WO2016182196A1 - Heating apparatus for semiconductor vacuum line using sheet heater - Google Patents

Heating apparatus for semiconductor vacuum line using sheet heater Download PDF

Info

Publication number
WO2016182196A1
WO2016182196A1 PCT/KR2016/003222 KR2016003222W WO2016182196A1 WO 2016182196 A1 WO2016182196 A1 WO 2016182196A1 KR 2016003222 W KR2016003222 W KR 2016003222W WO 2016182196 A1 WO2016182196 A1 WO 2016182196A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
parts
vacuum line
heating
inert gas
Prior art date
Application number
PCT/KR2016/003222
Other languages
French (fr)
Korean (ko)
Inventor
김윤진
조진우
신권우
박지선
Original Assignee
주식회사 대화알로이테크
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 대화알로이테크 filed Critical 주식회사 대화알로이테크
Publication of WO2016182196A1 publication Critical patent/WO2016182196A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering

Definitions

  • the present invention relates to a heating apparatus of a semiconductor vacuum line, and more particularly to a heating apparatus of a semiconductor vacuum line using a planar heating element.
  • a vacuum line connected to the vacuum pump to suck the air in the sealed chamber to form a predetermined vacuum pressure inside the chamber.
  • a vacuum line for various purposes such as a vacuum line is installed on the wafer chuck to vacuum the wafer.
  • a method of heating the vacuum pipe 1 by winding a heating coil, which is also a kind of heater, on the vacuum pipe 1 is also used.
  • a chamber connected to the vacuum pipe 1 by preventing a certain amount of particles from being formed by chemically bonding various gases passing through the vacuum pipe 1 heated by the heating pad 2 in a low temperature state. (Not shown) to maintain the internal cleanliness.
  • the heating device of the conventional semiconductor vacuum line is a heating pad and a heating coil installed in the vacuum pipe is a heater that requires a high voltage, so various safety accidents, such as electric shock accidents when handling it frequently, and a large amount of electromagnetic waves generated static electricity There have been many problems, such as the generation of secondary reaction byproducts.
  • an embodiment of the present invention provides a semiconductor vacuum line heating apparatus using a planar heating element using a heating paste composition having high heat resistance, a small change in resistance according to temperature, and a low specific resistance, which can be driven with low voltage and low power. To provide.
  • the heating device of the semiconductor vacuum line for heating the vacuum line formed in a vacuum pump formed in one embodiment of the present invention to a specific place to heat a predetermined temperature, the vacuum line, An inert gas line penetrating an inner wall of a vacuum pipe constituting the circulating pipe, the inert gas circulating along a predetermined path; And a heater installed in the inert gas line and including a planar heating element for heating the inert gas to a predetermined temperature.
  • the planar heating element may include 3 to 6 parts by weight of carbon nanotube particles based on 100 parts by weight of the exothermic paste composition.
  • a mixed binder 0.5 to 30 parts by weight of carbon nanoparticles, 10 to 30 parts by weight of a mixed binder, 29 to 83 parts by weight of an organic solvent, and 0.5 to 5 parts by weight of a dispersant, wherein the mixed binder is epoxy acrylate, polyvinyl acetal, and phenolic resin.
  • a heat generating paste composition in which hexamethylene diisocyanate, polyvinyl acetal, and phenolic resin are mixed.
  • the mixed binder may be 10 to 150 parts by weight of polyvinyl acetal resin, 100 to 500 parts by weight of phenolic resin based on 100 parts by weight of epoxy acrylate or hexamethylene diisocyanate.
  • the heating apparatus of the semiconductor vacuum line may further include 0.5 to 5 parts by weight of the silane coupling agent based on 100 parts by weight of the heating paste composition.
  • the carbon nanotube particles may be multi-walled carbon nanotube particles.
  • the organic solvent is selected from carbitol acetate, butyl carbitol acetate, DBE (dibasic ester), ethyl carbitol, ethyl carbitol acetate, dipropylene glycol methyl ether, cellosolve acetate, butyl cellosolve acetate, butanol and octanol May be two or more mixed solvents.
  • the heating paste composition may be formed by screen printing, gravure printing or comma coating on a substrate.
  • the substrate may be a polyimide substrate, fiberglass mat or ceramic glass.
  • the coating on the top surface of the planar heating element may further include a protective layer formed of an organic material having a black pigment, such as silica or carbon shock rack.
  • the specific resistance of the heat generating composition is low and the thickness can be easily adjusted, high temperature heat can be generated at low voltage and low power, and thus a heating device of a semiconductor vacuum line can be manufactured more efficiently.
  • the exothermic paste composition according to the embodiment of the present invention is capable of maintaining heat resistance even at a temperature of 200 ° C. or higher, so that the resistance change with temperature is small and stable.
  • FIG. 1 is a schematic view showing a heating apparatus of a semiconductor vacuum line according to the prior art.
  • FIG. 2 is a schematic view showing a heating apparatus of a semiconductor vacuum line according to an exemplary embodiment of the present invention.
  • FIG 3 is an image of a planar heating element specimen prepared using the heating paste composition according to the present invention.
  • Figure 4 is an image of the heat stability test appearance of the planar heating element samples prepared according to the Examples and Comparative Examples.
  • FIG. 2 is a schematic view showing a heating apparatus of a semiconductor vacuum line according to an exemplary embodiment of the present invention.
  • the heating apparatus of the semiconductor vacuum line of the present invention the semiconductor vacuum line for heating the vacuum line formed to a predetermined temperature to transfer the vacuum pressure formed in the vacuum pump (not shown) to a specific place
  • a heating apparatus of the present invention comprising: an inert gas line (5) formed through an inner wall of a vacuum pipe (4) constituting the vacuum line and configured to circulate an inert gas along a predetermined path; A pressure difference between the heater 6 for heating the inert gas to a predetermined temperature and the inert gas line 5 to allow the inert gas to circulate in the inert gas line 5.
  • the heating device is installed in the vacuum pipe (4) and receives a temperature signal from the sensor (9) and the sensor (9) for sensing the temperature of the vacuum pipe (4) to apply a control signal to the heater (6)
  • the vacuum pipe 4 includes a cylindrical inner cylinder 11 and an outer cylinder 12 having a shape surrounding the inner cylinder 11, and welds the inner cylinder 11 and the outer cylinder 12 to each other.
  • a hollow portion 16 between the inner cylinder 11 and the outer cylinder 12, and the inlet 13 on one side of the outer cylinder 12 so that the hollow portion 16 is filled with the nitrogen gas. It forms and forms the discharge port 14 in the other side.
  • the heater 6 is a heating means including a planar heating element, it is also possible to use a heater that converts electrical energy into thermal energy by electrical resistance.
  • the heater 6 is connected to the inert gas line 5 to install an inert gas storage tank 15 for storing a large amount of inert gas, as well as supply the insufficient inert gas, if necessary, the inert gas
  • the heater 6 may be installed inside the storage tank 15 to heat the inert gas stored in the inert gas storage tank 15. Detailed components of the planar heating element will be described later.
  • the inert gas may use various kinds of inert gases, but it is preferable to use nitrogen (N 2) gas which is economically inexpensive and does not harm the human body at all. Accordingly, the inert gas heated by the heater 6 heats the vacuum pipe 4 while circulating through the inner wall of the vacuum pipe 4 and flows along the inner diameter surface of the vacuum pipe 4. By raising the temperature of the gases to suppress the generation of particles due to the combination of these gases.
  • the heater 6 may heat the inert gas storage tank 15 for storing a large amount of the inert gas, thereby stably supplying the inert gas at a predetermined temperature.
  • the heating temperature of the heater 6 is controlled according to the temperature of the vacuum pipe 4 detected by the sensor 9, and the controller 10 receives a temperature signal by the sensor 9. Is to control the heater 6 so that the temperature of the vacuum pipe 4 can be kept constant at a predetermined temperature by data or program input in advance.
  • the pump 7 induces the pressure difference of the inert gas to induce the flow of the inert gas, and adjust the flow rate control valve 8 so that the appropriate flow rate of the inert gas is maintained.
  • the heat transfer medium acting on the vacuum pipe 4 is an inert gas harmless to the human body, it is safe in its handling and use, and it is possible to prevent secondary reaction by-products generated inside the vacuum pipe due to electromagnetic waves of the heater.
  • the planar heating element may be formed by screen printing, gravure printing (or roll-to-roll gravure printing) or comma coating (or roll-to-roll comma coating) of a thick film-forming exothermic paste composition (hereinafter, exothermic fest composition) on a substrate.
  • exothermic fest composition a thick film-forming exothermic paste composition
  • the exothermic paste composition specifically 3 to 6 parts by weight of carbon nanotube particles, 0.5 to 30 parts by weight of carbon nanoparticles, 10 to 30 parts by weight of a mixed binder, and 29 to organic solvents based on 100 parts by weight of the exothermic paste composition. 83 parts by weight and 0.5 to 5 parts by weight of the dispersant.
  • the carbon nanotube particles may be selected from single-walled carbon nanotubes, double-walled carbon nanotubes, multi-walled carbon nanotubes, or mixtures thereof.
  • the carbon nanotube particles may be multi wall carbon nanotubes.
  • the diameter may be 5 nm to 30 nm, and the length may be 3 ⁇ m to 40 ⁇ m.
  • the carbon nanoparticles may be, for example, graphite nanoparticles, and the diameter may be 1 ⁇ m to 25 ⁇ m.
  • the mixed binder serves to make the exothermic paste composition have heat resistance even in the temperature range of about 300 ° C., and includes epoxy acrylate or hexamethylene diisocyanate, polyvinyl acetal, and the like.
  • Phenolic resin has a mixed form.
  • the mixed binder may be a mixture of epoxy acrylate, polyvinyl acetal, and phenolic resin, or may be a mixture of hexamethylene diisocyanate, polyvinyl acetal, and phenolic resin.
  • by increasing the heat resistance of the mixed binder even if the heat generated at a high temperature of about 300 °C has the advantage that there is no change in resistance of the material or breakage of the coating film.
  • the phenolic resin means a phenolic compound including phenol and phenol derivatives.
  • the phenol derivative may include p-cresol, o-Guaiacol, Creosol, catechol, 3-methoxy-1,2-benzenediol (3 -methoxy-1,2-Benzenediol), Homocatechol, Vinylguaiacol, Syringol, Iso-eugenol, Methoxyeugenol, o O-Cresol, 3-methyl-1,2-benzenediol, (z) -2-methoxy-4- (1-propenyl) -phenol ( (z) -2-methoxy-4- (1-propenyl) -Phenol), 2, .6-diethoxy-4- (2-propenyl) -phenol (2,6-dimethoxy-4- (2-propenyl) ) -Phenol), 3,4-dimethoxy-Phenol, 4-ethyl-1,3-benzened
  • the mixing ratio of the mixed binder may be a ratio of 10 to 150 parts by weight of polyvinyl acetal resin and 100 to 500 parts by weight of phenolic resin based on 100 parts by weight of epoxy acrylate or hexamethylene diisocyanate. If the content of the phenolic resin is 100 parts by weight or less, the heat resistance characteristics of the heat-paste composition is lowered, and if it exceeds 500 parts by weight, there is a problem that the flexibility is lowered (brittleness increase).
  • the organic solvent is used to disperse the conductive particles and the mixed binder.
  • the dispersion process can be applied to a variety of commonly used methods, for example through the ultra-sonication (Roll mill), bead mill (Bead mill) or ball mill (Ball mill) process Can be done.
  • Roll mill ultra-sonication
  • Bead mill bead mill
  • Ball mill ball mill
  • the dispersant is to make the dispersion more smoothly, and a conventional dispersant used in the art such as BYK, an amphoteric surfactant such as Triton X-100, SDS and the like and a ionic surfactant may be used.
  • a conventional dispersant used in the art such as BYK
  • an amphoteric surfactant such as Triton X-100, SDS and the like
  • a ionic surfactant may be used.
  • the exothermic paste composition according to an embodiment of the present invention may further include 0.5 to 5 parts by weight of the silane coupling agent based on 100 parts by weight of the exothermic paste composition.
  • the silane coupling agent functions as an adhesion promoter to promote adhesion between the resins in the formulation of the exothermic paste composition.
  • the silane coupling agent may be an epoxy containing silane or a merceto containing silane.
  • Examples of such silane coupling agents include epoxy and include 2- (3,4 epoxy cyclohexyl) -ethyltrimethoxysilane, 3-glycidoxytrimethoxysilane, 3-glycidoxypropyltriethoxysilane, 3-glycidoxypropyltriethoxysilane, containing amine groups, N-2 (aminoethyl) 3-amitopropylmethyldimethoxysilane, N-2 (aminoethyl) 3-aminopropyltrimethoxysilane , N-2 (aminoethyl) 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-aminopropy
  • the substrate is polycarbonate, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyimide, cellulose ester, nylon, polypropylene, polyacrylolintril, polysulfone, polyester sulfone, polyvinylidene fluoride , Glass, glass fiber (matte), ceramic, SUS, copper or aluminum substrate, etc. may be used, but is not limited to those listed above.
  • the substrate may be appropriately selected depending on the application field of the heating element or the use temperature.
  • the planar heating element prints the drying paste composition according to the embodiments of the present invention on the substrate in a desired pattern through screen printing or gravure printing, and after drying and curing, print and dry / It can be formed by forming an electrode by curing.
  • the heating paste composition according to the embodiments of the present invention may be formed by screen printing or gravure printing.
  • the planar heating element may further include a protective layer coated on the upper surface.
  • the protective layer may be formed of silica (SiO2).
  • SiO2 silica
  • the heating element has an advantage of maintaining flexibility even if coated on the heating surface.
  • Example 1 Example 2 Example 3 Comparative Example 1 Comparative Example 2 Comparative Example 3 CNT particles 4 5 6 4 5 6 CNP Particles 8 9 15 - - - Mixed binder 20 15 22 - - - Ethyl cellulose - - - 10 12 14 Organic solvent 63 67 52 82 79 76 Dispersant (BYK) 5 4 5 4 4 4 4
  • CNT particles and CNP particles were added to a carbitol acetate solvent according to the composition of [Table 1]
  • BYK dispersant was added, and dispersion A was prepared by sonication for 60 minutes. It was. Thereafter, a mixed binder was added to the carbitol acetate solvent and then a master batch was prepared through mechanical stirring. Next, the dispersion A and the masterbatch were first kneaded through mechanical stirring, followed by a second kneading process through a 3-roll-mill process to prepare an exothermic paste composition.
  • CNT particles were added to the carbitol acetate solvent according to the composition of [Table 1], BYK dispersant was added, and a dispersion was prepared by sonication for 60 minutes. Thereafter, ethyl cellulose was added to the carbitol acetate solvent to prepare a master batch through mechanical stirring. Next, the dispersion B and the masterbatch were first kneaded through mechanical stirring, followed by a second kneading process through a 3-roll mill to prepare an exothermic paste composition.
  • 3 is an image of a planar heating element specimen prepared using the heating paste composition according to the present invention.
  • 3A is a planar heating element formed by screen printing a heating paste composition on a polyimide substrate.
  • 3B is a planar heating element formed by screen-printing a heating paste composition on a glass fiber mat.
  • 3C and 3D are images when the protective layer is coated on the planar heating element of FIG. 3A (FIG. 3C is a black protective layer coating, and FIG. 3D is a green protective layer coating).
  • planar heating element sample Example
  • planar heating element samples prepared according to the comparative example as shown in Figure 3a were measured.
  • the applied voltage / current is shown in Table 2).
  • the planar heating element corresponding to the above Examples and Comparative Examples were respectively heated up to 40 ° C, 100 ° C and 200 ° C, and the DC voltage when the temperature was reached and The current was measured.
  • Figure 4 shows the image of the exothermic stability test of the planar heating element samples prepared according to Examples and Comparative Examples, the test results are summarized in the following [Table 2].
  • Example 1 Example 2 Example 3 Comparative Example 1 Comparative Example 2 Comparative Example 3 Specific resistance ( ⁇ 10 ⁇ 2 ⁇ cm 1.9 2.55 2.96 9.73 8.52 6.23 40 °C reach DC drive voltage / current 5V / 0.2A 6V / 0.2A 7V / 0.2A 20V / 0.3A 16V / 0.2A 12V / 0.2A 100 °C reach DC driving voltage / current 9V / 0.5A 12V / 0.4A 14 V / 0.5 A 48V / 0.7A 40V / 0.7A 26V / 0.6A 200 °C reach DC drive voltage / current 20V / 0.6A 24V / 0.7A 24V / 1.0A - - - Heat stability (day) 20 days or more 20 days or more 20 days or more Bad Bad Bad Bad
  • the specific resistance was measured that the planar heating element corresponding to the embodiments is smaller than the planar heating element corresponding to the comparative examples, accordingly driving voltage / current required to reach each temperature is also embodiments
  • the planar heating element corresponding to was smaller than the planar heating element corresponding to the comparative examples. That is, it was confirmed that the planar heating element corresponding to the embodiments can be driven at a lower voltage and lower power than the comparative example.
  • planar heating element according to Examples 1 to 3 the stability was maintained for 20 days even under the exothermic driving at 200 ° C (no separate protective layer), whereas in the Comparative Examples 1 to 3, the exothermic driving at 200 ° C was performed. Poor phenomena were observed to swell the surface of the heating portion within time. That is, it was confirmed that the planar heating element corresponding to the embodiments can be stably driven even at a high temperature of 200 ° C. or more than the comparative example.
  • the planar heating element is attached, embedded or mounted on the inner or outer surface of the body of the heater 6, and driven by electric power provided to the heater.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Surface Heating Bodies (AREA)

Abstract

Disclosed is a heating apparatus for a semiconductor vacuum line using a sheet heater. A heating apparatus for a semiconductor vacuum line of an embodiment of the present invention heats a vacuum line, which is formed such that the vacuum pressure formed by a vacuum pump is transferred to a particular place, at a predetermined temperature. The heating apparatus comprises: an inert gas line passing through an inner wall of a vacuum pipe constituting the vacuum line and formed such that the inert gas circulates along a predetermined route; and a heater including a sheet heater, which is installed on the inert gas line to heat the inert gas at a predetermined temperature, wherein the sheet heater may a heating paste composition, which contains, on the basis of 100 parts by weight of the heating paste composition, 3-6 parts by weight of carbon nanotube particles, 0.5-30 parts by weight of carbon nanoparticles, 10-30 parts by weight of a mixed binder, 29-83 parts by weight of an organic solvent, and 0.5-5 parts by weight of a dispersant, the mixed binder being a mixture of epoxy acrylate, a polyvinyl acetal, and a phenol-based resin, or a mixture of hexamethylene diisocyanate, a polyvinyl acetal, and a phenol-based resin.

Description

면상발열체를 이용한 반도체 진공라인의 히팅 장치Heating device for semiconductor vacuum line using planar heating element
본 발명은 반도체 진공라인의 히팅 장치에 관한 것으로서, 더욱 상세하게는 면상발열체를 이용한 반도체 진공라인의 히팅 장치에 관한 것이다. The present invention relates to a heating apparatus of a semiconductor vacuum line, and more particularly to a heating apparatus of a semiconductor vacuum line using a planar heating element.
진공펌프와 연결되어 밀폐된 챔버 내부의 공기를 흡입함으로써 상기 챔버 내부에 소정의 진공압을 형성하는 진공라인을 구비하여 이루어진다.It is provided with a vacuum line connected to the vacuum pump to suck the air in the sealed chamber to form a predetermined vacuum pressure inside the chamber.
이외에도 웨이퍼를 진공흡착하기 위해 웨이퍼 척에 진공라인이 설치되는 등 다양한 용도의 진공라인이 설치된다.In addition, a vacuum line for various purposes, such as a vacuum line is installed on the wafer chuck to vacuum the wafer.
그러나, 이러한 진공라인의 내부에는 상기 챔버에서 유출되는 반응부산물로 인하여 폴리머(Polymer) 등 각종 파티클이 발생되고, 이러한 파티클은 상기 챔버 내부의 웨이퍼에 악영향을 주거나 상기 진공라인에 손상을 주는 등 많은 문제점이 있었다.However, inside the vacuum line, various particles such as polymers are generated due to the reaction by-products flowing out of the chamber, and such particles adversely affect the wafer inside the chamber or damage the vacuum line. There was this.
이러한 문제점을 해결하기 위하여 종래에는, 도1에서와 같이, 진공라인을 이루는 진공파이프(1)의 표면에 전열기의 일종인 히팅패드(2)를 설치하고, 상기 히팅패드(2)를 제어하는 제어부(3)를 설치하여 상기 진공파이프(1)를 소정의 온도로 가열하는 방식이 사용되고 있다.In order to solve this problem, conventionally, as shown in FIG. The method of installing (3) and heating the said vacuum pipe 1 to predetermined temperature is used.
또한, 도면상에 나타내지는 않았으나, 상기 히팅패드(2) 대신 역시 전열기의 일종인 히팅코일을 상기 진공파이프(1)에 감아 상기 진공파이프(1)를 가열하는 방식도 사용되고 있다.In addition, although not shown in the drawing, instead of the heating pad 2, a method of heating the vacuum pipe 1 by winding a heating coil, which is also a kind of heater, on the vacuum pipe 1 is also used.
따라서, 상기 히팅패드(2)에 의해 가열된 진공파이프(1)를 통과하는 각종의 가스가 저온상태에서 화학적으로 결합하여 파티클이 형성되는 것을 어느 정도 방지함으로써 상기 진공파이프(1)와 연결되는 챔버(도시하지 않음) 내부의 청결상태를 유지시킬 수 있는 것이다.Therefore, a chamber connected to the vacuum pipe 1 by preventing a certain amount of particles from being formed by chemically bonding various gases passing through the vacuum pipe 1 heated by the heating pad 2 in a low temperature state. (Not shown) to maintain the internal cleanliness.
그러나, 이러한 종래의 반도체 진공라인의 히팅 장치는 진공파이프에 설치되는 히팅패드 및 히팅코일이 고전압이 요구되는 전열기이므로 이의 취급시 감전사고 등 각종 안전사고가 빈번하였고, 다량의 전자기파가 발생함에 따라서 정전기 등으로 인하여 2차적인 반응부산물이 발생하는 등 많은 문제점이 있었다.However, the heating device of the conventional semiconductor vacuum line is a heating pad and a heating coil installed in the vacuum pipe is a heater that requires a high voltage, so various safety accidents, such as electric shock accidents when handling it frequently, and a large amount of electromagnetic waves generated static electricity There have been many problems, such as the generation of secondary reaction byproducts.
상기한 문제점을 해결하고자, 본 발명의 일실시예는 고내열을 가져 온도에 따른 저항 변화가 작고, 비저항이 낮아 저전압 및 저전력으로 구동 가능한 발열 페이스트 조성물을 이용한 면상발열체를 이용한 반도체 진공라인 히팅 장치를 제공하고자 한다. In order to solve the above problems, an embodiment of the present invention provides a semiconductor vacuum line heating apparatus using a planar heating element using a heating paste composition having high heat resistance, a small change in resistance according to temperature, and a low specific resistance, which can be driven with low voltage and low power. To provide.
상기와 같은 기술적 과제를 해결하기 위해, 본 발명의 일실시예의 진공펌프에서 형성된 진공압이 특정의 장소로 전달되도록 형성된 진공라인을 소정의 온도로 가열하는 반도체 진공라인의 히팅 장치는, 상기 진공라인을 이루는 진공파이프의 내벽을 관통하고, 소정의 경로를 따라 불활성가스가 순환하도록 형성된 불활성가스라인; 및 상기 불활성가스라인에 설치되어 상기 불활성가스를 소정의 온도로 가열하는 면상발열체를 포함하는 히터를 포함하고, 상기 면상발열체는 발열페이스트 조성물 100 중량부에 대하여 탄소나노튜브 입자 3 내지 6중량부, 탄소나노입자 0.5 내지 30중량부, 혼합 바인더 10 내지 30중량부, 유기 용매 29 내지 83 중량부, 및 분산제 0.5 내지 5중량부를 포함하고, 상기 혼합 바인더는 에폭시 아크릴레이트 , 폴리비닐 아세탈 및 페놀계 수지가 혼합되거나 헥사메틸렌 디이소시아네이트, 폴리비닐 아세탈 및 페놀계 수지가 혼합되는 발열 페이스트 조성물을 포함할 수 있다. In order to solve the above technical problem, the heating device of the semiconductor vacuum line for heating the vacuum line formed in a vacuum pump formed in one embodiment of the present invention to a specific place to heat a predetermined temperature, the vacuum line, An inert gas line penetrating an inner wall of a vacuum pipe constituting the circulating pipe, the inert gas circulating along a predetermined path; And a heater installed in the inert gas line and including a planar heating element for heating the inert gas to a predetermined temperature. The planar heating element may include 3 to 6 parts by weight of carbon nanotube particles based on 100 parts by weight of the exothermic paste composition. 0.5 to 30 parts by weight of carbon nanoparticles, 10 to 30 parts by weight of a mixed binder, 29 to 83 parts by weight of an organic solvent, and 0.5 to 5 parts by weight of a dispersant, wherein the mixed binder is epoxy acrylate, polyvinyl acetal, and phenolic resin. Or a heat generating paste composition in which hexamethylene diisocyanate, polyvinyl acetal, and phenolic resin are mixed.
상기 혼합 바인더는 에폭시 아크릴레이트 또는 헥사메틸렌 디이소시아네이트 100 중량부에 대하여 폴리비닐 아세탈 수지 10 내지 150 중량부, 페놀계수지 100 내지 500 중량부가 혼합될 수 있다. The mixed binder may be 10 to 150 parts by weight of polyvinyl acetal resin, 100 to 500 parts by weight of phenolic resin based on 100 parts by weight of epoxy acrylate or hexamethylene diisocyanate.
상기 반도체 진공라인의 히팅 장치는 발열 페이스트 조성물 100 중량부에 대하여 실란 커플링제 0.5 내지 5 중량부를 더 포함할 수 있다. The heating apparatus of the semiconductor vacuum line may further include 0.5 to 5 parts by weight of the silane coupling agent based on 100 parts by weight of the heating paste composition.
상기 탄소나노튜브입자는 다중벽 탄소나노튜브 입자일 수 있다. The carbon nanotube particles may be multi-walled carbon nanotube particles.
상기 유기 용매는 카비톨 아세테이트, 부틸 카비톨 아세테이트, DBE(dibasic ester), 에틸카비톨, 에틸카비톨아세테이트, 디프로필렌글리콜메틸에테르, 셀로솔브아세테이트, 부틸셀로솔브아세테이트, 부탄올 및 옥탄올 중에서 선택되는 2 이상의 혼합 용매일 수 있다. The organic solvent is selected from carbitol acetate, butyl carbitol acetate, DBE (dibasic ester), ethyl carbitol, ethyl carbitol acetate, dipropylene glycol methyl ether, cellosolve acetate, butyl cellosolve acetate, butanol and octanol May be two or more mixed solvents.
상기 발열 페이스트 조성물을 기판상에 스크린 인쇄, 그라비아 인쇄 또는 콤마코팅하여 형성될 수 있다. The heating paste composition may be formed by screen printing, gravure printing or comma coating on a substrate.
상기 기판은 폴리이미드 기판, 유리섬유 매트 또는 세라믹 유리일 수 있다. The substrate may be a polyimide substrate, fiberglass mat or ceramic glass.
상기 면상발열체 상부면에 코팅되는 것으로, 실리카 또는 카본븍랙과 같은 흑색 안료를 구비하는 유기물로 형성되는 보호층을 더 포함할 수 있다. The coating on the top surface of the planar heating element, may further include a protective layer formed of an organic material having a black pigment, such as silica or carbon shock rack.
본 발명에 의하면, 발열 조성물의 비저항이 낮고 두께 조절이 용이하여 저전압 및 저전력으로 고온 발열이 가능한 바, 보다 효율성 높은 반도체 진공라인의 히팅 장치를 제작할 수 있다.According to the present invention, since the specific resistance of the heat generating composition is low and the thickness can be easily adjusted, high temperature heat can be generated at low voltage and low power, and thus a heating device of a semiconductor vacuum line can be manufactured more efficiently.
또한, 본 발명의 실시예에 따른 발열 페이스트 조성물은 200℃ 이상의 온도에서도 내열성을 유지 가능함으로써, 온도에 따른 저항 변화가 작아 안정적이다.In addition, the exothermic paste composition according to the embodiment of the present invention is capable of maintaining heat resistance even at a temperature of 200 ° C. or higher, so that the resistance change with temperature is small and stable.
도 1은 종래기술에 따른 반도체 진공라인의 히팅 장치를 나타낸 개략도이다. 1 is a schematic view showing a heating apparatus of a semiconductor vacuum line according to the prior art.
도 2는 본 발명의 일실시예에 따른 반도체 진공라인의 히팅 장치를 나타낸 개략도이다. 2 is a schematic view showing a heating apparatus of a semiconductor vacuum line according to an exemplary embodiment of the present invention.
도 3은 본 발명에 따른 발열 페이스트 조성물을 이용하여 제작한 면상발열체 시편의 이미지이다.3 is an image of a planar heating element specimen prepared using the heating paste composition according to the present invention.
도 4는 실시예 및 비교예에 따라 제조된 면상발열체 샘플들의 발열안정성 시험 모습의 이미지이다.Figure 4 is an image of the heat stability test appearance of the planar heating element samples prepared according to the Examples and Comparative Examples.
본 발명은 다양한 변경을 가할 수 있고 여러가지 실시예를 가질 수 있는바, 특정 실시예들을 도면에 예시하고 상세한 설명에 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.As the invention allows for various changes and numerous embodiments, particular embodiments will be illustrated in the drawings and described in detail in the written description. However, this is not intended to limit the present invention to specific embodiments, it should be understood to include all modifications, equivalents, and substitutes included in the spirit and scope of the present invention.
이하에서는 첨부된 도면을 참조하여 본 발명을 구체적으로 설명한다.Hereinafter, with reference to the accompanying drawings will be described in detail the present invention.
도 2는 본 발명의 일실시예에 따른 반도체 진공라인의 히팅 장치를 나타낸 개략도이다. 2 is a schematic view showing a heating apparatus of a semiconductor vacuum line according to an exemplary embodiment of the present invention.
도2를 참조하여 설명하면, 본 발명의 반도체 진공라인의 히팅 장치는, 진공펌프(도시하지 않음)에서 형성된 진공압이 특정의 장소로 전달되도록 형성된 진공라인을 소정의 온도로 가열하는 반도체 진공라인의 히팅 장치로서, 상기 진공라인을 이루는 진공파이프(4)의 내벽을 관통하고, 소정의 경로를 따라 불활성가스가 순환하도록 형성된 불활성가스라인(5)과, 상기 불활성가스라인(5)에 설치되어 상기 불활성가스를 소정의 온도로 가열하는 히터(6)와, 상기 불활성가스라인(5)에 설치되어 상기 불활성가스가 상기 불활성가스라인(5) 내를 순환할 수 있도록 상기 불활성가스의 압력차를 형성하는 펌프(7) 및 상기 불활성가스라인(5)에 설치되어 상기 불활성가스의 유량을 조절하는 유량조절밸브(8)를 구비하여 이루어지고, 또한, 본 발명의 반도체 진공라인의 히팅 장치는, 상기 진공파이프(4)에 설치되어 상기 진공파이프(4)의 온도를 감지하는 센서(9) 및 상기 센서(9)로부터 온도신호를 인가받아 상기 히터(6)에 제어신호를 인가함으로써 상기 히터(6)를 제어하는 제어부(10)를 구비하여 이루어진다. Referring to Figure 2, the heating apparatus of the semiconductor vacuum line of the present invention, the semiconductor vacuum line for heating the vacuum line formed to a predetermined temperature to transfer the vacuum pressure formed in the vacuum pump (not shown) to a specific place A heating apparatus of the present invention, comprising: an inert gas line (5) formed through an inner wall of a vacuum pipe (4) constituting the vacuum line and configured to circulate an inert gas along a predetermined path; A pressure difference between the heater 6 for heating the inert gas to a predetermined temperature and the inert gas line 5 to allow the inert gas to circulate in the inert gas line 5. It is provided with a pump (7) to be formed and the inert gas line (5) provided with a flow rate control valve (8) for adjusting the flow rate of the inert gas, and further, the semiconductor vacuum line of the present invention The heating device is installed in the vacuum pipe (4) and receives a temperature signal from the sensor (9) and the sensor (9) for sensing the temperature of the vacuum pipe (4) to apply a control signal to the heater (6) This is provided with a control unit 10 for controlling the heater (6).
여기서, 상기 진공파이프(4)는, 원통형의 내통(11) 및 상기 내통(11)을 둘러싸는 형상의 외통(12)을 구비하여 이루어지고, 상기 내통(11)과 외통(12)을 서로 용접하여 상기 내통(11)과 외통(12)사이에 중공부(16)를 형성하며, 상기 중공부(16)에 상기 질소가스가 충만하여 흐르도록 상기 외통(12)의 일측에 투입구(13)를 형성하고, 다른 일측에 배출구(14)를 형성하는 것이다.The vacuum pipe 4 includes a cylindrical inner cylinder 11 and an outer cylinder 12 having a shape surrounding the inner cylinder 11, and welds the inner cylinder 11 and the outer cylinder 12 to each other. To form a hollow portion 16 between the inner cylinder 11 and the outer cylinder 12, and the inlet 13 on one side of the outer cylinder 12 so that the hollow portion 16 is filled with the nitrogen gas. It forms and forms the discharge port 14 in the other side.
한편, 상기 히터(6)는 면상발열체를 포함한 히팅수단으로서, 전기저항에 의해 전기에너지를 열에너지로 변환하는 전열기를 사용하는 것도 가능하다. 또한 상기 히터(6)는 상기 불활성가스라인(5)에 연결되어 다량의 불활성가스를 저장하는 불활성가스저장탱크(15)를 설치하여 부족한 불활성가스를 공급하는 것은 물론이고, 필요에 따라 상기 불활성가스저장탱크(15)의 내부에 상기 히터(6)를 설치하여 상기 불활성가스저장탱크(15) 내부에 저장된 불활성가스를 가열하는 구성도 가능하다. 면상발열체의 상세 구성 성분에 대해서는 후술하기로 한다. On the other hand, the heater 6 is a heating means including a planar heating element, it is also possible to use a heater that converts electrical energy into thermal energy by electrical resistance. In addition, the heater 6 is connected to the inert gas line 5 to install an inert gas storage tank 15 for storing a large amount of inert gas, as well as supply the insufficient inert gas, if necessary, the inert gas The heater 6 may be installed inside the storage tank 15 to heat the inert gas stored in the inert gas storage tank 15. Detailed components of the planar heating element will be described later.
여기서, 상기 불활성가스는 다양한 종류의 불활성가스를 사용하는 것이 가능하나 인체에 전혀 해가 없고, 경제적으로 저렴한 질소(N2)가스를 사용하는 것이 바람직하다. 따라서, 상기 히터(6)에 의해 가열된 상기 불활성가스는 상기 진공파이프(4)의 내벽을 관통하여 순환하면서 상기 진공파이프(4)를 가열하는 것이고, 상기 진공파이프(4) 내경면을 따라 흐르는 가스들의 온도를 상승시켜서 이들 가스들의 결합으로 인한 파티클의 생성을 억제하는 것이다.Here, the inert gas may use various kinds of inert gases, but it is preferable to use nitrogen (N 2) gas which is economically inexpensive and does not harm the human body at all. Accordingly, the inert gas heated by the heater 6 heats the vacuum pipe 4 while circulating through the inner wall of the vacuum pipe 4 and flows along the inner diameter surface of the vacuum pipe 4. By raising the temperature of the gases to suppress the generation of particles due to the combination of these gases.
이어서, 상기 진공파이프(4)를 빠져나온 차가워진 불활성가스는 다시 히터(6)에 의해 가열된다. 이때, 상기 히터(6)는 다량의 상기 불활성가스를 저장하는 불활성가스저장탱크(15)를 가열하는 것이 가능하여 소정 온도의 상기 불활성가스를 안정적으로 공급할 수 있다.Subsequently, the cold inert gas exiting the vacuum pipe 4 is heated by the heater 6 again. In this case, the heater 6 may heat the inert gas storage tank 15 for storing a large amount of the inert gas, thereby stably supplying the inert gas at a predetermined temperature.
이러한, 상기 히터(6)의 가열온도는 상기 센서(9)에 의해 감지되는 상기 진공파이프(4)의 온도에 따라 조절되는 것으로서, 상기 센서(9)에 의해 온도신호를 인가받은 제어부(10)가 미리 입력된 데이타 혹은 프로그램에 의하여 상기 진공파이프(4)의 온도가 소정의 온도로 일정하게 유지될 수 있도록 상기 히터(6)를 제어하는 것이다.The heating temperature of the heater 6 is controlled according to the temperature of the vacuum pipe 4 detected by the sensor 9, and the controller 10 receives a temperature signal by the sensor 9. Is to control the heater 6 so that the temperature of the vacuum pipe 4 can be kept constant at a predetermined temperature by data or program input in advance.
한편, 상기 펌프(7)는 상기 불활성가스의 압력차를 유발하여 상기 불활성가스의 흐름을 유도하고, 상기 유량조절밸브(8)를 조절하여 이러한 상기 불활성가스의 적정 유량이 유지되도록 한다.On the other hand, the pump 7 induces the pressure difference of the inert gas to induce the flow of the inert gas, and adjust the flow rate control valve 8 so that the appropriate flow rate of the inert gas is maintained.
그러므로, 진공파이프(4)에 작용하는 열전달매개체가 인체에 무해한 불활성가스이므로 이의 취급 및 사용시 안전하고, 전열기의 전자기파로 인해 진공파이프 내부에 발생하는 2차 반응 부산물들을 방지할 수 있는 것이다.Therefore, since the heat transfer medium acting on the vacuum pipe 4 is an inert gas harmless to the human body, it is safe in its handling and use, and it is possible to prevent secondary reaction by-products generated inside the vacuum pipe due to electromagnetic waves of the heater.
이하에서는 앞서 언급한 상기 히터(6)에 사용되는 면상발열체에 대해 상세히 살펴보기로 한다. Hereinafter, a planar heating element used in the heater 6 mentioned above will be described in detail.
면상발열체는 후막 형성용 발열 페이스트 조성물(이하, 발열 페스트 조성물)을 기판 상에 스크린 인쇄, 그라비아 인쇄(내지 롤투롤 그라비아 인쇄) 또는 콤마코팅(내지 롤투롤 콤마코팅)하여 형성될 수 있다.The planar heating element may be formed by screen printing, gravure printing (or roll-to-roll gravure printing) or comma coating (or roll-to-roll comma coating) of a thick film-forming exothermic paste composition (hereinafter, exothermic fest composition) on a substrate.
먼저, 발열 페이스트 조성물에 대해 살펴보면, 구체적으로 발열 페이스트 조성물 100 중량부에 대하여 탄소나노튜브 입자 3 내지 6중량부, 탄소나노입자 0.5 내지 30 중량부, 혼합 바인더 10 내지 30 중량부, 유기 용매 29 내지 83 중량부 및 분산제 0.5 내지 5 중량부를 포함한다.First, referring to the exothermic paste composition, specifically 3 to 6 parts by weight of carbon nanotube particles, 0.5 to 30 parts by weight of carbon nanoparticles, 10 to 30 parts by weight of a mixed binder, and 29 to organic solvents based on 100 parts by weight of the exothermic paste composition. 83 parts by weight and 0.5 to 5 parts by weight of the dispersant.
상기 탄소나노튜브 입자는 단일벽 탄소나노튜브, 이중벽 탄소나노튜브, 다중벽 탄소나노튜브 또는 이들의 혼합물로부터 선택될 수 있다. 예컨대 상기 탄소나노튜브 입자는 다중벽 탄소나노튜브(multi wall carbon nanotube)일 수 있다. 상기 탄소나노튜브 입자가 다중벽 탄소나노튜브일 때, 직경은 5nm 내지 30nm 일 수 있고, 길이는 3㎛ 내지 40㎛일 수 있다.The carbon nanotube particles may be selected from single-walled carbon nanotubes, double-walled carbon nanotubes, multi-walled carbon nanotubes, or mixtures thereof. For example, the carbon nanotube particles may be multi wall carbon nanotubes. When the carbon nanotube particles are multi-walled carbon nanotubes, the diameter may be 5 nm to 30 nm, and the length may be 3 μm to 40 μm.
상기 탄소나노입자는 예컨대 그라파이트 나노입자일 수 있으며, 직경은 1㎛ 내지 25㎛일 수 있다.The carbon nanoparticles may be, for example, graphite nanoparticles, and the diameter may be 1 μm to 25 μm.
혼합 바인더는 발열 페이스트 조성물이 300℃ 가량의 온도 범위에서도 내열성을 가질 수 있도록 하는 기능을 하는 것으로, 에폭시 아크릴레이트(Epocy acrylate) 또는 헥사메틸렌 디이소시아네이트(Hexamethylene diisocyanate), 폴리비닐 아세탈(Polyvinyl acetal) 및 페놀계 수지(Phenol resin)가 혼합된 형태를 갖는다. 예컨대 상기 혼합 바인더는 에폭시 아크릴레이트, 폴리비닐 아세탈 및 페놀계 수지가 혼합된 형태일 수 있고, 또는 헥사메틸렌 디이소시아네이트, 폴리비닐 아세탈 및 페놀계 수지가 혼합된 형태일 수도 있다. 본 발명에서는 혼합 바인더의 내열성을 높임으로써, 300℃ 가량의 고온으로 발열시키는 경우에도 물질의 저항 변화나 도막의 파손이 없다는 장점을 갖는다.The mixed binder serves to make the exothermic paste composition have heat resistance even in the temperature range of about 300 ° C., and includes epoxy acrylate or hexamethylene diisocyanate, polyvinyl acetal, and the like. Phenolic resin has a mixed form. For example, the mixed binder may be a mixture of epoxy acrylate, polyvinyl acetal, and phenolic resin, or may be a mixture of hexamethylene diisocyanate, polyvinyl acetal, and phenolic resin. In the present invention, by increasing the heat resistance of the mixed binder, even if the heat generated at a high temperature of about 300 ℃ has the advantage that there is no change in resistance of the material or breakage of the coating film.
여기에서 페놀계 수지는 폐놀 및 페놀 유도체를 포함하는 페놀계 화합물을 의미한다. 예컨대 상기 페놀 유도체는 p-크레졸(p-Cresol), o-구아야콜(o-Guaiacol), 크레오졸(Creosol), 카테콜(Catechol), 3-메톡시-1,2-벤젠디올(3-methoxy-1,2-Benzenediol), 호모카테콜(Homocatechol), 비닐구아야콜(vinylguaiacol), 시링콜(Syringol), 이소-유제놀(Iso-eugenol), 메톡시 유제놀(Methoxyeugenol), o-크레졸(o-Cresol), 3-메틸-1,2-벤젠디올(3-methoxy-1,2-Benzenediol), (z)-2-메톡시-4-(1-프로페닐)-페놀((z)-2-methoxy-4-(1-propenyl)-Phenol), 2,.6-디에톡시-4-(2-프로페닐)-페놀(2,6-dimethoxy-4-(2-propenyl)-Phenol), 3,4-디메톡시-페놀(3,4-dimethoxy-Phenol), 4-에틸-1,3-벤젠디올(4ethyl-1,3-Benzenediol), 레졸 페놀(Resole phenol), 4-메틸-1,2-벤젠디올(4-methyl-1,2-Benzenediol), 1,2,4-벤젠트리올(1,2,4-Benzenetriol), 2-메톡시-6-메틸페놀(2-Methoxy-6-methylphenol), 2-메톡시-4-비닐페놀(2-Methoxy-4-vinylphenol) 또는4-에틸-2-메톡시-페놀(4-ethyl-2-methoxy-Phenol) 등이 있으며, 이에 한정되는 것은 아니다.Herein, the phenolic resin means a phenolic compound including phenol and phenol derivatives. For example, the phenol derivative may include p-cresol, o-Guaiacol, Creosol, catechol, 3-methoxy-1,2-benzenediol (3 -methoxy-1,2-Benzenediol), Homocatechol, Vinylguaiacol, Syringol, Iso-eugenol, Methoxyeugenol, o O-Cresol, 3-methyl-1,2-benzenediol, (z) -2-methoxy-4- (1-propenyl) -phenol ( (z) -2-methoxy-4- (1-propenyl) -Phenol), 2, .6-diethoxy-4- (2-propenyl) -phenol (2,6-dimethoxy-4- (2-propenyl) ) -Phenol), 3,4-dimethoxy-Phenol, 4-ethyl-1,3-benzenediol, Resol phenol, 4-methyl-1,2-benzenediol (4-methyl-1,2-Benzenediol), 1,2,4-benzenetriol (1,2,4-Benzenetriol), 2-methoxy-6-methylphenol (2-Methoxy-6-methylphenol), 2-Methoxy-4-vinylphenol or 4-ethyl-2-methoxy-phenol (4-ethyl-2-methoxy-Phenol) Such as Information that is not.
상기 혼합 바인더의 혼합 비율은 에폭시 아크릴레이트 또는 헥사메틸렌 디이소시아네이트 100 중량부에 대하여 폴리비닐 아세탈수지 10 내지 150 중량부, 페놀계 수지 100 내지 500 중량부의 비율일 수 있다. 페놀계 수지의 함량이 100 중량부 이하인 경우 발열 페이스트 조성물의 내열 특성이 저하되며, 500 중량부를 초과하는 경우에는 유연성이 저하되는 문제가 있다(취성 증가).The mixing ratio of the mixed binder may be a ratio of 10 to 150 parts by weight of polyvinyl acetal resin and 100 to 500 parts by weight of phenolic resin based on 100 parts by weight of epoxy acrylate or hexamethylene diisocyanate. If the content of the phenolic resin is 100 parts by weight or less, the heat resistance characteristics of the heat-paste composition is lowered, and if it exceeds 500 parts by weight, there is a problem that the flexibility is lowered (brittleness increase).
유기 용매는 상기 전도성 입자 및 혼합 바인더를 분산시키기 위한 것으로, 카비톨 아세테이트(Carbitol acetate), 부틸 카비톨 아세테이트(Butyl carbotol acetate), DBE(dibasic ester), 에틸카비톨(Ethyl Carbitol), 에틸카비톨아세테이트, 디프로필렌글리콜메틸에테르(dipropylene glycol methyl ether), 셀로솔브아세테이트(Cellosolve acetate), 부틸셀로솔브아세테이트, 부탄올(Butanol) 및 옥탄올(Octanol) 중에서 선택되는 2 이상의 혼합 용매일 수 있다.The organic solvent is used to disperse the conductive particles and the mixed binder. Carbitol acetate, butyl carbotol acetate, dibasic ester, ethyl carbitol, ethyl carbitol It may be at least two mixed solvents selected from acetate, dipropylene glycol methyl ether, cellosolve acetate, butyl cellosolve acetate, butanol and octanol.
한편, 분산을 위한 공정은 통상적으로 사용되는 다양한 방법들이 적용될 수 있으며, 예를 들면 초음파처리(Ultra-sonication), 롤밀(Roll mill), 비드밀(Bead mill) 또는 볼밀(Ball mill) 과정을 통해 이루어질 수 있다.On the other hand, the dispersion process can be applied to a variety of commonly used methods, for example through the ultra-sonication (Roll mill), bead mill (Bead mill) or ball mill (Ball mill) process Can be done.
분산제는 상기 분산을 보다 원활하게 하기 위한 것으로, BYK류와 같이 당업계에서 이용되는 통상의 분산제, Triton X-100과 같은 양쪽성 계면활성제, SDS등과 가은 이온성 계면활성제를 이용할 수 있다.The dispersant is to make the dispersion more smoothly, and a conventional dispersant used in the art such as BYK, an amphoteric surfactant such as Triton X-100, SDS and the like and a ionic surfactant may be used.
본 발명의 일실시예에 따른 발열 페이스트 조성물은 발열 페이스트 조성물 100 중량부에 대하여 실란 커플링제 0.5 내지 5 중량부를 더 포함할 수 있다.The exothermic paste composition according to an embodiment of the present invention may further include 0.5 to 5 parts by weight of the silane coupling agent based on 100 parts by weight of the exothermic paste composition.
실란커플링제는 발열 페이스트 조성물의 배합시에 수지들간에 접착력을 증진시키는 접착증진제 기능을 한다. 실란 커플링제는 에폭시 함유 실란 또는 머켑토 함유 실란일 수 있다. 이러한 실란 커플링제의 예로는 에폭시가 함유된 것으로 2-(3,4 에폭시 사이클로헥실)-에틸트리메톡시실란, 3-글리시독시트리메톡시실란, 3-글리시독시프로필트리에톡시실란, 3-글리시독시프로필트리에톡시실란이 있고, 아민기가 함유된 것으로 N-2(아미노에틸)3-아미토프로필메틸디메톡시실란, N-2(아미노에틸)3-아미노프로필트리메톡시실란, N-2(아미노에틸)3-아미노프로필트리메톡시실란, 3-아미노프로필트리에톡시실란, 3-아미노프로필트리에톡시실, 3-트리에톡시실리-N-(1,2-디메틸뷰틸리덴)프로필아민, N-페닐-3-아미노프로필트리메톡시실란이 있으며, 머켑토가 함유된 것으로 3-머켑토프로필메틸디메톡시실란, 3-머켑토프로필트리에톡시실란, 이소시아네이트가 함유된 3-이소시아네이트프로필트리에톡시실란 등이 있으며, 상기 나열한 것으로 한정되지 않는다.The silane coupling agent functions as an adhesion promoter to promote adhesion between the resins in the formulation of the exothermic paste composition. The silane coupling agent may be an epoxy containing silane or a merceto containing silane. Examples of such silane coupling agents include epoxy and include 2- (3,4 epoxy cyclohexyl) -ethyltrimethoxysilane, 3-glycidoxytrimethoxysilane, 3-glycidoxypropyltriethoxysilane, 3-glycidoxypropyltriethoxysilane, containing amine groups, N-2 (aminoethyl) 3-amitopropylmethyldimethoxysilane, N-2 (aminoethyl) 3-aminopropyltrimethoxysilane , N-2 (aminoethyl) 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-aminopropyltriethoxysil, 3-triethoxysil-N- (1,2-dimethyl Butylidene) propylamine, N-phenyl-3-aminopropyltrimethoxysilane, containing merceto, 3-mercetopropylmethyldimethoxysilane, 3-mercetopropyltriethoxysilane, isocyanate Contained 3-isocyanatepropyltriethoxysilane and the like and are limited to those listed above. No.
여기에서 상기 기판은 폴리카보네이트, 폴리에틸렌테레프탈레이트(PET), 폴리에틸렌나프탈레이트(PEN), 플리이미드, 셀룰로스 에스텔, 나일론, 폴리프로필렌, 폴리아크릴로린트릴, 폴리술폰, 폴리에스테르술폰, 폴리비닐리덴플롤라이드, 유리, 유리섬유(매트), 세라믹, SUS, 구리 또는 알루미늄 기판 등이 사용될 수 있으며, 상기 나열된 것들로 한정되는 것은 아니다. 상기 기판은 발열체의 응용 분야나 사용온도에 따라 적절히 선택될 수 있다.Wherein the substrate is polycarbonate, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyimide, cellulose ester, nylon, polypropylene, polyacrylolintril, polysulfone, polyester sulfone, polyvinylidene fluoride , Glass, glass fiber (matte), ceramic, SUS, copper or aluminum substrate, etc. may be used, but is not limited to those listed above. The substrate may be appropriately selected depending on the application field of the heating element or the use temperature.
면상발열체는 상기 기판 상에 본 발명의 실시예들에 따른 발열 페이스트 조성물을 스크린 인쇄 또는 그라비아 인쇄를 통해 원하는 패턴으로 인쇄하고, 건조 및 경화한 후에, 상부에 은 페이스트 또는 도전성 페이스트를 인쇄 및 건조/경화 시킴으로써 전극을 형성함으로써 형성될 수 있다. 또는 은 페이스트 또는 도전성 페이스트를 인쇄 및 건조/경화한 후에 상부에 본 발명의 실시예들에 따른 발열 페이스트 조성물을 스크린 인쇄 또는 그라비아 인쇄함으로써 형성하는 것도 가능하다.The planar heating element prints the drying paste composition according to the embodiments of the present invention on the substrate in a desired pattern through screen printing or gravure printing, and after drying and curing, print and dry / It can be formed by forming an electrode by curing. Alternatively, after printing and drying / curing the silver paste or the conductive paste, the heating paste composition according to the embodiments of the present invention may be formed by screen printing or gravure printing.
한편, 상기 면상발열체는 상부면에 코팅되는 보호층을 더 포함할 수 있다. 상기 보호층은 실리카(SiO₂)로 형성될 수 있다. 보호층이 실리카로 형성되는 경우에는 발열면에 코팅되더라도 발열체가 유연성을 유지할 수 있는 장점을 갖는다.On the other hand, the planar heating element may further include a protective layer coated on the upper surface. The protective layer may be formed of silica (SiO₂). When the protective layer is formed of silica, the heating element has an advantage of maintaining flexibility even if coated on the heating surface.
이하, 본 발명에 따른 후막 형성용 발열 페이스트 조성물 및 이를 이용한 면상발열체를 시험예를 통하여 상세히 설명한다. 하기 시험예는 본 발명을 설명하기 위한 예시일 뿐, 본 발명이 하기 시험예에 의해 한정되는 것은 아니다.Hereinafter, the heat generating paste composition for forming a thick film and the planar heating element using the same according to the present invention will be described in detail. The following test examples are only examples for explaining the present invention, and the present invention is not limited by the following test examples.
시험예Test Example
(1) 실시예 및 비교예의 준비(1) Preparation of Examples and Comparative Examples
하기 [표1]과 같이 실시예(3종류) 및 비교예(3종류)를 준비하였다. [표 1]에 표기된 조성비는 중량%로 기재된 것임을 밝혀둔다.As shown in Table 1 below, examples (three types) and comparative examples (three types) were prepared. Note that the composition ratios shown in Table 1 are described in weight percent.
실시예 1Example 1 실시예 2Example 2 실시예 3Example 3 비교예 1Comparative Example 1 비교예 2Comparative Example 2 비교예 3Comparative Example 3
CNT 입자CNT particles 44 55 66 44 55 66
CNP 입자CNP Particles 88 99 1515 -- -- --
혼합 바인더Mixed binder 2020 1515 2222 -- -- --
에틸셀룰로오스Ethyl cellulose -- -- -- 1010 1212 1414
유기용매Organic solvent 6363 6767 5252 8282 7979 7676
분산제(BYK)Dispersant (BYK) 55 44 55 44 44 44
실시예들의 경우 CNT 입자와, CNP 입자(실시예 1 내지 3)를 [표 1]의 조성에 따라 카비톨아세테이트 용매에 첨가하고 BYK 분산제를 첨가한 후, 60분간 초음파 처리를 통해 분산액 A를 제조하였다. 이후, 혼합 바인더를 카비톨아세테이트 용매에 첨가한 후 기계적 교반을 통해 마스터 배치를 제조하였다. 다음으로 상기 분산액 A 및 마스터배치를 기계적 교반을 통해 1차 혼련한 후에 3-롤-밀 과정을 거쳐 2차 혼련함으로써 발열 페이스트 조성물을 제조하였다.In the case of Examples, CNT particles and CNP particles (Examples 1 to 3) were added to a carbitol acetate solvent according to the composition of [Table 1], BYK dispersant was added, and dispersion A was prepared by sonication for 60 minutes. It was. Thereafter, a mixed binder was added to the carbitol acetate solvent and then a master batch was prepared through mechanical stirring. Next, the dispersion A and the masterbatch were first kneaded through mechanical stirring, followed by a second kneading process through a 3-roll-mill process to prepare an exothermic paste composition.
비교예들의 경우 CNT 입자를 [표 1]의 조성에 따라 카비톨아세테이트 용매에 첨가하고 BYK 분산제를 첨가한 후, 60분간 초음파 처리를 통해 분산액을 제조하였다. 이후, 에틸셀룰로오스를 카비톨아세테이트 용매에 첨가한 후 기계적 교반을 통해 마스터 배치를 제조하였다. 다음으로 상기 분산액 B 및 마스터배치를 기계적 교반을 통해 1차 혼련한 후에 3-롤-밀 과정을 거쳐 2차 혼련함으로써 발열페이스트 조성물을 제조하였다.For the comparative examples, CNT particles were added to the carbitol acetate solvent according to the composition of [Table 1], BYK dispersant was added, and a dispersion was prepared by sonication for 60 minutes. Thereafter, ethyl cellulose was added to the carbitol acetate solvent to prepare a master batch through mechanical stirring. Next, the dispersion B and the masterbatch were first kneaded through mechanical stirring, followed by a second kneading process through a 3-roll mill to prepare an exothermic paste composition.
(2) 면상발열체 특성 평가(2) Evaluation of Planar Heating Elements
실시예 및 비교예에 따른 발열 페이스트 조성물을 10×10cm 크기로 폴리이미드 기판 위에 스크린 인쇄하고 경화한 후에, 상부 양단에는 은 페이스트 전극을 인쇄하고 경화하여 면상발열체 샘플을 제조하였다.After heating and curing the exothermic paste compositions according to Examples and Comparative Examples on a polyimide substrate with a size of 10 × 10 cm, a silver paste electrode was printed and cured on both upper ends to prepare a planar heating element sample.
관련하여 도 3은 본 발명에 따른 발열 페이스트 조성물을 이용하여 제작한 면상발열체 시편의 이미지이다. 도 3a는 폴리이미드 기판 위에 발열 페이스트 조성물이 스크린 인쇄되어 형성된 면상발열체이다. 도 3b는 유리섬유 매트 위에 발열 페이스트 조성물이 스크린 인쇄되어 형성된 면상발열체이다. 도 3c 및 도 3d는 도 3a의 면상발열체 상부에 보호층을 코팅한 경우의 이미지이다.(도 3c는 검은색 보호층 코팅, 도 3d는 녹색 보호층 코팅).3 is an image of a planar heating element specimen prepared using the heating paste composition according to the present invention. 3A is a planar heating element formed by screen printing a heating paste composition on a polyimide substrate. 3B is a planar heating element formed by screen-printing a heating paste composition on a glass fiber mat. 3C and 3D are images when the protective layer is coated on the planar heating element of FIG. 3A (FIG. 3C is a black protective layer coating, and FIG. 3D is a green protective layer coating).
도 3a에 나타난 것과 같은 면상발열체 샘플(실시예) 및 상기 비교예에 따라 제조된 면상발열체 샘플들의 비저항을 측정하였다 인가되는 전압/전류는 표2에 표기됨). 또한, 인가되는 전압/전류에 따른 승온 효과를 확인하기 위해 상기 실시예 및 비교예에 해당하는 면상발열체를 각각 40℃, 100℃ 및 200℃까지 승온시키고, 상기 온도에 도달하였을 때의 DC 전압 및 전류를 측정하였다.The specific resistance of the planar heating element sample (Example) and the planar heating element samples prepared according to the comparative example as shown in Figure 3a was measured. The applied voltage / current is shown in Table 2). In addition, in order to confirm the heating effect according to the applied voltage / current, the planar heating element corresponding to the above Examples and Comparative Examples were respectively heated up to 40 ° C, 100 ° C and 200 ° C, and the DC voltage when the temperature was reached and The current was measured.
또한, 각 샘플들에 대하여 200℃에서의 발열안정성을 테스트하였다. 관련하여, 도 4에서는 실시예 및 비교예에 따라 제조된 면상발열체 샘플들의 발열안정성 시험 모습의 이미지를 나타내었으며, 시험결과는 하기 [표 2]에 정리하였다.In addition, exothermic stability at 200 ° C. was tested for each sample. In this regard, Figure 4 shows the image of the exothermic stability test of the planar heating element samples prepared according to Examples and Comparative Examples, the test results are summarized in the following [Table 2].
실시예 1Example 1 실시예 2Example 2 실시예 3Example 3 비교예 1Comparative Example 1 비교예 2Comparative Example 2 비교예 3Comparative Example 3
비저항(×10ˇ²ΩcmSpecific resistance (× 10ˇ²Ωcm 1.91.9 2.552.55 2.962.96 9.739.73 8.528.52 6.236.23
40℃ 도달 DC 구동 전압/전류40 ℃ reach DC drive voltage / current 5V/0.2A5V / 0.2A 6V/0.2A6V / 0.2A 7V/0.2A7V / 0.2A 20V/0.3A20V / 0.3A 16V/0.2A16V / 0.2A 12V/0.2A12V / 0.2A
100℃ 도달 DC 구동 전압/전류100 ℃ reach DC driving voltage / current 9V/0.5A9V / 0.5A 12V/0.4A12V / 0.4A 14V/0.5A14 V / 0.5 A 48V/0.7A48V / 0.7A 40V/0.7A40V / 0.7A 26V/0.6A26V / 0.6A
200℃ 도달 DC 구동 전압/전류200 ℃ reach DC drive voltage / current 20V/0.6A20V / 0.6A 24V/0.7A24V / 0.7A 24V/1.0A24V / 1.0A -- -- --
발열안정성(day)Heat stability (day) 20일 이상20 days or more 20일 이상20 days or more 20일 이상20 days or more 불량Bad 불량Bad 불량Bad
상기 [표 2]를 참조하며, 비저항은 실시예들에 해당하는 면상발열체가 비교예들에 해당하는 면상발열체보다 작게 측정되었으며, 이에 따라 각 온도 에 도달하기 위해 필요한 구동 전압/전류 역시 실시예들에 해당하는 면상발열체가 비교예들에 해당하는 면상발열체보다 작게 측정되었다. 즉 실시예들에 해당하는 면상발열체가 비교예보다 저전압 및 저전력으로 구동 가능함을 확인할 수 있었다.Referring to [Table 2], the specific resistance was measured that the planar heating element corresponding to the embodiments is smaller than the planar heating element corresponding to the comparative examples, accordingly driving voltage / current required to reach each temperature is also embodiments The planar heating element corresponding to was smaller than the planar heating element corresponding to the comparative examples. That is, it was confirmed that the planar heating element corresponding to the embodiments can be driven at a lower voltage and lower power than the comparative example.
또한, 실시예 1 내지 3에 따른 면상발열체에서는 200℃의 발열 구동하에서도 20일간 안정성이 유지되는 것으로 나타나는 반면에(별도의 보호층 없음), 비교예 1 내지 3에서는 200℃의 발열 구동시 2시간 이내에 발열부 표면이 부풀어 오르는 불량 현상이 관찰되었다. 즉 실시예들에 해당하는 면상발열체가 비교예보다 200℃이상의 고온에서도 안정적으로 구동 가능함을 확인할 수 있었다. In addition, in the planar heating element according to Examples 1 to 3, the stability was maintained for 20 days even under the exothermic driving at 200 ° C (no separate protective layer), whereas in the Comparative Examples 1 to 3, the exothermic driving at 200 ° C was performed. Poor phenomena were observed to swell the surface of the heating portion within time. That is, it was confirmed that the planar heating element corresponding to the embodiments can be stably driven even at a high temperature of 200 ° C. or more than the comparative example.
상기 면상발열체는 히터(6)의 몸체 내부 또는 외면에 부착, 매립 또는 장착되고, 히터에 제공되는 전력에 의해 구동된다. The planar heating element is attached, embedded or mounted on the inner or outer surface of the body of the heater 6, and driven by electric power provided to the heater.
이상, 본 발명의 실시예들에 대하여 설명하였다. 그러나 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면 특허청구범위에 기재된 본 발명의 기술적 사상의 범위 내에서 기술의 구체적 적용에 따른 단순한 설계변경, 일부 구성요소의 생략, 단순한 용도의 변경 등의 형태로 본 발명을 다양하게 변형할 수 있을 것이며, 이 또한 본 발명의 권리범위 내에 포함됨은 자명하다.In the above, embodiments of the present invention have been described. However, those skilled in the art to which the present invention pertains, within the scope of the technical spirit of the present invention described in the claims, simple design changes, omission of some components, simple use changes, etc. It will be apparent that the present invention may be variously modified in the form of the present invention, which is also included within the scope of the present invention.

Claims (8)

  1. 진공펌프에서 형성된 진공압이 특정의 장소로 전달되도록 형성된 진공라인을 소정의 온도로 가열하는 반도체 진공라인의 히팅 장치에 있어서, In the heating apparatus of a semiconductor vacuum line for heating a vacuum line formed to a predetermined temperature to transfer the vacuum pressure formed in the vacuum pump to a specific place,
    상기 진공라인을 이루는 진공파이프의 내벽을 관통하고, 소정의 경로를 따라 불활성가스가 순환하도록 형성된 불활성가스라인; 및 An inert gas line penetrating an inner wall of the vacuum pipe constituting the vacuum line and configured to circulate an inert gas along a predetermined path; And
    상기 불활성가스라인에 설치되어 상기 불활성가스를 소정의 온도로 가열하는 면상발열체를 포함하는 히터를 포함하고, A heater installed in the inert gas line and including a planar heating element for heating the inert gas to a predetermined temperature;
    상기 면상발열체는 The planar heating element
    발열페이스트 조성물 100 중량부에 대하여 탄소나노튜브 입자 3 내지 6중량부, 탄소나노입자 0.5 내지 30중량부, 혼합 바인더 10 내지 30중량부, 유기 용매 29 내지 83 중량부, 및 분산제 0.5 내지 5중량부를 포함하고, 3 to 6 parts by weight of carbon nanotube particles, 0.5 to 30 parts by weight of carbon nanoparticles, 10 to 30 parts by weight of a mixed binder, 29 to 83 parts by weight of an organic solvent, and 0.5 to 5 parts by weight of a dispersant based on 100 parts by weight of the exothermic paste composition. Including,
    상기 혼합 바인더는 에폭시 아크릴레이트 , 폴리비닐 아세탈 및 페놀계 수지가 혼합되거나 헥사메틸렌 디이소시아네이트, 폴리비닐 아세탈 및 페놀계 수지가 혼합되는 발열 페이스트 조성물을 포함하는 반도체 진공라인의 히팅 장치. The mixed binder is a heating device of a semiconductor vacuum line comprising a heating paste composition in which epoxy acrylate, polyvinyl acetal and phenolic resin is mixed or hexamethylene diisocyanate, polyvinyl acetal and phenolic resin is mixed.
  2. 제1항에 있어서, The method of claim 1,
    상기 혼합 바인더는 에폭시 아크릴레이트 또는 헥사메틸렌 디이소시아네이트 100 중량부에 대하여 폴리비닐 아세탈 수지 10 내지 150 중량부, 페놀계수지 100 내지 500 중량부가 혼합되는 반도체 진공라인의 히팅 장치. The mixed binder is a heating device of a semiconductor vacuum line is mixed with 10 to 150 parts by weight of polyvinyl acetal resin, 100 to 500 parts by weight of phenolic resin based on 100 parts by weight of epoxy acrylate or hexamethylene diisocyanate.
  3. 제1항 또는 제2항에 있어서, The method according to claim 1 or 2,
    발열 페이스트 조성물 100 중량부에 대하여 실란 커플링제 0.5 내지 5 중량부를 더 포함하는 반도체 진공라인의 히팅 장치. Heating device for a semiconductor vacuum line further comprises 0.5 to 5 parts by weight of the silane coupling agent based on 100 parts by weight of the exothermic paste composition.
  4. 제1항 또는 제2항에 있어서, The method according to claim 1 or 2,
    상기 탄소나노튜브입자는 다중벽 탄소나노튜브 입자인 반도체 진공라인의 히팅 장치. The carbon nanotube particles are multi-walled carbon nanotube particles heating device of a semiconductor vacuum line.
  5. 제1항 또는 제2항에 있어서, The method according to claim 1 or 2,
    상기 유기 용매는 카비톨 아세테이트, 부틸 카비톨 아세테이트, DBE(dibasic ester), 에틸카비톨, 에틸카비톨아세테이트, 디프로필렌글리콜메틸에테르, 셀로솔브아세테이트, 부틸셀로솔브아세테이트, 부탄올 및 옥탄올 중에서 선택되는 2 이상의 혼합 용매인 반도체 진공라인의 히팅 장치. The organic solvent is selected from carbitol acetate, butyl carbitol acetate, DBE (dibasic ester), ethyl carbitol, ethyl carbitol acetate, dipropylene glycol methyl ether, cellosolve acetate, butyl cellosolve acetate, butanol and octanol Heating device for a semiconductor vacuum line which is two or more mixed solvents.
  6. 제1항에 있어서, 상기 면상발열체는 According to claim 1, wherein the planar heating element
    상기 발열 페이스트 조성물을 기판상에 스크린 인쇄, 그라비아 인쇄 또는 콤마코팅하여 형성되는 반도체 진공라인의 히팅 장치. Heating device of the semiconductor vacuum line is formed by screen printing, gravure printing or comma coating the heating paste composition on a substrate.
  7. 제6항에 있어서, The method of claim 6,
    상기 기판은 폴리이미드 기판, 유리섬유 매트 또는 세라믹 유리인 반도체 진공라인의 히팅 장치. The substrate is a heating device of a semiconductor vacuum line is a polyimide substrate, glass fiber mat or ceramic glass.
  8. 제6항에 있어서, The method of claim 6,
    상기 면상발열체 상부면에 코팅되는 것으로, 실리카 또는 카본븍랙과 같은함 흑색 안료를 구비하는 유기물로 형성되는 보호층을 더 포함하는 반도체 진공라인의 히팅 장치. The heating apparatus of the semiconductor vacuum line is coated on the top surface of the planar heating element, and further comprising a protective layer formed of an organic material having a black pigment, such as silica or carbon shock.
PCT/KR2016/003222 2015-05-14 2016-03-29 Heating apparatus for semiconductor vacuum line using sheet heater WO2016182196A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0067071 2015-05-14
KR1020150067071A KR101630646B1 (en) 2015-05-14 2015-05-14 Heating apparatus of semiconductor vacuum line using plate heating element

Publications (1)

Publication Number Publication Date
WO2016182196A1 true WO2016182196A1 (en) 2016-11-17

Family

ID=56135365

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/003222 WO2016182196A1 (en) 2015-05-14 2016-03-29 Heating apparatus for semiconductor vacuum line using sheet heater

Country Status (2)

Country Link
KR (1) KR101630646B1 (en)
WO (1) WO2016182196A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101939220B1 (en) * 2016-06-20 2019-01-17 전자부품연구원 Planar heater for fan heater, heating assembly for fan heater and the fan heater
KR101994945B1 (en) 2017-08-08 2019-07-01 에스케이씨 주식회사 Plane-type heater for manufacturing semiconductor, and preparation method thereof
KR101993425B1 (en) 2017-08-17 2019-06-26 에스케이씨 주식회사 Plane-type heater for manufacturing semiconductor and preparation method thereof
KR20190079101A (en) 2017-12-27 2019-07-05 에스케이씨 주식회사 Plane-type heating element, preparation method thereof and heater comprising same
KR102280244B1 (en) 2019-02-19 2021-07-21 에스케이씨 주식회사 Plane-type heating element, preparation method thereof and heater comprising same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007292199A (en) * 2006-04-25 2007-11-08 Tohoku Univ Heat resistant vacuum insulation material and heating device
KR20090010252U (en) * 2008-04-04 2009-10-08 주식회사 엑사이엔씨 Heater using paste composition
US20110045240A1 (en) * 2006-01-03 2011-02-24 Erich Thallner Combination of a substrate and a wafer
KR20130125920A (en) * 2012-05-10 2013-11-20 아로 주식회사 Transparent heating substrate using carbon nano tube and method of manufacturing the substrate
KR20140114187A (en) * 2013-03-18 2014-09-26 코오롱글로텍주식회사 The plate heating element applied a coating fabric having an even surface and the manufacturing method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101524642B1 (en) * 2014-03-13 2015-06-04 전자부품연구원 Heating paste composition for forming thick film and portable low power heater using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110045240A1 (en) * 2006-01-03 2011-02-24 Erich Thallner Combination of a substrate and a wafer
JP2007292199A (en) * 2006-04-25 2007-11-08 Tohoku Univ Heat resistant vacuum insulation material and heating device
KR20090010252U (en) * 2008-04-04 2009-10-08 주식회사 엑사이엔씨 Heater using paste composition
KR20130125920A (en) * 2012-05-10 2013-11-20 아로 주식회사 Transparent heating substrate using carbon nano tube and method of manufacturing the substrate
KR20140114187A (en) * 2013-03-18 2014-09-26 코오롱글로텍주식회사 The plate heating element applied a coating fabric having an even surface and the manufacturing method thereof

Also Published As

Publication number Publication date
KR101630646B1 (en) 2016-06-15

Similar Documents

Publication Publication Date Title
WO2016182196A1 (en) Heating apparatus for semiconductor vacuum line using sheet heater
WO2016182199A1 (en) Battery pre-heating apparatus for hybrid vehicle and control method therefor
WO2016186314A1 (en) Pot for vehicle
KR101572803B1 (en) Heating unit and heating module using heating paste composition
KR101524642B1 (en) Heating paste composition for forming thick film and portable low power heater using the same
WO2016182198A1 (en) Heating device for electric vehicle and method for controlling same
WO2016186311A1 (en) Thermal mat
WO2013187675A1 (en) Carbon nanotube coating film and carbon nanotube solution composition for forming the carbon nanotube coating film
KR101637903B1 (en) Heater using heating paste composition and manufacturing method thereof
US20050191493A1 (en) Electrically conductive coatings with high thermal oxidative stability and low thermal conduction
WO2016186313A1 (en) Heating element fabric having heating paste composition, and heating steering wheel using same
WO2015174697A1 (en) Heating paste composition, and sheet heating element, heating roller, heating unit and heating module using same
KR101572802B1 (en) Heating paste composition and panel heater and heating roller using the same
WO2016182191A1 (en) Wafer heating apparatus
WO2015122641A1 (en) Heating paste composition, surface type heating element using same, and potable low-power heater
WO2012144743A2 (en) Steering wheel having self-regulating sheet-type heating element and manufacturing method for same
WO2016182194A1 (en) Display manufacturing apparatus
KR101734130B1 (en) Heater for airconditioner
KR20190058794A (en) Toner fused metal plate heater and fusing belt using the same
KR101642701B1 (en) Dish washer
WO2011016675A2 (en) Dispersion method of carbon nanotube, dispersion apparatus of carbon nanotube, and carbon nanotube dispersion obtained thereby
WO2024005271A1 (en) Sheet heater
WO2016186312A1 (en) Pcr device
KR101630645B1 (en) Heating device for glass and heating method for the same
WO2020204226A1 (en) Method for preparing conductive polymer electrode by using drop casting

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16792842

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16792842

Country of ref document: EP

Kind code of ref document: A1