WO2016186312A1 - Pcr device - Google Patents

Pcr device Download PDF

Info

Publication number
WO2016186312A1
WO2016186312A1 PCT/KR2016/003286 KR2016003286W WO2016186312A1 WO 2016186312 A1 WO2016186312 A1 WO 2016186312A1 KR 2016003286 W KR2016003286 W KR 2016003286W WO 2016186312 A1 WO2016186312 A1 WO 2016186312A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
temperature
heating
temperature control
weight
Prior art date
Application number
PCT/KR2016/003286
Other languages
French (fr)
Korean (ko)
Inventor
김윤진
조진우
신권우
박지선
Original Assignee
주식회사 대화알로이테크
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 대화알로이테크 filed Critical 주식회사 대화알로이테크
Publication of WO2016186312A1 publication Critical patent/WO2016186312A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L7/00Heating or cooling apparatus; Heat insulating devices

Definitions

  • the present invention relates to a PCR device.
  • DNA amplification is widely used for research and development and diagnostic purposes in the fields of life science, genetic engineering, and medicine.
  • DNA amplification by polymerase chain reaction (PCR) is widely used. It is becoming.
  • the PCR is used to amplify specific DNA sequences in the genome as necessary.
  • the PCR amplifies DNA through a denaturation step, an annealing step, and an extension step.
  • the PCR is performed by a PCR device.
  • the PCR device adjusts the temperature of the sample sample to the step-by-step temperature required for DNA synthesis using one temperature controller. Since the temperature control unit controls the temperature of the sample sample unit, it may take a long time to complete the PCR due to a delay in increasing or decreasing the temperature of the sample sample unit.
  • the PCR apparatus has a plurality of temperature control units having different fixed temperatures, and the sample sample unit may move between the temperature control units.
  • Korean Patent Publication No. 2010-0008476 discloses a technique for moving the sample sample portion between the temperature control portion.
  • the PCR device can reduce the time required to complete the PCR.
  • the sample sample portion moves, it is difficult to detect the accurate result from the sample sample portion using light in the sensor module due to shaking the sample sample portion.
  • Another object of the present invention is to provide a PCR device including a heating paste composition having high heat resistance, small resistance change according to temperature, low specific resistance, and which can be driven with low voltage and low power.
  • the PCR device accommodates a material for synthesizing DNA, the sample sample portion disposed in a fixed state, and arranged to be adjacent to the sample sample portion And at least one planar heating element formed through the exothermic paste composition, and including a temperature control unit configured to adjust the temperature of the sample sample unit to a step-by-step temperature required for DNA synthesis while moving with respect to the sample sample unit in a fixed state.
  • the heating paste composition may include 3 to 6 parts by weight of carbon nanotube particles, 0.5 to 30 parts by weight of carbon nanoparticles, 10 to 30 parts by weight of a mixed binder, 29 to 83 parts by weight of an organic solvent, and a dispersant based on 100 parts by weight of a heat paste composition.
  • the mixed binder is epoxy acrylate, polyvinyl acetal and phenolic resin Is mixed or hexamethylene diisocyanate, polyvinyl acetal and phenolic resin are mixed.
  • the temperature adjusting part may include a first heating region for heating the sample sample portion to a first temperature, a second heating region for heating the sample sample portion to a second temperature lower than the first temperature, and the sample.
  • a third heating region for heating the sample part to a third temperature between the first temperature and the second temperature may be sequentially arranged.
  • the method may further include a sensor module for determining the amplification degree of the DNA by irradiating light to the sample sample unit and determining the DNA.
  • the temperature controller may include a light transmitting region for transmitting light of the sensor module on one side of the first heating region or on one side of the third heating region, and the sensor module may be configured to pass through the light transmitting region. The light can be irradiated.
  • the sensor module may be disposed between the first heating region and the third heating region of the temperature controller to move together with the temperature controller.
  • the temperature control part may be provided between the first heating area and the second heating area, and further include a cooling area for cooling the sample sample part.
  • the temperature controller may further include a heat insulation region between each of the regions to prevent heat transfer between the regions of the temperature controller.
  • the temperature control part may be rotatably supported to adjust the temperature of the sample sample part, and may further include a slip ring for supplying power to the temperature control part.
  • it may further include a housing provided to surround the temperature control part and having an insertion hole for accommodating the sample sample part.
  • the housing may include a guide protrusion on an inner surface including a portion in which the insertion hole is formed, and the temperature control part may be configured to maintain a constant distance from the sample sample part while moving the temperature control part. It may include a guide member extending to contact.
  • the mixed binder may be mixed with 10 to 150 parts by weight of polyvinyl acetal resin, 100 to 500 parts by weight of phenolic resin based on 100 parts by weight of epoxy acrylate or hexamethylene diisocyanate.
  • 0.5 to 5 parts by weight of the silane coupling agent may be further included based on 100 parts by weight of the heating paste composition.
  • the carbon nanotube particles may be multi-walled carbon nanotube particles.
  • the organic solvent is carbitol acetate, butyl carbitol acetate, DBE (dibasic ester), ethyl carbitol, ethyl carbitol acetate, dipropylene glycol methyl ether, cellosolve acetate, butyl cellosolve acetate, butanol And two or more mixed solvents selected from octanol.
  • the planar heating element may be formed by screen printing, gravure printing, or comma coating the heating paste composition on a substrate.
  • the substrate may be a polyimide substrate, glass fiber mat or ceramic glass.
  • the planar heating element may be coated on the top surface of the planar heating element, and may further include a protective layer formed of an organic material including a black pigment such as silica or carbon black.
  • the apparatus may further include a power supply unit configured to supply power to the planar heating element.
  • it has a high heat resistance may have a small resistance change according to the temperature
  • low specific resistance may include a heat paste composition capable of driving at low voltage and low power.
  • FIG. 1 is a side cross-sectional view for explaining a PCR device according to a first embodiment of the present invention.
  • FIG. 2 is a plan view illustrating the temperature control unit shown in FIG. 1.
  • FIG 3 is a side cross-sectional view for explaining a PCR device according to a second embodiment of the present invention.
  • FIG. 4 is a side cross-sectional view for explaining a PCR device according to a third embodiment of the present invention.
  • FIG. 5 is a side cross-sectional view for explaining a PCR device according to a fourth embodiment of the present invention.
  • FIG. 6 is a plan view illustrating the temperature controller and the sensor module illustrated in FIG. 5.
  • FIG. 7 is a side cross-sectional view for explaining a PCR device according to a fifth embodiment of the present invention.
  • FIG. 8 is a cross-sectional view taken along line AA ′ of FIG. 7.
  • FIG. 9 is a side cross-sectional view for explaining a PCR device according to a sixth embodiment of the present invention.
  • FIG. 10 is a plan view illustrating the temperature controller illustrated in FIG. 9.
  • FIG. 11 is an image of a specimen of a planar heating element using a heating paste composition included in a PCR device according to an embodiment of the present invention.
  • FIG. 1 is a side cross-sectional view for explaining a PCR device according to a first embodiment of the present invention
  • Figure 2 is a plan view for explaining the temperature control unit shown in FIG.
  • the PCR device 100 includes a housing 110, a sample sample unit 120, a temperature control unit 130, a sensor module 140, a slip ring 150, and a driving unit 160. It includes.
  • the housing 110 has a hollow cylindrical or box shape.
  • the housing 110 has an insertion hole 112 through which the sample sample part 120 is inserted.
  • the insertion hole 112 may be located at the side of the housing 110.
  • the housing 110 also has a guide protrusion 114 along the inner side circumference.
  • the height of the guide protrusion 114 may be substantially the same as the height of the insertion hole (112).
  • Sample sample unit 120 has a substantially flat plate shape, and houses a material for synthesizing DNA.
  • the sample sample unit 120 may be inserted into and fixed to the insertion hole 112 of the housing 110.
  • the sample sample unit 120 may include a temperature sensor (not shown). The temperature of the sample sample unit 120 may be accurately measured using the temperature sensor. The temperature of the sample sample unit 120 measured by the temperature sensor may be used by the temperature controller 130 to adjust the temperature of the sample sample unit 120.
  • the temperature control unit 130 is provided inside the housing 110 and is disposed to be adjacent to the sample sample unit 120 inserted into and fixed to the housing 110.
  • the temperature control unit 130 includes at least one or more planar heating elements formed through the heating paste composition, and moves with respect to the sample sample unit 120 while the temperature of the sample sample unit 120 is at a stepwise temperature necessary for DNA synthesis. Adjust The heat generating paste composition forming the planar heating element and planar heating element included in the temperature control unit 130 will be described in more detail later.
  • the temperature control unit 130 may include a pair of temperature control members 131 including a planar heating element formed through the heat paste composition.
  • the temperature regulating members 131 have a disc shape, respectively, and are disposed to be parallel to each other above and below the sample sample part 120. In order to prevent the temperature control member 131 from colliding with the sample sample unit 120 when the temperature control members 131 move, the temperature control members 131 are spaced apart from each other by a distance wider than the thickness of the sample sample unit 120.
  • Each temperature regulating member 131 has a first heating region 132, a cooling region 133, a second heating region 134, a third heating region 135, and a light transmitting region 136 along the circumference of the disc. Sequentially located.
  • the temperature control unit 130 heats and cools the sample sample unit 120 while the temperature control members 131 rotate.
  • the first heating area 132 heats the sample sample part 120 to a first temperature
  • the cooling area 133 cools the sample sample part 120
  • the second heating area 134 is a sample sample part ( 120 is heated to a second temperature lower than the first temperature
  • the third heating zone 135 heats the sample sample portion to a third temperature between the first and second temperatures.
  • the first temperature is about 94 to 95 °C
  • the second temperature is about 55 °C
  • the third temperature is preferably about 72 °C, but the first temperature, the second temperature and the second by the user 3
  • the temperature may vary.
  • the cooling region 133 may have a temperature equal to or lower than the second temperature.
  • the sample sample unit 120 may be cooled to the second temperature more quickly. Meanwhile, the cooling region 133 may be omitted as necessary.
  • the first heating region 132, the second heating region 134, and the third heating region 135 may be provided with a thermoelectric element, a light source, a heating coil, and the like.
  • the cooling region 133 may include a thermoelectric element, a heat radiating fin, a cooling coil, a cooling fan, and the like.
  • a temperature sensor may be provided in each of the first heating region 132, the cooling region 133, the second heating region 134, and the third heating region 135.
  • the first heating region 132, the cooling region 133, the second heating region 134, and the third heating region 135 may be adjusted to have a constant temperature.
  • the double-stranded DNA is separated into single-stranded DNA. Then, since the DNA sample is cooled to the second temperature, the DNA strands are partially double-stranded by allowing the single-stranded DNA and the primer to be double-stranded.
  • the primer of the DNA-primer complex can be extended by a polymerase by a polymerase polymerase, and thus, a new single strand having a sequence complementary to the original template DNA. DNA can be replicated.
  • the temperature control member 131 rotates and heats and cools the sample sample part 120, the time required for heating and cooling the sample sample part 120 can be reduced. Therefore, the time required for PCR of the sample sample unit 120 can be shortened.
  • the sample sample unit 120 since the sample sample unit 120 is maintained in a fixed state, the DNA sample is not shaken and maintained in a stable state. Since the shaking of the DNA sample is prevented, the amplification degree and DNA of the DNA can be accurately determined from the sample sample unit 120.
  • the light transmitting region 136 is a region for transmitting the light irradiated from the sensor module 140 to the sample sample unit 120.
  • the light transmitting region 136 may be formed of an empty space, or may be made of a transparent material through which the light may pass.
  • the thermal insulation regions 137 are positioned between the first heating region 132, the cooling region 133, the second heating region 134, the third heating region 135, and the light transmitting region 136.
  • the adiabatic regions 137 are disposed or partially disposed between the first heating region 132, the cooling region 133, the second heating region 134, the third heating region 135, and the light transmitting region 136, respectively. May optionally be placed only between.
  • the thermal insulation regions 137 prevent heat from the first heating region 132, the cooling region 133, the second heating region 134, and the third heating region 135 from being transferred to the adjacent region.
  • the insulation regions 137 may be made of an empty space or made of an insulation material.
  • the temperature controller 130 further includes a fixing member 138 and a pair of guide members 139.
  • the fixing member 138 fixes the central portion of the temperature regulating members 131. Therefore, the temperature regulating members 131 may be maintained in parallel at a predetermined interval.
  • the guide members 139 may be provided at the upper edge of the upper temperature regulating member 131 and the lower edge of the lower temperature regulating member 131, respectively.
  • the guide members 139 have a ring shape.
  • the guide members 139 may be provided to cover the entire upper surface of the upper temperature regulating member 131 and the entire lower surface of the lower temperature regulating member 131.
  • the guide members 139 may have a substantially disc shape.
  • the guide members 139 fix the first heating region 132, the cooling region 133, the second heating region 134, the third heating region 135, the light transmitting region 136, and the thermal insulation region 137. It plays a role.
  • the guide members 139 may protrude from the edge of the temperature control member 131 in a radial direction, that is, in a horizontal direction.
  • the protruding guide members 139 may be supported in contact with the guide protrusion 114 of the housing 110.
  • the thickness of the guide protrusion 114 may be substantially equal to the distance between the guide members 139, and the guide protrusion 114 may be disposed between the guide members 139 to support the guide members 139. Can be.
  • the thickness of the guide protrusion 114 is greater than the gap between the guide members 139, and the guide protrusion 114 has grooves (not shown) at the same height as the height of the guide members 139.
  • the guide protrusion 114 may accommodate the guide members 139 in the grooves to support the guide members 139.
  • the guide members 139 are supported by the guide protrusions 114 even when the temperature regulating members 131 rotate, so that the distance between the temperature regulating members 131 can be kept constant. Therefore, the gap between the temperature adjusting members 131 can be narrowed to prevent the collision with the sample sample part 120.
  • the sensor module 140 is provided inside the housing 110, and determines the DNA amplification degree and the DNA using light.
  • the sensor module 140 may be fixed to the inner side surface of the housing 110.
  • the sensor module 140 irradiates light onto the sample sample unit 120 while the light transmitting region 136 of the temperature controller 130 is positioned above and below the sample sample unit 120, and then the sample sample unit 120. It can receive light transmitted from it.
  • the sensor module 140 may have a light emitting unit disposed above the sample sample unit 120, and a light receiving unit may be disposed below the sample sample unit 120.
  • the light is radiated from the light emitting part of the sensor module 140 to the sample sample part 120 while the light transmitting region 136 of the temperature controller 130 is positioned above and below the sample sample part 120.
  • the light irradiated from the light emitting part passes through the light transmitting region 136 of the upper temperature adjusting member 131, the sample sample part 120, and the light transmitting region 136 of the lower temperature adjusting member 131. do.
  • the upper and lower portions of the part in which the material is accommodated in the sample sample part 120 are transparent, so that the light penetrates the sample sample part 120. It may be limited to the case.
  • the sensor module 140 may be disposed integrally with the light emitting unit and the light receiving unit above or below the sample sample unit 120.
  • the light irradiated from the light emitting part passes through the light transmitting region 136 of the temperature adjusting member 131 to the sample sample part 120, and the light reflected from the sample sample part 120 passes through the temperature adjusting member 131.
  • the light-receiving portion may be received by passing through the light transmission region 136.
  • any one of the upper and lower portions of the portion in which the material is accommodated in the sample sample unit 120 is transparent, so that the light is sampled. It may be limited to the case where the portion 120 does not penetrate.
  • the sample sample unit 120 may further include a reflective member to increase the reflection efficiency of the light entering through the transparent portion.
  • the sensing efficiency of the sensor module 140 may be improved.
  • the distance between the sensor module 140 and the sample sample unit 120 is kept constant, the sensing accuracy of the sensor module 140 can be improved.
  • the temperature of the sample sample unit 120 may be variously set according to the user's selection.
  • the degree of amplification of the sample can be determined.
  • the amplification degree of the DNA sample accommodated in the sample sample unit 120 may be determined using the sensor module 140 while the sample sample unit 120 has a temperature of about 55 ° C.
  • the temperature adjusting member 131 may include the third heating area 135.
  • a fourth heating region for maintaining the second cooling region (not shown) or the sample sample unit 120 at the temperature of about 55 ° C. .
  • the cooling region 133 or the second heating region 134 of the temperature regulating member 131 is further provided without the second cooling region or the fourth heating region.
  • the temperature of the sample sample unit 120 heated to a third temperature of about 72 ° C may be adjusted to about 55 ° C.
  • the sensor module 140 may be omitted in some cases. That is, the PCR device 100 may not include the sensor module 140.
  • Slip ring 150 is provided between the temperature control unit 130, specifically between the fixing member 138 and the housing 110, the sample sample with the temperature control unit 130 while supporting the rotating temperature control unit 130 Power is supplied to heat and cool the unit 120.
  • the slip ring 150 includes a fixing part 152 and a rotating part 154.
  • the fixing part 152 is fixed to the inner lower surface of the housing 110 and has a wire connected to an external power source.
  • the rotating part 154 is provided to be rotatable on the fixing part 152 and is electrically connected to the fixing part 152.
  • the connection between the rotating part 154 and the fixing part 152 is divided into an end type and a hollow type according to the mounting method of the rotating part, and the contact method using carbon graphite or alloy material and the contact method using mercury or liquid metals according to the contact method. Can be divided into a contactless manner.
  • the rotating unit 154 is connected to the fixing member 138 of the temperature control unit 130, and rotates together with the temperature control unit 130.
  • the rotating part 154 has a wire electrically connected to the temperature adjusting members 131 of the temperature adjusting part 130 through the fixing member 138.
  • the rotating unit 154 may serve as the fixing member 138 without providing a separate fixing member 138.
  • the wire of the rotating unit 154 may be directly connected to the temperature control member 131.
  • slip ring 150 Since the slip ring 150 is used, power may be supplied to the temperature controller 130 without twisting the wires even when the temperature controller 130 rotates.
  • the driving unit 160 is provided inside the housing 110 and includes a first heating region 132, a cooling region 133, a second heating region 134, a third heating region 135, and a light transmitting region 136. ) Rotates the temperature controller 130 so that the sample passes through the sample sample 120 in sequence.
  • An example of the driver 160 may be a step motor.
  • the driving unit 160 may be directly connected to the temperature controller 130 to rotate the temperature controller 130.
  • the driving unit 160 may be connected to the fixing member 138.
  • the driving unit 160 may rotate the temperature control unit 130 using a gear (not shown). By using the gear, the position of the driving unit 160 may be changed to minimize the size of the housing 110.
  • FIG 3 is a side cross-sectional view for explaining a PCR device according to a second embodiment of the present invention.
  • the PCR device 200 includes a housing 210, a sample sample unit 220, a temperature controller 230, a sensor module 240, a slip ring 250, and a driver 260. .
  • the temperature control unit 230 includes one temperature control member rather than a pair.
  • the temperature control member may be disposed on one side of the sample sample unit 220. That is, the temperature controller 230 may be disposed below or above the sample sample unit 220.
  • the structure of the temperature controller 230 may be simplified. Therefore, it is possible to reduce the cost required to configure the temperature controller 230, and to reduce the possibility of failure due to the structure of the temperature controller 230.
  • FIG. 4 is a side cross-sectional view for explaining a PCR device according to a third embodiment of the present invention.
  • the PCR apparatus 300 includes a housing 310, a sample sample unit 320, a temperature controller 330, a sensor module 340, a slip ring 350, and a driver 360. .
  • the sample sample part 320, and the temperature control part 330 is substantially the same as that of the PCR device 100 with reference to FIGS. 1 and 2. Omit.
  • Sample sample portion 320 has a tube shape.
  • the sample sample part 320 is inserted through the insertion hole 312 of the housing 310 in a fixed state by the clamp 322, and is fixed to be spaced apart from the temperature control part 330 during PCR.
  • the insertion hole 312 has a size sufficient to allow the clamp 322 of the sample sample part 320 to be inserted.
  • the temperature control unit 330 includes one temperature control member rather than a pair.
  • the temperature control member may be disposed on one side of the sample sample part 320. That is, the temperature controller 130 may be disposed below or above the sample sample unit 320.
  • a ring-shaped groove may be formed in the temperature control member of the temperature control part 330 to accommodate the sample sample part 320 in the form of a tube.
  • the PCR apparatus 300 may perform DNA amplification and discrimination even on the tube sample sample 320.
  • FIG. 5 is a side cross-sectional view for explaining a PCR device according to a fourth embodiment of the present invention
  • FIG. 6 is a plan view for explaining the temperature control unit and the sensor module shown in FIG. 5.
  • the PCR device 400 includes a housing 410, a sample sample part 420, a temperature controller 430, a sensor module 440, a slip ring 450, and a driver 460. It includes.
  • the sensor module 440 may be located between the first heating region 432 and the third heating region 435 in each of the temperature regulating members 431 of the temperature regulating unit 430. That is, the sensor module 440 may be located in the light transmission region without being fixed to the housing 410. Therefore, the sensor module 440 may be disposed closer to the sample sample unit 420. Therefore, the sensor module 440 can more accurately determine the degree of DNA amplification and the DNA type of the sample sample unit 420.
  • FIG. 7 is a side cross-sectional view illustrating a PCR device according to a fifth embodiment of the present invention
  • FIG. 8 is a cross-sectional view taken along line AA ′ of FIG. 7.
  • the PCR apparatus 500 includes a housing 510, a sample sample unit 520, a temperature controller 530, a sensor module 540, a slip ring 550, and a driver 560. It includes.
  • the insertion hole 512 may be located on an upper surface of the housing 510. Therefore, the sample sample part 520 may be inserted in the insertion hole 512 to stand in the vertical direction from the upper side of the housing 510.
  • the sample sample unit 520 may have a tube shape as well as a substantially rectangular flat plate shape.
  • the temperature controller 530 includes a pair of temperature regulating members 531.
  • the temperature regulating members 531 have a hollow cylindrical shape which is approximately open at the top and bottom.
  • the temperature regulating members 531 have different diameters and are arranged in a concentric shape such that the sample sample part 520 is located therebetween.
  • the temperature adjusting members 531 are spaced apart from each other by an interval wider than the thickness of the sample sample unit 520.
  • Each temperature regulating member 531 has a first heating region 532, a cooling region 533, a second heating region 534, a third heating region 535 and a light transmitting region 536 along the circumference of the cylinder. Sequentially located. Insulating regions 537 are positioned between the first heating region 532, the cooling region 533, the second heating region 534, the third heating region 535, and the light transmitting region 536, respectively.
  • the sensor module 540 may be provided at an inner side surface of the housing 510.
  • the temperature controller 530 may include only one of the pair of temperature regulating members 531.
  • the sensor module 540 may not be provided at the inner side of the housing 510 but may be provided at the light transmitting region 536 of the temperature control member 531.
  • FIG. 9 is a side cross-sectional view for explaining a PCR device according to a sixth embodiment of the present invention
  • Figure 10 is a plan view for explaining the temperature control unit shown in FIG.
  • the PCR apparatus 600 includes a housing 610, a sample sample unit 620, a temperature controller 630, a sensor module 640, and a driver 660.
  • the housing 610 has a hollow box shape.
  • the housing 610 has an insertion hole 612 for inserting the sample sample portion 620 on the side.
  • the housing 610 has a guide protrusion 614 along the inner wall of the side surface where the insertion hole 612 is formed.
  • the height of the guide protrusion 614 may be substantially the same as the height of the insertion hole 612.
  • the thickness of the guide protrusion 614 may be substantially the same as the gap between the guide members 639 to be described later.
  • the sample sample portion 620 has a substantially flat plate shape and houses a material for synthesizing DNA.
  • the sample sample unit 620 may be inserted into and fixed to the insertion hole 612 of the housing 610.
  • the temperature controller 630 is provided inside the housing 610 and is disposed to be adjacent to the sample sample part 620 inserted into and fixed to the housing 610.
  • the temperature controller 630 adjusts the temperature of the sample sample 620 to a step-by-step temperature required for DNA synthesis while moving relative to the sample sample 620.
  • the temperature controller 630 includes a pair of temperature regulating members 631.
  • the temperature regulating members 631 have a substantially rectangular flat plate shape, and are disposed to be parallel to each other above and below the sample sample part 620.
  • the temperature regulating members 631 are spaced apart from each other by an interval wider than the thickness of the sample sample part 620.
  • Each of the temperature regulating members 631 includes a first heating region 632, a cooling region 633, a second heating region 634, a third heating region 635, and a light transmitting region 636 in the longitudinal direction of the rectangular plate.
  • the temperature control unit 630 heats and cools the sample sample unit 620 while the temperature control members 631 reciprocate linearly in the horizontal direction.
  • the temperature regulating members 631 heat and cool the sample sample part 620 while reciprocating linearly, the time required for heating and cooling the sample sample part 620 can be reduced. Therefore, the time required for PCR of the sample sample unit 620 can be shortened.
  • the sample sample unit 620 since the sample sample unit 620 is kept in a fixed state, the DNA sample is not shaken to maintain a stable state. Since the shaking of the DNA sample is prevented, the amplification degree of the DNA and the DNA can be accurately determined from the sample sample unit 620.
  • Insulating regions 637 are positioned between the first heating region 632, the cooling region 633, the second heating region 634, the third heating region 635, and the light transmitting region 636.
  • the thermal insulation regions 637 prevent heat from the first heating region 632, the cooling region 633, the second heating region 634, and the third heating region 635 from being transferred to the adjacent region.
  • the insulation regions 637 may be made of an empty space or made of an insulation material.
  • the temperature controller 630 further includes a fixing member 638 and a pair of guide members 639.
  • the fixing member 638 fixes one end portion of the temperature regulating members 631. Therefore, the temperature regulating members 631 can be kept in parallel at a predetermined interval.
  • Guide members 639 are provided at the other end portion opposite to the one end portion of the temperature regulating members 631. Specifically, the guide members 639 may be provided at the other end of the upper surface of the upper temperature regulating member 631 and the other end of the lower surface of the lower temperature regulating member 631.
  • the guide members 639 fix the first heating zone 632, the cooling zone 633, the second heating zone 634, the third heating zone 635, the light transmitting zone 636, and the thermal insulation zone 637. It plays a role.
  • the guide members 639 may protrude in a horizontal direction from the other end portion of the temperature regulating members 631. Since the spacing between the guide members 639 is substantially the same as the thickness of the guide protrusion 614, the protruding guide members 639 may be supported by the guide protrusion 614 of the housing 610. Therefore, even when the temperature regulating members 631 move reciprocally linearly, the guide members 639 are supported by the guide protrusions 614, so that the distance between the temperature regulating members 631 can be kept constant. Therefore, the gap between the temperature regulating members 631 can be narrowed to prevent the collision with the sample sample part 620.
  • the temperature control unit 630 may be directly connected to the wire for supplying external power. Since the temperature controller 630 linearly reciprocates, the wire is not twisted even when the wire is directly connected to the temperature controller 630.
  • the sensor module 640 is provided on the inner upper surface of the housing 610, and determines the DNA amplification degree and the DNA by using light.
  • the sensor module 640 may be fixed to an inner side surface of the housing 610.
  • the sensor module 640 irradiates light onto the sample sample unit 620 while the light transmitting region 636 of the temperature controller 630 is positioned above and below the sample sample unit 620, and the sample sample unit 620. It can receive light transmitted from it.
  • the sensor module 640 may include a light emitting part and a light receiving part, and the light emitting part and the light receiving part may be disposed above and below the sample sample part 620, respectively.
  • the sensor module 640 may include an integrated light emitting unit and a light receiving unit, and the integrated light emitting unit and the light receiving unit may be disposed above or below the sample sample unit 620.
  • the driving unit 660 is provided inside the housing 610, and includes a first heating region 632, a cooling region 633, a second heating region 634, a third heating region 635, and a light transmitting region 636. ) Linearly reciprocates the temperature control unit 630 in a horizontal direction so that) passes sequentially through the sample sample unit 620. Examples of the driving unit 660 include a linear motor, a cylinder, and the like.
  • the temperature controller 630 may include only one of the pair of temperature regulating members 631.
  • the sensor module 640 may not be provided on the inner upper surface of the housing 610, but may be provided in the light transmitting region 636 of the temperature control member 631.
  • exothermic paste composition for forming a thick film according to an embodiment of the present invention includes carbon nanotube particles, carbon nanoparticles, a mixed binder, an organic solvent and a dispersant.
  • the carbon nanotube particles may be selected from single-walled carbon nanotubes, double-walled carbon nanotubes, multi-walled carbon nanotubes, or mixtures thereof.
  • the carbon nanotube particles may be multi wall carbon nanotubes.
  • the diameter may be 5 nm to 30 nm, and the length may be 3 ⁇ m to 40 ⁇ m.
  • the carbon nanoparticles may be, for example, graphite nanoparticles, and the diameter may be 1 ⁇ m to 25 ⁇ m.
  • the mixed binder serves to make the exothermic paste composition have heat resistance even in the temperature range of about 300 ° C., and includes epoxy acrylate or hexamethylene diisocyanate, polyvinyl acetal, and the like.
  • Phenolic resin has a mixed form.
  • the mixed binder may be a mixture of epoxy acrylate, polyvinyl acetal, and phenolic resin, or may be a mixture of hexamethylene diisocyanate, polyvinyl acetal, and phenolic resin.
  • by increasing the heat resistance of the mixed binder even if the heat generated at a high temperature of about 300 °C has the advantage that there is no change in resistance of the material or breakage of the coating film.
  • the phenolic resin means a phenolic compound including phenol and phenol derivatives.
  • the phenol derivative may include p-cresol, o-Guaiacol, Creosol, catechol, 3-methoxy-1,2-benzenediol (3 -methoxy-1,2-Benzenediol), Homocatechol, Vinylguaiacol, Syringol, Iso-eugenol, Methoxyeugenol, o O-Cresol, 3-methyl-1,2-benzenediol, (z) -2-methoxy-4- (1-propenyl) -phenol ( (z) -2-methoxy-4- (1-propenyl) -Phenol), 2, .6-diethoxy-4- (2-propenyl) -phenol (2,6-dimethoxy-4- (2-propenyl) ) -Phenol), 3,4-dimethoxy-Phenol, 4-ethyl-1,3-benzened
  • the mixing ratio of the mixed binder may be a ratio of 10 to 150 parts by weight of polyvinyl acetal resin and 100 to 500 parts by weight of phenolic resin based on 100 parts by weight of epoxy acrylate or hexamethylene diisocyanate. If the content of the phenolic resin is 100 parts by weight or less, the heat resistance characteristics of the heat-paste composition is lowered, and if it exceeds 500 parts by weight, there is a problem that the flexibility is lowered (brittleness increase).
  • the organic solvent is used to disperse the conductive particles and the mixed binder, carbitol acetate, butyl carbotol acetate, dibasic ester, ethyl carbitol, ethyl carbitol acetate, dipropylene It may be a mixed solvent of two or more selected from glycol methyl ether, cellosolve acetate, butyl cellosolve acetate, butanol and octanol.
  • the dispersion process can be applied to a variety of commonly used methods, for example through the ultra-sonication (Roll mill), bead mill (Bead mill) or ball mill (Ball mill) process Can be done.
  • Roll mill ultra-sonication
  • Bead mill bead mill
  • Ball mill ball mill
  • the dispersant is to make the dispersion more smoothly, and a conventional dispersant used in the art such as BYK, an amphoteric surfactant such as Triton X-100, SDS and the like and a ionic surfactant may be used.
  • a conventional dispersant used in the art such as BYK
  • an amphoteric surfactant such as Triton X-100, SDS and the like
  • a ionic surfactant may be used.
  • the heating paste composition according to an embodiment of the present invention may further include 0.5 to 5 parts by weight of the silane coupling agent based on 100 parts by weight of the heating paste composition.
  • the silane coupling agent functions as an adhesion promoter to promote adhesion between the resins in the formulation of the exothermic paste composition.
  • the silane coupling agent may be an epoxy containing silane or a merceto containing silane.
  • Examples of such silane coupling agents include epoxy and include 2- (3,4 epoxy cyclohexyl) -ethyltrimethoxysilane, 3-glycidoxytrimethoxysilane, 3-glycidoxypropyltriethoxysilane, 3-glycidoxypropyltriethoxysilane, containing amine groups, N-2 (aminoethyl) 3-amitopropylmethyldimethoxysilane, N-2 (aminoethyl) 3-aminopropyltrimethoxysilane , N-2 (aminoethyl) 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-aminopropy
  • the present invention further provides a planar heating element which is formed by screen-printing, gravure printing (or roll-to-roll gravure printing) or comma coating (or roll-to-roll comma coating) on a substrate of the heating paste composition according to the embodiments of the present invention described above. .
  • the substrate is polycarbonate, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyimide, cellulose ester, nylon, polypropylene, polyacrylolintril, polysulfone, polyester sulfone, polyvinylidene fluoride , Glass, glass fiber (matte), ceramic, SUS, copper or aluminum substrate, etc. may be used, but is not limited to those listed above.
  • the substrate may be appropriately selected depending on the application field of the heating element or the use temperature.
  • the planar heating element prints the heating paste composition according to the embodiments of the present invention on the substrate in a desired pattern through screen printing or gravure printing, and after drying and curing, printing and drying / curing the silver paste or the conductive paste on the top.
  • the heat generating paste composition according to the embodiments of the present invention may be formed by screen printing or gravure printing.
  • the surface heating element may further include a protective layer coated on the upper surface.
  • the protective layer may be formed of silica (SiO2).
  • SiO2 silica
  • the heating element has an advantage of maintaining flexibility even if coated on the heating surface.
  • test examples are only examples for explaining the present invention, and the present invention is not limited by the following test examples.
  • Example 1 Example 2 Example 3 Comparative Example 1 Comparative Example 2 Comparative Example 3 CNT particles 4 5 6 4 5 6 CNP Particles 8 9 15 - - - Mixed binder 20 15 22 - - - Ethyl cellulose - - - 10 12 14 Organic solvent 63 67 52 82 79 76 Dispersant (BYK) 5 4 5 4 4 4 4
  • CNT particles and CNP particles (Examples 1 to 3) were added to a carbitol acetate solvent according to the composition of [Table 1], and BYK dispersant was added, and then dispersion A was prepared by sonication for 60 minutes. It was. Thereafter, a mixed binder was added to the carbitol acetate solvent and then a master batch was prepared through mechanical stirring. Next, the dispersion A and the masterbatch were first kneaded through mechanical stirring, followed by a second kneading process through a 3-roll-mill process to prepare an exothermic paste composition.
  • CNT particles were added to the carbitol acetate solvent according to the composition of [Table 1], BYK dispersant was added, and a dispersion was prepared by sonication for 60 minutes. Thereafter, ethyl cellulose was added to the carbitol acetate solvent to prepare a master batch through mechanical stirring. Next, the dispersion B and the masterbatch were first kneaded through mechanical stirring, followed by a second kneading process through a 3-roll mill to prepare an exothermic paste composition.
  • 11 is an image of a planar heating element specimen prepared using the heating paste composition according to the present invention.
  • 11A is a planar heating element formed by screen printing a heat generating paste composition on a polyimide substrate.
  • 11B is a planar heating element formed by screen printing a heating paste composition on a glass fiber mat.
  • 11C and 11D are images when the protective layer is coated on the planar heating element of FIG. 11A (FIG. 11C is a black protective layer coating, and FIG. 11D is a green protective layer coating).
  • planar heating element sample Example
  • planar heating element samples prepared according to the comparative example as shown in FIG. 11A were measured (the applied voltage / current is shown in [Table 2]).
  • the planar heating element corresponding to the above embodiments and comparative examples was heated up to 40 ° C, 100 ° C and 200 ° C, respectively, and the DC voltage when the temperature was reached and The current was measured.
  • Figure 12 shows the image of the heat stability test appearance of the planar heating element samples prepared according to the Examples and Comparative Examples, the test results are summarized in the following [Table 2].
  • Example 1 Example 2 Example 3 Comparative Example 1 Comparative Example 2 Comparative Example 3 Specific resistance ( ⁇ 10 ⁇ 2 ⁇ cm 1.9 2.55 2.96 9.73 8.52 6.23 40 °C reach DC drive voltage / current 5V / 0.2A 6V / 0.2A 7V / 0.2A 20V / 0.3A 16V / 0.2A 12V / 0.2A 100 °C reach DC driving voltage / current 9V / 0.5A 12V / 0.4A 14 V / 0.5 A 48V / 0.7A 40V / 0.7A 26V / 0.6A 200 °C reach DC drive voltage / current 20V / 0.6A 24V / 0.7A 24V / 1.0A - - - Heat stability (day) 20 days or more 20 days or more 20 days or more Bad Bad Bad Bad
  • the specific resistance was measured that the planar heating element corresponding to the embodiments is smaller than the planar heating element corresponding to the comparative examples, accordingly driving voltage / current required to reach each temperature also corresponds to the embodiments
  • the planar heating element was measured smaller than the planar heating element corresponding to the comparative examples. That is, it was confirmed that the planar heating elements corresponding to the embodiments can be driven at a lower voltage and lower power than the comparative example.
  • planar heating elements according to Examples 1 to 3 the stability was maintained for 20 days even under the heating operation of 200 ° C. (no separate protective layer). Poor phenomena were observed to swell the surface of the heating portion within time. That is, it was confirmed that the planar heating element corresponding to the embodiments can be stably driven even at a high temperature of 200 ° C. or more than the comparative example.
  • the present invention further provides a portable heating heater including the planar heating element and a power supply unit for supplying power to the planar heating element.
  • the power supply unit may include a lead electrode coated on the left and right sides of the planar heating element, and a power connection electrode attached to the lead electrode.
  • the power connection electrode may be directly connected to the planar heating element.
  • the lead electrode or the electrode for power connection can be formed using silver paste, copper paste, copper tape, or the like.
  • the portable heating heater according to the present invention has a form in which the planar heating element is attached, embedded or mounted on the inner or outer surface of the body, and has a power supply for driving the planar heating element.
  • the portable heating heater may be used for an inner seat for a baby carriage, a heating sock, a heating shoe, a heating hat, a portable heating mat, a portable cooking utensil, a vehicle heating sheet, and the like.
  • planar heating element employed in the portable heating heater according to the present invention can be driven as a secondary battery capable of charging and discharging, such as a lithium ion battery, a lithium polymer battery because it can be driven at a low voltage and low power as described above, The portability is enhanced and the use time can be greatly increased.
  • the PCR device can heat and cool the sample sample unit while moving the temperature control unit while the sample sample unit is fixed.
  • the efficiency of the PCR device may be improved by reducing the heating and cooling time of the sample sample unit.
  • the DNA detection accuracy of the PCR device since the sample sample portion is maintained in a fixed state, the DNA detection accuracy of the PCR device may be improved, and the heat resistance paste composition may be driven at low voltage and low power due to high heat resistance, small resistance change according to temperature, and low specific resistance. It may include.

Abstract

A PCR device, according to one embodiment of the present invention, comprises: a sample sampling unit which accommodates material for DNA synthesis and is disposed in a fixed state; and a temperature adjusting unit which is disposed so as to be adjacent to the sample sampling unit, has at least one or more sheet-type heating element formed by a heating paste composition, and moves with respect to the sample sampling unit which is in a fixed state so as to adjust the temperature of the sample sampling unit to a temperature necessary for each step of DNA synthesis, wherein the heating paste composition comprises, for 100 parts by weight of the heating paste composition, 3-6 parts by weight of carbon nanotube particles, 0.5-30 parts by weight of carbon nanoparticles, 10-30 parts by weight of a mixed binder, 29-83 parts by weight of an organic solvent, and 0.5-5 parts by weight of a dispersant, wherein the mixed binder has epoxy acrylate, polyvinyl acetal, and phenol-based resin mixed, or hexamethylene diisocyanate, polyvinyl acetal, and phenol-based resin mixed.

Description

PCR 장치PCR device
본 발명은 PCR 장치에 관한 것이다.The present invention relates to a PCR device.
일반적으로, DNA 증폭기술은 생명과학, 유전공학 및 의학 분야 등의 연구개발 및 진단 목적으로 광범위하게 활용되고 있으며, 특히 중합효소 연쇄반응 (Polymerase Chain Reaction: 이하 PCR)에 의한 DNA 증폭기술이 널리 활용되고 있다. 상기 PCR은 유전체에 있는 특정 DNA서열을 필요한 만큼 증폭을 할 때 쓰인다.In general, DNA amplification is widely used for research and development and diagnostic purposes in the fields of life science, genetic engineering, and medicine. In particular, DNA amplification by polymerase chain reaction (PCR) is widely used. It is becoming. The PCR is used to amplify specific DNA sequences in the genome as necessary.
상기 PCR은 일반적으로 변성단계(Denaturation step), 풀림단계(Annealing step), 신장단계(Extension step)를 통해 DNA 증폭이 달성된다. 상기 PCR은 PCR 장치에 의해 수행된다. In general, the PCR amplifies DNA through a denaturation step, an annealing step, and an extension step. The PCR is performed by a PCR device.
종래 기술에 따르면, 상기 PCR 장치는 하나의 온도 조절부를 이용하여 DNA 합성에 필요한 단계별 온도로 시료 샘플부의 온도를 조절한다. 하나의 온도조절부로 상기 시료 샘플부의 온도를 조절하므로, 상기 시료 샘플부의 온도를 상승하거나 하강하는데 시간이 지연되어 상기 PCR을 완료하기까지 많은 시간이 소요될 수 있다. According to the prior art, the PCR device adjusts the temperature of the sample sample to the step-by-step temperature required for DNA synthesis using one temperature controller. Since the temperature control unit controls the temperature of the sample sample unit, it may take a long time to complete the PCR due to a delay in increasing or decreasing the temperature of the sample sample unit.
상기 문제점을 해결하기 위해 상기 PCR 장치는 서로 다른 고정된 온도를 갖는 다수의 온도 조절부를 가지며, 상기 시료 샘플부가 상기 온도 조절부 사이를 이동할 수 있다. 한국공개특허 2010-0008476호에는 상기 시료 샘플부가 상기 온도 조절부 사이를 이동하는 기술이 개시되어 있다. In order to solve the problem, the PCR apparatus has a plurality of temperature control units having different fixed temperatures, and the sample sample unit may move between the temperature control units. Korean Patent Publication No. 2010-0008476 discloses a technique for moving the sample sample portion between the temperature control portion.
상기 시료 샘플부가 이동하면서 서로 다른 온도로 가열될 수 있으므로, 상기 PCR 장치는 상기 PCR을 완료하기까지 소요되는 시간을 줄일 수 있다. 하지만, 상기 시료 샘플부가 이동하므로, 상기 시료 샘플부가 흔들려 센서 모듈에서 광을 이용하여 상기 시료 샘플부로부터 정확한 결과를 검출하기 어렵다.Since the sample can be heated to a different temperature while moving the sample portion, the PCR device can reduce the time required to complete the PCR. However, since the sample sample portion moves, it is difficult to detect the accurate result from the sample sample portion using light in the sensor module due to shaking the sample sample portion.
본 발명의 목적은 신속하고 빠르게 PCR을 수행하고 결과를 검출할 수 있는 PCR 장치를 제공하는 데 있다.It is an object of the present invention to provide a PCR device capable of performing a PCR quickly and quickly and detecting a result.
본 발명의 다른 목적은 고내열성을 가져 온도에 따른 저항 변화가 작고, 비저항이 낮아 저전압 및 저전력으로 구동 가능한 발열 페이스트 조성물을 포함하는 PCR 장치를 제공하는 데 있다.Another object of the present invention is to provide a PCR device including a heating paste composition having high heat resistance, small resistance change according to temperature, low specific resistance, and which can be driven with low voltage and low power.
상기와 같은 기술적 과제를 해결하기 위해, 본 발명의 일 실시 예에 따른 PCR 장치는 DNA를 합성하기 위한 재료를 수납하며, 고정된 상태로 배치되는 시료 샘플부, 및 상기 시료 샘플부와 인접하도록 배치되며, 발열 페이스트 조성물을 통해서 형성되는 면상 발열체를 적어도 하나 이상 구비하고, 고정된 상태의 상기 시료 샘플부에 대해 이동하면서 DNA 합성에 필요한 단계별 온도로 상기 시료 샘플부의 온도를 조절하는 온도 조절부를 포함하고, 상기 발열 페이스트 조성물은 발열 페이스트 조성물 100 중량부에 대하여 탄소나노튜브 입자 3 내지 6중량부, 탄소나노입자 0.5 내지 30중량부, 혼합 바인더 10 내지 30중량부, 유기 용매 29 내지 83 중량부, 분산제 0.5 내지 5중량부를 포함하고, 상기 혼합 바인더는 에폭시 아크릴레이트, 폴리비닐 아세탈 및 페놀계 수지가 혼합되거나 또는 헥사메틸렌 디이소시아네이트, 폴리비닐 아세탈 및 페놀계 수지가 혼합되는 것을 특징으로 한다. In order to solve the above technical problem, the PCR device according to an embodiment of the present invention accommodates a material for synthesizing DNA, the sample sample portion disposed in a fixed state, and arranged to be adjacent to the sample sample portion And at least one planar heating element formed through the exothermic paste composition, and including a temperature control unit configured to adjust the temperature of the sample sample unit to a step-by-step temperature required for DNA synthesis while moving with respect to the sample sample unit in a fixed state. The heating paste composition may include 3 to 6 parts by weight of carbon nanotube particles, 0.5 to 30 parts by weight of carbon nanoparticles, 10 to 30 parts by weight of a mixed binder, 29 to 83 parts by weight of an organic solvent, and a dispersant based on 100 parts by weight of a heat paste composition. 0.5 to 5 parts by weight, wherein the mixed binder is epoxy acrylate, polyvinyl acetal and phenolic resin Is mixed or hexamethylene diisocyanate, polyvinyl acetal and phenolic resin are mixed.
실시 예에 있어서, 상기 온도 조절부는 상기 시료 샘플부를 제1 온도로 가열하기 위한 제1 가열 영역과, 상기 시료 샘플부를 상기 제1 온도보다 낮은 제2 온도로 가열하기 위한 제2 가열 영역 및 상기 시료 샘플부를 상기 제1 온도와 제2 온도 사이의 제3 온도로 가열하기 위한 제3 가열 영역이 순차적으로 배치될 수 있다. In an embodiment, the temperature adjusting part may include a first heating region for heating the sample sample portion to a first temperature, a second heating region for heating the sample sample portion to a second temperature lower than the first temperature, and the sample. A third heating region for heating the sample part to a third temperature between the first temperature and the second temperature may be sequentially arranged.
실시 예에 있어서, 상기 시료 샘플부로 광을 조사하여 상기 DNA의 증폭 정도를 판별하고 상기 DNA를 판별하는 센서 모듈을 더 포함할 수 있다.In an embodiment, the method may further include a sensor module for determining the amplification degree of the DNA by irradiating light to the sample sample unit and determining the DNA.
실시 예에 있어서, 상기 온도 조절부는 상기 제1 가열 영역의 일측 또는 상기 제3 가열 영역의 일측에 상기 센서 모듈의 광을 투과시키기 위한 광 투과 영역을 가지며, 상기 센서 모듈은 상기 광 투과 영역을 통해 상기 광을 조사할 수 있다.In example embodiments, the temperature controller may include a light transmitting region for transmitting light of the sensor module on one side of the first heating region or on one side of the third heating region, and the sensor module may be configured to pass through the light transmitting region. The light can be irradiated.
실시 예에 있어서, 상기 센서 모듈은 상기 온도 조절부의 제1 가열 영역과 제3 가열 영역 사이에 구비되어 상기 온도 조절부와 같이 이동할 수 있다. In example embodiments, the sensor module may be disposed between the first heating region and the third heating region of the temperature controller to move together with the temperature controller.
실시 예에 있어서, 상기 온도 조절부는 상기 제1 가열 영역과 상기 제2 가열 영역 사이에 구비되며, 상기 시료 샘플부를 냉각하기 위한 냉각 영역을 더 포함할 수 있다. In example embodiments, the temperature control part may be provided between the first heating area and the second heating area, and further include a cooling area for cooling the sample sample part.
실시 예에 있어서, 상기 온도 조절부는 상기 온도 조절부의 각 영역들 사이의 열전달을 방지하기 위해 상기 각 영역들 사이에 단열 영역을 더 포함할 수 있다.In an embodiment, the temperature controller may further include a heat insulation region between each of the regions to prevent heat transfer between the regions of the temperature controller.
실시 예에 있어서, 상기 시료 샘플부의 온도 조절을 위해 상기 온도 조절부가 회전 가능하도록 지지하며, 상기 온도 조절부로 전원을 공급하기 위한 슬립 링(slip ring)을 더 포함할 수 있다. In an embodiment, the temperature control part may be rotatably supported to adjust the temperature of the sample sample part, and may further include a slip ring for supplying power to the temperature control part.
실시 예에 있어서, 상기 온도 조절부를 감싸도록 구비되며, 상기 시료 샘플부를 수용하기 위한 삽입구를 갖는 하우징을 더 포함할 수 있다.In an embodiment, it may further include a housing provided to surround the temperature control part and having an insertion hole for accommodating the sample sample part.
실시 예에 있어서, 상기 하우징은 상기 삽입구가 형성된 부위를 포함하여 내측면에 가이드 돌기를 가지며, 상기 온도 조절부는 상기 온도 조절부가 이동하면서 상기 시료 샘플부와 일정한 간격을 유지하도록, 가장자리로부터 상기 가이드 돌기와 접촉하도록 연장하는 가이드 부재를 포함할 수 있다.In some embodiments, the housing may include a guide protrusion on an inner surface including a portion in which the insertion hole is formed, and the temperature control part may be configured to maintain a constant distance from the sample sample part while moving the temperature control part. It may include a guide member extending to contact.
실시 예에 있어서, 상기 혼합 바인더는 에폭시 아크릴레이트 또는 헥사메틸렌 디이소시아네이트 100 중량부에 대하여 폴리비닐 아세탈 수지 10 내지 150 중량부, 페놀계수지 100 내지 500 중량부가 혼합될 수 있다.In an embodiment, the mixed binder may be mixed with 10 to 150 parts by weight of polyvinyl acetal resin, 100 to 500 parts by weight of phenolic resin based on 100 parts by weight of epoxy acrylate or hexamethylene diisocyanate.
실시 예에 있어서, 발열 페이스트 조성물 100 중량부에 대하여 실란 커플링제 0.5 내지 5 중량부를 더 포함할 수 있다.In an embodiment, 0.5 to 5 parts by weight of the silane coupling agent may be further included based on 100 parts by weight of the heating paste composition.
실시 예에 있어서, 상기 탄소나노튜브 입자는 다중벽 탄소나노튜브 입자일 수 있다.In an embodiment, the carbon nanotube particles may be multi-walled carbon nanotube particles.
실시 예에 있어서, 상기 유기 용매는 카비톨 아세테이트, 부틸 카비톨 아세테이트, DBE(dibasic ester), 에틸카비톨, 에틸카비톨아세테이트, 디프로필렌글리콜메틸에테르, 셀로솔브아세테이트, 부틸셀로솔브아세테이트, 부탄올 및 옥탄올 중에서 선택되는 2 이상의 혼합 용매일 수 있다.In an embodiment, the organic solvent is carbitol acetate, butyl carbitol acetate, DBE (dibasic ester), ethyl carbitol, ethyl carbitol acetate, dipropylene glycol methyl ether, cellosolve acetate, butyl cellosolve acetate, butanol And two or more mixed solvents selected from octanol.
실시 예에 있어서, 상기 면상 발열체는 상기 발열 페이스트 조성물이 기판 상에 스크린 인쇄, 그라비아 인쇄 또는 콤마코팅되어 형성될 수 있다.In some embodiments, the planar heating element may be formed by screen printing, gravure printing, or comma coating the heating paste composition on a substrate.
실시 예에 있어서, 상기 기판은 폴리이미드 기판, 유리섬유 매트 또는 세라믹 유리일 수 있다.In an embodiment, the substrate may be a polyimide substrate, glass fiber mat or ceramic glass.
실시 예에 있어서, 상기 면상 발열체는 상기 면상 발열체 상부면에 코팅되는 것으로, 실리카 또는 카본블랙과 같은 흑색 안료를 구비하는 유기물로 형성되는 보호층을 더 포함할 수 있다.In an embodiment, the planar heating element may be coated on the top surface of the planar heating element, and may further include a protective layer formed of an organic material including a black pigment such as silica or carbon black.
실시 예에 있어서, 상기 면상 발열체에 전력을 공급하는 전력 공급부를 더 포함할 수 있다.In an embodiment, the apparatus may further include a power supply unit configured to supply power to the planar heating element.
본 발명에 따른 PCR 장치의 효과에 대해 설명하면 다음과 같다.Referring to the effect of the PCR device according to the invention as follows.
본 발명의 실시 예들 중 적어도 하나에 의하면, 신속하고 빠르게 PCR을 수행하고 결과를 검출할 수 있다.According to at least one of the embodiments of the present invention, it is possible to perform PCR and detect the result quickly and quickly.
또한, 본 발명의 실시 예들 중 적어도 하나에 의하면, 고내열성을 가져 온도에 따른 저항 변화가 작고, 비저항이 낮아 저전압 및 저전력으로 구동 가능한 발열 페이스트 조성물을 포함할 수 있다.In addition, according to at least one of the embodiments of the present invention, it has a high heat resistance may have a small resistance change according to the temperature, low specific resistance may include a heat paste composition capable of driving at low voltage and low power.
도 1은 본 발명의 제1 실시예에 따른 PCR 장치를 설명하기 위한 측면 단면도이다. 1 is a side cross-sectional view for explaining a PCR device according to a first embodiment of the present invention.
도 2는 도 1에 도시된 온도 조절부를 설명하기 위한 평면도이다. FIG. 2 is a plan view illustrating the temperature control unit shown in FIG. 1.
도 3은 본 발명의 제2 실시예에 따른 PCR 장치를 설명하기 위한 측면 단면도이다. 3 is a side cross-sectional view for explaining a PCR device according to a second embodiment of the present invention.
도 4는 본 발명의 제3 실시예에 따른 PCR 장치를 설명하기 위한 측면 단면도이다. 4 is a side cross-sectional view for explaining a PCR device according to a third embodiment of the present invention.
도 5는 본 발명의 제4 실시예에 따른 PCR 장치를 설명하기 위한 측면 단면도이다. 5 is a side cross-sectional view for explaining a PCR device according to a fourth embodiment of the present invention.
도 6은 도 5에 도시된 온도 조절부 및 센서 모듈을 설명하기 위한 평면도이다. FIG. 6 is a plan view illustrating the temperature controller and the sensor module illustrated in FIG. 5.
도 7은 본 발명의 제5 실시예에 따른 PCR 장치를 설명하기 위한 측면 단면도이다. 7 is a side cross-sectional view for explaining a PCR device according to a fifth embodiment of the present invention.
도 8은 도 7에 도시된 A-A’선을 기준으로 절단한 절단도이다. FIG. 8 is a cross-sectional view taken along line AA ′ of FIG. 7.
도 9는 본 발명의 제6 실시예에 따른 PCR 장치를 설명하기 위한 측면 단면도이다. 9 is a side cross-sectional view for explaining a PCR device according to a sixth embodiment of the present invention.
도 10은 도 9에 도시된 온도 조절부을 설명하기 위한 평면도이다.FIG. 10 is a plan view illustrating the temperature controller illustrated in FIG. 9.
도 11은 본 발명의 일 실시 예에 따른 PCR 장치에 포함되는 발열 페이스트 조성물을 이용한 면상 발열체의 시편의 이미지이다.11 is an image of a specimen of a planar heating element using a heating paste composition included in a PCR device according to an embodiment of the present invention.
도 12는 본 발명의 일 실시 예에 따른 PCR 장치의 실시 예 및 비교 예에 따라 제조된 면상 발열체의 발열 안정성 시험 모습의 이미지이다.12 is an image of an exothermic stability test of the planar heating element manufactured according to the embodiment and the comparative example of the PCR apparatus according to an embodiment of the present invention.
이하, 첨부된 도면을 참조하여 본 명세서에 개시된 실시 예를 상세히 설명하되, 도면 부호에 관계없이 동일하거나 유사한 구성요소는 동일한 참조 번호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다. 이하의 설명에서 사용되는 구성요소에 대한 접미사 "모듈" 및 "부"는 명세서 작성의 용이함만이 고려되어 부여되거나 혼용되는 것으로서, 그 자체로 서로 구별되는 의미 또는 역할을 갖는 것은 아니다. 또한, 본 명세서에 개시된 실시 예를 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 명세서에 개시된 실시 예의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다. 또한, 첨부된 도면은 본 명세서에 개시된 실시 예를 쉽게 이해할 수 있도록 하기 위한 것일 뿐, 첨부된 도면에 의해 본 명세서에 개시된 기술적 사상이 제한되지 않으며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. Hereinafter, embodiments of the present disclosure will be described in detail with reference to the accompanying drawings, and the same or similar components are denoted by the same reference numerals regardless of the reference numerals, and redundant description thereof will be omitted. The suffixes "module" and "unit" for components used in the following description are given or used in consideration of ease of specification, and do not have distinct meanings or roles from each other. In addition, in describing the embodiments disclosed herein, when it is determined that the detailed description of the related known technology may obscure the gist of the embodiments disclosed herein, the detailed description thereof will be omitted. In addition, the accompanying drawings are intended to facilitate understanding of the embodiments disclosed herein, but are not limited to the technical spirit disclosed herein by the accompanying drawings, all changes included in the spirit and scope of the present invention. It should be understood to include equivalents and substitutes.
제1, 제2 등과 같이 서수를 포함하는 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되지는 않는다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다.Terms including ordinal numbers such as first and second may be used to describe various components, but the components are not limited by the terms. The terms are used only for the purpose of distinguishing one component from another.
어떤 구성요소가 다른 구성요소에 "연결되어" 있다거나 "접속되어" 있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에, 어떤 구성요소가 다른 구성요소에 "직접 연결되어" 있다거나 "직접 접속되어" 있다고 언급된 때에는, 중간에 다른 구성요소가 존재하지 않는 것으로 이해되어야 할 것이다.When a component is referred to as being "connected" or "connected" to another component, it may be directly connected to or connected to that other component, but it may be understood that other components may be present in between. Should be. On the other hand, when a component is said to be "directly connected" or "directly connected" to another component, it should be understood that there is no other component in between.
단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. Singular expressions include plural expressions unless the context clearly indicates otherwise.
본 출원에서, "포함한다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.In this application, the terms "comprises" or "having" are intended to indicate that there is a feature, number, step, operation, component, part, or combination thereof described in the specification, and one or more other features. It is to be understood that the present invention does not exclude the possibility of the presence or the addition of numbers, steps, operations, components, components, or a combination thereof.
이하, 도면들을 참조하여 본 발명의 실시 예에 대해 상세히 설명하기로 한다. 본 발명은 본 발명의 정신 및 필수적 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있음은 당업자에게 자명하다. Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. It is apparent to those skilled in the art that the present invention can be embodied in other specific forms without departing from the spirit and essential features of the present invention.
도 1은 본 발명의 제1 실시예에 따른 PCR 장치를 설명하기 위한 측면 단면도이고, 도 2는 도 1에 도시된 온도 조절부를 설명하기 위한 평면도이다. 1 is a side cross-sectional view for explaining a PCR device according to a first embodiment of the present invention, Figure 2 is a plan view for explaining the temperature control unit shown in FIG.
도 1 및 도 2를 참조하면, PCR 장치(100)는 하우징(110), 시료 샘플부(120), 온도 조절부(130), 센서 모듈(140), 슬립 링(150) 및 구동부(160)를 포함한다. 1 and 2, the PCR device 100 includes a housing 110, a sample sample unit 120, a temperature control unit 130, a sensor module 140, a slip ring 150, and a driving unit 160. It includes.
하우징(110)은 중공의 원통 또는 박스 형태를 갖는다. 하우징(110)은 시료 샘플부(120)가 삽입되기 위한 삽입구(112)를 갖는다. 예를 들면, 삽입구(112)는 하우징(110)의 측면에 위치할 수 있다. The housing 110 has a hollow cylindrical or box shape. The housing 110 has an insertion hole 112 through which the sample sample part 120 is inserted. For example, the insertion hole 112 may be located at the side of the housing 110.
또한, 하우징(110)은 내부 측면 둘레를 따라 가이드 돌기(114)를 갖는다. 가이드 돌기(114)의 높이는 삽입구(112)의 높이와 실질적으로 동일할 수 있다. The housing 110 also has a guide protrusion 114 along the inner side circumference. The height of the guide protrusion 114 may be substantially the same as the height of the insertion hole (112).
시료 샘플부(120)는 대략 평판 형태를 가지며, DNA를 합성하기 위한 재료를 수납한다. 시료 샘플부(120)는 하우징(110)의 삽입구(112)에 삽입되어 고정될 수 있다. Sample sample unit 120 has a substantially flat plate shape, and houses a material for synthesizing DNA. The sample sample unit 120 may be inserted into and fixed to the insertion hole 112 of the housing 110.
시료 샘플부(120)는 온도 센서(미도시)를 포함할 수 있다. 상기 온도 센서를 이용하여 시료 샘플부(120)의 온도를 정확하게 측정할 수 있다. 상기 온도 센서에서 측정된 시료 샘플부(120)의 온도는 온도 조절부(130)가 시료 샘플부(120)의 온도를 조절하는데 이용될 수 있다. The sample sample unit 120 may include a temperature sensor (not shown). The temperature of the sample sample unit 120 may be accurately measured using the temperature sensor. The temperature of the sample sample unit 120 measured by the temperature sensor may be used by the temperature controller 130 to adjust the temperature of the sample sample unit 120.
온도 조절부(130)는 하우징(110)의 내부에 구비되며, 하우징(110)에 삽입 고정된 시료 샘플부(120)와 인접하도록 배치된다. 그리고, 온도 조절부(130)는 발열 페이스트 조성물을 통해서 형성되는 면상 발열체를 적어도 하나 이상 구비하고, 시료 샘플부(120)에 대해 이동하면서 DNA 합성에 필요한 단계별 온도로 시료 샘플부(120)의 온도를 조절한다. 온도 조절부(130)에 포함되는 면상 발열체 및 면상 발열체를 형성하는 발열 페이스트 조성물은 이후에 보다 구체적으로 설명한다.The temperature control unit 130 is provided inside the housing 110 and is disposed to be adjacent to the sample sample unit 120 inserted into and fixed to the housing 110. In addition, the temperature control unit 130 includes at least one or more planar heating elements formed through the heating paste composition, and moves with respect to the sample sample unit 120 while the temperature of the sample sample unit 120 is at a stepwise temperature necessary for DNA synthesis. Adjust The heat generating paste composition forming the planar heating element and planar heating element included in the temperature control unit 130 will be described in more detail later.
구체적으로, 온도 조절부(130)는 발열 페이스트 조성물을 통해서 형성되는 면상 발열체를 포함하는 한 쌍의 온도 조절 부재(131)들을 포함할 수 있다. 온도 조절 부재(131)들은 각각 원판 형태를 가지며, 시료 샘플부(120)의 상하에 각각 서로 평행하도록 배치된다. 온도 조절 부재(131)들이 이동할 때 시료 샘플부(120)와 충돌하는 것을 방지하기 위해 온도 조절 부재(131)들은 시료 샘플부(120)의 두께보다 더 넓은 간격만큼 서로 이격된다. Specifically, the temperature control unit 130 may include a pair of temperature control members 131 including a planar heating element formed through the heat paste composition. The temperature regulating members 131 have a disc shape, respectively, and are disposed to be parallel to each other above and below the sample sample part 120. In order to prevent the temperature control member 131 from colliding with the sample sample unit 120 when the temperature control members 131 move, the temperature control members 131 are spaced apart from each other by a distance wider than the thickness of the sample sample unit 120.
각 온도 조절 부재(131)는 제1 가열 영역(132), 냉각 영역(133), 제2 가열 영역(134), 제3 가열 영역(135) 및 광 투과 영역(136)이 원판의 둘레를 따라 순차적으로 위치한다. Each temperature regulating member 131 has a first heating region 132, a cooling region 133, a second heating region 134, a third heating region 135, and a light transmitting region 136 along the circumference of the disc. Sequentially located.
온도 조절부(130)는 온도 조절 부재(131)들이 회전하면서 시료 샘플부(120)를 가열 및 냉각한다. 제1 가열 영역(132)은 시료 샘플부(120)를 제1 온도로 가열하고, 냉각 영역(133)은 시료 샘플부(120)를 냉각하며, 제2 가열 영역(134)은 시료 샘플부(120)를 상기 제1 온도보다 낮은 제2 온도로 가열하며, 제3 가열 영역(135)은 시료 샘플부를 상기 제1 온도와 제2 온도 사이의 제3 온도로 가열한다. 이때, 상기 제1 온도는 약 94 내지 95℃이며, 제2 온도는 약 55℃이며, 제3 온도는 약 72℃인 것이 바람직하나, 사용자에 의해 상기 제1 온도, 상기 제2 온도 및 상기 제3 온도가 다르게 변경될 수도 있다. The temperature control unit 130 heats and cools the sample sample unit 120 while the temperature control members 131 rotate. The first heating area 132 heats the sample sample part 120 to a first temperature, the cooling area 133 cools the sample sample part 120, and the second heating area 134 is a sample sample part ( 120 is heated to a second temperature lower than the first temperature, and the third heating zone 135 heats the sample sample portion to a third temperature between the first and second temperatures. At this time, the first temperature is about 94 to 95 ℃, the second temperature is about 55 ℃, the third temperature is preferably about 72 ℃, but the first temperature, the second temperature and the second by the user 3 The temperature may vary.
냉각 영역(133)은 상기 제2 온도와 같거나 상기 제2 온도보다 낮은 온도를 가질 수 있다. 냉각 영역(133)이 상기 제2 온도보다 낮은 온도를 갖는 경우, 시료 샘플부(120)를 상기 제2 온도로 보다 신속하게 냉각할 수 있다. 한편, 필요에 따라 냉각 영역(133)이 생략될 수 있다. The cooling region 133 may have a temperature equal to or lower than the second temperature. When the cooling region 133 has a temperature lower than the second temperature, the sample sample unit 120 may be cooled to the second temperature more quickly. Meanwhile, the cooling region 133 may be omitted as necessary.
제1 가열 영역(132), 제2 가열 영역(134), 제3 가열 영역(135)에는 열전소자, 광원, 히팅 코일 등이 구비될 수 있다. 냉각 영역(133)에는 열전소자, 방열핀, 쿨링 코일, 쿨링 팬 등이 구비될 수 있다. The first heating region 132, the second heating region 134, and the third heating region 135 may be provided with a thermoelectric element, a light source, a heating coil, and the like. The cooling region 133 may include a thermoelectric element, a heat radiating fin, a cooling coil, a cooling fan, and the like.
한편, 제1 가열 영역(132), 냉각 영역(133), 제2 가열 영역(134) 및 제3 가열 영역(135)에는 각각 온도 센서가 구비될 수 있다. 상기 온도 센서를 이용하여 제1 가열 영역(132), 냉각 영역(133), 제2 가열 영역(134) 및 제3 가열 영역(135)이 일정한 온도를 갖도록 조절할 수 있다. Meanwhile, a temperature sensor may be provided in each of the first heating region 132, the cooling region 133, the second heating region 134, and the third heating region 135. By using the temperature sensor, the first heating region 132, the cooling region 133, the second heating region 134, and the third heating region 135 may be adjusted to have a constant temperature.
시료 샘플부(120)의 DNA 시료가 상기 제1 온도로 가열되므로, 이중가닥 DNA가 단일가닥 DNA로 분리된다. 이후, 상기 DNA 시료가 상기 제2 온도로 냉각되므로, 상기 단일 가닥 DNA와 프라이머가 이중 나선 결합되도록 함으로써 부분적으로 이중가닥이 된 DNA-프라이머 복합체(DNA primer complex)가 형성된다. 그리고, 상기 DNA 시료를 제3 온도로 유지시킴으로써, 상기 DNA-프라이머 복합체의 프라이머를 DNA 중합효소가 중합반응에 의해 연장할 수 있고, 따라서, 원래의 주형 DNA에 대하여 상보적인 서열을 가지는 새로운 단일가닥 DNA를 복제할 수 있다.Since the DNA sample of the sample sample unit 120 is heated to the first temperature, the double-stranded DNA is separated into single-stranded DNA. Then, since the DNA sample is cooled to the second temperature, the DNA strands are partially double-stranded by allowing the single-stranded DNA and the primer to be double-stranded. By maintaining the DNA sample at a third temperature, the primer of the DNA-primer complex can be extended by a polymerase by a polymerase polymerase, and thus, a new single strand having a sequence complementary to the original template DNA. DNA can be replicated.
온도 조절 부재(131)들이 회전하면서 시료 샘플부(120)를 가열 및 냉각하므로, 시료 샘플부(120)를 가열 및 냉각하는데 소요되는 시간을 줄일 수 있다. 따라서, 시료 샘플부(120)의 PCR에 소요되는 시간을 단축할 수 있다. Since the temperature control member 131 rotates and heats and cools the sample sample part 120, the time required for heating and cooling the sample sample part 120 can be reduced. Therefore, the time required for PCR of the sample sample unit 120 can be shortened.
또한, 시료 샘플부(120)가 고정된 상태를 유지하므로, DNA 시료가 흔들리지 않고 안정된 상태를 유지한다. 상기 DNA 시료의 흔들림을 방지하므로, 시료 샘플부(120)로부터 DNA의 증폭 정도 및 DNA를 정확하게 판별할 수 있다. In addition, since the sample sample unit 120 is maintained in a fixed state, the DNA sample is not shaken and maintained in a stable state. Since the shaking of the DNA sample is prevented, the amplification degree and DNA of the DNA can be accurately determined from the sample sample unit 120.
광 투과 영역(136)은 센서 모듈(140)에서 시료 샘플부(120)로 조사한 광을 투과시키기 위한 영역이다. 광 투과 영역(136)은 빈 공간으로 이루어지거나, 상기 광이 투과할 수 있는 투명 재질로 이루어질 수 있다. The light transmitting region 136 is a region for transmitting the light irradiated from the sensor module 140 to the sample sample unit 120. The light transmitting region 136 may be formed of an empty space, or may be made of a transparent material through which the light may pass.
제1 가열 영역(132), 냉각 영역(133), 제2 가열 영역(134), 제3 가열 영역(135) 및 광 투과 영역(136)의 사이에는 단열 영역(137)들이 위치한다. 단열 영역(137)들은 제1 가열 영역(132), 냉각 영역(133), 제2 가열 영역(134), 제3 가열 영역(135) 및 광 투과 영역(136)의 사이에 각각 배치되거나 일부 영역 사이에만 선택적으로 배치될 수 있다. 단열 영역(137)들은 제1 가열 영역(132), 냉각 영역(133), 제2 가열 영역(134) 및 제3 가열 영역(135)의 열이 인접한 영역으로 전달되는 것을 방지한다. 단열 영역(137)들은 빈 공간으로 이루어지거나, 단열 재질로 이루어질 수 있다. The thermal insulation regions 137 are positioned between the first heating region 132, the cooling region 133, the second heating region 134, the third heating region 135, and the light transmitting region 136. The adiabatic regions 137 are disposed or partially disposed between the first heating region 132, the cooling region 133, the second heating region 134, the third heating region 135, and the light transmitting region 136, respectively. May optionally be placed only between. The thermal insulation regions 137 prevent heat from the first heating region 132, the cooling region 133, the second heating region 134, and the third heating region 135 from being transferred to the adjacent region. The insulation regions 137 may be made of an empty space or made of an insulation material.
온도 조절부(130)는 고정 부재(138)와 한 쌍의 가이드 부재(139)들을 더 포함한다. The temperature controller 130 further includes a fixing member 138 and a pair of guide members 139.
고정 부재(138)는 온도 조절 부재(131)들의 중앙 부위를 고정한다. 따라서, 온도 조절 부재(131)들이 일정 간격 이격된 상태로 평행하게 유지될 수 있다. The fixing member 138 fixes the central portion of the temperature regulating members 131. Therefore, the temperature regulating members 131 may be maintained in parallel at a predetermined interval.
가이드 부재(139)들은 상부 온도 조절 부재(131)의 상부면 가장자리 및 하부 온도 조절 부재(131)의 하부면 가장자리에 각각 구비될 수 있다. 예를 들면, 가이드 부재(139)들은 링 형상을 갖는다. 한편, 도시되지는 않았지만 가이드 부재(139)들은 상부 온도 조절 부재(131)의 상부면 전체 및 하부 온도 조절 부재(131)의 하부면 전체를 커버하도록 각각 구비될 수 있다. 예를 들면, 가이드 부재(139)들은 대략 원판 형상을 가질 수 있다.The guide members 139 may be provided at the upper edge of the upper temperature regulating member 131 and the lower edge of the lower temperature regulating member 131, respectively. For example, the guide members 139 have a ring shape. Although not shown, the guide members 139 may be provided to cover the entire upper surface of the upper temperature regulating member 131 and the entire lower surface of the lower temperature regulating member 131. For example, the guide members 139 may have a substantially disc shape.
가이드 부재(139)들은 제1 가열 영역(132), 냉각 영역(133), 제2 가열 영역(134), 제3 가열 영역(135), 광 투과 영역(136) 및 단열 영역(137)들을 고정하는 역할을 수행한다. The guide members 139 fix the first heating region 132, the cooling region 133, the second heating region 134, the third heating region 135, the light transmitting region 136, and the thermal insulation region 137. It plays a role.
또한, 가이드 부재(139)들은 온도 조절 부재(131)의 가장자리로부터 반지름 방향, 즉, 수평 방향으로 돌출될 수 있다. 돌출된 가이드 부재(139)들은 하우징(110)의 가이드 돌기(114)와 접촉하여 지지될 수 있다. In addition, the guide members 139 may protrude from the edge of the temperature control member 131 in a radial direction, that is, in a horizontal direction. The protruding guide members 139 may be supported in contact with the guide protrusion 114 of the housing 110.
일 예로, 가이드 돌기(114)의 두께는 가이드 부재(139)들 사이의 간격과 실질적으로 동일하고, 가이드 돌기(114)가 가이드 부재(139)들 사이에 배치되어 가이드 부재(139)들을 지지할 수 있다. For example, the thickness of the guide protrusion 114 may be substantially equal to the distance between the guide members 139, and the guide protrusion 114 may be disposed between the guide members 139 to support the guide members 139. Can be.
다른 예로, 가이드 돌기(114)의 두께는 가이드 부재(139)들 사이의 간격보다 크고, 가이드 돌기(114)는 가이드 부재(139)들의 높이와 동일한 높이에 홈(미도시)들을 갖는다. 가이드 돌기(114)는 상기 홈들에 가이드 부재(139)들을 각각 수용하여 가이드 부재(139)들을 지지할 수 있다. As another example, the thickness of the guide protrusion 114 is greater than the gap between the guide members 139, and the guide protrusion 114 has grooves (not shown) at the same height as the height of the guide members 139. The guide protrusion 114 may accommodate the guide members 139 in the grooves to support the guide members 139.
따라서, 온도 조절 부재(131)들이 회전하더라도 가이드 부재(139)들이 가이드 돌기(114)에 의해 지지되므로, 온도 조절 부재(131)들 사이의 간격이 일정하게 유지될 수 있다. 그러므로, 온도 조절 부재(131)들 사이의 간격이 좁아져 시료 샘플부(120)와 충돌하는 것을 방지할 수 있다. Therefore, the guide members 139 are supported by the guide protrusions 114 even when the temperature regulating members 131 rotate, so that the distance between the temperature regulating members 131 can be kept constant. Therefore, the gap between the temperature adjusting members 131 can be narrowed to prevent the collision with the sample sample part 120.
센서 모듈(140)은 하우징(110)의 내부에 구비되며, 광을 이용하여 DNA의 증폭 정도를 판별하고 DNA를 판별한다. 예를 들면, 센서 모듈(140)은 하우징(110)의 내측면에 고정될 수 있다. 온도 조절부(130)의 광 투과 영역(136)이 시료 샘플부(120)의 상하에 위치한 상태에서 센서 모듈(140)이 시료 샘플부(120)로 광을 조사하고, 시료 샘플부(120)로부터 전달된 광을 수광할 수 있다. The sensor module 140 is provided inside the housing 110, and determines the DNA amplification degree and the DNA using light. For example, the sensor module 140 may be fixed to the inner side surface of the housing 110. The sensor module 140 irradiates light onto the sample sample unit 120 while the light transmitting region 136 of the temperature controller 130 is positioned above and below the sample sample unit 120, and then the sample sample unit 120. It can receive light transmitted from it.
구체적으로, 센서 모듈(140)은 시료 샘플부(120)의 상방에 발광부가 배치되며, 시료 샘플부(120)의 하방에 수광부가 배치될 수 있다. 온도 조절부(130)의 광 투과 영역(136)이 시료 샘플부(120)의 상하에 위치한 상태에서 센서 모듈(140)의 발광부에서 광이 시료 샘플부(120)로 조사된다. 상기 발광부에서 조사된 광은 상부 온도 조절 부재(131)의 광 투과 영역(136), 시료 샘플부(120), 하부 온도 조절 부재(131)의 광 투과 영역(136)을 지나 상기 수광부에 수광된다.In detail, the sensor module 140 may have a light emitting unit disposed above the sample sample unit 120, and a light receiving unit may be disposed below the sample sample unit 120. The light is radiated from the light emitting part of the sensor module 140 to the sample sample part 120 while the light transmitting region 136 of the temperature controller 130 is positioned above and below the sample sample part 120. The light irradiated from the light emitting part passes through the light transmitting region 136 of the upper temperature adjusting member 131, the sample sample part 120, and the light transmitting region 136 of the lower temperature adjusting member 131. do.
상기 발광부와 수광부가 시료 샘플부(120)의 상방 및 하방에 배치되는 경우는 시료 샘플부(120)에서 상기 재료가 수납된 부분의 상하가 투명하여 상기 광이 시료 샘플부(120)를 관통하는 경우로 한정될 수 있다. When the light emitting part and the light receiving part are disposed above and below the sample sample part 120, the upper and lower portions of the part in which the material is accommodated in the sample sample part 120 are transparent, so that the light penetrates the sample sample part 120. It may be limited to the case.
한편, 센서 모듈(140)은 시료 샘플부(120)의 상방 또는 하방에 발광부 및 수광부가 일체로 배치될 수 있다. 상기 발광부에서 조사된 광은 온도 조절 부재(131)의 광 투과 영역(136)을 지나 시료 샘플부(120)로 전달되고, 시료 샘플부(120)에서 반사된 광이 온도 조절 부재(131)의 광 투과 영역(136)을 지나 상기 수광부에 수광될 수 있다. On the other hand, the sensor module 140 may be disposed integrally with the light emitting unit and the light receiving unit above or below the sample sample unit 120. The light irradiated from the light emitting part passes through the light transmitting region 136 of the temperature adjusting member 131 to the sample sample part 120, and the light reflected from the sample sample part 120 passes through the temperature adjusting member 131. The light-receiving portion may be received by passing through the light transmission region 136.
상기 발광부와 수광부가 일체로 시료 샘플부(120)의 상방 또는 하방에 배치되는 경우는 시료 샘플부(120)에서 상기 재료가 수납된 부분의 상하 중 어느 한 부분이 투명하여 상기 광이 시료 샘플부(120)를 관통하지 못하는 경우로 한정될 수 있다. 이때, 시료 샘플부(120)는 상기 투명 부위를 통해 들어온 광의 반사 효율을 높일 수 있도록 반사 부재를 더 포함할 수 있다. When the light emitting unit and the light receiving unit are integrally disposed above or below the sample sample unit 120, any one of the upper and lower portions of the portion in which the material is accommodated in the sample sample unit 120 is transparent, so that the light is sampled. It may be limited to the case where the portion 120 does not penetrate. In this case, the sample sample unit 120 may further include a reflective member to increase the reflection efficiency of the light entering through the transparent portion.
상기와 같이 센서 모듈(140)과 시료 샘플부(120)가 하우징(110)에 고정된 상태에서 센서 모듈(140)의 센싱이 이루어지므로, 센서 모듈(140)의 센싱 효율이 향상될 수 있다. 또한, 센서 모듈(140)과 시료 샘플부(120) 사이의 간격이 일정하게 유지되므로, 센서 모듈(140)의 센싱 정확도가 향상될 수 있다. As described above, since the sensing of the sensor module 140 is performed while the sensor module 140 and the sample sample unit 120 are fixed to the housing 110, the sensing efficiency of the sensor module 140 may be improved. In addition, since the distance between the sensor module 140 and the sample sample unit 120 is kept constant, the sensing accuracy of the sensor module 140 can be improved.
한편, 센서 모듈(140)을 이용하여 시료 샘플부(120)에 수납된 DNA 시료의 증폭 정도를 판별할 때, 시료 샘플부(120)의 온도는 사용자의 선택에 따라 다양하게 설정될 수 있다. On the other hand, when determining the amplification degree of the DNA sample stored in the sample sample unit 120 using the sensor module 140, the temperature of the sample sample unit 120 may be variously set according to the user's selection.
일 예로, 시료 샘플부(120)가 제3 가열 영역(135)에 의해 가열되어 약 72℃의 제3 온도를 갖는 상태에서 센서 모듈(140)을 이용하여 시료 샘플부(120)에 수납된 DNA 시료의 증폭 정도를 판별할 수 있다. For example, the DNA stored in the sample sample unit 120 using the sensor module 140 while the sample sample unit 120 is heated by the third heating region 135 to have a third temperature of about 72 ° C. The degree of amplification of the sample can be determined.
다른 예로, 시료 샘플부(120)가 약 55℃의 온도를 갖는 상태에서 센서 모듈(140)을 이용하여 시료 샘플부(120)에 수납된 DNA 시료의 증폭 정도를 판별할 수 있다. 이때, 제3 가열 영역(135)에서 약 72℃의 제3 온도로 가열된 시료 샘플부(120)의 온도를 상기 약 55℃로 조절하기 위해 온도 조절 부재(131)는 제3 가열 영역(135)과 광 투과 영역(136) 사이에 제2 냉각 영역(미도시) 또는 시료 샘플부(120)를 상기 온도인 약 55℃로 유지시키기 위한 제4 가열 영역(미도시)을 더 포함할 수 있다. As another example, the amplification degree of the DNA sample accommodated in the sample sample unit 120 may be determined using the sensor module 140 while the sample sample unit 120 has a temperature of about 55 ° C. In this case, in order to adjust the temperature of the sample sample part 120 heated to the third temperature of about 72 ° C. in the third heating area 135 to the about 55 ° C., the temperature adjusting member 131 may include the third heating area 135. ) And a fourth heating region (not shown) for maintaining the second cooling region (not shown) or the sample sample unit 120 at the temperature of about 55 ° C. .
또한, 상기 제2 냉각 영역 또는 제4 가열 영역을 추가로 구비하지 않고, 온도 조절 부재(131)의 냉각 영역(133) 또는 제2 가열 영역(134)을 이용하여 제3 가열 영역(135)에서 약 72℃의 제3 온도로 가열된 시료 샘플부(120)의 온도를 약 55℃로 조절할 수 있다. In addition, in the third heating region 135, the cooling region 133 or the second heating region 134 of the temperature regulating member 131 is further provided without the second cooling region or the fourth heating region. The temperature of the sample sample unit 120 heated to a third temperature of about 72 ° C may be adjusted to about 55 ° C.
한편, 센서 모듈(140)은 경우에 따라 생략될 수 있다. 즉, PCR 장치(100)는 센서 모듈(140)을 포함하지 않을 수 있다. On the other hand, the sensor module 140 may be omitted in some cases. That is, the PCR device 100 may not include the sensor module 140.
슬립 링(150)은 온도 조절부(130), 구체적으로 고정 부재(138)와 하우징(110) 사이에 구비되며, 회전하는 온도 조절부(130)를 지지하면서 온도 조절부(130)로 시료 샘플부(120)를 가열 및 냉각하기 위한 전원을 공급한다. Slip ring 150 is provided between the temperature control unit 130, specifically between the fixing member 138 and the housing 110, the sample sample with the temperature control unit 130 while supporting the rotating temperature control unit 130 Power is supplied to heat and cool the unit 120.
구체적으로, 슬립 링(150)은 고정부(152)와 회전부(154)를 포함한다. In detail, the slip ring 150 includes a fixing part 152 and a rotating part 154.
고정부(152)는 하우징(110)의 내측 하부면에 고정되며, 외부 전원과 연결되는 전선을 갖는다.The fixing part 152 is fixed to the inner lower surface of the housing 110 and has a wire connected to an external power source.
회전부(154)는 고정부(152) 상에 회전 가능하도록 구비되며, 고정부(152)와 전기적으로 연결된다. 회전부(154)와 고정부(152)의 연결은 회전부 장착 방식에 따라 끝단형과 중공형으로 나뉘고, 접점방식에 따라 카본그라파이트 또는 합금 소재를 사용하는 접촉식 방식과 수은 또는 액체형 금속류를 사용하여 접촉하는 비접촉식 방식으로 구분될 수 있다. The rotating part 154 is provided to be rotatable on the fixing part 152 and is electrically connected to the fixing part 152. The connection between the rotating part 154 and the fixing part 152 is divided into an end type and a hollow type according to the mounting method of the rotating part, and the contact method using carbon graphite or alloy material and the contact method using mercury or liquid metals according to the contact method. Can be divided into a contactless manner.
또한, 회전부(154)는 온도 조절부(130)의 고정 부재(138)와 연결되며, 온도 조절부(130)와 같이 회전한다. 그리고, 회전부(154)는 고정 부재(138)를 통해 온도 조절부(130)의 온도 조절 부재(131)들과 전기적으로 연결되는 전선을 갖는다. In addition, the rotating unit 154 is connected to the fixing member 138 of the temperature control unit 130, and rotates together with the temperature control unit 130. In addition, the rotating part 154 has a wire electrically connected to the temperature adjusting members 131 of the temperature adjusting part 130 through the fixing member 138.
한편, 별도의 고정 부재(138)를 구비하지 않고 회전부(154)가 고정 부재(138)의 역할을 수행할 수 있다. 이때, 회전부(154)의 전선은 온도 조절 부재(131)와 직접 연결될 수 있다. Meanwhile, the rotating unit 154 may serve as the fixing member 138 without providing a separate fixing member 138. In this case, the wire of the rotating unit 154 may be directly connected to the temperature control member 131.
슬립 링(150)을 이용하므로, 온도 조절부(130)가 회전하더라도 상기 전선의 꼬임 없이 온도 조절부(130)로 전원을 공급할 수 있다. Since the slip ring 150 is used, power may be supplied to the temperature controller 130 without twisting the wires even when the temperature controller 130 rotates.
구동부(160)는 하우징(110)의 내부에 구비되며, 제1 가열 영역(132), 냉각 영역(133), 제2 가열 영역(134), 제3 가열 영역(135) 및 광 투과 영역(136)이 순차적으로 시료 샘플부(120)를 지나도록 온도 조절부(130)를 회전시킨다. 구동부(160)의 예로는 스텝 모터를 들 수 있다. The driving unit 160 is provided inside the housing 110 and includes a first heating region 132, a cooling region 133, a second heating region 134, a third heating region 135, and a light transmitting region 136. ) Rotates the temperature controller 130 so that the sample passes through the sample sample 120 in sequence. An example of the driver 160 may be a step motor.
구동부(160)는 온도 조절부(130)에 직접 연결되어 온도 조절부(130)를 회전시킬 수 있다. 예를 들면, 구동부(160)는 고정 부재(138)와 연결될 수 있다. The driving unit 160 may be directly connected to the temperature controller 130 to rotate the temperature controller 130. For example, the driving unit 160 may be connected to the fixing member 138.
한편, 구동부(160)는 기어(미도시)를 이용하여 온도 조절부(130)를 회전시킬 수 있다. 상기 기어를 이용함으로써 하우징(110)의 크기를 최소화할 수 있도록 구동부(160)의 위치를 변경할 수 있다.On the other hand, the driving unit 160 may rotate the temperature control unit 130 using a gear (not shown). By using the gear, the position of the driving unit 160 may be changed to minimize the size of the housing 110.
도 3은 본 발명의 제2 실시예에 따른 PCR 장치를 설명하기 위한 측면 단면도이다. 3 is a side cross-sectional view for explaining a PCR device according to a second embodiment of the present invention.
도 3을 참조하면, PCR 장치(200)는 하우징(210), 시료 샘플부(220), 온도 조절부(230), 센서 모듈(240), 슬립 링(250) 및 구동부(260)를 포함한다. Referring to FIG. 3, the PCR device 200 includes a housing 210, a sample sample unit 220, a temperature controller 230, a sensor module 240, a slip ring 250, and a driver 260. .
온도 조절부(230)를 구조를 제외한 나머지 부분에 대한 설명은 도 1 및 도 2를 참조한 PCR 장치(100)와 실질적으로 동일하므로 생략한다.Description of the rest of the temperature control unit 230 except for the structure is substantially the same as the PCR device 100 with reference to FIGS. 1 and 2 and will be omitted.
온도 조절부(230)가 한 쌍이 아닌 하나의 온도 조절 부재를 포함한다. 상기 온도 조절 부재는 시료 샘플부(220)의 일측면에 배치될 수 있다. 즉, 온도 조절부(230)가 시료 샘플부(220)의 하부 또는 상부에 배치될 수 있다. The temperature control unit 230 includes one temperature control member rather than a pair. The temperature control member may be disposed on one side of the sample sample unit 220. That is, the temperature controller 230 may be disposed below or above the sample sample unit 220.
따라서, 상기 온도 조절 부재가 하나 구비되므로, 온도 조절부(230)의 구조가 단순해질 수 있다. 그러므로, 온도 조절부(230)를 구성하는데 소요되는 비용을 절감할 수 있고, 온도 조절부(230)의 구조로 인한 고장 발생 여지를 줄일 수 있다. Therefore, since one temperature control member is provided, the structure of the temperature controller 230 may be simplified. Therefore, it is possible to reduce the cost required to configure the temperature controller 230, and to reduce the possibility of failure due to the structure of the temperature controller 230.
도 4는 본 발명의 제3 실시예에 따른 PCR 장치를 설명하기 위한 측면 단면도이다. 4 is a side cross-sectional view for explaining a PCR device according to a third embodiment of the present invention.
도 4를 참조하면, PCR 장치(300)는 하우징(310), 시료 샘플부(320), 온도 조절부(330), 센서 모듈(340), 슬립 링(350) 및 구동부(360)를 포함한다. Referring to FIG. 4, the PCR apparatus 300 includes a housing 310, a sample sample unit 320, a temperature controller 330, a sensor module 340, a slip ring 350, and a driver 360. .
하우징(310)의 삽입구(312), 시료 샘플부(320) 및 온도 조절부(330)를 구조를 제외한 나머지 부분에 대한 설명은 도 1 및 도 2를 참조한 PCR 장치(100)와 실질적으로 동일하므로 생략한다.Since the description of the rest of the housing 310 except for the structure of the insertion hole 312, the sample sample part 320, and the temperature control part 330 is substantially the same as that of the PCR device 100 with reference to FIGS. 1 and 2. Omit.
시료 샘플부(320)는 튜브 형태를 갖는다. 시료 샘플부(320)는 클램프(322)에 의해 고정된 상태로 하우징(310)의 삽입구(312)를 통해 삽입되며, PCR이 진행되는 동안 온도 조절부(330)와 이격된 상태로 고정된다. 삽입구(312)는 시료 샘플부(320)의 클램프(322)가 삽입될 수 있도록 충분한 크기를 갖는다. Sample sample portion 320 has a tube shape. The sample sample part 320 is inserted through the insertion hole 312 of the housing 310 in a fixed state by the clamp 322, and is fixed to be spaced apart from the temperature control part 330 during PCR. The insertion hole 312 has a size sufficient to allow the clamp 322 of the sample sample part 320 to be inserted.
또한, 온도 조절부(330)가 한 쌍이 아닌 하나의 온도 조절 부재를 포함한다. 상기 온도 조절 부재는 시료 샘플부(320)의 일측면에 배치될 수 있다. 즉, 온도 조절부(130)가 시료 샘플부(320)의 하부 또는 상부에 배치될 수 있다. 또한, 온도 조절부(330)의 온도 조절 부재에는 튜브 형태의 시료 샘플부(320)를 수용하기 위한 링 형상의 홈이 형성될 수 있다. In addition, the temperature control unit 330 includes one temperature control member rather than a pair. The temperature control member may be disposed on one side of the sample sample part 320. That is, the temperature controller 130 may be disposed below or above the sample sample unit 320. In addition, a ring-shaped groove may be formed in the temperature control member of the temperature control part 330 to accommodate the sample sample part 320 in the form of a tube.
따라서, PCR 장치(300)는 튜브 형태의 시료 샘플부(320)에 대해서도 DNA 증폭 및 판별을 수행할 수 있다. Therefore, the PCR apparatus 300 may perform DNA amplification and discrimination even on the tube sample sample 320.
도 5는 본 발명의 제4 실시예에 따른 PCR 장치를 설명하기 위한 측면 단면도이고, 도 6은 도 5에 도시된 온도 조절부 및 센서 모듈을 설명하기 위한 평면도이다. 5 is a side cross-sectional view for explaining a PCR device according to a fourth embodiment of the present invention, and FIG. 6 is a plan view for explaining the temperature control unit and the sensor module shown in FIG. 5.
도 5 및 도 6을 참조하면, PCR 장치(400)는 하우징(410), 시료 샘플부(420), 온도 조절부(430), 센서 모듈(440), 슬립 링(450) 및 구동부(460)를 포함한다. 5 and 6, the PCR device 400 includes a housing 410, a sample sample part 420, a temperature controller 430, a sensor module 440, a slip ring 450, and a driver 460. It includes.
센서 모듈(440)을 제외한 나머지 부분에 대한 설명은 도 1 및 도 2를 참조한 PCR 장치(100)와 실질적으로 동일하므로 생략한다.Description of the remaining parts except for the sensor module 440 is substantially the same as the PCR device 100 with reference to FIGS. 1 and 2, and thus will be omitted.
센서 모듈(440)은 온도 조절부(430)의 각 온도 조절 부재(431)에서 제1 가열 영역(432)과 제3 가열 영역(435) 사이에 위치할 수 있다. 즉, 센서 모듈(440)이 하우징(410)에 고정되지 않고 광 투과 영역에 위치할 수 있다. 따라서, 센서 모듈(440)이 시료 샘플부(420)에 보다 인접하여 배치될 수 있다. 그러므로, 센서 모듈(440)이 시료 샘플부(420)의 DNA의 증폭 정도 및 DNA 종류를 보다 정확하게 판별할 수 있다. The sensor module 440 may be located between the first heating region 432 and the third heating region 435 in each of the temperature regulating members 431 of the temperature regulating unit 430. That is, the sensor module 440 may be located in the light transmission region without being fixed to the housing 410. Therefore, the sensor module 440 may be disposed closer to the sample sample unit 420. Therefore, the sensor module 440 can more accurately determine the degree of DNA amplification and the DNA type of the sample sample unit 420.
도 7은 본 발명의 제5 실시예에 따른 PCR 장치를 설명하기 위한 측면 단면도이고, 도 8은 도 7에 도시된 A-A’선을 기준으로 절단한 절단도이다. FIG. 7 is a side cross-sectional view illustrating a PCR device according to a fifth embodiment of the present invention, and FIG. 8 is a cross-sectional view taken along line AA ′ of FIG. 7.
도 7 및 도 8을 참조하면, PCR 장치(500)는 하우징(510), 시료 샘플부(520), 온도 조절부(530), 센서 모듈(540), 슬립 링(550) 및 구동부(560)를 포함한다. 7 and 8, the PCR apparatus 500 includes a housing 510, a sample sample unit 520, a temperature controller 530, a sensor module 540, a slip ring 550, and a driver 560. It includes.
하우징(510)의 삽입구(512) 위치, 온도 조절부(530)의 온도 조절 부재(531)의 형태 및 센서 모듈(540)의 위치를 제외한 나머지 부분에 대한 설명은 도 1 및 도 2를 참조한 PCR 장치(100)와 실질적으로 동일하므로 생략한다.The description of the remaining portions except for the position of the insertion hole 512 of the housing 510, the shape of the temperature control member 531 of the temperature controller 530, and the position of the sensor module 540 is described with reference to FIGS. 1 and 2. Since it is substantially the same as the apparatus 100, it abbreviate | omits.
삽입구(512)가 하우징(510)의 상면에 위치할 수 있다. 따라서, 시료 샘플부(520)가 하우징(510)의 상방에서 수직 방향으로 세워져 삽입구(512)에 삽입될 수 있다. 이때, 시료 샘플부(520)는 대략 직사각형 평판 형태 뿐만 아니라 튜브 형태를 가질 수도 있다. The insertion hole 512 may be located on an upper surface of the housing 510. Therefore, the sample sample part 520 may be inserted in the insertion hole 512 to stand in the vertical direction from the upper side of the housing 510. In this case, the sample sample unit 520 may have a tube shape as well as a substantially rectangular flat plate shape.
온도 조절부(530)는 한 쌍의 온도 조절 부재(531)들을 포함한다. 온도 조절 부재(531)들은 대략 상하가 개방된 중공의 원통 형태를 갖는다. 온도 조절 부재(531)들은 서로 다른 지름을 가지며, 시료 샘플부(520)가 사이에 위치하도록 동심원 형태로 배치된다. 온도 조절 부재(531)들은 시료 샘플부(520)의 두께보다 더 넓은 간격만큼 서로 이격된다. The temperature controller 530 includes a pair of temperature regulating members 531. The temperature regulating members 531 have a hollow cylindrical shape which is approximately open at the top and bottom. The temperature regulating members 531 have different diameters and are arranged in a concentric shape such that the sample sample part 520 is located therebetween. The temperature adjusting members 531 are spaced apart from each other by an interval wider than the thickness of the sample sample unit 520.
각 온도 조절 부재(531)는 제1 가열 영역(532), 냉각 영역(533), 제2 가열 영역(534), 제3 가열 영역(535) 및 광 투과 영역(536)이 원통의 둘레를 따라 순차적으로 위치한다. 제1 가열 영역(532), 냉각 영역(533), 제2 가열 영역(534), 제3 가열 영역(535) 및 광 투과 영역(536)의 사이에는 각각 단열 영역(537)들이 위치한다. Each temperature regulating member 531 has a first heating region 532, a cooling region 533, a second heating region 534, a third heating region 535 and a light transmitting region 536 along the circumference of the cylinder. Sequentially located. Insulating regions 537 are positioned between the first heating region 532, the cooling region 533, the second heating region 534, the third heating region 535, and the light transmitting region 536, respectively.
시료 샘플부(520)가 하우징(510)의 상방에서 삽입되므로, 센서 모듈(540)은 하우징(510)의 내측 측면에 구비될 수 있다. Since the sample sample unit 520 is inserted above the housing 510, the sensor module 540 may be provided at an inner side surface of the housing 510.
한편, 온도 조절부(530)는 한 쌍의 온도 조절 부재(531)들 중 어느 하나만을 포함할 수 있다. 또한, 센서 모듈(540)이 하우징(510)의 내측 측면에 구비되지 않고 온도 조절 부재(531)의 광 투과 영역(536)에 구비될 수도 있다. The temperature controller 530 may include only one of the pair of temperature regulating members 531. In addition, the sensor module 540 may not be provided at the inner side of the housing 510 but may be provided at the light transmitting region 536 of the temperature control member 531.
도 9는 본 발명의 제6 실시예에 따른 PCR 장치를 설명하기 위한 측면 단면도이고, 도 10은 도 9에 도시된 온도 조절부을 설명하기 위한 평면도이다. 9 is a side cross-sectional view for explaining a PCR device according to a sixth embodiment of the present invention, Figure 10 is a plan view for explaining the temperature control unit shown in FIG.
도 9 및 도 10을 참조하면, PCR 장치(600)는 하우징(610), 시료 샘플부(620), 온도 조절부(630), 센서 모듈(640) 및 구동부(660)를 포함한다. 9 and 10, the PCR apparatus 600 includes a housing 610, a sample sample unit 620, a temperature controller 630, a sensor module 640, and a driver 660.
하우징(610)은 중공의 박스 형태를 갖는다. 하우징(610)은 측면에 시료 샘플부(620)가 삽입되기 위한 삽입구(612)를 갖는다. 또한, 하우징(610)은 삽입구(612)가 형성된 측면의 내벽을 따라 가이드 돌기(614)를 갖는다. 가이드 돌기(614)의 높이는 삽입구(612)의 높이와 실질적으로 동일할 수 있다. 가이드 돌기(614)의 두께는 후술하는 가이드 부재(639)들 사이의 간격과 실질적으로 동일할 수 있다. The housing 610 has a hollow box shape. The housing 610 has an insertion hole 612 for inserting the sample sample portion 620 on the side. In addition, the housing 610 has a guide protrusion 614 along the inner wall of the side surface where the insertion hole 612 is formed. The height of the guide protrusion 614 may be substantially the same as the height of the insertion hole 612. The thickness of the guide protrusion 614 may be substantially the same as the gap between the guide members 639 to be described later.
시료 샘플부(620)는 대략 평판 형태를 가지며, DNA를 합성하기 위한 재료를 수납한다. 시료 샘플부(620)는 하우징(610)의 삽입구(612)에 삽입되어 고정될 수 있다. The sample sample portion 620 has a substantially flat plate shape and houses a material for synthesizing DNA. The sample sample unit 620 may be inserted into and fixed to the insertion hole 612 of the housing 610.
온도 조절부(630)는 하우징(610)의 내부에 구비되며, 하우징(610)에 삽입 고정된 시료 샘플부(620)와 인접하도록 배치된다. 온도 조절부(630)는 시료 샘플부(620)에 대해 이동하면서 DNA 합성에 필요한 단계별 온도로 시료 샘플부(620)의 온도를 조절한다. The temperature controller 630 is provided inside the housing 610 and is disposed to be adjacent to the sample sample part 620 inserted into and fixed to the housing 610. The temperature controller 630 adjusts the temperature of the sample sample 620 to a step-by-step temperature required for DNA synthesis while moving relative to the sample sample 620.
구체적으로, 온도 조절부(630)는 한 쌍의 온도 조절 부재(631)들을 포함한다. 온도 조절 부재(631)들은 대략 직사각 평판 형태를 가지며, 시료 샘플부(620)의 상하에 각각 서로 평행하도록 배치된다. 온도 조절 부재(631)들은 시료 샘플부(620)의 두께보다 더 넓은 간격만큼 서로 이격된다. In detail, the temperature controller 630 includes a pair of temperature regulating members 631. The temperature regulating members 631 have a substantially rectangular flat plate shape, and are disposed to be parallel to each other above and below the sample sample part 620. The temperature regulating members 631 are spaced apart from each other by an interval wider than the thickness of the sample sample part 620.
각 온도 조절 부재(631)는 제1 가열 영역(632), 냉각 영역(633), 제2 가열 영역(634), 제3 가열 영역(635) 및 광 투과 영역(636)이 직사각 평판의 길이 방향을 따라 순차적으로 위치한다. Each of the temperature regulating members 631 includes a first heating region 632, a cooling region 633, a second heating region 634, a third heating region 635, and a light transmitting region 636 in the longitudinal direction of the rectangular plate. Followed sequentially.
온도 조절부(630)는 온도 조절 부재(631)들이 수평 방향으로 왕복 직선이동하면서 시료 샘플부(620)를 가열 및 냉각한다. The temperature control unit 630 heats and cools the sample sample unit 620 while the temperature control members 631 reciprocate linearly in the horizontal direction.
온도 조절 부재(631)들이 왕복 직선 이동하면서 시료 샘플부(620)를 가열 및 냉각하므로, 시료 샘플부(620)를 가열 및 냉각하는데 소요되는 시간을 줄일 수 있다. 따라서, 시료 샘플부(620)의 PCR에 소요되는 시간을 단축할 수 있다. Since the temperature regulating members 631 heat and cool the sample sample part 620 while reciprocating linearly, the time required for heating and cooling the sample sample part 620 can be reduced. Therefore, the time required for PCR of the sample sample unit 620 can be shortened.
또한, 시료 샘플부(620)가 고정된 상태를 유지하므로, DNA 시료가 흔들리지 않고 안정된 상태를 유지한다. 상기 DNA 시료의 흔들림을 방지하므로, 시료 샘플부(620)로부터 DNA의 증폭 정도 및 DNA를 정확하게 판별할 수 있다. In addition, since the sample sample unit 620 is kept in a fixed state, the DNA sample is not shaken to maintain a stable state. Since the shaking of the DNA sample is prevented, the amplification degree of the DNA and the DNA can be accurately determined from the sample sample unit 620.
제1 가열 영역(632), 냉각 영역(633), 제2 가열 영역(634), 제3 가열 영역(635) 및 광 투과 영역(636)의 사이에는 각각 단열 영역(637)들이 위치한다. 단열 영역(637)들은 제1 가열 영역(632), 냉각 영역(633), 제2 가열 영역(634) 및 제3 가열 영역(635)의 열이 인접한 영역으로 전달되는 것을 방지한다. 단열 영역(637)들은 빈 공간으로 이루어지거나, 단열 재질로 이루어질 수 있다. Insulating regions 637 are positioned between the first heating region 632, the cooling region 633, the second heating region 634, the third heating region 635, and the light transmitting region 636. The thermal insulation regions 637 prevent heat from the first heating region 632, the cooling region 633, the second heating region 634, and the third heating region 635 from being transferred to the adjacent region. The insulation regions 637 may be made of an empty space or made of an insulation material.
온도 조절부(630)는 고정 부재(638)와 한 쌍의 가이드 부재(639)들을 더 포함한다. The temperature controller 630 further includes a fixing member 638 and a pair of guide members 639.
고정 부재(638)는 온도 조절 부재(631)들의 일단 부위를 고정한다. 따라서, 온도 조절 부재(631)들이 일정 간격 이격된 상태로 평행하게 유지될 수 있다. The fixing member 638 fixes one end portion of the temperature regulating members 631. Therefore, the temperature regulating members 631 can be kept in parallel at a predetermined interval.
가이드 부재(639)들은 상기 온도 조절 부재(631)들에서 상기 일단 부위와 반대되는 타단 부위에 구비된다. 구체적으로, 가이드 부재(639)들은 상부 온도 조절 부재(631)의 상부면 타단 부위 및 하부 온도 조절 부재(631)의 하부면 타단 부위에 각각 구비될 수 있다. 가이드 부재(639)들은 제1 가열 영역(632), 냉각 영역(633), 제2 가열 영역(634), 제3 가열 영역(635), 광 투과 영역(636) 및 단열 영역(637)들을 고정하는 역할을 수행한다. Guide members 639 are provided at the other end portion opposite to the one end portion of the temperature regulating members 631. Specifically, the guide members 639 may be provided at the other end of the upper surface of the upper temperature regulating member 631 and the other end of the lower surface of the lower temperature regulating member 631. The guide members 639 fix the first heating zone 632, the cooling zone 633, the second heating zone 634, the third heating zone 635, the light transmitting zone 636, and the thermal insulation zone 637. It plays a role.
또한, 가이드 부재(639)들은 온도 조절 부재(631)들의 타단 부위로부터 수평 방향으로 돌출될 수 있다. 가이드 부재(639)들 사이의 간격이 가이드 돌기(614)의 두께와 실질적으로 동일하므로, 돌출된 가이드 부재(639)들은 하우징(610)의 가이드 돌기(614)에 의해 지지될 수 있다. 따라서, 온도 조절 부재(631)들이 왕복 직선 이동하더라도 가이드 부재(639)들이 가이드 돌기(614)에 의해 지지되므로, 온도 조절 부재(631)들 사이의 간격이 일정하게 유지될 수 있다. 그러므로, 온도 조절 부재(631)들 사이의 간격이 좁아져 시료 샘플부(620)와 충돌하는 것을 방지할 수 있다. In addition, the guide members 639 may protrude in a horizontal direction from the other end portion of the temperature regulating members 631. Since the spacing between the guide members 639 is substantially the same as the thickness of the guide protrusion 614, the protruding guide members 639 may be supported by the guide protrusion 614 of the housing 610. Therefore, even when the temperature regulating members 631 move reciprocally linearly, the guide members 639 are supported by the guide protrusions 614, so that the distance between the temperature regulating members 631 can be kept constant. Therefore, the gap between the temperature regulating members 631 can be narrowed to prevent the collision with the sample sample part 620.
한편, 온도 조절부(630)는 외부 전원을 공급하기 위한 전선과 직접 연결될 수 있다. 온도 조절부(630)가 직선 왕복 이동을 하므로, 상기 전선이 온도 조절부(630)와 직접 연결되더라도 상기 전선이 꼬이는 현상이 발생하지 않는다. On the other hand, the temperature control unit 630 may be directly connected to the wire for supplying external power. Since the temperature controller 630 linearly reciprocates, the wire is not twisted even when the wire is directly connected to the temperature controller 630.
센서 모듈(640)은 하우징(610)의 내측 상부면에 구비되며, 광을 이용하여 DNA의 증폭 정도를 판별하고 DNA를 판별한다. 예를 들면, 센서 모듈(640)은 하우징(610)의 내측면에 고정될 수 있다. 온도 조절부(630)의 광 투과 영역(636)이 시료 샘플부(620)의 상하에 위치한 상태에서 센서 모듈(640)이 시료 샘플부(620)로 광을 조사하고, 시료 샘플부(620)로부터 전달된 광을 수광할 수 있다. The sensor module 640 is provided on the inner upper surface of the housing 610, and determines the DNA amplification degree and the DNA by using light. For example, the sensor module 640 may be fixed to an inner side surface of the housing 610. The sensor module 640 irradiates light onto the sample sample unit 620 while the light transmitting region 636 of the temperature controller 630 is positioned above and below the sample sample unit 620, and the sample sample unit 620. It can receive light transmitted from it.
일 예로, 센서 모듈(640)은 발광부와 수광부를 포함하며, 상기 발광부와 수광부는 시료 샘플부(620)의 상방 및 하방에 각각 배치될 수 있다. 다른 예로, 센서 모듈(640)은 일체로된 발광부와 수광부를 포함하며, 상기 일체의 발광부와 수광부가 시료 샘플부(620)의 상방 또는 하방에 배치될 수 있다. For example, the sensor module 640 may include a light emitting part and a light receiving part, and the light emitting part and the light receiving part may be disposed above and below the sample sample part 620, respectively. As another example, the sensor module 640 may include an integrated light emitting unit and a light receiving unit, and the integrated light emitting unit and the light receiving unit may be disposed above or below the sample sample unit 620.
구동부(660)는 하우징(610)의 내부에 구비되며, 제1 가열 영역(632), 냉각 영역(633), 제2 가열 영역(634), 제3 가열 영역(635) 및 광 투과 영역(636)이 순차적으로 시료 샘플부(620)를 지나도록 온도 조절부(630)를 수평 방향으로 직선 왕복 이동시킨다. 구동부(660)의 예로는 리니어 모터, 실린더 등을 들 수 있다. The driving unit 660 is provided inside the housing 610, and includes a first heating region 632, a cooling region 633, a second heating region 634, a third heating region 635, and a light transmitting region 636. ) Linearly reciprocates the temperature control unit 630 in a horizontal direction so that) passes sequentially through the sample sample unit 620. Examples of the driving unit 660 include a linear motor, a cylinder, and the like.
한편, 온도 조절부(630)는 한 쌍의 온도 조절 부재(631)들 중 어느 하나만을 포함할 수 있다. 또한, 센서 모듈(640)이 하우징(610)의 내측 상부면에 구비되지 않고 온도 조절 부재(631)의 광 투과 영역(636)에 구비될 수도 있다.The temperature controller 630 may include only one of the pair of temperature regulating members 631. In addition, the sensor module 640 may not be provided on the inner upper surface of the housing 610, but may be provided in the light transmitting region 636 of the temperature control member 631.
본 발명의 일 실시 예에 따른 후막 형성용 발열 페이스트 조성물(이하, 발열 페이스트 조성물)은 탄소나노튜브 입자, 탄소나노입자, 혼합 바인더, 유기 용매 및 분산제를 포함한다.The exothermic paste composition (hereinafter, exothermic paste composition) for forming a thick film according to an embodiment of the present invention includes carbon nanotube particles, carbon nanoparticles, a mixed binder, an organic solvent and a dispersant.
구체적으로 발열 페이스트 조성물 100 중량부에 대하여 탄소나노튜브 입자 3 내지 6중량부, 탄소나노입자 0.5 내지 30 중량부, 혼합 바인더 10 내지 30 중량부, 유기 용매 29 내지 83 중량부, 분산제 0.5 내지 5 중량부를 포함한다.Specifically, 3 to 6 parts by weight of carbon nanotube particles, 0.5 to 30 parts by weight of carbon nanoparticles, 10 to 30 parts by weight of a mixed binder, 29 to 83 parts by weight of an organic solvent, and 0.5 to 5 parts by weight of a dispersant based on 100 parts by weight of the exothermic paste composition. Contains wealth.
상기 탄소나노튜브 입자는 단일벽 탄소나노튜브, 이중벽 탄소나노튜브, 다중벽 탄소나노튜브 또는 이들의 혼합물로부터 선택될 수 있다. 예컨대 상기 탄소나노튜브 입자는 다중벽 탄소나노튜브(multi wall carbon nanotube)일 수 있다. 상기 탄소나노튜브 입자가 다중벽 탄소나노튜브일 때, 직경은 5nm 내지 30nm 일 수 있고, 길이는 3㎛ 내지 40㎛일 수 있다.The carbon nanotube particles may be selected from single-walled carbon nanotubes, double-walled carbon nanotubes, multi-walled carbon nanotubes, or mixtures thereof. For example, the carbon nanotube particles may be multi wall carbon nanotubes. When the carbon nanotube particles are multi-walled carbon nanotubes, the diameter may be 5 nm to 30 nm, and the length may be 3 μm to 40 μm.
상기 탄소나노입자는 예컨대 그라파이트 나노입자일 수 있으며, 직경은 1㎛ 내지 25㎛일 수 있다.The carbon nanoparticles may be, for example, graphite nanoparticles, and the diameter may be 1 μm to 25 μm.
혼합 바인더는 발열 페이스트 조성물이 300℃ 가량의 온도 범위에서도 내열성을 가질 수 있도록 하는 기능을 하는 것으로, 에폭시 아크릴레이트(Epocy acrylate) 또는 헥사메틸렌 디이소시아네이트(Hexamethylene diisocyanate), 폴리비닐 아세탈(Polyvinyl acetal) 및 페놀계 수지(Phenol resin)가 혼합된 형태를 갖는다. 예컨대 상기 혼합 바인더는 에폭시 아크릴레이트, 폴리비닐 아세탈 및 페놀계 수지가 혼합된 형태일 수 있고, 또는 헥사메틸렌 디이소시아네이트, 폴리비닐 아세탈 및 페놀계 수지가 혼합된 형태일 수도 있다. 본 발명에서는 혼합 바인더의 내열성을 높임으로써, 300℃ 가량의 고온으로 발열시키는 경우에도 물질의 저항 변화나 도막의 파손이 없다는 장점을 갖는다.The mixed binder serves to make the exothermic paste composition have heat resistance even in the temperature range of about 300 ° C., and includes epoxy acrylate or hexamethylene diisocyanate, polyvinyl acetal, and the like. Phenolic resin has a mixed form. For example, the mixed binder may be a mixture of epoxy acrylate, polyvinyl acetal, and phenolic resin, or may be a mixture of hexamethylene diisocyanate, polyvinyl acetal, and phenolic resin. In the present invention, by increasing the heat resistance of the mixed binder, even if the heat generated at a high temperature of about 300 ℃ has the advantage that there is no change in resistance of the material or breakage of the coating film.
여기에서 페놀계 수지는 폐놀 및 페놀 유도체를 포함하는 페놀계 화합물을 의미한다. 예컨대 상기 페놀 유도체는 p-크레졸(p-Cresol), o-구아야콜(o-Guaiacol), 크레오졸(Creosol), 카테콜(Catechol), 3-메톡시-1,2-벤젠디올(3-methoxy-1,2-Benzenediol), 호모카테콜(Homocatechol), 비닐구아야콜(vinylguaiacol), 시링콜(Syringol), 이소-유제놀(Iso-eugenol), 메톡시 유제놀(Methoxyeugenol), o-크레졸(o-Cresol), 3-메틸-1,2-벤젠디올(3-methoxy-1,2-Benzenediol), (z)-2-메톡시-4-(1-프로페닐)-페놀((z)-2-methoxy-4-(1-propenyl)-Phenol), 2,.6-디에톡시-4-(2-프로페닐)-페놀(2,6-dimethoxy-4-(2-propenyl)-Phenol), 3,4-디메톡시-페놀(3,4-dimethoxy-Phenol), 4-에틸-1,3-벤젠디올(4ethyl-1,3-Benzenediol), 레졸 페놀(Resole phenol), 4-메틸-1,2-벤젠디올(4-methyl-1,2-Benzenediol), 1,2,4-벤젠트리올(1,2,4-Benzenetriol), 2-메톡시-6-메틸페놀(2-Methoxy-6-methylphenol), 2-메톡시-4-비닐페놀(2-Methoxy-4-vinylphenol) 또는4-에틸-2-메톡시-페놀(4-ethyl-2-methoxy-Phenol) 등이 있으며, 이에 한정되는 것은 아니다.Herein, the phenolic resin means a phenolic compound including phenol and phenol derivatives. For example, the phenol derivative may include p-cresol, o-Guaiacol, Creosol, catechol, 3-methoxy-1,2-benzenediol (3 -methoxy-1,2-Benzenediol), Homocatechol, Vinylguaiacol, Syringol, Iso-eugenol, Methoxyeugenol, o O-Cresol, 3-methyl-1,2-benzenediol, (z) -2-methoxy-4- (1-propenyl) -phenol ( (z) -2-methoxy-4- (1-propenyl) -Phenol), 2, .6-diethoxy-4- (2-propenyl) -phenol (2,6-dimethoxy-4- (2-propenyl) ) -Phenol), 3,4-dimethoxy-Phenol, 4-ethyl-1,3-benzenediol, Resol phenol, 4-methyl-1,2-benzenediol (4-methyl-1,2-Benzenediol), 1,2,4-benzenetriol (1,2,4-Benzenetriol), 2-methoxy-6-methylphenol (2-Methoxy-6-methylphenol), 2-Methoxy-4-vinylphenol or 4-ethyl-2-methoxy-phenol (4-ethyl-2-methoxy-Phenol) Such as Information that is not.
상기 혼합 바인더의 혼합 비율은 에폭시 아크릴레이트 또는 헥사메틸렌 디이소시아네이트 100 중량부에 대하여 폴리비닐 아세탈수지 10 내지 150 중량부, 페놀계 수지 100 내지 500 중량부의 비율일 수 있다. 페놀계 수지의 함량이 100 중량부 이하인 경우 발열 페이스트 조성물의 내열 특성이 저하되며, 500 중량부를 초과하는 경우에는 유연성이 저하되는 문제가 있다(취성 증가).The mixing ratio of the mixed binder may be a ratio of 10 to 150 parts by weight of polyvinyl acetal resin and 100 to 500 parts by weight of phenolic resin based on 100 parts by weight of epoxy acrylate or hexamethylene diisocyanate. If the content of the phenolic resin is 100 parts by weight or less, the heat resistance characteristics of the heat-paste composition is lowered, and if it exceeds 500 parts by weight, there is a problem that the flexibility is lowered (brittleness increase).
유기 용매는 상기 전도성 입자 및 혼합 바인더를 분산시키기 위한 것으로, 카비톨 아세테이트(Carbitol acetate), 부틸 카비톨아세테이트(Butyl carbotol acetate), DBE(dibasic ester), 에틸카비톨, 에틸카비톨아세테이트, 디프로필렌글리콜메틸에테르, 셀로솔브아세테이트, 부틸셀로솔브아세테이트, 부탄올(Butanol) 및 옥탄올(Octanol) 중에서 선택되는 2 이상의 혼합 용매일 수 있다.The organic solvent is used to disperse the conductive particles and the mixed binder, carbitol acetate, butyl carbotol acetate, dibasic ester, ethyl carbitol, ethyl carbitol acetate, dipropylene It may be a mixed solvent of two or more selected from glycol methyl ether, cellosolve acetate, butyl cellosolve acetate, butanol and octanol.
한편, 분산을 위한 공정은 통상적으로 사용되는 다양한 방법들이 적용될 수 있으며, 예를 들면 초음파처리(Ultra-sonication), 롤밀(Roll mill), 비드밀(Bead mill) 또는 볼밀(Ball mill) 과정을 통해 이루어질 수 있다.On the other hand, the dispersion process can be applied to a variety of commonly used methods, for example through the ultra-sonication (Roll mill), bead mill (Bead mill) or ball mill (Ball mill) process Can be done.
분산제는 상기 분산을 보다 원활하게 하기 위한 것으로, BYK류와 같이 당업계에서 이용되는 통상의 분산제, Triton X-100과 같은 양쪽성 계면활성제, SDS등과 가은 이온성 계면활성제를 이용할 수 있다.The dispersant is to make the dispersion more smoothly, and a conventional dispersant used in the art such as BYK, an amphoteric surfactant such as Triton X-100, SDS and the like and a ionic surfactant may be used.
본 발명의 일 실시 예에 따른 발열 페이스트 조성물은 발열 페이스트 조성물 100 중량부에 대하여 실란 커플링제 0.5 내지 5 중량부를 더 포함할 수 있다.The heating paste composition according to an embodiment of the present invention may further include 0.5 to 5 parts by weight of the silane coupling agent based on 100 parts by weight of the heating paste composition.
실란커플링제는 발열 페이스트 조성물의 배합시에 수지들간에 접착력을 증진시키는 접착증진제 기능을 한다. 실란 커플링제는 에폭시 함유 실란 또는 머켑토 함유 실란일 수 있다. 이러한 실란 커플링제의 예로는 에폭시가 함유된 것으로 2-(3,4 에폭시 사이클로헥실)-에틸트리메톡시실란, 3-글리시독시트리메톡시실란, 3-글리시독시프로필트리에톡시실란, 3-글리시독시프로필트리에톡시실란이 있고, 아민기가 함유된 것으로 N-2(아미노에틸)3-아미토프로필메틸디메톡시실란, N-2(아미노에틸)3-아미노프로필트리메톡시실란, N-2(아미노에틸)3-아미노프로필트리메톡시실란, 3-아미노프로필트리에톡시실란, 3-아미노프로필트리에톡시실, 3-트리에톡시실리-N-(1,2-디메틸뷰틸리덴)프로필아민, N-페닐-3-아미노프로필트리메톡시실란이 있으며, 머켑토가 함유된 것으로 3-머켑토프로필메틸디메톡시실란, 3-머켑토프로필트리에톡시실란, 이소시아네이트가 함유된 3-이소시아네이트프로필트리에톡시실란 등이 있으며, 상기 나열한 것으로 한정되지 않는다.The silane coupling agent functions as an adhesion promoter to promote adhesion between the resins in the formulation of the exothermic paste composition. The silane coupling agent may be an epoxy containing silane or a merceto containing silane. Examples of such silane coupling agents include epoxy and include 2- (3,4 epoxy cyclohexyl) -ethyltrimethoxysilane, 3-glycidoxytrimethoxysilane, 3-glycidoxypropyltriethoxysilane, 3-glycidoxypropyltriethoxysilane, containing amine groups, N-2 (aminoethyl) 3-amitopropylmethyldimethoxysilane, N-2 (aminoethyl) 3-aminopropyltrimethoxysilane , N-2 (aminoethyl) 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-aminopropyltriethoxysil, 3-triethoxysil-N- (1,2-dimethyl Butylidene) propylamine, N-phenyl-3-aminopropyltrimethoxysilane, containing merceto, 3-mercetopropylmethyldimethoxysilane, 3-mercetopropyltriethoxysilane, isocyanate Contained 3-isocyanatepropyltriethoxysilane and the like and are limited to those listed above. No.
본 발명은 상술한 본 발명의 실시 예들에 따른 발열 페이스트 조성물을 기판 상에 스크린 인쇄, 그라비아 인쇄(내지 롤투롤 그라비아 인쇄) 또는 콤마코팅(내지 롤투롤 콤마코팅)하여 형성되는 면상 발열체를 추가적으로 제공한다.The present invention further provides a planar heating element which is formed by screen-printing, gravure printing (or roll-to-roll gravure printing) or comma coating (or roll-to-roll comma coating) on a substrate of the heating paste composition according to the embodiments of the present invention described above. .
여기에서 상기 기판은 폴리카보네이트, 폴리에틸렌테레프탈레이트(PET), 폴리에틸렌나프탈레이트(PEN), 플리이미드, 셀룰로스 에스텔, 나일론, 폴리프로필렌, 폴리아크릴로린트릴, 폴리술폰, 폴리에스테르술폰, 폴리비닐리덴플롤라이드, 유리, 유리섬유(매트), 세라믹, SUS, 구리 또는 알루미늄 기판 등이 사용될 수 있으며, 상기 나열된 것들로 한정되는 것은 아니다. 상기 기판은 발열체의 응용 분야나 사용온도에 따라 적절히 선택될 수 있다.Wherein the substrate is polycarbonate, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyimide, cellulose ester, nylon, polypropylene, polyacrylolintril, polysulfone, polyester sulfone, polyvinylidene fluoride , Glass, glass fiber (matte), ceramic, SUS, copper or aluminum substrate, etc. may be used, but is not limited to those listed above. The substrate may be appropriately selected depending on the application field of the heating element or the use temperature.
면상 발열체는 상기 기판 상에 본 발명의 실시 예들에 따른 발열 페이스트 조성물을 스크린 인쇄 또는 그라비아 인쇄를 통해 원하는 패턴으로 인쇄하고, 건조 및 경화한 후에, 상부에 은 페이스트 또는 도전성 페이스트를 인쇄 및 건조/경화 시킴으로써 전극을 형성함으로써 형성될 수 있다. 또는 은 페이스트 또는 도전성 페이스트를 인쇄 및 건조/경화한 후에 상부에 본 발명의 실시 예들에 따른 발열 페이스트 조성물을 스크린 인쇄 또는 그라비아 인쇄함으로써 형성하는 것도 가능하다.The planar heating element prints the heating paste composition according to the embodiments of the present invention on the substrate in a desired pattern through screen printing or gravure printing, and after drying and curing, printing and drying / curing the silver paste or the conductive paste on the top. By forming an electrode. Alternatively, after printing and drying / curing the silver paste or the conductive paste, the heat generating paste composition according to the embodiments of the present invention may be formed by screen printing or gravure printing.
한편, 상기 면상 발열체는 상부면에 코팅되는 보호층을 더 포함할 수 있다. 상기 보호층은 실리카(SiO₂)로 형성될 수 있다. 보호층이 실리카로 형성되는 경우에는 발열면에 코팅되더라도 발열체가 유연성을 유지할 수 있는 장점을 갖는다.On the other hand, the surface heating element may further include a protective layer coated on the upper surface. The protective layer may be formed of silica (SiO₂). When the protective layer is formed of silica, the heating element has an advantage of maintaining flexibility even if coated on the heating surface.
이하, 본 발명에 따른 발열 페이스트 조성물 및 이를 이용한 면상 발열체를 시험예를 통하여 상세히 설명한다. 하기 시험예는 본 발명을 설명하기 위한 예시일 뿐, 본 발명이 하기 시험예에 의해 한정되는 것은 아니다.Hereinafter, the heating paste composition and the planar heating element using the same according to the present invention will be described in detail through a test example. The following test examples are only examples for explaining the present invention, and the present invention is not limited by the following test examples.
시험예Test Example
(1) 실시 예 및 비교 예의 준비(1) Preparation of Examples and Comparative Examples
하기 [표 1]과 같이 실시 예(3종류) 및 비교 예(3종류)를 준비하였다. [표 1]에 표기된 조성비는 중량%로 기재된 것임을 밝혀둔다.As shown in Table 1 below, examples (three types) and comparative examples (three types) were prepared. Note that the composition ratios shown in Table 1 are described in weight percent.
실시예 1Example 1 실시예 2Example 2 실시예 3Example 3 비교예 1Comparative Example 1 비교예 2Comparative Example 2 비교예 3Comparative Example 3
CNT 입자CNT particles 44 55 66 44 55 66
CNP 입자CNP Particles 88 99 1515 -- -- --
혼합 바인더Mixed binder 2020 1515 2222 -- -- --
에틸셀룰로오스Ethyl cellulose -- -- -- 1010 1212 1414
유기용매Organic solvent 6363 6767 5252 8282 7979 7676
분산제(BYK)Dispersant (BYK) 55 44 55 44 44 44
실시 예들의 경우 CNT 입자와, CNP 입자(실시 예 1 내지 3)를 [표 1]의 조성에 따라 카비톨아세테이트 용매에 첨가하고 BYK 분산제를 첨가한 후, 60분간 초음파 처리를 통해 분산액 A를 제조하였다. 이후, 혼합 바인더를 카비톨아세테이트 용매에 첨가한 후 기계적 교반을 통해 마스터 배치를 제조하였다. 다음으로 상기 분산액 A 및 마스터배치를 기계적 교반을 통해 1차 혼련한 후에 3-롤-밀 과정을 거쳐 2차 혼련함으로써 발열 페이스트 조성물을 제조하였다.In the case of Examples, CNT particles and CNP particles (Examples 1 to 3) were added to a carbitol acetate solvent according to the composition of [Table 1], and BYK dispersant was added, and then dispersion A was prepared by sonication for 60 minutes. It was. Thereafter, a mixed binder was added to the carbitol acetate solvent and then a master batch was prepared through mechanical stirring. Next, the dispersion A and the masterbatch were first kneaded through mechanical stirring, followed by a second kneading process through a 3-roll-mill process to prepare an exothermic paste composition.
비교 예들의 경우 CNT 입자를 [표 1]의 조성에 따라 카비톨아세테이트 용매에 첨가하고 BYK 분산제를 첨가한 후, 60분간 초음파 처리를 통해 분산액을 제조하였다. 이후, 에틸셀룰로오스를 카비톨아세테이트 용매에 첨가한 후 기계적 교반을 통해 마스터 배치를 제조하였다. 다음으로 상기 분산액 B 및 마스터배치를 기계적 교반을 통해 1차 혼련한 후에 3-롤-밀 과정을 거쳐 2차 혼련함으로써 발열페이스트 조성물을 제조하였다.For the comparative examples, CNT particles were added to the carbitol acetate solvent according to the composition of [Table 1], BYK dispersant was added, and a dispersion was prepared by sonication for 60 minutes. Thereafter, ethyl cellulose was added to the carbitol acetate solvent to prepare a master batch through mechanical stirring. Next, the dispersion B and the masterbatch were first kneaded through mechanical stirring, followed by a second kneading process through a 3-roll mill to prepare an exothermic paste composition.
(2) 면상발열체 특성 평가(2) Evaluation of Planar Heating Elements
실시 예 및 비교 예에 따른 발열 페이스트 조성물을 10×10cm 크기로 폴리이미드 기판 위에 스크린 인쇄하고 경화한 후에, 상부 양단에는 은 페이스트 전극을 인쇄하고 경화하여 면상 발열체 샘플을 제조하였다.After heat-printing the heat-paste composition according to the Examples and Comparative Examples on a polyimide substrate in a size of 10 × 10 cm and cured, a silver paste electrode was printed and cured on both upper ends to prepare a planar heating element sample.
관련하여 도 11은 본 발명에 따른 발열 페이스트 조성물을 이용하여 제작한 면상 발열체 시편의 이미지이다. 도 11a는 폴리이미드 기판 위에 발열 페이스트 조성물이 스크린 인쇄되어 형성된 면상 발열체이다. 도 11b는 유리섬유 매트 위에 발열 페이스트 조성물이 스크린 인쇄되어 형성된 면상 발열체이다. 도 11c 및 도 11d는 도 11a의 면상 발열체 상부에 보호층을 코팅한 경우의 이미지이다(도 11c는 검은색 보호층 코팅, 도 11d는 녹색 보호층 코팅).11 is an image of a planar heating element specimen prepared using the heating paste composition according to the present invention. 11A is a planar heating element formed by screen printing a heat generating paste composition on a polyimide substrate. 11B is a planar heating element formed by screen printing a heating paste composition on a glass fiber mat. 11C and 11D are images when the protective layer is coated on the planar heating element of FIG. 11A (FIG. 11C is a black protective layer coating, and FIG. 11D is a green protective layer coating).
도 11a에 나타난 것과 같은 면상 발열체 샘플(실시 예) 및 상기 비교 예에 따라 제조된 면상 발열체 샘플들의 비저항을 측정하였다(인가되는 전압/전류는 [표 2]에 표기됨). 또한, 인가되는 전압/전류에 따른 승온 효과를 확인하기 위해 상기 실시 예 및 비교 예에 해당하는 면상 발열체를 각각 40℃, 100℃ 및 200℃까지 승온시키고, 상기 온도에 도달하였을 때의 DC 전압 및 전류를 측정하였다.The specific resistance of the planar heating element sample (Example) and the planar heating element samples prepared according to the comparative example as shown in FIG. 11A was measured (the applied voltage / current is shown in [Table 2]). In addition, in order to confirm the heating effect according to the applied voltage / current, the planar heating element corresponding to the above embodiments and comparative examples was heated up to 40 ° C, 100 ° C and 200 ° C, respectively, and the DC voltage when the temperature was reached and The current was measured.
또한, 각 샘플들에 대하여 200℃에서의 발열안정성을 테스트하였다. 관련하여, 도 12에서는 실시 예 및 비교 예에 따라 제조된 면상 발열체 샘플들의 발열안정성 시험 모습의 이미지를 나타내었으며, 시험결과는 하기 [표 2]에 정리하였다.In addition, exothermic stability at 200 ° C. was tested for each sample. In this regard, Figure 12 shows the image of the heat stability test appearance of the planar heating element samples prepared according to the Examples and Comparative Examples, the test results are summarized in the following [Table 2].
실시예 1Example 1 실시예 2Example 2 실시예 3Example 3 비교예 1Comparative Example 1 비교예 2Comparative Example 2 비교예 3Comparative Example 3
비저항(×10ˇ²ΩcmSpecific resistance (× 10ˇ²Ωcm 1.91.9 2.552.55 2.962.96 9.739.73 8.528.52 6.236.23
40℃ 도달 DC 구동 전압/전류40 ℃ reach DC drive voltage / current 5V/0.2A5V / 0.2A 6V/0.2A6V / 0.2A 7V/0.2A7V / 0.2A 20V/0.3A20V / 0.3A 16V/0.2A16V / 0.2A 12V/0.2A12V / 0.2A
100℃ 도달 DC 구동 전압/전류100 ℃ reach DC driving voltage / current 9V/0.5A9V / 0.5A 12V/0.4A12V / 0.4A 14V/0.5A14 V / 0.5 A 48V/0.7A48V / 0.7A 40V/0.7A40V / 0.7A 26V/0.6A26V / 0.6A
200℃ 도달 DC 구동 전압/전류200 ℃ reach DC drive voltage / current 20V/0.6A20V / 0.6A 24V/0.7A24V / 0.7A 24V/1.0A24V / 1.0A -- -- --
발열안정성(day)Heat stability (day) 20일 이상20 days or more 20일 이상20 days or more 20일 이상20 days or more 불량Bad 불량Bad 불량Bad
상기 [표 2]를 참조하며, 비저항은 실시 예들에 해당하는 면상 발열체가 비교 예들에 해당하는 면상 발열체보다 작게 측정되었으며, 이에 따라 각 온도에 도달하기 위해 필요한 구동 전압/전류 역시 실시 예들에 해당하는 면상 발열체가 비교 예들에 해당하는 면상 발열체보다 작게 측정되었다. 즉 실시 예들에 해당하는 면상 발열체가 비교 예보다 저전압 및 저전력으로 구동 가능함을 확인할 수 있었다.Referring to the above [Table 2], the specific resistance was measured that the planar heating element corresponding to the embodiments is smaller than the planar heating element corresponding to the comparative examples, accordingly driving voltage / current required to reach each temperature also corresponds to the embodiments The planar heating element was measured smaller than the planar heating element corresponding to the comparative examples. That is, it was confirmed that the planar heating elements corresponding to the embodiments can be driven at a lower voltage and lower power than the comparative example.
또한, 실시 예 1 내지 3에 따른 면상 발열체에서는 200℃의 발열 구동하에서도 20일간 안정성이 유지되는 것으로 나타나는 반면에(별도의 보호층없음), 비교 예 1 내지 3에서는 200℃의 발열 구동시 2시간 이내에 발열부 표면이 부풀어 오르는 불량 현상이 관찰되었다. 즉 실시 예들에 해당하는 면상 발열체가 비교 예보다 200℃이상의 고온에서도 안정적으로 구동 가능함을 확인할 수 있었다.In addition, in the planar heating elements according to Examples 1 to 3, the stability was maintained for 20 days even under the heating operation of 200 ° C. (no separate protective layer). Poor phenomena were observed to swell the surface of the heating portion within time. That is, it was confirmed that the planar heating element corresponding to the embodiments can be stably driven even at a high temperature of 200 ° C. or more than the comparative example.
본 발명은 상술한 면상 발열체와, 상기 면상 발열체에 전력을 공급하는 전력공급부를 포함하는 휴대용 발열히터를 추가적으로 제공한다.The present invention further provides a portable heating heater including the planar heating element and a power supply unit for supplying power to the planar heating element.
여기에서 전력공급부란 면상 발열체의 좌우측에 도포 형성되는 리드 전극과, 상기 리드 전극에 부착 형성되는 전원접속용 전극을 포함할 수 있다. 경우에 따라서는 상기 전원접속용 전극이 면상 발열체에 직접 연결될 수 있다. 상기 리드 전극 또는 전원접속용 전극은 은 페이스트, 구리 페이스트, 구리 테이프 등을 이용하여 형성할 수 있다.Here, the power supply unit may include a lead electrode coated on the left and right sides of the planar heating element, and a power connection electrode attached to the lead electrode. In some cases, the power connection electrode may be directly connected to the planar heating element. The lead electrode or the electrode for power connection can be formed using silver paste, copper paste, copper tape, or the like.
본 발명에 따른 휴대용 발열 히터는 상기 면상 발열체가 몸체 내부 또는 외면에 부착, 매립 또는 장착되고, 상기 면상 발열체의 구동을 위한 전력공급부를 구비하는 형태를 갖는다. 이러한 휴대용 발열 히터는 유모차용 이너 시트, 발열 양말, 발열 신발, 발열 모자, 휴대용 발열 매트, 휴대용 조리 기구, 차량용 발열 시트 등에 이용될 수 있다.The portable heating heater according to the present invention has a form in which the planar heating element is attached, embedded or mounted on the inner or outer surface of the body, and has a power supply for driving the planar heating element. The portable heating heater may be used for an inner seat for a baby carriage, a heating sock, a heating shoe, a heating hat, a portable heating mat, a portable cooking utensil, a vehicle heating sheet, and the like.
특히 본 발명에 따른 휴대용 발열 히터에 채용되는 면상 발열체는 상기에서 설명한 바와 같이 저전압 및 저전력으로 구동이 가능하므로 리튬이온 배터리, 리튬 폴리머 배터리 등의 충방전이 가능한 2차 전지로 구동할 수 있는 바, 휴대성이 증진되고 사용시간을 크게 늘릴 수 있다는 장점이 있다.In particular, the planar heating element employed in the portable heating heater according to the present invention can be driven as a secondary battery capable of charging and discharging, such as a lithium ion battery, a lithium polymer battery because it can be driven at a low voltage and low power as described above, The portability is enhanced and the use time can be greatly increased.
결국, 본 발명에 따른 PCR 장치는 시료 샘플부를 고정한 상태에서 온도 조절부를 이동하면서 상기 시료 샘플부를 가열 및 냉각할 수 있다. 그리고, 상기 시료 샘플부의 가열 및 냉각 시간을 감소시켜 상기 PCR 장치의 효율을 향상시킬 수 있다. 또한, 상기 시료 샘플부가 고정된 상태를 유지하므로, 상기 PCR 장치의 DNA 검출 정확도를 향상시킬 수 있으며, 고내열성을 가져 온도에 따른 저항 변화가 작고, 비저항이 낮아 저전압 및 저전력으로 구동 가능한 발열 페이스트 조성물을 포함할 수 있다.As a result, the PCR device according to the present invention can heat and cool the sample sample unit while moving the temperature control unit while the sample sample unit is fixed. The efficiency of the PCR device may be improved by reducing the heating and cooling time of the sample sample unit. In addition, since the sample sample portion is maintained in a fixed state, the DNA detection accuracy of the PCR device may be improved, and the heat resistance paste composition may be driven at low voltage and low power due to high heat resistance, small resistance change according to temperature, and low specific resistance. It may include.
따라서, 이상의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.Accordingly, the above detailed description should not be construed as limiting in all aspects and should be considered as illustrative. The scope of the invention should be determined by reasonable interpretation of the appended claims, and all changes within the equivalent scope of the invention are included in the scope of the invention.

Claims (18)

  1. DNA를 합성하기 위한 재료를 수납하며, 고정된 상태로 배치되는 시료 샘플부; 및A sample sample part accommodating a material for synthesizing DNA and disposed in a fixed state; And
    상기 시료 샘플부와 인접하도록 배치되며, 발열 페이스트 조성물을 통해서 형성되는 면상 발열체를 적어도 하나 이상 구비하고, 고정된 상태의 상기 시료 샘플부에 대해 이동하면서 DNA 합성에 필요한 단계별 온도로 상기 시료 샘플부의 온도를 조절하는 온도 조절부를 포함하고,The sample sample portion is disposed to be adjacent to the sample sample portion, and includes at least one planar heating element formed through a heat generating paste composition, and moves to the sample sample portion in a fixed state and at a stepwise temperature necessary for DNA synthesis. It includes a temperature control unit for adjusting,
    상기 발열 페이스트 조성물은,The heating paste composition,
    발열 페이스트 조성물 100 중량부에 대하여 탄소나노튜브 입자 3 내지 6중량부, 탄소나노입자 0.5 내지 30중량부, 혼합 바인더 10 내지 30중량부, 유기 용매 29 내지 83 중량부, 분산제 0.5 내지 5중량부를 포함하고, 3 to 6 parts by weight of carbon nanotube particles, 0.5 to 30 parts by weight of carbon nanoparticles, 10 to 30 parts by weight of a mixed binder, 29 to 83 parts by weight of an organic solvent, and 0.5 to 5 parts by weight of a dispersant based on 100 parts by weight of the exothermic paste composition. and,
    상기 혼합 바인더는 에폭시 아크릴레이트, 폴리비닐 아세탈 및 페놀계 수지가 혼합되거나 또는 헥사메틸렌 디이소시아네이트, 폴리비닐 아세탈 및 페놀계 수지가 혼합되는 것을 특징으로 하는 PCR 장치. The mixed binder is an epoxy acrylate, polyvinyl acetal and phenolic resin is mixed or hexamethylene diisocyanate, polyvinyl acetal and phenolic resin is mixed.
  2. 제1항에 있어서,The method of claim 1,
    상기 온도 조절부는,The temperature control unit,
    상기 시료 샘플부를 제1 온도로 가열하기 위한 제1 가열 영역과, 상기 시료 샘플부를 상기 제1 온도보다 낮은 제2 온도로 가열하기 위한 제2 가열 영역 및 상기 시료 샘플부를 상기 제1 온도와 제2 온도 사이의 제3 온도로 가열하기 위한 제3 가열 영역이 순차적으로 배치되는 것을 특징으로 하는 PCR 장치. A first heating region for heating the sample sample portion to a first temperature, a second heating region for heating the sample sample portion to a second temperature lower than the first temperature, and the sample sample portion to the first temperature and the second temperature And a third heating zone for heating to a third temperature between the temperatures is sequentially arranged.
  3. 제2항에 있어서, The method of claim 2,
    상기 시료 샘플부로 광을 조사하여 상기 DNA의 증폭 정도를 판별하고 상기 DNA를 판별하는 센서 모듈을 더 포함하는 것을 특징으로 하는 PCR 장치.And a sensor module for determining the amplification degree of the DNA by irradiating light to the sample sample unit, and determining the DNA.
  4. 제3항에 있어서,The method of claim 3,
    상기 온도 조절부는,The temperature control unit,
    상기 제1 가열 영역의 일측 또는 상기 제3 가열 영역의 일측에 상기 센서 모듈의 광을 투과시키기 위한 광 투과 영역을 가지며,A light transmitting region for transmitting light of the sensor module on one side of the first heating region or on one side of the third heating region,
    상기 센서 모듈은,The sensor module,
    상기 광 투과 영역을 통해 상기 광을 조사하는 것을 특징으로 하는 PCR 장치.The PCR device, characterized in that for irradiating the light through the light transmission region.
  5. 제3항에 있어서,The method of claim 3,
    상기 센서 모듈은,The sensor module,
    상기 온도 조절부의 제1 가열 영역과 제3 가열 영역 사이에 구비되어 상기 온도 조절부와 같이 이동하는 것을 특징으로 하는 PCR 장치. The PCR device, characterized in that provided between the first heating zone and the third heating zone of the temperature control unit moves with the temperature control unit.
  6. 제2항에 있어서,The method of claim 2,
    상기 온도 조절부는,The temperature control unit,
    상기 제1 가열 영역과 상기 제2 가열 영역 사이에 구비되며, 상기 시료 샘플부를 냉각하기 위한 냉각 영역을 더 포함하는 것을 특징으로 하는 PCR 장치. And a cooling zone provided between the first heating zone and the second heating zone, for cooling the sample sample unit.
  7. 제6항에 있어서,The method of claim 6,
    상기 온도 조절부는,The temperature control unit,
    상기 온도 조절부의 각 영역들 사이의 열전달을 방지하기 위해 상기 각 영역들 사이에 단열 영역을 더 포함하는 것을 특징으로 하는 PCR 장치.PCR device, characterized in that further comprising a heat insulating zone between the respective areas to prevent heat transfer between the respective areas of the temperature control unit.
  8. 제1항에 있어서,The method of claim 1,
    상기 시료 샘플부의 온도 조절을 위해 상기 온도 조절부가 회전 가능하도록 지지하며, 상기 온도 조절부로 전원을 공급하기 위한 슬립 링(slip ring)을 더 포함하는 것을 특징으로 하는 PCR 장치. A PCR device, characterized in that for supporting the temperature control of the sample sample portion rotatably supports the temperature control unit, a slip ring for supplying power to the temperature control unit.
  9. 제1항에 있어서,The method of claim 1,
    상기 온도 조절부를 감싸도록 구비되며, 상기 시료 샘플부를 수용하기 위한 삽입구를 갖는 하우징을 더 포함하는 것을 특징으로 하는 PCR 장치.It is provided to surround the temperature control portion, PCR device, characterized in that further comprising a housing having an insertion port for receiving the sample sample.
  10. 제9항에 있어서,The method of claim 9,
    상기 하우징은,The housing,
    상기 삽입구가 형성된 부위를 포함하여 내측면에 가이드 돌기를 가지며,It has a guide protrusion on the inner surface including a portion where the insertion hole is formed,
    상기 온도 조절부는,The temperature control unit,
    상기 온도 조절부가 이동하면서 상기 시료 샘플부와 일정한 간격을 유지하도록, 가장자리로부터 상기 가이드 돌기와 접촉하도록 연장하는 가이드 부재를 포함하는 것을 특징으로 하는 PCR 장치.And a guide member extending from an edge to contact the guide protrusion so as to maintain a constant distance from the sample sample part while the temperature controller moves.
  11. 제1항에 있어서,The method of claim 1,
    상기 혼합 바인더는,The mixed binder,
    에폭시 아크릴레이트 또는 헥사메틸렌 디이소시아네이트 100 중량부에 대하여 폴리비닐 아세탈 수지 10 내지 150 중량부, 페놀계수지 100 내지 500 중량부가 혼합되는 것을 특징으로 하는 PCR 장치.10 to 150 parts by weight of polyvinyl acetal resin and 100 to 500 parts by weight of phenol resin based on 100 parts by weight of epoxy acrylate or hexamethylene diisocyanate.
  12. 제1항에 있어서,The method of claim 1,
    발열 페이스트 조성물 100 중량부에 대하여 실란 커플링제 0.5 내지 5 중량부를 더 포함하는 것을 특징으로 하는 PCR 장치.PCR device, characterized in that it further comprises 0.5 to 5 parts by weight of the silane coupling agent based on 100 parts by weight of the exothermic paste composition.
  13. 제1항에 있어서,The method of claim 1,
    상기 탄소나노튜브 입자는 다중벽 탄소나노튜브 입자인 것을 특징으로 하는 PCR 장치.The carbon nanotube particles are PCR apparatus, characterized in that the multi-walled carbon nanotube particles.
  14. 제1항에 있어서,The method of claim 1,
    상기 유기 용매는,The organic solvent,
    카비톨 아세테이트, 부틸 카비톨 아세테이트, DBE(dibasic ester), 에틸카비톨, 에틸카비톨아세테이트, 디프로필렌글리콜메틸에테르, 셀로솔브아세테이트, 부틸셀로솔브아세테이트, 부탄올 및 옥탄올 중에서 선택되는 2 이상의 혼합 용매인 것을 특징으로 하는 PCR 장치.2 or more mixtures selected from carbitol acetate, butyl carbitol acetate, DBE (dibasic ester), ethyl carbitol, ethyl carbitol acetate, dipropylene glycol methyl ether, cellosolve acetate, butyl cellosolve acetate, butanol and octanol PCR device, characterized in that the solvent.
  15. 제1항에 있어서,The method of claim 1,
    상기 면상 발열체는,The planar heating element,
    상기 발열 페이스트 조성물이 기판 상에 스크린 인쇄, 그라비아 인쇄 또는 콤마코팅되어 형성되는 것을 특징으로 하는 PCR 장치.PCR device, characterized in that the exothermic paste composition is formed by screen printing, gravure printing or comma coating on the substrate.
  16. 제15항에 있어서,The method of claim 15,
    상기 기판은 폴리이미드 기판, 유리섬유 매트 또는 세라믹 유리인 것을 특징으로 하는 PCR 장치.The substrate is a PCR device, characterized in that the polyimide substrate, glass fiber mat or ceramic glass.
  17. 제15항에 있어서,The method of claim 15,
    상기 면상 발열체는,The planar heating element,
    상기 면상 발열체 상부면에 코팅되는 것으로, 실리카 또는 카본블랙과 같은 흑색 안료를 구비하는 유기물로 형성되는 보호층을 더 포함하는 것을 특징으로 하는 PCR 장치.The PCR device characterized in that it is coated on the top surface of the planar heating element, and further comprising a protective layer formed of an organic material having a black pigment such as silica or carbon black.
  18. 제1항에 있어서,The method of claim 1,
    상기 면상 발열체에 전력을 공급하는 전력 공급부를 더 포함하는 것을 특징으로 하는 PCR 장치.PCR device further comprises a power supply for supplying power to the planar heating element.
PCT/KR2016/003286 2015-05-19 2016-03-30 Pcr device WO2016186312A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20150069497 2015-05-19
KR10-2015-0069497 2015-05-19

Publications (1)

Publication Number Publication Date
WO2016186312A1 true WO2016186312A1 (en) 2016-11-24

Family

ID=57320587

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/003286 WO2016186312A1 (en) 2015-05-19 2016-03-30 Pcr device

Country Status (1)

Country Link
WO (1) WO2016186312A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090048575A (en) * 2006-06-27 2009-05-14 앤에이오에스 주식회사 Method for manufacturing planar heating element using carbon micro-fibers
KR101123351B1 (en) * 2008-10-09 2012-03-23 주식회사 엑사이엔씨 High conductive paste composition and method of high conductive paste composition
JP2013085530A (en) * 2011-10-20 2013-05-13 Sony Corp Microchip for heating reaction, method for manufacturing the microchip, and heating control method
KR101294596B1 (en) * 2012-02-09 2013-08-09 한화케미칼 주식회사 Composition and method of carbon nanotube paste for flat heating element device
KR20140128671A (en) * 2013-04-29 2014-11-06 (주)미코엠에스티 PCR reactor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090048575A (en) * 2006-06-27 2009-05-14 앤에이오에스 주식회사 Method for manufacturing planar heating element using carbon micro-fibers
KR101123351B1 (en) * 2008-10-09 2012-03-23 주식회사 엑사이엔씨 High conductive paste composition and method of high conductive paste composition
JP2013085530A (en) * 2011-10-20 2013-05-13 Sony Corp Microchip for heating reaction, method for manufacturing the microchip, and heating control method
KR101294596B1 (en) * 2012-02-09 2013-08-09 한화케미칼 주식회사 Composition and method of carbon nanotube paste for flat heating element device
KR20140128671A (en) * 2013-04-29 2014-11-06 (주)미코엠에스티 PCR reactor

Similar Documents

Publication Publication Date Title
WO2016186314A1 (en) Pot for vehicle
WO2016182199A1 (en) Battery pre-heating apparatus for hybrid vehicle and control method therefor
WO2016182196A1 (en) Heating apparatus for semiconductor vacuum line using sheet heater
WO2017200310A1 (en) Wireless power transmission apparatus for vehicle
WO2016186311A1 (en) Thermal mat
WO2013041006A1 (en) Biochemical analyser
CN1950209A (en) Device for the inline monitoring of printing quality in sheet-fed offset printing presses
WO2017171392A1 (en) Ptc unit for vehicle heater, ptc heater including same, and air conditioning device for vehicle
WO2016182198A1 (en) Heating device for electric vehicle and method for controlling same
WO2016186312A1 (en) Pcr device
WO2016186315A1 (en) Drying device
WO2016056748A1 (en) Substrate processing heater device and substrate solution processing device having same
WO2012111967A2 (en) Radiographic apparatus
WO2020197289A1 (en) Heating device and camera module
WO2020130721A1 (en) Heat-dissipating fluid composition and battery module comprising same
WO2016186313A1 (en) Heating element fabric having heating paste composition, and heating steering wheel using same
WO2012091243A1 (en) Thermal transfer film
WO2015174697A1 (en) Heating paste composition, and sheet heating element, heating roller, heating unit and heating module using same
WO2017122985A1 (en) Method for preparing oxide thin film, oxide thin film, and electronic device manufactured therewith
WO2023113249A1 (en) Carbon sheet planar heating element device capable of far-infrared ray emission and temperature control for cell culturing
WO2016182191A1 (en) Wafer heating apparatus
WO2016182192A1 (en) Glass heating apparatus and heating method
WO2015122641A1 (en) Heating paste composition, surface type heating element using same, and potable low-power heater
WO2023018194A1 (en) Pcr apparatus
US20170089950A1 (en) Massively parallel wafer-level reliability system and process for massively parallel wafer-level reliability testing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16796639

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16796639

Country of ref document: EP

Kind code of ref document: A1