of fluid supply or evacuation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/1442Probes having pivoting end effectors, e.g. forceps
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/1492Probes or electrodes therefor having a flexible, catheter-like structure, e.g. for heart ablation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00064Constructional details of the endoscope body
    • A61B1/00071Insertion part of the endoscope body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/012Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor characterised by internal passages or accessories therefor
    • A61B1/018Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor characterised by internal passages or accessories therefor for receiving instruments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/00234Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
    • A61B2017/00238Type of minimally invasive operation
    • A61B2017/00269Type of minimally invasive operation endoscopic mucosal resection EMR
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/28Surgical forceps
    • A61B17/29Forceps for use in minimally invasive surgery
    • A61B2017/2901Details of shaft
    • A61B2017/2905Details of shaft flexible
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/28Surgical forceps
    • A61B17/29Forceps for use in minimally invasive surgery
    • A61B2017/2926Details of heads or jaws
    • A61B2017/2927Details of heads or jaws the angular position of the head being adjustable with respect to the shaft
    • A61B2017/2929Details of heads or jaws the angular position of the head being adjustable with respect to the shaft with a head rotatable about the longitudinal axis of the shaft
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00053Mechanical features of the instrument of device
    • A61B2018/00184Moving parts
    • A61B2018/00202Moving parts rotating
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2217/00General characteristics of surgical instruments
    • A61B2217/002Auxiliary appliance
    • A61B2217/007Auxiliary appliance with irrigation system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2218/00Details of surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2218/001Details of surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body having means for irrigation and/or aspiration of substances to and/or from the surgical site
    • A61B2218/002Irrigation

Definitions

  • This disclosure relates to a dynamic characteristic test apparatus and a dynamic characteristic test method.
  • a dynamic characteristic test apparatus includes a first semiconductor and a second semiconductor that are electrically connected in series, a first diode that is electrically connected in parallel to the first semiconductor, and a second semiconductor. And a second diode electrically connected in parallel to each other, a dynamic characteristic test apparatus for performing a dynamic characteristic test of a device under test.
  • the dynamic characteristic test apparatus includes a chargeable power supply for supplying a current for dynamic characteristic test, a reactor serving as a load of the first semiconductor and the second semiconductor, and a first switch unit electrically connected in series. And the second switch unit, the third diode electrically connected in parallel to the first switch unit, and the fourth diode electrically connected in parallel to the second switch unit.
  • the first connection part that electrically connects the first semiconductor and the second semiconductor and the second connection part that electrically connects the first switch part and the second switch part are electrically connected via a reactor. .
  • the positive terminal of the power supply is electrically connected to the cathode of the first diode and the cathode of the third diode
  • the negative terminal of the power supply is electrically connected to the anode of the second diode and the anode of the fourth diode.
  • the control device sets the second switch unit and the third switch unit to the on state when starting the switching measurement of the first semiconductor, and sets the second switch unit to the off state in response to the completion of the switching measurement of the first semiconductor. After that, the third switch unit is turned off.
  • the second switch unit and the third switch unit are turned on when starting the switching measurement of the first semiconductor, and the second switching is performed in response to the end of the switching measurement of the first semiconductor.
  • the third switch unit is turned off.
  • the current supplied from the power source to the first semiconductor is directed from the first connection portion of the first semiconductor and the second semiconductor toward the second connection portion of the first switch portion and the second switch portion.
  • energy is accumulated in the reactor.
  • the second switch unit is turned off in response to the completion of the switching measurement of the first semiconductor, so that the second diode, the reactor, the third diode, and the third switch unit are connected from the negative terminal of the power source.
  • a current path is formed to return to the positive terminal of the power source, and energy stored in the reactor flows as a current to the positive terminal of the power source.
  • a part of energy (electric power) of the power source used for the switching measurement of the first semiconductor can be recovered.
  • electrically connected means not only the case where two elements to be connected are directly connected, but also other elements that can be electrically connected between the two elements to be connected. This includes cases where elements are connected.
  • Other elements may include a switch unit such as a relay and a transistor.
  • the control device sets the first switch unit and the third switch unit to the on state when starting the switching measurement of the second semiconductor, and sets the first switch unit to the off state in response to the completion of the switching measurement of the second semiconductor.
  • the third switch unit may be turned off.
  • the current supplied from the power source to the second semiconductor is changed from the second connection portion of the first switch portion and the second switch portion to the first connection portion of the first semiconductor and the second semiconductor.
  • the fourth switch, the reactor, the first diode, and the third switch unit are connected from the negative terminal of the power source by turning off the first switch unit in response to the completion of the switching measurement of the second semiconductor.
  • a current path is formed to return to the positive terminal of the power source, and energy stored in the reactor flows as a current to the positive terminal of the power source. Thereby, a part of energy (electric power) of the power source used for the switching measurement of the second semiconductor can be recovered. As a result, it is possible to further reduce power consumption in the dynamic characteristic test.
  • the first switch unit and the second switch unit may be transistors. In this case, the ON state and the OFF state of the first switch unit and the second switch unit can be switched at high speed, and the accuracy of switching measurement can be improved.
  • a dynamic characteristic test method includes a first semiconductor and a second semiconductor electrically connected in series, a first diode electrically connected in parallel to the first semiconductor, 2 is a dynamic characteristic test method for performing a dynamic characteristic test of a device under test including a second diode electrically connected in parallel to a semiconductor.
  • the dynamic characteristic test method includes a first switch unit and a second switch unit that are electrically connected in series, a third diode that is electrically connected in parallel to the first switch unit, and an electrical circuit that is connected to the second switch unit.
  • the first switch is selected for switching measurement by turning on the second switch of the selection circuit having a fourth diode connected in parallel and electrically connected in series to a rechargeable power source
  • a first connection part that electrically connects the first semiconductor and the second semiconductor and a second connection part that electrically connects the first switch part and the second switch part are electrically connected via a reactor.
  • the positive terminal of the power supply is electrically connected to the cathode of the first diode and the cathode of the third diode, and the negative terminal of the power supply is electrically connected to the anode of the second diode and the anode of the fourth diode.
  • the second switch unit and the third switch unit are turned on when starting the switching measurement of the first semiconductor, and the second switching is performed in response to the completion of the switching measurement of the first semiconductor.
  • the third switch unit is turned off.
  • the current supplied from the power source to the first semiconductor is directed from the first connection portion of the first semiconductor and the second semiconductor toward the second connection portion of the first switch portion and the second switch portion.
  • energy is accumulated in the reactor.
  • the second switch unit is turned off in response to the completion of the switching measurement of the first semiconductor, so that the second diode, the reactor, the third diode, and the third switch unit are connected from the negative terminal of the power source.
  • a current path is formed to return to the positive terminal of the power source, and energy stored in the reactor flows as a current to the positive terminal of the power source.
  • the dynamic characteristic test method selects a second semiconductor as an object of switching measurement by turning on a first switch unit of a selection circuit, and sets a third switch unit to an on state.
  • a second semiconductor as an object of switching measurement by turning on a first switch unit of a selection circuit, and sets a third switch unit to an on state.
  • the current supplied from the power source to the second semiconductor is changed from the second connection portion of the first switch portion and the second switch portion to the first connection portion of the first semiconductor and the second semiconductor.
  • the energy is accumulated in the reactor.
  • the fourth switch, the reactor, the first diode, and the third switch unit are connected from the negative terminal of the power source by turning off the first switch unit in response to the completion of the switching measurement of the second semiconductor.
  • a current path is formed to return to the positive terminal of the power source, and energy stored in the reactor flows as a current to the positive terminal of the power source.
  • FIG. 1 is a circuit diagram schematically showing a dynamic characteristic test apparatus according to an embodiment. It is a timing chart of the N side switching measurement in the dynamic characteristic test apparatus of FIG. It is a figure which shows the electric current path at the time of switch-on in the N side switching measurement of FIG. It is a figure which shows the electric current path at the time of switch-off in the N side switching measurement of FIG. It is a figure which shows the electric current path
  • FIG. 1 is a circuit diagram schematically showing a dynamic characteristic test apparatus according to an embodiment.
  • the dynamic characteristic test apparatus 1 is an apparatus that performs a dynamic characteristic test of the DUT 50, and includes a test circuit 10, an overcurrent detection circuit 20, and a control device 30.
  • the dynamic characteristic test apparatus 1 performs switching measurement, short circuit tolerance measurement (SC measurement), etc. as a dynamic characteristic test.
  • SC measurement short circuit tolerance measurement
  • IGBT characteristics and diode characteristics can be measured.
  • the IGBT characteristics include rise time, fall time, on delay time, off delay time, off surge voltage, gate charge, on loss, off loss, and the like.
  • the diode characteristics include reverse recovery time, reverse recovery current, and reverse recovery energy.
  • the DUT 50 is a device under test of the dynamic characteristic test apparatus 1 and is a 2-in-1 type power semiconductor module including two semiconductor elements electrically connected in series.
  • the DUT 50 includes transistors Qdp and Qdn (first semiconductor and second semiconductor) and diodes Ddp and Ddn (first diode and second diode).
  • the transistors Qdp and Qdn are IGBTs.
  • the emitter of the transistor Qdp and the collector of the transistor Qdn are electrically connected to each other.
  • the cathodes of the diodes Ddp and Ddn are electrically connected to the collectors of the transistors Qdp and Qdn, respectively, and the anodes of the diodes Ddp and Ddn are electrically connected to the emitters of the transistors Qdp and Qdn, respectively. That is, the transistors Qdp and Qdn are electrically connected in series in the same direction, the diode Ddp is a freewheeling diode electrically connected in parallel to the transistor Qdp, and the diode Ddn is electrically parallel to the transistor Qdn. It is a connected freewheeling diode.
  • the DUT 50 has a P terminal, an O terminal, and an N terminal.
  • the P terminal is electrically connected to the collector of the transistor Qdp and the cathode of the diode Ddp
  • the N terminal is electrically connected to the emitter of the transistor Qdn and the anode of the diode Ddn
  • the O terminal is the emitter of the transistor Qdp and the collector of the transistor Qdn.
  • the O terminal is electrically connected to the connection portion Cd (first connection portion) that electrically connects the transistors Qdp and Qdn.
  • the DUT 50 can be used for a one-phase inverter circuit
  • the transistor Qdp can be used for the upper arm
  • the transistor Qdn can be used for the lower arm.
  • the test circuit 10 is a circuit for performing a dynamic characteristic test of the DUT 50.
  • the test circuit 10 includes a power supply capacitor 11, a main switch unit 12, a selection circuit 13, an overcurrent prevention circuit 14, a high-speed cutoff circuit 15, a selection circuit 16, and a reactor L.
  • the power supply capacitor 11 is a power supply that supplies a current for a dynamic characteristic test to the test circuit 10. For example, a film capacitor having excellent frequency characteristics is used as the power supply capacitor 11. When the energy (charge) stored in the power supply capacitor 11 decreases, the power supply capacitor 11 is connected to a high voltage power supply (not shown) and is charged by the high voltage power supply.
  • the main switch unit 12 is a circuit that switches between supply and interruption of current from the power supply capacitor 11 to the DUT 50 (transistor Qdp or transistor Qdn).
  • the main switch unit 12 includes a transistor Qp (third switch unit) and a diode Dp.
  • the transistor Qp is an IGBT.
  • the cathode of the diode Dp is electrically connected to the collector of the transistor Qp, and the anode of the diode Dp is electrically connected to the emitter of the transistor Qp. That is, the diode Dp is a freewheeling diode electrically connected in parallel to the transistor Qp.
  • the collector of the transistor Qp is electrically connected to the positive terminal (positive terminal) of the power supply capacitor 11, and the emitter of the transistor Qp is connected to the collector of the transistor Qhp, the cathode of the diode Dhp, one end of the switch SWp, and the P terminal of the DUT 50 described later. Electrically connected.
  • the selection circuit 13 is a circuit for selecting one of the transistors Qdp and Qdn included in the DUT 50 as a switching measurement target.
  • the selection circuit 13 includes transistors Qhp and Qhn (first switch unit and second switch unit) and diodes Dhp and Dhn (third diode and fourth diode).
  • Transistors Qhp and Qhn are IGBTs.
  • the cathodes of the diodes Dhp and Dhn are electrically connected to the collectors of the transistors Qhp and Qhn, respectively, and the anodes of the diodes Dhp and Dhn are electrically connected to the emitters of the transistors Qhp and Qhn, respectively.
  • the diode Dhp is a free-wheeling diode electrically connected in parallel to the transistor Qhp
  • the diode Dhn is a free-wheeling diode electrically connected in parallel to the transistor Qhn.
  • the emitter of the transistor Qhp and the collector of the transistor Qhn are electrically connected to each other, and are electrically connected to the collector of a transistor Qcf described later and the cathode of a diode Dcf. That is, the transistors Qhp and Qhn are electrically connected in series in the same direction, and the connection portion Cs (second connection portion) for electrically connecting the transistors Qhp and Qhn is connected via the high-speed cutoff circuit 15 and the reactor L.
  • the collector of the transistor Qhp is electrically connected to the emitter of the transistor Qp, the anode of the diode Dp, one end of the switch SWp, and the P terminal of the DUT 50.
  • the emitter of the transistor Qhn is electrically connected to the negative terminal of the power supply capacitor 11, the other end of the switch SWn, and the N terminal of the DUT 50.
  • the overcurrent prevention circuit 14 is a circuit for consuming the energy accumulated in the reactor L.
  • the overcurrent prevention circuit 14 is provided electrically in parallel with the reactor L.
  • the overcurrent prevention circuit 14 includes transistors Qif and Qir and diodes Dif and Dir.
  • Transistors Qif and Qir are IGBTs.
  • the cathodes of the diodes Dif and Dir are electrically connected to the collectors of the transistors Qif and Qir, respectively, and the anodes of the diodes Dif and Dir are electrically connected to the emitters of the transistors Qif and Qir, respectively.
  • the diode Dif is a free-wheeling diode electrically connected in parallel to the transistor Qif
  • the diode Dir is a free-wheeling diode electrically connected in parallel to the transistor Qir.
  • the emitter of the transistor Qif and the emitter of the transistor Qir are electrically connected to each other. That is, the transistors Qif and Qir are electrically connected in series in opposite directions.
  • the collector of the transistor Qif is electrically connected to the collector of a transistor Qcr, which will be described later, the cathode of the diode Dcr, and one end of the reactor L.
  • the collector of the transistor Qir is electrically connected to the other end of the reactor L, the other end of the switch SWp, one end of the switch SWn, and the O terminal of the DUT 50.
  • the high-speed interruption circuit 15 is a circuit for causing the overcurrent prevention circuit 14 to consume the energy stored in the reactor L at high speed.
  • the high-speed cutoff circuit 15 is provided in series with the reactor L.
  • High speed cutoff circuit 15 includes transistors Qcf and Qcr and diodes Dcf and Dcr.
  • Transistors Qcf and Qcr are IGBTs.
  • the cathodes of the diodes Dcf and Dcr are electrically connected to the collectors of the transistors Qcf and Qcr, respectively, and the anodes of the diodes Dcf and Dcr are electrically connected to the emitters of the transistors Qcf and Qcr, respectively.
  • the diode Dcf is a free-wheeling diode electrically connected in parallel to the transistor Qcf
  • the diode Dcr is a free-wheeling diode electrically connected in parallel to the transistor Qcr.
  • the emitter of the transistor Qcf and the emitter of the transistor Qcr are electrically connected to each other. That is, the transistors Qcf and Qcr are electrically connected in series in opposite directions.
  • the collector of the transistor Qcf is electrically connected to the emitter of the transistor Qhp, the collector of the transistor Qhn, the anode of the diode Dhp, and the cathode of the diode Dhn.
  • the collector of the transistor Qcr is electrically connected to the collector of the transistor Qif, the cathode of the diode Dif, and one end of the reactor L.
  • the selection circuit 16 is a circuit for selecting one of the transistors Qdp and Qdn included in the DUT 50 as an object of short-circuit tolerance measurement.
  • the selection circuit 16 includes switches SWp and SWn.
  • the switches SWp and SWn are relays.
  • One end of the switch SWp is electrically connected to the emitter of the transistor Qp, the anode of the diode Dp, the collector of the transistor Qhp, the cathode of the diode Dhp, and the P terminal of the DUT 50.
  • the other end of the switch SWp and one end of the switch SWn are electrically connected to each other, and are electrically connected to the other end of the reactor L, the collector of the transistor Qir, the cathode of the diode Dir, and the O terminal of the DUT 50.
  • the other end of the switch SWn is electrically connected to the negative terminal of the power supply capacitor 11, the emitter of the transistor Qhn, the anode of the diode Dhn, and the N terminal of the DUT 50.
  • Reactor L is a dynamic characteristic test load. That is, the reactor L becomes a load of the transistors Qdp and Qdn. One end of the reactor L is electrically connected to the collector of the transistor Qcr and the cathode of the diode Dcr, and the other end of the reactor L is electrically connected to the O terminal of the DUT 50.
  • the overcurrent detection circuit 20 is a circuit that detects an overcurrent flowing through the test circuit 10 and the DUT 50.
  • the overcurrent detection circuit 20 includes a current sensor 21, a current sensor 22, a comparator 23, and a comparator 24.
  • the current sensor 21 is a sensor that detects the current value of the current flowing through the test circuit 10 and the DUT 50 during the N-side switching measurement.
  • the current sensor 21 is provided in the vicinity of the N terminal of the wiring connecting the N terminal of the DUT 50 and the negative terminal of the power supply capacitor 11.
  • the current sensor 21 outputs the detected current value to the comparator 23.
  • the current sensor 22 is a sensor that detects a current value of a current flowing through the test circuit 10 and the DUT 50 during the P-side switching measurement.
  • the current sensor 22 is provided in the vicinity of the P terminal of the wiring connecting the P terminal of the DUT 50 and the emitter of the transistor Qp.
  • the current sensor 22 outputs the detected current value to the comparator 24.
  • the comparator 23 compares the current value detected by the current sensor 21 with the N-side overcurrent threshold value Ref_N and outputs the comparison result to the control device 30.
  • the overcurrent threshold value Ref_N is a predetermined value for detecting an overcurrent.
  • the N-side overcurrent threshold value Ref_N is input to the + terminal, and the current value detected by the current sensor 21 is input to the ⁇ terminal.
  • the comparator 23 outputs a high-level output signal to the control device 30, and the current value detected by the current sensor 21 is excessive.
  • a low-level output signal is output to the control device 30.
  • the comparator 24 compares the current value detected by the current sensor 22 with the P-side overcurrent threshold value Ref_P, and outputs the comparison result to the control device 30.
  • the overcurrent threshold Ref_P is a predetermined value for detecting an overcurrent.
  • the P-side overcurrent threshold value Ref_P is input to the + terminal, and the current value detected by the current sensor 22 is input to the ⁇ terminal.
  • the comparator 24 outputs a high-level output signal to the control device 30, and the current value detected by the current sensor 22 is excessive.
  • a low level output signal is output to the control device 30.
  • the control device 30 performs switching control for switching the transistors Qp, Qhp, Qhn, Qif, Qir, Qcf, Qcr, Qdp, Qdn and the switches SWp, SWn between the on state (conducting state) and the off state (blocking state).
  • the controller to perform.
  • the control device 30 outputs the gate signals Sqp, Sqhp, Sqhn, Sqif, Sqir, Sqcf, Sqcr, Sqdp, Sqdn to the transistors Qp, Qhp, Qhn, Qif, Qir, Qcf, Qcr, Qdp, Qdn, respectively. Each transistor is switched between an on state and an off state.
  • the control device 30 switches each switch between an on state and an off state by outputting relay signals Sswp and Sswn to the switches SWp and SWn, respectively.
  • the switching control by the control device 30 will be described in detail in each of the following measurements.
  • the on state of the transistor means that the collector and the emitter are electrically connected
  • the off state of the transistor means that the collector and the emitter are electrically disconnected.
  • the ON state and the OFF state are switched by the gate-emitter voltage.
  • the transistor is turned on when a high level gate signal is supplied to the transistor, and the transistor is turned off when a low level gate signal is supplied to the transistor. It is said.
  • FIG. 2 is a timing chart of N-side switching measurement in the dynamic characteristic test apparatus 1.
  • FIG. 3 is a diagram illustrating a current path when the switch is turned on in the N-side switching measurement.
  • FIG. 4 is a diagram illustrating a current path when the switch is off in the N-side switching measurement.
  • FIG. 5 is a diagram illustrating a current path during energy recovery in N-side switching measurement.
  • the relay signals Sswp and Sswn are always set to a low level, and the switches SWp and SWn are always in an off state.
  • the current supplied from the power supply capacitor 11 is Ic
  • the current flowing through each transistor is a positive value when flowing from the collector to the emitter, and is a negative value when flowing from the emitter to the collector or when flowing from the anode to the cathode (forward direction) of the reflux diode.
  • the current flowing through the reactor L is a positive value when flowing toward the O terminal of the DUT 50, and is a negative value when flowing in the opposite direction.
  • step ST11 the control device 30 sets the gate signals Sqp, Sqhp, Sqhn, Sqif, Sqir, Sqcf, Sqcr, Sqdp, and Sqdn to be output at a low level. Therefore, the transistors Qp, Qhp, Qhn, Qif, Qir, Qcf, Qcr, Qdp, and Qdn are all off, and no current flows through each transistor.
  • the energy Ec (charge) of the power supply capacitor 11 is in a fully charged state, for example.
  • step ST12 the control device 30 sets the gate signals Sqp, Sqhp, Sqcf, Sqcr, Sqdn to the high level, and sets the other gate signals to the low level and outputs them.
  • the transistors Qp, Qhp, Qcf, Qcr, and Qdn are turned on, and the other transistors are turned off.
  • the current path returns from the positive terminal of the power supply capacitor 11 to the negative terminal of the power supply capacitor 11 through the transistor Qp, transistor Qhp, transistor Qcf, transistor Qcr, reactor L, and transistor Qdn in this order.
  • Pn1 is formed, and the current supplied from the power supply capacitor 11 flows through the current path Pn1.
  • the control device 30 turns on the transistor Qhp, thereby making the transistor Qdn the object of switching measurement, and turning on the transistors Qp, Qcf, and Qcr, thereby turning the transistor Qdn from the power supply capacitor 11 into the transistor Qdn. Is supplying current.
  • step ST13 the control device 30 sets the gate signals Sqp, Sqhp, Sqcf, Sqcr to a high level, and sets the other gate signals to a low level and outputs them. That is, only the gate signal Sqdn is changed from the high level to the low level from step ST12, and the other gate signals are not changed. Thereby, the transistors Qp, Qhp, Qcf, and Qcr are turned on, and the other transistors are turned off. At this time, as shown in FIG.
  • step ST14 as in step ST12, the control device 30 sets the gate signals Sqp, Sqhp, Sqcf, Sqcr, Sqdn to a high level and sets the other gate signals to a low level and outputs them. . That is, only the gate signal Sqdn is changed from the low level to the high level from step ST13, and the other gate signals are not changed. As a result, a current path Pn1 is formed, and the current flowing in the current path Pn2 immediately before step ST14 and the current supplied from the power supply capacitor 11 flow in the current path Pn1.
  • the current amounts of the currents Ic, Iqp, Iqhp, Iqcf, ⁇ Iqcr, IL, and Iqdn increase from the current amount of the current that was flowing in the current path Pn2 immediately before step ST14 while increasing with time.
  • the energy Ec of the power supply capacitor 11 further decreases with time. Further, the currents Iqhn, Iqif, Iqir, and Iqdp do not flow through the transistors Qhn, Qif, Qir, and Qdp.
  • step ST15 as in step ST13, the control device 30 sets the gate signals Sqp, Sqhp, Sqcf, Sqcr to a high level, and sets the other gate signals to a low level and outputs them. That is, only the gate signal Sqdn is changed from the high level to the low level from step ST14, and the other gate signals are not changed. As a result, a current path Pn2 is formed, and the current that was flowing in the current path Pn1 immediately before step ST15 flows in the current path Pn2.
  • step ST13 the current amounts of the currents Ic, Iqp, and Iqdn become 0, and the current amounts of the currents Iqhp, Iqcf, -Iqcr, IL, and -Iqdp gradually decrease with time. Further, the current amounts of the currents Iqhn, Iqif, and Iqir remain zero. In addition, since no current is supplied from the power supply capacitor 11, the energy Ec does not change. At this point, the waveform required for N-side switching measurement is obtained. That is, a waveform necessary for the switching measurement of the transistor Qdn can be obtained by turning off the transistor Qdn in steps ST12 to ST15. In this sense, the processing up to turning off the transistor Qdn in steps ST12 to ST15 can be said to be a switching measurement of the transistor Qdn in a narrow sense.
  • the control device 30 changes the gate signal Sqhp from the high level to the low level.
  • the transistors Qp, Qcf, and Qcr are turned on, and the other transistors are turned off.
  • the current returns from the negative terminal of the power supply capacitor 11 to the positive terminal of the power supply capacitor 11 through the diode Dhn, the transistor Qcf, the transistor Qcr, the reactor L, the diode Ddp, and the transistor Qp in this order.
  • the path Pn3 is formed, and the current that has been flowing through the current path Pn2 immediately before switching the gate signal Sqhp to the low level flows into the current path Pn3. For this reason, the current amount of the current Iqhp becomes zero.
  • step ST16 the same state as in step ST15 is continued, the amount of current flowing through the current path Pn3 becomes 0, and the energy Ec of the power supply capacitor 11 is almost restored to the fully charged state.
  • step ST17 the control device 30 sets the gate signals Sqp, Sqhp, Sqhn, Sqif, Sqir, Sqcf, Sqcr, Sqdp, and Sqdn to all low levels and outputs them. Therefore, the transistors Qp, Qhp, Qhn, Qif, Qir, Qcf, Qcr, Qdp, and Qdn are all turned off, and no current flows through each transistor. In this way, the N-side switching measurement ends.
  • a detection circuit or the like detects that the amount of current flowing through the current path Pn3 is equal to or less than a predetermined threshold, and the control device 30 flows through the current path Pn3 by an output signal from the detection circuit. It may be detected that the current amount of the current is almost zero (end of the energy recovery process).
  • the predetermined threshold is set to 0 or a value slightly larger than 0, for example.
  • control device 30 may perform processing of Step ST17 according to having detected the end of energy recovery processing.
  • control device 30 when starting the N-side switching measurement, the control device 30 turns on the transistors Qp, Qhp, Qcf, and Qcr, and turns on the transistor Qhp according to the end of waveform acquisition in the N-side switching measurement. By using the off state, the energy used in the N-side switching measurement is recovered. Then, after recovering the energy used in the N-side switching measurement, control device 30 turns off transistors Qp, Qcf, and Qcr. Therefore, since the energy Ec is almost fully charged at the end of the N-side switching measurement, it is not necessary to charge the power supply capacitor 11 with a high-voltage power supply for the next measurement.
  • FIG. 6 is a timing chart of P-side switching measurement in the dynamic characteristic test apparatus 1.
  • FIG. 7 is a diagram illustrating a current path when the switch is turned on in the P-side switching measurement.
  • FIG. 8 is a diagram illustrating a current path when the switch is turned off in the P-side switching measurement.
  • FIG. 9 is a diagram illustrating a current path during energy recovery in the P-side switching measurement.
  • step ST21 is the same as step ST11 of FIG.
  • the control device 30 sets the gate signals Sqp, Sqhn, Sqcf, Sqcr, Sqdp to the high level, and sets the other gate signals to the low level and outputs them.
  • the transistors Qp, Qhn, Qcf, Qcr, and Qdp are turned on, and the other transistors are turned off.
  • the current path returns from the positive terminal of the power supply capacitor 11 to the negative terminal of the power supply capacitor 11 through the transistor Qp, transistor Qdp, reactor L, transistor Qcr, transistor Qcf, and transistor Qhn in this order.
  • step ST22 the control device 30 turns on the transistor Qhn to set the transistor Qdp to be a switching measurement target, and turns on the transistors Qp, Qcf, and Qcr to turn on the transistor Qdp from the power supply capacitor 11. Is supplying current.
  • step ST23 the control device 30 sets the gate signals Sqp, Sqhn, Sqcf, Sqcr to a high level, and sets the other gate signals to a low level and outputs them. That is, only the gate signal Sqdp is changed from the high level to the low level from step ST22, and the other gate signals are not changed. Thereby, the transistors Qp, Qhn, Qcf, and Qcr are turned on, and the other transistors are turned off. At this time, as shown in FIG.
  • control device 30 sets gate signals Sqp, Sqhn, Sqcf, Sqcr, and Sqdp to a high level, and sets other gate signals to a low level and outputs them. . That is, only the gate signal Sqdp is changed from the low level to the high level from step ST23, and the other gate signals are not changed. As a result, a current path Pp1 is formed, and the current that was flowing in the current path Pp2 immediately before step ST24 and the current that is supplied from the power supply capacitor 11 flow in the current path Pp1.
  • the current amounts of the currents Ic, Iqp, Iqdp, -IL, Iqcr, -Iqcf, and Iqhn are further increased with the passage of time from the current amount of the current flowing in the current path Pp2 immediately before step ST24.
  • the energy Ec of the power supply capacitor 11 further decreases with time. Further, currents Iqhp, Iqif, Iqir, and Iqdn do not flow through transistors Qhp, Qif, Qir, and Qdn.
  • step ST25 as in step ST23, the control device 30 sets the gate signals Sqp, Sqhn, Sqcf, Sqcr to a high level, and sets the other gate signals to a low level and outputs them. That is, only the gate signal Sqdp is changed from the high level to the low level from step ST24, and the other gate signals are not changed. As a result, a current path Pp2 is formed, and the current that has flowed in the current path Pp1 immediately before step ST25 flows in the current path Pp2.
  • step ST23 the current amounts of the currents Ic, Iqp, and Iqdp become 0, and the current amounts of the currents Iqhn, -Iqdn, -IL, Iqcr, and -Iqcf gradually decrease with time. Further, the current amounts of the currents Iqhp, Iqif, and Iqir remain zero. In addition, since no current is supplied from the power supply capacitor 11, the energy Ec does not change. At this point, the waveform necessary for P-side switching measurement is obtained. That is, a waveform necessary for the switching measurement of the transistor Qdp can be obtained by turning off the transistor Qdp in steps ST22 to ST25. In this sense, the processing up to turning off the transistor Qdp in steps ST22 to ST25 can be said to be a switching measurement of the transistor Qdp in a narrow sense.
  • the control device 30 changes the gate signal Sqhn from the high level to the low level.
  • the transistors Qp, Qcf, and Qcr are turned on, and the other transistors are turned off.
  • the current returns from the negative terminal of the power supply capacitor 11 to the positive terminal of the power supply capacitor 11 through the diode Ddn, the reactor L, the transistor Qcr, the transistor Qcf, the diode Dhp, and the transistor Qp in this order.
  • the path Pp3 is formed, and the current that has flowed in the current path Pp2 immediately before switching the gate signal Sqhn to the low level flows in the current path Pp3. For this reason, the current amount of the current Iqhn becomes zero.
  • step ST26 the same state as in step ST25 is continued, the amount of current flowing through the current path Pp3 becomes zero, and the energy Ec of the power supply capacitor 11 is almost recovered to the fully charged state.
  • step ST27 the control device 30 sets the gate signals Sqp, Sqhp, Sqhn, Sqif, Sqir, Sqcf, Sqcr, Sqdp, and Sqdn to all low levels and outputs them. Therefore, the transistors Qp, Qhp, Qhn, Qif, Qir, Qcf, Qcr, Qdp, and Qdn are all turned off, and no current flows through each transistor. In this way, the P-side switching measurement is completed.
  • a detection circuit (not shown) detects that the amount of current flowing through the current path Pp3 is equal to or less than a predetermined threshold, and the control device 30 flows through the current path Pp3 by an output signal from the detection circuit. It may be detected that the current amount of the current is almost zero (end of the energy recovery process).
  • the predetermined threshold is set to 0 or a value slightly larger than 0, for example.
  • control device 30 may perform processing of Step ST27 according to having detected the end of energy recovery processing.
  • control device 30 when starting the P-side switching measurement, the control device 30 turns on the transistors Qp, Qhn, Qcf, and Qcr, and sets the transistor Qhn in response to the completion of waveform acquisition in the P-side switching measurement. By using the off state, the energy used in the P-side switching measurement is recovered. Then, after recovering the energy used in the P-side switching measurement, control device 30 turns off transistors Qp, Qcf, and Qcr. Accordingly, since the energy Ec is almost fully charged at the end of the P-side switching measurement, it is not necessary to charge the power supply capacitor 11 with a high-voltage power supply for the next measurement.
  • FIG. 10 is a timing chart of the N-side switching measurement of the comparative example.
  • FIG. 11 is a timing chart of the P-side switching measurement of the comparative example.
  • the N-side switching measurement of the comparative example is different from the N-side switching measurement of FIG. 2 at the timing of switching the gate signal Sqhp from the high level to the low level.
  • the control device 30 maintains the gate signal Sqhp at a high level.
  • the amount of current flowing through the current path Pn2 gradually decreases with time and eventually becomes 0, but the power supply capacitor 11 is not charged. Therefore, before performing the next measurement, the power supply capacitor 11 needs to be charged by a high voltage power supply.
  • the P-side switching measurement of the comparative example is different from the P-side switching measurement of FIG. 6 at the timing of switching the gate signal Sqhn from the high level to the low level.
  • control device 30 maintains gate signal Sqhn at a high level.
  • the amount of current flowing in the current path Pp2 currents Iqhn, -Iqdn, -IL, Iqcr, -Iqcf
  • the power supply capacitor 11 needs to be charged by a high voltage power supply.
  • FIG. 12 is a timing chart of N-side switching measurement including overcurrent prevention processing in the dynamic characteristic test apparatus 1.
  • FIG. 13 is a diagram illustrating a current path during overcurrent prevention processing in N-side switching measurement.
  • the gate signals in steps ST31 to ST33 are the same as those in steps ST11 to ST13 in FIG. In this example, it is assumed that the transistor Qdn is not turned off in step ST33 because the DUT 50 is defective. In this case, after step ST32, currents (currents Ic, Iqp, Iqhp, Iqcf, ⁇ Iqcr, IL, Iqdn) continue to flow through the current path Pn1, and the amount of current continues to increase with time.
  • step ST34 the amount of current flowing through the current path Pn1 becomes larger than the N-side overcurrent threshold Ref_N, and the comparator 23 outputs a low-level output signal to the control device 30. Then, in response to receiving the low level output signal from the comparator 23, the control device 30 detects an overcurrent, changes the gate signals Sqp and Sqhp from the high level to the low level, and changes the gate signal Sqir to the low level. Change from high to high. Thereby, the transistors Qcf, Qcr, Qir, and Qdn are turned on, and the other transistors are turned off. At this time, as shown in FIG.
  • a current path Pn41 that sequentially circulates the transistor Qcf, the transistor Qcr, the reactor L, the transistor Qdn, and the diode Dhn is formed, and the reactor L, the transistor Qir, and the diode Dif are sequentially connected.
  • a circulating current path Pn42 is formed. Then, the overcurrent that has flowed through the current path Pn1 flows separately into the current path Pn41 and the current path Pn42. This prevents overcurrent from continuing to flow through the test circuit 10 and the DUT 50.
  • step ST35 as in step ST15, the control device 30 changes only the gate signal Sqdn from the high level to the low level from the state of the gate signal in step ST34, and does not change the other gate signals.
  • the DUT 50 since the DUT 50 is defective, the transistor Qdn is not turned off, and each transistor maintains the same state as step ST34. Since the current flowing through the current path Pn41 circulates through the current path Pn41, energy is consumed by the resistance components of the transistor Qcf, the transistor Qcr, the reactor L, the transistor Qdn, and the diode Dhn. It decreases with the passage of time.
  • step ST36 the state of the gate signal in step ST35 is continued, and the amount of current flowing through the current path Pn41 and the current path Pn42 is further reduced to zero.
  • step ST37 the control device 30 sets the gate signals Sqp, Sqhp, Sqhn, Sqif, Sqir, Sqcf, Sqcr, Sqdp, and Sqdn to all low levels and outputs them. Therefore, the transistors Qp, Qhp, Qhn, Qif, Qir, Qcf, Qcr, Qdp, and Qdn are all turned off, and no current flows through each transistor.
  • a detection circuit or the like detects that the amount of current flowing through the current path Pn41 and the current path Pn42 is equal to or less than a predetermined threshold, and the control device 30 uses the output signal from the detection circuit to It may be detected that the amount of current flowing through Pn41 and the current path Pn42 has become almost zero (end of energy consumption processing).
  • the predetermined threshold is set to 0 or a value slightly larger than 0, for example.
  • control device 30 may perform processing of Step ST37 according to having detected the end of energy consumption processing.
  • control device 30 turns off the transistors Qp and Qhp and turns on the transistor Qir in response to the detection of the overcurrent in the N-side switching measurement. 14 is operated. As a result, the energy accumulated in the reactor L when an overcurrent occurs is consumed by the overcurrent prevention circuit 14, and further overcurrent is prevented from flowing through the DUT 50 in the N-side switching measurement.
  • FIG. 14 is a timing chart of P-side switching measurement including overcurrent prevention processing in the dynamic characteristic test apparatus 1.
  • FIG. 15 is a diagram illustrating a current path during overcurrent prevention processing in P-side switching measurement.
  • the gate signals in steps ST41 to ST43 are the same as those in steps ST21 to ST23 in FIG. In this example, it is assumed that the transistor Qdp is not turned off in step ST43 because the DUT 50 is defective. In this case, after step ST42, currents (currents Ic, Iqp, Iqdp, -IL, Iqcr, -Iqcf, Iqhn) continue to flow through the current path Pp1, and the amount of current continues to increase with time.
  • step ST44 the amount of current flowing through the current path Pp1 becomes larger than the P-side overcurrent threshold Ref_P, and the comparator 24 outputs a low-level output signal to the control device 30. Then, in response to receiving the low level output signal from the comparator 24, the control device 30 detects an overcurrent, changes the gate signals Sqp and Sqhn from the high level to the low level, and changes the gate signal Sqif to the low level. Change from high to high. Accordingly, the transistors Qcf, Qcr, Qif, and Qdp are turned on, and the other transistors are turned off. At this time, as shown in FIG.
  • a current path Pp41 that circulates through the reactor L, the transistor Qcr, the transistor Qcf, the diode Dhp, and the transistor Qdp in order is formed, and the reactor L, the transistor Qif, and the diode Dir are sequentially connected.
  • a circulating current path Pp42 is formed. Then, the overcurrent that has flowed through the current path Pp1 flows separately into the current path Pp41 and the current path Pp42. This prevents overcurrent from continuing to flow through the test circuit 10 and the DUT 50.
  • step ST45 the control device 30 changes only the gate signal Sqdp from the high level to the low level from the state of the gate signal in step ST44, and does not change the other gate signals.
  • the DUT 50 since the DUT 50 is defective, the transistor Qdp is not turned off, and each transistor maintains the same state as step ST44. Since the current flowing through the current path Pp41 circulates through the current path Pp41, energy is consumed by the reactor L, the transistor Qcr, the transistor Qcf, the diode Dhp, the resistance component of the transistor Qdp, and the like. It decreases with the passage of time. Similarly, since the current flowing through the current path Pp42 circulates through the current path Pp42, energy is consumed by the resistance components of the reactor L, the transistor Qif, and the diode Dir, and the amount of current decreases with time. To go.
  • step ST46 the state of the gate signal in step ST45 is continued, and the amount of current flowing through the current path Pp41 and the current path Pp42 is further reduced to zero.
  • step ST47 the control device 30 sets the gate signals Sqp, Sqhp, Sqhn, Sqif, Sqir, Sqcf, Sqcr, Sqdp, and Sqdn to all low levels and outputs them. Therefore, the transistors Qp, Qhp, Qhn, Qif, Qir, Qcf, Qcr, Qdp, and Qdn are all turned off, and no current flows through each transistor.
  • a detection circuit or the like detects that the amount of current flowing through the current path Pp41 and the current path Pp42 is equal to or less than a predetermined threshold, and the control device 30 uses the output signal from the detection circuit to It may be detected that the amount of current flowing through Pp41 and current path Pp42 has become substantially zero (end of energy consumption processing).
  • the predetermined threshold is set to 0 or a value slightly larger than 0, for example.
  • the control apparatus 30 may perform the process of step ST47 according to having detected the completion
  • control device 30 turns off the transistors Qp and Qhn and turns on the transistor Qif in response to the detection of the overcurrent in the P-side switching measurement. 14 is operated. As a result, the energy accumulated in the reactor L when an overcurrent occurs is consumed by the overcurrent prevention circuit 14, and further overcurrent is prevented from flowing through the DUT 50 in the P-side switching measurement.
  • FIG. 16 is a timing chart of N-side switching measurement including overcurrent prevention processing using a high-speed cutoff circuit in the dynamic characteristic test apparatus 1.
  • FIG. 17 is a diagram illustrating a current path during overcurrent prevention processing using a high-speed cutoff circuit in N-side switching measurement.
  • the timing chart of the gate signal shown in FIG. 16 further includes the gate signal Sqcf, The difference is that Sqcr is changed from a high level to a low level. For this reason, when an overcurrent is detected, the transistors Qir and Qdn are turned on, and the other transistors are turned off. At this time, as shown in FIG. 17, the current path Pn41 is not formed, but only the current path Pn42 is formed, so that the overcurrent that has flowed through the current path Pn1 flows into the current path Pn42. The current flowing through the current path Pn42 consumes energy by circulating through the current path Pn42, so that the amount of current decreases with the passage of time.
  • the control device 30 turns off the transistors Qp and Qhp and turns on the transistor Qir in response to the detection of the overcurrent in the N-side switching measurement. 14 is operated, and the transistors Qcf and Qcr are turned off to operate the high-speed cutoff circuit 15. As a result, the energy accumulated in the reactor L when an overcurrent occurs flows to the overcurrent prevention circuit 14 as a current and is consumed by the overcurrent prevention circuit 14. When the high-speed cutoff circuit 15 is not operated, the overcurrent that has flowed through the current path Pn1 flows separately into the current path Pn41 and the current path Pn42.
  • the resistance value contributing to the overcurrent consumption is a combined resistance value of the resistance value of the resistance component of the current path Pn41 and the resistance value of the resistance component of the current path Pn42. Becomes smaller. For this reason, compared with the case where the high-speed cutoff circuit 15 is not operated, when the high-speed cutoff circuit 15 is operated, the resistance value that contributes to the overcurrent consumption is increased, so that the energy stored in the reactor L is increased. Is consumed in a short time, and in the N-side switching measurement, further overcurrent is more reliably prevented from flowing through the DUT 50.
  • FIG. 18 is a timing chart of P-side switching measurement including overcurrent prevention processing using a high-speed cutoff circuit in the dynamic characteristic test apparatus 1.
  • FIG. 19 is a diagram illustrating a current path during overcurrent prevention processing using a high-speed cutoff circuit in P-side switching measurement.
  • the gate signal timing chart shown in FIG. 18 is further compared with the gate signal timing chart shown in FIG. 14 in response to the detection of an overcurrent by the control device 30 in step ST64, and the gate signal Sqcf, The difference is that Sqcr is changed from a high level to a low level. Therefore, when an overcurrent is detected, the transistors Qif and Qdp are turned on, and the other transistors are turned off. At this time, as shown in FIG. 19, the current path Pp41 is not formed, but only the current path Pp42 is formed. Therefore, the overcurrent that has flowed through the current path Pp1 flows into the current path Pp42. The current flowing through the current path Pp42 consumes energy by circulating through the current path Pp42, so that the amount of current decreases with the passage of time.
  • the control device 30 turns off the transistors Qp and Qhn and turns on the transistor Qif in response to the detection of the overcurrent in the P-side switching measurement. 14 is operated, and the transistors Qcf and Qcr are turned off to operate the high-speed cutoff circuit 15. As a result, the energy accumulated in the reactor L when an overcurrent occurs flows to the overcurrent prevention circuit 14 as a current and is consumed by the overcurrent prevention circuit 14. When the high-speed cutoff circuit 15 is not operated, the overcurrent that has flowed through the current path Pp1 flows separately into the current path Pp41 and the current path Pp42.
  • the resistance value contributing to the overcurrent consumption is a combined resistance value of the resistance value of the resistance component of the current path Pp41 and the resistance value of the resistance component of the current path Pp42, and is based on the resistance value of the resistance component of the current path Pp42.
  • FIG. 20 is a timing chart of the N-side short-circuit tolerance measurement in the dynamic characteristic test apparatus 1.
  • the control device 30 sets all of the relay signals Sswp, Sswn and the gate signals Sqp, Sqhp, Sqhn, Sqif, Sqir, Sqcf, Sqcr, Sqdp, Sqdn to a low level. Output.
  • the switches SWp and SWn and the transistors Qp, Qhp, Qhn, Qif, Qir, Qcf, Qcr, Qdp, and Qdn are all in an off state, and no current flows through each transistor and switch.
  • step ST72 the control device 30 sets the relay signal Sswp and the gate signals Sqp and Sqdn to a high level, and sets the relay signal Sswn and the gate signals Sqhp, Sqhn, Sqif, Sqir, Sqcf, Sqcr, and Sqdp to a low level. Set to output. As a result, the switch SWp and the transistors Qp and Qdn are turned on, and the other switches and transistors are turned off.
  • a current path is formed from the + terminal of the power supply capacitor 11 through the transistor Qp, the switch SWp, and the transistor Qdn in order to return to the ⁇ terminal of the power supply capacitor 11, and a current flows through the current path.
  • a short-circuit current flows through the transistor Qdn without passing through the reactor L.
  • step ST73 as in step ST71, the control device 30 sets the relay signals Sswp and Sswn and the gate signals Sqp, Sqhp, Sqhn, Sqif, Sqir, Sqcf, Sqcr, Sqdp, and Sqdn to all low levels. And output. As a result, all switches and transistors are turned off, and no current flows through each transistor and switch. N-side short-circuit tolerance measurement is performed by the above series of processes.
  • FIG. 21 is a timing chart of the P-side short-circuit tolerance measurement in the dynamic characteristic test apparatus 1.
  • the control device 30 sets all of the relay signals Sswp, Sswn and the gate signals Sqp, Sqhp, Sqhn, Sqif, Sqir, Sqcf, Sqcr, Sqdp, Sqdn to a low level. Output.
  • the switches SWp and SWn and the transistors Qp, Qhp, Qhn, Qif, Qir, Qcf, Qcr, Qdp, and Qdn are all in an off state, and no current flows through each transistor and switch.
  • step ST82 the control device 30 sets the relay signal Sswn and the gate signals Sqp, Sqdp to a high level, and sets the relay signal Sswp and the gate signals Sqhp, Sqhn, Sqif, Sqir, Sqcf, Sqcr, Sqdn to a low level.
  • the switch SWn and the transistors Qp and Qdp are turned on, and the other switches and transistors are turned off.
  • a current path is formed from the positive terminal of the power supply capacitor 11 through the transistor Qp, the transistor Qdp, and the switch SWn in order to return to the negative terminal of the power supply capacitor 11, and a current flows through the current path.
  • a short-circuit current flows through the transistor Qdp without passing through the reactor L.
  • step ST83 as in step ST81, the control device 30 sets the relay signals Sswp and Sswn and the gate signals Sqp, Sqhp, Sqhn, Sqif, Sqir, Sqcf, Sqcr, Sqdp, and Sqdn to all low levels. And output. As a result, all switches and transistors are turned off, and no current flows through each transistor and switch.
  • the P-side short-circuit tolerance measurement is performed by the series of processes described above.
  • the transistors Qp, Qhp, Qcf, and Qcr are turned on when starting the switching measurement of the transistor Qdn, and the switching measurement of the transistor Qdn (capture of a waveform for switching measurement) is performed.
  • the transistors Qhp, Qcf, and Qcr are turned off after the transistor Qhp is turned off in response to the termination.
  • the current supplied from the power supply capacitor 11 to the transistor Qdn flows to the reactor L from the connection portion Cs toward the connection portion Cd, and the switching measurement of the transistor Qdn (capture of a waveform for switching measurement).
  • energy is accumulated in the reactor L.
  • the transistor Qhp is turned off in response to the end of the switching measurement of the transistor Qdn (capture of a waveform for switching measurement), whereby the diode Dhn, the transistor Qcf, A current path Pn3 that passes through the transistor Qcr, the reactor L, the diode Ddp, and the transistor Qp in order and returns to the + terminal of the power supply capacitor 11 is formed, and the energy accumulated in the reactor L flows as a current to the + terminal of the power supply capacitor 11 . Thereby, a part of the energy (electric power) of the power supply capacitor 11 used for the switching measurement of the transistor Qdn can be recovered. As a result, it is possible to reduce the amount of power used in the dynamic characteristic test. In addition, for the next measurement, the time for charging the power supply capacitor 11 can be shortened, and the machine cycle can be shortened (improved).
  • the transistors Qp, Qhn, Qcf, and Qcr are turned on when starting the switching measurement of the transistor Qdp, and the switching measurement of the transistor Qdp (taking in the waveform for the switching measurement) is completed. Accordingly, after the transistor Qhn is turned off, the transistors Qp, Qcf, and Qcr are turned off.
  • the current supplied from the power supply capacitor 11 to the transistor Qdp flows to the reactor L from the connection Cd toward the connection Cs, and the switching measurement of the transistor Qdp (capture of a waveform for switching measurement) At the time when is completed, energy is accumulated in the reactor L.
  • the transistor Qhn is turned off in response to the end of the switching measurement of the transistor Qdp (the waveform acquisition for the switching measurement), so that the diode Ddn, the reactor L, A current path Pp3 that passes through the transistor Qcr, the transistor Qcf, the diode Dhp, and the transistor Qp in order and returns to the positive terminal of the power supply capacitor 11 is formed, and the energy accumulated in the reactor L flows as a current to the positive terminal of the power supply capacitor 11 . Thereby, a part of the energy (power) of the power supply capacitor 11 used for the switching measurement of the transistor Qdp can be recovered. As a result, it is possible to further reduce power consumption in the dynamic characteristic test. Further, the time for charging the power supply capacitor 11 can be shortened for the next measurement, and the machine cycle can be further shortened (improved).
  • the transistor Qdn is selected as an object for switching measurement by turning on the transistor Qhp.
  • the reactor L goes from the connection Cs to the connection Cd. Current flows.
  • the transistor Qdp is selected as an object for switching measurement, and in the switching measurement of the transistor Qdp, a current flowing from the connection Cd to the connection Cs flows in the reactor L. That is, a bidirectional current can flow through the reactor L.
  • the transistor Lir is turned on, whereby the reactor L, the transistor Qir, and the diode A current path Pn42 that circulates Dif is formed.
  • the energy stored in the reactor L is consumed by flowing through the current path Pn42 as a current.
  • the transistor Qif is turned on, whereby the reactor L, the transistor Qif, and the diode A current path Pp42 that circulates Dir is formed.
  • the energy accumulated in the reactor L is consumed by flowing through the current path Pp42 as a current.
  • a bidirectional current flows through the reactor L. It is possible to prevent the flow. Thereby, the failure etc. of the dynamic characteristic test apparatus 1 can be avoided. As a result, the frequency of maintenance such as component replacement can be reduced, which contributes to cost reduction.
  • the diode Dif is a free-wheeling diode of the transistor Qif, and the diode Dir is a free-wheeling diode of the transistor Qir.
  • the diode Dif is arranged so that its forward direction is a direction from the connection part Cd to the connection part Cs, and the diode Dir is arranged so that its forward direction is a direction from the connection part Cs to the connection part Cd. Yes.
  • the above-described current paths Pn42 and Pp42 are formed using the free-wheeling diode for protecting the transistors Qif and Qir, a further bidirectional overcurrent flows to the DUT 50 while suppressing an increase in parts. Can be prevented.
  • the transistor Qir when an overcurrent is detected, the transistor Qir is turned on, and the transistors Qcf and Qcr are turned off, so that the current path Pn41 different from the current path Pn42 is changed. Can be blocked. For this reason, the energy accumulated in the reactor L can be made to flow through the overcurrent prevention circuit 14 (current path Pn42) as a current, and the energy accumulated in the reactor L can be consumed at high speed.
  • the transistor Qdp when an overcurrent is detected, the transistor Qif is turned on, and the transistors Qcf and Qcr are turned off, so that the current path Pp41 different from the current path Pp42 is obtained. Can be cut off. For this reason, the energy accumulated in the reactor L can be made to flow through the overcurrent prevention circuit 14 (current path Pp42) as a current, and the energy accumulated in the reactor L can be consumed at high speed.
  • the dynamic characteristic test apparatus and the dynamic characteristic test method according to the present invention are not limited to the above embodiment.
  • the transistors Qp, Qhp, Qhn, Qif, Qir, Qcf, and Qcr are not limited to IGBTs, but may be any switch unit that can switch between an on state and an off state.
  • the transistors Qp, Qhp, Qhn, Qif, Qir, Qcf, Qcr other transistors such as FETs (Field-Effect-Transistors) and bipolar transistors, relays capable of high-speed operation, and the like can be used.
  • FETs Field-Effect-Transistors
  • bipolar transistors relays capable of high-speed operation, and the like can be used.
  • the power supply capacitor 11 another chargeable power supply may be used.
  • a non-chargeable power source may be used, and the main switch unit 12 may not be provided.
  • the positive terminal of the power supply capacitor 11 is electrically connected to the collector of the transistor Qhp, the cathode of the diode Dhp, one end of the switch SWp, the collector of the transistor Qdp, and the cathode of the diode Ddp.
  • the overcurrent prevention circuit 14 and the high-speed cutoff circuit 15 may not be provided.
  • the emitter of the transistor Qhp, the collector of the transistor Qhn, and one end of the reactor L are electrically connected.
  • the high-speed cutoff circuit 15 may at least turn off the transistor Qcf when interrupting the overcurrent in the N-side switching measurement at a high speed, and at least when interrupting the overcurrent in the P-side switching measurement at a high speed.
  • the transistor Qcr may be turned off.
  • the high-speed cutoff circuit 15 is provided in series with the reactor L in a portion of the current path Pn41 that does not overlap with the current path Pn42. Good.
  • the high-speed cutoff circuit 15 is provided in series with the reactor L in a portion of the current path Pp41 that does not overlap with the current path Pp42. Good.
  • the high-speed cutoff circuit 15 may be provided between the DUT 50 and the reactor L, for example.
  • the high-speed interruption circuit 15 should just be provided with the switch part which can switch a conduction
  • the overcurrent prevention circuit 14 may be configured to prevent bidirectional overcurrent.
  • the overcurrent prevention circuit 14 may be, for example, a reverse blocking IGBT. More specifically, the overcurrent prevention circuit 14 includes a switch part and a diode electrically connected in series in one direction from the connection part Cd to the connection part Cs, and goes from the connection part Cs to the connection part Cd. In the other direction, it is only necessary to include a switch part and a diode electrically connected in series. The diodes in one direction are arranged so that the forward direction is one direction, and the diodes in the other direction need only be arranged so that the forward direction is the other direction.
  • the overcurrent prevention circuit 14 may be configured as a diode bridge, for example.
  • the overcurrent prevention circuit 14 of the modification includes a transistor Qi, a diode Di, and diodes D1 to D4.
  • the transistor Qi is an IGBT.
  • the cathode of the diode Di is electrically connected to the collector of the transistor Qi, and the anode of the diode Di is electrically connected to the emitter of the transistor Qi. That is, the diode Di is a free wheeling diode electrically connected in parallel to the transistor Qi.
  • the collector of the transistor Qi is electrically connected to the cathode of the diode D1 and the cathode of the diode D3, and the emitter of the transistor Qi is electrically connected to the anode of the diode D2 and the anode of the diode D4.
  • the anode of the diode D1 and the cathode of the diode D2 are electrically connected to each other, and are electrically connected to the collector of the transistor Qcr, the cathode of the diode Dcr, and one end of the reactor L.
  • the anode of the diode D3 and the cathode of the diode D4 are electrically connected to each other, and are electrically connected to the other end of the reactor L, the other end of the switch SWp, one end of the switch SWn, and the O terminal of the DUT 50.
  • step ST34 of FIG. 12 the amount of current flowing through the current path Pn1 (currents Ic, Iqp, Iqhp, Iqcf, ⁇ Iqcr, IL, Iqdn) increases and becomes larger than the N-side overcurrent threshold Ref_N.
  • the control device 30 detects the overcurrent in response to receiving the low level output signal from the comparator 23, and the gate signals Sqp, Sqhp. Is changed from high level to low level. Thereby, the transistors Qcf, Qcr, and Qdn are turned on, and the other transistors are turned off.
  • the current path Pn41 is formed, and the overcurrent that has flowed through the current path Pn1 flows into the current path Pn41.
  • the control device 30 changes the gate signal Sqi from the low level to the high level.
  • the transistor Qi is further turned on, and as shown in FIG. 23, a current path Pn43 that sequentially circulates the reactor L, the diode D3, the transistor Qi, and the diode D2 is formed, and the current flowing through the current path Pn41 Part of the current flows in the current path Pn43. Since the current flowing through the current path Pn41 circulates through the current path Pn41, energy is consumed by the resistance components of the transistor Qcf, the transistor Qcr, the reactor L, the transistor Qdn, and the diode Dhn. It decreases with the passage of time.
  • step ST44 in FIG. 14 the amount of current flowing through the current path Pp1 (currents Ic, Iqp, Iqdp, -IL, Iqcr, -Iqcf, Iqhn) increases and is larger than the P-side overcurrent threshold Ref_P.
  • the control device 30 detects an overcurrent in response to the reception of the low level output signal from the comparator 24, and the gate signal Sqp, Sqhn is changed from high level to low level.
  • the transistors Qcf, Qcr, and Qdp are turned on, and the other transistors are turned off.
  • the current path Pp41 is formed, and the overcurrent that has flowed through the current path Pp1 flows into the current path Pp41.
  • the control device 30 changes the gate signal Sqi from the low level to the high level.
  • the transistor Qi is further turned on, and as shown in FIG. 24, a current path Pp43 that sequentially circulates the reactor L, the diode D1, the transistor Qi, and the diode D4 is formed, and the current flowing through the current path Pp41 Part of the current flows in the current path Pp43. Since the current flowing through the current path Pp41 circulates through the current path Pp41, energy is consumed by the reactor L, the transistor Qcr, the transistor Qcf, the diode Dhp, the resistance component of the transistor Qdp, and the like. It decreases with the passage of time.
  • the overcurrent prevention circuit 14 includes transistors Qif and Qir and diodes Dif and Dir
  • the transistors Qp and Qhp are turned off in the N-side switching measurement. Even before the transistor Qir is turned on, a short-circuit current that does not pass through the reactor L does not flow.
  • the overcurrent prevention circuit 14 includes the transistors Qif and Qir and the diodes Dif and Dir
  • the timing for turning off the transistors Qp and Qhp and the timing for turning on the transistor Qir is arbitrary. The same applies to the P-side switching measurement.
  • the overcurrent prevention circuit 14 when the overcurrent prevention circuit 14 is configured by a diode bridge, in the N-side switching measurement, before the transistors Qp and Qhp are turned off, the transistor Qi Is turned on, the current path returns from the positive terminal of the power supply capacitor 11 to the negative terminal of the power supply capacitor 11 through the transistor Qp, transistor Qhp, transistor Qcf, transistor Qcr, diode D1, transistor Qi, diode D4, and transistor Qdn.
  • Pn5 is formed. Since the current path Pn5 is a current path that does not pass through the reactor L, a short-circuit current flows through the dynamic characteristic test apparatus 1.
  • the overcurrent prevention circuit 14 is configured by a diode bridge, when the overcurrent prevention circuit 14 is operated, it is necessary to turn on the transistor Qi after turning off the transistors Qp and Qhp. is there. The same applies to the P-side switching measurement.
  • the overcurrent prevention circuit 14 includes the transistors Qif and Qir and the diodes Dif and Dir
  • the transistors Qif and Qir are electrically connected in series, either the transistor Qif or Qir Is turned on, only a one-way current flows through the overcurrent prevention circuit 14. Therefore, in the N-side switching measurement, even if the transistor Qir is turned on before the transistors Qp and Qhp are turned off, no short-circuit current flows through the transistor Qdn. In the P-side switching measurement, the transistors Qp and Qhn are turned on. Even if the transistor Qif is turned on before being turned off, no short-circuit current flows through the transistor Qdp. Therefore, it is possible to reduce the restriction on the timing for operating the overcurrent prevention circuit 14 and to simplify the control.
  • the DUT 50 is not limited to the 2-in-1 type power semiconductor module, and may be any device including the transistor Qdp and the transistor Qdn.
  • the DUT 50 may be a power semiconductor module such as a 4 in 1 type, a 6 in 1 type, and an 8 in 1 type.
  • FIG. 26 is a circuit diagram showing another modification of the dynamic characteristic test apparatus.
  • a dynamic characteristic test apparatus 1A shown in FIG. 26 is a dynamic characteristic test apparatus when a 6-in-1 type power semiconductor module is used as a DUT.
  • the dynamic characteristic test apparatus 1A is different from the dynamic characteristic test apparatus 1 in that the DUT 50A is used as a device under test instead of the DUT 50, and the test circuit 10A is provided instead of the test circuit 10.
  • the test circuit 10 ⁇ / b> A is different from the test circuit 10 in that it further includes a selection circuit 17. In FIG. 26, the overcurrent detection circuit 20 is not shown.
  • the DUT 50A is a 6in1 type power semiconductor module including six transistors. Specifically, the DUT 50A includes a set of transistors Qdp and Qdn and diodes Ddp and Ddn of the DUT 50 in parallel for three phases (U, V, and W phases). That is, the DUT 50A includes transistors Qdpu and Qdnu and diodes Ddpu and Ddnu (first diode and second diode) for the U phase, and transistors Qdpv and Qdnv and diodes Ddpv and Ddnv (first diode, first diode) for the V phase.
  • the DUT 50A has a P terminal, a U terminal, a V terminal, a W terminal, and an N terminal.
  • the P terminal is electrically connected to the collectors of the transistors Qdpu, Qdpv, and Qdpw
  • the N terminal is electrically connected to the emitters of the transistors Qdnu, Qdnv, and Qdnw.
  • the U terminal is electrically connected to the emitter of transistor Qdpu and the collector of transistor Qdnu
  • the V terminal is electrically connected to the emitter of transistor Qdpv and the collector of transistor Qdnv
  • the W terminal is the emitter of transistor Qdpw and the collector of transistor Qdnw. Is electrically connected.
  • the DUT 50A is used in a three-phase inverter circuit
  • the transistor Qdpu is the U-phase upper arm
  • the transistor Qdnu is the U-phase lower arm
  • the transistor Qdpv is the V-phase upper arm
  • the transistor Qdnv is the V-phase lower arm
  • the transistor Qdpw can be used for the upper arm of the W phase
  • the transistor Qdnw can be used for the lower arm of the W phase.
  • the selection circuit 17 is a circuit for selecting the transistors Qdp and Qdn of the phase for performing the switching measurement from the three-phase (U, V, W phase) transistors Qdp and Qdn included in the DUT 50A.
  • the selection circuit 17 includes switches SWu, SWv, SWw.
  • the switches SWu, SWv, SWw are relays.
  • One ends of the switches SWu, SWv, SWw are electrically connected to each other, and are electrically connected to the other end of the reactor L, the collector of the transistor Qir, the cathode of the diode Dir, the other end of the switch SWp, and one end of the switch SWn.
  • the other ends of the switches SWu, SWv, SWw are electrically connected to the U, V, W terminals of the DUT 50A, respectively.
  • the control device 30 further outputs the gate signals Sqdpu, Sqdnu, Sqdpv, Sqdnv, Sqdpw, Sqdnw to the transistors Qdpu, Qdnu, Qdpv, Qdnv, Qdpw, Qdw, respectively.
  • each transistor is switched between an on state and an off state.
  • the control apparatus 30 switches the on state and the off state of each switch by outputting the relay signals Sswu, Sswv, and Ssww to the switches SWu, SWv, and SWw, respectively.
  • the DUT is another type of power semiconductor module, it can be configured in the same manner as the dynamic characteristic test apparatus 1A.

Abstract

This dynamic characteristic test apparatus comprises: a power source; a reactor; a selection circuit that has first and second switching units electrically connected in series with each other, a third diode connected in parallel to the first switching unit, and a fourth diode connected in parallel to the second switching unit, and that is for selecting a first semiconductor or a second semiconductor as a subject for switching measurement; a third switching unit that switches between supplying current and stopping the supply from the power source to the first semiconductor or the second semiconductor; and a control device that controls switching between on states and off states of the switching units. A first connection part electrically connecting the first and second semiconductors with each other is electrically connected, via the reactor, to a second connection part electrically connecting the first and second switching units with each other. The control device turns on the second and third switching units when switching measurement of the first semiconductor is started, turns off the second switching unit in accordance with the end of the switching measurement of the first semiconductor, and then, turns off the third switching unit.

Description

動特性試験装置及び動特性試験方法Dynamic characteristic test apparatus and dynamic characteristic test method
 本開示は、動特性試験装置及び動特性試験方法に関する。 This disclosure relates to a dynamic characteristic test apparatus and a dynamic characteristic test method.
 従来、絶縁ゲート型バイポーラトランジスタ(IGBT:Insulated Gate Bipolar Transistor)等のパワー半導体モジュールの検査として、動特性(AC:Alternating Current)試験が行われている。例えば、特許文献1に記載の試験装置は、高圧電源でコンデンサを充電し、コンデンサが充電された状態でスイッチング測定を行っている。 Conventionally, as an inspection of power semiconductor modules such as an insulated gate bipolar transistor (IGBT: Insulated Gate Bipolar Transistor), a dynamic characteristic (AC: Alternative Current) test has been performed. For example, the test apparatus described in Patent Document 1 charges a capacitor with a high-voltage power supply, and performs switching measurement with the capacitor charged.
特開2013-160572号公報JP 2013-160572 A
 従来の試験装置では、コンデンサに蓄積されたエネルギーは動特性試験回路において消費されるので、スイッチング測定を行うごとにコンデンサを高圧電源で充電する必要がある。このため、動特性試験を行うごとに電力使用量が増加する。 In the conventional test apparatus, since the energy stored in the capacitor is consumed in the dynamic characteristic test circuit, it is necessary to charge the capacitor with a high-voltage power source every time switching measurement is performed. For this reason, power consumption increases every time the dynamic characteristic test is performed.
 本技術分野では、動特性試験における電力使用量の削減が望まれている。 In this technical field, reduction of power consumption in dynamic characteristic tests is desired.
 本開示の一側面に係る動特性試験装置は、電気的に直列に接続された第1半導体及び第2半導体と、第1半導体に電気的に並列に接続された第1ダイオードと、第2半導体に電気的に並列に接続された第2ダイオードと、を含む被試験デバイスの動特性試験を行う動特性試験装置である。この動特性試験装置は、動特性試験のための電流を供給する、充電可能な電源と、第1半導体及び第2半導体の負荷となるリアクトルと、電気的に直列に接続された第1スイッチ部及び第2スイッチ部、第1スイッチ部に電気的に並列に接続された第3ダイオード、並びに、第2スイッチ部に電気的に並列に接続された第4ダイオードを有し、第1半導体及び第2半導体のうちのいずれかをスイッチング測定の対象として選択するための選択回路と、電源から第1半導体または第2半導体への電流の供給及び遮断を切り替える第3スイッチ部と、第1スイッチ部、第2スイッチ部及び第3スイッチ部のオン状態及びオフ状態を切替制御する制御装置と、を備える。第1半導体及び第2半導体を電気的に接続する第1接続部と第1スイッチ部及び第2スイッチ部を電気的に接続する第2接続部とは、リアクトルを介して電気的に接続される。電源の正極端子は第1ダイオードのカソード及び第3ダイオードのカソードに電気的に接続され、電源の負極端子は第2ダイオードのアノード及び第4ダイオードのアノードに電気的に接続される。制御装置は、第1半導体のスイッチング測定を開始する際に第2スイッチ部及び第3スイッチ部をオン状態とし、第1半導体のスイッチング測定が終了したことに応じて第2スイッチ部をオフ状態とした後に、第3スイッチ部をオフ状態とする。 A dynamic characteristic test apparatus according to an aspect of the present disclosure includes a first semiconductor and a second semiconductor that are electrically connected in series, a first diode that is electrically connected in parallel to the first semiconductor, and a second semiconductor. And a second diode electrically connected in parallel to each other, a dynamic characteristic test apparatus for performing a dynamic characteristic test of a device under test. The dynamic characteristic test apparatus includes a chargeable power supply for supplying a current for dynamic characteristic test, a reactor serving as a load of the first semiconductor and the second semiconductor, and a first switch unit electrically connected in series. And the second switch unit, the third diode electrically connected in parallel to the first switch unit, and the fourth diode electrically connected in parallel to the second switch unit. A selection circuit for selecting one of the two semiconductors as a target for switching measurement, a third switch unit for switching supply and interruption of current from the power source to the first semiconductor or the second semiconductor, a first switch unit, And a control device that performs switching control of an on state and an off state of the second switch unit and the third switch unit. The first connection part that electrically connects the first semiconductor and the second semiconductor and the second connection part that electrically connects the first switch part and the second switch part are electrically connected via a reactor. . The positive terminal of the power supply is electrically connected to the cathode of the first diode and the cathode of the third diode, and the negative terminal of the power supply is electrically connected to the anode of the second diode and the anode of the fourth diode. The control device sets the second switch unit and the third switch unit to the on state when starting the switching measurement of the first semiconductor, and sets the second switch unit to the off state in response to the completion of the switching measurement of the first semiconductor. After that, the third switch unit is turned off.
 この動特性試験装置によれば、第1半導体のスイッチング測定を開始する際に第2スイッチ部及び第3スイッチ部がオン状態とされ、第1半導体のスイッチング測定が終了したことに応じて第2スイッチ部がオフ状態とされた後に、第3スイッチ部がオフ状態とされる。第1半導体のスイッチング測定時には、電源から第1半導体に供給された電流は、第1半導体及び第2半導体の第1接続部から第1スイッチ部及び第2スイッチ部の第2接続部に向かってリアクトルに流れ、第1半導体のスイッチング測定が終了した時点では、リアクトルにエネルギーが蓄積されている。このため、第1半導体のスイッチング測定が終了したことに応じて第2スイッチ部がオフ状態とされることによって、電源の負極端子から第2ダイオード、リアクトル、第3ダイオード、及び第3スイッチ部を通って電源の正極端子に戻る電流経路が形成され、リアクトルに蓄積されているエネルギーが電流として電源の正極端子に流れる。これにより、第1半導体のスイッチング測定に用いられた電源のエネルギー(電力)の一部を回収することができる。その結果、動特性試験における電力使用量の削減が可能となる。なお、本明細書において、「電気的に接続される」とは、接続対象の2つの要素が直接接続される場合だけでなく、接続対象の2つの要素間に電気的に導通可能な他の要素が接続されている場合も含む。他の要素としては、リレー及びトランジスタ等のスイッチ部等が含まれ得る。 According to this dynamic characteristic test apparatus, the second switch unit and the third switch unit are turned on when starting the switching measurement of the first semiconductor, and the second switching is performed in response to the end of the switching measurement of the first semiconductor. After the switch unit is turned off, the third switch unit is turned off. During the switching measurement of the first semiconductor, the current supplied from the power source to the first semiconductor is directed from the first connection portion of the first semiconductor and the second semiconductor toward the second connection portion of the first switch portion and the second switch portion. At the time when the first semiconductor switching measurement is completed after flowing through the reactor, energy is accumulated in the reactor. Therefore, the second switch unit is turned off in response to the completion of the switching measurement of the first semiconductor, so that the second diode, the reactor, the third diode, and the third switch unit are connected from the negative terminal of the power source. A current path is formed to return to the positive terminal of the power source, and energy stored in the reactor flows as a current to the positive terminal of the power source. Thereby, a part of energy (electric power) of the power source used for the switching measurement of the first semiconductor can be recovered. As a result, it is possible to reduce the amount of power used in the dynamic characteristic test. In this specification, “electrically connected” means not only the case where two elements to be connected are directly connected, but also other elements that can be electrically connected between the two elements to be connected. This includes cases where elements are connected. Other elements may include a switch unit such as a relay and a transistor.
 制御装置は、第2半導体のスイッチング測定を開始する際に第1スイッチ部及び第3スイッチ部をオン状態とし、第2半導体のスイッチング測定が終了したことに応じて第1スイッチ部をオフ状態とした後に、第3スイッチ部をオフ状態としてもよい。この場合、第2半導体のスイッチング測定時には、電源から第2半導体に供給された電流は、第1スイッチ部及び第2スイッチ部の第2接続部から第1半導体及び第2半導体の第1接続部に向かってリアクトルに流れ、第2半導体のスイッチング測定が終了した時点では、リアクトルにエネルギーが蓄積されている。このため、第2半導体のスイッチング測定が終了したことに応じて第1スイッチ部がオフ状態とされることによって、電源の負極端子から第4ダイオード、リアクトル、第1ダイオード、及び第3スイッチ部を通って電源の正極端子に戻る電流経路が形成され、リアクトルに蓄積されているエネルギーが電流として電源の正極端子に流れる。これにより、第2半導体のスイッチング測定に用いられた電源のエネルギー(電力)の一部を回収することができる。その結果、動特性試験における電力使用量のさらなる削減が可能となる。 The control device sets the first switch unit and the third switch unit to the on state when starting the switching measurement of the second semiconductor, and sets the first switch unit to the off state in response to the completion of the switching measurement of the second semiconductor. After that, the third switch unit may be turned off. In this case, at the time of switching measurement of the second semiconductor, the current supplied from the power source to the second semiconductor is changed from the second connection portion of the first switch portion and the second switch portion to the first connection portion of the first semiconductor and the second semiconductor. When the second semiconductor switching measurement is completed, the energy is accumulated in the reactor. For this reason, the fourth switch, the reactor, the first diode, and the third switch unit are connected from the negative terminal of the power source by turning off the first switch unit in response to the completion of the switching measurement of the second semiconductor. A current path is formed to return to the positive terminal of the power source, and energy stored in the reactor flows as a current to the positive terminal of the power source. Thereby, a part of energy (electric power) of the power source used for the switching measurement of the second semiconductor can be recovered. As a result, it is possible to further reduce power consumption in the dynamic characteristic test.
 第1スイッチ部及び第2スイッチ部は、トランジスタであってもよい。この場合、第1スイッチ部及び第2スイッチ部のオン状態とオフ状態とを高速に切り替えることができ、スイッチング測定の精度を向上することが可能となる。 The first switch unit and the second switch unit may be transistors. In this case, the ON state and the OFF state of the first switch unit and the second switch unit can be switched at high speed, and the accuracy of switching measurement can be improved.
 本開示のさらに別の側面に係る動特性試験方法は、電気的に直列に接続された第1半導体及び第2半導体と、第1半導体に電気的に並列に接続された第1ダイオードと、第2半導体に電気的に並列に接続された第2ダイオードと、を含む被試験デバイスの動特性試験を行う動特性試験方法である。この動特性試験方法は、電気的に直列に接続された第1スイッチ部及び第2スイッチ部、第1スイッチ部に電気的に並列に接続された第3ダイオード、並びに、第2スイッチ部に電気的に並列に接続された第4ダイオードを有する選択回路の第2スイッチ部をオン状態とすることによって、第1半導体をスイッチング測定の対象として選択し、充電可能な電源に電気的に直列に接続された第3スイッチ部をオン状態とすることによって、第1半導体に電流を供給して、第1半導体のスイッチング測定を行うステップと、第1半導体のスイッチング測定の終了に応じて、第2スイッチ部をオフ状態とすることにより、第1半導体のスイッチング測定で用いられたエネルギーを回収するステップと、第1半導体のスイッチング測定で用いられたエネルギーを回収するステップの後に、第3スイッチ部をオフ状態とするステップと、を含む。第1半導体及び第2半導体を電気的に接続する第1接続部と第1スイッチ部及び第2スイッチ部を電気的に接続する第2接続部とがリアクトルを介して電気的に接続される。電源の正極端子は第1ダイオードのカソード及び第3ダイオードのカソードに電気的に接続され、電源の負極端子は第2ダイオードのアノード及び第4ダイオードのアノードに電気的に接続される。 A dynamic characteristic test method according to still another aspect of the present disclosure includes a first semiconductor and a second semiconductor electrically connected in series, a first diode electrically connected in parallel to the first semiconductor, 2 is a dynamic characteristic test method for performing a dynamic characteristic test of a device under test including a second diode electrically connected in parallel to a semiconductor. The dynamic characteristic test method includes a first switch unit and a second switch unit that are electrically connected in series, a third diode that is electrically connected in parallel to the first switch unit, and an electrical circuit that is connected to the second switch unit. The first switch is selected for switching measurement by turning on the second switch of the selection circuit having a fourth diode connected in parallel and electrically connected in series to a rechargeable power source A step of supplying a current to the first semiconductor to perform a switching measurement of the first semiconductor by turning on the third switch portion that has been turned on, and a second switch according to the end of the switching measurement of the first semiconductor The step of recovering the energy used in the switching measurement of the first semiconductor and the energy used in the switching measurement of the first semiconductor by turning the part off. After recovering the Energy, comprising the steps of: an off state of the third switch unit. A first connection part that electrically connects the first semiconductor and the second semiconductor and a second connection part that electrically connects the first switch part and the second switch part are electrically connected via a reactor. The positive terminal of the power supply is electrically connected to the cathode of the first diode and the cathode of the third diode, and the negative terminal of the power supply is electrically connected to the anode of the second diode and the anode of the fourth diode.
 この動特性試験方法によれば、第1半導体のスイッチング測定を開始する際に第2スイッチ部及び第3スイッチ部がオン状態とされ、第1半導体のスイッチング測定が終了したことに応じて第2スイッチ部がオフ状態とされた後に、第3スイッチ部がオフ状態とされる。第1半導体のスイッチング測定時には、電源から第1半導体に供給された電流は、第1半導体及び第2半導体の第1接続部から第1スイッチ部及び第2スイッチ部の第2接続部に向かってリアクトルに流れ、第1半導体のスイッチング測定が終了した時点では、リアクトルにエネルギーが蓄積されている。このため、第1半導体のスイッチング測定が終了したことに応じて第2スイッチ部がオフ状態とされることによって、電源の負極端子から第2ダイオード、リアクトル、第3ダイオード、及び第3スイッチ部を通って電源の正極端子に戻る電流経路が形成され、リアクトルに蓄積されているエネルギーが電流として電源の正極端子に流れる。これにより、第1半導体のスイッチング測定に用いられた電源のエネルギー(電力)の一部を回収することができる。その結果、動特性試験における電力使用量の削減が可能となる。 According to this dynamic characteristic test method, the second switch unit and the third switch unit are turned on when starting the switching measurement of the first semiconductor, and the second switching is performed in response to the completion of the switching measurement of the first semiconductor. After the switch unit is turned off, the third switch unit is turned off. During the switching measurement of the first semiconductor, the current supplied from the power source to the first semiconductor is directed from the first connection portion of the first semiconductor and the second semiconductor toward the second connection portion of the first switch portion and the second switch portion. At the time when the first semiconductor switching measurement is completed after flowing through the reactor, energy is accumulated in the reactor. Therefore, the second switch unit is turned off in response to the completion of the switching measurement of the first semiconductor, so that the second diode, the reactor, the third diode, and the third switch unit are connected from the negative terminal of the power source. A current path is formed to return to the positive terminal of the power source, and energy stored in the reactor flows as a current to the positive terminal of the power source. Thereby, a part of energy (electric power) of the power source used for the switching measurement of the first semiconductor can be recovered. As a result, it is possible to reduce the amount of power used in the dynamic characteristic test.
 本開示のさらに別の側面に係る動特性試験方法は、選択回路の第1スイッチ部をオン状態とすることによって、第2半導体をスイッチング測定の対象として選択し、第3スイッチ部をオン状態とすることによって、第2半導体に電流を供給して、第2半導体のスイッチング測定を行うステップと、第2半導体のスイッチング測定の終了に応じて、第1スイッチ部をオフ状態とすることにより、第2半導体のスイッチング測定で用いられたエネルギーを回収するステップと、第2半導体のスイッチング測定で用いられたエネルギーを回収するステップの後に、第3スイッチ部をオフ状態とするステップと、をさらに含んでもよい。この場合、第2半導体のスイッチング測定時には、電源から第2半導体に供給された電流は、第1スイッチ部及び第2スイッチ部の第2接続部から第1半導体及び第2半導体の第1接続部に向かってリアクトルに流れ、第2半導体のスイッチング測定が終了した時点では、リアクトルにエネルギーが蓄積されている。このため、第2半導体のスイッチング測定が終了したことに応じて第1スイッチ部がオフ状態とされることによって、電源の負極端子から第4ダイオード、リアクトル、第1ダイオード、及び第3スイッチ部を通って電源の正極端子に戻る電流経路が形成され、リアクトルに蓄積されているエネルギーが電流として電源の正極端子に流れる。これにより、第2半導体のスイッチング測定に用いられた電源のエネルギー(電力)の一部を回収することができる。その結果、動特性試験における電力使用量のさらなる削減が可能となる。 According to still another aspect of the present disclosure, the dynamic characteristic test method selects a second semiconductor as an object of switching measurement by turning on a first switch unit of a selection circuit, and sets a third switch unit to an on state. Thus, by supplying a current to the second semiconductor and performing the switching measurement of the second semiconductor, and turning off the first switch unit in response to the end of the switching measurement of the second semiconductor, A step of recovering energy used in the switching measurement of the second semiconductor, and a step of turning off the third switch unit after the step of recovering the energy used in the switching measurement of the second semiconductor. Good. In this case, at the time of switching measurement of the second semiconductor, the current supplied from the power source to the second semiconductor is changed from the second connection portion of the first switch portion and the second switch portion to the first connection portion of the first semiconductor and the second semiconductor. When the second semiconductor switching measurement is completed, the energy is accumulated in the reactor. For this reason, the fourth switch, the reactor, the first diode, and the third switch unit are connected from the negative terminal of the power source by turning off the first switch unit in response to the completion of the switching measurement of the second semiconductor. A current path is formed to return to the positive terminal of the power source, and energy stored in the reactor flows as a current to the positive terminal of the power source. Thereby, a part of energy (electric power) of the power source used for the switching measurement of the second semiconductor can be recovered. As a result, it is possible to further reduce power consumption in the dynamic characteristic test.
 本開示によれば、動特性試験における電力使用量を削減することができる。 According to the present disclosure, it is possible to reduce power consumption in the dynamic characteristic test.
一実施形態に係る動特性試験装置を概略的に示す回路図である。1 is a circuit diagram schematically showing a dynamic characteristic test apparatus according to an embodiment. 図1の動特性試験装置におけるN側スイッチング測定のタイミングチャートである。It is a timing chart of the N side switching measurement in the dynamic characteristic test apparatus of FIG. 図2のN側スイッチング測定におけるスイッチオン時の電流経路を示す図である。It is a figure which shows the electric current path at the time of switch-on in the N side switching measurement of FIG. 図2のN側スイッチング測定におけるスイッチオフ時の電流経路を示す図である。It is a figure which shows the electric current path at the time of switch-off in the N side switching measurement of FIG. 図2のN側スイッチング測定におけるエネルギー回収時の電流経路を示す図である。It is a figure which shows the electric current path | route at the time of the energy recovery in the N side switching measurement of FIG. 図1の動特性試験装置におけるP側スイッチング測定のタイミングチャートである。It is a timing chart of the P side switching measurement in the dynamic characteristic test apparatus of FIG. 図6のP側スイッチング測定におけるスイッチオン時の電流経路を示す図である。It is a figure which shows the electric current path at the time of switch-on in the P side switching measurement of FIG. 図6のP側スイッチング測定におけるスイッチオフ時の電流経路を示す図である。It is a figure which shows the electric current path at the time of switch-off in the P side switching measurement of FIG. 図6のP側スイッチング測定におけるエネルギー回収時の電流経路を示す図である。It is a figure which shows the electric current path | route at the time of the energy recovery in the P side switching measurement of FIG. 比較例のN側スイッチング測定のタイミングチャートである。It is a timing chart of the N side switching measurement of a comparative example. 比較例のP側スイッチング測定のタイミングチャートである。It is a timing chart of the P side switching measurement of a comparative example. 図1の動特性試験装置における過電流防止処理を含むN側スイッチング測定のタイミングチャートである。It is a timing chart of the N side switching measurement including the overcurrent prevention process in the dynamic characteristic test apparatus of FIG. 図12のN側スイッチング測定における過電流防止処理時の電流経路を示す図である。It is a figure which shows the electric current path | route at the time of the overcurrent prevention process in the N side switching measurement of FIG. 図1の動特性試験装置における過電流防止処理を含むP側スイッチング測定のタイミングチャートである。It is a timing chart of the P side switching measurement including the overcurrent prevention process in the dynamic characteristic test apparatus of FIG. 図14のP側スイッチング測定における過電流防止処理時の電流経路を示す図である。It is a figure which shows the current pathway at the time of the overcurrent prevention process in the P side switching measurement of FIG. 図1の動特性試験装置における高速遮断回路を用いた過電流防止処理を含むN側スイッチング測定のタイミングチャートである。It is a timing chart of the N side switching measurement including the overcurrent prevention process using the high-speed interruption circuit in the dynamic characteristic test apparatus of FIG. 図16のN側スイッチング測定における高速遮断回路を用いた過電流防止処理時の電流経路を示す図である。It is a figure which shows the electric current path | route at the time of the overcurrent prevention process using the high-speed interruption circuit in the N side switching measurement of FIG. 図1の動特性試験装置における高速遮断回路を用いた過電流防止処理を含むP側スイッチング測定のタイミングチャートである。It is a timing chart of the P side switching measurement including the overcurrent prevention process using the high-speed interruption circuit in the dynamic characteristic test apparatus of FIG. 図18のP側スイッチング測定における高速遮断回路を用いた過電流防止処理時の電流経路を示す図である。It is a figure which shows the electric current path | route at the time of the overcurrent prevention process using the high-speed interruption circuit in the P side switching measurement of FIG. 図1の動特性試験装置におけるN側短絡耐量測定のタイミングチャートである。It is a timing chart of the N side short circuit tolerance measurement in the dynamic characteristic test apparatus of FIG. 図1の動特性試験装置におけるP側短絡耐量測定のタイミングチャートである。It is a timing chart of the P side short circuit tolerance measurement in the dynamic characteristic test apparatus of FIG. 図1の動特性試験装置の変形例を示す回路図である。It is a circuit diagram which shows the modification of the dynamic characteristic test apparatus of FIG. 図22の動特性試験装置におけるN側スイッチング測定の過電流防止処理時の電流経路を示す図である。It is a figure which shows the electric current path | route at the time of the overcurrent prevention process of the N side switching measurement in the dynamic characteristic test apparatus of FIG. 図22の動特性試験装置におけるP側スイッチング測定の過電流防止処理時の電流経路を示す図である。It is a figure which shows the electric current path | route at the time of the overcurrent prevention process of the P side switching measurement in the dynamic characteristic test apparatus of FIG. 図1の動特性試験装置における過電流防止処理と図22の動特性試験装置における過電流防止処理とを比較するための図である。It is a figure for comparing the overcurrent prevention process in the dynamic characteristic test apparatus of FIG. 1 with the overcurrent prevention process in the dynamic characteristic test apparatus of FIG. 図1の動特性試験装置の別の変形例を示す回路図である。It is a circuit diagram which shows another modification of the dynamic characteristic test apparatus of FIG.
 以下、本開示の実施形態について、図面を参照しながら説明する。なお、図面の説明において同一要素には同一符号を付し、重複する説明は省略する。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. In the description of the drawings, the same elements are denoted by the same reference numerals, and redundant descriptions are omitted.
 図1は、一実施形態に係る動特性試験装置を概略的に示す回路図である。図1に示されるように、動特性試験装置1は、DUT50の動特性試験を実施する装置であって、試験回路10と、過電流検出回路20と、制御装置30と、を備えている。動特性試験装置1は、動特性試験として、スイッチング測定及び短絡耐量測定(SC測定)等を行う。スイッチング測定では、IGBT特性及びダイオード特性が測定され得る。IGBT特性としては、上昇時間、下降時間、オン遅れ時間、オフ遅れ時間、オフサージ電圧、ゲート電荷、オン損失、及びオフ損失等がある。ダイオード特性としては、逆回復時間、逆回復電流、及び逆回復エネルギー等がある。 FIG. 1 is a circuit diagram schematically showing a dynamic characteristic test apparatus according to an embodiment. As shown in FIG. 1, the dynamic characteristic test apparatus 1 is an apparatus that performs a dynamic characteristic test of the DUT 50, and includes a test circuit 10, an overcurrent detection circuit 20, and a control device 30. The dynamic characteristic test apparatus 1 performs switching measurement, short circuit tolerance measurement (SC measurement), etc. as a dynamic characteristic test. In the switching measurement, IGBT characteristics and diode characteristics can be measured. The IGBT characteristics include rise time, fall time, on delay time, off delay time, off surge voltage, gate charge, on loss, off loss, and the like. The diode characteristics include reverse recovery time, reverse recovery current, and reverse recovery energy.
 DUT50は、動特性試験装置1の被試験デバイスであり、電気的に直列に接続された2つの半導体素子を含む2in1タイプのパワー半導体モジュールである。具体的には、DUT50は、トランジスタQdp,Qdn(第1半導体、第2半導体)と、ダイオードDdp,Ddn(第1ダイオード、第2ダイオード)と、を含む。トランジスタQdp,QdnはIGBTである。トランジスタQdpのエミッタとトランジスタQdnのコレクタとは互いに電気的に接続されている。トランジスタQdp,QdnのコレクタにそれぞれダイオードDdp,Ddnのカソードが電気的に接続され、トランジスタQdp,QdnのエミッタにそれぞれダイオードDdp,Ddnのアノードが電気的に接続されている。つまり、トランジスタQdp,Qdnは同じ向きで電気的に直列に接続されており、ダイオードDdpはトランジスタQdpに電気的に並列に接続された還流ダイオードであり、ダイオードDdnはトランジスタQdnに電気的に並列に接続された還流ダイオードである。DUT50は、P端子、O端子、及びN端子を有している。P端子はトランジスタQdpのコレクタ及びダイオードDdpのカソードに電気的に接続され、N端子はトランジスタQdnのエミッタ及びダイオードDdnのアノードに電気的に接続され、O端子はトランジスタQdpのエミッタ、トランジスタQdnのコレクタ、ダイオードDdpのアノード及びダイオードDdnのカソードに電気的に接続されている。つまり、O端子は、トランジスタQdp,Qdnを電気的に接続する接続部Cd(第1接続部)に電気的に接続されている。例えば、DUT50は1相のインバータ回路に用いられ、トランジスタQdpは上アームに用いられ、トランジスタQdnは下アームに用いられ得る。 The DUT 50 is a device under test of the dynamic characteristic test apparatus 1 and is a 2-in-1 type power semiconductor module including two semiconductor elements electrically connected in series. Specifically, the DUT 50 includes transistors Qdp and Qdn (first semiconductor and second semiconductor) and diodes Ddp and Ddn (first diode and second diode). The transistors Qdp and Qdn are IGBTs. The emitter of the transistor Qdp and the collector of the transistor Qdn are electrically connected to each other. The cathodes of the diodes Ddp and Ddn are electrically connected to the collectors of the transistors Qdp and Qdn, respectively, and the anodes of the diodes Ddp and Ddn are electrically connected to the emitters of the transistors Qdp and Qdn, respectively. That is, the transistors Qdp and Qdn are electrically connected in series in the same direction, the diode Ddp is a freewheeling diode electrically connected in parallel to the transistor Qdp, and the diode Ddn is electrically parallel to the transistor Qdn. It is a connected freewheeling diode. The DUT 50 has a P terminal, an O terminal, and an N terminal. The P terminal is electrically connected to the collector of the transistor Qdp and the cathode of the diode Ddp, the N terminal is electrically connected to the emitter of the transistor Qdn and the anode of the diode Ddn, and the O terminal is the emitter of the transistor Qdp and the collector of the transistor Qdn. Are electrically connected to the anode of the diode Ddp and the cathode of the diode Ddn. That is, the O terminal is electrically connected to the connection portion Cd (first connection portion) that electrically connects the transistors Qdp and Qdn. For example, the DUT 50 can be used for a one-phase inverter circuit, the transistor Qdp can be used for the upper arm, and the transistor Qdn can be used for the lower arm.
 試験回路10は、DUT50の動特性試験を実施するための回路である。試験回路10は、電源コンデンサ11と、メインスイッチ部12と、選択回路13と、過電流防止回路14と、高速遮断回路15と、選択回路16と、リアクトルLと、を備えている。電源コンデンサ11は、動特性試験のための電流を試験回路10に供給する電源である。電源コンデンサ11としては、例えば、周波数特性の優れたフィルムコンデンサが用いられる。電源コンデンサ11に蓄積されているエネルギー(電荷)が減少すると、電源コンデンサ11は不図示の高圧電源に接続され、高圧電源によって充電される。 The test circuit 10 is a circuit for performing a dynamic characteristic test of the DUT 50. The test circuit 10 includes a power supply capacitor 11, a main switch unit 12, a selection circuit 13, an overcurrent prevention circuit 14, a high-speed cutoff circuit 15, a selection circuit 16, and a reactor L. The power supply capacitor 11 is a power supply that supplies a current for a dynamic characteristic test to the test circuit 10. For example, a film capacitor having excellent frequency characteristics is used as the power supply capacitor 11. When the energy (charge) stored in the power supply capacitor 11 decreases, the power supply capacitor 11 is connected to a high voltage power supply (not shown) and is charged by the high voltage power supply.
 メインスイッチ部12は、電源コンデンサ11からDUT50(トランジスタQdpまたはトランジスタQdn)への電流の供給及び遮断を切り替える回路である。メインスイッチ部12は、トランジスタQp(第3スイッチ部)と、ダイオードDpと、を含む。トランジスタQpはIGBTである。トランジスタQpのコレクタにダイオードDpのカソードが電気的に接続され、トランジスタQpのエミッタにダイオードDpのアノードが電気的に接続されている。つまり、ダイオードDpはトランジスタQpに電気的に並列に接続された還流ダイオードである。トランジスタQpのコレクタは電源コンデンサ11の+端子(正極端子)に電気的に接続され、トランジスタQpのエミッタは後述のトランジスタQhpのコレクタ、ダイオードDhpのカソード、スイッチSWpの一端、及びDUT50のP端子に電気的に接続されている。 The main switch unit 12 is a circuit that switches between supply and interruption of current from the power supply capacitor 11 to the DUT 50 (transistor Qdp or transistor Qdn). The main switch unit 12 includes a transistor Qp (third switch unit) and a diode Dp. The transistor Qp is an IGBT. The cathode of the diode Dp is electrically connected to the collector of the transistor Qp, and the anode of the diode Dp is electrically connected to the emitter of the transistor Qp. That is, the diode Dp is a freewheeling diode electrically connected in parallel to the transistor Qp. The collector of the transistor Qp is electrically connected to the positive terminal (positive terminal) of the power supply capacitor 11, and the emitter of the transistor Qp is connected to the collector of the transistor Qhp, the cathode of the diode Dhp, one end of the switch SWp, and the P terminal of the DUT 50 described later. Electrically connected.
 選択回路13は、DUT50に含まれるトランジスタQdp,Qdnのうちいずれかをスイッチング測定の対象として選択するための回路である。選択回路13は、トランジスタQhp,Qhn(第1スイッチ部、第2スイッチ部)と、ダイオードDhp,Dhn(第3ダイオード、第4ダイオード)と、を含む。トランジスタQhp,QhnはIGBTである。トランジスタQhp,QhnのコレクタにそれぞれダイオードDhp,Dhnのカソードが電気的に接続され、トランジスタQhp,QhnのエミッタにそれぞれダイオードDhp,Dhnのアノードが電気的に接続されている。つまり、ダイオードDhpはトランジスタQhpに電気的に並列に接続された還流ダイオードであり、ダイオードDhnはトランジスタQhnに電気的に並列に接続された還流ダイオードである。トランジスタQhpのエミッタとトランジスタQhnのコレクタとは互いに電気的に接続されており、後述のトランジスタQcfのコレクタ及びダイオードDcfのカソードに電気的に接続されている。つまり、トランジスタQhp,Qhnは同じ向きで電気的に直列に接続されており、トランジスタQhp,Qhnを電気的に接続する接続部Cs(第2接続部)は高速遮断回路15及びリアクトルLを介してDUT50のO端子に電気的に接続されている。トランジスタQhpのコレクタは、トランジスタQpのエミッタ、ダイオードDpのアノード、スイッチSWpの一端、及びDUT50のP端子に電気的に接続されている。トランジスタQhnのエミッタは、電源コンデンサ11の-端子(負極端子)、スイッチSWnの他端、及びDUT50のN端子に電気的に接続されている。 The selection circuit 13 is a circuit for selecting one of the transistors Qdp and Qdn included in the DUT 50 as a switching measurement target. The selection circuit 13 includes transistors Qhp and Qhn (first switch unit and second switch unit) and diodes Dhp and Dhn (third diode and fourth diode). Transistors Qhp and Qhn are IGBTs. The cathodes of the diodes Dhp and Dhn are electrically connected to the collectors of the transistors Qhp and Qhn, respectively, and the anodes of the diodes Dhp and Dhn are electrically connected to the emitters of the transistors Qhp and Qhn, respectively. That is, the diode Dhp is a free-wheeling diode electrically connected in parallel to the transistor Qhp, and the diode Dhn is a free-wheeling diode electrically connected in parallel to the transistor Qhn. The emitter of the transistor Qhp and the collector of the transistor Qhn are electrically connected to each other, and are electrically connected to the collector of a transistor Qcf described later and the cathode of a diode Dcf. That is, the transistors Qhp and Qhn are electrically connected in series in the same direction, and the connection portion Cs (second connection portion) for electrically connecting the transistors Qhp and Qhn is connected via the high-speed cutoff circuit 15 and the reactor L. It is electrically connected to the O terminal of the DUT 50. The collector of the transistor Qhp is electrically connected to the emitter of the transistor Qp, the anode of the diode Dp, one end of the switch SWp, and the P terminal of the DUT 50. The emitter of the transistor Qhn is electrically connected to the negative terminal of the power supply capacitor 11, the other end of the switch SWn, and the N terminal of the DUT 50.
 過電流防止回路14は、リアクトルLに蓄積されたエネルギーを消費するための回路である。過電流防止回路14は、リアクトルLに電気的に並列に設けられる。過電流防止回路14は、トランジスタQif,Qirと、ダイオードDif,Dirと、を含む。トランジスタQif,QirはIGBTである。トランジスタQif,QirのコレクタにそれぞれダイオードDif,Dirのカソードが電気的に接続され、トランジスタQif,QirのエミッタにそれぞれダイオードDif,Dirのアノードが電気的に接続されている。つまり、ダイオードDifはトランジスタQifに電気的に並列に接続された還流ダイオードであり、ダイオードDirはトランジスタQirに電気的に並列に接続された還流ダイオードである。トランジスタQifのエミッタとトランジスタQirのエミッタとは互いに電気的に接続されている。つまり、トランジスタQif,Qirは互いに逆向きで電気的に直列に接続されている。トランジスタQifのコレクタは、後述のトランジスタQcrのコレクタ、ダイオードDcrのカソード及びリアクトルLの一端に電気的に接続されている。トランジスタQirのコレクタは、リアクトルLの他端、スイッチSWpの他端、スイッチSWnの一端、及びDUT50のO端子に電気的に接続されている。 The overcurrent prevention circuit 14 is a circuit for consuming the energy accumulated in the reactor L. The overcurrent prevention circuit 14 is provided electrically in parallel with the reactor L. The overcurrent prevention circuit 14 includes transistors Qif and Qir and diodes Dif and Dir. Transistors Qif and Qir are IGBTs. The cathodes of the diodes Dif and Dir are electrically connected to the collectors of the transistors Qif and Qir, respectively, and the anodes of the diodes Dif and Dir are electrically connected to the emitters of the transistors Qif and Qir, respectively. That is, the diode Dif is a free-wheeling diode electrically connected in parallel to the transistor Qif, and the diode Dir is a free-wheeling diode electrically connected in parallel to the transistor Qir. The emitter of the transistor Qif and the emitter of the transistor Qir are electrically connected to each other. That is, the transistors Qif and Qir are electrically connected in series in opposite directions. The collector of the transistor Qif is electrically connected to the collector of a transistor Qcr, which will be described later, the cathode of the diode Dcr, and one end of the reactor L. The collector of the transistor Qir is electrically connected to the other end of the reactor L, the other end of the switch SWp, one end of the switch SWn, and the O terminal of the DUT 50.
 高速遮断回路15は、リアクトルLに蓄積されたエネルギーを過電流防止回路14によって高速に消費させるための回路である。高速遮断回路15は、リアクトルLに電気的に直列に設けられる。高速遮断回路15は、トランジスタQcf,Qcrと、ダイオードDcf,Dcrと、を含む。トランジスタQcf,QcrはIGBTである。トランジスタQcf,QcrのコレクタにそれぞれダイオードDcf,Dcrのカソードが電気的に接続され、トランジスタQcf,QcrのエミッタにそれぞれダイオードDcf,Dcrのアノードが電気的に接続されている。つまり、ダイオードDcfはトランジスタQcfに電気的に並列に接続された還流ダイオードであり、ダイオードDcrはトランジスタQcrに電気的に並列に接続された還流ダイオードである。トランジスタQcfのエミッタとトランジスタQcrのエミッタとは互いに電気的に接続されている。つまり、トランジスタQcf,Qcrは互いに逆向きで電気的に直列に接続されている。トランジスタQcfのコレクタは、トランジスタQhpのエミッタ、トランジスタQhnのコレクタ、ダイオードDhpのアノード及びダイオードDhnのカソードに電気的に接続されている。トランジスタQcrのコレクタは、トランジスタQifのコレクタ、ダイオードDifのカソード及びリアクトルLの一端に電気的に接続されている。 The high-speed interruption circuit 15 is a circuit for causing the overcurrent prevention circuit 14 to consume the energy stored in the reactor L at high speed. The high-speed cutoff circuit 15 is provided in series with the reactor L. High speed cutoff circuit 15 includes transistors Qcf and Qcr and diodes Dcf and Dcr. Transistors Qcf and Qcr are IGBTs. The cathodes of the diodes Dcf and Dcr are electrically connected to the collectors of the transistors Qcf and Qcr, respectively, and the anodes of the diodes Dcf and Dcr are electrically connected to the emitters of the transistors Qcf and Qcr, respectively. That is, the diode Dcf is a free-wheeling diode electrically connected in parallel to the transistor Qcf, and the diode Dcr is a free-wheeling diode electrically connected in parallel to the transistor Qcr. The emitter of the transistor Qcf and the emitter of the transistor Qcr are electrically connected to each other. That is, the transistors Qcf and Qcr are electrically connected in series in opposite directions. The collector of the transistor Qcf is electrically connected to the emitter of the transistor Qhp, the collector of the transistor Qhn, the anode of the diode Dhp, and the cathode of the diode Dhn. The collector of the transistor Qcr is electrically connected to the collector of the transistor Qif, the cathode of the diode Dif, and one end of the reactor L.
 選択回路16は、DUT50に含まれるトランジスタQdp,Qdnのいずれかを短絡耐量測定の対象として選択するための回路である。選択回路16は、スイッチSWp,SWnを含む。スイッチSWp,SWnはリレーである。スイッチSWpの一端は、トランジスタQpのエミッタ、ダイオードDpのアノード、トランジスタQhpのコレクタ、ダイオードDhpのカソード及びDUT50のP端子に電気的に接続されている。スイッチSWpの他端とスイッチSWnの一端とは互いに電気的に接続されており、リアクトルLの他端、トランジスタQirのコレクタ、ダイオードDirのカソード、及びDUT50のO端子に電気的に接続されている。スイッチSWnの他端は、電源コンデンサ11の-端子、トランジスタQhnのエミッタ、ダイオードDhnのアノード、及びDUT50のN端子に電気的に接続されている。 The selection circuit 16 is a circuit for selecting one of the transistors Qdp and Qdn included in the DUT 50 as an object of short-circuit tolerance measurement. The selection circuit 16 includes switches SWp and SWn. The switches SWp and SWn are relays. One end of the switch SWp is electrically connected to the emitter of the transistor Qp, the anode of the diode Dp, the collector of the transistor Qhp, the cathode of the diode Dhp, and the P terminal of the DUT 50. The other end of the switch SWp and one end of the switch SWn are electrically connected to each other, and are electrically connected to the other end of the reactor L, the collector of the transistor Qir, the cathode of the diode Dir, and the O terminal of the DUT 50. . The other end of the switch SWn is electrically connected to the negative terminal of the power supply capacitor 11, the emitter of the transistor Qhn, the anode of the diode Dhn, and the N terminal of the DUT 50.
 リアクトルLは、動特性試験の負荷である。つまり、リアクトルLは、トランジスタQdp,Qdnの負荷となる。リアクトルLの一端はトランジスタQcrのコレクタ及びダイオードDcrのカソードに電気的に接続され、リアクトルLの他端はDUT50のO端子に電気的に接続されている。 Reactor L is a dynamic characteristic test load. That is, the reactor L becomes a load of the transistors Qdp and Qdn. One end of the reactor L is electrically connected to the collector of the transistor Qcr and the cathode of the diode Dcr, and the other end of the reactor L is electrically connected to the O terminal of the DUT 50.
 過電流検出回路20は、試験回路10及びDUT50に流れる過電流を検出する回路である。過電流検出回路20は、電流センサ21と、電流センサ22と、コンパレータ23と、コンパレータ24と、を含む。 The overcurrent detection circuit 20 is a circuit that detects an overcurrent flowing through the test circuit 10 and the DUT 50. The overcurrent detection circuit 20 includes a current sensor 21, a current sensor 22, a comparator 23, and a comparator 24.
 電流センサ21は、N側スイッチング測定時に試験回路10及びDUT50に流れる電流の電流値を検出するセンサである。電流センサ21は、DUT50のN端子と電源コンデンサ11の-端子とを接続する配線のN端子近傍に設けられる。電流センサ21は、検出した電流値をコンパレータ23に出力する。電流センサ22は、P側スイッチング測定時に試験回路10及びDUT50に流れる電流の電流値を検出するセンサである。電流センサ22は、DUT50のP端子とトランジスタQpのエミッタとを接続する配線のP端子近傍に設けられる。電流センサ22は、検出した電流値をコンパレータ24に出力する。 The current sensor 21 is a sensor that detects the current value of the current flowing through the test circuit 10 and the DUT 50 during the N-side switching measurement. The current sensor 21 is provided in the vicinity of the N terminal of the wiring connecting the N terminal of the DUT 50 and the negative terminal of the power supply capacitor 11. The current sensor 21 outputs the detected current value to the comparator 23. The current sensor 22 is a sensor that detects a current value of a current flowing through the test circuit 10 and the DUT 50 during the P-side switching measurement. The current sensor 22 is provided in the vicinity of the P terminal of the wiring connecting the P terminal of the DUT 50 and the emitter of the transistor Qp. The current sensor 22 outputs the detected current value to the comparator 24.
 コンパレータ23は、電流センサ21によって検出された電流値とN側の過電流閾値Ref_Nとを比較し、比較結果を制御装置30に出力する。過電流閾値Ref_Nは、過電流を検出するために予め定められた値である。コンパレータ23では、+端子にN側の過電流閾値Ref_Nが入力され、-端子に電流センサ21によって検出された電流値が入力される。この場合、コンパレータ23は、電流センサ21によって検出された電流値が過電流閾値Ref_N以下である場合、ハイレベルの出力信号を制御装置30に出力し、電流センサ21によって検出された電流値が過電流閾値Ref_Nよりも大きい場合、ローレベルの出力信号を制御装置30に出力する。 The comparator 23 compares the current value detected by the current sensor 21 with the N-side overcurrent threshold value Ref_N and outputs the comparison result to the control device 30. The overcurrent threshold value Ref_N is a predetermined value for detecting an overcurrent. In the comparator 23, the N-side overcurrent threshold value Ref_N is input to the + terminal, and the current value detected by the current sensor 21 is input to the − terminal. In this case, when the current value detected by the current sensor 21 is equal to or less than the overcurrent threshold Ref_N, the comparator 23 outputs a high-level output signal to the control device 30, and the current value detected by the current sensor 21 is excessive. When it is larger than the current threshold value Ref_N, a low-level output signal is output to the control device 30.
 コンパレータ24は、電流センサ22によって検出された電流値とP側の過電流閾値Ref_Pとを比較し、比較結果を制御装置30に出力する。過電流閾値Ref_Pは、過電流を検出するために予め定められた値である。コンパレータ24では、+端子にP側の過電流閾値Ref_Pが入力され、-端子に電流センサ22によって検出された電流値が入力される。この場合、コンパレータ24は、電流センサ22によって検出された電流値が過電流閾値Ref_P以下である場合、ハイレベルの出力信号を制御装置30に出力し、電流センサ22によって検出された電流値が過電流閾値Ref_Pよりも大きい場合、ローレベルの出力信号を制御装置30に出力する。 The comparator 24 compares the current value detected by the current sensor 22 with the P-side overcurrent threshold value Ref_P, and outputs the comparison result to the control device 30. The overcurrent threshold Ref_P is a predetermined value for detecting an overcurrent. In the comparator 24, the P-side overcurrent threshold value Ref_P is input to the + terminal, and the current value detected by the current sensor 22 is input to the − terminal. In this case, when the current value detected by the current sensor 22 is equal to or less than the overcurrent threshold value Ref_P, the comparator 24 outputs a high-level output signal to the control device 30, and the current value detected by the current sensor 22 is excessive. When it is larger than the current threshold value Ref_P, a low level output signal is output to the control device 30.
 制御装置30は、トランジスタQp,Qhp,Qhn,Qif,Qir,Qcf,Qcr,Qdp,Qdn及びスイッチSWp,SWnのオン状態(導通状態)とオフ状態(遮断状態)とを切り替えるための切替制御を行うコントローラである。制御装置30は、トランジスタQp,Qhp,Qhn,Qif,Qir,Qcf,Qcr,Qdp,Qdnにそれぞれゲート信号Sqp,Sqhp,Sqhn,Sqif,Sqir,Sqcf,Sqcr,Sqdp,Sqdnを出力することによって、各トランジスタのオン状態とオフ状態とを切り替える。制御装置30は、スイッチSWp,SWnにそれぞれリレー信号Sswp,Sswnを出力することによって、各スイッチのオン状態とオフ状態とを切り替える。制御装置30による切替制御は、以下の各測定において詳細に説明する。なお、トランジスタのオン状態とは、コレクタ-エミッタ間が電気的に導通状態であることを意味し、トランジスタのオフ状態とは、コレクタ-エミッタ間が電気的に遮断状態であることを意味する。また、トランジスタがIGBTである場合、ゲート-エミッタ間電圧によってオン状態とオフ状態とが切り替えられる。以下の説明では、便宜上、トランジスタにハイレベルのゲート信号が供給された場合に、トランジスタはオン状態とされ、トランジスタにローレベルのゲート信号が供給された場合に、トランジスタはオフ状態とされることとしている。 The control device 30 performs switching control for switching the transistors Qp, Qhp, Qhn, Qif, Qir, Qcf, Qcr, Qdp, Qdn and the switches SWp, SWn between the on state (conducting state) and the off state (blocking state). The controller to perform. The control device 30 outputs the gate signals Sqp, Sqhp, Sqhn, Sqif, Sqir, Sqcf, Sqcr, Sqdp, Sqdn to the transistors Qp, Qhp, Qhn, Qif, Qir, Qcf, Qcr, Qdp, Qdn, respectively. Each transistor is switched between an on state and an off state. The control device 30 switches each switch between an on state and an off state by outputting relay signals Sswp and Sswn to the switches SWp and SWn, respectively. The switching control by the control device 30 will be described in detail in each of the following measurements. Note that the on state of the transistor means that the collector and the emitter are electrically connected, and the off state of the transistor means that the collector and the emitter are electrically disconnected. Further, when the transistor is an IGBT, the ON state and the OFF state are switched by the gate-emitter voltage. In the following description, for convenience, the transistor is turned on when a high level gate signal is supplied to the transistor, and the transistor is turned off when a low level gate signal is supplied to the transistor. It is said.
(スイッチング測定)
 次に、動特性試験装置1を用いたスイッチング測定について説明する。まず、トランジスタQdnのスイッチング測定(「N側スイッチング測定」と称することがある。)について説明する。図2は、動特性試験装置1におけるN側スイッチング測定のタイミングチャートである。図3は、N側スイッチング測定におけるスイッチオン時の電流経路を示す図である。図4は、N側スイッチング測定におけるスイッチオフ時の電流経路を示す図である。図5は、N側スイッチング測定におけるエネルギー回収時の電流経路を示す図である。
(Switching measurement)
Next, switching measurement using the dynamic characteristic test apparatus 1 will be described. First, switching measurement of the transistor Qdn (sometimes referred to as “N-side switching measurement”) will be described. FIG. 2 is a timing chart of N-side switching measurement in the dynamic characteristic test apparatus 1. FIG. 3 is a diagram illustrating a current path when the switch is turned on in the N-side switching measurement. FIG. 4 is a diagram illustrating a current path when the switch is off in the N-side switching measurement. FIG. 5 is a diagram illustrating a current path during energy recovery in N-side switching measurement.
 なお、スイッチング測定では、リレー信号Sswp,Sswnは常にローレベルに設定されており、スイッチSWp,SWnは常にオフ状態であるので、各ステップにおいてリレー信号及びスイッチの説明を省略する。また、以下の説明において、電源コンデンサ11から供給される電流をIcとし、トランジスタQp,Qhp,Qhn,Qif,Qir,Qcf,Qcr,Qdp,Qdnを流れる電流を、それぞれ電流Iqp,Iqhp,Iqhn,Iqif,Iqir,Iqcf,Iqcr,Iqdp,Iqdnとし、リアクトルLを流れる電流を電流ILとして説明する。また、各トランジスタに流れる電流は、コレクタからエミッタに流れる場合に正の値とし、エミッタからコレクタに流れる場合または還流ダイオードのアノードからカソード(順方向)に流れる場合に負の値とする。リアクトルLに流れる電流は、DUT50のO端子に向かって流れる場合に正の値とし、その反対方向に流れる場合に負の値とする。また、各ステップは同じ長さで図示されているが、各ステップの時間は同じである必要はなく、必要に応じて適宜調整され得る。各ステップにおいて、各トランジスタの切替制御のタイミングは同じであってもよいし、異なっていてもよい。 In the switching measurement, the relay signals Sswp and Sswn are always set to a low level, and the switches SWp and SWn are always in an off state. In the following description, the current supplied from the power supply capacitor 11 is Ic, and the currents flowing through the transistors Qp, Qhp, Qhn, Qif, Qir, Qcf, Qcr, Qdp, and Qdn are the currents Iqp, Iqhp, Iqhn, Iqif, Iqir, Iqcf, Iqcr, Iqdp, Iqdn, and the current flowing through the reactor L will be described as current IL. The current flowing through each transistor is a positive value when flowing from the collector to the emitter, and is a negative value when flowing from the emitter to the collector or when flowing from the anode to the cathode (forward direction) of the reflux diode. The current flowing through the reactor L is a positive value when flowing toward the O terminal of the DUT 50, and is a negative value when flowing in the opposite direction. Further, although each step is illustrated with the same length, the time of each step does not need to be the same, and can be adjusted as needed. In each step, the switching control timing of each transistor may be the same or different.
 図2に示されるように、ステップST11では、制御装置30は、ゲート信号Sqp,Sqhp,Sqhn,Sqif,Sqir,Sqcf,Sqcr,Sqdp,Sqdnをいずれもローレベルに設定して出力する。このため、トランジスタQp,Qhp,Qhn,Qif,Qir,Qcf,Qcr,Qdp,Qdnはいずれもオフ状態であり、各トランジスタには、電流は流れていない。また、電源コンデンサ11のエネルギーEc(電荷)は、例えば満充電状態にされている。 As shown in FIG. 2, in step ST11, the control device 30 sets the gate signals Sqp, Sqhp, Sqhn, Sqif, Sqir, Sqcf, Sqcr, Sqdp, and Sqdn to be output at a low level. Therefore, the transistors Qp, Qhp, Qhn, Qif, Qir, Qcf, Qcr, Qdp, and Qdn are all off, and no current flows through each transistor. The energy Ec (charge) of the power supply capacitor 11 is in a fully charged state, for example.
 続いて、ステップST12では、制御装置30は、ゲート信号Sqp,Sqhp,Sqcf,Sqcr,Sqdnをハイレベルに設定し、それ以外のゲート信号をローレベルに設定して出力する。これにより、トランジスタQp,Qhp,Qcf,Qcr,Qdnがオン状態となり、それ以外のトランジスタはオフ状態となる。このとき、図3に示されるように、電源コンデンサ11の+端子からトランジスタQp、トランジスタQhp、トランジスタQcf、トランジスタQcr、リアクトルL、及びトランジスタQdnを順に通って電源コンデンサ11の-端子に戻る電流経路Pn1が形成され、電流経路Pn1に電源コンデンサ11から供給される電流が流れる。この状態で、電流Ic,Iqp,Iqhp,Iqcf,-Iqcr,IL,Iqdnの電流量は時間の経過とともに増加する一方で、電源コンデンサ11のエネルギーEcは時間の経過とともに減少する。また、トランジスタQhn,Qif,Qir,Qdpには、電流Iqhn,Iqif,Iqir,Iqdpは流れない。つまり、ステップST12では、制御装置30は、トランジスタQhpをオン状態とすることによって、トランジスタQdnをスイッチング測定の対象とし、トランジスタQp,Qcf,Qcrをオン状態とすることによって、電源コンデンサ11からトランジスタQdnに電流を供給している。 Subsequently, in step ST12, the control device 30 sets the gate signals Sqp, Sqhp, Sqcf, Sqcr, Sqdn to the high level, and sets the other gate signals to the low level and outputs them. Thereby, the transistors Qp, Qhp, Qcf, Qcr, and Qdn are turned on, and the other transistors are turned off. At this time, as shown in FIG. 3, the current path returns from the positive terminal of the power supply capacitor 11 to the negative terminal of the power supply capacitor 11 through the transistor Qp, transistor Qhp, transistor Qcf, transistor Qcr, reactor L, and transistor Qdn in this order. Pn1 is formed, and the current supplied from the power supply capacitor 11 flows through the current path Pn1. In this state, the current amounts of the currents Ic, Iqp, Iqhp, Iqcf, −Iqcr, IL, and Iqdn increase with the passage of time, while the energy Ec of the power supply capacitor 11 decreases with the passage of time. Further, the currents Iqhn, Iqif, Iqir, and Iqdp do not flow through the transistors Qhn, Qif, Qir, and Qdp. That is, in step ST12, the control device 30 turns on the transistor Qhp, thereby making the transistor Qdn the object of switching measurement, and turning on the transistors Qp, Qcf, and Qcr, thereby turning the transistor Qdn from the power supply capacitor 11 into the transistor Qdn. Is supplying current.
 続いて、ステップST13では、制御装置30は、ゲート信号Sqp,Sqhp,Sqcf,Sqcrをハイレベルに設定し、それ以外のゲート信号をローレベルに設定して出力する。つまり、ステップST12からゲート信号Sqdnだけがハイレベルからローレベルに変更され、それ以外のゲート信号は変更されない。これにより、トランジスタQp,Qhp,Qcf,Qcrがオン状態となり、それ以外のトランジスタはオフ状態となる。このとき、図4に示されるように、トランジスタQhp、トランジスタQcf、トランジスタQcr、リアクトルL、及びダイオードDdpを順に巡回する電流経路Pn2が形成され、ステップST13の直前に電流経路Pn1に流れていた電流が電流経路Pn2に流れる。このため、電流Ic,Iqp,Iqdnの電流量は0になり、電源コンデンサ11から電流が供給されないので、エネルギーEcは変化しない。このとき、トランジスタQhp、トランジスタQcf、トランジスタQcr、リアクトルL、及びダイオードDdpの抵抗成分等によってエネルギーが消費されるので、電流Iqhp,Iqcf,-Iqcr,IL,ダイオードDdpを流れる電流-Iqdpの電流量は、ステップST13の直前に電流経路Pn1に流れていた電流の電流量から、時間の経過とともに徐々に減少する。また、電流Iqhn,Iqif,Iqirの電流量は0のままである。 Subsequently, in step ST13, the control device 30 sets the gate signals Sqp, Sqhp, Sqcf, Sqcr to a high level, and sets the other gate signals to a low level and outputs them. That is, only the gate signal Sqdn is changed from the high level to the low level from step ST12, and the other gate signals are not changed. Thereby, the transistors Qp, Qhp, Qcf, and Qcr are turned on, and the other transistors are turned off. At this time, as shown in FIG. 4, a current path Pn2 that sequentially cycles through the transistor Qhp, the transistor Qcf, the transistor Qcr, the reactor L, and the diode Ddp is formed, and the current that was flowing in the current path Pn1 immediately before step ST13 Flows in the current path Pn2. For this reason, the current amounts of the currents Ic, Iqp, and Iqdn are 0, and no current is supplied from the power supply capacitor 11, so that the energy Ec does not change. At this time, energy is consumed by the resistance components of the transistor Qhp, the transistor Qcf, the transistor Qcr, the reactor L, and the diode Ddp, so that the current Iqhp, Iqcf, −Iqcr, IL, and the current amount −Iqdp flowing through the diode Ddp Is gradually decreased with the passage of time from the amount of current flowing in the current path Pn1 immediately before step ST13. Further, the current amounts of the currents Iqhn, Iqif, and Iqir remain zero.
 続いて、ステップST14では、ステップST12と同様に、制御装置30は、ゲート信号Sqp,Sqhp,Sqcf,Sqcr,Sqdnをハイレベルに設定し、それ以外のゲート信号をローレベルに設定して出力する。つまり、ステップST13からゲート信号Sqdnだけがローレベルからハイレベルに変更され、それ以外のゲート信号は変更されない。これにより、電流経路Pn1が形成され、ステップST14の直前に電流経路Pn2に流れていた電流及び電源コンデンサ11から供給される電流が電流経路Pn1に流れる。このとき、電流Ic,Iqp,Iqhp,Iqcf,-Iqcr,IL,Iqdnの電流量は、ステップST14の直前に電流経路Pn2に流れていた電流の電流量からさらに時間の経過とともに増加する一方で、電源コンデンサ11のエネルギーEcは時間の経過とともにさらに減少する。また、トランジスタQhn,Qif,Qir,Qdpには、電流Iqhn,Iqif,Iqir,Iqdpは流れない。 Subsequently, in step ST14, as in step ST12, the control device 30 sets the gate signals Sqp, Sqhp, Sqcf, Sqcr, Sqdn to a high level and sets the other gate signals to a low level and outputs them. . That is, only the gate signal Sqdn is changed from the low level to the high level from step ST13, and the other gate signals are not changed. As a result, a current path Pn1 is formed, and the current flowing in the current path Pn2 immediately before step ST14 and the current supplied from the power supply capacitor 11 flow in the current path Pn1. At this time, the current amounts of the currents Ic, Iqp, Iqhp, Iqcf, −Iqcr, IL, and Iqdn increase from the current amount of the current that was flowing in the current path Pn2 immediately before step ST14 while increasing with time. The energy Ec of the power supply capacitor 11 further decreases with time. Further, the currents Iqhn, Iqif, Iqir, and Iqdp do not flow through the transistors Qhn, Qif, Qir, and Qdp.
 続いて、ステップST15では、ステップST13と同様に、制御装置30は、ゲート信号Sqp,Sqhp,Sqcf,Sqcrをハイレベルに設定し、それ以外のゲート信号をローレベルに設定して出力する。つまり、ステップST14からゲート信号Sqdnだけがハイレベルからローレベルに変更され、それ以外のゲート信号は変更されない。これにより、電流経路Pn2が形成され、ステップST15の直前に電流経路Pn1に流れていた電流が電流経路Pn2に流れる。このとき、ステップST13と同様に、電流Ic,Iqp,Iqdnの電流量は0になり、電流Iqhp,Iqcf,-Iqcr,IL,-Iqdpの電流量は時間の経過とともに徐々に減少する。また、電流Iqhn,Iqif,Iqirの電流量は0のままである。また、電源コンデンサ11から電流が供給されないので、エネルギーEcは変化しない。この時点で、N側スイッチング測定に必要な波形が得られる。つまり、ステップST12~ステップST15のトランジスタQdnをオフ状態にすることまでで、トランジスタQdnのスイッチング測定に必要な波形が得られる。この意味で、ステップST12~ステップST15のトランジスタQdnをオフ状態にすることまでの処理は、狭義のトランジスタQdnのスイッチング測定といえる。 Subsequently, in step ST15, as in step ST13, the control device 30 sets the gate signals Sqp, Sqhp, Sqcf, Sqcr to a high level, and sets the other gate signals to a low level and outputs them. That is, only the gate signal Sqdn is changed from the high level to the low level from step ST14, and the other gate signals are not changed. As a result, a current path Pn2 is formed, and the current that was flowing in the current path Pn1 immediately before step ST15 flows in the current path Pn2. At this time, as in step ST13, the current amounts of the currents Ic, Iqp, and Iqdn become 0, and the current amounts of the currents Iqhp, Iqcf, -Iqcr, IL, and -Iqdp gradually decrease with time. Further, the current amounts of the currents Iqhn, Iqif, and Iqir remain zero. In addition, since no current is supplied from the power supply capacitor 11, the energy Ec does not change. At this point, the waveform required for N-side switching measurement is obtained. That is, a waveform necessary for the switching measurement of the transistor Qdn can be obtained by turning off the transistor Qdn in steps ST12 to ST15. In this sense, the processing up to turning off the transistor Qdn in steps ST12 to ST15 can be said to be a switching measurement of the transistor Qdn in a narrow sense.
 その後、制御装置30は、ゲート信号Sqhpをハイレベルからローレベルに変更する。これにより、トランジスタQp,Qcf,Qcrがオン状態となり、それ以外のトランジスタはオフ状態となる。このとき、図5に示されるように、電源コンデンサ11の-端子から、ダイオードDhn、トランジスタQcf、トランジスタQcr、リアクトルL、ダイオードDdp、及びトランジスタQpを順に通って電源コンデンサ11の+端子に戻る電流経路Pn3が形成され、ゲート信号Sqhpをローレベルに切り替える直前に電流経路Pn2に流れていた電流が電流経路Pn3に流れる。このため、電流Iqhpの電流量は0になる。そして、電流経路Pn3は、電源コンデンサ11の-端子から+端子に向かうので、電源コンデンサ11が充電され、エネルギーEcは時間の経過とともに増加する一方で、電流-Iqhn(ダイオードDhnを流れる電流),Iqcf,-Iqcr,IL,-Iqdp,-Iqp,-Ic(電源コンデンサ11の-端子から+端子に流れる電流)の電流量は時間の経過とともに減少する。また、電流Iqdn,Iqif,Iqirの電流量は0のままである。 Thereafter, the control device 30 changes the gate signal Sqhp from the high level to the low level. Thereby, the transistors Qp, Qcf, and Qcr are turned on, and the other transistors are turned off. At this time, as shown in FIG. 5, the current returns from the negative terminal of the power supply capacitor 11 to the positive terminal of the power supply capacitor 11 through the diode Dhn, the transistor Qcf, the transistor Qcr, the reactor L, the diode Ddp, and the transistor Qp in this order. The path Pn3 is formed, and the current that has been flowing through the current path Pn2 immediately before switching the gate signal Sqhp to the low level flows into the current path Pn3. For this reason, the current amount of the current Iqhp becomes zero. Since the current path Pn3 goes from the negative terminal to the positive terminal of the power supply capacitor 11, the power supply capacitor 11 is charged, and the energy Ec increases with time, while the current −Iqhn (current flowing through the diode Dhn), The amount of current Iqcf, −Iqcr, IL, −Iqdp, −Iqp, −Ic (current flowing from the negative terminal to the positive terminal of the power supply capacitor 11) decreases with time. Further, the current amounts of the currents Iqdn, Iqif, and Iqir remain zero.
 続いて、ステップST16では、ステップST15と同じ状態が継続され、電流経路Pn3を流れている電流の電流量が0になり、電源コンデンサ11のエネルギーEcはほぼ満充電状態まで回復する。 Subsequently, in step ST16, the same state as in step ST15 is continued, the amount of current flowing through the current path Pn3 becomes 0, and the energy Ec of the power supply capacitor 11 is almost restored to the fully charged state.
 続いて、ステップST17では、制御装置30は、ゲート信号Sqp,Sqhp,Sqhn,Sqif,Sqir,Sqcf,Sqcr,Sqdp,Sqdnをいずれもローレベルに設定して出力する。このため、トランジスタQp,Qhp,Qhn,Qif,Qir,Qcf,Qcr,Qdp,Qdnはいずれもオフ状態となり、各トランジスタには、電流は流れない。このようにして、N側スイッチング測定が終了する。なお、電流経路Pn3を流れている電流の電流量が所定の閾値以下になったことを不図示の検出回路等によって検出し、検出回路からの出力信号によって制御装置30は電流経路Pn3を流れている電流の電流量がほぼ0になったこと(エネルギー回収処理の終了)を検出してもよい。所定の閾値は、例えば、0または0よりもわずかに大きい値に設定される。そして、制御装置30はエネルギー回収処理の終了を検出したことに応じて、ステップST17の処理を行ってもよい。 Subsequently, in step ST17, the control device 30 sets the gate signals Sqp, Sqhp, Sqhn, Sqif, Sqir, Sqcf, Sqcr, Sqdp, and Sqdn to all low levels and outputs them. Therefore, the transistors Qp, Qhp, Qhn, Qif, Qir, Qcf, Qcr, Qdp, and Qdn are all turned off, and no current flows through each transistor. In this way, the N-side switching measurement ends. Note that a detection circuit or the like (not shown) detects that the amount of current flowing through the current path Pn3 is equal to or less than a predetermined threshold, and the control device 30 flows through the current path Pn3 by an output signal from the detection circuit. It may be detected that the current amount of the current is almost zero (end of the energy recovery process). The predetermined threshold is set to 0 or a value slightly larger than 0, for example. And control device 30 may perform processing of Step ST17 according to having detected the end of energy recovery processing.
 以上のように、制御装置30は、N側スイッチング測定を開始する際に、トランジスタQp,Qhp,Qcf,Qcrをオン状態とし、N側スイッチング測定における波形の取り込みの終了に応じて、トランジスタQhpをオフ状態とすることにより、N側スイッチング測定で用いられたエネルギーを回収している。そして、制御装置30は、N側スイッチング測定で用いられたエネルギーを回収した後に、トランジスタQp,Qcf,Qcrをオフ状態としている。したがって、N側スイッチング測定終了時にエネルギーEcはほぼ満充電状態になっているので、次の測定のために高圧電源により電源コンデンサ11の充電を行う必要がない。 As described above, when starting the N-side switching measurement, the control device 30 turns on the transistors Qp, Qhp, Qcf, and Qcr, and turns on the transistor Qhp according to the end of waveform acquisition in the N-side switching measurement. By using the off state, the energy used in the N-side switching measurement is recovered. Then, after recovering the energy used in the N-side switching measurement, control device 30 turns off transistors Qp, Qcf, and Qcr. Therefore, since the energy Ec is almost fully charged at the end of the N-side switching measurement, it is not necessary to charge the power supply capacitor 11 with a high-voltage power supply for the next measurement.
 次に、トランジスタQdpのスイッチング測定(「P側スイッチング測定」と称することがある。)について説明する。図6は、動特性試験装置1におけるP側スイッチング測定のタイミングチャートである。図7は、P側スイッチング測定におけるスイッチオン時の電流経路を示す図である。図8は、P側スイッチング測定におけるスイッチオフ時の電流経路を示す図である。図9は、P側スイッチング測定におけるエネルギー回収時の電流経路を示す図である。 Next, switching measurement of the transistor Qdp (sometimes referred to as “P-side switching measurement”) will be described. FIG. 6 is a timing chart of P-side switching measurement in the dynamic characteristic test apparatus 1. FIG. 7 is a diagram illustrating a current path when the switch is turned on in the P-side switching measurement. FIG. 8 is a diagram illustrating a current path when the switch is turned off in the P-side switching measurement. FIG. 9 is a diagram illustrating a current path during energy recovery in the P-side switching measurement.
 図6に示されるように、ステップST21は、図2のステップST11と同一であるので説明を省略する。続いて、ステップST22では、制御装置30は、ゲート信号Sqp,Sqhn,Sqcf,Sqcr,Sqdpをハイレベルに設定し、それ以外のゲート信号をローレベルに設定して出力する。これにより、トランジスタQp,Qhn,Qcf,Qcr,Qdpがオン状態となり、それ以外のトランジスタはオフ状態となる。このとき、図7に示されるように、電源コンデンサ11の+端子からトランジスタQp、トランジスタQdp、リアクトルL、トランジスタQcr、トランジスタQcf、及びトランジスタQhnを順に通って電源コンデンサ11の-端子に戻る電流経路Pp1が形成され、電流経路Pp1に電源コンデンサ11から供給される電流が流れる。この状態で、電流Ic,Iqp,Iqdp,-IL,Iqcr,-Iqcf,Iqhnの電流量は時間の経過とともに増加する一方で、電源コンデンサ11のエネルギーEcは時間の経過とともに減少する。また、トランジスタQhp,Qif,Qir,Qdnには、電流Iqhp,Iqif,Iqir,Iqdnは流れない。つまり、ステップST22では、制御装置30は、トランジスタQhnをオン状態とすることによって、トランジスタQdpをスイッチング測定の対象とし、トランジスタQp,Qcf,Qcrをオン状態とすることによって、電源コンデンサ11からトランジスタQdpに電流を供給している。 As shown in FIG. 6, step ST21 is the same as step ST11 of FIG. Subsequently, in step ST22, the control device 30 sets the gate signals Sqp, Sqhn, Sqcf, Sqcr, Sqdp to the high level, and sets the other gate signals to the low level and outputs them. Thereby, the transistors Qp, Qhn, Qcf, Qcr, and Qdp are turned on, and the other transistors are turned off. At this time, as shown in FIG. 7, the current path returns from the positive terminal of the power supply capacitor 11 to the negative terminal of the power supply capacitor 11 through the transistor Qp, transistor Qdp, reactor L, transistor Qcr, transistor Qcf, and transistor Qhn in this order. Pp1 is formed, and the current supplied from the power supply capacitor 11 flows through the current path Pp1. In this state, the current amounts of the currents Ic, Iqp, Iqdp, -IL, Iqcr, -Iqcf, and Iqhn increase with the passage of time, while the energy Ec of the power supply capacitor 11 decreases with the passage of time. Further, currents Iqhp, Iqif, Iqir, and Iqdn do not flow through transistors Qhp, Qif, Qir, and Qdn. That is, in step ST22, the control device 30 turns on the transistor Qhn to set the transistor Qdp to be a switching measurement target, and turns on the transistors Qp, Qcf, and Qcr to turn on the transistor Qdp from the power supply capacitor 11. Is supplying current.
 続いて、ステップST23では、制御装置30は、ゲート信号Sqp,Sqhn,Sqcf,Sqcrをハイレベルに設定し、それ以外のゲート信号をローレベルに設定して出力する。つまり、ステップST22からゲート信号Sqdpだけがハイレベルからローレベルに変更され、それ以外のゲート信号は変更されない。これにより、トランジスタQp,Qhn,Qcf,Qcrがオン状態となり、それ以外のトランジスタはオフ状態となる。このとき、図8に示されるように、トランジスタQhn、ダイオードDdn、リアクトルL、トランジスタQcr、及びトランジスタQcfを順に巡回する電流経路Pp2が形成され、ステップST23の直前に電流経路Pp1に流れていた電流が電流経路Pp2に流れる。このため、電流Ic,Iqp,Iqdpの電流量は0になり、電源コンデンサ11から電流が供給されないので、エネルギーEcは変化しない。このとき、トランジスタQhn、ダイオードDdn、リアクトルL、トランジスタQcr、及びトランジスタQcfの抵抗成分等によってエネルギーが消費されるので、電流Iqhn,-Iqdn(ダイオードDdnを流れる電流),-IL,Iqcr,-Iqcfの電流量は、ステップST23の直前に電流経路Pp1に流れていた電流の電流量から、時間の経過とともに徐々に減少する。また、電流Iqhp,Iqif,Iqirの電流量は0のままである。 Subsequently, in step ST23, the control device 30 sets the gate signals Sqp, Sqhn, Sqcf, Sqcr to a high level, and sets the other gate signals to a low level and outputs them. That is, only the gate signal Sqdp is changed from the high level to the low level from step ST22, and the other gate signals are not changed. Thereby, the transistors Qp, Qhn, Qcf, and Qcr are turned on, and the other transistors are turned off. At this time, as shown in FIG. 8, a current path Pp2 that circulates through the transistor Qhn, the diode Ddn, the reactor L, the transistor Qcr, and the transistor Qcf in this order is formed, and the current that was flowing in the current path Pp1 immediately before step ST23 Flows in the current path Pp2. For this reason, the current amounts of the currents Ic, Iqp, and Iqdp are 0, and no current is supplied from the power supply capacitor 11, so the energy Ec does not change. At this time, energy is consumed by the resistance components of the transistor Qhn, the diode Ddn, the reactor L, the transistor Qcr, and the transistor Qcf, so that the currents Iqhn, -Iqdn (currents flowing through the diode Ddn), -IL, Iqcr, -Iqcf Is gradually decreased with the passage of time from the amount of current flowing in the current path Pp1 immediately before step ST23. Further, the current amounts of the currents Iqhp, Iqif, and Iqir remain zero.
 続いて、ステップST24では、ステップST22と同様に、制御装置30は、ゲート信号Sqp,Sqhn,Sqcf,Sqcr,Sqdpをハイレベルに設定し、それ以外のゲート信号をローレベルに設定して出力する。つまり、ステップST23からゲート信号Sqdpだけがローレベルからハイレベルに変更され、それ以外のゲート信号は変更されない。これにより、電流経路Pp1が形成され、ステップST24の直前に電流経路Pp2に流れていた電流及び電源コンデンサ11から供給される電流が電流経路Pp1に流れる。このとき、電流Ic,Iqp,Iqdp,-IL,Iqcr,-Iqcf,Iqhnの電流量は、ステップST24の直前に電流経路Pp2に流れていた電流の電流量からさらに時間の経過とともに増加する一方で、電源コンデンサ11のエネルギーEcは時間の経過とともにさらに減少する。また、トランジスタQhp,Qif,Qir,Qdnには、電流Iqhp,Iqif,Iqir,Iqdnは流れない。 Subsequently, in step ST24, as in step ST22, control device 30 sets gate signals Sqp, Sqhn, Sqcf, Sqcr, and Sqdp to a high level, and sets other gate signals to a low level and outputs them. . That is, only the gate signal Sqdp is changed from the low level to the high level from step ST23, and the other gate signals are not changed. As a result, a current path Pp1 is formed, and the current that was flowing in the current path Pp2 immediately before step ST24 and the current that is supplied from the power supply capacitor 11 flow in the current path Pp1. At this time, the current amounts of the currents Ic, Iqp, Iqdp, -IL, Iqcr, -Iqcf, and Iqhn are further increased with the passage of time from the current amount of the current flowing in the current path Pp2 immediately before step ST24. The energy Ec of the power supply capacitor 11 further decreases with time. Further, currents Iqhp, Iqif, Iqir, and Iqdn do not flow through transistors Qhp, Qif, Qir, and Qdn.
 続いて、ステップST25では、ステップST23と同様に、制御装置30は、ゲート信号Sqp,Sqhn,Sqcf,Sqcrをハイレベルに設定し、それ以外のゲート信号をローレベルに設定して出力する。つまり、ステップST24からゲート信号Sqdpだけがハイレベルからローレベルに変更され、それ以外のゲート信号は変更されない。これにより、電流経路Pp2が形成され、ステップST25の直前に電流経路Pp1に流れていた電流が電流経路Pp2に流れる。このとき、ステップST23と同様に、電流Ic,Iqp,Iqdpの電流量は0になり、電流Iqhn,-Iqdn,-IL,Iqcr,-Iqcfの電流量は時間の経過とともに徐々に減少する。また、電流Iqhp,Iqif,Iqirの電流量は0のままである。また、電源コンデンサ11から電流が供給されないので、エネルギーEcは変化しない。この時点で、P側スイッチング測定に必要な波形が得られる。つまり、ステップST22~ステップST25のトランジスタQdpをオフ状態にすることまでで、トランジスタQdpのスイッチング測定に必要な波形が得られる。この意味で、ステップST22~ステップST25のトランジスタQdpをオフ状態にすることまでの処理は、狭義のトランジスタQdpのスイッチング測定といえる。 Subsequently, in step ST25, as in step ST23, the control device 30 sets the gate signals Sqp, Sqhn, Sqcf, Sqcr to a high level, and sets the other gate signals to a low level and outputs them. That is, only the gate signal Sqdp is changed from the high level to the low level from step ST24, and the other gate signals are not changed. As a result, a current path Pp2 is formed, and the current that has flowed in the current path Pp1 immediately before step ST25 flows in the current path Pp2. At this time, as in step ST23, the current amounts of the currents Ic, Iqp, and Iqdp become 0, and the current amounts of the currents Iqhn, -Iqdn, -IL, Iqcr, and -Iqcf gradually decrease with time. Further, the current amounts of the currents Iqhp, Iqif, and Iqir remain zero. In addition, since no current is supplied from the power supply capacitor 11, the energy Ec does not change. At this point, the waveform necessary for P-side switching measurement is obtained. That is, a waveform necessary for the switching measurement of the transistor Qdp can be obtained by turning off the transistor Qdp in steps ST22 to ST25. In this sense, the processing up to turning off the transistor Qdp in steps ST22 to ST25 can be said to be a switching measurement of the transistor Qdp in a narrow sense.
 その後、制御装置30は、ゲート信号Sqhnをハイレベルからローレベルに変更する。これにより、トランジスタQp,Qcf,Qcrがオン状態となり、それ以外のトランジスタはオフ状態となる。このとき、図9に示されるように、電源コンデンサ11の-端子から、ダイオードDdn、リアクトルL、トランジスタQcr、トランジスタQcf、ダイオードDhp、及びトランジスタQpを順に通って電源コンデンサ11の+端子に戻る電流経路Pp3が形成され、ゲート信号Sqhnをローレベルに切り替える直前に電流経路Pp2に流れていた電流が電流経路Pp3に流れる。このため、電流Iqhnの電流量は0になる。そして、電流経路Pp3は、電源コンデンサ11の-端子から+端子に向かうので、電源コンデンサ11が充電され、エネルギーEcは時間の経過とともに増加する一方で、電流-Iqdn,-IL,Iqcr,-Iqcf,-Iqhp(ダイオードDhpを流れる電流),-Iqp,-Icの電流量は時間の経過とともに減少する。また、電流Iqdp,Iqif,Iqirの電流量は0のままである。 Thereafter, the control device 30 changes the gate signal Sqhn from the high level to the low level. Thereby, the transistors Qp, Qcf, and Qcr are turned on, and the other transistors are turned off. At this time, as shown in FIG. 9, the current returns from the negative terminal of the power supply capacitor 11 to the positive terminal of the power supply capacitor 11 through the diode Ddn, the reactor L, the transistor Qcr, the transistor Qcf, the diode Dhp, and the transistor Qp in this order. The path Pp3 is formed, and the current that has flowed in the current path Pp2 immediately before switching the gate signal Sqhn to the low level flows in the current path Pp3. For this reason, the current amount of the current Iqhn becomes zero. Since the current path Pp3 goes from the − terminal of the power supply capacitor 11 to the + terminal, the power supply capacitor 11 is charged, and the energy Ec increases with time, while the current −Iqdn, −IL, Iqcr, −Iqcf. , −Iqhp (current flowing through the diode Dhp), −Iqp, −Ic decreases in amount of time. Further, the current amounts of the currents Iqdp, Iqif, and Iqir remain zero.
 続いて、ステップST26では、ステップST25と同じ状態が継続され、電流経路Pp3を流れている電流の電流量が0になり、電源コンデンサ11のエネルギーEcはほぼ満充電状態まで回復する。 Subsequently, in step ST26, the same state as in step ST25 is continued, the amount of current flowing through the current path Pp3 becomes zero, and the energy Ec of the power supply capacitor 11 is almost recovered to the fully charged state.
 続いて、ステップST27では、制御装置30は、ゲート信号Sqp,Sqhp,Sqhn,Sqif,Sqir,Sqcf,Sqcr,Sqdp,Sqdnをいずれもローレベルに設定して出力する。このため、トランジスタQp,Qhp,Qhn,Qif,Qir,Qcf,Qcr,Qdp,Qdnはいずれもオフ状態となり、各トランジスタには、電流は流れない。このようにして、P側スイッチング測定が終了する。なお、電流経路Pp3を流れている電流の電流量が所定の閾値以下になったことを不図示の検出回路等によって検出し、検出回路からの出力信号によって制御装置30は電流経路Pp3を流れている電流の電流量がほぼ0になったこと(エネルギー回収処理の終了)を検出してもよい。所定の閾値は、例えば、0または0よりもわずかに大きい値に設定される。そして、制御装置30はエネルギー回収処理の終了を検出したことに応じて、ステップST27の処理を行ってもよい。 Subsequently, in step ST27, the control device 30 sets the gate signals Sqp, Sqhp, Sqhn, Sqif, Sqir, Sqcf, Sqcr, Sqdp, and Sqdn to all low levels and outputs them. Therefore, the transistors Qp, Qhp, Qhn, Qif, Qir, Qcf, Qcr, Qdp, and Qdn are all turned off, and no current flows through each transistor. In this way, the P-side switching measurement is completed. Note that a detection circuit (not shown) detects that the amount of current flowing through the current path Pp3 is equal to or less than a predetermined threshold, and the control device 30 flows through the current path Pp3 by an output signal from the detection circuit. It may be detected that the current amount of the current is almost zero (end of the energy recovery process). The predetermined threshold is set to 0 or a value slightly larger than 0, for example. And control device 30 may perform processing of Step ST27 according to having detected the end of energy recovery processing.
 以上のように、制御装置30は、P側スイッチング測定を開始する際に、トランジスタQp,Qhn,Qcf,Qcrをオン状態とし、P側スイッチング測定における波形の取り込みの終了に応じて、トランジスタQhnをオフ状態とすることにより、P側スイッチング測定で用いられたエネルギーを回収している。そして、制御装置30は、P側スイッチング測定で用いられたエネルギーを回収した後に、トランジスタQp,Qcf,Qcrをオフ状態としている。したがって、P側スイッチング測定終了時にエネルギーEcはほぼ満充電状態になっているので、次の測定のために高圧電源により電源コンデンサ11の充電を行う必要がない。 As described above, when starting the P-side switching measurement, the control device 30 turns on the transistors Qp, Qhn, Qcf, and Qcr, and sets the transistor Qhn in response to the completion of waveform acquisition in the P-side switching measurement. By using the off state, the energy used in the P-side switching measurement is recovered. Then, after recovering the energy used in the P-side switching measurement, control device 30 turns off transistors Qp, Qcf, and Qcr. Accordingly, since the energy Ec is almost fully charged at the end of the P-side switching measurement, it is not necessary to charge the power supply capacitor 11 with a high-voltage power supply for the next measurement.
 次に、動特性試験装置1を用いたスイッチング測定の比較例について説明する。図10は、比較例のN側スイッチング測定のタイミングチャートである。図11は、比較例のP側スイッチング測定のタイミングチャートである。図10に示されるように、比較例のN側スイッチング測定は、図2のN側スイッチング測定と比較して、ゲート信号Sqhpをハイレベルからローレベルに切り替えるタイミングにおいて相違する。具体的には、比較例のN側スイッチング測定では、ステップST115及びステップST116において、制御装置30は、ゲート信号Sqhpをハイレベルのまま維持している。このため、電流経路Pn2に流れる電流(電流Iqhp,Iqcf,-Iqcr,IL,-Iqdp)の電流量は時間の経過とともに徐々に減少し、やがて0になるが、電源コンデンサ11は充電されない。したがって、次の測定を行う前に、電源コンデンサ11は高圧電源によって充電される必要がある。 Next, a comparative example of switching measurement using the dynamic characteristic test apparatus 1 will be described. FIG. 10 is a timing chart of the N-side switching measurement of the comparative example. FIG. 11 is a timing chart of the P-side switching measurement of the comparative example. As shown in FIG. 10, the N-side switching measurement of the comparative example is different from the N-side switching measurement of FIG. 2 at the timing of switching the gate signal Sqhp from the high level to the low level. Specifically, in the N-side switching measurement of the comparative example, in step ST115 and step ST116, the control device 30 maintains the gate signal Sqhp at a high level. Therefore, the amount of current flowing through the current path Pn2 (currents Iqhp, Iqcf, −Iqcr, IL, and −Iqdp) gradually decreases with time and eventually becomes 0, but the power supply capacitor 11 is not charged. Therefore, before performing the next measurement, the power supply capacitor 11 needs to be charged by a high voltage power supply.
 同様に、図11に示されるように、比較例のP側スイッチング測定は、図6のP側スイッチング測定と比較して、ゲート信号Sqhnをハイレベルからローレベルに切り替えるタイミングにおいて相違する。具体的には、比較例のP側スイッチング測定では、ステップST125及びステップST126において、制御装置30は、ゲート信号Sqhnをハイレベルのまま維持している。このため、電流経路Pp2に流れる電流(電流Iqhn,-Iqdn,-IL,Iqcr,-Iqcf)の電流量が時間の経過とともに徐々に減少し、やがて0になるが、電源コンデンサ11は充電されない。したがって、次の測定を行う前に、電源コンデンサ11は高圧電源によって充電される必要がある。 Similarly, as shown in FIG. 11, the P-side switching measurement of the comparative example is different from the P-side switching measurement of FIG. 6 at the timing of switching the gate signal Sqhn from the high level to the low level. Specifically, in the P-side switching measurement of the comparative example, in step ST125 and step ST126, control device 30 maintains gate signal Sqhn at a high level. For this reason, the amount of current flowing in the current path Pp2 (currents Iqhn, -Iqdn, -IL, Iqcr, -Iqcf) gradually decreases with time and eventually becomes 0, but the power supply capacitor 11 is not charged. Therefore, before performing the next measurement, the power supply capacitor 11 needs to be charged by a high voltage power supply.
 次に、動特性試験装置1の過電流防止について説明する。まず、N側スイッチング測定における過電流防止について説明する。図12は、動特性試験装置1における過電流防止処理を含むN側スイッチング測定のタイミングチャートである。図13は、N側スイッチング測定における過電流防止処理時の電流経路を示す図である。 Next, the overcurrent prevention of the dynamic characteristic test apparatus 1 will be described. First, overcurrent prevention in N-side switching measurement will be described. FIG. 12 is a timing chart of N-side switching measurement including overcurrent prevention processing in the dynamic characteristic test apparatus 1. FIG. 13 is a diagram illustrating a current path during overcurrent prevention processing in N-side switching measurement.
 図12に示されるように、ステップST31~ステップST33のゲート信号は、図2のステップST11~ステップST13と同一であるので説明を省略する。この例では、ステップST33において、DUT50が不良であるためにトランジスタQdnがオフ状態とならない場合を想定している。この場合、ステップST32以降、電流経路Pn1に電流(電流Ic,Iqp,Iqhp,Iqcf,-Iqcr,IL,Iqdn)が流れ続け、時間の経過とともにその電流量が増加し続ける。 As shown in FIG. 12, the gate signals in steps ST31 to ST33 are the same as those in steps ST11 to ST13 in FIG. In this example, it is assumed that the transistor Qdn is not turned off in step ST33 because the DUT 50 is defective. In this case, after step ST32, currents (currents Ic, Iqp, Iqhp, Iqcf, −Iqcr, IL, Iqdn) continue to flow through the current path Pn1, and the amount of current continues to increase with time.
 そして、ステップST34において、電流経路Pn1を流れる電流の電流量がN側の過電流閾値Ref_Nよりも大きくなり、コンパレータ23はローレベルの出力信号を制御装置30に出力する。そして、制御装置30は、コンパレータ23からローレベルの出力信号を受信したことに応じて、過電流を検出し、ゲート信号Sqp,Sqhpをハイレベルからローレベルに変更し、ゲート信号Sqirをローレベルからハイレベルに変更する。これにより、トランジスタQcf,Qcr,Qir,Qdnがオン状態となり、それ以外のトランジスタはオフ状態となる。このとき、図13に示されるように、トランジスタQcf、トランジスタQcr、リアクトルL、トランジスタQdn、及びダイオードDhnを順に巡回する電流経路Pn41が形成されるとともに、リアクトルL、トランジスタQir、及びダイオードDifを順に巡回する電流経路Pn42が形成される。そして、電流経路Pn1に流れていた過電流が電流経路Pn41及び電流経路Pn42に分かれて流れる。これにより、過電流が試験回路10及びDUT50に流れ続けることが防止される。 In step ST34, the amount of current flowing through the current path Pn1 becomes larger than the N-side overcurrent threshold Ref_N, and the comparator 23 outputs a low-level output signal to the control device 30. Then, in response to receiving the low level output signal from the comparator 23, the control device 30 detects an overcurrent, changes the gate signals Sqp and Sqhp from the high level to the low level, and changes the gate signal Sqir to the low level. Change from high to high. Thereby, the transistors Qcf, Qcr, Qir, and Qdn are turned on, and the other transistors are turned off. At this time, as shown in FIG. 13, a current path Pn41 that sequentially circulates the transistor Qcf, the transistor Qcr, the reactor L, the transistor Qdn, and the diode Dhn is formed, and the reactor L, the transistor Qir, and the diode Dif are sequentially connected. A circulating current path Pn42 is formed. Then, the overcurrent that has flowed through the current path Pn1 flows separately into the current path Pn41 and the current path Pn42. This prevents overcurrent from continuing to flow through the test circuit 10 and the DUT 50.
 続いて、ステップST35では、ステップST15と同様に、制御装置30は、ステップST34のゲート信号の状態からゲート信号Sqdnだけをハイレベルからローレベルに変更し、それ以外のゲート信号を変更しない。しかし、DUT50が不良であるためにトランジスタQdnがオフ状態とならず、各トランジスタはステップST34と同じ状態を維持している。そして、電流経路Pn41を流れる電流が電流経路Pn41を巡回することによって、トランジスタQcf、トランジスタQcr、リアクトルL、トランジスタQdn、及びダイオードDhnの抵抗成分等によってエネルギーが消費されるので、その電流量は時間の経過とともに減少していく。同様に、電流経路Pn42を流れる電流が電流経路Pn42を巡回することによって、リアクトルL、トランジスタQir、及びダイオードDifの抵抗成分等によってエネルギーが消費されるので、その電流量は時間の経過とともに減少していく。 Subsequently, in step ST35, as in step ST15, the control device 30 changes only the gate signal Sqdn from the high level to the low level from the state of the gate signal in step ST34, and does not change the other gate signals. However, since the DUT 50 is defective, the transistor Qdn is not turned off, and each transistor maintains the same state as step ST34. Since the current flowing through the current path Pn41 circulates through the current path Pn41, energy is consumed by the resistance components of the transistor Qcf, the transistor Qcr, the reactor L, the transistor Qdn, and the diode Dhn. It decreases with the passage of time. Similarly, since the current flowing through the current path Pn42 circulates through the current path Pn42, energy is consumed by the resistance components of the reactor L, the transistor Qir, the diode Dif, and the like, so that the amount of current decreases with time. To go.
 続いて、ステップST36では、ステップST35のゲート信号の状態が継続され、電流経路Pn41及び電流経路Pn42を流れている電流の電流量がさらに減少して0になる。 Subsequently, in step ST36, the state of the gate signal in step ST35 is continued, and the amount of current flowing through the current path Pn41 and the current path Pn42 is further reduced to zero.
 続いて、ステップST37では、制御装置30は、ゲート信号Sqp,Sqhp,Sqhn,Sqif,Sqir,Sqcf,Sqcr,Sqdp,Sqdnをいずれもローレベルに設定して出力する。このため、トランジスタQp,Qhp,Qhn,Qif,Qir,Qcf,Qcr,Qdp,Qdnはいずれもオフ状態となり、各トランジスタには、電流は流れない。なお、電流経路Pn41及び電流経路Pn42を流れている電流の電流量が所定の閾値以下になったことを不図示の検出回路等によって検出し、検出回路からの出力信号によって制御装置30は電流経路Pn41及び電流経路Pn42を流れている電流の電流量がほぼ0になったこと(エネルギー消費処理の終了)を検出してもよい。所定の閾値は、例えば、0または0よりもわずかに大きい値に設定される。そして、制御装置30はエネルギー消費処理の終了を検出したことに応じて、ステップST37の処理を行ってもよい。 Subsequently, in step ST37, the control device 30 sets the gate signals Sqp, Sqhp, Sqhn, Sqif, Sqir, Sqcf, Sqcr, Sqdp, and Sqdn to all low levels and outputs them. Therefore, the transistors Qp, Qhp, Qhn, Qif, Qir, Qcf, Qcr, Qdp, and Qdn are all turned off, and no current flows through each transistor. Note that a detection circuit or the like (not shown) detects that the amount of current flowing through the current path Pn41 and the current path Pn42 is equal to or less than a predetermined threshold, and the control device 30 uses the output signal from the detection circuit to It may be detected that the amount of current flowing through Pn41 and the current path Pn42 has become almost zero (end of energy consumption processing). The predetermined threshold is set to 0 or a value slightly larger than 0, for example. And control device 30 may perform processing of Step ST37 according to having detected the end of energy consumption processing.
 以上のように、制御装置30は、N側スイッチング測定において過電流を検出したことに応じて、トランジスタQp,Qhpをオフ状態とするとともに、トランジスタQirをオン状態とすることによって、過電流防止回路14を動作させる。これにより、過電流が生じたときにリアクトルLに蓄積されているエネルギーは、過電流防止回路14によって消費され、N側スイッチング測定において、DUT50にさらなる過電流が流れることが防止される。 As described above, the control device 30 turns off the transistors Qp and Qhp and turns on the transistor Qir in response to the detection of the overcurrent in the N-side switching measurement. 14 is operated. As a result, the energy accumulated in the reactor L when an overcurrent occurs is consumed by the overcurrent prevention circuit 14, and further overcurrent is prevented from flowing through the DUT 50 in the N-side switching measurement.
 次に、P側スイッチング測定における過電流防止について説明する。図14は、動特性試験装置1における過電流防止処理を含むP側スイッチング測定のタイミングチャートである。図15は、P側スイッチング測定における過電流防止処理時の電流経路を示す図である。 Next, overcurrent prevention in P-side switching measurement will be described. FIG. 14 is a timing chart of P-side switching measurement including overcurrent prevention processing in the dynamic characteristic test apparatus 1. FIG. 15 is a diagram illustrating a current path during overcurrent prevention processing in P-side switching measurement.
 図14に示されるように、ステップST41~ステップST43のゲート信号は、図6のステップST21~ステップST23と同一であるので説明を省略する。この例では、ステップST43において、DUT50が不良であるためにトランジスタQdpがオフ状態とならない場合を想定している。この場合、ステップST42以降、電流経路Pp1に電流(電流Ic,Iqp,Iqdp,-IL,Iqcr,-Iqcf,Iqhn)が流れ続け、時間の経過とともにその電流量が増加し続ける。 As shown in FIG. 14, the gate signals in steps ST41 to ST43 are the same as those in steps ST21 to ST23 in FIG. In this example, it is assumed that the transistor Qdp is not turned off in step ST43 because the DUT 50 is defective. In this case, after step ST42, currents (currents Ic, Iqp, Iqdp, -IL, Iqcr, -Iqcf, Iqhn) continue to flow through the current path Pp1, and the amount of current continues to increase with time.
 そして、ステップST44において、電流経路Pp1を流れる電流の電流量がP側の過電流閾値Ref_Pよりも大きくなり、コンパレータ24はローレベルの出力信号を制御装置30に出力する。そして、制御装置30は、コンパレータ24からローレベルの出力信号を受信したことに応じて、過電流を検出し、ゲート信号Sqp,Sqhnをハイレベルからローレベルに変更し、ゲート信号Sqifをローレベルからハイレベルに変更する。これにより、トランジスタQcf,Qcr,Qif,Qdpがオン状態となり、それ以外のトランジスタはオフ状態となる。このとき、図15に示されるように、リアクトルL、トランジスタQcr、トランジスタQcf、ダイオードDhp、及びトランジスタQdpを順に巡回する電流経路Pp41が形成されるとともに、リアクトルL、トランジスタQif、及びダイオードDirを順に巡回する電流経路Pp42が形成される。そして、電流経路Pp1に流れていた過電流が電流経路Pp41及び電流経路Pp42に分かれて流れる。これにより、過電流が試験回路10及びDUT50に流れ続けることが防止される。 In step ST44, the amount of current flowing through the current path Pp1 becomes larger than the P-side overcurrent threshold Ref_P, and the comparator 24 outputs a low-level output signal to the control device 30. Then, in response to receiving the low level output signal from the comparator 24, the control device 30 detects an overcurrent, changes the gate signals Sqp and Sqhn from the high level to the low level, and changes the gate signal Sqif to the low level. Change from high to high. Accordingly, the transistors Qcf, Qcr, Qif, and Qdp are turned on, and the other transistors are turned off. At this time, as shown in FIG. 15, a current path Pp41 that circulates through the reactor L, the transistor Qcr, the transistor Qcf, the diode Dhp, and the transistor Qdp in order is formed, and the reactor L, the transistor Qif, and the diode Dir are sequentially connected. A circulating current path Pp42 is formed. Then, the overcurrent that has flowed through the current path Pp1 flows separately into the current path Pp41 and the current path Pp42. This prevents overcurrent from continuing to flow through the test circuit 10 and the DUT 50.
 続いて、ステップST45では、ステップST25と同様に、制御装置30は、ステップST44のゲート信号の状態からゲート信号Sqdpだけをハイレベルからローレベルに変更し、それ以外のゲート信号を変更しない。しかし、DUT50が不良であるためにトランジスタQdpがオフ状態とならず、各トランジスタはステップST44と同じ状態を維持している。そして、電流経路Pp41を流れる電流が電流経路Pp41を巡回することによって、リアクトルL、トランジスタQcr、トランジスタQcf、ダイオードDhp、及びトランジスタQdpの抵抗成分等によってエネルギーが消費されるので、その電流量は時間の経過とともに減少していく。同様に、電流経路Pp42を流れる電流が電流経路Pp42を巡回することによって、リアクトルL、トランジスタQif、及びダイオードDirの抵抗成分等によってエネルギーが消費されるので、その電流量は時間の経過とともに減少していく。 Subsequently, in step ST45, as in step ST25, the control device 30 changes only the gate signal Sqdp from the high level to the low level from the state of the gate signal in step ST44, and does not change the other gate signals. However, since the DUT 50 is defective, the transistor Qdp is not turned off, and each transistor maintains the same state as step ST44. Since the current flowing through the current path Pp41 circulates through the current path Pp41, energy is consumed by the reactor L, the transistor Qcr, the transistor Qcf, the diode Dhp, the resistance component of the transistor Qdp, and the like. It decreases with the passage of time. Similarly, since the current flowing through the current path Pp42 circulates through the current path Pp42, energy is consumed by the resistance components of the reactor L, the transistor Qif, and the diode Dir, and the amount of current decreases with time. To go.
 続いて、ステップST46では、ステップST45のゲート信号の状態が継続され、電流経路Pp41及び電流経路Pp42を流れている電流の電流量がさらに減少して0になる。 Subsequently, in step ST46, the state of the gate signal in step ST45 is continued, and the amount of current flowing through the current path Pp41 and the current path Pp42 is further reduced to zero.
 続いて、ステップST47では、制御装置30は、ゲート信号Sqp,Sqhp,Sqhn,Sqif,Sqir,Sqcf,Sqcr,Sqdp,Sqdnをいずれもローレベルに設定して出力する。このため、トランジスタQp,Qhp,Qhn,Qif,Qir,Qcf,Qcr,Qdp,Qdnはいずれもオフ状態となり、各トランジスタには、電流は流れない。なお、電流経路Pp41及び電流経路Pp42を流れている電流の電流量が所定の閾値以下になったことを不図示の検出回路等によって検出し、検出回路からの出力信号によって制御装置30は電流経路Pp41及び電流経路Pp42を流れている電流の電流量がほぼ0になったこと(エネルギー消費処理の終了)を検出してもよい。所定の閾値は、例えば、0または0よりもわずかに大きい値に設定される。そして、制御装置30はエネルギー消費処理の終了を検出したことに応じて、ステップST47の処理を行ってもよい。 Subsequently, in step ST47, the control device 30 sets the gate signals Sqp, Sqhp, Sqhn, Sqif, Sqir, Sqcf, Sqcr, Sqdp, and Sqdn to all low levels and outputs them. Therefore, the transistors Qp, Qhp, Qhn, Qif, Qir, Qcf, Qcr, Qdp, and Qdn are all turned off, and no current flows through each transistor. Note that a detection circuit or the like (not shown) detects that the amount of current flowing through the current path Pp41 and the current path Pp42 is equal to or less than a predetermined threshold, and the control device 30 uses the output signal from the detection circuit to It may be detected that the amount of current flowing through Pp41 and current path Pp42 has become substantially zero (end of energy consumption processing). The predetermined threshold is set to 0 or a value slightly larger than 0, for example. And the control apparatus 30 may perform the process of step ST47 according to having detected the completion | finish of an energy consumption process.
 以上のように、制御装置30は、P側スイッチング測定において過電流を検出したことに応じて、トランジスタQp,Qhnをオフ状態とするとともに、トランジスタQifをオン状態とすることによって、過電流防止回路14を動作させる。これにより、過電流が生じたときにリアクトルLに蓄積されているエネルギーは、過電流防止回路14によって消費され、P側スイッチング測定において、DUT50にさらなる過電流が流れることが防止される。 As described above, the control device 30 turns off the transistors Qp and Qhn and turns on the transistor Qif in response to the detection of the overcurrent in the P-side switching measurement. 14 is operated. As a result, the energy accumulated in the reactor L when an overcurrent occurs is consumed by the overcurrent prevention circuit 14, and further overcurrent is prevented from flowing through the DUT 50 in the P-side switching measurement.
 さらに、高速遮断回路15を用いた過電流防止について説明する。まず、高速遮断回路15を用いたN側スイッチング測定における過電流防止について説明する。図16は、動特性試験装置1における高速遮断回路を用いた過電流防止処理を含むN側スイッチング測定のタイミングチャートである。図17は、N側スイッチング測定における高速遮断回路を用いた過電流防止処理時の電流経路を示す図である。 Further, overcurrent prevention using the high-speed interrupt circuit 15 will be described. First, overcurrent prevention in N-side switching measurement using the high-speed cutoff circuit 15 will be described. FIG. 16 is a timing chart of N-side switching measurement including overcurrent prevention processing using a high-speed cutoff circuit in the dynamic characteristic test apparatus 1. FIG. 17 is a diagram illustrating a current path during overcurrent prevention processing using a high-speed cutoff circuit in N-side switching measurement.
 図16に示されるゲート信号のタイミングチャートは、図12に示されるゲート信号のタイミングチャートと比較して、ステップST54において、制御装置30が過電流を検出したことに応じて、さらにゲート信号Sqcf,Sqcrをハイレベルからローレベルに変更する点で相違する。このため、過電流が検出されると、トランジスタQir,Qdnがオン状態となり、それ以外のトランジスタはオフ状態となる。このとき、図17に示されるように、電流経路Pn41は形成されず、電流経路Pn42のみが形成されるので、電流経路Pn1に流れていた過電流は電流経路Pn42に流れる。そして、電流経路Pn42を流れる電流は、電流経路Pn42を巡回することによってエネルギーを消費するので、その電流量は時間の経過とともに減少していく。 Compared with the timing chart of the gate signal shown in FIG. 12, the timing chart of the gate signal shown in FIG. 16 further includes the gate signal Sqcf, The difference is that Sqcr is changed from a high level to a low level. For this reason, when an overcurrent is detected, the transistors Qir and Qdn are turned on, and the other transistors are turned off. At this time, as shown in FIG. 17, the current path Pn41 is not formed, but only the current path Pn42 is formed, so that the overcurrent that has flowed through the current path Pn1 flows into the current path Pn42. The current flowing through the current path Pn42 consumes energy by circulating through the current path Pn42, so that the amount of current decreases with the passage of time.
 以上のように、制御装置30は、N側スイッチング測定において過電流を検出したことに応じて、トランジスタQp,Qhpをオフ状態とするとともに、トランジスタQirをオン状態とすることによって、過電流防止回路14を動作させ、さらにトランジスタQcf,Qcrをオフ状態とすることによって、高速遮断回路15を動作させる。これにより、過電流が生じたときにリアクトルLに蓄積されているエネルギーは、電流として過電流防止回路14に流れて、過電流防止回路14によって消費される。高速遮断回路15を動作させない場合には、電流経路Pn1に流れていた過電流は電流経路Pn41及び電流経路Pn42に分かれて流れる。このとき、過電流の消費に寄与する抵抗値は、電流経路Pn41の抵抗成分の抵抗値と電流経路Pn42の抵抗成分の抵抗値との合成抵抗値となり、電流経路Pn42の抵抗成分の抵抗値よりも小さくなる。このため、高速遮断回路15を動作させない場合と比較して、高速遮断回路15を動作させた場合には、過電流の消費に寄与する抵抗値が大きくなるので、リアクトルLに蓄積されているエネルギーが短時間で消費され、N側スイッチング測定において、DUT50にさらなる過電流が流れることがさらに確実に防止される。 As described above, the control device 30 turns off the transistors Qp and Qhp and turns on the transistor Qir in response to the detection of the overcurrent in the N-side switching measurement. 14 is operated, and the transistors Qcf and Qcr are turned off to operate the high-speed cutoff circuit 15. As a result, the energy accumulated in the reactor L when an overcurrent occurs flows to the overcurrent prevention circuit 14 as a current and is consumed by the overcurrent prevention circuit 14. When the high-speed cutoff circuit 15 is not operated, the overcurrent that has flowed through the current path Pn1 flows separately into the current path Pn41 and the current path Pn42. At this time, the resistance value contributing to the overcurrent consumption is a combined resistance value of the resistance value of the resistance component of the current path Pn41 and the resistance value of the resistance component of the current path Pn42. Becomes smaller. For this reason, compared with the case where the high-speed cutoff circuit 15 is not operated, when the high-speed cutoff circuit 15 is operated, the resistance value that contributes to the overcurrent consumption is increased, so that the energy stored in the reactor L is increased. Is consumed in a short time, and in the N-side switching measurement, further overcurrent is more reliably prevented from flowing through the DUT 50.
 次に、高速遮断回路15を用いたP側スイッチング測定における過電流防止について説明する。図18は、動特性試験装置1における高速遮断回路を用いた過電流防止処理を含むP側スイッチング測定のタイミングチャートである。図19は、P側スイッチング測定における高速遮断回路を用いた過電流防止処理時の電流経路を示す図である。 Next, overcurrent prevention in P-side switching measurement using the high-speed cutoff circuit 15 will be described. FIG. 18 is a timing chart of P-side switching measurement including overcurrent prevention processing using a high-speed cutoff circuit in the dynamic characteristic test apparatus 1. FIG. 19 is a diagram illustrating a current path during overcurrent prevention processing using a high-speed cutoff circuit in P-side switching measurement.
 図18に示されるゲート信号のタイミングチャートは、図14に示されるゲート信号のタイミングチャートと比較して、ステップST64において、制御装置30が過電流を検出したことに応じて、さらにゲート信号Sqcf,Sqcrをハイレベルからローレベルに変更する点で相違する。このため、過電流が検出されると、トランジスタQif,Qdpがオン状態となり、それ以外のトランジスタはオフ状態となる。このとき、図19に示されるように、電流経路Pp41は形成されず、電流経路Pp42のみが形成されるので、電流経路Pp1に流れていた過電流は電流経路Pp42に流れる。そして、電流経路Pp42を流れる電流は、電流経路Pp42を巡回することによってエネルギーを消費するので、その電流量は時間の経過とともに減少していく。 The gate signal timing chart shown in FIG. 18 is further compared with the gate signal timing chart shown in FIG. 14 in response to the detection of an overcurrent by the control device 30 in step ST64, and the gate signal Sqcf, The difference is that Sqcr is changed from a high level to a low level. Therefore, when an overcurrent is detected, the transistors Qif and Qdp are turned on, and the other transistors are turned off. At this time, as shown in FIG. 19, the current path Pp41 is not formed, but only the current path Pp42 is formed. Therefore, the overcurrent that has flowed through the current path Pp1 flows into the current path Pp42. The current flowing through the current path Pp42 consumes energy by circulating through the current path Pp42, so that the amount of current decreases with the passage of time.
 以上のように、制御装置30は、P側スイッチング測定において過電流を検出したことに応じて、トランジスタQp,Qhnをオフ状態とするとともに、トランジスタQifをオン状態とすることによって、過電流防止回路14を動作させ、さらにトランジスタQcf,Qcrをオフ状態とすることによって、高速遮断回路15を動作させる。これにより、過電流が生じたときにリアクトルLに蓄積されているエネルギーは、電流として過電流防止回路14に流れて、過電流防止回路14によって消費される。高速遮断回路15を動作させない場合には、電流経路Pp1に流れていた過電流は電流経路Pp41及び電流経路Pp42に分かれて流れる。このとき、過電流の消費に寄与する抵抗値は、電流経路Pp41の抵抗成分の抵抗値と電流経路Pp42の抵抗成分の抵抗値との合成抵抗値となり、電流経路Pp42の抵抗成分の抵抗値よりも小さくなる。このため、高速遮断回路15を動作させない場合と比較して、高速遮断回路15を動作させた場合には、過電流の消費に寄与する抵抗値が大きくなるので、リアクトルLに蓄積されているエネルギーが短時間で消費され、P側スイッチング測定において、DUT50にさらなる過電流が流れることがさらに確実に防止される。 As described above, the control device 30 turns off the transistors Qp and Qhn and turns on the transistor Qif in response to the detection of the overcurrent in the P-side switching measurement. 14 is operated, and the transistors Qcf and Qcr are turned off to operate the high-speed cutoff circuit 15. As a result, the energy accumulated in the reactor L when an overcurrent occurs flows to the overcurrent prevention circuit 14 as a current and is consumed by the overcurrent prevention circuit 14. When the high-speed cutoff circuit 15 is not operated, the overcurrent that has flowed through the current path Pp1 flows separately into the current path Pp41 and the current path Pp42. At this time, the resistance value contributing to the overcurrent consumption is a combined resistance value of the resistance value of the resistance component of the current path Pp41 and the resistance value of the resistance component of the current path Pp42, and is based on the resistance value of the resistance component of the current path Pp42. Becomes smaller. For this reason, compared with the case where the high-speed cutoff circuit 15 is not operated, when the high-speed cutoff circuit 15 is operated, the resistance value that contributes to the overcurrent consumption is increased, so that the energy stored in the reactor L is increased. Is consumed in a short time, and in the P-side switching measurement, further overcurrent is more reliably prevented from flowing through the DUT 50.
(短絡耐量測定)
 次に、動特性試験装置1を用いた短絡耐量測定について説明する。まず、トランジスタQdnの短絡耐量測定(「N側短絡耐量測定」と称することがある。)について説明する。図20は、動特性試験装置1におけるN側短絡耐量測定のタイミングチャートである。図20に示されるように、ステップST71では、制御装置30は、リレー信号Sswp,Sswn及びゲート信号Sqp,Sqhp,Sqhn,Sqif,Sqir,Sqcf,Sqcr,Sqdp,Sqdnをいずれもローレベルに設定して出力する。このため、スイッチSWp,SWn及びトランジスタQp,Qhp,Qhn,Qif,Qir,Qcf,Qcr,Qdp,Qdnはいずれもオフ状態であり、各トランジスタ及びスイッチには、電流は流れていない。
(Short-circuit resistance measurement)
Next, short-circuit tolerance measurement using the dynamic characteristic test apparatus 1 will be described. First, short-circuit tolerance measurement (sometimes referred to as “N-side short-circuit tolerance measurement”) of the transistor Qdn will be described. FIG. 20 is a timing chart of the N-side short-circuit tolerance measurement in the dynamic characteristic test apparatus 1. As shown in FIG. 20, in step ST71, the control device 30 sets all of the relay signals Sswp, Sswn and the gate signals Sqp, Sqhp, Sqhn, Sqif, Sqir, Sqcf, Sqcr, Sqdp, Sqdn to a low level. Output. Therefore, the switches SWp and SWn and the transistors Qp, Qhp, Qhn, Qif, Qir, Qcf, Qcr, Qdp, and Qdn are all in an off state, and no current flows through each transistor and switch.
 続いて、ステップST72では、制御装置30は、リレー信号Sswp及びゲート信号Sqp,Sqdnをハイレベルに設定し、リレー信号Sswn及びゲート信号Sqhp,Sqhn,Sqif,Sqir,Sqcf,Sqcr,Sqdpをローレベルに設定して出力する。これにより、スイッチSWp及びトランジスタQp,Qdnがオン状態となり、それ以外のスイッチ及びトランジスタはオフ状態となる。このとき、電源コンデンサ11の+端子からトランジスタQp、スイッチSWp及びトランジスタQdnを順に通って電源コンデンサ11の-端子に戻る電流経路が形成され、その電流経路に電流が流れる。このように、リアクトルLを介することなく、トランジスタQdnに短絡電流が流れる。 Subsequently, in step ST72, the control device 30 sets the relay signal Sswp and the gate signals Sqp and Sqdn to a high level, and sets the relay signal Sswn and the gate signals Sqhp, Sqhn, Sqif, Sqir, Sqcf, Sqcr, and Sqdp to a low level. Set to output. As a result, the switch SWp and the transistors Qp and Qdn are turned on, and the other switches and transistors are turned off. At this time, a current path is formed from the + terminal of the power supply capacitor 11 through the transistor Qp, the switch SWp, and the transistor Qdn in order to return to the − terminal of the power supply capacitor 11, and a current flows through the current path. Thus, a short-circuit current flows through the transistor Qdn without passing through the reactor L.
 続いて、ステップST73では、制御装置30は、ステップST71と同様に、リレー信号Sswp,Sswn及びゲート信号Sqp,Sqhp,Sqhn,Sqif,Sqir,Sqcf,Sqcr,Sqdp,Sqdnをいずれもローレベルに設定して出力する。これにより、全てのスイッチ及びトランジスタはいずれもオフ状態となり、各トランジスタ及びスイッチには電流が流れない。以上の一連の処理によって、N側短絡耐量測定が行われる。 Subsequently, in step ST73, as in step ST71, the control device 30 sets the relay signals Sswp and Sswn and the gate signals Sqp, Sqhp, Sqhn, Sqif, Sqir, Sqcf, Sqcr, Sqdp, and Sqdn to all low levels. And output. As a result, all switches and transistors are turned off, and no current flows through each transistor and switch. N-side short-circuit tolerance measurement is performed by the above series of processes.
 次に、トランジスタQdpの短絡耐量測定(「P側短絡耐量測定」と称することがある。)について説明する。図21は、動特性試験装置1におけるP側短絡耐量測定のタイミングチャートである。図21に示されるように、ステップST81では、制御装置30は、リレー信号Sswp,Sswn及びゲート信号Sqp,Sqhp,Sqhn,Sqif,Sqir,Sqcf,Sqcr,Sqdp,Sqdnをいずれもローレベルに設定して出力する。このため、スイッチSWp,SWn及びトランジスタQp,Qhp,Qhn,Qif,Qir,Qcf,Qcr,Qdp,Qdnはいずれもオフ状態であり、各トランジスタ及びスイッチには、電流は流れていない。 Next, short-circuit tolerance measurement of the transistor Qdp (sometimes referred to as “P-side short-circuit tolerance measurement”) will be described. FIG. 21 is a timing chart of the P-side short-circuit tolerance measurement in the dynamic characteristic test apparatus 1. As shown in FIG. 21, in step ST81, the control device 30 sets all of the relay signals Sswp, Sswn and the gate signals Sqp, Sqhp, Sqhn, Sqif, Sqir, Sqcf, Sqcr, Sqdp, Sqdn to a low level. Output. Therefore, the switches SWp and SWn and the transistors Qp, Qhp, Qhn, Qif, Qir, Qcf, Qcr, Qdp, and Qdn are all in an off state, and no current flows through each transistor and switch.
 続いて、ステップST82では、制御装置30は、リレー信号Sswn及びゲート信号Sqp,Sqdpをハイレベルに設定し、リレー信号Sswp及びゲート信号Sqhp,Sqhn,Sqif,Sqir,Sqcf,Sqcr,Sqdnをローレベルに設定して出力する。これにより、スイッチSWn及びトランジスタQp,Qdpがオン状態となり、それ以外のスイッチ及びトランジスタはオフ状態となる。このとき、電源コンデンサ11の+端子からトランジスタQp、トランジスタQdp及びスイッチSWnを順に通って電源コンデンサ11の-端子に戻る電流経路が形成され、その電流経路に電流が流れる。このように、リアクトルLを介することなく、トランジスタQdpに短絡電流が流れる。 Subsequently, in step ST82, the control device 30 sets the relay signal Sswn and the gate signals Sqp, Sqdp to a high level, and sets the relay signal Sswp and the gate signals Sqhp, Sqhn, Sqif, Sqir, Sqcf, Sqcr, Sqdn to a low level. Set to output. As a result, the switch SWn and the transistors Qp and Qdp are turned on, and the other switches and transistors are turned off. At this time, a current path is formed from the positive terminal of the power supply capacitor 11 through the transistor Qp, the transistor Qdp, and the switch SWn in order to return to the negative terminal of the power supply capacitor 11, and a current flows through the current path. Thus, a short-circuit current flows through the transistor Qdp without passing through the reactor L.
 続いて、ステップST83では、制御装置30は、ステップST81と同様に、リレー信号Sswp,Sswn及びゲート信号Sqp,Sqhp,Sqhn,Sqif,Sqir,Sqcf,Sqcr,Sqdp,Sqdnをいずれもローレベルに設定して出力する。これにより、全てのスイッチ及びトランジスタはいずれもオフ状態となり、各トランジスタ及びスイッチには電流が流れない。以上の一連の処理によって、P側短絡耐量測定が行われる。 Subsequently, in step ST83, as in step ST81, the control device 30 sets the relay signals Sswp and Sswn and the gate signals Sqp, Sqhp, Sqhn, Sqif, Sqir, Sqcf, Sqcr, Sqdp, and Sqdn to all low levels. And output. As a result, all switches and transistors are turned off, and no current flows through each transistor and switch. The P-side short-circuit tolerance measurement is performed by the series of processes described above.
 以上説明した動特性試験装置1では、トランジスタQdnのスイッチング測定を開始する際にトランジスタQp,Qhp,Qcf,Qcrがオン状態とされ、トランジスタQdnのスイッチング測定(スイッチング測定のための波形の取り込み)が終了したことに応じてトランジスタQhpがオフ状態とされた後に、トランジスタQp,Qcf,Qcrがオフ状態とされる。トランジスタQdnのスイッチング測定時には、電源コンデンサ11からトランジスタQdnに供給された電流は、接続部Csから接続部Cdに向かってリアクトルLに流れ、トランジスタQdnのスイッチング測定(スイッチング測定のための波形の取り込み)が終了した時点では、リアクトルLにエネルギーが蓄積されている。このため、トランジスタQdnのスイッチング測定(スイッチング測定のための波形の取り込み)が終了したことに応じてトランジスタQhpがオフ状態とされることによって、電源コンデンサ11の-端子から、ダイオードDhn、トランジスタQcf、トランジスタQcr、リアクトルL、ダイオードDdp、及びトランジスタQpを順に通って電源コンデンサ11の+端子に戻る電流経路Pn3が形成され、リアクトルLに蓄積されているエネルギーが電流として電源コンデンサ11の+端子に流れる。これにより、トランジスタQdnのスイッチング測定に用いられた電源コンデンサ11のエネルギー(電力)の一部を回収することができる。その結果、動特性試験における電力使用量の削減が可能となる。また、次の測定のために、電源コンデンサ11を充電する時間を短縮することができ、マシンサイクルの短縮(向上)が可能となる。 In the dynamic characteristic test apparatus 1 described above, the transistors Qp, Qhp, Qcf, and Qcr are turned on when starting the switching measurement of the transistor Qdn, and the switching measurement of the transistor Qdn (capture of a waveform for switching measurement) is performed. The transistors Qhp, Qcf, and Qcr are turned off after the transistor Qhp is turned off in response to the termination. At the time of switching measurement of the transistor Qdn, the current supplied from the power supply capacitor 11 to the transistor Qdn flows to the reactor L from the connection portion Cs toward the connection portion Cd, and the switching measurement of the transistor Qdn (capture of a waveform for switching measurement). At the time when is completed, energy is accumulated in the reactor L. For this reason, the transistor Qhp is turned off in response to the end of the switching measurement of the transistor Qdn (capture of a waveform for switching measurement), whereby the diode Dhn, the transistor Qcf, A current path Pn3 that passes through the transistor Qcr, the reactor L, the diode Ddp, and the transistor Qp in order and returns to the + terminal of the power supply capacitor 11 is formed, and the energy accumulated in the reactor L flows as a current to the + terminal of the power supply capacitor 11 . Thereby, a part of the energy (electric power) of the power supply capacitor 11 used for the switching measurement of the transistor Qdn can be recovered. As a result, it is possible to reduce the amount of power used in the dynamic characteristic test. In addition, for the next measurement, the time for charging the power supply capacitor 11 can be shortened, and the machine cycle can be shortened (improved).
 また、動特性試験装置1では、トランジスタQdpのスイッチング測定を開始する際にトランジスタQp,Qhn,Qcf,Qcrがオン状態とされ、トランジスタQdpのスイッチング測定(スイッチング測定のための波形の取り込み)が終了したことに応じてトランジスタQhnがオフ状態とされた後に、トランジスタQp,Qcf,Qcrがオフ状態とされる。トランジスタQdpのスイッチング測定時には、電源コンデンサ11からトランジスタQdpに供給された電流は、接続部Cdから接続部Csに向かってリアクトルLに流れ、トランジスタQdpのスイッチング測定(スイッチング測定のための波形の取り込み)が終了した時点では、リアクトルLにエネルギーが蓄積されている。このため、トランジスタQdpのスイッチング測定(スイッチング測定のための波形の取り込み)が終了したことに応じてトランジスタQhnがオフ状態とされることによって、電源コンデンサ11の-端子から、ダイオードDdn、リアクトルL、トランジスタQcr、トランジスタQcf、ダイオードDhp、及びトランジスタQpを順に通って電源コンデンサ11の+端子に戻る電流経路Pp3が形成され、リアクトルLに蓄積されているエネルギーが電流として電源コンデンサ11の+端子に流れる。これにより、トランジスタQdpのスイッチング測定に用いられた電源コンデンサ11のエネルギー(電力)の一部を回収することができる。その結果、動特性試験における電力使用量のさらなる削減が可能となる。また、次の測定のために、電源コンデンサ11を充電する時間を短縮することができ、マシンサイクルのさらなる短縮(向上)が可能となる。 In the dynamic characteristic test apparatus 1, the transistors Qp, Qhn, Qcf, and Qcr are turned on when starting the switching measurement of the transistor Qdp, and the switching measurement of the transistor Qdp (taking in the waveform for the switching measurement) is completed. Accordingly, after the transistor Qhn is turned off, the transistors Qp, Qcf, and Qcr are turned off. At the time of switching measurement of the transistor Qdp, the current supplied from the power supply capacitor 11 to the transistor Qdp flows to the reactor L from the connection Cd toward the connection Cs, and the switching measurement of the transistor Qdp (capture of a waveform for switching measurement) At the time when is completed, energy is accumulated in the reactor L. For this reason, the transistor Qhn is turned off in response to the end of the switching measurement of the transistor Qdp (the waveform acquisition for the switching measurement), so that the diode Ddn, the reactor L, A current path Pp3 that passes through the transistor Qcr, the transistor Qcf, the diode Dhp, and the transistor Qp in order and returns to the positive terminal of the power supply capacitor 11 is formed, and the energy accumulated in the reactor L flows as a current to the positive terminal of the power supply capacitor 11 . Thereby, a part of the energy (power) of the power supply capacitor 11 used for the switching measurement of the transistor Qdp can be recovered. As a result, it is possible to further reduce power consumption in the dynamic characteristic test. Further, the time for charging the power supply capacitor 11 can be shortened for the next measurement, and the machine cycle can be further shortened (improved).
 また、動特性試験装置1では、トランジスタQhpをオン状態とすることによって、トランジスタQdnがスイッチング測定の対象として選択され、トランジスタQdnのスイッチング測定では、リアクトルLには接続部Csから接続部Cdに向かう電流が流れる。また、トランジスタQhnをオン状態とすることによって、トランジスタQdpがスイッチング測定の対象として選択され、トランジスタQdpのスイッチング測定では、リアクトルLには接続部Cdから接続部Csに向かう電流が流れる。つまり、リアクトルLには双方向の電流が流れ得る。そして、トランジスタQdnのスイッチング測定において、動特性試験装置1に過電流閾値Ref_Nを超える電流量の過電流が検出された場合に、トランジスタQirをオン状態とすることによって、リアクトルL、トランジスタQir及びダイオードDifを巡回する電流経路Pn42が形成される。そして、リアクトルLに蓄積されているエネルギーが電流としてこの電流経路Pn42を流れることによって消費される。一方、トランジスタQdpのスイッチング測定において、動特性試験装置1に過電流閾値Ref_Pを超える電流量の過電流が検出された場合に、トランジスタQifをオン状態とすることによって、リアクトルL、トランジスタQif及びダイオードDirを巡回する電流経路Pp42が形成される。そして、リアクトルLに蓄積されているエネルギーが電流としてこの電流経路Pp42を流れることによって消費される。このように、電気的に直列に接続されたトランジスタQdp及びトランジスタQdnを含むDUT50の動特性試験装置1では、リアクトルLに双方向の電流が流れるが、いずれの方向においてもさらなる過電流がDUT50に流れることを防止することが可能となる。これにより、動特性試験装置1の故障等を回避することができる。その結果、部品交換等のメンテナンスの頻度を低下させることが可能となり、コストの低減にも寄与する。 In the dynamic characteristic testing apparatus 1, the transistor Qdn is selected as an object for switching measurement by turning on the transistor Qhp. In the switching measurement of the transistor Qdn, the reactor L goes from the connection Cs to the connection Cd. Current flows. Further, by turning on the transistor Qhn, the transistor Qdp is selected as an object for switching measurement, and in the switching measurement of the transistor Qdp, a current flowing from the connection Cd to the connection Cs flows in the reactor L. That is, a bidirectional current can flow through the reactor L. In the switching measurement of the transistor Qdn, when the dynamic characteristic test apparatus 1 detects an overcurrent having an amount of current exceeding the overcurrent threshold Ref_N, the transistor Lir is turned on, whereby the reactor L, the transistor Qir, and the diode A current path Pn42 that circulates Dif is formed. The energy stored in the reactor L is consumed by flowing through the current path Pn42 as a current. On the other hand, in the switching measurement of the transistor Qdp, when the dynamic characteristic test apparatus 1 detects an overcurrent with an amount of current exceeding the overcurrent threshold Ref_P, the transistor Qif is turned on, whereby the reactor L, the transistor Qif, and the diode A current path Pp42 that circulates Dir is formed. The energy accumulated in the reactor L is consumed by flowing through the current path Pp42 as a current. As described above, in the dynamic characteristic test apparatus 1 of the DUT 50 including the transistor Qdp and the transistor Qdn that are electrically connected in series, a bidirectional current flows through the reactor L. It is possible to prevent the flow. Thereby, the failure etc. of the dynamic characteristic test apparatus 1 can be avoided. As a result, the frequency of maintenance such as component replacement can be reduced, which contributes to cost reduction.
 ダイオードDifは、トランジスタQifの還流ダイオードであり、ダイオードDirは、トランジスタQirの還流ダイオードである。ダイオードDifは、その順方向が接続部Cdから接続部Csに向かう方向となるように配置され、ダイオードDirは、その順方向が接続部Csから接続部Cdに向かう方向となるように配置されている。このように、トランジスタQif,Qirを保護するための還流ダイオードを用いて、上述の電流経路Pn42,Pp42が形成されるので、部品の増加を抑えながら、双方向のさらなる過電流がDUT50に流れることを防止することが可能となる。 The diode Dif is a free-wheeling diode of the transistor Qif, and the diode Dir is a free-wheeling diode of the transistor Qir. The diode Dif is arranged so that its forward direction is a direction from the connection part Cd to the connection part Cs, and the diode Dir is arranged so that its forward direction is a direction from the connection part Cs to the connection part Cd. Yes. As described above, since the above-described current paths Pn42 and Pp42 are formed using the free-wheeling diode for protecting the transistors Qif and Qir, a further bidirectional overcurrent flows to the DUT 50 while suppressing an increase in parts. Can be prevented.
 また、トランジスタQdnのスイッチング測定において、過電流が検出された場合に、トランジスタQirがオン状態にされ、さらにトランジスタQcf,Qcrがオフ状態とされることによって、電流経路Pn42とは異なる電流経路Pn41を遮断することができる。このため、リアクトルLに蓄積されているエネルギーを電流として過電流防止回路14(電流経路Pn42)に流すことができ、リアクトルLに蓄積されているエネルギーを高速に消費することが可能となる。同様に、トランジスタQdpのスイッチング測定において、過電流が検出された場合に、トランジスタQifがオン状態にされ、さらにトランジスタQcf,Qcrがオフ状態とされることによって、電流経路Pp42とは異なる電流経路Pp41を遮断することができる。このため、リアクトルLに蓄積されているエネルギーを電流として過電流防止回路14(電流経路Pp42)に流すことができ、リアクトルLに蓄積されているエネルギーを高速に消費することが可能となる。 Further, in the switching measurement of the transistor Qdn, when an overcurrent is detected, the transistor Qir is turned on, and the transistors Qcf and Qcr are turned off, so that the current path Pn41 different from the current path Pn42 is changed. Can be blocked. For this reason, the energy accumulated in the reactor L can be made to flow through the overcurrent prevention circuit 14 (current path Pn42) as a current, and the energy accumulated in the reactor L can be consumed at high speed. Similarly, in the switching measurement of the transistor Qdp, when an overcurrent is detected, the transistor Qif is turned on, and the transistors Qcf and Qcr are turned off, so that the current path Pp41 different from the current path Pp42 is obtained. Can be cut off. For this reason, the energy accumulated in the reactor L can be made to flow through the overcurrent prevention circuit 14 (current path Pp42) as a current, and the energy accumulated in the reactor L can be consumed at high speed.
 なお、本発明に係る動特性試験装置及び動特性試験方法は上記実施形態に限定されない。例えば、トランジスタQp,Qhp,Qhn,Qif,Qir,Qcf,QcrはIGBTに限られず、オン状態とオフ状態とを切り替えることが可能なスイッチ部であればよい。例えば、トランジスタQp,Qhp,Qhn,Qif,Qir,Qcf,Qcrとして、FET(Field Effect Transistor)、及びバイポーラトランジスタ等の他のトランジスタ、並びに、高速動作可能なリレー等が用いられ得る。トランジスタが用いられることによって、オン状態とオフ状態とを高速に切り替えることができ、スイッチング測定を含む動特性試験の精度を向上することが可能となる。 Note that the dynamic characteristic test apparatus and the dynamic characteristic test method according to the present invention are not limited to the above embodiment. For example, the transistors Qp, Qhp, Qhn, Qif, Qir, Qcf, and Qcr are not limited to IGBTs, but may be any switch unit that can switch between an on state and an off state. For example, as the transistors Qp, Qhp, Qhn, Qif, Qir, Qcf, Qcr, other transistors such as FETs (Field-Effect-Transistors) and bipolar transistors, relays capable of high-speed operation, and the like can be used. By using the transistor, the ON state and the OFF state can be switched at high speed, and the accuracy of the dynamic characteristic test including the switching measurement can be improved.
 また、電源コンデンサ11に代えて、他の充電可能な電源が用いられてもよい。また、スイッチング測定におけるエネルギー回収を行うことを目的としない場合には、充電可能でない電源が用いられてもよく、メインスイッチ部12は設けられなくてもよい。この場合、電源コンデンサ11の+端子は、トランジスタQhpのコレクタ、ダイオードDhpのカソード、スイッチSWpの一端、トランジスタQdpのコレクタ、及びダイオードDdpのカソードに電気的に接続され、電源コンデンサ11の-端子は、トランジスタQhnのエミッタ、ダイオードDhnのアノード、スイッチSWnの他端、トランジスタQdnのエミッタ、及びダイオードDdnのアノードに電気的に接続される。 Further, instead of the power supply capacitor 11, another chargeable power supply may be used. In addition, when the purpose is not to collect energy in the switching measurement, a non-chargeable power source may be used, and the main switch unit 12 may not be provided. In this case, the positive terminal of the power supply capacitor 11 is electrically connected to the collector of the transistor Qhp, the cathode of the diode Dhp, one end of the switch SWp, the collector of the transistor Qdp, and the cathode of the diode Ddp. , Electrically connected to the emitter of the transistor Qhn, the anode of the diode Dhn, the other end of the switch SWn, the emitter of the transistor Qdn, and the anode of the diode Ddn.
 また、スイッチング測定におけるエネルギー回収を行うことを目的とする場合には、過電流防止回路14及び高速遮断回路15は設けられなくてもよい。この場合、トランジスタQhpのエミッタ及びトランジスタQhnのコレクタとリアクトルLの一端とが電気的に接続される。 Further, when the purpose is to recover energy in the switching measurement, the overcurrent prevention circuit 14 and the high-speed cutoff circuit 15 may not be provided. In this case, the emitter of the transistor Qhp, the collector of the transistor Qhn, and one end of the reactor L are electrically connected.
 高速遮断回路15は、N側スイッチング測定における過電流を高速に遮断する場合には、少なくともトランジスタQcfをオフ状態とすればよく、P側スイッチング測定における過電流を高速に遮断する場合には、少なくともトランジスタQcrをオフ状態とすればよい。また、高速遮断回路15は、N側スイッチング測定における過電流を高速に遮断する場合には、電流経路Pn41のうち、電流経路Pn42とは重複しない部分に、リアクトルLと直列に設けられていればよい。また、高速遮断回路15は、P側スイッチング測定における過電流を高速に遮断する場合には、電流経路Pp41のうち、電流経路Pp42とは重複しない部分に、リアクトルLと直列に設けられていればよい。高速遮断回路15は、例えばDUT50とリアクトルLとの間に設けられてもよい。また、高速遮断回路15は、導通状態と遮断状態とを切り替え可能なスイッチ部を備えていればよく、例えば1つのリレー等であってもよい。 The high-speed cutoff circuit 15 may at least turn off the transistor Qcf when interrupting the overcurrent in the N-side switching measurement at a high speed, and at least when interrupting the overcurrent in the P-side switching measurement at a high speed. The transistor Qcr may be turned off. Further, in the case where the overcurrent in the N-side switching measurement is interrupted at high speed, the high-speed cutoff circuit 15 is provided in series with the reactor L in a portion of the current path Pn41 that does not overlap with the current path Pn42. Good. Further, in the case where the overcurrent in the P-side switching measurement is interrupted at high speed, the high-speed cutoff circuit 15 is provided in series with the reactor L in a portion of the current path Pp41 that does not overlap with the current path Pp42. Good. The high-speed cutoff circuit 15 may be provided between the DUT 50 and the reactor L, for example. Moreover, the high-speed interruption circuit 15 should just be provided with the switch part which can switch a conduction | electrical_connection state and interruption | blocking state, for example, may be one relay etc.
 また、過電流防止回路14は、双方向の過電流を防止可能な構成であればよい。過電流防止回路14は、例えば、逆阻止IGBTであってもよい。より具体的には、過電流防止回路14は、接続部Cdから接続部Csに向かう一方向において、電気的に直列に接続されたスイッチ部及びダイオードを備え、接続部Csから接続部Cdに向かう他方向において、電気的に直列に接続されたスイッチ部及びダイオードを備えていればよい。一方向のダイオードは、その順方向が一方向となるように配置されており、他方向のダイオードは、その順方向が他方向となるように配置されていればよい。 Further, the overcurrent prevention circuit 14 may be configured to prevent bidirectional overcurrent. The overcurrent prevention circuit 14 may be, for example, a reverse blocking IGBT. More specifically, the overcurrent prevention circuit 14 includes a switch part and a diode electrically connected in series in one direction from the connection part Cd to the connection part Cs, and goes from the connection part Cs to the connection part Cd. In the other direction, it is only necessary to include a switch part and a diode electrically connected in series. The diodes in one direction are arranged so that the forward direction is one direction, and the diodes in the other direction need only be arranged so that the forward direction is the other direction.
 図22に示されるように、過電流防止回路14は、例えば、ダイオードブリッジとして構成されてもよい。具体的に説明すると、変形例の過電流防止回路14は、トランジスタQiと、ダイオードDiと、ダイオードD1~D4と、を含む。トランジスタQiはIGBTである。トランジスタQiのコレクタにダイオードDiのカソードが電気的に接続され、トランジスタQiのエミッタにダイオードDiのアノードが電気的に接続されている。つまり、ダイオードDiはトランジスタQiに電気的に並列に接続された還流ダイオードである。トランジスタQiのコレクタはダイオードD1のカソード及びダイオードD3のカソードに電気的に接続されており、トランジスタQiのエミッタはダイオードD2のアノード及びダイオードD4のアノードに電気的に接続されている。ダイオードD1のアノード及びダイオードD2のカソードは互いに電気的に接続されており、トランジスタQcrのコレクタ、ダイオードDcrのカソード及びリアクトルLの一端に電気的に接続されている。ダイオードD3のアノード及びダイオードD4のカソードは互いに電気的に接続されており、リアクトルLの他端、スイッチSWpの他端、スイッチSWnの一端、及びDUT50のO端子に電気的に接続されている。 As shown in FIG. 22, the overcurrent prevention circuit 14 may be configured as a diode bridge, for example. Specifically, the overcurrent prevention circuit 14 of the modification includes a transistor Qi, a diode Di, and diodes D1 to D4. The transistor Qi is an IGBT. The cathode of the diode Di is electrically connected to the collector of the transistor Qi, and the anode of the diode Di is electrically connected to the emitter of the transistor Qi. That is, the diode Di is a free wheeling diode electrically connected in parallel to the transistor Qi. The collector of the transistor Qi is electrically connected to the cathode of the diode D1 and the cathode of the diode D3, and the emitter of the transistor Qi is electrically connected to the anode of the diode D2 and the anode of the diode D4. The anode of the diode D1 and the cathode of the diode D2 are electrically connected to each other, and are electrically connected to the collector of the transistor Qcr, the cathode of the diode Dcr, and one end of the reactor L. The anode of the diode D3 and the cathode of the diode D4 are electrically connected to each other, and are electrically connected to the other end of the reactor L, the other end of the switch SWp, one end of the switch SWn, and the O terminal of the DUT 50.
 例えば、図12のステップST34において、電流経路Pn1を流れる電流(電流Ic,Iqp,Iqhp,Iqcf,-Iqcr,IL,Iqdn)の電流量が増加してN側の過電流閾値Ref_Nよりも大きくなり、コンパレータ23がローレベルの出力信号を制御装置30に出力した場合、制御装置30は、コンパレータ23からローレベルの出力信号を受信したことに応じて、過電流を検出し、ゲート信号Sqp,Sqhpをハイレベルからローレベルに変更する。これにより、トランジスタQcf,Qcr,Qdnがオン状態となり、それ以外のトランジスタはオフ状態となる。このとき、図23に示されるように、電流経路Pn41が形成され、電流経路Pn1に流れていた過電流が電流経路Pn41に流れる。 For example, in step ST34 of FIG. 12, the amount of current flowing through the current path Pn1 (currents Ic, Iqp, Iqhp, Iqcf, −Iqcr, IL, Iqdn) increases and becomes larger than the N-side overcurrent threshold Ref_N. When the comparator 23 outputs a low level output signal to the control device 30, the control device 30 detects the overcurrent in response to receiving the low level output signal from the comparator 23, and the gate signals Sqp, Sqhp. Is changed from high level to low level. Thereby, the transistors Qcf, Qcr, and Qdn are turned on, and the other transistors are turned off. At this time, as shown in FIG. 23, the current path Pn41 is formed, and the overcurrent that has flowed through the current path Pn1 flows into the current path Pn41.
 続いて、制御装置30は、ゲート信号Sqiをローレベルからハイレベルに変更する。これにより、さらにトランジスタQiがオン状態となり、図23に示されるように、リアクトルL、ダイオードD3、トランジスタQi、及びダイオードD2を順に巡回する電流経路Pn43が形成され、電流経路Pn41に流れている電流の一部が電流経路Pn43に流れる。そして、電流経路Pn41を流れる電流が電流経路Pn41を巡回することによって、トランジスタQcf、トランジスタQcr、リアクトルL、トランジスタQdn、及びダイオードDhnの抵抗成分等によってエネルギーが消費されるので、その電流量は時間の経過とともに減少していく。同様に、電流経路Pn43を流れる電流が電流経路Pn43を巡回することによって、リアクトルL、ダイオードD3、トランジスタQi、及びダイオードD2の抵抗成分等によってエネルギーが消費されるので、その電流量は時間の経過とともに減少していく。 Subsequently, the control device 30 changes the gate signal Sqi from the low level to the high level. As a result, the transistor Qi is further turned on, and as shown in FIG. 23, a current path Pn43 that sequentially circulates the reactor L, the diode D3, the transistor Qi, and the diode D2 is formed, and the current flowing through the current path Pn41 Part of the current flows in the current path Pn43. Since the current flowing through the current path Pn41 circulates through the current path Pn41, energy is consumed by the resistance components of the transistor Qcf, the transistor Qcr, the reactor L, the transistor Qdn, and the diode Dhn. It decreases with the passage of time. Similarly, since the current flowing through the current path Pn43 circulates through the current path Pn43, energy is consumed by the resistance components of the reactor L, the diode D3, the transistor Qi, and the diode D2, and the amount of current is determined as time passes. It will decrease with time.
 また、図14のステップST44において、電流経路Pp1を流れる電流(電流Ic,Iqp,Iqdp,-IL,Iqcr,-Iqcf,Iqhn)の電流量が増加してP側の過電流閾値Ref_Pよりも大きくなり、コンパレータ24がローレベルの出力信号を制御装置30に出力した場合、制御装置30は、コンパレータ24からローレベルの出力信号を受信したことに応じて、過電流を検出し、ゲート信号Sqp,Sqhnをハイレベルからローレベルに変更する。これにより、トランジスタQcf,Qcr,Qdpがオン状態となり、それ以外のトランジスタはオフ状態となる。このとき、図24に示されるように、電流経路Pp41が形成され、電流経路Pp1に流れていた過電流が電流経路Pp41に流れる。 Further, in step ST44 in FIG. 14, the amount of current flowing through the current path Pp1 (currents Ic, Iqp, Iqdp, -IL, Iqcr, -Iqcf, Iqhn) increases and is larger than the P-side overcurrent threshold Ref_P. When the comparator 24 outputs a low level output signal to the control device 30, the control device 30 detects an overcurrent in response to the reception of the low level output signal from the comparator 24, and the gate signal Sqp, Sqhn is changed from high level to low level. As a result, the transistors Qcf, Qcr, and Qdp are turned on, and the other transistors are turned off. At this time, as shown in FIG. 24, the current path Pp41 is formed, and the overcurrent that has flowed through the current path Pp1 flows into the current path Pp41.
 続いて、制御装置30は、ゲート信号Sqiをローレベルからハイレベルに変更する。これにより、さらにトランジスタQiがオン状態となり、図24に示されるように、リアクトルL、ダイオードD1、トランジスタQi、及びダイオードD4を順に巡回する電流経路Pp43が形成され、電流経路Pp41に流れている電流の一部が電流経路Pp43に流れる。そして、電流経路Pp41を流れる電流が電流経路Pp41を巡回することによって、リアクトルL、トランジスタQcr、トランジスタQcf、ダイオードDhp、及びトランジスタQdpの抵抗成分等によってエネルギーが消費されるので、その電流量は時間の経過とともに減少していく。同様に、電流経路Pp43を流れる電流が電流経路Pp43を巡回することによって、リアクトルL、ダイオードD1、トランジスタQi、及びダイオードD4の抵抗成分等によってエネルギーが消費されるので、その電流量は時間の経過とともに減少していく。このように構成された過電流防止回路14においても、動特性試験装置1の双方向の過電流防止が可能となる。 Subsequently, the control device 30 changes the gate signal Sqi from the low level to the high level. As a result, the transistor Qi is further turned on, and as shown in FIG. 24, a current path Pp43 that sequentially circulates the reactor L, the diode D1, the transistor Qi, and the diode D4 is formed, and the current flowing through the current path Pp41 Part of the current flows in the current path Pp43. Since the current flowing through the current path Pp41 circulates through the current path Pp41, energy is consumed by the reactor L, the transistor Qcr, the transistor Qcf, the diode Dhp, the resistance component of the transistor Qdp, and the like. It decreases with the passage of time. Similarly, since the current flowing through the current path Pp43 circulates through the current path Pp43, energy is consumed by the resistance components of the reactor L, the diode D1, the transistor Qi, and the diode D4, and thus the amount of current passes over time. It will decrease with time. Even in the overcurrent prevention circuit 14 configured as described above, bidirectional overcurrent prevention of the dynamic characteristic test apparatus 1 is possible.
 なお、図25の(a)に示されるように、過電流防止回路14が、トランジスタQif,Qir及びダイオードDif,Dirで構成されている場合、N側スイッチング測定において、トランジスタQp,Qhpをオフ状態にする前に、トランジスタQirをオン状態としても、リアクトルLを介さない短絡電流が流れることはない。このように、過電流防止回路14が、トランジスタQif,Qir及びダイオードDif,Dirで構成されている場合には、トランジスタQp,Qhpをオフ状態にするタイミングと、トランジスタQirをオン状態にするタイミングとの順番は任意である。P側スイッチング測定においても同様である。 As shown in FIG. 25A, when the overcurrent prevention circuit 14 includes transistors Qif and Qir and diodes Dif and Dir, the transistors Qp and Qhp are turned off in the N-side switching measurement. Even before the transistor Qir is turned on, a short-circuit current that does not pass through the reactor L does not flow. As described above, when the overcurrent prevention circuit 14 includes the transistors Qif and Qir and the diodes Dif and Dir, the timing for turning off the transistors Qp and Qhp and the timing for turning on the transistor Qir. The order of is arbitrary. The same applies to the P-side switching measurement.
 一方、図25の(b)に示されるように、過電流防止回路14がダイオードブリッジで構成される場合には、N側スイッチング測定において、トランジスタQp,Qhpをオフ状態にする前に、トランジスタQiをオン状態とすると、電源コンデンサ11の+端子からトランジスタQp、トランジスタQhp、トランジスタQcf、トランジスタQcr、ダイオードD1、トランジスタQi、ダイオードD4、及びトランジスタQdnを通って電源コンデンサ11の-端子に戻る電流経路Pn5が形成される。電流経路Pn5は、リアクトルLを介さない電流経路であるので、動特性試験装置1に短絡電流が流れる。このため、過電流防止回路14がダイオードブリッジで構成される場合には、過電流防止回路14を動作させる際に、トランジスタQp,Qhpをオフ状態にした後に、トランジスタQiをオン状態とする必要がある。P側スイッチング測定においても同様である。 On the other hand, as shown in FIG. 25B, when the overcurrent prevention circuit 14 is configured by a diode bridge, in the N-side switching measurement, before the transistors Qp and Qhp are turned off, the transistor Qi Is turned on, the current path returns from the positive terminal of the power supply capacitor 11 to the negative terminal of the power supply capacitor 11 through the transistor Qp, transistor Qhp, transistor Qcf, transistor Qcr, diode D1, transistor Qi, diode D4, and transistor Qdn. Pn5 is formed. Since the current path Pn5 is a current path that does not pass through the reactor L, a short-circuit current flows through the dynamic characteristic test apparatus 1. Therefore, when the overcurrent prevention circuit 14 is configured by a diode bridge, when the overcurrent prevention circuit 14 is operated, it is necessary to turn on the transistor Qi after turning off the transistors Qp and Qhp. is there. The same applies to the P-side switching measurement.
 このように、過電流防止回路14が、トランジスタQif,Qir及びダイオードDif,Dirで構成されている場合、トランジスタQif,Qirが電気的に直列に接続されているので、トランジスタQif,Qirのいずれかがオン状態とされることによって、過電流防止回路14に一方向の電流だけが流れる。このため、N側スイッチング測定において、トランジスタQp,Qhpをオフ状態にする前にトランジスタQirをオン状態としても、トランジスタQdnに短絡電流が流れることはなく、P側スイッチング測定において、トランジスタQp,Qhnをオフ状態にする前にトランジスタQifをオン状態としても、トランジスタQdpに短絡電流が流れることはない。したがって、過電流防止回路14を動作させるタイミングの制約を低減することができ、制御の簡易化が可能となる。 As described above, when the overcurrent prevention circuit 14 includes the transistors Qif and Qir and the diodes Dif and Dir, since the transistors Qif and Qir are electrically connected in series, either the transistor Qif or Qir Is turned on, only a one-way current flows through the overcurrent prevention circuit 14. Therefore, in the N-side switching measurement, even if the transistor Qir is turned on before the transistors Qp and Qhp are turned off, no short-circuit current flows through the transistor Qdn. In the P-side switching measurement, the transistors Qp and Qhn are turned on. Even if the transistor Qif is turned on before being turned off, no short-circuit current flows through the transistor Qdp. Therefore, it is possible to reduce the restriction on the timing for operating the overcurrent prevention circuit 14 and to simplify the control.
 また、DUT50は、2in1タイプのパワー半導体モジュールに限られず、トランジスタQdp及びトランジスタQdnを含むデバイスであればよい。例えば、DUT50は、4in1タイプ、6in1タイプ、及び8in1タイプ等のパワー半導体モジュールであってもよい。 Further, the DUT 50 is not limited to the 2-in-1 type power semiconductor module, and may be any device including the transistor Qdp and the transistor Qdn. For example, the DUT 50 may be a power semiconductor module such as a 4 in 1 type, a 6 in 1 type, and an 8 in 1 type.
 図26は、動特性試験装置の別の変形例を示す回路図である。図26に示される動特性試験装置1Aは、DUTとして6in1タイプのパワー半導体モジュールが用いられる場合の動特性試験装置である。動特性試験装置1Aは、動特性試験装置1と比較して、DUT50に代えてDUT50Aを被試験デバイスとする点、及び試験回路10に代えて試験回路10Aを備える点において相違する。試験回路10Aは、試験回路10と比較して、選択回路17をさらに備える点において相違する。なお、図26では、過電流検出回路20の図示を省略している。 FIG. 26 is a circuit diagram showing another modification of the dynamic characteristic test apparatus. A dynamic characteristic test apparatus 1A shown in FIG. 26 is a dynamic characteristic test apparatus when a 6-in-1 type power semiconductor module is used as a DUT. The dynamic characteristic test apparatus 1A is different from the dynamic characteristic test apparatus 1 in that the DUT 50A is used as a device under test instead of the DUT 50, and the test circuit 10A is provided instead of the test circuit 10. The test circuit 10 </ b> A is different from the test circuit 10 in that it further includes a selection circuit 17. In FIG. 26, the overcurrent detection circuit 20 is not shown.
 DUT50Aは、6つのトランジスタを含む6in1タイプのパワー半導体モジュールである。具体的には、DUT50Aは、DUT50のトランジスタQdp,Qdn及びダイオードDdp,Ddnの組を並列に3相(U,V,W相)分有している。つまり、DUT50Aは、U相用としてトランジスタQdpu,Qdnu及びダイオードDdpu,Ddnu(第1ダイオード、第2ダイオード)を有し、V相用としてトランジスタQdpv,Qdnv及びダイオードDdpv,Ddnv(第1ダイオード、第2ダイオード)を有し、W相用としてトランジスタQdpw,Qdnw及びダイオードDdpw,Ddnwを有している。DUT50Aは、P端子、U端子、V端子、W端子、及びN端子を有している。P端子はトランジスタQdpu,Qdpv,Qdpwのコレクタに電気的に接続され、N端子はトランジスタQdnu,Qdnv,Qdnwのエミッタに電気的に接続されている。U端子はトランジスタQdpuのエミッタ及びトランジスタQdnuのコレクタに電気的に接続され、V端子はトランジスタQdpvのエミッタ及びトランジスタQdnvのコレクタに電気的に接続され、W端子はトランジスタQdpwのエミッタ及びトランジスタQdnwのコレクタに電気的に接続されている。例えば、DUT50Aは3相のインバータ回路に用いられ、トランジスタQdpuはU相の上アーム、トランジスタQdnuはU相の下アーム、トランジスタQdpvはV相の上アーム、トランジスタQdnvはV相の下アーム、トランジスタQdpwはW相の上アーム、トランジスタQdnwはW相の下アームに用いられ得る。 The DUT 50A is a 6in1 type power semiconductor module including six transistors. Specifically, the DUT 50A includes a set of transistors Qdp and Qdn and diodes Ddp and Ddn of the DUT 50 in parallel for three phases (U, V, and W phases). That is, the DUT 50A includes transistors Qdpu and Qdnu and diodes Ddpu and Ddnu (first diode and second diode) for the U phase, and transistors Qdpv and Qdnv and diodes Ddpv and Ddnv (first diode, first diode) for the V phase. 2 diodes), and for the W phase, transistors Qdpw and Qdnw and diodes Ddpw and Ddnw are provided. The DUT 50A has a P terminal, a U terminal, a V terminal, a W terminal, and an N terminal. The P terminal is electrically connected to the collectors of the transistors Qdpu, Qdpv, and Qdpw, and the N terminal is electrically connected to the emitters of the transistors Qdnu, Qdnv, and Qdnw. The U terminal is electrically connected to the emitter of transistor Qdpu and the collector of transistor Qdnu, the V terminal is electrically connected to the emitter of transistor Qdpv and the collector of transistor Qdnv, and the W terminal is the emitter of transistor Qdpw and the collector of transistor Qdnw. Is electrically connected. For example, the DUT 50A is used in a three-phase inverter circuit, the transistor Qdpu is the U-phase upper arm, the transistor Qdnu is the U-phase lower arm, the transistor Qdpv is the V-phase upper arm, the transistor Qdnv is the V-phase lower arm, the transistor Qdpw can be used for the upper arm of the W phase, and the transistor Qdnw can be used for the lower arm of the W phase.
 選択回路17は、DUT50Aに含まれる3相(U,V,W相)のトランジスタQdp,Qdnのうちスイッチング測定を行う相のトランジスタQdp,Qdnを選択するための回路である。選択回路17は、スイッチSWu,SWv,SWwと、を含む。スイッチSWu,SWv,SWwはリレーである。スイッチSWu,SWv,SWwの一端は互いに電気的に接続されており、リアクトルLの他端、トランジスタQirのコレクタ、ダイオードDirのカソード、スイッチSWpの他端、及びスイッチSWnの一端に電気的に接続されている。スイッチSWu,SWv,SWwの他端は、それぞれDUT50AのU,V,W端子に電気的に接続されている。 The selection circuit 17 is a circuit for selecting the transistors Qdp and Qdn of the phase for performing the switching measurement from the three-phase (U, V, W phase) transistors Qdp and Qdn included in the DUT 50A. The selection circuit 17 includes switches SWu, SWv, SWw. The switches SWu, SWv, SWw are relays. One ends of the switches SWu, SWv, SWw are electrically connected to each other, and are electrically connected to the other end of the reactor L, the collector of the transistor Qir, the cathode of the diode Dir, the other end of the switch SWp, and one end of the switch SWn. Has been. The other ends of the switches SWu, SWv, SWw are electrically connected to the U, V, W terminals of the DUT 50A, respectively.
 このように構成された動特性試験装置1Aでは、制御装置30は、さらに、トランジスタQdpu,Qdnu,Qdpv,Qdnv,Qdpw,Qdnwにそれぞれゲート信号Sqdpu,Sqdnu,Sqdpv,Sqdnv,Sqdpw,Sqdnwを出力することによって、各トランジスタのオン状態とオフ状態とを切り替える。また、制御装置30は、スイッチSWu,SWv,SWwにそれぞれリレー信号Sswu,Sswv,Sswwを出力することによって、各スイッチのオン状態とオフ状態とを切り替える。DUTが他のタイプのパワー半導体モジュールである場合も、動特性試験装置1Aと同様に構成され得る。 In the dynamic characteristic test apparatus 1A configured as described above, the control device 30 further outputs the gate signals Sqdpu, Sqdnu, Sqdpv, Sqdnv, Sqdpw, Sqdnw to the transistors Qdpu, Qdnu, Qdpv, Qdnv, Qdpw, Qdw, respectively. Thus, each transistor is switched between an on state and an off state. Moreover, the control apparatus 30 switches the on state and the off state of each switch by outputting the relay signals Sswu, Sswv, and Ssww to the switches SWu, SWv, and SWw, respectively. Also when the DUT is another type of power semiconductor module, it can be configured in the same manner as the dynamic characteristic test apparatus 1A.
 1,1A…動特性試験装置、11…電源コンデンサ(電源)、12…メインスイッチ部、13…選択回路、30…制御装置、50,50A…DUT(被試験デバイス)、Cd…接続部(第1接続部)、Cs…接続部(第2接続部)、Ddn,Ddnu,Ddnv,Ddnw…ダイオード(第2ダイオード)、Ddp,Ddpu,Ddpv,Ddpw…ダイオード(第1ダイオード)、Dhn…ダイオード(第4ダイオード)、Dhp…ダイオード(第3ダイオード)、L…リアクトル、Qdn,Qdnu,Qdnv,Qdnw…トランジスタ(第2半導体)、Qdp,Qdpu,Qdpv,Qdpw…トランジスタ(第1半導体)、Qhn…トランジスタ(第2スイッチ部)、Qhp…トランジスタ(第1スイッチ部)、Qp…トランジスタ(第3スイッチ部)。 DESCRIPTION OF SYMBOLS 1,1A ... Dynamic characteristic test apparatus, 11 ... Power supply capacitor (power supply), 12 ... Main switch part, 13 ... Selection circuit, 30 ... Control apparatus, 50, 50A ... DUT (device under test), Cd ... Connection part (1st) 1 connection part), Cs ... connection part (second connection part), Ddn, Ddnu, Ddnv, Ddnw ... diode (second diode), Ddp, Ddpu, Ddpv, Ddpw ... diode (first diode), Dhn ... diode ( 4th diode), Dhp ... diode (third diode), L ... reactor, Qdn, Qdnu, Qdnv, Qdnw ... transistor (second semiconductor), Qdp, Qdpu, Qdpv, Qdpw ... transistor (first semiconductor), Qhn ... Transistor (second switch part), Qhp ... transistor (first switch part), Qp ... transistor (Third switch section).

Claims (5)

  1.  電気的に直列に接続された第1半導体及び第2半導体と、前記第1半導体に電気的に並列に接続された第1ダイオードと、前記第2半導体に電気的に並列に接続された第2ダイオードと、を含む被試験デバイスの動特性試験を行う動特性試験装置であって、
     前記動特性試験のための電流を供給する、充電可能な電源と、
     前記第1半導体及び前記第2半導体の負荷となるリアクトルと、
     電気的に直列に接続された第1スイッチ部及び第2スイッチ部、前記第1スイッチ部に電気的に並列に接続された第3ダイオード、並びに、前記第2スイッチ部に電気的に並列に接続された第4ダイオードを有し、前記第1半導体及び前記第2半導体のうちのいずれかをスイッチング測定の対象として選択するための選択回路と、
     前記電源から前記第1半導体または前記第2半導体への電流の供給及び遮断を切り替える第3スイッチ部と、
     前記第1スイッチ部、前記第2スイッチ部及び前記第3スイッチ部のオン状態及びオフ状態を切替制御する制御装置と、
    を備え、
     前記第1半導体及び前記第2半導体を電気的に接続する第1接続部と前記第1スイッチ部及び前記第2スイッチ部を電気的に接続する第2接続部とは、前記リアクトルを介して電気的に接続され、
     前記電源の正極端子は前記第1ダイオードのカソード及び前記第3ダイオードのカソードに電気的に接続され、
     前記電源の負極端子は前記第2ダイオードのアノード及び前記第4ダイオードのアノードに電気的に接続され、
     前記制御装置は、前記第1半導体のスイッチング測定を開始する際に前記第2スイッチ部及び前記第3スイッチ部をオン状態とし、前記第1半導体のスイッチング測定が終了したことに応じて前記第2スイッチ部をオフ状態とした後に、前記第3スイッチ部をオフ状態とする、動特性試験装置。
    A first semiconductor and a second semiconductor electrically connected in series; a first diode electrically connected in parallel to the first semiconductor; and a second electrically connected in parallel to the second semiconductor. A dynamic characteristic test apparatus for performing a dynamic characteristic test of a device under test including a diode,
    A rechargeable power supply for supplying current for the dynamic characteristic test;
    A reactor serving as a load of the first semiconductor and the second semiconductor;
    First and second switch parts electrically connected in series, a third diode electrically connected in parallel to the first switch part, and electrically connected in parallel to the second switch part A selection circuit for selecting one of the first semiconductor and the second semiconductor as a target for switching measurement;
    A third switch section for switching supply and interruption of current from the power source to the first semiconductor or the second semiconductor;
    A control device for switching and controlling an on state and an off state of the first switch unit, the second switch unit, and the third switch unit;
    With
    The first connection part that electrically connects the first semiconductor and the second semiconductor and the second connection part that electrically connects the first switch part and the second switch part are electrically connected via the reactor. Connected,
    A positive terminal of the power source is electrically connected to a cathode of the first diode and a cathode of the third diode;
    A negative terminal of the power source is electrically connected to an anode of the second diode and an anode of the fourth diode;
    The control device turns on the second switch unit and the third switch unit when starting the switching measurement of the first semiconductor, and the second switching unit according to the end of the switching measurement of the first semiconductor. A dynamic characteristic test apparatus, wherein the third switch unit is turned off after the switch unit is turned off.
  2.  前記制御装置は、前記第2半導体のスイッチング測定を開始する際に前記第1スイッチ部及び前記第3スイッチ部をオン状態とし、前記第2半導体のスイッチング測定が終了したことに応じて前記第1スイッチ部をオフ状態とした後に、前記第3スイッチ部をオフ状態とする、請求項1に記載の動特性試験装置。 The control device turns on the first switch unit and the third switch unit when starting the switching measurement of the second semiconductor, and the first switching unit according to the end of the switching measurement of the second semiconductor. The dynamic characteristic test apparatus according to claim 1, wherein the third switch unit is turned off after the switch unit is turned off.
  3.  前記第1スイッチ部及び前記第2スイッチ部は、トランジスタである、請求項1または請求項2に記載の動特性試験装置。 The dynamic characteristic test apparatus according to claim 1, wherein the first switch unit and the second switch unit are transistors.
  4.  電気的に直列に接続された第1半導体及び第2半導体と、前記第1半導体に電気的に並列に接続された第1ダイオードと、前記第2半導体に電気的に並列に接続された第2ダイオードと、を含む被試験デバイスの動特性試験を行う動特性試験方法であって、
     電気的に直列に接続された第1スイッチ部及び第2スイッチ部、前記第1スイッチ部に電気的に並列に接続された第3ダイオード、並びに、前記第2スイッチ部に電気的に並列に接続された第4ダイオードを有する選択回路の前記第2スイッチ部をオン状態とすることによって、前記第1半導体をスイッチング測定の対象として選択し、充電可能な電源に電気的に直列に接続された第3スイッチ部をオン状態とすることによって、前記第1半導体に電流を供給して、前記第1半導体のスイッチング測定を行うステップと、
     前記第1半導体のスイッチング測定の終了に応じて、前記第2スイッチ部をオフ状態とすることにより、前記第1半導体のスイッチング測定で用いられたエネルギーを回収するステップと、
     前記第1半導体のスイッチング測定で用いられたエネルギーを回収するステップの後に、前記第3スイッチ部をオフ状態とするステップと、
    を含み、
     前記第1半導体及び前記第2半導体を電気的に接続する第1接続部と前記第1スイッチ部及び前記第2スイッチ部を電気的に接続する第2接続部とがリアクトルを介して電気的に接続され、
     前記電源の正極端子は前記第1ダイオードのカソード及び前記第3ダイオードのカソードに電気的に接続され、
     前記電源の負極端子は前記第2ダイオードのアノード及び前記第4ダイオードのアノードに電気的に接続される、動特性試験方法。
    A first semiconductor and a second semiconductor electrically connected in series; a first diode electrically connected in parallel to the first semiconductor; and a second electrically connected in parallel to the second semiconductor. A dynamic characteristic test method for performing a dynamic characteristic test of a device under test including a diode,
    First and second switch parts electrically connected in series, a third diode electrically connected in parallel to the first switch part, and electrically connected in parallel to the second switch part The second switch portion of the selection circuit having the fourth diode is turned on to select the first semiconductor as an object of switching measurement and electrically connected in series to a rechargeable power source. Supplying a current to the first semiconductor by turning on a three-switch unit to perform a switching measurement of the first semiconductor;
    Recovering energy used in the switching measurement of the first semiconductor by turning off the second switch unit in response to the end of the switching measurement of the first semiconductor;
    After the step of recovering the energy used in the switching measurement of the first semiconductor, turning off the third switch unit;
    Including
    A first connection part that electrically connects the first semiconductor and the second semiconductor and a second connection part that electrically connects the first switch part and the second switch part are electrically connected via a reactor. Connected,
    A positive terminal of the power source is electrically connected to a cathode of the first diode and a cathode of the third diode;
    The dynamic characteristic test method, wherein a negative terminal of the power source is electrically connected to an anode of the second diode and an anode of the fourth diode.
  5.  前記選択回路の前記第1スイッチ部をオン状態とすることによって、前記第2半導体をスイッチング測定の対象として選択し、前記第3スイッチ部をオン状態とすることによって、前記第2半導体に電流を供給して、前記第2半導体のスイッチング測定を行うステップと、
     前記第2半導体のスイッチング測定の終了に応じて、前記第1スイッチ部をオフ状態とすることにより、前記第2半導体のスイッチング測定で用いられたエネルギーを回収するステップと、
     前記第2半導体のスイッチング測定で用いられたエネルギーを回収するステップの後に、前記第3スイッチ部をオフ状態とするステップと、
    をさらに含む、請求項4に記載の動特性試験方法。
    By turning on the first switch part of the selection circuit, the second semiconductor is selected as an object for switching measurement, and by turning on the third switch part, a current is supplied to the second semiconductor. Providing and performing a switching measurement of the second semiconductor;
    Recovering energy used in the switching measurement of the second semiconductor by turning off the first switch unit in response to completion of the switching measurement of the second semiconductor;
    After the step of recovering energy used in the switching measurement of the second semiconductor, turning off the third switch unit;
    The dynamic characteristic test method according to claim 4, further comprising:
PCT/JP2016/057893 2015-05-28 2016-03-14 Dynamic characteristic test apparatus and dynamic characteristic test method WO2016189930A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201680008073.2A CN107873084B (en) 2015-05-28 2016-03-14 Dynamic characteristic testing device and dynamic characteristic testing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015108363A JP6477257B2 (en) 2015-05-28 2015-05-28 Dynamic characteristic test apparatus and dynamic characteristic test method
JP2015-108363 2015-05-28

Publications (1)

Publication Number Publication Date
WO2016189930A1 true WO2016189930A1 (en) 2016-12-01

Family

ID=57394025

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/057893 WO2016189930A1 (en) 2015-05-28 2016-03-14 Dynamic characteristic test apparatus and dynamic characteristic test method

Country Status (4)

Country Link
JP (1) JP6477257B2 (en)
CN (1) CN107873084B (en)
TW (1) TWI676038B (en)
WO (1) WO2016189930A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7156160B2 (en) * 2019-04-23 2022-10-19 株式会社デンソー Semiconductor device inspection method
CN113608093A (en) * 2021-07-14 2021-11-05 北京工业大学 Method for implementing control logic for testing dynamic characteristics of power semiconductor device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0969435A (en) * 1995-08-31 1997-03-11 Denso Corp Inductance load driving bridge circuit
JPH11113172A (en) * 1997-10-02 1999-04-23 Max Co Ltd Electromagnetic inductive load drive circuit
JP2013160573A (en) * 2012-02-02 2013-08-19 Top:Kk Tester for power semiconductors

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0727817A (en) * 1993-07-09 1995-01-31 Toshiba Corp Method and device for testing connecting/disconnecting operation of semiconductor element
JPH11304873A (en) * 1998-04-24 1999-11-05 Sony Tektronix Corp Transistor unit characteristic measuring method and device thereof
CN101937035B (en) * 2010-08-20 2012-01-11 郭春雨 Measuring device of power electronic element
JP2012229971A (en) * 2011-04-26 2012-11-22 Honda Motor Co Ltd Semiconductor inspection device and semiconductor inspection method
JP5290354B2 (en) * 2011-05-06 2013-09-18 シャープ株式会社 Semiconductor device and electronic equipment
CN103018663B (en) * 2012-11-19 2014-12-31 国网智能电网研究院 Method and system for over-current cut-off test for flexible direct-current power transmission MMC (modularized multi-level converter) valve
NZ712515A (en) * 2013-03-28 2016-08-26 Panasonic Ip Man Co Ltd Inverter device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0969435A (en) * 1995-08-31 1997-03-11 Denso Corp Inductance load driving bridge circuit
JPH11113172A (en) * 1997-10-02 1999-04-23 Max Co Ltd Electromagnetic inductive load drive circuit
JP2013160573A (en) * 2012-02-02 2013-08-19 Top:Kk Tester for power semiconductors

Also Published As

Publication number Publication date
JP2016223833A (en) 2016-12-28
CN107873084B (en) 2019-12-24
JP6477257B2 (en) 2019-03-06
TWI676038B (en) 2019-11-01
TW201641947A (en) 2016-12-01
CN107873084A (en) 2018-04-03

Similar Documents

Publication Publication Date Title
US10003273B2 (en) Power conversion device
US11075540B2 (en) Uninterruptible power supply device
CN111478609B (en) Active neutral point clamping type three-level converter and control method and control device thereof
US9564797B2 (en) Indirect matrix converter
JP4942169B2 (en) 3-level inverter
US10468972B2 (en) Power converter including a plurality of converter cells connected in multiple series
CN103493353A (en) Power conversion device
US8792215B2 (en) Switch unit and power generation system thereof
US10727729B2 (en) Power converter
CN112740529A (en) Motor drive device, blower, compressor, and air conditioner
JP6477257B2 (en) Dynamic characteristic test apparatus and dynamic characteristic test method
JP6398873B2 (en) Dynamic characteristic test apparatus and dynamic characteristic test method
WO2020144796A1 (en) Power conversion device
CN112715001A (en) DC power supply device, motor drive device, blower, compressor, and air conditioner
JP5253491B2 (en) Power converter
KR20230019957A (en) power unit
CN112640276B (en) Driving circuit of switch
CN112350550A (en) Switch drive circuit and switch drive device
WO2015092522A1 (en) Drive control apparatus for semiconductor device
JP2021061686A (en) Overcurrent detector of switching element
US20230261654A1 (en) Drive device to drive semiconductor element, semiconductor device, and power conversion device
JP2001037244A (en) Power converter
US10917085B2 (en) Method for actuating reverse-conducting semiconductor switches arranged in parallel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16799638

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16799638

Country of ref document: EP

Kind code of ref document: A1