KR101294596B1 - Composition and method of carbon nanotube paste for flat heating element device - Google Patents

Composition and method of carbon nanotube paste for flat heating element device Download PDF

Info

Publication number
KR101294596B1
KR101294596B1 KR1020120013149A KR20120013149A KR101294596B1 KR 101294596 B1 KR101294596 B1 KR 101294596B1 KR 1020120013149 A KR1020120013149 A KR 1020120013149A KR 20120013149 A KR20120013149 A KR 20120013149A KR 101294596 B1 KR101294596 B1 KR 101294596B1
Authority
KR
South Korea
Prior art keywords
heating element
planar heating
carbon nanotubes
carbon nanotube
weight
Prior art date
Application number
KR1020120013149A
Other languages
Korean (ko)
Inventor
신봉선
김영광
김준섭
홍승호
김경일
조신제
홍상영
정광석
최영철
Original Assignee
한화케미칼 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한화케미칼 주식회사 filed Critical 한화케미칼 주식회사
Priority to KR1020120013149A priority Critical patent/KR101294596B1/en
Application granted granted Critical
Publication of KR101294596B1 publication Critical patent/KR101294596B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heater elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/12Heater elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
    • H05B3/14Heater elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material the material being non-metallic
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heater elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/12Heater elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
    • H05B3/14Heater elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material the material being non-metallic
    • H05B3/145Carbon only, e.g. carbon black, graphite
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • H05B3/34Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater flexible, e.g. heating nets or webs
    • H05B3/342Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater flexible, e.g. heating nets or webs heaters used in textiles
    • H05B3/347Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater flexible, e.g. heating nets or webs heaters used in textiles woven fabrics

Abstract

PURPOSE: A plane heater paste composite including carbon nanotubes and a manufacturing method thereof are provided to improve heating efficiency by making a flat surface. CONSTITUTION: A plane heater composite includes 1-10 wt% carbon nanotubes which are aligned in one direction and 2-10 wt% binder which is a compound. The compound includes one or more than two polymers. The carbon nanotubes have the structure of carbon nanotubes bundles. The carbon nanotubes comprise multi-walled carbon nanotubes.

Description

탄소나노튜브를 포함하는 면상 발열체 페이스트 조성물 및 그 제조방법 {Composition and Method of Carbon Nanotube Paste for Flat Heating Element Device}Planar heating element paste composition comprising carbon nanotubes and a method of manufacturing the same {Composition and Method of Carbon Nanotube Paste for Flat Heating Element Device}

본 발명은 한 방향으로 정렬된 탄소나노튜브를 포함하는 면상 발열체 조성물 및 그의 제조방법에 관한 것으로, 상세하게는 한 방향으로 정렬된 다발 형태의 탄소나노튜브를 포함하여 전기 및 열적으로 안정하고 내구성이 향상된 고효율 저소비전력의 면상 발열체 및 그의 제조 방법에 관한 것이다.The present invention relates to a planar heating element composition comprising carbon nanotubes aligned in one direction, and a method of manufacturing the same. Specifically, the present invention relates to a bundle of carbon nanotubes arranged in one direction, which is electrically and thermally stable and durable. The present invention relates to an improved high efficiency low power planar heating element and a method of manufacturing the same.

면상 발열체는 통상의 니크롬선을 이용한 선상 발열체가 아닌, 면에서 발열하는 발열체로서, 기존 선상 발열체와는 달리 전체의 면상에서 고른 발열이 발생하므로 발열효과가 높고 안전한 발열체이다.The planar heating element is not a linear heating element using a nichrome wire, and is a heating element that generates heat from the plane, and unlike the existing linear heating element, evenly generated heat is generated on the entire surface, and thus a high heating effect and a safe heating element.

일반적으로 면상 발열체는 열전도가 높은 구리, 알루미늄, 철, 니켈, 흑연분말 등을 필름형태의 수지(RESIN) 등에 균일하게 분사 또는 인쇄 형성하거나, 또는 도전성이 있는 탄소, 흑연, 카본블랙 및 활성 탄소/섬유 등을 고분자 수지에 코팅시켜 사용하고 있다.In general, the planar heating element is formed by uniformly spraying or printing copper, aluminum, iron, nickel, graphite powder, etc. having high thermal conductivity into a resin such as a film, or conductive carbon, graphite, carbon black, and activated carbon / Fibers and the like are coated on a polymer resin and used.

특히 탄소는 열과 내구성이 강하며 열전도가 좋고 열팽창계수가 낮은 가벼운 특징이 있다. 또한, 흑연은 금속발열체를 에칭하는 것보다 제작이 쉽고 가격이 저렴하여 많이 이용되고 있다.In particular, carbon is characterized by high heat and durability, light thermal conductivity and low thermal expansion coefficient. In addition, graphite is much easier to manufacture and less expensive than etching metal heating elements.

한편, 탄소 재료는 높은 전기전도성, 열전도성, 내열성, 내식성, 내마모성 및 윤활성 등과 같은 전기적/물리적으로 우수한 특성을 가지고 있기 때문에 광범위하게 사용되고 있는 실정이다.On the other hand, carbon materials are widely used because they have excellent electrical and physical properties such as high electrical conductivity, thermal conductivity, heat resistance, corrosion resistance, wear resistance, and lubricity.

대한민국 공개특허 제10-2010-0105817호(2010.09.30) 및 대한민국 공개특허 제10-2005-0081314호(2005.08.19)에 따르면 최근에는 카본블랙 분말을 분산시킨 고분자 발열시트가 면상 발열체의 주종을 이루고 있으나, 상기 카본블랙 분말을 분산시킨 고분자 발열시트가 우수한 발열특성을 나타내기 위해서는 고분자 발열시트 내에서 카본블랙 분말들 간의 연속적인 접촉이 이루어져 높은 전기전도성이 확보되어야 한다.According to Republic of Korea Patent Publication No. 10-2010-0105817 (2010.09.30) and Republic of Korea Patent Publication No. 10-2005-0081314 (2005.08.19) Recently, the polymer heating sheet in which the carbon black powder is dispersed the main species of the planar heating element However, in order for the polymer heating sheet in which the carbon black powder is dispersed to exhibit excellent heating characteristics, high electrical conductivity must be ensured by continuous contact between the carbon black powders in the polymer heating sheet.

그러나 카본의 분산 시, 입자 형상의 카본블랙 분말 간에 접촉이 어렵기 때문에 많은 양의 카본블랙을 분산시켜야 하고, 카본블랙 분말의 함량을 변화시킬 수 있는 범위가 제한받게 된다. 즉 카본블랙은 50 중량% 이상 과량의 탄소입자를 첨가하여야만 원하는 저항과 발열효과를 얻을 수 있어, 이로 인해 성형의 어려움과 함께 기계적 강도가 약하여 제 기능을 발휘하는데 문제점이 있는가 하면, 내 수명에도 문제점이 있다.However, when carbon is dispersed, it is difficult to contact between carbon black powders in the form of particles, so that a large amount of carbon black must be dispersed, and the range in which the content of carbon black powder can be varied is limited. In other words, carbon black must be added to the carbon particles in excess of 50% by weight or more to obtain the desired resistance and heat generation effect. As a result, the mechanical strength is weak and the mechanical strength is weak. There is this.

대한민국 공개특허 제10-2010-0105817호(2010.09.30)Republic of Korea Patent Publication No. 10-2010-0105817 (2010.09.30) 대한민국 공개특허 제10-2005-0081314호(2005.08.19)Republic of Korea Patent Publication No. 10-2005-0081314 (2005.08.19)

상기와 같은 문제점들을 보완하고자 본 발명의 목적은 온도 균일성이 우수한 높은 열전도를 갖는 면상 발열체 및 그의 제조 방법을 제공하는 데 있다.An object of the present invention to solve the above problems is to provide a planar heating element having a high thermal conductivity excellent in temperature uniformity and a method of manufacturing the same.

본 발명의 다른 목적은 기계적 강도가 우수하고 저전압 구동하에서도 우수한 열전도를 갖는 면상 발열체 및 그의 제조방법을 제공하는 데 있다.Another object of the present invention is to provide a planar heating element having excellent mechanical strength and excellent thermal conductivity even under low voltage driving, and a method of manufacturing the same.

상기 목적을 달성하기 위하여 본 발명은 한 방향으로 정렬된 탄소나노튜브를 포함하는 면상 발열체 조성물을 제공한다. 본 발명에 있어서 탄소나노튜브는 한 방향으로 정렬된 다발 형태의 탄소나노튜브인 것을 특징으로 한다.In order to achieve the above object, the present invention provides a planar heating element composition comprising carbon nanotubes aligned in one direction. Carbon nanotubes in the present invention is characterized in that the bundle of carbon nanotubes arranged in one direction.

본 발명은 기존의 탄소나노튜브를 사용하는 면상 발열체의 경우 탄소나노튜브의 분산성 및 방향성에 대한 한계점을 극복하기 위해 연구한 결과 한 방향으로 정렬된 탄소나노튜브 다발을 사용함으로써 기존의 탄소나노튜브가 가진 분산성 및 방향성에 대한 문제점을 극복하고 발열 효율과 내구성을 높일 수 있다는 것을 알았고, 이에 본 발명을 완성하였다.According to the present invention, in the case of the planar heating element using the conventional carbon nanotubes, as a result of studying to overcome the limitations on the dispersibility and the orientation of the carbon nanotubes, the conventional carbon nanotubes are used by using bundles of carbon nanotubes aligned in one direction. It was found that the problems with dispersibility and directionality of the present invention can be improved and the exothermic efficiency and durability can be improved, thereby completing the present invention.

상기 탄소나노튜브 다발을 이루는 개별 탄소나노튜브 가닥의 직경은 0.5 내지 30㎚이고, 길이는 0.5 내지 2500㎛이며, 탄소나노튜브 가닥이 한 방향으로 정렬되어 다발을 이루었을 때의 탄소나노튜브 다발의 직경은 0.005 내지 50㎛이고, 길이는 10 내지 500㎛인 것이 좋다. 더욱 바람직하게는 개별 탄소나노튜브 가닥의 직경은 1 내지 15㎚이고, 길이는 1 내지 1000㎛이며, 탄소나노튜브 가닥이 한 방향으로 정렬되어 다발을 이루었을 때의 탄소나노튜브 다발의 직경은 0.01 내지 20㎛이고, 길이는 20 내지 300㎛인 것이 발열량과 내구성 및 발열 균일도 측면에 있어서 더욱 좋다. 탄소나노튜브 다발의 길이가 너무 길면 탄소나노튜브 가닥이 각기 다르게 잘려져 길이가 동일하지 않으므로 면상발열체의 표면이 고르지 않은 단점을 수반하게 된다.The carbon nanotube strands forming the carbon nanotube bundles have a diameter of 0.5 to 30 nm, a length of 0.5 to 2500 μm, and the carbon nanotube bundles when the carbon nanotube strands are aligned in one direction to form a bundle. The diameter is 0.005 to 50 µm, and the length is preferably 10 to 500 µm. More preferably, the diameter of the individual carbon nanotube strands is 1 to 15 nm, the length is 1 to 1000 µm, and the diameter of the carbon nanotube bundles when the carbon nanotube strands are aligned in one direction to form a bundle is 0.01. It is 20 micrometers and the length is 20-300 micrometers, It is further more preferable in terms of heat generation amount, durability, and heat generation uniformity. If the length of the carbon nanotube bundle is too long, the carbon nanotube strands are cut differently, so that the length of the carbon nanotube bundle is not the same, so that the surface of the planar heating element is accompanied by an uneven surface.

상기 면상 발열체 조성물은 한 방향으로 정렬된 탄소나노튜브, 바인더 및 분산용매를 포함하는 것을 특징으로 한다.The planar heating element composition is characterized in that it comprises carbon nanotubes, a binder and a dispersion solvent aligned in one direction.

구체적으로 상기 면상 발열체 조성물은 바인더 2 내지 10 중량%, 분산용매 85 내지 95 중량% 및 한 방향으로 정렬된 탄소나노튜브 1 내지 10 중량%를 포함한다. 상기 한 방향으로 정렬된 탄소나노튜브의 함량이 1중량% 미만일 경우 발열체와 전극간 저항이 증가하게 되고 이에 따라 발열량이 감소하는 단점을 수반하게 되고, 10 중량%를 초과하면 발열온도가 너무 높아져 발열체 온도제어에 문제점이 발생할 수 있으며, 공정 측면에서는 페이스트 혹은 잉크의 점도가 너무 높아져 성막 공정이 어려워 질 수 있다. 상기 바인더의 함량이 2 중량% 미만으로 너무 적으면 면상 발열체의 강도가 미약하고 가공성이 용이하지 못한 단점이 있고, 바인더가 10중량%를 초과하여 과량 포함되면 면상 발열체의 강도는 높아지지만 표면이 고르지 못하고 두꺼워 발열 효율이 저하될 수 있다. Specifically, the planar heating element composition includes 2 to 10 wt% of the binder, 85 to 95 wt% of the dispersion solvent, and 1 to 10 wt% of the carbon nanotubes aligned in one direction. When the content of the carbon nanotubes aligned in one direction is less than 1% by weight, the resistance between the heating element and the electrode is increased, and thus the heating value is reduced. Problems may occur in temperature control, and in terms of process, the viscosity of the paste or ink may be too high, making the film forming process difficult. If the content of the binder is less than 2% by weight, the strength of the planar heating element is weak and the processability is not easy. If the binder is contained in excess of 10% by weight, the strength of the planar heating element is high, but the surface is uneven. It may not be thick enough to lower the heat generation efficiency.

상기 바인더는 면상 발열체 조성물 중 실질적인 발열 특성을 결정짓는 탄소나노튜브가 기판 혹은 직물에 안정성 있게 성막될 수 있도록 부착력을 제공하는 역할을 하며 추가적으로는 분산이 용이하게 하고, 페이스트 조성물의 스크린 인쇄 시 도막의 균일성을 확보하기 위한 적절한 점도를 제공한다. 이러한 바인더는 폴리비닐부티랄계, 아크릴계, 실리콘계, 우레탄계, 셀룰로즈계로 이루어진 고분자 물질을 적용할 수 있으며 상기 셀룰로즈계는 메틸셀룰로즈, 에틸셀룰로즈, 니트로셀룰로즈 및 카복시메틸셀룰로즈에서 선택되는 하나 또는 둘 이상의 혼합물을 사용할 수 있지만 이에 제한되지는 않는다. The binder serves to provide adhesion so that carbon nanotubes, which determine substantial heating properties in the planar heating element composition, can be stably deposited on a substrate or fabric, and further facilitate dispersing. Provide an appropriate viscosity to ensure uniformity. The binder may be a polymer material consisting of polyvinyl butyral, acrylic, silicone, urethane, and cellulose, and the cellulose may be one or two or more mixtures selected from methyl cellulose, ethyl cellulose, nitro cellulose, and carboxymethyl cellulose. It is possible, but not limited to.

상기 분산용매는 당업자라면 바인더를 녹일 수 있는 것으로 선택하여 사용이 가능하며, 구체적인 예로는 테르피네올, 부틸칼비톨 아세테이트 또는 부틸칼비톨을 사용할 수 있으나, 본 발명의 범위가 이에 제한되는 것은 아니다.The dispersion solvent can be used by those skilled in the art can be selected by melting the binder, and specific examples may use terpineol, butyl carbitol acetate or butyl carbitol, but the scope of the present invention is not limited thereto.

상기 한 방향으로 정렬된 다중벽 탄소나노튜브 다발은 전이금속 전구체 용액과 이를 담지할 수 있는 구조체를 형성하여 촉매 파우더를 제조한 후 이를 화학기상증착법을 이용하여 합성하는 단계를 포함하여 제조되는 것을 특징으로 한다. The multi-walled carbon nanotube bundles aligned in one direction may be prepared by forming a transition metal precursor solution and a structure capable of supporting the same to prepare a catalyst powder, and then synthesizing it using chemical vapor deposition. It is done.

또한 본 발명은 바인더, 분산용매 및 한 방향으로 정렬된 다중벽 탄소나노튜브 다발을 혼합, 교반 및 밀링하는 단계를 포함하는 면상 발열체의 제조방법을 제공한다.In another aspect, the present invention provides a method for producing a planar heating element comprising the step of mixing, stirring and milling a binder, a dispersion solvent and a bundle of multi-walled carbon nanotubes arranged in one direction.

한 방향으로 정렬된 다중벽 탄소나노튜브는 전이금속 촉매를 연소법 방식으로 제조한 후 화학기상증착법에 의한 합성 단계로 제조되는 것을 특징으로 하며, 바인더 2 내지 10 중량%, 분산용매 85 내지 95 중량% 및 다중벽 탄소나노튜브 다발 1 내지 10 중량%를 혼합하여 발열체 페이스트를 제조한다. 밀링단계를 통하여 다발 형태의 다중벽 탄소나노튜브는 다발이 풀어지며 분쇄 또는 분산된다. 밀링은 탄소나노튜브의 분산 및 분쇄의 목적수단으로 수행할 수 있으며, 밀링 머신은 Bead Mill 혹은 3 Roll Mill이 바람직하며 상온에서 60 내지 180 분간 수행되는 것이 가장 좋다. 밀링 시간이 너무 길면 탄소나노튜브가 과하게 분쇄되어 발열 특성 면에 있어서 좋지 않고, 밀링 시간이 너무 짧으면 분쇄 및 분산이 부족해지는 단점을 수반하게 된다. The multi-walled carbon nanotubes arranged in one direction are prepared by the combustion method of the transition metal catalyst, and then synthesized by chemical vapor deposition. The binder is 2 to 10% by weight and the solvent is 85 to 95% by weight. And 1 to 10% by weight of the multi-walled carbon nanotube bundles are mixed to prepare a heating element paste. Through the milling step, the bundle-type multi-walled carbon nanotubes are loosened and pulverized or dispersed. Milling can be carried out as a means of dispersing and pulverizing the carbon nanotubes, the milling machine is preferably a Bead Mill or 3 Roll Mill, it is best to perform 60 to 180 minutes at room temperature. If the milling time is too long, the carbon nanotubes are excessively pulverized in terms of exothermic properties, and if the milling time is too short, the milling and dispersion may be insufficient.

밀링단계를 거쳐 제조된 발열체 페이스트는 기판에 도포 및 건조되는 단계를 통하여 면상 발열체로 제조된다.The heating element paste manufactured through the milling step is manufactured as a planar heating element through a step of applying and drying the substrate.

면상 발열체의 기저층은 구체적으로 폴리에스테르계 수지, 폴리프로필렌계 수지, 폴리에틸렌계 수지, 폴리염화비닐계 수지, 폴리우레탄계 수지 및 폴리아미드계 수지로 이루어진 군으로부터 선택되는 하나 또는 둘 이상을 선택할 수 있으며 상기 기저층과 발열 전도층 사이에 표면 균일도를 높이기 위해 프라이머층을 형성하는데 이러한 프라이머층으로는 폴리우레탄 수지, 아크릴계 수지 또는 실리콘계 수지를 사용할 수 있으나, 이에 제한되는 것은 아니다.Specifically, the base layer of the planar heating element may be selected from one or two or more selected from the group consisting of polyester resins, polypropylene resins, polyethylene resins, polyvinyl chloride resins, polyurethane resins, and polyamide resins. A primer layer is formed between the base layer and the exothermic conductive layer to increase the surface uniformity. The primer layer may be a polyurethane resin, an acrylic resin, or a silicone resin, but is not limited thereto.

면상 발열체 페이스트는 상기 기판에 평균두께가 5 내지 20㎛으로 도포되는 것이 발열효율 및 내구성에 있어서 좋다. 발열체 페이스트가 너무 두껍게 도포되면 발열효율이 떨어지고 발열체 페이스트의 도포두께가 너무 얇으면 제조된 면상발열체의 강도가 떨어지게 된다.The planar heating element paste is preferably coated with an average thickness of 5 to 20 탆 on the substrate in terms of heat generation efficiency and durability. If the heating element paste is applied too thick, the heat generation efficiency is lowered, and if the coating thickness of the heating element paste is too thin, the strength of the planar heating element manufactured is reduced.

기판에 도포된 발열체 페이스트는 160 내지 200℃에서 5 내지 20분간 건조시키는 단계를 거쳐 면상 발열체로 제조된다. The heating element paste applied to the substrate is made of a planar heating element through a step of drying at 160 to 200 ° C. for 5 to 20 minutes.

본 발명에 따른 한 방향으로 정렬된 다중벽 탄소나노튜브 다발을 포함하여 제조되는 면상 발열체는 기존의 탄소나노튜브를 포함하는 면상 발열체와 대비하여 표면이 고르게 형성됨으로써 발열효율이 높아 저소비전력으로도 높은 발열온도와 발열량을 발생시키고, 우수한 네트워크형상으로 전기적 및 열적으로 안정성을 확보할 수 있다. 또한 도포되는 발열체 페이스트를 조절할 수 있어 절곡성 및 굴곡성이 향상된다.The planar heating element manufactured by bundling the multi-walled carbon nanotube bundles aligned in one direction according to the present invention has a high heat generation efficiency due to the high heat generation efficiency as compared with the planar heating element including the conventional carbon nanotubes. It generates heat generation temperature and calorific value and can secure electrical and thermal stability with excellent network shape. In addition, the heating element paste to be applied can be adjusted to improve the bendability and flexibility.

도 1은 본 발명의 실시예 2에서 제조된 탄소나노튜브 면상 발열체의 표면을 전자현미경으로 관찰한 결과이다.
도 2는 본 발명의 비교예 2에서 제조된 탄소나노튜브 면상 발열체의 표면을 전자현미경으로 관찰한 결과이다.
1 is a result of observing the surface of the carbon nanotube planar heating element prepared in Example 2 of the present invention with an electron microscope.
2 is a result of observing the surface of the carbon nanotube planar heating element prepared in Comparative Example 2 of the present invention with an electron microscope.

이하는 본 발명의 구체적인 설명을 위하여 실시예를 들어 설명하는 바, 본 발명이 하기 실시예에 한정되는 것은 아니다.Hereinafter, the present invention will be described with reference to Examples for the detailed description of the present invention, but the present invention is not limited to the following Examples.

[제조예 1] 한방향으로 정렬된 탄소나노튜브 다발의 제조Preparation Example 1 Preparation of Carbon Nanotube Bundles Aligned in One Direction

Iron(III) Nitrate nonahydrate 12g, Cobalt(II) Nitrate hexahydrate 8.4g, Aluminum Nitrate nonahydrate 36g, Citric Acid 10g을 순서대로 100ml의 증류수에 넣고 혼합한다.12g of Iron (III) Nitrate nonahydrate, 8.4g of Cobalt (II) Nitrate hexahydrate, 36g of Aluminum Nitrate nonahydrate, and 10g of Citric Acid are mixed in 100ml of distilled water.

제조한 용액을 스테인레스 용기에 옮겨담은 후 550℃로 가열된 소성로에 넣고 20분간의 열분해 과정을 통하여 흑갈색의 촉매 분말 20g를 수득한다.The prepared solution was transferred to a stainless steel container and placed in a calcination furnace heated to 550 ° C. to obtain 20 g of a black brown catalyst powder through pyrolysis for 20 minutes.

상기에서 합성된 촉매 10g을 석영 보트 위에 고르게 도포한 후, 보트를 열화학기상증착장치의 석영 반응관 내부에 장착한다. 질소 분위기에서 반응관의 온도를 1시간에 걸쳐 750℃ 까지 상승시킨 후, 20분간 분당 2L의 수소를 흘려준다. After 10 g of the catalyst synthesized above is evenly applied on the quartz boat, the boat is mounted inside the quartz reaction tube of the thermochemical vapor deposition apparatus. After raising the temperature of the reaction tube to 750 ° C. over 1 hour in a nitrogen atmosphere, 2 L of hydrogen per minute was flowed for 20 minutes.

이후 분 당 5L의 에틸렌과 5L의 수소를 흘려주면서 60분간 탄소나노튜브 합성 반응을 진행한다. 상기 과정을 통하여 210g의 탄소나노튜브를 수득하였다.Thereafter, 5L of ethylene and 5L of hydrogen are flowed per minute, and the carbon nanotube synthesis reaction is performed for 60 minutes. 210 g of carbon nanotubes were obtained through the above process.

[실시예 1] 면상 발열체 페이스트의 제조Example 1 Preparation of Planar Heating Element Paste

상기 제조예 1에서 제조된 한방향으로 정렬되고 다발의 직경이 7㎛, 다발의 길이가 100㎛인 다중벽 탄소나노튜브 다발 3.0g 및 에틸 셀룰로오스(ETHOCEL, standard 45, Dow Chemical Corp, USA) 5.0g을 테르피네올 분산용매 92.0g에 첨가하여 혼합 및 180분 동안 60℃의 온도에서 교반 후 상온에서 3 Roll Mill 장비로 60분 동안 밀링하여 면상 발열체 페이스트를 제조하였다.Aligned in one direction prepared in Preparation Example 1 3.0g of multi-walled carbon nanotube bundles 7㎛ diameter, 100㎛ length of the bundle and 5.0g ethyl cellulose (ETHOCEL, standard 45, Dow Chemical Corp, USA) Was added to 92.0 g of a terpineol dispersion solvent, and the mixture was stirred at a temperature of 60 ° C. for 180 minutes, and then milled for 60 minutes with a 3 Roll Mill apparatus at room temperature to prepare a planar heating element paste.

[비교예 1] 면상 발열체 페이스트의 제조Comparative Example 1 Preparation of Plane Heating Element Paste

정렬되지 않은 평균 직경이 12.5㎚, 평균 길이가 15.0㎛인 다중벽 탄소나노튜브(한화나노텍, 제품명 CM-95) 3.0g을 사용한 것을 제외하고는 상기 실시예 1과 동일하게 수행하였다.The same procedure as in Example 1 was carried out except that 3.0 g of multi-walled carbon nanotubes (Hanhan Nanotech, product name CM-95) having an unaligned average diameter of 12.5 nm and an average length of 15.0 μm were used.

[실시예 2] 면상 발열체의 제조Example 2 Fabrication of Planar Heating Element

상기 실시예 1에서 제조된 면상발열체 페이스트 100g을 실리콘계 수지가 프라이머층으로 코팅된 폴리에스테르 직물에 스크린 인쇄프린팅 방식으로(도포방법 기재 필요합니다.) 평균두께가 5 ~ 20㎛이 되도록 도포한 후, 200℃에서 20분간 건조하여 용매를 증발시켜 발열체를 제조하였다.100 g of the planar heating element paste prepared in Example 1 was applied to a polyester fabric coated with a silicone resin primer layer by a screen printing method (required to describe a coating method) so that the average thickness was 5 to 20 μm. It dried for 20 minutes at 200 ℃ evaporated the solvent to prepare a heating element.

제조된 면상 발열체의 표면을 전자현미경으로 관찰하여 그 결과를 하기 도 1에 나타내었다.The surface of the prepared planar heating element was observed with an electron microscope, and the results are shown in FIG. 1.

[비교예 2] 면상 발열체의 제조 Comparative Example 2 Preparation of Planar Heating Element

상기 비교예 1의 면상발열체 페이스트를 사용한 것을 제외하고는 상기 실시예 2와 동일하게 수행하였다.Except that the planar heating element paste of Comparative Example 1 was used in the same manner as in Example 2.

제조된 면상 발열체의 표면을 전자현미경으로 관찰하여 그 결과를 하기 도 2에 나타내었다.The surface of the prepared planar heating element was observed with an electron microscope, and the results are shown in FIG. 2.

하기 도 1과 도 2에 나타난 것과 같이 본 발명에 따른 탄소나노튜브 면상 발열체는 기존의 탄소나노튜브 면상 발열체보다 표면이 고르게 형성됨을 알 수 있다.1 and 2, the carbon nanotube planar heating element according to the present invention can be seen that the surface is formed evenly than the conventional carbon nanotube planar heating element.

[시험예 1][Test Example 1]

상기 비교예 2 및 실시예 2 에서 폴리에스테르 섬유가 직조된 기재에 탄소나노튜브 후막이 도포된 직물을 도전성 페이스트, 구체적으로는 은(Ag) 페이스트를 패턴 인쇄하여 전극을 형성하고 그 위에 실리콘 수지를 코팅하여 절연층을 형성한 발열 직물을 구비한다. 상기 방법으로 제조된 발열 직물을 전원 공급 장치(DC 18V)에 연결하여 발열 성능을 측정한 시험 결과는 아래 표 1에 나타난 바와 같다.A conductive paste, specifically, an silver (Ag) paste, was printed on a fabric coated with a polyester fiber on a substrate fabricated with polyester fibers in Comparative Examples 2 and 2 to form an electrode, and a silicone resin was formed thereon. And a heat generating fabric coated to form an insulating layer. Test results of measuring the heating performance by connecting the heating fabric prepared by the method to the power supply (DC 18V) are shown in Table 1 below.

Figure 112012010518091-pat00001
Figure 112012010518091-pat00001

Claims (13)

한 방향으로 정렬된 탄소나노튜브 1 내지 10 중량%;
폴리비닐부티랄계, 아크릴계, 실리콘계, 우레탄계, 셀룰로즈계로 이루어진 고분자 물질 중 하나 또는 둘 이상의 혼합물인 바인더 2 내지 10 중량%; 및
테르피네올, 부틸칼비톨 아세테이트, 부틸칼비톨 중 하나 또는 둘 이상의 혼합물인 분산용매 85 내지 95 중량%;
를 포함하는 면상 발열체 조성물.
1 to 10% by weight of carbon nanotubes aligned in one direction;
2 to 10% by weight of a binder which is one or a mixture of two or more of a polymer material consisting of polyvinyl butyral, acryl, silicone, urethane and cellulose; And
85 to 95% by weight of a dispersion solvent which is one or a mixture of two or more of terpineol, butyl carbitol acetate, and butyl carbitol;
Planar heating element composition comprising a.
제 1항에 있어서,
상기 탄소나노튜브는 탄소나노튜브 다발의 구조를 갖는 것을 특징으로 하는 면상 발열체 조성물.
The method of claim 1,
The carbon nanotubes are planar heating element composition, characterized in that having a structure of carbon nanotube bundles.
제 2항에 있어서,
상기 탄소나노튜브는 다중벽 탄소나노튜브인 것을 특징으로 하는 면상 발열체 조성물.
The method of claim 2,
The carbon nanotubes are planar heating element composition, characterized in that the multi-walled carbon nanotubes.
제 2항에 있어서,
상기 탄소나노튜브 다발의 직경은 0.005 내지 50㎛이고, 길이는 10 내지 500㎛인 것을 특징으로 하는 면상 발열체 조성물.
The method of claim 2,
The diameter of the carbon nanotube bundle is 0.005 to 50㎛, the length of the planar heating element composition, characterized in that 10 to 500㎛.
제 3항에 있어서,
상기 탄소나노튜브의 직경은 0.5 내지 30㎚이고, 길이는 0.5 내지 2500㎛인 것을 특징으로 하는 면상 발열체 조성물.
The method of claim 3,
The carbon nanotubes have a diameter of 0.5 to 30 nm, and a length of the planar heating element composition, characterized in that 0.5 to 2500㎛.
삭제delete 삭제delete 제 1항 내지 제 5항에서 선택되는 어느 한 항의 면상 발열체 조성물을 포함하는 면상 발열체.
A planar heating element comprising the planar heating element composition of any one of claims 1 to 5.
삭제delete 한 방향으로 정렬된 다중벽 탄소나노튜브 다발 1 내지 10 중량%;
폴리비닐부티랄계, 아크릴계, 실리콘계, 우레탄계, 셀룰로즈계로 이루어진 고분자물질 중 하나 또는 둘 이상의 혼합물인 바인더 2 내지 10 중량%; 및
테르피네올, 부틸칼비톨 아세테이트, 부틸칼비톨 중 하나 또는 둘 이상의 혼합물인 분산용매 85 내지 95 중량%;
를 포함하는 면상 발열체 조성물을 혼합, 교반 및 밀링하는 단계를 포함하는 면상 발열체의 제조방법.
1 to 10% by weight of the multi-walled carbon nanotube bundles aligned in one direction;
2 to 10% by weight of a binder which is one or a mixture of two or more of a polymer material consisting of polyvinyl butyral, acrylic, silicone, urethane, and cellulose; And
85 to 95% by weight of a dispersion solvent which is one or a mixture of two or more of terpineol, butyl carbitol acetate, and butyl carbitol;
Method for producing a planar heating element comprising the step of mixing, stirring and milling a planar heating element composition comprising a.
제 10항에 있어서,
상기 한 방향으로 정렬된 다중벽 탄소나노튜브 다발은 전이금속 전구체 용액을 연소법 방식으로 환원하여 제조한 촉매 금속 입자를 탄화수소 기체와 수소 기체를 이용 화학기상증착법으로 합성하는 단계를 포함하여 제조되는 것을 특징으로 하는 면상 발열체의 제조방법.
The method of claim 10,
The multi-walled carbon nanotube bundles aligned in one direction may be prepared by synthesizing catalytic metal particles prepared by reducing the transition metal precursor solution by a combustion method by chemical vapor deposition using hydrocarbon gas and hydrogen gas. Method for producing a planar heating element.
삭제delete 삭제delete
KR1020120013149A 2012-02-09 2012-02-09 Composition and method of carbon nanotube paste for flat heating element device KR101294596B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020120013149A KR101294596B1 (en) 2012-02-09 2012-02-09 Composition and method of carbon nanotube paste for flat heating element device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120013149A KR101294596B1 (en) 2012-02-09 2012-02-09 Composition and method of carbon nanotube paste for flat heating element device

Publications (1)

Publication Number Publication Date
KR101294596B1 true KR101294596B1 (en) 2013-08-09

Family

ID=49220126

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120013149A KR101294596B1 (en) 2012-02-09 2012-02-09 Composition and method of carbon nanotube paste for flat heating element device

Country Status (1)

Country Link
KR (1) KR101294596B1 (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101524642B1 (en) * 2014-03-13 2015-06-04 전자부품연구원 Heating paste composition for forming thick film and portable low power heater using the same
KR101539387B1 (en) * 2013-08-14 2015-07-28 광자에너지연구소(주) Planar heating element and method of fabricating the same
KR20150095406A (en) 2014-02-13 2015-08-21 전자부품연구원 Printable high heat resistance heating paste composition
KR20160032409A (en) * 2014-09-16 2016-03-24 영진기술 주식회사 High conductive Paste composition and producing Method thereof using high temperature heat treatment
KR101630645B1 (en) * 2015-05-14 2016-06-15 주식회사 대화알로이테크 Heating device for glass and heating method for the same
KR101637892B1 (en) 2015-03-10 2016-07-11 전자부품연구원 Multi-layer heater using heating paste composition
KR101637903B1 (en) 2015-04-02 2016-07-11 전자부품연구원 Heater using heating paste composition and manufacturing method thereof
KR101642700B1 (en) * 2015-05-19 2016-07-27 주식회사 대화알로이테크 Pot for vehicle
KR20160110645A (en) 2015-03-10 2016-09-22 전자부품연구원 Heating paste composition and mold heater using the same
WO2016186312A1 (en) * 2015-05-19 2016-11-24 주식회사 대화알로이테크 Pcr device
WO2016186316A1 (en) * 2015-05-15 2016-11-24 주식회사 대화알로이테크 Air purifier
WO2017003269A1 (en) * 2015-07-02 2017-01-05 구각회 Sheet heating element and electrically conductive thin film
WO2017052064A1 (en) * 2015-09-25 2017-03-30 주식회사 엘지화학 Carbon nanotube dispersion and method for producing same
US20170253007A1 (en) * 2016-03-04 2017-09-07 Hyundai Motor Company Head liner for vehicle
KR101877538B1 (en) * 2018-01-24 2018-07-11 삼우 주식회사 Heating footplate and walkway including the same
KR20190032202A (en) 2017-09-18 2019-03-27 삼우주식회사 Heating paste composition for operating in low temperature and heater using the same
KR20190058794A (en) 2017-11-22 2019-05-30 전자부품연구원 Toner fused metal plate heater and fusing belt using the same
US10536993B2 (en) 2014-02-13 2020-01-14 Korea Electronics Technology Institute Heating paste composition, surface type heating element using the same, and portable low-power heater
KR20220076621A (en) * 2020-12-01 2022-06-08 재단법인 한국탄소산업진흥원 Method for manufacturing carbon nanotube heating ink and heating ink manufactured by the method
KR20230051471A (en) * 2015-12-04 2023-04-18 삼성전자주식회사 Paste composition, and heating element, planar heaing composite and heating apparatus using the past composition, and manufacturing methods thereof
KR20230089315A (en) 2021-12-13 2023-06-20 재단법인 한국탄소산업진흥원 Method for manufacturing carbon heating paste for manufacturing stretchable heating film and stretchable heating film manufactured therefrom

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080039227A (en) * 2006-10-31 2008-05-07 삼성전자주식회사 Device comprising palladium-catalyst-induced carbon nanostructure and fabrication method thereof
KR20090021056A (en) * 2007-08-24 2009-02-27 고려대학교 산학협력단 A pre-treatment method of carbon nanotube for carbon nanotube/polymer composites, a manufacturing method for carbon nanotube/polymenr composites, and carbon nanotube/polymenr composites using the pretreatment method of carbon nanotue
KR20090023263A (en) * 2007-08-30 2009-03-04 한국전기연구원 Sheet type heater and heating divice comprising the same
KR20110047404A (en) * 2009-10-30 2011-05-09 인하대학교 산학협력단 Method for preparating of chemically treated carbon nanotube/polyvinylidene fluoride nanocomposite

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080039227A (en) * 2006-10-31 2008-05-07 삼성전자주식회사 Device comprising palladium-catalyst-induced carbon nanostructure and fabrication method thereof
KR20090021056A (en) * 2007-08-24 2009-02-27 고려대학교 산학협력단 A pre-treatment method of carbon nanotube for carbon nanotube/polymer composites, a manufacturing method for carbon nanotube/polymenr composites, and carbon nanotube/polymenr composites using the pretreatment method of carbon nanotue
KR20090023263A (en) * 2007-08-30 2009-03-04 한국전기연구원 Sheet type heater and heating divice comprising the same
KR20110047404A (en) * 2009-10-30 2011-05-09 인하대학교 산학협력단 Method for preparating of chemically treated carbon nanotube/polyvinylidene fluoride nanocomposite

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101539387B1 (en) * 2013-08-14 2015-07-28 광자에너지연구소(주) Planar heating element and method of fabricating the same
KR20150095406A (en) 2014-02-13 2015-08-21 전자부품연구원 Printable high heat resistance heating paste composition
US10536993B2 (en) 2014-02-13 2020-01-14 Korea Electronics Technology Institute Heating paste composition, surface type heating element using the same, and portable low-power heater
KR101524642B1 (en) * 2014-03-13 2015-06-04 전자부품연구원 Heating paste composition for forming thick film and portable low power heater using the same
KR101639600B1 (en) 2014-09-16 2016-07-14 영진기술 주식회사 High conductive Paste composition and producing Method thereof using high temperature heat treatment
KR20160032409A (en) * 2014-09-16 2016-03-24 영진기술 주식회사 High conductive Paste composition and producing Method thereof using high temperature heat treatment
KR20160110645A (en) 2015-03-10 2016-09-22 전자부품연구원 Heating paste composition and mold heater using the same
KR101637892B1 (en) 2015-03-10 2016-07-11 전자부품연구원 Multi-layer heater using heating paste composition
KR101637903B1 (en) 2015-04-02 2016-07-11 전자부품연구원 Heater using heating paste composition and manufacturing method thereof
WO2016182192A1 (en) * 2015-05-14 2016-11-17 주식회사 대화알로이테크 Glass heating apparatus and heating method
KR101630645B1 (en) * 2015-05-14 2016-06-15 주식회사 대화알로이테크 Heating device for glass and heating method for the same
WO2016186316A1 (en) * 2015-05-15 2016-11-24 주식회사 대화알로이테크 Air purifier
KR101642700B1 (en) * 2015-05-19 2016-07-27 주식회사 대화알로이테크 Pot for vehicle
WO2016186314A1 (en) * 2015-05-19 2016-11-24 주식회사 대화알로이테크 Pot for vehicle
WO2016186312A1 (en) * 2015-05-19 2016-11-24 주식회사 대화알로이테크 Pcr device
WO2017003269A1 (en) * 2015-07-02 2017-01-05 구각회 Sheet heating element and electrically conductive thin film
US11064571B2 (en) 2015-07-02 2021-07-13 Gak Hoi Goo Sheet heating element and electrically conductive thin film
US10468685B2 (en) 2015-09-25 2019-11-05 Lg Chem, Ltd. Carbon nanotube dispersion and method for producing same
WO2017052064A1 (en) * 2015-09-25 2017-03-30 주식회사 엘지화학 Carbon nanotube dispersion and method for producing same
KR102619672B1 (en) * 2015-12-04 2023-12-29 삼성전자주식회사 Paste composition, and heating element, planar heaing composite and heating apparatus using the past composition, and manufacturing methods thereof
KR20230051471A (en) * 2015-12-04 2023-04-18 삼성전자주식회사 Paste composition, and heating element, planar heaing composite and heating apparatus using the past composition, and manufacturing methods thereof
CN107150637A (en) * 2016-03-04 2017-09-12 现代自动车株式会社 Top for vehicle
US20170253007A1 (en) * 2016-03-04 2017-09-07 Hyundai Motor Company Head liner for vehicle
CN107150637B (en) * 2016-03-04 2021-06-29 现代自动车株式会社 Roof for vehicle
KR20190032202A (en) 2017-09-18 2019-03-27 삼우주식회사 Heating paste composition for operating in low temperature and heater using the same
KR20190058794A (en) 2017-11-22 2019-05-30 전자부품연구원 Toner fused metal plate heater and fusing belt using the same
KR101877538B1 (en) * 2018-01-24 2018-07-11 삼우 주식회사 Heating footplate and walkway including the same
KR20220076621A (en) * 2020-12-01 2022-06-08 재단법인 한국탄소산업진흥원 Method for manufacturing carbon nanotube heating ink and heating ink manufactured by the method
KR102488985B1 (en) * 2020-12-01 2023-01-13 재단법인 한국탄소산업진흥원 Method for manufacturing carbon nanotube heating ink and heating ink manufactured by the method
KR20230089315A (en) 2021-12-13 2023-06-20 재단법인 한국탄소산업진흥원 Method for manufacturing carbon heating paste for manufacturing stretchable heating film and stretchable heating film manufactured therefrom

Similar Documents

Publication Publication Date Title
KR101294596B1 (en) Composition and method of carbon nanotube paste for flat heating element device
JP5487502B2 (en) Planar heating element obtained by using fine carbon fiber aqueous dispersion and method for producing the same
JP6217395B2 (en) Dispersion of carbon nanotube-containing composition and conductive molded body
US7867616B2 (en) Carbon single-walled nanotubes as electrodes for electrochromic glasses
US20090166592A1 (en) Liquid mixture, structure, and method of forming structure
KR102166230B1 (en) Conductive filler, method for producing same, conductive paste and method for producing conductive paste
KR101613503B1 (en) Composition of Heating Paste and Preparation Method of the Same
JPWO2009008486A1 (en) Transparent conductive thin film and manufacturing method thereof
Hsieh et al. Fabrication of flower-like platinum clusters onto graphene sheets by pulse electrochemical deposition
Leggiero et al. High conductivity copper–carbon nanotube hybrids via site-specific chemical vapor deposition
KR20120129780A (en) Fabrication method of carbon-alloy composite by using intense pulsed light
CN101188179B (en) Making method for field emission electron source
KR20090131652A (en) Linear heater and methods for making the same
JP6592766B2 (en) Graphene-coated aluminum nitride filler, production method thereof, electronic material, resin composite, and hydrophobic treatment method
KR102431902B1 (en) Carbon nanotube-based hybrid film for mechanical reinforcement of multi-layer transparent conductive plate-like stacks
JP6457834B2 (en) Conductive filler, method for producing the same, and conductive paste
JP5322236B2 (en) Proton conducting membrane and method for producing proton conducting membrane
KR101778011B1 (en) Method for manufacturing exothermic ink composition and exothermic ink composition manufactured by using the same and method for manufacturing exothermic apparatus using exothermic ink composition
CN112888095B (en) Inorganic composite electrothermal film material, preparation method and application
KR102189795B1 (en) Conductive coating liquid, conductive film substrate, planar heater and method for manufacturing conductive substrate using same
KR102259236B1 (en) Composition of carbon nanotube paste for flat heating element device, flat heating element device comprising the same and film heater for preventing winter damage of water pipe using carbon nanotube
KR20110121759A (en) Transparent heater with carbon nanotube yarns and method for manufacturing the same
JP5894755B2 (en) Method for producing fluorinated carbon nanofiber and method for producing fluorinated carbon nanofiber-containing material
KR101715466B1 (en) Method for fabricating carbon-based composites and carbon-based composites using the same
Hirahara Carbon Nanocoils

Legal Events

Date Code Title Description
A201 Request for examination
N231 Notification of change of applicant
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160705

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20180702

Year of fee payment: 6