WO2016186162A1 - Method for producing zeolite - Google Patents
Method for producing zeolite Download PDFInfo
- Publication number
- WO2016186162A1 WO2016186162A1 PCT/JP2016/064864 JP2016064864W WO2016186162A1 WO 2016186162 A1 WO2016186162 A1 WO 2016186162A1 JP 2016064864 W JP2016064864 W JP 2016064864W WO 2016186162 A1 WO2016186162 A1 WO 2016186162A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- zeolite
- ion exchange
- producing
- solution
- source
- Prior art date
Links
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 title claims abstract description 178
- 239000010457 zeolite Substances 0.000 title claims abstract description 177
- 229910021536 Zeolite Inorganic materials 0.000 title claims abstract description 175
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 52
- 238000005342 ion exchange Methods 0.000 claims abstract description 76
- 238000010438 heat treatment Methods 0.000 claims abstract description 43
- 239000000203 mixture Substances 0.000 claims abstract description 25
- 230000015572 biosynthetic process Effects 0.000 claims abstract description 19
- 238000003786 synthesis reaction Methods 0.000 claims abstract description 19
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 claims abstract description 13
- 235000011114 ammonium hydroxide Nutrition 0.000 claims abstract description 13
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical group [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 claims abstract description 12
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonium chloride Substances [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 claims abstract description 10
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 9
- 229910052783 alkali metal Inorganic materials 0.000 claims abstract description 5
- 150000001340 alkali metals Chemical class 0.000 claims abstract description 5
- 229910052784 alkaline earth metal Inorganic materials 0.000 claims abstract description 5
- 150000001342 alkaline earth metals Chemical class 0.000 claims abstract description 5
- 239000010949 copper Substances 0.000 claims description 86
- 239000000243 solution Substances 0.000 claims description 37
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 18
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 18
- 239000002994 raw material Substances 0.000 claims description 17
- 239000007864 aqueous solution Substances 0.000 claims description 13
- ARUVKPQLZAKDPS-UHFFFAOYSA-L copper(II) sulfate Chemical compound [Cu+2].[O-][S+2]([O-])([O-])[O-] ARUVKPQLZAKDPS-UHFFFAOYSA-L 0.000 claims description 7
- 229940024546 aluminum hydroxide gel Drugs 0.000 claims description 6
- SMYKVLBUSSNXMV-UHFFFAOYSA-K aluminum;trihydroxide;hydrate Chemical compound O.[OH-].[OH-].[OH-].[Al+3] SMYKVLBUSSNXMV-UHFFFAOYSA-K 0.000 claims description 6
- 229910000365 copper sulfate Inorganic materials 0.000 claims description 6
- 230000002194 synthesizing effect Effects 0.000 claims description 5
- 239000000126 substance Substances 0.000 abstract description 3
- 239000007858 starting material Substances 0.000 abstract 1
- 238000000034 method Methods 0.000 description 19
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 18
- 229910052757 nitrogen Inorganic materials 0.000 description 17
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 15
- 239000013078 crystal Substances 0.000 description 15
- 238000005259 measurement Methods 0.000 description 15
- 239000002245 particle Substances 0.000 description 13
- 238000002441 X-ray diffraction Methods 0.000 description 12
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 11
- 238000004458 analytical method Methods 0.000 description 7
- 239000003054 catalyst Substances 0.000 description 7
- OPQARKPSCNTWTJ-UHFFFAOYSA-L copper(ii) acetate Chemical compound [Cu+2].CC([O-])=O.CC([O-])=O OPQARKPSCNTWTJ-UHFFFAOYSA-L 0.000 description 7
- 238000000746 purification Methods 0.000 description 7
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- 230000001133 acceleration Effects 0.000 description 6
- 150000002500 ions Chemical class 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 239000003513 alkali Substances 0.000 description 4
- 229910021529 ammonia Inorganic materials 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 238000001027 hydrothermal synthesis Methods 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 3
- 230000032683 aging Effects 0.000 description 3
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 3
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 3
- 235000011130 ammonium sulphate Nutrition 0.000 description 3
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 3
- 239000008119 colloidal silica Substances 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 238000002425 crystallisation Methods 0.000 description 3
- 230000008025 crystallization Effects 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 150000004820 halides Chemical class 0.000 description 3
- 238000007654 immersion Methods 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 239000011148 porous material Substances 0.000 description 3
- 238000004445 quantitative analysis Methods 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000002253 acid Substances 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 229910000323 aluminium silicate Inorganic materials 0.000 description 2
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 description 2
- 150000001768 cations Chemical class 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 230000008030 elimination Effects 0.000 description 2
- 238000003379 elimination reaction Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 2
- 150000004679 hydroxides Chemical class 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 238000011068 loading method Methods 0.000 description 2
- 238000000691 measurement method Methods 0.000 description 2
- 150000002823 nitrates Chemical class 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 238000010979 pH adjustment Methods 0.000 description 2
- 238000000634 powder X-ray diffraction Methods 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- CPRMKOQKXYSDML-UHFFFAOYSA-M rubidium hydroxide Chemical compound [OH-].[Rb+] CPRMKOQKXYSDML-UHFFFAOYSA-M 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 2
- PAWQVTBBRAZDMG-UHFFFAOYSA-N 2-(3-bromo-2-fluorophenyl)acetic acid Chemical compound OC(=O)CC1=CC=CC(Br)=C1F PAWQVTBBRAZDMG-UHFFFAOYSA-N 0.000 description 1
- MFGOFGRYDNHJTA-UHFFFAOYSA-N 2-amino-1-(2-fluorophenyl)ethanol Chemical compound NCC(O)C1=CC=CC=C1F MFGOFGRYDNHJTA-UHFFFAOYSA-N 0.000 description 1
- 241000408939 Atalopedes campestris Species 0.000 description 1
- 238000012935 Averaging Methods 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- -1 N, N, N-trimethylbenzylammonium ion Chemical class 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 239000004115 Sodium Silicate Substances 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 1
- 239000003929 acidic solution Substances 0.000 description 1
- 239000012670 alkaline solution Substances 0.000 description 1
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 1
- DIZPMCHEQGEION-UHFFFAOYSA-H aluminium sulfate (anhydrous) Chemical compound [Al+3].[Al+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O DIZPMCHEQGEION-UHFFFAOYSA-H 0.000 description 1
- 229940024545 aluminum hydroxide Drugs 0.000 description 1
- ANBBXQWFNXMHLD-UHFFFAOYSA-N aluminum;sodium;oxygen(2-) Chemical compound [O-2].[O-2].[Na+].[Al+3] ANBBXQWFNXMHLD-UHFFFAOYSA-N 0.000 description 1
- RQPZNWPYLFFXCP-UHFFFAOYSA-L barium dihydroxide Chemical compound [OH-].[OH-].[Ba+2] RQPZNWPYLFFXCP-UHFFFAOYSA-L 0.000 description 1
- 229910001863 barium hydroxide Inorganic materials 0.000 description 1
- HUCVOHYBFXVBRW-UHFFFAOYSA-M caesium hydroxide Inorganic materials [OH-].[Cs+] HUCVOHYBFXVBRW-UHFFFAOYSA-M 0.000 description 1
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 1
- UNYSKUBLZGJSLV-UHFFFAOYSA-L calcium;1,3,5,2,4,6$l^{2}-trioxadisilaluminane 2,4-dioxide;dihydroxide;hexahydrate Chemical compound O.O.O.O.O.O.[OH-].[OH-].[Ca+2].O=[Si]1O[Al]O[Si](=O)O1.O=[Si]1O[Al]O[Si](=O)O1 UNYSKUBLZGJSLV-UHFFFAOYSA-L 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 238000010531 catalytic reduction reaction Methods 0.000 description 1
- 229910052676 chabazite Inorganic materials 0.000 description 1
- ORTQZVOHEJQUHG-UHFFFAOYSA-L copper(II) chloride Chemical compound Cl[Cu]Cl ORTQZVOHEJQUHG-UHFFFAOYSA-L 0.000 description 1
- XTVVROIMIGLXTD-UHFFFAOYSA-N copper(II) nitrate Chemical compound [Cu+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O XTVVROIMIGLXTD-UHFFFAOYSA-N 0.000 description 1
- 229910000366 copper(II) sulfate Inorganic materials 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- CXHHBNMLPJOKQD-UHFFFAOYSA-M methyl carbonate Chemical compound COC([O-])=O CXHHBNMLPJOKQD-UHFFFAOYSA-M 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- CXHHBNMLPJOKQD-UHFFFAOYSA-N methyl hydrogen carbonate Chemical class COC(O)=O CXHHBNMLPJOKQD-UHFFFAOYSA-N 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 229910001388 sodium aluminate Inorganic materials 0.000 description 1
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 1
- 229910052911 sodium silicate Inorganic materials 0.000 description 1
- UUCCCPNEFXQJEL-UHFFFAOYSA-L strontium dihydroxide Chemical compound [OH-].[OH-].[Sr+2] UUCCCPNEFXQJEL-UHFFFAOYSA-L 0.000 description 1
- 229910001866 strontium hydroxide Inorganic materials 0.000 description 1
- 238000003878 thermal aging Methods 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 238000004876 x-ray fluorescence Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/92—Chemical or biological purification of waste gases of engine exhaust gases
- B01D53/94—Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/70—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
- B01J29/72—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
- B01J29/76—Iron group metals or copper
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
- B01J37/03—Precipitation; Co-precipitation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/04—Mixing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/08—Heat treatment
- B01J37/10—Heat treatment in the presence of water, e.g. steam
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/30—Ion-exchange
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B39/00—Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
- C01B39/02—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
- C01B39/46—Other types characterised by their X-ray diffraction pattern and their defined composition
- C01B39/48—Other types characterised by their X-ray diffraction pattern and their defined composition using at least one organic template directing agent
Definitions
- the present invention relates to a method for producing zeolite.
- an SCR (Selective Catalytic Reduction) system that uses ammonia to reduce NOx to nitrogen and water has been known as one of the systems for purifying exhaust gas from automobiles.
- This SCR system uses, as an SCR catalyst carrier, a honeycomb unit in which a large number of longitudinally extending through holes through which exhaust gas passes are arranged.
- Patent Document 1 discloses heat resistance when used as an SCR catalyst carrier.
- a Cu ion-exchanged CHA-zeolite having a composition ratio SiO 2 / Al 2 O 3 of less than 15 and a particle diameter of 1.0 to 8.0 ⁇ m is used. Disclosure.
- Patent Document 2 uses the Na + form zeolite or with a substituted NH 4 + -type zeolite Na + in the zeolite NH 4 +,
- the present invention has been made in order to solve the above-described problems, and provides a method for producing a zeolite having a CHA structure having a high ion exchange efficiency with Cu and capable of reducing production time and production cost.
- the purpose is to provide.
- the method for producing a zeolite of the present invention is a method for producing a zeolite having a CHA structure subjected to Cu ion exchange,
- the inventors As a result of intensive studies on a method for producing a zeolite capable of improving the ion exchange efficiency of Cu, the inventors first made the synthesized zeolite NH 4 + type zeolite, and this NH 4 + type zeolite was heated to H + The ion exchange efficiency can be increased by performing Cu ion exchange on the obtained H + type zeolite, thereby reducing the number of ion exchange operations and completing the ion exchange process in a short time. I found. That is, in the manufacturing method of the present invention, Cu ion exchange efficiency is high, and manufacturing time and manufacturing cost can be suppressed.
- the SiO 2 / Al 2 O 3 composition ratio (SAR) in the zeolite obtained in the synthesis step is less than 15.
- the composition ratio SiO 2 / Al 2 O 3 is less than 15, the NOx purification rate can be further increased.
- SiO 2 / Al 2 O 3 is less than 15, the amount of alumina increases, and the amount of Cu ion exchange that functions as a catalyst can be increased in proportion to the amount of alumina.
- the Al source is preferably a dry aluminum hydroxide gel. Since the dry aluminum hydroxide gel has high solubility in an alkaline solution, it is possible to reduce the variation in the particle diameter of the synthesized zeolite and the SiO 2 / Al 2 O 3 molar ratio.
- the heating temperature of the NH 4 + type zeolite is preferably 350 to 650 ° C. in the heat treatment step.
- a heating temperature of 350 ° C. or higher NH 3 is easily desorbed from the NH 4 + type zeolite, and can be efficiently converted to H + type zeolite.
- the heating temperature of 650 degrees C or less de-Al removal from a zeolite is suppressed and ion exchange efficiency can be improved, without impairing the amount of ion exchange of Cu.
- the pH of the Cu solution used in the Cu ion exchange step is preferably 8-12.
- the H + ion concentration of the Cu solution is suppressed from being increased by H + ions desorbed from the H + type zeolite by ion exchange, and the progress of Cu ion exchange is not hindered.
- destruction of the crystal structure of zeolite is prevented when the Cu solution has a pH of 12 or less.
- the Cu solution to be used is preferably an aqueous copper sulfate solution.
- an aqueous solution of copper sulfate is low in cost, and the cost of the method for producing a zeolite of the present invention can be further reduced.
- the Cu / Al (molar ratio) in the zeolite subjected to Cu ion exchange is preferably 0.2 to 0.5.
- the molar ratio is 0.2 or more, high NOx purification performance can be obtained with a small amount of zeolite.
- the molar ratio is 0.5 or less, it is possible to prevent a decrease in NOx purification performance due to ammonia oxidation at a high temperature.
- FIG. 1 is a chart showing the XRD pattern of the zeolite synthesized in Example 1.
- the method for producing a zeolite of the present invention is characterized by including the following steps.
- the zeolite produced according to the present invention is named and classified by the structure code of CHA in the International Zeolite Association (IZA), and has a crystal structure equivalent to that of naturally occurring chabazite. Zeolite.
- a raw material composition comprising a Si source, an Al source, an alkali source, water and a structure directing agent is prepared.
- the Si source refers to a compound, a salt, and a composition that are raw materials for the silicon component of zeolite.
- the Si source for example, colloidal silica, amorphous silica, sodium silicate, tetraethylorthosilicate, aluminosilicate gel, and the like can be used, and two or more of these may be used in combination. Of these, colloidal silica is desirable.
- Al source examples include aluminum sulfate, sodium aluminate, aluminum hydroxide, aluminum chloride, aluminosilicate gel, and dry aluminum hydroxide gel. Of these, dry aluminum hydroxide gel is preferred.
- a Si source and an Al source having a molar ratio (SiO 2 / Al 2 O 3 ) substantially equal to the molar ratio of the zeolite to be produced. It is desirable to use
- the molar ratio (SiO 2 / Al 2 O 3 ) between the Si source and the Al source in the raw material composition is preferably 5 to 30, and more preferably 10 to 15.
- the alkali source is a compound containing at least one selected from the group consisting of alkali metals and alkaline earth metals.
- alkali metals sodium hydroxide, potassium hydroxide, rubidium hydroxide, cesium hydroxide, lithium hydroxide, hydroxide Calcium, strontium hydroxide, barium hydroxide, and the like can be used, and two or more of these may be used in combination.
- potassium hydroxide, sodium hydroxide, and lithium hydroxide are desirable.
- the amount of water is not particularly limited, but the ratio of the number of moles of water to the total number of moles of Si of Si source and Al of Al source (number of moles of H 2 O). / Total number of moles of Si and Al) is preferably 12 to 30, and the ratio of the number of moles of water to the total number of moles of Si of the Si source and Al of the Al source (H 2 O moles / Si and Al The total number of moles) is more preferably 15-25.
- the structure-directing agent refers to an organic molecule that defines the pore diameter and crystal structure of zeolite.
- the structure of the obtained zeolite can be controlled by the type of the structure-directing agent.
- At least one selected from the group consisting of carbonates, sulfates and nitrates can be used.
- N, N, N-trimethyladamantanammonium hydroxide hereinafter also referred to as TMAAOH
- N, N, N-trimethyladamantanammonium halide N, N, N-trimethyladamantanammonium carbonate
- TMAAOH N, N-trimethyladamantanammonium halide
- N, N, N-trimethyladamantanammonium carbonate It is preferable to use at least one selected from the group consisting of N, N, N-trimethyladamantanammonium methyl carbonate and N, N, N-trimethyladamantanammonium sulfate, and it is more preferable to use TMAAOH.
- zeolite seed crystals may be further added to the raw material composition.
- the crystallization speed of the zeolite is increased, the time for producing the zeolite can be shortened, and the yield is improved.
- a zeolite seed crystal it is desirable to use a zeolite having a CHA structure.
- the amount of zeolite seed crystals added is preferably small, but considering the reaction rate and the effect of suppressing impurities, it should be 0.1 to 20% by mass with respect to the silica component contained in the raw material composition. Desirably, 0.5 to 15% by mass is more desirable.
- the added amount of the seed crystal is less than 0.1% by mass, the contribution of improving the crystallization rate of the zeolite is small, and when it exceeds 20% by mass, impurities are easily contained in the synthesized zeolite.
- zeolite is synthesized by reacting the prepared raw material composition. Specifically, it is desirable to synthesize zeolite by hydrothermal synthesis of the raw material composition.
- the reaction vessel used for hydrothermal synthesis is not particularly limited as long as it is used for known hydrothermal synthesis, and may be a heat and pressure resistant vessel such as an autoclave.
- the zeolite can be crystallized by putting the raw material composition into the reaction vessel, sealing and heating.
- the raw material mixture When synthesizing the zeolite, the raw material mixture may be in a stationary state, but is preferably in a state of being stirred and mixed.
- the heating temperature for synthesizing the zeolite is preferably 100 to 200 ° C, more preferably 120 to 180 ° C.
- the heating temperature is less than 100 ° C., the crystallization rate becomes slow, and the yield tends to decrease.
- the heating temperature exceeds 200 ° C., impurities are likely to be generated.
- the heating time in the synthesis process is preferably 10 to 200 hours. If the heating time is less than 10 hours, unreacted raw materials remain and the yield tends to decrease. On the other hand, even when the heating time exceeds 200 hours, the yield and crystallinity are hardly improved.
- the pressure in the synthesis process is not particularly limited, and the pressure generated when the raw material composition placed in a closed container is heated to the above temperature range is sufficient, but if necessary, an inert gas such as nitrogen gas is added. May be boosted.
- the zeolite obtained by the synthesis step of the method for producing zeolite of the present invention is sufficiently cooled, solid-liquid separated, and washed with a sufficient amount of water.
- the zeolite obtained by the synthesis process contains SDA in the pores, it may be removed if necessary.
- SDA can be removed by a liquid phase treatment using an acidic solution or a chemical solution containing an SDA decomposition component, an exchange treatment using a resin, a thermal decomposition treatment, or the like.
- the ammonium ion exchange step is a step of obtaining NH 4 + type zeolite by performing ion exchange on the zeolite obtained in the synthesis step using an ammonia solution.
- the ammonia solution include aqueous ammonia, an aqueous ammonium sulfate solution, an aqueous ammonium nitrate solution, and the like. Among these, an aqueous ammonium sulfate solution is preferable.
- the ammonia concentration in the ammonia solution is, for example, 1 to 10% by mass, preferably 2 to 5% by mass.
- An ion exchange method using an ammonia solution can be performed by immersing zeolite in the ammonia solution.
- the temperature of the ammonia solution is, for example, 4 to 50 ° C.
- the pressure is, for example, atmospheric pressure
- the immersion time is, for example, 0.1 to 2 hours. In this way, NH 4 + type zeolite is obtained.
- the heat treatment step is a step of heating the NH 4 + type zeolite obtained in the ammonium ion exchange step to obtain H + type zeolite.
- the heating temperature is preferably 350 to 650 ° C. With a heating temperature of 350 ° C. or higher, NH 3 is easily desorbed from the NH 4 + type zeolite, and can be efficiently converted to H + type zeolite. Moreover, by the heating temperature of 650 degrees C or less, de-Al removal from a zeolite is suppressed and ion exchange efficiency can be improved, without impairing the amount of ion exchange of Cu.
- a more preferable heating temperature is 400 to 600 ° C.
- the heating time is, for example, 0.5 to 48 hours, preferably 1 to 24 hours.
- the heating pressure is, for example, atmospheric pressure.
- a heating means to be used a commercially available heating furnace, for example, trade name KDF-S100 manufactured by Denken Hydental Co., Ltd. may be mentioned.
- the Cu ion exchange step is a step of obtaining a zeolite subjected to Cu ion exchange by performing ion exchange using a Cu solution on the H + type zeolite obtained in the heat treatment step.
- the Cu solution include one aqueous solution selected from a copper acetate aqueous solution, a copper nitrate aqueous solution, a copper sulfate aqueous solution, and a copper chloride aqueous solution. Of these, an aqueous copper sulfate solution is preferred.
- the aqueous copper sulfate solution is lower in cost than the commonly used aqueous copper acetate solution, and can further reduce the cost of the method for producing a zeolite of the present invention.
- the Cu concentration in the Cu solution is, for example, 0.2 to 5.0% by mass, preferably 0.5 to 2.5% by mass.
- the pH of the Cu solution used in the Cu ion exchange step of the method for producing zeolite of the present invention is preferably 8 to 12, and more preferably 9 to 11.
- the Cu solution has a pH of 8 or higher, the H + ion concentration of the Cu solution is prevented from being increased by H + ions desorbed from the H-type zeolite by ion exchange, and the progress of Cu ion exchange is not hindered.
- destruction of the crystal structure of zeolite is prevented when the Cu solution has a pH of 12 or less.
- the pH can be adjusted using, for example, aqueous ammonia or NaOH.
- the ion exchange method in the Cu ion exchange step can be performed by immersing H + type zeolite in the Cu solution.
- the temperature of the Cu solution is, for example, room temperature to 60 ° C.
- the pressure is, for example, atmospheric pressure
- the immersion time is, for example, 0.1 to 24 hours, preferably 0.5 to 12 hours. In this way, a zeolite subjected to Cu ion exchange is obtained.
- the performance of the zeolite after completion of the Cu ion exchange step can be stabilized by heat aging treatment as necessary.
- the heating temperature of the heat aging treatment is preferably 900 ° C. or lower. If it exceeds 900 ° C, the crystal structure of the zeolite may be impaired.
- a preferred heating temperature is 600 to 800 ° C.
- the heating time is, for example, 1 hour to 10 hours, and the heating pressure is, for example, atmospheric pressure.
- ⁇ Zeolite> Analysis of the crystal structure of zeolite can be performed using an X-ray diffraction (XRD) apparatus.
- XRD measurement is performed using an X-ray diffractometer (Uriga IV manufactured by Rigaku Corporation).
- the sample weight should not be changed by 0.1% or more before and after the XRD measurement.
- the obtained XRD data is subjected to peak search using the powder X-ray diffraction pattern comprehensive analysis software JADE 6.0, and the half width and integrated intensity of each peak are calculated.
- the peak search conditions are as follows. Filter type: parabolic filter, K ⁇ 2 peak elimination: yes, peak position definition: peak top, threshold ⁇ : 3, peak intensity% cutoff: 0.1, BG determination range: 1, BG averaging points: 7 .
- the reason why the integrated intensity of the peaks of the (211) plane, (104) plane, and (220) plane of zeolite is used is that the influence of water absorption of the sample is small.
- Zeolites synthesized by the present invention is preferably the sum X 0 of the integrated intensity is 55000 or more.
- the integrated intensity sum X 0 is 55000 or more, a high NOx purification performance can be obtained.
- the zeolite produced according to the present invention preferably has a Cu / Al (molar ratio) of 0.2 to 0.5.
- a Cu / Al (molar ratio) of 0.2 to 0.5.
- the Cu / Al molar ratio can be measured using a fluorescent X-ray analyzer.
- a more preferable Cu / Al (molar ratio) is 0.25 to 0.5.
- the zeolite produced according to the present invention preferably has a SiO 2 / Al 2 O 3 composition ratio (SAR) of less than 15.
- the composition ratio of SiO 2 / Al 2 O 3 means the molar ratio (SAR) of SiO 2 to Al 2 O 3 in the zeolite.
- the acid sites of the zeolite can be made a sufficient number, and the acid sites can be used for ion exchange with metal ions. As a result, NOx purification performance is excellent.
- a more preferable SiO 2 / Al 2 O 3 composition ratio is 10 to 14.9.
- the molar ratio of zeolite (SiO 2 / Al 2 O 3 ) can be measured using fluorescent X-ray analysis (XRF).
- the average particle size of the zeolite produced according to the present invention is desirably 0.5 ⁇ m or less, and more desirably 0.1 to 0.4 ⁇ m.
- a honeycomb catalyst is manufactured using zeolite having such a small average particle diameter, the amount of water absorption displacement becomes small. Further, cracks are unlikely to occur during production and use as a catalyst, and heat resistance and durability are excellent.
- the average particle diameter exceeds 0.5 ⁇ m, the amount of water absorption displacement when the honeycomb catalyst is made increases, and cracks may occur in the honeycomb catalyst.
- the average particle size of the zeolite was determined by taking an SEM photograph using a scanning electron microscope (SEM, manufactured by Hitachi High-Tech, S-4800), measuring the length of all diagonal lines of 10 particles, and calculating the average value. Ask from. Measurement conditions are as follows: acceleration voltage: 1 kV, emission: 10 ⁇ A, WD: 2.2 mm or less. In general, the CHA-type zeolite particles are cubic, and become a square when two-dimensionally imaged by an SEM photograph. Therefore, there are two diagonal lines of particles.
- Example 1 Colloidal silica (manufactured by Nissan Chemical Industries, Snowtex) as the Si source, dry aluminum hydroxide gel (manufactured by Tomita Pharmaceutical) as the Al source, sodium hydroxide (manufactured by Tokuyama) and potassium hydroxide (Toagosei Co., Ltd.) as the alkali source N, N, N-trimethyladamantanammonium hydroxide (TMAAOH) 25% aqueous solution (manufactured by Sachem) as a structure directing agent (SDA), SSZ-13 as a seed crystal, and deionized water I prepared something.
- SDA structure directing agent
- the molar ratio of the raw material composition was such that SiO 2 : 15 mol, Al 2 O 3 : 1 mol, NaOH: 2.6 mol, KOH: 0.9 mol, TMAAOH: 1.1 mol, H 2 O: 300 mol.
- the addition of 5.0 wt% of the seed crystal with respect to SiO 2, Al 2 O 3 raw material composition was charged in a 500 L autoclave, and hydrothermal synthesis was performed at a heating temperature of 160 ° C. and a heating time of 48 hours to synthesize zeolite. Subsequently, in order to remove TMAAOH remaining in the zeolite pores, heat treatment was performed in air at 550 ° C. for 4 hours.
- the zeolite loaded with Cu obtained in the Cu ion exchange step was subjected to a heat aging treatment at 800 ° C. for 2 hours under atmospheric pressure to stabilize the performance of the zeolite.
- Example 2 The same procedure as in Example 1 was performed except that the pH of the Cu solution in the Cu ion exchange step was adjusted to pH 11 using the aqueous solution shown in Table 1. The results of measuring the amount of Cu ion exchange are shown in Table 1.
- Example 4-7 The same procedure as in Example 1 was performed except that the Cu solution in the Cu ion exchange step was a copper (II) acetate aqueous solution, and the pH of the solution and the aqueous solution used for pH adjustment were those shown in Table 1. The results of measuring the amount of Cu ion exchange are shown in Table 1.
- the Cu solution in the Cu ion exchange step was an aqueous copper (II) acetate solution, the Cu concentration was as shown in Table 1, and the same procedure as in Example 1 was performed except that pH adjustment was not performed. The results of measuring the amount of Cu ion exchange are shown in Table 1.
- Comparative Examples 1 to 4 The same procedure as in Examples 8 to 11 was performed except that the heat treatment step was not performed. The results of measuring the amount of Cu ion exchange are shown in Table 1.
- the analysis conditions are: filter type: parabolic filter, elimination of K ⁇ 2 peak: yes, peak position definition: peak top, threshold ⁇ : 3, peak intensity% cutoff: 0.1, BG determination range: 1, BG average The number of conversion points was set to 7. As a result, X 0 was 60584.
- FIG. 1 shows the XRD pattern of the zeolite synthesized in Example 1. From FIG. 1, it was confirmed that the zeolite synthesized in Example 1 was a zeolite having a CHA structure.
- the zeolites obtained in Examples 1 to 11 were obtained by obtaining NH 4 + type zeolite and then heating the zeolite to obtain H + type zeolite, which was subjected to ion exchange using a Cu solution. As a result, the Cu ion exchange efficiency was high. From this result, it is estimated that the production time and production cost of zeolite can be reduced. In Comparative Examples 1 to 4, since ion exchange using a Cu solution was performed directly on NH 4 + type zeolite, Cu ion exchange efficiency was low.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Thermal Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- Inorganic Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Combustion & Propulsion (AREA)
- Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Silicates, Zeolites, And Molecular Sieves (AREA)
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Catalysts (AREA)
Abstract
The purpose of the present invention is to provide a method for producing a zeolite that has a CHA structure loaded with Cu, that has high Cu ion exchange efficiency, and that makes it possible to reduce production time and production costs. The method for producing a zeolite includes: a synthesis step in which a zeolite is synthesized using a starting material composition containing a Si source, an Al source, at least one substance selected from the group consisting of alkali metals and alkaline earth metals, and a structure-directing agent; an ammonium ion exchange step in which the obtained zeolite is subjected to ion exchange using an ammonia solution in order to obtain a zeolite loaded with NH4
+; a heat treatment step in which the zeolite loaded with NH4
+ is heated to obtain a zeolite loaded with H+; and a Cu ion exchange step in which the zeolite loaded with H+ is subjected to ion exchange using a Cu solution in order to obtain a zeolite loaded with Cu.
Description
本発明は、ゼオライトの製造方法に関する。
The present invention relates to a method for producing zeolite.
従来から、自動車の排ガスを浄化するシステムの1つとして、アンモニアを用いて、NOxを窒素と水に還元するSCR(Selective Catalytic Reduction)システムが知られており、Cuイオン交換されたCHA構造のゼオライトは、SCR触媒作用を有するゼオライトとして注目されている。
Conventionally, an SCR (Selective Catalytic Reduction) system that uses ammonia to reduce NOx to nitrogen and water has been known as one of the systems for purifying exhaust gas from automobiles. Has attracted attention as a zeolite having an SCR catalytic action.
このSCRシステムは、排ガスが通過する多数の長手方向に延びる貫通孔が並設されたハニカムユニットをSCR触媒担体として用いており、例えば、特許文献1は、SCR触媒担体として使用した際の耐熱性、耐久性を上げることを目的として、その組成比SiO2/Al2O3が15未満であり、かつ、粒子径が1.0~8.0μmの、Cuイオン交換されたCHA構造のゼオライトを開示している。
This SCR system uses, as an SCR catalyst carrier, a honeycomb unit in which a large number of longitudinally extending through holes through which exhaust gas passes are arranged. For example, Patent Document 1 discloses heat resistance when used as an SCR catalyst carrier. In order to increase the durability, a Cu ion-exchanged CHA-zeolite having a composition ratio SiO 2 / Al 2 O 3 of less than 15 and a particle diameter of 1.0 to 8.0 μm is used. Disclosure.
一方、Cuイオン交換されたCHA構造のゼオライトの製造方法として、例えば特許文献2は、Na+型ゼオライトを用い、または該ゼオライトのNa+をNH4
+で置換しNH4
+型ゼオライトを用い、Cu濃度が約0.001~約0.25モルのCu溶液でイオン交換する方法を開示している。
On the other hand, as a manufacturing method of the zeolite of Cu ion-exchanged CHA structure, for example, Patent Document 2 uses the Na + form zeolite or with a substituted NH 4 + -type zeolite Na + in the zeolite NH 4 +,, Disclosed is a method of ion exchange with a Cu solution having a Cu concentration of about 0.001 to about 0.25 mol.
しかしながら、上記した従来技術には、次のような問題がある。
すなわち、特許文献2に記載のゼオライトの製造方法では、イオン交換効率が低く、所望のレベルまでCuイオン交換されたCHA構造のゼオライトを製造するには、何回ものイオン交換作業が必要であり、長時間かつ高コストとなるという問題点があった。 However, the above prior art has the following problems.
That is, in the method for producing zeolite described in Patent Document 2, ion exchange efficiency is low, and in order to produce a CHA-structured zeolite in which Cu ions are exchanged to a desired level, many ion exchange operations are required. There was a problem that it was long and expensive.
すなわち、特許文献2に記載のゼオライトの製造方法では、イオン交換効率が低く、所望のレベルまでCuイオン交換されたCHA構造のゼオライトを製造するには、何回ものイオン交換作業が必要であり、長時間かつ高コストとなるという問題点があった。 However, the above prior art has the following problems.
That is, in the method for producing zeolite described in Patent Document 2, ion exchange efficiency is low, and in order to produce a CHA-structured zeolite in which Cu ions are exchanged to a desired level, many ion exchange operations are required. There was a problem that it was long and expensive.
本発明は、上記課題を解決するためになされたものであり、Cuのイオン交換効率が高く、製造時間および製造コストの低減を可能とする、Cuイオン交換されたCHA構造のゼオライトの製造方法を提供することを目的とする。
The present invention has been made in order to solve the above-described problems, and provides a method for producing a zeolite having a CHA structure having a high ion exchange efficiency with Cu and capable of reducing production time and production cost. The purpose is to provide.
すなわち、本発明のゼオライトの製造方法は、Cuイオン交換されたCHA構造を有するゼオライトを製造する方法であって、
Si源と、Al源と、アルカリ金属及びアルカリ土類金属からなる群から選択される少なくとも一種と、並びに構造規定剤とを含む原料組成物を用いてゼオライトを合成する合成工程、
上記合成工程で得られたゼオライトに対し、アンモニア溶液を用いて、NH4 +型ゼオライトを得るアンモニウムイオン交換工程、
上記アンモニウムイオン交換工程で得られたNH4 +型ゼオライトを加熱し、H+型ゼオライトを得る熱処理工程、および
上記熱処理工程で得られたH+型ゼオライトに対し、Cu溶液を用いてCuイオン交換されたゼオライトを得るCuイオン交換工程を含む、
ことを特徴とする。 That is, the method for producing a zeolite of the present invention is a method for producing a zeolite having a CHA structure subjected to Cu ion exchange,
A synthesis step of synthesizing zeolite using a raw material composition comprising a Si source, an Al source, at least one selected from the group consisting of alkali metals and alkaline earth metals, and a structure directing agent;
An ammonium ion exchange step for obtaining NH 4 + type zeolite using an ammonia solution with respect to the zeolite obtained in the synthesis step,
Heating the NH 4 + type zeolite obtained in the ammonium ion exchange step to obtain an H + type zeolite, and Cu ion exchange using a Cu solution for the H + type zeolite obtained in the heat treatment step Including a Cu ion exchange step to obtain a modified zeolite,
It is characterized by that.
Si源と、Al源と、アルカリ金属及びアルカリ土類金属からなる群から選択される少なくとも一種と、並びに構造規定剤とを含む原料組成物を用いてゼオライトを合成する合成工程、
上記合成工程で得られたゼオライトに対し、アンモニア溶液を用いて、NH4 +型ゼオライトを得るアンモニウムイオン交換工程、
上記アンモニウムイオン交換工程で得られたNH4 +型ゼオライトを加熱し、H+型ゼオライトを得る熱処理工程、および
上記熱処理工程で得られたH+型ゼオライトに対し、Cu溶液を用いてCuイオン交換されたゼオライトを得るCuイオン交換工程を含む、
ことを特徴とする。 That is, the method for producing a zeolite of the present invention is a method for producing a zeolite having a CHA structure subjected to Cu ion exchange,
A synthesis step of synthesizing zeolite using a raw material composition comprising a Si source, an Al source, at least one selected from the group consisting of alkali metals and alkaline earth metals, and a structure directing agent;
An ammonium ion exchange step for obtaining NH 4 + type zeolite using an ammonia solution with respect to the zeolite obtained in the synthesis step,
Heating the NH 4 + type zeolite obtained in the ammonium ion exchange step to obtain an H + type zeolite, and Cu ion exchange using a Cu solution for the H + type zeolite obtained in the heat treatment step Including a Cu ion exchange step to obtain a modified zeolite,
It is characterized by that.
本発明者らはCuのイオン交換効率を高め得るゼオライトの製造方法について鋭意検討を行った結果、合成されたゼオライトをまずNH4
+型ゼオライトにし、このNH4
+型ゼオライトを加熱処理によりH+型ゼオライトにし、得られたH+型ゼオライトに対してCuのイオン交換を行うことにより、イオン交換効率が高められ、それによりイオン交換作業の回数を低減でき、イオン交換工程を短時間で終了できることを見出した。すなわち、本発明の製造方法では、Cuのイオン交換効率が高く、製造時間および製造コストを抑制することが可能となる。
As a result of intensive studies on a method for producing a zeolite capable of improving the ion exchange efficiency of Cu, the inventors first made the synthesized zeolite NH 4 + type zeolite, and this NH 4 + type zeolite was heated to H + The ion exchange efficiency can be increased by performing Cu ion exchange on the obtained H + type zeolite, thereby reducing the number of ion exchange operations and completing the ion exchange process in a short time. I found. That is, in the manufacturing method of the present invention, Cu ion exchange efficiency is high, and manufacturing time and manufacturing cost can be suppressed.
本発明のゼオライトの製造方法においては、上記合成工程で得られるゼオライトにおけるSiO2/Al2O3組成比(SAR)が15未満であることが好ましい。その組成比SiO2/Al2O3が15未満であることにより、NOxの浄化率をさらに高めることができる。その理由は、SiO2/Al2O3が15未満であることにより、アルミナ量が増え、それに比例して触媒として機能するCuイオン交換量を多くできるからである。
In the method for producing zeolite of the present invention, it is preferable that the SiO 2 / Al 2 O 3 composition ratio (SAR) in the zeolite obtained in the synthesis step is less than 15. When the composition ratio SiO 2 / Al 2 O 3 is less than 15, the NOx purification rate can be further increased. The reason is that when SiO 2 / Al 2 O 3 is less than 15, the amount of alumina increases, and the amount of Cu ion exchange that functions as a catalyst can be increased in proportion to the amount of alumina.
本発明のゼオライトの製造方法は、上記Al源が乾燥水酸化アルミニウムゲルであることが好ましい。乾燥水酸化アルミニウムゲルはアルカリ溶液に対する溶解度が高いため、合成されたゼオライトの粒子径及びSiO2/Al2O3モル比のばらつきを小さくすることが可能となる。
In the method for producing zeolite of the present invention, the Al source is preferably a dry aluminum hydroxide gel. Since the dry aluminum hydroxide gel has high solubility in an alkaline solution, it is possible to reduce the variation in the particle diameter of the synthesized zeolite and the SiO 2 / Al 2 O 3 molar ratio.
本発明のゼオライトの製造方法においては、上記熱処理工程においてNH4
+型ゼオライトの加熱温度が350~650℃であることが好ましい。350℃以上の加熱温度により、NH4
+型ゼオライトからNH3が脱離しやすくなり、効率よくH+型ゼオライトに変換することができる。また650℃以下の加熱温度により、ゼオライトからの脱Alが抑えられ、Cuのイオン交換量を損なうことなく、イオン交換効率を高めることができる。
In the method for producing zeolite of the present invention, the heating temperature of the NH 4 + type zeolite is preferably 350 to 650 ° C. in the heat treatment step. With a heating temperature of 350 ° C. or higher, NH 3 is easily desorbed from the NH 4 + type zeolite, and can be efficiently converted to H + type zeolite. Moreover, by the heating temperature of 650 degrees C or less, de-Al removal from a zeolite is suppressed and ion exchange efficiency can be improved, without impairing the amount of ion exchange of Cu.
本発明のゼオライトの製造方法においては、Cuイオン交換工程において使用するCu溶液のpHが8~12であることが好ましい。Cu溶液が8以上のpHであることにより、イオン交換でH+型ゼオライトから脱離したH+イオンによりCu溶液のH+イオン濃度が高くなることを抑え、Cuイオン交換の進行を妨げない。また、Cu溶液が12以下のpHであることによりゼオライトの結晶構造の破壊が防止される。
In the method for producing zeolite of the present invention, the pH of the Cu solution used in the Cu ion exchange step is preferably 8-12. When the Cu solution has a pH of 8 or higher, the H + ion concentration of the Cu solution is suppressed from being increased by H + ions desorbed from the H + type zeolite by ion exchange, and the progress of Cu ion exchange is not hindered. Moreover, destruction of the crystal structure of zeolite is prevented when the Cu solution has a pH of 12 or less.
本発明のゼオライトの製造方法においては、使用するCu溶液が硫酸銅水溶液であることが好ましい。一般的に使用される酢酸銅水溶液に比べ硫酸銅水溶液は低コストであり、本発明のゼオライトの製造方法のコストを一層低下させることができる。
In the method for producing zeolite of the present invention, the Cu solution to be used is preferably an aqueous copper sulfate solution. Compared to a commonly used aqueous solution of copper acetate, an aqueous solution of copper sulfate is low in cost, and the cost of the method for producing a zeolite of the present invention can be further reduced.
本発明のゼオライトの製造方法においては、Cuイオン交換されたゼオライトにおけるCu/Al(モル比)が0.2~0.5であることが好ましい。該モル比が0.2以上であることにより、少量のゼオライトで高いNOx浄化性能を得ることができる。また該モル比が0.5以下であることにより、高温でのアンモニア酸化によるNOx浄化性能の低下を防止できる。
In the zeolite production method of the present invention, the Cu / Al (molar ratio) in the zeolite subjected to Cu ion exchange is preferably 0.2 to 0.5. When the molar ratio is 0.2 or more, high NOx purification performance can be obtained with a small amount of zeolite. Moreover, when the molar ratio is 0.5 or less, it is possible to prevent a decrease in NOx purification performance due to ammonia oxidation at a high temperature.
以上のように本発明によれば、Cuのイオン交換効率が高く、製造時間および製造コストの低減を可能とする、Cuイオン交換されたCHA構造のゼオライトの製造方法を提供することができる。
As described above, according to the present invention, it is possible to provide a method for producing a CHA-exchanged zeolite having high ion exchange efficiency of Cu and capable of reducing production time and production cost.
(発明の詳細な説明)
以下、本発明について具体的に説明する。しかしながら、本発明は、以下の記載に限定されるものではなく、本発明の要旨を変更しない範囲において適宜変更して適用することができる。
尚、本明細書において、「質量」は「重量」のことを意味するものとする。 (Detailed description of the invention)
Hereinafter, the present invention will be specifically described. However, the present invention is not limited to the following description, and can be appropriately modified and applied without departing from the scope of the present invention.
In the present specification, “mass” means “weight”.
以下、本発明について具体的に説明する。しかしながら、本発明は、以下の記載に限定されるものではなく、本発明の要旨を変更しない範囲において適宜変更して適用することができる。
尚、本明細書において、「質量」は「重量」のことを意味するものとする。 (Detailed description of the invention)
Hereinafter, the present invention will be specifically described. However, the present invention is not limited to the following description, and can be appropriately modified and applied without departing from the scope of the present invention.
In the present specification, “mass” means “weight”.
<Cuイオン交換されたゼオライトの製造方法>
本発明のゼオライトの製造方法は、以下の各工程を含むことを特徴とする。
Si源と、Al源と、アルカリ源としてのアルカリ金属及びアルカリ土類金属からなる群から選択される少なくとも一種と、並びに構造規定剤とを含む原料組成物を用いてゼオライトを合成する合成工程、
上記合成工程で得られたゼオライトに対し、アンモニア溶液を用いて、NH4 +型ゼオライトを得るアンモニウムイオン交換工程、
上記アンモニウムイオン交換工程で得られたNH4 +型ゼオライトを加熱し、H+型ゼオライトを得る熱処理工程、および
上記熱処理工程で得られたH+型ゼオライトに対し、Cu溶液を用いてCuイオン交換されたゼオライトを得るCuイオン交換工程。 <Method for producing Cu ion-exchanged zeolite>
The method for producing a zeolite of the present invention is characterized by including the following steps.
A synthesis step of synthesizing zeolite using a raw material composition comprising a Si source, an Al source, at least one selected from the group consisting of alkali metals and alkaline earth metals as an alkali source, and a structure-directing agent;
An ammonium ion exchange step for obtaining NH 4 + type zeolite using an ammonia solution with respect to the zeolite obtained in the synthesis step,
Heating the NH 4 + type zeolite obtained in the ammonium ion exchange step to obtain an H + type zeolite, and Cu ion exchange using a Cu solution for the H + type zeolite obtained in the heat treatment step Cu ion exchange process to obtain a finished zeolite.
本発明のゼオライトの製造方法は、以下の各工程を含むことを特徴とする。
Si源と、Al源と、アルカリ源としてのアルカリ金属及びアルカリ土類金属からなる群から選択される少なくとも一種と、並びに構造規定剤とを含む原料組成物を用いてゼオライトを合成する合成工程、
上記合成工程で得られたゼオライトに対し、アンモニア溶液を用いて、NH4 +型ゼオライトを得るアンモニウムイオン交換工程、
上記アンモニウムイオン交換工程で得られたNH4 +型ゼオライトを加熱し、H+型ゼオライトを得る熱処理工程、および
上記熱処理工程で得られたH+型ゼオライトに対し、Cu溶液を用いてCuイオン交換されたゼオライトを得るCuイオン交換工程。 <Method for producing Cu ion-exchanged zeolite>
The method for producing a zeolite of the present invention is characterized by including the following steps.
A synthesis step of synthesizing zeolite using a raw material composition comprising a Si source, an Al source, at least one selected from the group consisting of alkali metals and alkaline earth metals as an alkali source, and a structure-directing agent;
An ammonium ion exchange step for obtaining NH 4 + type zeolite using an ammonia solution with respect to the zeolite obtained in the synthesis step,
Heating the NH 4 + type zeolite obtained in the ammonium ion exchange step to obtain an H + type zeolite, and Cu ion exchange using a Cu solution for the H + type zeolite obtained in the heat treatment step Cu ion exchange process to obtain a finished zeolite.
なお本発明により製造されるゼオライトは、国際ゼオライト学会(International Zeolite Association:IZA)において、CHAという構造コードで命名され、分類されており、天然に産出するチャバサイト(chabazite)と同等の結晶構造を有するゼオライトである。
The zeolite produced according to the present invention is named and classified by the structure code of CHA in the International Zeolite Association (IZA), and has a crystal structure equivalent to that of naturally occurring chabazite. Zeolite.
まず、本発明のゼオライトの製造方法における、上記合成工程について説明する。
合成工程においては、まず、Si源、Al源、アルカリ源、水及び構造規定剤からなる原料組成物を準備する。 First, the said synthetic | combination process in the manufacturing method of the zeolite of this invention is demonstrated.
In the synthesis step, first, a raw material composition comprising a Si source, an Al source, an alkali source, water and a structure directing agent is prepared.
合成工程においては、まず、Si源、Al源、アルカリ源、水及び構造規定剤からなる原料組成物を準備する。 First, the said synthetic | combination process in the manufacturing method of the zeolite of this invention is demonstrated.
In the synthesis step, first, a raw material composition comprising a Si source, an Al source, an alkali source, water and a structure directing agent is prepared.
Si源とは、ゼオライトのシリコン成分の原料となる化合物、塩及び組成物をいう。
Si源としては、例えば、コロイダルシリカ、無定型シリカ、珪酸ナトリウム、テトラエチルオルトシリケート、アルミノシリケートゲル等を用いることができ、これらを二種以上併用してもよい。これらの中では、コロイダルシリカが望ましい。 The Si source refers to a compound, a salt, and a composition that are raw materials for the silicon component of zeolite.
As the Si source, for example, colloidal silica, amorphous silica, sodium silicate, tetraethylorthosilicate, aluminosilicate gel, and the like can be used, and two or more of these may be used in combination. Of these, colloidal silica is desirable.
Si源としては、例えば、コロイダルシリカ、無定型シリカ、珪酸ナトリウム、テトラエチルオルトシリケート、アルミノシリケートゲル等を用いることができ、これらを二種以上併用してもよい。これらの中では、コロイダルシリカが望ましい。 The Si source refers to a compound, a salt, and a composition that are raw materials for the silicon component of zeolite.
As the Si source, for example, colloidal silica, amorphous silica, sodium silicate, tetraethylorthosilicate, aluminosilicate gel, and the like can be used, and two or more of these may be used in combination. Of these, colloidal silica is desirable.
Al源としては、例えば、硫酸アルミニウム、アルミン酸ナトリウム、水酸化アルミニウム、塩化アルミニウム、アルミノシリケートゲル、乾燥水酸化アルミニウムゲル等が挙げられる。これらの中では、乾燥水酸化アルミニウムゲルが好ましい。
Examples of the Al source include aluminum sulfate, sodium aluminate, aluminum hydroxide, aluminum chloride, aluminosilicate gel, and dry aluminum hydroxide gel. Of these, dry aluminum hydroxide gel is preferred.
本発明のゼオライトの製造方法においては、目的とするCHA型ゼオライトを製造するためには、ほぼ製造されるゼオライトのモル比(SiO2/Al2O3)と同じモル比のSi源、Al源を用いることが望ましい。原料組成物中のSi源とAl源のモル比(SiO2/Al2O3)は、5~30であることが望ましく、10~15であることがより望ましい。
In the method for producing a zeolite of the present invention, in order to produce the target CHA-type zeolite, a Si source and an Al source having a molar ratio (SiO 2 / Al 2 O 3 ) substantially equal to the molar ratio of the zeolite to be produced. It is desirable to use The molar ratio (SiO 2 / Al 2 O 3 ) between the Si source and the Al source in the raw material composition is preferably 5 to 30, and more preferably 10 to 15.
アルカリ源は、アルカリ金属及びアルカリ土類金属からなる群から選択される少なくとも一種を含む化合物であり、例えば、水酸化ナトリウム、水酸化カリウム、水酸化ルビジウム、水酸化セシウム、水酸化リチウム、水酸化カルシウム、水酸化ストロンチウム、水酸化バリウム等を用いることができ、これらを二種以上併用してもよい。これらの中では、水酸化カリウム、水酸化ナトリウム、水酸化リチウムが望ましい。ゼオライトの単相を得るためには特に水酸化カリウムと水酸化ナトリウムを併用することが好ましい。
The alkali source is a compound containing at least one selected from the group consisting of alkali metals and alkaline earth metals. For example, sodium hydroxide, potassium hydroxide, rubidium hydroxide, cesium hydroxide, lithium hydroxide, hydroxide Calcium, strontium hydroxide, barium hydroxide, and the like can be used, and two or more of these may be used in combination. Of these, potassium hydroxide, sodium hydroxide, and lithium hydroxide are desirable. In order to obtain a single phase of zeolite, it is particularly preferable to use potassium hydroxide and sodium hydroxide in combination.
本発明のゼオライトの製造方法においては、水の量は、特に限定されるものではないが、Si源のSi及びAl源のAlの合計モル数に対する水のモル数の比(H2Oモル数/Si及びAlの合計モル数)が12~30であることが望ましく、Si源のSi及びAl源のAlの合計モル数に対する水のモル数の比(H2Oモル数/Si及びAlの合計モル数)が15~25であることがより望ましい。
In the method for producing a zeolite of the present invention, the amount of water is not particularly limited, but the ratio of the number of moles of water to the total number of moles of Si of Si source and Al of Al source (number of moles of H 2 O). / Total number of moles of Si and Al) is preferably 12 to 30, and the ratio of the number of moles of water to the total number of moles of Si of the Si source and Al of the Al source (H 2 O moles / Si and Al The total number of moles) is more preferably 15-25.
構造規定剤(以下、SDAとも記載する。)とは、ゼオライトの細孔径や結晶構造を規定する有機分子を示す。構造規定剤の種類等によって、得られるゼオライトの構造等を制御することができる。
本発明のゼオライトの製造方法においては、構造規定剤としては、N,N,N-トリアルキルアダマンタンアンモニウムをカチオンとする水酸化物、ハロゲン化物、炭酸塩、メチルカーボネート塩、硫酸塩及び硝酸塩;及びN,N,N-トリメチルベンジルアンモニウムイオン、N-アルキル-3-キヌクリジノールイオン、またはN,N,N-トリアルキルエキソアミノノルボルナンをカチオンとする水酸化物、ハロゲン化物、炭酸塩、メチルカーボネート塩、硫酸塩及び硝酸塩からなる群から選ばれる少なくとも一種を用いることができる。これらの中では、N,N,N-トリメチルアダマンタンアンモニウム水酸化物(以下、TMAAOHとも記載する。)、N,N,N-トリメチルアダマンタンアンモニウムハロゲン化物、N,N,N-トリメチルアダマンタンアンモニウム炭酸塩、N,N,N-トリメチルアダマンタンアンモニウムメチルカーボネート塩及びN,N,N-トリメチルアダマンタンアンモニウム硫酸塩からなる群から選ばれる少なくとも一種を用いることが望ましく、TMAAOHを用いることがより望ましい。 The structure-directing agent (hereinafter also referred to as SDA) refers to an organic molecule that defines the pore diameter and crystal structure of zeolite. The structure of the obtained zeolite can be controlled by the type of the structure-directing agent.
In the method for producing a zeolite of the present invention, as the structure directing agent, hydroxides, halides, carbonates, methyl carbonate salts, sulfates and nitrates having N, N, N-trialkyladamantanammonium as a cation; and Hydroxides, halides, carbonates, methyls with N, N, N-trimethylbenzylammonium ion, N-alkyl-3-quinuclidinol ion, or N, N, N-trialkylexoaminonorbornane as a cation At least one selected from the group consisting of carbonates, sulfates and nitrates can be used. Among these, N, N, N-trimethyladamantanammonium hydroxide (hereinafter also referred to as TMAAOH), N, N, N-trimethyladamantanammonium halide, N, N, N-trimethyladamantanammonium carbonate It is preferable to use at least one selected from the group consisting of N, N, N-trimethyladamantanammonium methyl carbonate and N, N, N-trimethyladamantanammonium sulfate, and it is more preferable to use TMAAOH.
本発明のゼオライトの製造方法においては、構造規定剤としては、N,N,N-トリアルキルアダマンタンアンモニウムをカチオンとする水酸化物、ハロゲン化物、炭酸塩、メチルカーボネート塩、硫酸塩及び硝酸塩;及びN,N,N-トリメチルベンジルアンモニウムイオン、N-アルキル-3-キヌクリジノールイオン、またはN,N,N-トリアルキルエキソアミノノルボルナンをカチオンとする水酸化物、ハロゲン化物、炭酸塩、メチルカーボネート塩、硫酸塩及び硝酸塩からなる群から選ばれる少なくとも一種を用いることができる。これらの中では、N,N,N-トリメチルアダマンタンアンモニウム水酸化物(以下、TMAAOHとも記載する。)、N,N,N-トリメチルアダマンタンアンモニウムハロゲン化物、N,N,N-トリメチルアダマンタンアンモニウム炭酸塩、N,N,N-トリメチルアダマンタンアンモニウムメチルカーボネート塩及びN,N,N-トリメチルアダマンタンアンモニウム硫酸塩からなる群から選ばれる少なくとも一種を用いることが望ましく、TMAAOHを用いることがより望ましい。 The structure-directing agent (hereinafter also referred to as SDA) refers to an organic molecule that defines the pore diameter and crystal structure of zeolite. The structure of the obtained zeolite can be controlled by the type of the structure-directing agent.
In the method for producing a zeolite of the present invention, as the structure directing agent, hydroxides, halides, carbonates, methyl carbonate salts, sulfates and nitrates having N, N, N-trialkyladamantanammonium as a cation; and Hydroxides, halides, carbonates, methyls with N, N, N-trimethylbenzylammonium ion, N-alkyl-3-quinuclidinol ion, or N, N, N-trialkylexoaminonorbornane as a cation At least one selected from the group consisting of carbonates, sulfates and nitrates can be used. Among these, N, N, N-trimethyladamantanammonium hydroxide (hereinafter also referred to as TMAAOH), N, N, N-trimethyladamantanammonium halide, N, N, N-trimethyladamantanammonium carbonate It is preferable to use at least one selected from the group consisting of N, N, N-trimethyladamantanammonium methyl carbonate and N, N, N-trimethyladamantanammonium sulfate, and it is more preferable to use TMAAOH.
本発明のゼオライトの製造方法の合成工程においては、原料組成物に、さらにゼオライトの種結晶を加えてもよい。種結晶を用いることにより、ゼオライトの結晶化速度が速くなり、ゼオライト製造における時間が短縮でき、収率が向上する。
In the synthesis step of the zeolite production method of the present invention, zeolite seed crystals may be further added to the raw material composition. By using the seed crystal, the crystallization speed of the zeolite is increased, the time for producing the zeolite can be shortened, and the yield is improved.
ゼオライトの種結晶としては、CHA構造を有するゼオライトを用いることが望ましい。
As a zeolite seed crystal, it is desirable to use a zeolite having a CHA structure.
ゼオライトの種結晶の添加量は、少ない方が望ましいが、反応速度や不純物の抑制効果等を考慮すると、原料組成物に含まれるシリカ成分に対して、0.1~20質量%であることが望ましく、0.5~15質量%であることがより望ましい。種結晶の添加量が0.1質量%未満であると、ゼオライトの結晶化速度を向上する寄与が小さく、20質量%を超えると、合成して得られるゼオライトに不純物が入りやすくなる。
The amount of zeolite seed crystals added is preferably small, but considering the reaction rate and the effect of suppressing impurities, it should be 0.1 to 20% by mass with respect to the silica component contained in the raw material composition. Desirably, 0.5 to 15% by mass is more desirable. When the added amount of the seed crystal is less than 0.1% by mass, the contribution of improving the crystallization rate of the zeolite is small, and when it exceeds 20% by mass, impurities are easily contained in the synthesized zeolite.
合成工程においては、準備した原料組成物を反応させることにより、ゼオライトを合成する。具体的には、原料組成物を水熱合成することによりゼオライトを合成することが望ましい。
In the synthesis step, zeolite is synthesized by reacting the prepared raw material composition. Specifically, it is desirable to synthesize zeolite by hydrothermal synthesis of the raw material composition.
水熱合成に用いられる反応容器は、既知の水熱合成に用いられるものであれば特に限定されず、オートクレーブなどの耐熱耐圧容器であればよい。反応容器に原料組成物を投入して密閉して加熱することにより、ゼオライトを結晶化させることができる。
The reaction vessel used for hydrothermal synthesis is not particularly limited as long as it is used for known hydrothermal synthesis, and may be a heat and pressure resistant vessel such as an autoclave. The zeolite can be crystallized by putting the raw material composition into the reaction vessel, sealing and heating.
ゼオライトを合成する際、原料混合物は静置した状態でもよいが、攪拌混合した状態であることが望ましい。
When synthesizing the zeolite, the raw material mixture may be in a stationary state, but is preferably in a state of being stirred and mixed.
ゼオライトを合成する際の加熱温度は、100~200℃であることが望ましく、120~180℃であることがより望ましい。加熱温度が100℃未満であると、結晶化速度が遅くなり、収率が低下しやすくなる。一方、加熱温度が200℃を超えると、不純物が発生しやすくなる。
The heating temperature for synthesizing the zeolite is preferably 100 to 200 ° C, more preferably 120 to 180 ° C. When the heating temperature is less than 100 ° C., the crystallization rate becomes slow, and the yield tends to decrease. On the other hand, when the heating temperature exceeds 200 ° C., impurities are likely to be generated.
合成工程における加熱時間は、10~200時間であることが望ましい。加熱時間が10時間未満であると、未反応の原料が残存し、収率が低下しやすくなる。一方、加熱時間が200時間を超えても、収率や結晶性の向上がほとんど見られない。
The heating time in the synthesis process is preferably 10 to 200 hours. If the heating time is less than 10 hours, unreacted raw materials remain and the yield tends to decrease. On the other hand, even when the heating time exceeds 200 hours, the yield and crystallinity are hardly improved.
合成工程における圧力は特に限定されず、密閉容器中に入れた原料組成物を上記温度範囲に加熱したときに生じる圧力で充分であるが、必要に応じて、窒素ガスなどの不活性ガスを加えて昇圧してもよい。
The pressure in the synthesis process is not particularly limited, and the pressure generated when the raw material composition placed in a closed container is heated to the above temperature range is sufficient, but if necessary, an inert gas such as nitrogen gas is added. May be boosted.
本発明のゼオライトの製造方法の合成工程により得られたゼオライトは、充分に放冷し、固液分離し、充分量の水で洗浄することが望ましい。
It is desirable that the zeolite obtained by the synthesis step of the method for producing zeolite of the present invention is sufficiently cooled, solid-liquid separated, and washed with a sufficient amount of water.
合成工程により得られたゼオライトは、細孔内にSDAを含有しているため、必要に応じてこれを除去してもよい。例えば、酸性溶液又はSDA分解成分を含む薬液を用いた液相処理、レジンなどを用いた交換処理、熱分解処理などにより、SDAを除去することができる。
Since the zeolite obtained by the synthesis process contains SDA in the pores, it may be removed if necessary. For example, SDA can be removed by a liquid phase treatment using an acidic solution or a chemical solution containing an SDA decomposition component, an exchange treatment using a resin, a thermal decomposition treatment, or the like.
次に、本発明のゼオライトの製造方法における、アンモニウムイオン交換工程について説明する。
アンモニウムイオン交換工程は、合成工程により得られたゼオライトに対し、アンモニア溶液を用いてイオン交換を行い、NH4 +型ゼオライトを得る工程である。
アンモニア溶液としては、例えばアンモニア水、硫酸アンモニウム水溶液、硝酸アンモニウム水溶液等が挙げられ、中でも硫酸アンモニウム水溶液が好ましい。アンモニア溶液中のアンモニア濃度は、例えば、1~10質量%、好ましくは2~5質量%である。 Next, the ammonium ion exchange step in the method for producing zeolite of the present invention will be described.
The ammonium ion exchange step is a step of obtaining NH 4 + type zeolite by performing ion exchange on the zeolite obtained in the synthesis step using an ammonia solution.
Examples of the ammonia solution include aqueous ammonia, an aqueous ammonium sulfate solution, an aqueous ammonium nitrate solution, and the like. Among these, an aqueous ammonium sulfate solution is preferable. The ammonia concentration in the ammonia solution is, for example, 1 to 10% by mass, preferably 2 to 5% by mass.
アンモニウムイオン交換工程は、合成工程により得られたゼオライトに対し、アンモニア溶液を用いてイオン交換を行い、NH4 +型ゼオライトを得る工程である。
アンモニア溶液としては、例えばアンモニア水、硫酸アンモニウム水溶液、硝酸アンモニウム水溶液等が挙げられ、中でも硫酸アンモニウム水溶液が好ましい。アンモニア溶液中のアンモニア濃度は、例えば、1~10質量%、好ましくは2~5質量%である。 Next, the ammonium ion exchange step in the method for producing zeolite of the present invention will be described.
The ammonium ion exchange step is a step of obtaining NH 4 + type zeolite by performing ion exchange on the zeolite obtained in the synthesis step using an ammonia solution.
Examples of the ammonia solution include aqueous ammonia, an aqueous ammonium sulfate solution, an aqueous ammonium nitrate solution, and the like. Among these, an aqueous ammonium sulfate solution is preferable. The ammonia concentration in the ammonia solution is, for example, 1 to 10% by mass, preferably 2 to 5% by mass.
アンモニア溶液を用いたイオン交換方法としては、上記アンモニア溶液にゼオライトを浸漬することで行うことができる。アンモニア溶液の温度は例えば4~50℃、圧力は例えば大気圧、浸漬時間は例えば0.1時間~2時間である。このようにして、NH4
+型ゼオライトが得られる。
An ion exchange method using an ammonia solution can be performed by immersing zeolite in the ammonia solution. The temperature of the ammonia solution is, for example, 4 to 50 ° C., the pressure is, for example, atmospheric pressure, and the immersion time is, for example, 0.1 to 2 hours. In this way, NH 4 + type zeolite is obtained.
次に、本発明のゼオライトの製造方法における、熱処理工程について説明する。
熱処理工程は、アンモニウムイオン交換工程で得られたNH4 +型ゼオライトを加熱し、H+型ゼオライトを得る工程である。
加熱温度は、350~650℃であることが好ましい。350℃以上の加熱温度により、NH4 +型ゼオライトからNH3が脱離しやすくなり、効率よくH+型ゼオライトに変換することができる。また650℃以下の加熱温度により、ゼオライトからの脱Alが抑えられ、Cuのイオン交換量を損なうことなく、イオン交換効率を高めることができる。
さらに好ましい加熱温度は、400~600℃である。 Next, the heat treatment step in the method for producing zeolite of the present invention will be described.
The heat treatment step is a step of heating the NH 4 + type zeolite obtained in the ammonium ion exchange step to obtain H + type zeolite.
The heating temperature is preferably 350 to 650 ° C. With a heating temperature of 350 ° C. or higher, NH 3 is easily desorbed from the NH 4 + type zeolite, and can be efficiently converted to H + type zeolite. Moreover, by the heating temperature of 650 degrees C or less, de-Al removal from a zeolite is suppressed and ion exchange efficiency can be improved, without impairing the amount of ion exchange of Cu.
A more preferable heating temperature is 400 to 600 ° C.
熱処理工程は、アンモニウムイオン交換工程で得られたNH4 +型ゼオライトを加熱し、H+型ゼオライトを得る工程である。
加熱温度は、350~650℃であることが好ましい。350℃以上の加熱温度により、NH4 +型ゼオライトからNH3が脱離しやすくなり、効率よくH+型ゼオライトに変換することができる。また650℃以下の加熱温度により、ゼオライトからの脱Alが抑えられ、Cuのイオン交換量を損なうことなく、イオン交換効率を高めることができる。
さらに好ましい加熱温度は、400~600℃である。 Next, the heat treatment step in the method for producing zeolite of the present invention will be described.
The heat treatment step is a step of heating the NH 4 + type zeolite obtained in the ammonium ion exchange step to obtain H + type zeolite.
The heating temperature is preferably 350 to 650 ° C. With a heating temperature of 350 ° C. or higher, NH 3 is easily desorbed from the NH 4 + type zeolite, and can be efficiently converted to H + type zeolite. Moreover, by the heating temperature of 650 degrees C or less, de-Al removal from a zeolite is suppressed and ion exchange efficiency can be improved, without impairing the amount of ion exchange of Cu.
A more preferable heating temperature is 400 to 600 ° C.
加熱時間は、例えば0.5時間~48時間、好ましくは1時間~24時間である。加熱圧力は、例えば大気圧である。
The heating time is, for example, 0.5 to 48 hours, preferably 1 to 24 hours. The heating pressure is, for example, atmospheric pressure.
なお、使用する加熱手段としては、市販されている加熱炉、例えばデンケン・ハイデンタル社製商品名KDF-S100が挙げられる。
In addition, as a heating means to be used, a commercially available heating furnace, for example, trade name KDF-S100 manufactured by Denken Hydental Co., Ltd. may be mentioned.
次に、本発明のゼオライトの製造方法における、Cuイオン交換工程について説明する。
Cuイオン交換工程は、熱処理工程で得られたH+型ゼオライトに対し、Cu溶液を用いたイオン交換を行い、Cuイオン交換されたゼオライトを得る工程である。
Cu溶液としては、酢酸銅水溶液、硝酸銅水溶液、硫酸銅水溶液および塩化銅水溶液から選ばれる1種の水溶液が挙げられる。中でも、硫酸銅水溶液が好ましい。硫酸銅水溶液は一般的に使用される酢酸銅水溶液に比べ低コストであり、本発明のゼオライトの製造方法のコストを一層低下させることができる。 Next, the Cu ion exchange step in the method for producing zeolite of the present invention will be described.
The Cu ion exchange step is a step of obtaining a zeolite subjected to Cu ion exchange by performing ion exchange using a Cu solution on the H + type zeolite obtained in the heat treatment step.
Examples of the Cu solution include one aqueous solution selected from a copper acetate aqueous solution, a copper nitrate aqueous solution, a copper sulfate aqueous solution, and a copper chloride aqueous solution. Of these, an aqueous copper sulfate solution is preferred. The aqueous copper sulfate solution is lower in cost than the commonly used aqueous copper acetate solution, and can further reduce the cost of the method for producing a zeolite of the present invention.
Cuイオン交換工程は、熱処理工程で得られたH+型ゼオライトに対し、Cu溶液を用いたイオン交換を行い、Cuイオン交換されたゼオライトを得る工程である。
Cu溶液としては、酢酸銅水溶液、硝酸銅水溶液、硫酸銅水溶液および塩化銅水溶液から選ばれる1種の水溶液が挙げられる。中でも、硫酸銅水溶液が好ましい。硫酸銅水溶液は一般的に使用される酢酸銅水溶液に比べ低コストであり、本発明のゼオライトの製造方法のコストを一層低下させることができる。 Next, the Cu ion exchange step in the method for producing zeolite of the present invention will be described.
The Cu ion exchange step is a step of obtaining a zeolite subjected to Cu ion exchange by performing ion exchange using a Cu solution on the H + type zeolite obtained in the heat treatment step.
Examples of the Cu solution include one aqueous solution selected from a copper acetate aqueous solution, a copper nitrate aqueous solution, a copper sulfate aqueous solution, and a copper chloride aqueous solution. Of these, an aqueous copper sulfate solution is preferred. The aqueous copper sulfate solution is lower in cost than the commonly used aqueous copper acetate solution, and can further reduce the cost of the method for producing a zeolite of the present invention.
Cu溶液中のCu濃度は、例えば、0.2~5.0質量%、好ましくは0.5~2.5質量%である。
The Cu concentration in the Cu solution is, for example, 0.2 to 5.0% by mass, preferably 0.5 to 2.5% by mass.
また、本発明のゼオライトの製造方法のCuイオン交換工程において使用するCu溶液のpHは、8~12であることが好ましく、9~11であることがさらに好ましい。Cu溶液が8以上のpHであることにより、イオン交換でH型ゼオライトから脱離したH+イオンによりCu溶液のH+イオン濃度が高くなることを抑え、Cuイオン交換の進行を妨げない。また、Cu溶液が12以下のpHであることによりゼオライトの結晶構造の破壊が防止される。pHの調整は、例えばアンモニア水やNaOH等を用いて行うことができる。
Further, the pH of the Cu solution used in the Cu ion exchange step of the method for producing zeolite of the present invention is preferably 8 to 12, and more preferably 9 to 11. When the Cu solution has a pH of 8 or higher, the H + ion concentration of the Cu solution is prevented from being increased by H + ions desorbed from the H-type zeolite by ion exchange, and the progress of Cu ion exchange is not hindered. Moreover, destruction of the crystal structure of zeolite is prevented when the Cu solution has a pH of 12 or less. The pH can be adjusted using, for example, aqueous ammonia or NaOH.
Cuイオン交換工程におけるイオン交換方法としては、上記Cu溶液にH+型ゼオライトを浸漬することで行うことができる。Cu溶液の温度は例えば室温~60℃、圧力は例えば大気圧、浸漬時間は例えば0.1時間~24時間、好ましくは0.5時間~12時間である。このようにして、Cuイオン交換されたゼオライトが得られる。
The ion exchange method in the Cu ion exchange step can be performed by immersing H + type zeolite in the Cu solution. The temperature of the Cu solution is, for example, room temperature to 60 ° C., the pressure is, for example, atmospheric pressure, and the immersion time is, for example, 0.1 to 24 hours, preferably 0.5 to 12 hours. In this way, a zeolite subjected to Cu ion exchange is obtained.
本発明のゼオライトの製造方法において、Cuイオン交換工程終了後のゼオライトは、必要に応じて熱エージング処理によりその性能を安定化させることができる。
熱エージング処理の加熱温度は、900℃以下が好ましい。900℃を超えるとゼオライトの結晶構造を損なう恐れがある。好ましい加熱温度は600~800℃である。加熱時間は、例えば1時間~10時間であり、加熱圧力は、例えば大気圧である。 In the method for producing zeolite of the present invention, the performance of the zeolite after completion of the Cu ion exchange step can be stabilized by heat aging treatment as necessary.
The heating temperature of the heat aging treatment is preferably 900 ° C. or lower. If it exceeds 900 ° C, the crystal structure of the zeolite may be impaired. A preferred heating temperature is 600 to 800 ° C. The heating time is, for example, 1 hour to 10 hours, and the heating pressure is, for example, atmospheric pressure.
熱エージング処理の加熱温度は、900℃以下が好ましい。900℃を超えるとゼオライトの結晶構造を損なう恐れがある。好ましい加熱温度は600~800℃である。加熱時間は、例えば1時間~10時間であり、加熱圧力は、例えば大気圧である。 In the method for producing zeolite of the present invention, the performance of the zeolite after completion of the Cu ion exchange step can be stabilized by heat aging treatment as necessary.
The heating temperature of the heat aging treatment is preferably 900 ° C. or lower. If it exceeds 900 ° C, the crystal structure of the zeolite may be impaired. A preferred heating temperature is 600 to 800 ° C. The heating time is, for example, 1 hour to 10 hours, and the heating pressure is, for example, atmospheric pressure.
<ゼオライト>
ゼオライトの結晶構造の解析は、X線回折(XRD)装置を用いて行うことができる。CHA型ゼオライトは、粉末X線解析法によるX線回折スペクトルで、2θ=20.7°付近、25.1°付近、26.1°付近にそれぞれ、CHA型ゼオライト結晶の(211)面、(104)面及び(220)面に相当するピークが現れる。 <Zeolite>
Analysis of the crystal structure of zeolite can be performed using an X-ray diffraction (XRD) apparatus. The CHA-type zeolite is an X-ray diffraction spectrum by a powder X-ray analysis method, and the (211) plane of the CHA-type zeolite crystals at 2θ = 20.7 °, 25.1 °, and 26.1 °, respectively ( The peaks corresponding to the (104) plane and the (220) plane appear.
ゼオライトの結晶構造の解析は、X線回折(XRD)装置を用いて行うことができる。CHA型ゼオライトは、粉末X線解析法によるX線回折スペクトルで、2θ=20.7°付近、25.1°付近、26.1°付近にそれぞれ、CHA型ゼオライト結晶の(211)面、(104)面及び(220)面に相当するピークが現れる。 <Zeolite>
Analysis of the crystal structure of zeolite can be performed using an X-ray diffraction (XRD) apparatus. The CHA-type zeolite is an X-ray diffraction spectrum by a powder X-ray analysis method, and the (211) plane of the CHA-type zeolite crystals at 2θ = 20.7 °, 25.1 °, and 26.1 °, respectively ( The peaks corresponding to the (104) plane and the (220) plane appear.
XRD測定は、X線回折装置(リガク社製 UltimaIV)を用いて行う。なお、測定条件は、次の通りとする。
線源:CuKα(λ=0.154nm)、測定法:FT法、回折角:2θ=5~48°、ステップ幅:0.02°、積算時間:1秒、発散スリット、散乱スリット:2/3°、発散縦制限スリット:10mm、加速電圧:40kV、加速電流:40mA。
XRD測定前後でサンプル重量が0.1%以上の変化がないようにする。得られたXRDデータは、粉末X線回折パターン総合解析ソフトJADE6.0を用いてピークサーチを行い、さらに各ピークの半値幅と積分強度を算出する。なお、ピークサーチの条件は次の通りとする。
フィルタータイプ:放物線フィルター、Kα2ピークの消去:あり、ピーク位置定義:ピークトップ、閾値σ:3、ピーク強度%カットオフ:0.1、BG決定の範囲:1、BG平均化のポイント数:7。
得られたデータから、ゼオライトの(211)面(2θ=20.7°付近)、(104)面(2θ=25.1°付近)、(220)面(2θ=26.1°付近)の積分強度の和X0を求めることができる。
なお、ゼオライトの(211)面、(104)面、(220)面のピークの積分強度を用いるのは、サンプルの吸水の影響が小さいためである。 XRD measurement is performed using an X-ray diffractometer (Uriga IV manufactured by Rigaku Corporation). The measurement conditions are as follows.
Radiation source: CuKα (λ = 0.154 nm), measurement method: FT method, diffraction angle: 2θ = 5 to 48 °, step width: 0.02 °, integration time: 1 second, divergence slit, scattering slit: 2 / 3 °, divergence length limiting slit: 10 mm, acceleration voltage: 40 kV, acceleration current: 40 mA.
The sample weight should not be changed by 0.1% or more before and after the XRD measurement. The obtained XRD data is subjected to peak search using the powder X-ray diffraction pattern comprehensive analysis software JADE 6.0, and the half width and integrated intensity of each peak are calculated. The peak search conditions are as follows.
Filter type: parabolic filter, Kα2 peak elimination: yes, peak position definition: peak top, threshold σ: 3, peak intensity% cutoff: 0.1, BG determination range: 1, BG averaging points: 7 .
From the obtained data, the (211) plane (near 2θ = 20.7 °), (104) plane (near 2θ = 25.1 °), (220) plane (near 2θ = 26.1 °) of the zeolite. it can be the sum X 0 of the integrated intensity.
The reason why the integrated intensity of the peaks of the (211) plane, (104) plane, and (220) plane of zeolite is used is that the influence of water absorption of the sample is small.
線源:CuKα(λ=0.154nm)、測定法:FT法、回折角:2θ=5~48°、ステップ幅:0.02°、積算時間:1秒、発散スリット、散乱スリット:2/3°、発散縦制限スリット:10mm、加速電圧:40kV、加速電流:40mA。
XRD測定前後でサンプル重量が0.1%以上の変化がないようにする。得られたXRDデータは、粉末X線回折パターン総合解析ソフトJADE6.0を用いてピークサーチを行い、さらに各ピークの半値幅と積分強度を算出する。なお、ピークサーチの条件は次の通りとする。
フィルタータイプ:放物線フィルター、Kα2ピークの消去:あり、ピーク位置定義:ピークトップ、閾値σ:3、ピーク強度%カットオフ:0.1、BG決定の範囲:1、BG平均化のポイント数:7。
得られたデータから、ゼオライトの(211)面(2θ=20.7°付近)、(104)面(2θ=25.1°付近)、(220)面(2θ=26.1°付近)の積分強度の和X0を求めることができる。
なお、ゼオライトの(211)面、(104)面、(220)面のピークの積分強度を用いるのは、サンプルの吸水の影響が小さいためである。 XRD measurement is performed using an X-ray diffractometer (Uriga IV manufactured by Rigaku Corporation). The measurement conditions are as follows.
Radiation source: CuKα (λ = 0.154 nm), measurement method: FT method, diffraction angle: 2θ = 5 to 48 °, step width: 0.02 °, integration time: 1 second, divergence slit, scattering slit: 2 / 3 °, divergence length limiting slit: 10 mm, acceleration voltage: 40 kV, acceleration current: 40 mA.
The sample weight should not be changed by 0.1% or more before and after the XRD measurement. The obtained XRD data is subjected to peak search using the powder X-ray diffraction pattern comprehensive analysis software JADE 6.0, and the half width and integrated intensity of each peak are calculated. The peak search conditions are as follows.
Filter type: parabolic filter, Kα2 peak elimination: yes, peak position definition: peak top, threshold σ: 3, peak intensity% cutoff: 0.1, BG determination range: 1, BG averaging points: 7 .
From the obtained data, the (211) plane (near 2θ = 20.7 °), (104) plane (near 2θ = 25.1 °), (220) plane (near 2θ = 26.1 °) of the zeolite. it can be the sum X 0 of the integrated intensity.
The reason why the integrated intensity of the peaks of the (211) plane, (104) plane, and (220) plane of zeolite is used is that the influence of water absorption of the sample is small.
本発明により合成されたゼオライトは、積分強度の和X0が55000以上であることが好ましい。積分強度が高いほど結晶性が良好であることを示し、積分強度の和X0が55000以上あることで、高いNOx浄化性能を得ることができる。
Zeolites synthesized by the present invention is preferably the sum X 0 of the integrated intensity is 55000 or more. The higher the integrated intensity, the better the crystallinity. When the integrated intensity sum X 0 is 55000 or more, a high NOx purification performance can be obtained.
本発明により製造されたゼオライトは、Cu/Al(モル比)が0.2~0.5であることが好ましい。
該モル比が0.2以上であることにより、少量のゼオライトで高いNOx浄化性能を得ることができる。また該モル比が0.5以下であることにより、高温でのアンモニア酸化によりNOx浄化性能が低下することを防止できる。Cu/Alモル比は蛍光X線分析装置を用いて測定することができる。
より好ましいCu/Al(モル比)は、0.25~0.5である。 The zeolite produced according to the present invention preferably has a Cu / Al (molar ratio) of 0.2 to 0.5.
When the molar ratio is 0.2 or more, high NOx purification performance can be obtained with a small amount of zeolite. Further, when the molar ratio is 0.5 or less, it is possible to prevent NOx purification performance from being deteriorated due to ammonia oxidation at a high temperature. The Cu / Al molar ratio can be measured using a fluorescent X-ray analyzer.
A more preferable Cu / Al (molar ratio) is 0.25 to 0.5.
該モル比が0.2以上であることにより、少量のゼオライトで高いNOx浄化性能を得ることができる。また該モル比が0.5以下であることにより、高温でのアンモニア酸化によりNOx浄化性能が低下することを防止できる。Cu/Alモル比は蛍光X線分析装置を用いて測定することができる。
より好ましいCu/Al(モル比)は、0.25~0.5である。 The zeolite produced according to the present invention preferably has a Cu / Al (molar ratio) of 0.2 to 0.5.
When the molar ratio is 0.2 or more, high NOx purification performance can be obtained with a small amount of zeolite. Further, when the molar ratio is 0.5 or less, it is possible to prevent NOx purification performance from being deteriorated due to ammonia oxidation at a high temperature. The Cu / Al molar ratio can be measured using a fluorescent X-ray analyzer.
A more preferable Cu / Al (molar ratio) is 0.25 to 0.5.
また本発明により製造されたゼオライトは、SiO2/Al2O3組成比(SAR)が15未満であることが好ましい。上記SiO2/Al2O3組成比とは、ゼオライト中のAl2O3に対するSiO2のモル比(SAR)を意味している。その組成比SiO2/Al2O3が15未満であることにより、ゼオライトの酸点を充分な数とすることができ、その酸点を利用して金属イオンとイオン交換することができ、Cuを多く担持することができるので、NOxの浄化性能に優れている。
より好ましいSiO2/Al2O3組成比は、10~14.9である。
なおゼオライトのモル比(SiO2/Al2O3)は、蛍光X線分析(XRF)を用いて測定することができる。 The zeolite produced according to the present invention preferably has a SiO 2 / Al 2 O 3 composition ratio (SAR) of less than 15. The composition ratio of SiO 2 / Al 2 O 3 means the molar ratio (SAR) of SiO 2 to Al 2 O 3 in the zeolite. When the composition ratio SiO 2 / Al 2 O 3 is less than 15, the acid sites of the zeolite can be made a sufficient number, and the acid sites can be used for ion exchange with metal ions. As a result, NOx purification performance is excellent.
A more preferable SiO 2 / Al 2 O 3 composition ratio is 10 to 14.9.
The molar ratio of zeolite (SiO 2 / Al 2 O 3 ) can be measured using fluorescent X-ray analysis (XRF).
より好ましいSiO2/Al2O3組成比は、10~14.9である。
なおゼオライトのモル比(SiO2/Al2O3)は、蛍光X線分析(XRF)を用いて測定することができる。 The zeolite produced according to the present invention preferably has a SiO 2 / Al 2 O 3 composition ratio (SAR) of less than 15. The composition ratio of SiO 2 / Al 2 O 3 means the molar ratio (SAR) of SiO 2 to Al 2 O 3 in the zeolite. When the composition ratio SiO 2 / Al 2 O 3 is less than 15, the acid sites of the zeolite can be made a sufficient number, and the acid sites can be used for ion exchange with metal ions. As a result, NOx purification performance is excellent.
A more preferable SiO 2 / Al 2 O 3 composition ratio is 10 to 14.9.
The molar ratio of zeolite (SiO 2 / Al 2 O 3 ) can be measured using fluorescent X-ray analysis (XRF).
本発明により製造されたゼオライトの平均粒子径は、0.5μm以下であることが望ましく、0.1~0.4μmであることがより望ましい。このような小さな平均粒子径を有するゼオライトを用いてハニカム触媒を製造した場合、吸水変位量が小さくなる。また、製造時および触媒としての使用時にクラックが生じにくく、耐熱性、耐久性に優れている。一方、平均粒子径が0.5μmを超えると、ハニカム触媒とした時の吸水変位量が大きくなり、ハニカム触媒にクラックが生じるおそれがある。
The average particle size of the zeolite produced according to the present invention is desirably 0.5 μm or less, and more desirably 0.1 to 0.4 μm. When a honeycomb catalyst is manufactured using zeolite having such a small average particle diameter, the amount of water absorption displacement becomes small. Further, cracks are unlikely to occur during production and use as a catalyst, and heat resistance and durability are excellent. On the other hand, when the average particle diameter exceeds 0.5 μm, the amount of water absorption displacement when the honeycomb catalyst is made increases, and cracks may occur in the honeycomb catalyst.
ゼオライトの平均粒子径は、走査型電子顕微鏡(SEM、日立ハイテク社製、S-4800)を用いて、SEM写真を撮影し、10個の粒子の全対角線の長さを測定し、その平均値から求める。なお、測定条件は、加速電圧:1kV、エミッション:10μA、WD:2.2mm以下とする。一般にCHA型ゼオライトの粒子は立方体であり、SEM写真で二次元に撮像した時には正方形となる。そのため粒子の対角線は2本である。
The average particle size of the zeolite was determined by taking an SEM photograph using a scanning electron microscope (SEM, manufactured by Hitachi High-Tech, S-4800), measuring the length of all diagonal lines of 10 particles, and calculating the average value. Ask from. Measurement conditions are as follows: acceleration voltage: 1 kV, emission: 10 μA, WD: 2.2 mm or less. In general, the CHA-type zeolite particles are cubic, and become a square when two-dimensionally imaged by an SEM photograph. Therefore, there are two diagonal lines of particles.
以下、本発明をより具体的に開示した実施例を示す。なお、本発明はこの実施例のみに限定されるものではない。
Hereinafter, examples that more specifically disclose the present invention will be shown. In addition, this invention is not limited only to this Example.
実施例1
(合成工程)
Si源としてコロイダルシリカ(日産化学工業社製、スノーテックス)、Al源として乾燥水酸化アルミニウムゲル(富田製薬社製)、アルカリ源として水酸化ナトリウム(トクヤマ社製)と水酸化カリウム(東亜合成社製)、構造規定剤(SDA)としてN,N,N-トリメチルアダマンタンアンモニウム水酸化物(TMAAOH)25%水溶液(Sachem社製)、種結晶としてSSZ-13、脱イオン水を混合し、原料組成物を準備した。原料組成物のモル比は、SiO2:15mol、Al2O3:1mol、NaOH:2.6mol、KOH:0.9mol、TMAAOH:1.1mol、H2O:300molの割合とした。また原料組成物中のSiO2、Al2O3に対して5.0質量%の種結晶を加えた。原料組成物を500Lオートクレーブに装填し、加熱温度160℃、加熱時間48時間で水熱合成を行い、ゼオライトを合成した。続いて、ゼオイライト細孔内に残存するTMAAOHを除去するために、空気中、550℃、4時間、の条件で加熱処理を行った。 Example 1
(Synthesis process)
Colloidal silica (manufactured by Nissan Chemical Industries, Snowtex) as the Si source, dry aluminum hydroxide gel (manufactured by Tomita Pharmaceutical) as the Al source, sodium hydroxide (manufactured by Tokuyama) and potassium hydroxide (Toagosei Co., Ltd.) as the alkali source N, N, N-trimethyladamantanammonium hydroxide (TMAAOH) 25% aqueous solution (manufactured by Sachem) as a structure directing agent (SDA), SSZ-13 as a seed crystal, and deionized water I prepared something. The molar ratio of the raw material composition was such that SiO 2 : 15 mol, Al 2 O 3 : 1 mol, NaOH: 2.6 mol, KOH: 0.9 mol, TMAAOH: 1.1 mol, H 2 O: 300 mol. The addition of 5.0 wt% of the seed crystal with respect to SiO 2, Al 2 O 3 raw material composition. The raw material composition was charged in a 500 L autoclave, and hydrothermal synthesis was performed at a heating temperature of 160 ° C. and a heating time of 48 hours to synthesize zeolite. Subsequently, in order to remove TMAAOH remaining in the zeolite pores, heat treatment was performed in air at 550 ° C. for 4 hours.
(合成工程)
Si源としてコロイダルシリカ(日産化学工業社製、スノーテックス)、Al源として乾燥水酸化アルミニウムゲル(富田製薬社製)、アルカリ源として水酸化ナトリウム(トクヤマ社製)と水酸化カリウム(東亜合成社製)、構造規定剤(SDA)としてN,N,N-トリメチルアダマンタンアンモニウム水酸化物(TMAAOH)25%水溶液(Sachem社製)、種結晶としてSSZ-13、脱イオン水を混合し、原料組成物を準備した。原料組成物のモル比は、SiO2:15mol、Al2O3:1mol、NaOH:2.6mol、KOH:0.9mol、TMAAOH:1.1mol、H2O:300molの割合とした。また原料組成物中のSiO2、Al2O3に対して5.0質量%の種結晶を加えた。原料組成物を500Lオートクレーブに装填し、加熱温度160℃、加熱時間48時間で水熱合成を行い、ゼオライトを合成した。続いて、ゼオイライト細孔内に残存するTMAAOHを除去するために、空気中、550℃、4時間、の条件で加熱処理を行った。 Example 1
(Synthesis process)
Colloidal silica (manufactured by Nissan Chemical Industries, Snowtex) as the Si source, dry aluminum hydroxide gel (manufactured by Tomita Pharmaceutical) as the Al source, sodium hydroxide (manufactured by Tokuyama) and potassium hydroxide (Toagosei Co., Ltd.) as the alkali source N, N, N-trimethyladamantanammonium hydroxide (TMAAOH) 25% aqueous solution (manufactured by Sachem) as a structure directing agent (SDA), SSZ-13 as a seed crystal, and deionized water I prepared something. The molar ratio of the raw material composition was such that SiO 2 : 15 mol, Al 2 O 3 : 1 mol, NaOH: 2.6 mol, KOH: 0.9 mol, TMAAOH: 1.1 mol, H 2 O: 300 mol. The addition of 5.0 wt% of the seed crystal with respect to SiO 2, Al 2 O 3 raw material composition. The raw material composition was charged in a 500 L autoclave, and hydrothermal synthesis was performed at a heating temperature of 160 ° C. and a heating time of 48 hours to synthesize zeolite. Subsequently, in order to remove TMAAOH remaining in the zeolite pores, heat treatment was performed in air at 550 ° C. for 4 hours.
(アンモニウムイオン交換工程)
硫酸アンモニウム1molを1Lの水に溶かした後、得られた溶液4g(温度:室温)に対して上記合成工程で得られたゼオライトゼオライトを1gの割合で添加し、大気圧で1時間撹拌を行い、NH4 +型ゼオライトを得た。 (Ammonium ion exchange process)
After dissolving 1 mol of ammonium sulfate in 1 L of water, the zeolite zeolite obtained in the above synthesis step is added at a rate of 1 g to 4 g of the resulting solution (temperature: room temperature), and stirred at atmospheric pressure for 1 hour. NH 4 + type zeolite was obtained.
硫酸アンモニウム1molを1Lの水に溶かした後、得られた溶液4g(温度:室温)に対して上記合成工程で得られたゼオライトゼオライトを1gの割合で添加し、大気圧で1時間撹拌を行い、NH4 +型ゼオライトを得た。 (Ammonium ion exchange process)
After dissolving 1 mol of ammonium sulfate in 1 L of water, the zeolite zeolite obtained in the above synthesis step is added at a rate of 1 g to 4 g of the resulting solution (temperature: room temperature), and stirred at atmospheric pressure for 1 hour. NH 4 + type zeolite was obtained.
(熱処理工程)
上記アンモニウムイオン交換工程で得られたNH4 +型ゼオライトを、空気中で、470℃、4時間の条件で加熱処理を行い、H+型ゼオライトを得た。 (Heat treatment process)
The NH 4 + type zeolite obtained in the ammonium ion exchange step was heat-treated in air at 470 ° C. for 4 hours to obtain H + type zeolite.
上記アンモニウムイオン交換工程で得られたNH4 +型ゼオライトを、空気中で、470℃、4時間の条件で加熱処理を行い、H+型ゼオライトを得た。 (Heat treatment process)
The NH 4 + type zeolite obtained in the ammonium ion exchange step was heat-treated in air at 470 ° C. for 4 hours to obtain H + type zeolite.
(Cuイオン交換工程)
上記熱処理工程で得られたH+型ゼオライトに対し1質量%の濃度の硫酸銅(II)水溶液を用い、アンモニア水を用いてpHを9に調整して溶液温度50℃に保ち、H+型ゼオライトを大気圧下で、浸漬時間1時間の条件でイオン交換し、Cuイオン交換されたゼオライトを得た。 (Cu ion exchange process)
Using a copper (II) sulfate aqueous solution having a concentration of 1% by mass with respect to the H + type zeolite obtained in the heat treatment step, adjusting the pH to 9 with aqueous ammonia and keeping the solution temperature at 50 ° C., the H + type Zeolite was ion-exchanged under atmospheric pressure at an immersion time of 1 hour to obtain a Cu ion-exchanged zeolite.
上記熱処理工程で得られたH+型ゼオライトに対し1質量%の濃度の硫酸銅(II)水溶液を用い、アンモニア水を用いてpHを9に調整して溶液温度50℃に保ち、H+型ゼオライトを大気圧下で、浸漬時間1時間の条件でイオン交換し、Cuイオン交換されたゼオライトを得た。 (Cu ion exchange process)
Using a copper (II) sulfate aqueous solution having a concentration of 1% by mass with respect to the H + type zeolite obtained in the heat treatment step, adjusting the pH to 9 with aqueous ammonia and keeping the solution temperature at 50 ° C., the H + type Zeolite was ion-exchanged under atmospheric pressure at an immersion time of 1 hour to obtain a Cu ion-exchanged zeolite.
(熱エージング処理)
Cuイオン交換工程で得られたCuを担持したゼオライトに対し、大気圧下で、800℃、2時間の条件で熱エージング処理を行い、ゼオライトの性能を安定化させた。 (Thermal aging treatment)
The zeolite loaded with Cu obtained in the Cu ion exchange step was subjected to a heat aging treatment at 800 ° C. for 2 hours under atmospheric pressure to stabilize the performance of the zeolite.
Cuイオン交換工程で得られたCuを担持したゼオライトに対し、大気圧下で、800℃、2時間の条件で熱エージング処理を行い、ゼオライトの性能を安定化させた。 (Thermal aging treatment)
The zeolite loaded with Cu obtained in the Cu ion exchange step was subjected to a heat aging treatment at 800 ° C. for 2 hours under atmospheric pressure to stabilize the performance of the zeolite.
(Cuイオン交換量の測定)
実施例1で合成、イオン交換したゼオライトのCuイオン交換量を、蛍光X線分析装置(XRF、リガク社製 ZSX Primus2)を用いて測定した。測定条件は、X線管:Rh、定格最大出力:4kW、検出元素範囲:F~U、定量法:SQX法、分析領域:10mmφとした。
結果を表1に示す。 (Measurement of Cu ion exchange amount)
The amount of Cu ion exchange of the zeolite synthesized and ion exchanged in Example 1 was measured using a fluorescent X-ray analyzer (XRF, ZSX Primus 2 manufactured by Rigaku Corporation). The measurement conditions were as follows: X-ray tube: Rh, rated maximum output: 4 kW, detection element range: F to U, quantitative method: SQX method, analysis region: 10 mmφ.
The results are shown in Table 1.
実施例1で合成、イオン交換したゼオライトのCuイオン交換量を、蛍光X線分析装置(XRF、リガク社製 ZSX Primus2)を用いて測定した。測定条件は、X線管:Rh、定格最大出力:4kW、検出元素範囲:F~U、定量法:SQX法、分析領域:10mmφとした。
結果を表1に示す。 (Measurement of Cu ion exchange amount)
The amount of Cu ion exchange of the zeolite synthesized and ion exchanged in Example 1 was measured using a fluorescent X-ray analyzer (XRF, ZSX Primus 2 manufactured by Rigaku Corporation). The measurement conditions were as follows: X-ray tube: Rh, rated maximum output: 4 kW, detection element range: F to U, quantitative method: SQX method, analysis region: 10 mmφ.
The results are shown in Table 1.
実施例2~3
Cuイオン交換工程におけるCu溶液のpHを、表1に示す水溶液を用いてpH11に調整したこと以外は、実施例1と同様に実施した。
Cuイオン交換量を測定した結果を表1に示す。 Examples 2 to 3
The same procedure as in Example 1 was performed except that the pH of the Cu solution in the Cu ion exchange step was adjusted to pH 11 using the aqueous solution shown in Table 1.
The results of measuring the amount of Cu ion exchange are shown in Table 1.
Cuイオン交換工程におけるCu溶液のpHを、表1に示す水溶液を用いてpH11に調整したこと以外は、実施例1と同様に実施した。
Cuイオン交換量を測定した結果を表1に示す。 Examples 2 to 3
The same procedure as in Example 1 was performed except that the pH of the Cu solution in the Cu ion exchange step was adjusted to pH 11 using the aqueous solution shown in Table 1.
The results of measuring the amount of Cu ion exchange are shown in Table 1.
実施例4~7
Cuイオン交換工程におけるCu溶液を酢酸銅(II)水溶液とし、溶液のpHおよびpH調整に用いた水溶液を表1に示したものにした以外は、実施例1と同様に実施した。
Cuイオン交換量を測定した結果を表1に示す。 Examples 4-7
The same procedure as in Example 1 was performed except that the Cu solution in the Cu ion exchange step was a copper (II) acetate aqueous solution, and the pH of the solution and the aqueous solution used for pH adjustment were those shown in Table 1.
The results of measuring the amount of Cu ion exchange are shown in Table 1.
Cuイオン交換工程におけるCu溶液を酢酸銅(II)水溶液とし、溶液のpHおよびpH調整に用いた水溶液を表1に示したものにした以外は、実施例1と同様に実施した。
Cuイオン交換量を測定した結果を表1に示す。 Examples 4-7
The same procedure as in Example 1 was performed except that the Cu solution in the Cu ion exchange step was a copper (II) acetate aqueous solution, and the pH of the solution and the aqueous solution used for pH adjustment were those shown in Table 1.
The results of measuring the amount of Cu ion exchange are shown in Table 1.
実施例8~11
Cuイオン交換工程におけるCu溶液を酢酸銅(II)水溶液とし、表1に示すCu濃度とし、pH調整を行わなかったこと以外は、実施例1と同様に実施した。
Cuイオン交換量を測定した結果を表1に示す。 Examples 8-11
The Cu solution in the Cu ion exchange step was an aqueous copper (II) acetate solution, the Cu concentration was as shown in Table 1, and the same procedure as in Example 1 was performed except that pH adjustment was not performed.
The results of measuring the amount of Cu ion exchange are shown in Table 1.
Cuイオン交換工程におけるCu溶液を酢酸銅(II)水溶液とし、表1に示すCu濃度とし、pH調整を行わなかったこと以外は、実施例1と同様に実施した。
Cuイオン交換量を測定した結果を表1に示す。 Examples 8-11
The Cu solution in the Cu ion exchange step was an aqueous copper (II) acetate solution, the Cu concentration was as shown in Table 1, and the same procedure as in Example 1 was performed except that pH adjustment was not performed.
The results of measuring the amount of Cu ion exchange are shown in Table 1.
比較例1~4
熱処理工程を行わなかったこと以外は、実施例8~11と同様に実施した。
Cuイオン交換量を測定した結果を表1に示す。 Comparative Examples 1 to 4
The same procedure as in Examples 8 to 11 was performed except that the heat treatment step was not performed.
The results of measuring the amount of Cu ion exchange are shown in Table 1.
熱処理工程を行わなかったこと以外は、実施例8~11と同様に実施した。
Cuイオン交換量を測定した結果を表1に示す。 Comparative Examples 1 to 4
The same procedure as in Examples 8 to 11 was performed except that the heat treatment step was not performed.
The results of measuring the amount of Cu ion exchange are shown in Table 1.
(ゼオライトの結晶構造の解析)
X線回折装置(リガク社製、Ultima IV)を用い、実施例1で合成されたゼオライトについて、XRD測定を行い、X線回折スペクトルの(211)面、(104)面及び(220)面の積分強度の和(X0)を算出した。
測定条件は、線源:CuKα(λ=0.154nm)、測定法:FT法、回折角:2θ=5~48°、ステップ幅:0.02°、積算時間:1秒、発散スリット、散乱スリット:2/3°、発散縦制限スリット:10mm、加速電圧:40kV、加速電流:40mAとした。
得られたXRDデータの解析は、粉末X線回折パターン総合解析ソフトJADE6.0を用いて行った。なお、解析条件は、フィルタータイプ:放物線フィルター、Kα2ピークの消去:あり、ピーク位置定義:ピークトップ、閾値σ:3、ピーク強度%カットオフ:0.1、BG決定の範囲:1、BG平均化のポイント数:7とした。
その結果、X0は60584であった。 (Analysis of crystal structure of zeolite)
Using the X-ray diffractometer (Rigaku Corporation, Ultimate IV), the zeolite synthesized in Example 1 was subjected to XRD measurement, and the (211) plane, (104) plane and (220) plane of the X-ray diffraction spectrum were measured. The sum of integral intensities (X 0 ) was calculated.
Measurement conditions are: radiation source: CuKα (λ = 0.154 nm), measurement method: FT method, diffraction angle: 2θ = 5 to 48 °, step width: 0.02 °, integration time: 1 second, divergence slit, scattering Slit: 2/3 °, divergence length limiting slit: 10 mm, acceleration voltage: 40 kV, acceleration current: 40 mA.
Analysis of the obtained XRD data was performed using powder X-ray diffraction pattern comprehensive analysis software JADE 6.0. The analysis conditions are: filter type: parabolic filter, elimination of Kα2 peak: yes, peak position definition: peak top, threshold σ: 3, peak intensity% cutoff: 0.1, BG determination range: 1, BG average The number of conversion points was set to 7.
As a result, X 0 was 60584.
X線回折装置(リガク社製、Ultima IV)を用い、実施例1で合成されたゼオライトについて、XRD測定を行い、X線回折スペクトルの(211)面、(104)面及び(220)面の積分強度の和(X0)を算出した。
測定条件は、線源:CuKα(λ=0.154nm)、測定法:FT法、回折角:2θ=5~48°、ステップ幅:0.02°、積算時間:1秒、発散スリット、散乱スリット:2/3°、発散縦制限スリット:10mm、加速電圧:40kV、加速電流:40mAとした。
得られたXRDデータの解析は、粉末X線回折パターン総合解析ソフトJADE6.0を用いて行った。なお、解析条件は、フィルタータイプ:放物線フィルター、Kα2ピークの消去:あり、ピーク位置定義:ピークトップ、閾値σ:3、ピーク強度%カットオフ:0.1、BG決定の範囲:1、BG平均化のポイント数:7とした。
その結果、X0は60584であった。 (Analysis of crystal structure of zeolite)
Using the X-ray diffractometer (Rigaku Corporation, Ultimate IV), the zeolite synthesized in Example 1 was subjected to XRD measurement, and the (211) plane, (104) plane and (220) plane of the X-ray diffraction spectrum were measured. The sum of integral intensities (X 0 ) was calculated.
Measurement conditions are: radiation source: CuKα (λ = 0.154 nm), measurement method: FT method, diffraction angle: 2θ = 5 to 48 °, step width: 0.02 °, integration time: 1 second, divergence slit, scattering Slit: 2/3 °, divergence length limiting slit: 10 mm, acceleration voltage: 40 kV, acceleration current: 40 mA.
Analysis of the obtained XRD data was performed using powder X-ray diffraction pattern comprehensive analysis software JADE 6.0. The analysis conditions are: filter type: parabolic filter, elimination of Kα2 peak: yes, peak position definition: peak top, threshold σ: 3, peak intensity% cutoff: 0.1, BG determination range: 1, BG average The number of conversion points was set to 7.
As a result, X 0 was 60584.
図1に、実施例1で合成したゼオライトのXRDパターンを示す。
図1より、実施例1で合成したゼオライトは、CHA構造を有するゼオライトであることが確認された。 FIG. 1 shows the XRD pattern of the zeolite synthesized in Example 1.
From FIG. 1, it was confirmed that the zeolite synthesized in Example 1 was a zeolite having a CHA structure.
図1より、実施例1で合成したゼオライトは、CHA構造を有するゼオライトであることが確認された。 FIG. 1 shows the XRD pattern of the zeolite synthesized in Example 1.
From FIG. 1, it was confirmed that the zeolite synthesized in Example 1 was a zeolite having a CHA structure.
(Cu担持量の測定)
蛍光X線分析装置(XRF、リガク社製 ZSX Primus2)を用いて、各実施例および比較例で得られたゼオライトに担持されたCu量を測定した。測定条件は、X線管:Rh、定格最大出力:4kW、検出元素範囲:F~U、定量法:SQX法、分析領域:10mmφとした。Cu担持量の測定値から、Cu/Alモル比を算出した。
結果を表1に示す。 (Measurement of Cu loading)
Using an X-ray fluorescence analyzer (XRF, ZSX Primus 2 manufactured by Rigaku Corporation), the amount of Cu supported on the zeolite obtained in each of Examples and Comparative Examples was measured. The measurement conditions were as follows: X-ray tube: Rh, rated maximum output: 4 kW, detection element range: F to U, quantitative method: SQX method, analysis region: 10 mmφ. The Cu / Al molar ratio was calculated from the measured value of the Cu loading.
The results are shown in Table 1.
蛍光X線分析装置(XRF、リガク社製 ZSX Primus2)を用いて、各実施例および比較例で得られたゼオライトに担持されたCu量を測定した。測定条件は、X線管:Rh、定格最大出力:4kW、検出元素範囲:F~U、定量法:SQX法、分析領域:10mmφとした。Cu担持量の測定値から、Cu/Alモル比を算出した。
結果を表1に示す。 (Measurement of Cu loading)
Using an X-ray fluorescence analyzer (XRF, ZSX Primus 2 manufactured by Rigaku Corporation), the amount of Cu supported on the zeolite obtained in each of Examples and Comparative Examples was measured. The measurement conditions were as follows: X-ray tube: Rh, rated maximum output: 4 kW, detection element range: F to U, quantitative method: SQX method, analysis region: 10 mmφ. The Cu / Al molar ratio was calculated from the measured value of the Cu loading.
The results are shown in Table 1.
(ゼオライトのモル比(SAR SiO2/Al2O3)の測定)
蛍光X線分析装置(XRF、リガク社製 ZSX Primus2)を用いて、実施例1で得られたゼオライト(初期)のモル比(SAR SiO2/Al2O3)を測定した。測定条件は、X線管:Rh、定格最大出力:4kW、検出元素範囲:F~U、定量法:SQX法、分析領域:10mmφとした。その結果は、SARは12.9であった。 (Measurement of molar ratio of zeolite (SAR SiO 2 / Al 2 O 3 ))
Using a fluorescent X-ray analyzer (XRF, ZSX Primus 2 manufactured by Rigaku Corporation), the molar ratio (SAR SiO 2 / Al 2 O 3 ) of the zeolite (initial) obtained in Example 1 was measured. The measurement conditions were as follows: X-ray tube: Rh, rated maximum output: 4 kW, detection element range: F to U, quantitative method: SQX method, analysis region: 10 mmφ. As a result, the SAR was 12.9.
蛍光X線分析装置(XRF、リガク社製 ZSX Primus2)を用いて、実施例1で得られたゼオライト(初期)のモル比(SAR SiO2/Al2O3)を測定した。測定条件は、X線管:Rh、定格最大出力:4kW、検出元素範囲:F~U、定量法:SQX法、分析領域:10mmφとした。その結果は、SARは12.9であった。 (Measurement of molar ratio of zeolite (SAR SiO 2 / Al 2 O 3 ))
Using a fluorescent X-ray analyzer (XRF, ZSX Primus 2 manufactured by Rigaku Corporation), the molar ratio (SAR SiO 2 / Al 2 O 3 ) of the zeolite (initial) obtained in Example 1 was measured. The measurement conditions were as follows: X-ray tube: Rh, rated maximum output: 4 kW, detection element range: F to U, quantitative method: SQX method, analysis region: 10 mmφ. As a result, the SAR was 12.9.
(ゼオライトの粒子径の測定)
走査型電子顕微鏡(SEM、日立ハイテク社製、S-4800)を用いて、実施例1で得られたゼオライト(初期)のSEM写真を撮影し、それらの粒子径を測定した。測定条件は、加速電圧:1kV、エミッション:10μA、WD:2.2mm以下とした。測定倍率は、20000倍とした。10個の粒子の2つの対角線から粒子径を測定し、その平均値を求めた。その結果、平均粒子径は0.33μmであった。 (Measurement of particle size of zeolite)
Using a scanning electron microscope (SEM, manufactured by Hitachi High-Tech, S-4800), SEM photographs of the zeolite (initial) obtained in Example 1 were taken and their particle sizes were measured. The measurement conditions were acceleration voltage: 1 kV, emission: 10 μA, WD: 2.2 mm or less. The measurement magnification was 20000 times. The particle diameter was measured from two diagonal lines of 10 particles, and the average value was obtained. As a result, the average particle size was 0.33 μm.
走査型電子顕微鏡(SEM、日立ハイテク社製、S-4800)を用いて、実施例1で得られたゼオライト(初期)のSEM写真を撮影し、それらの粒子径を測定した。測定条件は、加速電圧:1kV、エミッション:10μA、WD:2.2mm以下とした。測定倍率は、20000倍とした。10個の粒子の2つの対角線から粒子径を測定し、その平均値を求めた。その結果、平均粒子径は0.33μmであった。 (Measurement of particle size of zeolite)
Using a scanning electron microscope (SEM, manufactured by Hitachi High-Tech, S-4800), SEM photographs of the zeolite (initial) obtained in Example 1 were taken and their particle sizes were measured. The measurement conditions were acceleration voltage: 1 kV, emission: 10 μA, WD: 2.2 mm or less. The measurement magnification was 20000 times. The particle diameter was measured from two diagonal lines of 10 particles, and the average value was obtained. As a result, the average particle size was 0.33 μm.
実施例1~11で得られたゼオライトは、NH4
+型ゼオライトを得た後、該ゼオライトを加熱し、H+型ゼオライトを得、これに対しCu溶液を用いてイオン交換を行う各工程を経て製造されたものであり、Cuのイオン交換効率が高い結果となった。該結果から、ゼオライトの製造時間および製造コストを低減できることが推測される。
比較例1~4は、NH4 +型ゼオライトに対し直接、Cu溶液を用いるイオン交換を行っているので、Cuのイオン交換効率が低い結果となった。 The zeolites obtained in Examples 1 to 11 were obtained by obtaining NH 4 + type zeolite and then heating the zeolite to obtain H + type zeolite, which was subjected to ion exchange using a Cu solution. As a result, the Cu ion exchange efficiency was high. From this result, it is estimated that the production time and production cost of zeolite can be reduced.
In Comparative Examples 1 to 4, since ion exchange using a Cu solution was performed directly on NH 4 + type zeolite, Cu ion exchange efficiency was low.
比較例1~4は、NH4 +型ゼオライトに対し直接、Cu溶液を用いるイオン交換を行っているので、Cuのイオン交換効率が低い結果となった。 The zeolites obtained in Examples 1 to 11 were obtained by obtaining NH 4 + type zeolite and then heating the zeolite to obtain H + type zeolite, which was subjected to ion exchange using a Cu solution. As a result, the Cu ion exchange efficiency was high. From this result, it is estimated that the production time and production cost of zeolite can be reduced.
In Comparative Examples 1 to 4, since ion exchange using a Cu solution was performed directly on NH 4 + type zeolite, Cu ion exchange efficiency was low.
本発明を詳細にまた特定の実施形態を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。本出願は、2015年5月19日出願の日本特許出願(特願2015-102006)に基づくものであり、その内容はここに参照として取り込まれる。
Although the present invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention. This application is based on a Japanese patent application filed on May 19, 2015 (Japanese Patent Application No. 2015-102006), the contents of which are incorporated herein by reference.
Claims (7)
- Cuイオン交換されたCHA構造を有するゼオライトを製造する方法であって、
Si源と、Al源と、アルカリ金属及びアルカリ土類金属からなる群から選択される少なくとも一種と、並びに構造規定剤とを含む原料組成物を用いてゼオライトを合成する合成工程、
前記合成工程で得られたゼオライトに対し、アンモニア溶液を用いて、NH4 +型ゼオライトを得るアンモニウムイオン交換工程、
前記アンモニウムイオン交換工程で得られたNH4 +型ゼオライトを加熱し、H+型ゼオライトを得る熱処理工程、および
前記熱処理工程で得られたH+型ゼオライトに対し、Cu溶液を用いてCuイオン交換されたゼオライトを得るCuイオン交換工程を含む
ゼオライトの製造方法。 A method for producing a zeolite having a CHA structure subjected to Cu ion exchange, comprising:
A synthesis step of synthesizing zeolite using a raw material composition comprising a Si source, an Al source, at least one selected from the group consisting of alkali metals and alkaline earth metals, and a structure directing agent;
An ammonium ion exchange step for obtaining NH 4 + type zeolite using an ammonia solution for the zeolite obtained in the synthesis step,
Heating the NH 4 + type zeolite obtained in the ammonium ion exchange step to obtain an H + type zeolite, and Cu ion exchange using a Cu solution for the H + type zeolite obtained in the heat treatment step A method for producing a zeolite comprising a Cu ion exchange step for obtaining the obtained zeolite. - 前記合成工程で得られたゼオライトにおけるSiO2/Al2O3組成比(SAR)が15未満である、請求項1に記載のゼオライトの製造方法。 The synthesis step is a SiO 2 / Al 2 O 3 composition ratio (SAR) of less than 15 in the resultant zeolite in the manufacturing method of the zeolite of claim 1.
- 前記Al源が乾燥水酸化アルミニウムゲルである、請求項1または2に記載のゼオライトの製造方法。 The method for producing a zeolite according to claim 1 or 2, wherein the Al source is a dry aluminum hydroxide gel.
- 前記熱処理工程においてNH4 +型ゼオライトの加熱温度が350~650℃である、請求項1~3のいずれか1項に記載のゼオライトの製造方法。 The method for producing zeolite according to any one of claims 1 to 3, wherein the heating temperature of the NH 4 + type zeolite is 350 to 650 ° C in the heat treatment step.
- 前記Cuイオン交換工程において使用するCu溶液のpHが8~12である、請求項1~4のいずれか1項に記載のゼオライトの製造方法。 The method for producing zeolite according to any one of claims 1 to 4, wherein the Cu solution used in the Cu ion exchange step has a pH of 8 to 12.
- 前記Cuイオン交換工程において使用するCu溶液が硫酸銅水溶液である、請求項1~5のいずれか1項に記載のゼオライトの製造方法。 The method for producing zeolite according to any one of claims 1 to 5, wherein the Cu solution used in the Cu ion exchange step is a copper sulfate aqueous solution.
- Cuイオン交換されたゼオライトにおけるCu/Al(モル比)が0.2~0.5である、請求項1~6のいずれか1項に記載のゼオライトの製造方法。 The method for producing zeolite according to any one of claims 1 to 6, wherein the Cu / Al (molar ratio) in the zeolite subjected to Cu ion exchange is 0.2 to 0.5.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015102006A JP2016216296A (en) | 2015-05-19 | 2015-05-19 | Manufacturing method of zeolite |
JP2015-102006 | 2015-05-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016186162A1 true WO2016186162A1 (en) | 2016-11-24 |
Family
ID=57320296
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/064864 WO2016186162A1 (en) | 2015-05-19 | 2016-05-19 | Method for producing zeolite |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2016216296A (en) |
WO (1) | WO2016186162A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109867294A (en) * | 2019-03-19 | 2019-06-11 | 南开大学 | Cupric CHA type zeolite, its manufacturing method and purposes |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7158141B2 (en) | 2017-11-27 | 2022-10-21 | エヌ・イーケムキャット株式会社 | Slurry composition for catalyst, method for producing the same, method for producing catalyst using the same, and method for producing Cu-containing zeolite |
US11278874B2 (en) * | 2018-11-30 | 2022-03-22 | Johnson Matthey Public Limited Company | Enhanced introduction of extra-framework metal into aluminosilicate zeolites |
CN113233471B (en) * | 2021-04-26 | 2021-12-24 | 天津派森新材料技术有限责任公司 | Method for preparing copper exchange molecular sieve, catalytic system and waste gas treatment device |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012148968A (en) * | 2010-12-28 | 2012-08-09 | Tosoh Corp | Zeolite which supports copper and alkaline earth metal |
JP2012211066A (en) * | 2010-12-22 | 2012-11-01 | Tosoh Corp | Chabazite-type zeolite and method for producing the same, low-silica zeolite having copper supported, nitrogen oxide reduction removal catalyst including the zeolite, and method for reduction removing nitrogen oxide using the catalyst |
JP2013511462A (en) * | 2009-11-24 | 2013-04-04 | ビーエーエスエフ ソシエタス・ヨーロピア | Method for producing zeolite having CHA structure |
-
2015
- 2015-05-19 JP JP2015102006A patent/JP2016216296A/en active Pending
-
2016
- 2016-05-19 WO PCT/JP2016/064864 patent/WO2016186162A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013511462A (en) * | 2009-11-24 | 2013-04-04 | ビーエーエスエフ ソシエタス・ヨーロピア | Method for producing zeolite having CHA structure |
JP2012211066A (en) * | 2010-12-22 | 2012-11-01 | Tosoh Corp | Chabazite-type zeolite and method for producing the same, low-silica zeolite having copper supported, nitrogen oxide reduction removal catalyst including the zeolite, and method for reduction removing nitrogen oxide using the catalyst |
JP2012148968A (en) * | 2010-12-28 | 2012-08-09 | Tosoh Corp | Zeolite which supports copper and alkaline earth metal |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109867294A (en) * | 2019-03-19 | 2019-06-11 | 南开大学 | Cupric CHA type zeolite, its manufacturing method and purposes |
Also Published As
Publication number | Publication date |
---|---|
JP2016216296A (en) | 2016-12-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101697804B1 (en) | Zeolite and method for producing same | |
JP6278561B2 (en) | Crystalline aluminosilicate and method for producing the same | |
CA2823165C (en) | Zeolite having copper and alkali earth metal supported thereon | |
WO2016125850A1 (en) | Novel zeolite | |
JP7283046B2 (en) | Metal-containing CHA-type zeolite and method for producing the same | |
WO2016186162A1 (en) | Method for producing zeolite | |
JP6783098B2 (en) | CHA-type zeolite containing phosphorus and its production method | |
JP6702759B2 (en) | AEI-type zeolite containing titanium and method for producing the same | |
JP6494034B2 (en) | LEV-type crystalline aluminosilicate containing phosphorus, process for producing the same, and catalyst containing LEV-type crystalline aluminosilicate containing phosphorus | |
WO2014199945A1 (en) | Lev-type zeolite and production method therefor | |
JP2014526965A (en) | Reduction of nitrogen oxides in gas stream using molecular sieve SSZ-23 | |
WO2016194956A1 (en) | Method for producing zeolite | |
JP7109023B2 (en) | RHO-type zeolite and method for producing the same | |
JP2018094478A (en) | Scr catalyst system | |
JP6792425B2 (en) | Zeolite manufacturing method | |
JP6350160B2 (en) | Method for producing zeolite | |
JP6815844B2 (en) | Zeolite manufacturing method | |
JP5983290B2 (en) | Silicoaluminophosphate and nitrogen oxide reduction catalyst using the same | |
CN112551544A (en) | Process for preparing IZM-2 zeolite in the presence of a nitrogen-containing organic structuring agent in the hydroxide form, optionally in a fluorinated medium | |
JP2018065723A (en) | Zeolite zts-5 and process for producing the same | |
JP5760435B2 (en) | Microcrystalline and highly crystalline β-type zeolite and method for producing the same | |
JP2018083726A (en) | Zeolite and honeycomb catalyst | |
RU2574664C2 (en) | Zeolite with copper and alkali earth metal fixed on it | |
JP2023064657A (en) | Cha-type zeolite and production method thereof | |
EP3978437A1 (en) | Method for producing aei zeolite |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16796555 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16796555 Country of ref document: EP Kind code of ref document: A1 |