WO2016187933A1 - 结构网筋蜂窝混凝土结构及其建筑方法 - Google Patents
结构网筋蜂窝混凝土结构及其建筑方法 Download PDFInfo
- Publication number
- WO2016187933A1 WO2016187933A1 PCT/CN2015/083355 CN2015083355W WO2016187933A1 WO 2016187933 A1 WO2016187933 A1 WO 2016187933A1 CN 2015083355 W CN2015083355 W CN 2015083355W WO 2016187933 A1 WO2016187933 A1 WO 2016187933A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- structural
- concrete
- honeycomb
- concrete structure
- building
- Prior art date
Links
- 239000011381 foam concrete Substances 0.000 title claims abstract description 31
- 238000010276 construction Methods 0.000 title claims abstract description 28
- 239000004567 concrete Substances 0.000 claims abstract description 69
- 229910000831 Steel Inorganic materials 0.000 claims abstract description 48
- 239000010959 steel Substances 0.000 claims abstract description 48
- 239000000463 material Substances 0.000 claims abstract description 42
- 239000011449 brick Substances 0.000 claims description 42
- 230000002787 reinforcement Effects 0.000 claims description 29
- 238000000034 method Methods 0.000 claims description 14
- 239000002131 composite material Substances 0.000 claims description 11
- 239000000654 additive Substances 0.000 claims description 6
- 239000004568 cement Substances 0.000 claims description 6
- 238000003466 welding Methods 0.000 claims description 6
- 230000000996 additive effect Effects 0.000 claims description 5
- 239000000203 mixture Substances 0.000 claims description 3
- 239000004576 sand Substances 0.000 claims description 3
- 239000004743 Polypropylene Substances 0.000 claims description 2
- 239000011324 bead Substances 0.000 claims description 2
- 239000001913 cellulose Substances 0.000 claims description 2
- 229920002678 cellulose Polymers 0.000 claims description 2
- 239000003638 chemical reducing agent Substances 0.000 claims description 2
- 239000000835 fiber Substances 0.000 claims description 2
- 238000007667 floating Methods 0.000 claims description 2
- 239000010881 fly ash Substances 0.000 claims description 2
- 239000002245 particle Substances 0.000 claims description 2
- -1 polypropylene Polymers 0.000 claims description 2
- 229920001155 polypropylene Polymers 0.000 claims description 2
- 239000000843 powder Substances 0.000 claims description 2
- 239000008262 pumice Substances 0.000 claims description 2
- 239000010455 vermiculite Substances 0.000 claims description 2
- 229910052902 vermiculite Inorganic materials 0.000 claims description 2
- 235000019354 vermiculite Nutrition 0.000 claims description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 2
- 238000005266 casting Methods 0.000 abstract description 6
- 229910001294 Reinforcing steel Inorganic materials 0.000 abstract description 2
- 238000004519 manufacturing process Methods 0.000 abstract 2
- 230000001413 cellular effect Effects 0.000 abstract 1
- 230000002708 enhancing effect Effects 0.000 abstract 1
- 239000011150 reinforced concrete Substances 0.000 description 15
- 238000009826 distribution Methods 0.000 description 6
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 230000007547 defect Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000007613 environmental effect Effects 0.000 description 3
- 239000004570 mortar (masonry) Substances 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 2
- 239000004566 building material Substances 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 238000005192 partition Methods 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 101100334009 Caenorhabditis elegans rib-2 gene Proteins 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000004134 energy conservation Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000004088 foaming agent Substances 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 239000003562 lightweight material Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 239000002893 slag Substances 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B1/00—Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
- E04B1/02—Structures consisting primarily of load-supporting, block-shaped, or slab-shaped elements
- E04B1/04—Structures consisting primarily of load-supporting, block-shaped, or slab-shaped elements the elements consisting of concrete, e.g. reinforced concrete, or other stone-like material
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B2/00—Walls, e.g. partitions, for buildings; Wall construction with regard to insulation; Connections specially adapted to walls
- E04B2/84—Walls made by casting, pouring, or tamping in situ
- E04B2/86—Walls made by casting, pouring, or tamping in situ made in permanent forms
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04C—STRUCTURAL ELEMENTS; BUILDING MATERIALS
- E04C3/00—Structural elongated elements designed for load-supporting
- E04C3/30—Columns; Pillars; Struts
- E04C3/34—Columns; Pillars; Struts of concrete other stone-like material, with or without permanent form elements, with or without internal or external reinforcement, e.g. metal coverings
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04G—SCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
- E04G21/00—Preparing, conveying, or working-up building materials or building elements in situ; Other devices or measures for constructional work
Definitions
- the invention relates to building materials and construction methods using the same, in particular to structural reinforced honeycomb concrete structures and construction methods thereof.
- Reinforced concrete structure is currently the most common structural form in the field of construction engineering, accounting for more than 85% of the total construction area.
- the frictional force of the steel frame is stabilized by the hard nature of the concrete, so that the reinforced concrete structure remains stable.
- the harder the concrete and the greater the weight of the structure the more favorable the stability of the building; but the internal stress of the overall structure of the building and the thermal conductivity of the material are greatly increased, which is not conducive to earthquake resistance, environmental protection and energy conservation.
- Construction of building structures is usually done by tying or welding steel to form a steel frame for in-situ casting or by splicing prefabricated building modules, such as blocks, prefabricated beams and slabs.
- the traditional reinforced concrete structure is mainly based on the structural strength and stability of the concrete to the reinforcing steel skeleton, in order to obtain sufficient gripping force to achieve the necessary load strength and stability, it must be added in practical applications.
- the amount of large steel bars and concrete which in turn makes the overall quality and internal stress of the building large, which leads to the decline of seismic performance, combined with the inherent defects of the material's own thermal conductivity, and also makes the building's environmental protection and energy-saving performance very difference. Therefore, it is difficult for the current reinforced concrete structure to coordinate the seismic and energy-saving performance as a whole.
- Chinese patent CN2332765Y announced on August 11, 1999, describes a steel mesh foam concrete lightweight wall panel.
- the technical solution comprises the steps of providing a two-layer steel mesh in a concrete slab, the steel mesh having four sides of the steel mesh, and the two-layer steel mesh bonded to the concrete which is proportioned by cement, sand, slag and foaming agent.
- a plurality of welded iron pieces are arranged on the four joint faces of the concrete slab, and the welded iron pieces are fixed on the bone ribs, and the wall plates are welded together during construction.
- the technical scheme changes the principle of combining the reinforcing force of the steel skeleton by the concrete, and the concrete lightweight material is used to combine the holding force of the steel mesh to form the composite force of the composite material.
- the mesh network of the mesh structure as the mesh reinforcement, which can only be used for non-load-bearing wall or roofing materials, but can not achieve sufficient strength in all directions for structural construction, and the steel mesh
- the setting is relatively complicated, and it is still necessary to use the steel bar as the support of the module structure. When the building is constructed, the modules need to be connected by welding, and the reliable connection is not provided. Structured connection.
- the structural reinforced honeycomb concrete structure of the invention fully utilizes the support force of the high-toughness honeycomb concrete to form the structural reinforced mesh formed by the steel mesh to form the composite material to keep the structure stable and at the same time sufficient Load capacity.
- the structural reinforced cellular concrete structure of the present invention is composed of structural reinforced concrete and cellular concrete.
- the honeycomb concrete includes, but is not limited to, a honeycomb material such as lightweight concrete or aerated concrete composed of cement base material, lightweight aggregate, hard aggregate and additives.
- the structural rib is made of a steel mesh sheet to form a structural rib of a specific shape, and a prefabricated module made of a correspondingly shaped honeycomb concrete material (similar in function to a building slab in a conventional reinforced concrete construction) surrounds the prefabricated
- the structural reinforcement is reinforced, and the prefabricated module is consolidated with the structural reinforcement by further pouring the honeycomb concrete, thereby forming the structural reinforcement honeycomb concrete structure according to the present invention.
- Each of the prefabricated modules is connected by a specific joint structure, such as a tongue-and-groove structure, with a shackle or a wedge-type jointless joint; by adjusting the density distribution of the material, in particular, the material density at different parts of the overall building or The reasonable choice of quality makes the overall quality distribution and load requirements of the building more scientific and reasonable.
- a specific joint structure such as a tongue-and-groove structure, with a shackle or a wedge-type jointless joint
- a structural reinforced cellular concrete structure consisting of a structural mesh rib formed by a steel mesh and a honeycomb concrete prefabricated module surrounding the periphery thereof; the structural reinforced concrete and the structure are constructed by pouring honeycomb concrete in the prefabricated module The prefabricated module is consolidated into one.
- the mesh intersection of the steel mesh is a welded structure.
- the welded structure is formed by electric resistance welding.
- structural mesh rib comprises an O-shaped, U-shaped, C-shaped, lip-shaped, rectangular cross-sectional shape.
- the cellular concrete composition includes a cement base, a lightweight aggregate, a hard aggregate, and an additive.
- the prefabricated module comprises a male and female brick, an open brick, a corner brick, a beam box brick, a variable diameter brick, a beam and a plate; and the splicing position between the prefabricated modules is provided with a splicing joint without a transparent structure structure.
- a construction method using the above-mentioned structural reinforced honeycomb concrete structure comprising the following steps:
- Step 1 Select the steel mesh of the corresponding specification according to the load and shape requirements of the specific use position of the building structure, and shape it into the corresponding structural mesh reinforcement;
- Step 2 preparing a honeycomb concrete prefabricated module
- Step 3 preparing a honeycomb concrete material for pouring
- Step 4 Carrying out the reinforcement of the prefabricated module and the structural reinforcement according to the load and shape requirements of the specific use position of the building structure;
- Step 5 Pouring the honeycomb concrete in the space surrounded by the prefabricated modules to complete the construction of the building structure.
- the porosity of the honeycomb concrete for pouring is gradually increased as the level of the applied building is upward.
- the structural rib has a density of ribs in a lower layer of the building that is greater than a density of the ribs in a higher layer of the building.
- the form of the ribs comprises a sandwich rib, a composite rib, and a liner rib.
- the structural mesh and the prefabricated module may be arranged in parallel according to the structural shape and the load requirement.
- the invention has the beneficial effects that the net reinforcement and the cellular concrete material can be applied to the structural construction of the building, and is not limited to the traditional non-load-bearing structure (partition wall, roofing, etc.); the invention is formed by the steel mesh forming technology.
- the structural ribs replace the traditional steel lashing skeleton and the simple steel mesh, so that the lightweight and flexibility of the steel mesh are organically combined with the sturdy and high load strength of the steel skeleton; the honeycomb concrete supports the structural reinforced reinforced concrete.
- the structural reinforced concrete composite structure is combined to produce composite real estate bio-combination force to form a building structure with sufficient load capacity; the mesh size, wire diameter, mesh mesh and mesh shape constituting the mesh reinforcement can be based on the construction
- the load and shape requirements of different parts of the object are reasonably set, and the specifications and dosage of the steel wire (rib) are much smaller than the traditional steel skeleton structure; at the same time, the honeycomb structure of the structural reinforcement
- the concrete material itself mainly acts on the structural reinforcement with the support force, and does not need to have the load strength necessary for the traditional concrete material; the honeycomb concrete has higher toughness, and its impact resistance is much higher than that of the traditional hard concrete material. Excellent anti-vibration, heat preservation, energy saving effect, and the weight is greatly reduced.
- the mesh reinforcement can be easily prefabricated into various suitable structural shapes.
- the different reinforcement methods can reasonably meet the load requirements of different parts of the building, which is very beneficial to reduce the material stress of the whole building and greatly reduce the overall quality of the building. Small and make the quality distribution more reasonable. According to estimates, the overall quality of buildings of the same specification can be reduced by more than 60% compared with traditional reinforced concrete structures or steel structures.
- the invention prefabricates the honeycomb concrete prefabricated module which is suitable for the general structure of the building by the principle of "seven puzzles", and the structural joint structure of the prefabricated module is formed by the tongue-and-groove and the tongue-and-groove structure, and the tensile strength of the material itself is fully utilized to overcome the tensile strength of the material itself.
- the traditional mortar bonding material is a defect of connecting weak points, and the invention replaces the traditional bonding mortar with a cylindrical honeycomb concrete pouring to ensure the bonding strength between the honeycomb concrete and the structural reinforcement; the honeycomb material
- the use of the building's main material also greatly enhances the energy-saving effect of the building. Accordingly, the invention perfectly integrates the contradiction between energy saving and earthquake resistance of the traditional reinforced concrete, and is particularly suitable for the construction of civil houses and ordinary multi-storey buildings, and greatly improves the construction efficiency and the seismic effect of the building.
- 1 is a molding process of forming a steel mesh sheet of the present invention and forming a structural reinforced honeycomb concrete profile (beam) by pouring a honeycomb concrete material;
- Figure 2 is a form of a rib that combines a C-shaped rib of a structural rib and a sandwich rib;
- Figure 3 is a form of a U-shaped rib of a structural rib and a rib of a liner;
- Figure 4 is a schematic view of the construction and pouring process of the reinforcement
- Figure 5 is the basic shape of a precast module of honeycomb concrete material, wherein (A) is a male brick, (B) is an open brick, (C) is a corner brick, (D) is a beam box brick, and (E) is a variable diameter brick. (F) is a beam, and (G) is a plate;
- Figure 6 is a schematic view showing the use of the open brick of Figure 5;
- Figure 7 is a schematic view showing the use of the corner brick of Figure 5;
- Figure 8 is a schematic view showing the use of the beam box brick of Figure 5;
- Figure 9 is a schematic view showing the use mode of the variable diameter brick of Figure 5 when used in a low-rise building;
- Figure 10 is a schematic view showing the use mode of the variable diameter brick of Figure 5 when used in a multi-storey or high-rise building;
- Figure 11 is a schematic view showing the manner of use of the beam of Figure 5 when used for roofing;
- Figure 12 is a schematic view of the construction of the structural reinforcement as a whole of the slope roof construction.
- a structural reinforced honeycomb concrete structure consisting of a structural reinforced mesh made of a steel mesh and a honeycomb concrete material module surrounding the surrounding; the honeycomb concrete material module is configured by casting a honeycomb material to make a structural reinforced mesh and a honeycomb concrete material module Consolidated into one.
- the forming process of the steel mesh sheet 1 is first formed and then the structural reinforced honeycomb concrete profile (beam) is formed by pouring the honeycomb concrete material (illustrated from right to left); the steel mesh sheet 1 is made of a resistor
- the welded steel wire (rib) is composed of mesh size, wire diameter, mesh and mesh shape according to the load and shape requirements of different parts of the building.
- FIG. 2 shows the form of the ribs combined with the C-shaped structural ribs 2 and the sandwich ribs 4;
- FIG. 3 shows the U-shaped structural ribs 5 with the U-shaped ribbed inner linings 5'.
- the form of the ribs; these structural ribs are all wrapped by honeycomb concrete, so that the honeycomb concrete forms a holding and supporting force for the structural ribs.
- Figure 4 shows the structural relationship between the structural reinforcement 6 and the prefabricated module.
- the prefabricated module acts as a template in the construction of traditional reinforced concrete structures, and the honeycomb concrete material is poured into the space surrounded by the prefabricated modules to make it and the structural reinforcement. Consolidate into one;
- Figure 5 shows the basic shape of a precast module of cellular concrete material, in which (A) is a male brick, (B) is an open brick, (C) is a corner brick, (D) is a beam box brick, and (E) is a variable diameter brick. , (F) is a beam, and (G) is a plate;
- the structural form of the wall formed by the male and female bricks 7 has been shown in Fig. 4, and its load-bearing structure (in the example, the column) is composed of the variable-diameter brick 11 around the mouth-shaped structural reinforcement 6, and the honeycomb concrete is poured around the space for solidification.
- the knot forms a load bearing structure.
- Figures 6 to 8 illustrate the use of the open bricks, corner bricks and beam box bricks of Figure 5;
- variable-diameter bricks 11 are shown in Figures 9 and 10, and the variable-diameter bricks 11 of Figure 9 are used in the case of low-rise buildings, each of which uses a set of structural ribs to meet the load requirements; Module can According to the structural shape and load requirements, multiple juxtaposition settings, as shown in Figure 10, are used to form a composite load-bearing structure by a plurality of sets of structural ribs used to form the columns, which can be used for multiple layers or high-rises. The lower load-bearing structure of the building;
- Figure 11 shows the use of the beam of Figure 5 when used for roofing
- Figure 12 shows the construction of the structural reinforcement as a whole of the slope roof construction, wherein the slope roof is composed of a combination of steel mesh 1, beam 12 and plate 13; the mouth structure mesh 6 is used as a ring beam skeleton for reinforcement.
- Each of the prefabricated modules described above has a tongue-and-groove structure to form a structurally spliced joint between the prefabricated modules, rather than relying solely on mortar bonding connections between conventional block structures.
- the building method of the present invention specifically includes the following steps:
- Step 1 The preparation of the structural ribs firstly forms a steel mesh by integral resistance welding, and designs the wire diameter, mesh shape and mesh number of the steel mesh according to the actual floor height and load requirements; commonly used specifications such as wire diameter is ⁇ 1,
- the mesh shape after welding may be a square having a size of 8 x 8. Under normal circumstances, the larger the wire diameter, the larger the mesh, the worse the grip strength of the honeycomb material, and the specific steel mesh specifications should be verified through calculation and test;
- Step 2 Prepare a honeycomb concrete prefabricated module, which is formed into a basic module structure of male and female bricks, open bricks, corner bricks, beam box bricks, variable diameter bricks, beams and plates according to the commonly used building structure form; the splicing position of the prefabricated module is provided The structure of the tongue-and-groove makes the prefabricated module realize the structural splicing without penetration;
- Step 3 Prepare a honeycomb concrete material for pouring, which is prepared by a conventional foamed concrete or foam concrete process, and has irregular honeycomb pores inside, and the material composition usually includes cement base material, light aggregate, hard aggregate, and An additive; wherein the lightweight aggregate comprises floating beads, vermiculite, polypropylene particles and/or fly ash; the hard aggregate comprises pumice and sand; and the additive comprises cellulose, rubber powder, short fibers and a water reducing agent.
- the specific preparation method is not the invention claimed in the present invention, and need not be described.
- the application of the present invention to the honeycomb concrete mainly changes the density and weight of the whole material by adjusting the size and distribution of the pores in the honeycomb concrete, so that the porosity of the honeycomb concrete can be adjusted to be controlled in the range of 10% to 70%.
- the above measures enable the building to have the feature of lowering the weight of the casting material layer by layer.
- each layer is in turn Reduce the structural weight by 5%, and at the same time meet the structural strength and shape selection of the structural ribs described later to achieve efficient and reasonable load distribution requirements.
- Step 4 The reinforcement of the prefabricated module and the structural reinforcement is carried out according to the load and shape requirements of the specific use position of the building structure; the structural reinforcement can bend the planar steel mesh into an O-shaped, U-shaped cross section, C-shaped, mouth-shaped, rectangular and other different bearing capacity and shape required by the structure; can also directly adopt flat mesh according to the actual load requirements of the building structure, such as non-load-bearing roof or wall; further, ordinary A variety of ribs such as ribs, composite ribs, liner ribs, and sandwich ribs are used to further increase the load capacity.
- the common ribs refer to a single rib form that directly applies the unformed steel mesh; and the load-bearing structures such as beams and columns adopt the formed structural ribs and cooperate with the composite ribs and the liner ribs.
- the C-shaped ribs in the left and right opening directions are combined to form a composite rib; and a common sandwich rib (also shown in Fig. 2) is built in the rib form to increase Structural strength and load capacity; the two U-shaped ribs with opposite opening directions are combined (as shown in Figure 3), that is, the U-shaped ribs and the inner rib structure are also used to increase the structural strength and load capacity.
- Step 5 pouring honeycomb concrete having a corresponding porosity in a space surrounded by the prefabricated module, consolidating the prefabricated module and the structural mesh reinforced body to complete the structural construction process of the building.
- the structural reinforced cellular concrete structure and the construction method thereof of the present invention have the characteristics listed in Table 1 (see next page) as compared with the conventional reinforced concrete building and steel structure building.
Landscapes
- Engineering & Computer Science (AREA)
- Architecture (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Manufacturing Of Tubular Articles Or Embedded Moulded Articles (AREA)
- Buildings Adapted To Withstand Abnormal External Influences (AREA)
- Reinforcement Elements For Buildings (AREA)
Abstract
一种具有结构网筋(2、5、6)的蜂窝混凝土结构及其制造方法。该混凝土结构由钢网片(1)制成的结构网筋(2、5、6)和绕其周围的蜂窝混凝土预制模块构成,通过在预制模块内浇筑蜂窝材料使结构网筋(2、5、6)和预制模块固结成一体。其制造方法则包括以下步骤:1、选择符合要求的钢网片(1)构成结构网筋(2、5、6);2、制备蜂窝混凝土预制模块;3、制备用于浇筑蜂窝混凝土材料;4、进行预制模块和结构网筋(2、5、6)的布筋搭建;5、在预制模块构成的空间内浇筑蜂窝混凝土。该混凝土结构相对于传统钢筋混凝土结构自重减轻60%以上,并增强了建筑物的抗震效果。
Description
本发明涉及建筑材料及使用该材料的建筑方法,特别是结构网筋蜂窝混凝土结构及其建筑方法。
钢筋混凝土结构是目前建筑工程领域最常见的结构形式,占目前总建筑面积的85%以上。其通过混凝土的坚硬性质对钢筋骨架基于摩擦力的握裹力,使钢筋混凝土结构保持稳定。混凝土越坚硬、结构重量越大,对建筑物的稳定越有利;但也使建筑整体结构的内应力、材料的导热性大大增加,不利于抗震、环保、节能。建筑物结构施工通常以绑扎或焊接钢筋形成钢筋骨架进行现场浇筑或通过拼接预制建筑模块,例如砌块、预制梁板等来完成。可见,由于传统钢筋混凝土结构主要基于混凝土对钢筋骨架的握裹力来形成建筑物的结构强度和稳定性,为了得到足够的握裹力来达到必要的载荷强度和稳定性,实际应用中必须加大钢筋与混凝土的用量,进而使所形成的建筑物整体质量和内应力都很大,这导致了抗震性能的下降,加之材料本身导热性能的固有缺陷,也使建筑物的环保、节能性能很差。因此,目前的钢筋混凝土结构很难在整体上合理协调抗震、节能性能。目前,本领域也有采用钢丝网配以泡沫混凝土形成轻质建筑模块的技术方案公开,例如中国专利CN2332765Y,公告日1999年8月11日,便描述了一种钢丝网泡沫混凝土轻质墙板的技术方案,其包括在混凝土板内设置二层钢丝网,钢丝网的四边设有骨筋,两层钢丝网与用水泥、沙、矿渣、发泡剂按比例调配成的混凝土粘合在一起,在混凝土板的四个连接面上设有若干块焊接铁片,焊接铁片固定在骨筋上,施工时将各块墙板焊接在一起。可见,该技术方案改变了通过混凝土对钢筋骨架握裹力进行结合的原理,而采用了混凝土轻质材料对钢筋网的握持力来进行结合,进而形成复合材料的物合力。但其仅仅采用网片结构的钢筋网作为网筋,只能局限地用于非承重的墙面或屋面材料,而不能在各个方向上达到足够的强度使之用于结构施工,且其中钢筋网设置相对复杂,仍需要以钢筋骨筋作为模块结构的支撑,构成建筑物时模块之间还需要通过焊接连接,也没有提供可靠的
结构型连接方式。国际申请WO2005108704A1,国际公开日2005年11月17日,则公开了用于地板、隔离墙、天花板等的楔合结构建筑模块,其主要用于功能性(采光)结构,并非出于形成轻质、便捷及高强度连接的目的。
因此,目前所公开的最接近的现有技术方案均存材料和结构原理上的缺陷,没有达到轻质、便捷、高强度及合理质量分布的完美结合,无法达成对日益重视的抗震、节能、环保、防火等指标的完美协调。
发明内容
鉴于上述现有技术的缺陷,本发明目的在于提供一种结构网筋蜂窝混凝土结构及其建筑方法。本发明虽然仍以钢筋和水泥作为主要建筑材料,但并不属于通常意义上的钢筋混凝土结构,与钢结构建筑也有着不同的力学原理。
本发明所述结构网筋蜂窝混凝土结构充分利用了韧性较高的蜂窝混凝土对由钢网片成型的结构网筋所产生的扶持力来形成复合材料的物合力使结构保持稳定,并同时具有足够的载荷能力。
根据上述目的,本发明所述的结构网筋蜂窝混凝土结构由结构网筋和蜂窝混凝土组成。所述蜂窝混凝土包括但并不限于由水泥基料、轻骨料、硬骨料以及添加剂构成的轻质混凝土、加气混凝土等蜂窝孔隙材料。
所述结构网筋由钢网片制成特定形状的结构网筋,以相应形状的蜂窝混凝土材料制作的预制模块(在使用上与传统钢筋混凝土施工中的建筑模板功能相似)围绕所述预制的结构网筋,并通过进一步浇筑蜂窝混凝土使预制模块与结构网筋固结成一体,据此形成本发明所述的结构网筋蜂窝混凝土结构。各预制模块之间通过特定的连接结构,例如企口结构,进行卯榫、楔合式无透缝钩挂连接;通过对材料密度分布的调节,特别是指整体建筑物不同部位上的材料密度或质量的合理选择,使建筑物整体质量分布和载荷要求上更加科学、合理。
根据上述目的,一种结构网筋蜂窝混凝土结构,由钢网片成型的结构网筋和围绕其周围的蜂窝混凝土预制模块构成;所述预制模块内通过浇筑蜂窝混凝土使所述结构网筋和所述预制模块固结成一体。
进一步地,所述钢网片的网格交叉点为焊接结构。
进一步地,所述焊接结构由电阻焊形成。
进一步地,所述结构网筋包括O形、U形、C形、口形、矩形的横截面形状。
进一步地,所述蜂窝混凝土成分包括水泥基料、轻骨料、硬骨料以及添加剂。
进一步地,所述预制模块包括雌雄砖、开口砖、拐角砖、梁盒砖、变径砖、梁和板;所述预制模块之间的拼接位置设有可无透缝结构型拼接的企口结构。
一种采用上述结构网筋蜂窝混凝土结构的建筑方法,包括以下步骤:
步骤一:根据建筑物结构具体使用位置的载荷和形状要求选择相应规格的钢网片,并将其成型为相应的结构网筋;
步骤二:制备蜂窝混凝土预制模块;
步骤三:制备用于浇筑的蜂窝混凝土材料;
步骤四:根据建筑物结构具体使用位置的载荷和形状要求进行所述预制模块和结构网筋的布筋搭建;
步骤五:在预制模块围绕的空间中浇筑蜂窝混凝土,完成建筑结构施工。
进一步地,随所施用的建筑物层级向上,用于浇筑的所述蜂窝混凝土孔隙率逐渐增加。
进一步地,所述结构网筋在建筑物较低层的布筋密度大于建筑物较高层的布筋密度。
进一步地,所述布筋形式包括夹心布筋、复合式布筋、内胆式布筋。
进一步地,所述步骤四中,结构网筋和预制模块可根据结构形状和载荷要求多重并列设置。
本发明有益效果:本发明使网筋和蜂窝混凝土材料可应用于建筑的结构施工,而不仅仅局限于传统的非承重结构(隔墙、屋面等);本发明以钢网片成型技术形成的结构网筋取代传统的钢筋绑扎骨架和单纯的钢网片,使钢网片的轻量、灵活性与钢筋骨架的坚固、荷载强度高等有机地结合在一起;蜂窝混凝土对结构网筋以扶持力为主要结合力,进而使结构网筋蜂窝混凝土结构产生复合地产生物合力,以此构成具足够载荷能力的建筑结构;构成网筋的网片尺寸、丝径、网目、目型都可以根据建筑物的不同部位的载荷、形状要求而合理设置,其钢丝(筋)规格和用量都远远小于传统钢筋骨架结构;同时,包裹结构网筋的蜂窝混
凝土材料本身主要以扶持力作用于结构网筋,也无需具有如传统混凝土材料所必需的荷载强度;蜂窝混凝土具有更高的韧性,其抗冲击能力远远高于传统的坚硬混凝土材料,具有优异的抗震、保温、节能效果,且重量大大降低。网筋可以方便地预制成各种适宜的结构形状,结合不同的布筋方法可合理地满足建筑不同部位的载荷需要,非常有利于降低建筑物整体的材料应力,使建筑物整体质量大大减小并使质量分布更加合理。据测算,相同规格的建筑物整体质量相对于传统钢筋混凝土结构或钢结构可减轻60%以上,同时降低了建筑物内应力,增加了建筑物整体的柔韧性,大大提高了建筑的抗震能力;本发明以“七巧板”原理预制适宜建筑结构通用的蜂窝混凝土预制模块,预制模块间通过榫、齿等企口结构形成无透缝的结构型连接结构,充分利用了材料本身的抗拉强度,克服了传统砂浆粘接材料是连接薄弱点的缺陷,加之本发明以柱状的蜂窝混凝土浇筑取代传统的以粘接为目的的带状砂浆填充,保证了蜂窝混凝土与结构网筋的结合强度;蜂窝材料作为建筑物主体材料的使用也使建筑物的节能效果大大增强。据此,本发明使传统钢筋混凝土节能与抗震的矛盾完美地得到了统一,特别适用于民用屋舍、普通多层建筑物的建设,并使施工效率以及建筑物抗震效果得以大幅度提高。
图1是本发明钢网片成型进而通过浇筑蜂窝混凝土材料形成结构网筋蜂窝混凝土型材(梁)的成型过程;
图2是结构网筋的C形筋与夹心筋结合的布筋形式;
图3是结构网筋的U形筋加内胆的布筋形式;
图4是布筋搭建及浇筑过程示意图;
图5是蜂窝混凝土材料预制模块的基本形状,其中(A)为雌雄砖,(B)为开口砖,(C)为拐角砖,(D)为梁盒砖,(E)为变径砖,(F)为梁,(G)为板;
图6是图5中开口砖的使用方式示意图;
图7是图5中拐角砖的使用方式示意图;
图8是图5中梁盒砖的使用方式示意图;
图9是图5中变径砖用于低层建筑时的使用方式示意图;
图10是图5中变径砖用于多层或高层建筑时的使用方式示意图;
图11是图5中梁用于屋面时的使用方式示意图;
图12是结构网筋作为坡屋面建筑整体的搭建示意图。
附图标记说明:钢网片1,C形结构网筋2,结构网筋蜂窝混凝土型材3,夹心筋4,U形结构网筋5,U形结构网筋内胆5’,口形结构网筋6,雌雄砖7,开口砖8,拐角砖9,梁盒砖10,变径砖11,梁12,板13,
一种结构网筋蜂窝混凝土结构,由钢筋网片制成的结构网筋和围绕其周围的蜂窝混凝土材料模块构成;所述蜂窝混凝土材料模块内通过浇筑蜂窝材料使结构网筋和蜂窝混凝土材料模块固结成一体。
根据图1,由右至左展示了钢网片1首先成型进而通过浇筑蜂窝混凝土材料形成结构网筋蜂窝混凝土型材(梁)的成型过程(图示由右至左);钢网片1由电阻焊焊接的钢丝(筋)构成,其网片尺寸、丝径、网目、目型根据建筑物的不同部位的载荷和形状要求设置。
作为一种常用结构,图2展示了由C形结构网筋2与夹心筋4结合的布筋形式;图3则展示了U形结构网筋5附加U形结构网筋内胆5’的布筋形式;这些结构网筋都被蜂窝混凝土浇筑包裹,使蜂窝混凝土对结构网筋形成握持和扶持力。
图4则展示了结构网筋6与预制模块之间的结构关系,预制模块起到了传统钢筋混凝土结构施工中的模板作用,在预制模块围绕的空间中浇筑蜂窝混凝土材料,使之与结构网筋固结成一体;
图5展示了蜂窝混凝土材料预制模块的基本形状,其中(A)为雌雄砖,(B)为开口砖,(C)为拐角砖,(D)为梁盒砖,(E)为变径砖,(F)为梁,(G)为板;
图4中已经展示了由雌雄砖7构成墙面的结构形式,且其承重结构(实例中是柱)由变径砖11围绕口形结构网筋6构成,在其围绕空间中浇筑蜂窝混凝土进行固结形成承重结构。
图6至8展示了图5中开口砖、拐角砖和梁盒砖的使用方式;
变径砖11的用法在图9和图10中进行了展示,图9变径砖11用于低层建筑时的情形,每个承重柱体使用一组结构网筋即可满足载荷要求;而预制模块可
根据结构形状和载荷要求多重并列设置,如图10中即展示了通过多组用于形成柱的结构网筋被多组变径砖11围绕形成复合承重结构的使用方式,可用于多层或高层建筑物的下层承重结构;
图11展示了图5中梁用于屋面时的使用方式;
图12展示了结构网筋作为坡屋面建筑整体的搭建形式,其中坡屋面由钢网片1、梁12和板13组合构成;口形结构网筋6作为圈梁骨架进行布筋。
上述各预制模块间均具有企口结构,据以形成预制模块间无透缝的结构型拼接,而不仅仅依赖于如传统砌块结构间的砂浆粘结连接。
基于上述结构件的制备,本发明所述建筑方法,具体包括以下步骤:
步骤一:结构网筋的制备,首先采用整体电阻焊方式形成钢网片,根据实际楼层高度及载荷要求设计钢网片的丝径、目型、目数;常用的规格例如丝径为Φ1,焊接后网眼形状可以为尺寸为8×8的正方形。一般情况下,丝径越大,网眼越大,蜂窝材料的握持能力越差,需通过计算和试验验证设计具体的钢网片规格;
步骤二:制备蜂窝混凝土预制模块,其根据常用的建筑结构形式制成雌雄砖、开口砖、拐角砖、梁盒砖、变径砖、梁和板的基本模块结构;预制模块的拼接位置设有企口结构,使预制模块可实现无透缝的结构型拼接;
步骤三:制备用于浇筑的蜂窝混凝土材料,其采用常规的发泡混凝土或泡沫混凝土工艺制备,材料内部具有不规则的蜂窝孔隙,材料成分通常包括水泥基料、轻骨料、硬骨料以及添加剂;其中所述轻骨料包括漂珠、蛭石、聚丙颗粒和/或粉煤灰;所述硬骨料包括浮石和沙;所述添加剂包括纤维素、胶粉、短纤维和减水剂。其具体制备方法并非本发明所要求保护的发明点,无须赘述。本发明对蜂窝混凝土的运用主要是通过调整所述蜂窝混凝土中孔隙的规格和分布进而改变材料整体的密度和重量,因此将所述蜂窝混凝土的孔隙率可调节地控制在10%~70%范围内;对应低楼层的发泡混凝土材料,采用较低的孔隙率;用于浇筑较高楼层的材料可采用较高的孔隙率。上述措施使建筑物具有向上逐层降低浇筑材料重量的特征,例如,搭建十层建筑,其中一层为100%的重量,二层为95%,三层为90%,……,每层依次减少5%的结构重量,同时配合后述的结构网筋的结构强度、形态选择,达到高效合理的载荷分布要求。
步骤四:根据建筑物结构具体使用位置的载荷和形状要求进行所述预制模块和结构网筋的布筋搭建;结构网筋可以将平面钢网片弯轧成横截面为O形、U形、C形、口形、矩形等多种不同承载能力和结构所要求的形状;也可以根据建筑物结构的实际载荷要求直接采用平面网片,例如非承重的屋面或墙面;进一步地,可采用普通布筋、复合式布筋、内胆式布筋、夹心式布筋等多种布筋方式以进一步增加荷载能力。所述普通布筋即指将未成型的钢网片进行直接应用的单一布筋形式;而梁和柱等承重结构采用成型后的结构网筋并配合复合式布筋和内胆式布筋。如图1所示,就是将左右两个开口方向的C形筋合并在一起,形成复合式布筋;而在该布筋形式中再内置一个普通的夹心筋(如图2所示)以增加结构强度和荷载能力;将两个开口方向相对的U形筋进行组合(如图3所示),即形成U形筋加内胆的布筋结构,也用于增加结构强度和荷载能力。
步骤五:在所述预制模块围成的空间内浇筑具有相应孔隙率的蜂窝混凝土,使所述预制模块和结构网筋固结成一体,完成建筑物的结构施工过程。
综上所述,相对于传统钢筋混凝土建筑和钢结构建筑,本发明结构网筋蜂窝混凝土结构及其建筑方法具有如表1(见下页)所列的特征。
表1:结构网筋蜂窝混凝土结构与传统钢筋混凝土结构、钢结构的性能对比
Claims (15)
- 一种结构网筋蜂窝混凝土结构,由钢网片成型的结构网筋和围绕其周围的蜂窝混凝土预制模块构成;所述预制模块内通过浇筑蜂窝混凝土使所述结构网筋和所述预制模块固结成一体。
- 根据权利要求1所述结构网筋蜂窝混凝土结构,其特征在于,所述钢网片的网格交叉点为焊接结构。
- 根据权利要求2所述结构网筋蜂窝混凝土结构,其特征在于,所述焊接结构由电阻焊形成。
- 根据权利要求1至3之一所述结构网筋蜂窝混凝土结构,其特征在于,所述结构网筋包括O形、U形、C形、口形、矩形的横截面形状。
- 根据权利要求1所述结构网筋蜂窝混凝土结构,其特征在于,用于浇筑的蜂窝混凝土材料具有10%——70%的孔隙率。
- 根据权利要求1所述结构网筋蜂窝混凝土结构,其特征在于,所述蜂窝混凝土成分包括水泥基料、轻骨料、硬骨料以及添加剂。
- 根据权利要求6所述结构网筋蜂窝混凝土结构,其特征在于,所述轻骨料包括漂珠、蛭石、聚丙颗粒和/或粉煤灰;所述硬骨料包括浮石和沙;所述添加剂包括纤维素、胶粉、短纤维和减水剂。
- 根据权利要求1所述结构网筋蜂窝混凝土结构,其特征在于,所述预制模块包括雌雄砖、开口砖、拐角砖、梁盒砖、变径砖、梁和板;所述预制模块之间的拼接位置设有可无透缝结构型拼接的企口结构。
- 一种采用如权利要求1-8结构网筋蜂窝混凝土结构的建筑方法,包括以下步骤:步骤一:根据建筑物结构具体使用位置的载荷和形状要求选择相应规格的钢网片,并将其成型为相应的结构网筋;步骤二:制备蜂窝混凝土预制模块;步骤三:制备用于浇筑的蜂窝混凝土材料;步骤四:根据建筑物结构具体使用位置的载荷和形状要求进行所述预制模块和结构网筋的布筋搭建;步骤五:在预制模块围绕的空间中浇筑蜂窝混凝土,完成建筑结构施工。
- 根据权利要求9所述结构网筋蜂窝混凝土结构的建筑方法,其特征在于,随所施用的建筑物层级向上,用于浇筑的所述蜂窝混凝土孔隙率逐渐增加。
- 根据根据权利要求10所述结构网筋蜂窝混凝土结构的建筑方法,其特征在于,用于浇筑的蜂窝混凝土孔隙率在10%——70%之间调整。
- 根据权利要求9所述结构网筋蜂窝混凝土结构的建筑方法,其特征在于,所述结构网筋在建筑物较低层的布筋密度大于建筑物较高层的布筋密度。
- 根据权利要求12所述结构网筋蜂窝混凝土结构的建筑方法,其特征在于,所述布筋形式包括夹心布筋、复合式布筋、内胆式布筋。
- 根据权利要求9所述结构网筋蜂窝混凝土结构的建筑方法,其特征在于,所述步骤四中,结构网筋和预制模块可根据结构形状和载荷要求多重并列设置。
- 根据权利要求9至14之一所述结构网筋蜂窝混凝土结构的建筑方法,其特征在于,多层建筑物从第二层起向上,每层的结构材料重量较其下面的一层降低5%。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201580080516.4A CN107614815A (zh) | 2015-05-26 | 2015-07-06 | 结构网筋蜂窝混凝土结构及其建筑方法 |
RU2017144875A RU2693071C1 (ru) | 2015-05-26 | 2015-07-06 | Конструкция из ячеистого бетона и конструкционной арматурной сетки и способ ее возведения |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510272295.2 | 2015-05-26 | ||
CN201510272295 | 2015-05-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016187933A1 true WO2016187933A1 (zh) | 2016-12-01 |
Family
ID=57393264
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2015/083355 WO2016187933A1 (zh) | 2015-05-26 | 2015-07-06 | 结构网筋蜂窝混凝土结构及其建筑方法 |
Country Status (3)
Country | Link |
---|---|
CN (1) | CN107614815A (zh) |
RU (1) | RU2693071C1 (zh) |
WO (1) | WO2016187933A1 (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110320078A (zh) * | 2019-07-10 | 2019-10-11 | 卡本科技集团股份有限公司 | 一种碳纤维网格握裹力试样的制备方法 |
CN110792228A (zh) * | 2018-08-03 | 2020-02-14 | 李殿义 | 中式传统建筑预制结构单元及其所构成的部品化集成房屋 |
CN118125766A (zh) * | 2024-03-06 | 2024-06-04 | 山东大学 | 用于地铁隧道脱空病害的轻质高强水泥基修复材料及其制备方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007077594A (ja) * | 2005-09-12 | 2007-03-29 | Clion Co Ltd | アンカー金具埋設軽量気泡コンクリートパネル及びその製造方法並びにその製造装置 |
KR20080001307U (ko) * | 2006-11-21 | 2008-05-26 | 주식회사 에이티 | 경량 기포 콘크리트 복합 판넬 |
CN101307629A (zh) * | 2008-07-03 | 2008-11-19 | 雷现治 | 卡扣式自装饰复合保温高层住宅用建筑模块及其施工方法 |
JP2010209664A (ja) * | 2009-03-06 | 2010-09-24 | Yutaka Mizushima | 壁パネル |
CN201660985U (zh) * | 2010-02-19 | 2010-12-01 | 吴华明 | 免模免振建筑模网泡沫混凝土墙体 |
CN103835413A (zh) * | 2014-03-21 | 2014-06-04 | 北京工业大学 | 外包钢丝网砂浆板一字形边框发泡混凝土承重墙体及作法 |
CN103938797A (zh) * | 2014-04-04 | 2014-07-23 | 北京工业大学 | 免拆高性能水泥砂浆模板保温再生混凝土矩形柱及作法 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU1649058A1 (ru) * | 1989-05-03 | 1991-05-15 | Всесоюзный Государственный Научно-Исследовательский Проектный И Конструкторский Институт Стройиндустрии | Строительный блок дл кладки стен |
RU2033501C1 (ru) * | 1993-02-26 | 1995-04-20 | Государственный проектно-изыскательский и научно-исследовательский институт "ОргстройНИИпроект" | Способ возведения здания из полых блоков |
CN2287653Y (zh) * | 1997-04-11 | 1998-08-12 | 杨东升 | 一种空间受力骨架 |
CN103866984A (zh) * | 2012-12-08 | 2014-06-18 | 闫丕春 | 一种钢筋网架的制作方法 |
RU131024U1 (ru) * | 2013-03-26 | 2013-08-10 | Владимир Васильевич Коробов | Блок для несъемной опалубки (варианты) |
CN103726604B (zh) * | 2014-01-08 | 2016-09-14 | 李殿义 | 建筑构件 |
-
2015
- 2015-07-06 WO PCT/CN2015/083355 patent/WO2016187933A1/zh active Application Filing
- 2015-07-06 CN CN201580080516.4A patent/CN107614815A/zh active Pending
- 2015-07-06 RU RU2017144875A patent/RU2693071C1/ru active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007077594A (ja) * | 2005-09-12 | 2007-03-29 | Clion Co Ltd | アンカー金具埋設軽量気泡コンクリートパネル及びその製造方法並びにその製造装置 |
KR20080001307U (ko) * | 2006-11-21 | 2008-05-26 | 주식회사 에이티 | 경량 기포 콘크리트 복합 판넬 |
CN101307629A (zh) * | 2008-07-03 | 2008-11-19 | 雷现治 | 卡扣式自装饰复合保温高层住宅用建筑模块及其施工方法 |
JP2010209664A (ja) * | 2009-03-06 | 2010-09-24 | Yutaka Mizushima | 壁パネル |
CN201660985U (zh) * | 2010-02-19 | 2010-12-01 | 吴华明 | 免模免振建筑模网泡沫混凝土墙体 |
CN103835413A (zh) * | 2014-03-21 | 2014-06-04 | 北京工业大学 | 外包钢丝网砂浆板一字形边框发泡混凝土承重墙体及作法 |
CN103938797A (zh) * | 2014-04-04 | 2014-07-23 | 北京工业大学 | 免拆高性能水泥砂浆模板保温再生混凝土矩形柱及作法 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110792228A (zh) * | 2018-08-03 | 2020-02-14 | 李殿义 | 中式传统建筑预制结构单元及其所构成的部品化集成房屋 |
CN110792228B (zh) * | 2018-08-03 | 2022-11-29 | 李殿义 | 中式传统建筑预制结构单元及其所构成的部品化集成房屋 |
CN110320078A (zh) * | 2019-07-10 | 2019-10-11 | 卡本科技集团股份有限公司 | 一种碳纤维网格握裹力试样的制备方法 |
CN110320078B (zh) * | 2019-07-10 | 2022-07-12 | 卡本科技集团股份有限公司 | 一种碳纤维网格握裹力试样的制备方法 |
CN118125766A (zh) * | 2024-03-06 | 2024-06-04 | 山东大学 | 用于地铁隧道脱空病害的轻质高强水泥基修复材料及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN107614815A (zh) | 2018-01-19 |
RU2693071C1 (ru) | 2019-07-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5830195B2 (ja) | トラスを組み立てて型枠を懸装してフェロセメントスラブを現場打設で製作する方法 | |
CN101967851A (zh) | 一种板混结构装配式住宅及其建造方法 | |
WO2014094458A1 (zh) | 全组装整体灌注复合式房屋及其建造方法 | |
CN102155070B (zh) | 一种轻质保温防火复合板及其生产方法 | |
WO2015192764A1 (zh) | 一种空心砌块及用其砌筑的墙体 | |
WO1998002304A1 (fr) | Panneau de beton et son procede de production | |
CN207110165U (zh) | 一种填充空腔构件的现浇混凝土预制叠合板 | |
CN202248499U (zh) | 构架结构外墙预制板 | |
CN103031895A (zh) | 一种保温构件 | |
CN106088480B (zh) | 桁架梁、应用桁架梁的组合梁及应用桁架梁的复合楼盖 | |
WO2016187933A1 (zh) | 结构网筋蜂窝混凝土结构及其建筑方法 | |
CN115354793A (zh) | 一种配置三角锥桁架筋的预制陶粒泡沫混凝土复合剪力墙及其制备方法 | |
CN202202412U (zh) | 一种矩形钢管混凝土异形柱与钢梁框架中节点 | |
CN110777967A (zh) | 一种轻钢轻混结构 | |
CN107100316A (zh) | 装配式低能耗一体化墙体 | |
CN113719008A (zh) | 一种钢网桁架空巢芯板及施工工艺 | |
CN112538915A (zh) | 一种预制混凝土墙板及其制作方法 | |
CN106088649B (zh) | 夹芯保温墙板加固钢筋混凝土震损框架的方法 | |
CN210621917U (zh) | 装配式轻钢房屋系统 | |
CN112177194A (zh) | 一种装配式建筑3d钢筋网架夹芯复合轻质墙板 | |
CN202202415U (zh) | 一种矩形钢管混凝土异形柱与钢梁框架边节点 | |
CN103031897A (zh) | 一种保温构件的制作方法 | |
CN205444514U (zh) | 一种承重轻质保温一体板 | |
CN204919963U (zh) | 具有加强连接结构的墙块 | |
CN110130553B (zh) | 保温隔热楼板结构及生产方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15893014 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2017144875 Country of ref document: RU |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15893014 Country of ref document: EP Kind code of ref document: A1 |