JP5760435B2 - Microcrystalline and highly crystalline β-type zeolite and method for producing the same - Google Patents

Microcrystalline and highly crystalline β-type zeolite and method for producing the same Download PDF

Info

Publication number
JP5760435B2
JP5760435B2 JP2010291320A JP2010291320A JP5760435B2 JP 5760435 B2 JP5760435 B2 JP 5760435B2 JP 2010291320 A JP2010291320 A JP 2010291320A JP 2010291320 A JP2010291320 A JP 2010291320A JP 5760435 B2 JP5760435 B2 JP 5760435B2
Authority
JP
Japan
Prior art keywords
type zeolite
ratio
reaction solution
less
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010291320A
Other languages
Japanese (ja)
Other versions
JP2012136409A (en
Inventor
智 吉田
吉田  智
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2010291320A priority Critical patent/JP5760435B2/en
Publication of JP2012136409A publication Critical patent/JP2012136409A/en
Application granted granted Critical
Publication of JP5760435B2 publication Critical patent/JP5760435B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、SiO/Alのモル比が25以上70以下、平均粒径が0.05μm以上0.20μm以下、炭素量が0.3重量%以下、X線結晶回折(302)面の半値幅(FWHM)が0.25°以上0.90°以下のβ型ゼオライト、およびその製造方法に関するものである。 In the present invention, the molar ratio of SiO 2 / Al 2 O 3 is 25 or more and 70 or less, the average particle size is 0.05 μm or more and 0.20 μm or less, the carbon content is 0.3% by weight or less, X-ray crystal diffraction (302) The present invention relates to a β-type zeolite having a full width at half maximum (FWHM) of 0.25 ° to 0.90 °, and a method for producing the same.

β型ゼオライトは、特許文献1で初めて開示された12員環細孔を有するゼオライトであり、触媒、吸着剤として広く用いられている。また、イオン交換体、触媒用などの膜としても技術検討がなされている。   β-type zeolite is a zeolite having 12-membered ring pores first disclosed in Patent Document 1, and is widely used as a catalyst and an adsorbent. Also, technical studies have been made on membranes for ion exchangers and catalysts.

β型ゼオライトを触媒として用いる場合には、高活性、高選択性、高耐コーキング性等を指向して、微粒子品が検討されている。   In the case where β-type zeolite is used as a catalyst, a fine particle product is being studied aiming at high activity, high selectivity, high coking resistance and the like.

例えば非特許文献1では、ナノ粒子からなるβ型ゼオライトと商用のβ型ゼオライトを比較し、炭化水素転換触媒として、ナノ粒子からなるβ型ゼオライトが商用のβ型ゼオライトよりも同一温度において転化率が高いと報告されている。当該ナノ粒子からなるβ型ゼオライトは、構造指向剤(以降、有機SDAと略記する)としてテトラエチルアンモニウムカチオンを使用し、かつ、アルカリ金属を含有せず、原料の仕込組成がモル比でSi/Al=25、OH/Si=TEA/Si=0.60、HO/Si=15であり、OH/Siが高い条件で結晶化されている。 For example, in Non-Patent Document 1, β-type zeolite made of nanoparticles is compared with commercial β-type zeolite, and the conversion rate of β-type zeolite made of nanoparticles as a hydrocarbon conversion catalyst is higher than that of commercial β-type zeolite at the same temperature. Is reported to be high. The β-type zeolite composed of the nanoparticles uses a tetraethylammonium cation as a structure directing agent (hereinafter abbreviated as “organic SDA”), does not contain an alkali metal, and has a feed composition of Si / Al in a molar ratio. 2 = 25, OH / Si = TEA / Si = 0.60, H 2 O / Si = 15, and crystallization is performed under a high OH / Si condition.

また、特許文献2では、約90nm、約50nmの粒子のβ型ゼオライトが報告されている。当該β型ゼオライトは、有機SDAとしてテトラエチルアンモニウムカチオンを使用し、かつ、アルカリ金属を含有せず、原料仕込組成がモル比でSi/Al=167、OH/Si=TEA/Si=0.56、HO/Si=7.6であり、OH/Siが高い条件で結晶化されている。 Patent Document 2 reports β-type zeolite having particles of about 90 nm and about 50 nm. The β-type zeolite uses a tetraethylammonium cation as an organic SDA, does not contain an alkali metal, and has a raw material composition of Si / Al 2 = 167 and OH / Si = TEA / Si = 0.56 in a molar ratio. H 2 O / Si = 7.6, and crystallization is performed under a high OH / Si condition.

更に特許文献3では、SEMによる平均粒子径40nmのβ型ゼオライトが報告されている。
当該β型ゼオライトは、有機SDAとしてテトラエチルアンモニウムカチオン、粒子成長調整剤としてトリメチルセチルアンモニウムブロマイドを使用し、原料の仕込組成がモル比でSi/Al=50、TEA/Si=0.37、Na/Si=0.072、OH/Si=0.442、HO/Si=17であり、OH/Siが高い条件で結晶化されている。
Further, Patent Document 3 reports β-type zeolite having an average particle diameter of 40 nm by SEM.
The β-type zeolite uses tetraethylammonium cation as the organic SDA, trimethylcetylammonium bromide as the particle growth regulator, and the raw material composition is Si / Al 2 = 50, TEA / Si = 0.37, Na /Si=0.072, OH / Si = 0.442, H 2 O / Si = 17, and crystallization is performed under high OH / Si conditions.

一方、β型ゼオライトを触媒として用いる場合において、高水熱耐久性を指向して、結晶子径を大きくすること、例えば、X線結晶回折(302)面の半値幅を小さくすることが検討されている。高水熱耐久性は、自動車用触媒として用いるとき、または石油化学等のプロセス触媒として用いてコーキング成分をデコーキングするとき、などにおいては特に必要な要件となっている。   On the other hand, in the case of using β-type zeolite as a catalyst, it has been studied to increase the crystallite diameter, for example, to reduce the half-value width of the X-ray crystal diffraction (302) plane, aiming at high hydrothermal durability. ing. High hydrothermal durability is a particularly necessary requirement when used as a catalyst for automobiles or when decoking a coking component using a process catalyst such as petrochemicals.

水熱耐久性を高くするため、結晶子径を大きくした例としては、特許文献4において、SEM粒径0.35μm以上、X線結晶回折(302)面の半値幅(FWHM)が0.30゜未満のβ型ゼオライトが報告されている。   As an example in which the crystallite diameter is increased in order to increase the hydrothermal durability, in Patent Document 4, the SEM particle size is 0.35 μm or more, and the half width (FWHM) of the X-ray crystal diffraction (302) plane is 0.30. Β-type zeolites of less than ° are reported.

米国特許3308069号U.S. Pat. No. 3,308,069 特許3417944号(実施例2,3)Japanese Patent No. 3417944 (Examples 2 and 3) 特開2008−239450(実施例1)JP2008-239450 (Example 1) 特開2008−81348(実施例1)JP-A-2008-81348 (Example 1)

R.R.Willis et al.,“From Zeolites to Porous MOF Materials”,Proceedings of the 15th International Zeolite Conference,Beijing,China,2007, Studies in Surface Science and Catalysis,170,p.242(2007)R. R. Willis et al. “From Zeolites to Porous MOF Materials”, Proceedings of the 15th International Zeolence Conference, Beijing, China, 2007, Studies in Surface and Science. 242 (2007)

以上、高活性、高選択性、高耐コーキング性が期待できる微粒子のβ型ゼオライト、あるいは高水熱耐久性が期待できるX線結晶回折(302)面の半値幅が小さな高結晶性のβ型ゼオライトは、それぞれ報告されているが、両者を併せ持った微粒子且つX線結晶回折(302)面の半値幅が小さな高結晶性のβ型ゼオライトはなかった。   As described above, fine β-type zeolite that can be expected to have high activity, high selectivity, and high coking resistance, or highly crystalline β-type that has a low half-value width on the X-ray crystal diffraction (302) plane that can be expected to have high hydrothermal durability. Zeolite has been reported, but there was no highly crystalline β-type zeolite having both fine particles and a small half-value width on the X-ray crystal diffraction (302) plane.

本発明は、SiO/Alのモル比が25以上70以下、平均粒径が0.05μm以上0.20μm以下、X線結晶回折(302)面の半値幅(FWHM)が0.25°以上0.90°以下のβ型ゼオライトを提供するものである。また、当該β型ゼオライトの製造方法を提供する。 In the present invention, the molar ratio of SiO 2 / Al 2 O 3 is 25 or more and 70 or less, the average particle diameter is 0.05 μm or more and 0.20 μm or less, and the full width at half maximum (FWHM) of the X-ray crystal diffraction (302) plane is 0.00. The present invention provides a β-type zeolite of 25 ° or more and 0.90 ° or less. In addition, a method for producing the β-type zeolite is provided.

本発明者らは、上記の課題に鑑み、β型ゼオライトについて鋭意検討を重ねた結果、溶解したSiとAl、及び最頻粒子径が0.01〜0.2μmのピークの粒子を含むテトラエチルアンモニウムカチオン液を含んでなる反応液を加熱し、結晶化させると、SiO/Alのモル比が25以上70以下、SEMの平均粒径が0.05μm以上0.20μm以下、炭素量が0.3重量%以下、X線結晶回折(302)面の半値幅(FWHM)が0.25°以上0.90°以下の新しいβ型ゼオライトを見出し、本発明を完成するに至った。本発明のβ型ゼオライトは、触媒として用いた場合において、高活性、高選択性、高耐コーキング性、且つ高水熱耐久性が期待できる。 In view of the above problems, the present inventors have conducted extensive studies on β-type zeolite, and as a result, dissolved Si and Al, and tetraethylammonium containing particles with a peak of mode diameter of 0.01 to 0.2 μm. When the reaction solution containing the cation solution is heated and crystallized, the molar ratio of SiO 2 / Al 2 O 3 is 25 or more and 70 or less, the average particle size of SEM is 0.05 μm or more and 0.20 μm or less, the carbon content Was found to be a new β-type zeolite having an X-ray crystal diffraction (302) plane full width at half maximum (FWHM) of 0.25 ° or more and 0.90 ° or less, thereby completing the present invention. When used as a catalyst, the β-type zeolite of the present invention can be expected to have high activity, high selectivity, high coking resistance, and high hydrothermal durability.

以下、本発明のβ型ゼオライトについて説明する。   Hereinafter, the β-type zeolite of the present invention will be described.

本発明のβ型ゼオライトは、SiO/Alのモル比が25以上70以下であることが必須である。SiO/Alのモル比が25より小さいと水熱耐久性が低く、SiO/Alのモル比が70より大きいと、触媒活性が低いため不適である。また、触媒として用いる時の酸量と酸強度のバランスから、SiO/Alのモル比が30以上50以下であることが好ましい。 In the β-type zeolite of the present invention, it is essential that the SiO 2 / Al 2 O 3 molar ratio is 25 or more and 70 or less. If the SiO 2 / Al 2 O 3 molar ratio is less than 25, the hydrothermal durability is low, and if the SiO 2 / Al 2 O 3 molar ratio is more than 70, the catalyst activity is low, which is not suitable. Moreover, it is preferable that the molar ratio of SiO 2 / Al 2 O 3 is 30 or more and 50 or less from the balance between the acid amount and the acid strength when used as a catalyst.

本発明のβ型ゼオライトは、平均粒径が0.05μm以上0.20μm以下であることが必須である。本発明の平均粒径は、走査型電子顕微鏡(以下、SEM)観察によって見られる粒子をランダムに10個以上測定し、その平均として求められるものである。SEM観察される粒子は、多くの結晶子が集合した一次粒子であり、一次粒子が凝集した粒子(いわゆる、二次粒子)とは異なるものである。   The β-type zeolite of the present invention must have an average particle size of 0.05 μm or more and 0.20 μm or less. The average particle diameter of the present invention is obtained as an average of 10 or more particles randomly observed by scanning electron microscope (hereinafter, SEM) observation. The particles observed by SEM are primary particles in which many crystallites are aggregated, and are different from particles in which primary particles are aggregated (so-called secondary particles).

なお、本発明のβ型ゼオライトは分散性が高い。そのため、適切な前処理を施したサンプルのレーザー回折散乱装置又は動的光散乱式粒子測定装置による粒子径分布測定で得られる50%粒子径は、SEMの平均粒径に近い値となる。   The β-type zeolite of the present invention has high dispersibility. Therefore, the 50% particle size obtained by measuring the particle size distribution with a laser diffraction scattering device or a dynamic light scattering particle measuring device of a sample that has been subjected to appropriate pretreatment is a value close to the average particle size of SEM.

平均粒径が0.05μmより小さいと、X線結晶回折(302)面の半値幅(FWHM)を0.90°以下にならない。平均粒径が0.20μmより大きいと高活性、高選択性、高耐コーキング性が得られない。   When the average particle size is smaller than 0.05 μm, the half width (FWHM) of the X-ray crystal diffraction (302) plane does not become 0.90 ° or less. If the average particle size is larger than 0.20 μm, high activity, high selectivity, and high coking resistance cannot be obtained.

本発明のβ型ゼオライトは、炭素量が0.3重量%以下であることが必須である。炭素量が0.3重量%以下とは、実質的にテトラエチルアンモニウムカチオンなどの有機SDAを実質的に含まないことを示している。炭素量が0.3重量%を超えると、触媒、吸着剤として使用するときの機能が制限される。炭素量は、CHN元素分析や高周波炉燃焼―赤外吸収法などにより評価できる。   The β-type zeolite of the present invention must have a carbon content of 0.3% by weight or less. A carbon content of 0.3% by weight or less indicates that substantially no organic SDA such as tetraethylammonium cation is substantially contained. When the amount of carbon exceeds 0.3% by weight, functions when used as a catalyst and an adsorbent are limited. The amount of carbon can be evaluated by CHN elemental analysis or induction furnace combustion-infrared absorption method.

本発明のβ型ゼオライトは、X線結晶回折(302)面の半値幅(FWHM)が0.25°以上0.90°以下であることが必須である。本発明の半値幅は、X線結晶回折(302)面は、CuKαをX線源とし、2θ=22.4°付近に現れるメインピークであり、その半値幅は、Kα1とKα2の分離後のKα1に基づく値のことを指す。X線結晶回折(302)面の半値幅(FWHM)を0.25°より小さくすることは、平均粒径が0.20μm以下と同時に実現させることはできない。0.90°より大きいと水熱耐久性が低くなる。 In the β-type zeolite of the present invention, it is essential that the full width at half maximum (FWHM) of the X-ray crystal diffraction (302) plane is 0.25 ° or more and 0.90 ° or less. The full width at half maximum of the present invention is the main peak of the X-ray crystal diffraction (302) plane with CuKα as the X-ray source and appearing in the vicinity of 2θ = 22.4 °. The full width at half maximum is the separation of K α1 and K α2 . It refers to a value based on K α1 later. Making the full width at half maximum (FWHM) of the X-ray crystal diffraction (302) plane smaller than 0.25 ° cannot be realized simultaneously with the average grain size of 0.20 μm or less. When it is larger than 0.90 °, the hydrothermal durability is lowered.

なお、β型ゼオライトは、有機SDAを除去する際に結晶子が小さくなるため、有機SDAを含むβ型ゼオライトのX線結晶回折(302)面の半値幅(FWHM)より、有機SDAを実質的に含まないβ型ゼオライトの半値幅の方が大きくなる。   Since β-type zeolite has a small crystallite when removing organic SDA, organic SDA is substantially reduced from the full width at half maximum (FWHM) of the X-ray crystal diffraction (302) plane of β-type zeolite containing organic SDA. The full width at half maximum of β-type zeolite not contained in is larger.

次に、本発明のβ型ゼオライトの製造方法を説明する。   Next, a method for producing the β-type zeolite of the present invention will be described.

本発明のβ型ゼオライトは、少なくともSi源、Al源、有機構造指向材(以下、有機SDAと表記する)を含んだ混合液と、溶解したSiとAl、及び最頻粒子径が0.01〜0.2μmのピークの粒子を含むテトラエチルアンモニウムカチオン液とを混合した反応液を水熱処理することで製造することができる。   The β-type zeolite of the present invention has a mixed solution containing at least a Si source, an Al source, an organic structure directing material (hereinafter referred to as organic SDA), dissolved Si and Al, and a mode particle size of 0.01. It can be produced by hydrothermally treating a reaction solution obtained by mixing a tetraethylammonium cation solution containing particles having a peak of ˜0.2 μm.

本発明の製造方法では、少なくともSi源、Al源、有機SDAを含んだ混合液を調製する。   In the production method of the present invention, a mixed solution containing at least a Si source, an Al source, and an organic SDA is prepared.

Si源としては、シリカゾル、ヒュームドシリカ、沈降法シリカ、シリカアルミナゲル、テトラエトキシランなどが例示できる。   Examples of the Si source include silica sol, fumed silica, precipitated silica, silica alumina gel, and tetraethoxylane.

また、Al源としては、水酸化アルミニウム、擬ベーマイト、アルミナゾル、シリカアルミナゲル、アルミニウムイソプロポキシドなどが例示できる。   Examples of the Al source include aluminum hydroxide, pseudoboehmite, alumina sol, silica alumina gel, and aluminum isopropoxide.

有機SDAとしてはテトラエチルアンモニウムカチオンを有するテトラエチルアンモニウムヒドロキシド、テトラエチルアンモニウムクロライド、テトラエチルアンモニウムブロマイドを含む化合物の群の少なくとも一種以上を使用することができる。中でもテトラエチルアンモニウムヒドロキシド水溶液等が好ましい。   As the organic SDA, at least one of a group of compounds including tetraethylammonium hydroxide having tetraethylammonium cation, tetraethylammonium chloride, and tetraethylammonium bromide can be used. Of these, tetraethylammonium hydroxide aqueous solution and the like are preferable.

本発明の製造方法では、結晶化の促進成分として、溶解したSiとAl、及び最頻粒子径が0.01〜0.2μmのピークの粒子を含むテトラエチルアンモニウムカチオン液を上記の混合液と混合し、反応液を得る。   In the production method of the present invention, as a crystallization promoting component, dissolved Si and Al, and tetraethylammonium cation solution containing particles having a peak of mode diameter of 0.01 to 0.2 μm are mixed with the above mixed solution. To obtain a reaction solution.

テトラエチルアンモニウムカチオン液は、最頻粒子径が0.01〜0.2μmのピークの粒子を含む。このような粒子を含むテトラエチルアンモニウムカチオン液を使用することでβ型ゼオライトの結晶化が促進される。   The tetraethylammonium cation solution contains particles having a peak with a mode particle diameter of 0.01 to 0.2 μm. By using a tetraethylammonium cation solution containing such particles, crystallization of β-type zeolite is promoted.

なお、テトラエチルアンモニウムカチオン液中に含まれる粒子の最頻粒子径は、動的光散乱式粒子測定において0.01〜0.2μmにピークを有する粒子として測定することができる。   The mode particle diameter of the particles contained in the tetraethylammonium cation solution can be measured as particles having a peak at 0.01 to 0.2 μm in the dynamic light scattering particle measurement.

上記の混合液と混合するテトラエチルアンモニウムカチオン液の量は、混合液中のSiとAlの総量に対するテトラエチルアンモニウムカチオン液中のSiとAlの総量の割合を、0.01〜25重量%とすることが例示でき、0.1〜10重量%とすることが好ましい。   The amount of the tetraethylammonium cation solution to be mixed with the above mixture is 0.01 to 25% by weight of the total amount of Si and Al in the tetraethylammonium cation solution to the total amount of Si and Al in the mixture. And is preferably 0.1 to 10% by weight.

反応液中のOH/Siはモル比で、OH/Si≦0.3であることが好ましく、OH/Si≦0.25であることがより好ましい。OH/Si≦0.3と低いOHの反応液を結晶化することにより、本発明のβ型ゼオライトを製造するための有機SDAを含有したβ型ゼオライト(以下、有機SDA含有β型ゼオライト)が得られやすくなる。また、低いOH/Siモル比の反応液では、SiおよびAlの溶解度が低くなるため、これを結晶化することでβ型ゼオライトの収率が高くなる。一方、OH/Si=0.3を越える高いOH/Siモル比の反応液では、平均粒径と半値幅の両方を満たすことは困難である。   The molar ratio of OH / Si in the reaction solution is preferably OH / Si ≦ 0.3, and more preferably OH / Si ≦ 0.25. By crystallizing a reaction solution of OH / Si ≦ 0.3 and low OH, β-type zeolite containing organic SDA for producing β-type zeolite of the present invention (hereinafter, organic SDA-containing β-type zeolite) is obtained. It becomes easy to obtain. In addition, in a reaction solution having a low OH / Si molar ratio, the solubility of Si and Al is low, so that the yield of β-type zeolite is increased by crystallization thereof. On the other hand, in a reaction solution having a high OH / Si molar ratio exceeding OH / Si = 0.3, it is difficult to satisfy both the average particle diameter and the half width.

このような低いOH/Siモル比の反応液を使用することで本発明のβ型ゼオライトが得られ易くなる詳細な理由は不明だが、低いOH/Siモル比条件とすることで結晶欠陥の少ない結晶が得ることできていると考えられる。   Although the detailed reason why the β-type zeolite of the present invention can be easily obtained by using such a low OH / Si molar ratio reaction solution is unknown, there are few crystal defects by using a low OH / Si molar ratio condition. It is considered that crystals can be obtained.

なお、好ましい反応液の組成は、下記の範囲が例示できる。   In addition, the following range can illustrate the composition of a preferable reaction liquid.

SiO/Alモル比=10〜100
OH/SiOモル比=0.1〜0.3
O/SiOモル比=5〜50
有機SDA/SiOモル比=0.05〜0.3
アルカリ金属/SiOモル比=0〜0.3
SiO 2 / Al 2 O 3 molar ratio = 10-100
OH / SiO 2 molar ratio = 0.1 to 0.3
H 2 O / SiO 2 molar ratio = 5-50
Organic SDA / SiO 2 molar ratio = 0.05 to 0.3
Alkali metal / SiO 2 molar ratio = 0-0.3

本発明の製造方法では、上記組成の反応液を密閉式圧力容器中で、100〜180℃の任意の温度で、十分な時間をかけて結晶化させる。   In the production method of the present invention, the reaction solution having the above composition is crystallized in an enclosed pressure vessel at an arbitrary temperature of 100 to 180 ° C. over a sufficient time.

結晶化終了後、十分放冷し、固液分離、十分量の純水で洗浄し、100〜150℃の任意の温度で乾燥することで有機SDA含有β型ゼオライトが得られる。   After completion of crystallization, the mixture is allowed to cool, solid-liquid separation, washed with a sufficient amount of pure water, and dried at an arbitrary temperature of 100 to 150 ° C. to obtain an organic SDA-containing β-type zeolite.

有機SDA含有β型ゼオライトから、有機SDAを除去することで本発明のβ型ゼオライトが得られる。有機SDAは、焼成、若しくは分解により除去することが例示できる。焼成の条件としては、400〜800℃、0.5〜12時間、酸素を含むガス流れ等の条件が例示できる。分解の条件としては、3価のFeの濃度100ppm以上を含む過酸化水素水10%以上の水溶液に室温以上の温度で、1〜24時間接触させることが例示できる。   The β-type zeolite of the present invention can be obtained by removing the organic SDA from the organic SDA-containing β-type zeolite. The organic SDA can be exemplified by removal by baking or decomposition. Examples of firing conditions include 400 to 800 ° C., 0.5 to 12 hours, and a gas flow including oxygen. Examples of the decomposition conditions include contacting an aqueous solution containing 10% or more of hydrogen peroxide containing 100 ppm or more of trivalent Fe at a temperature of room temperature or more for 1 to 24 hours.

また、本発明のβ型ゼオライトは、必要に応じてイオン交換サイトの一部又は全部を交換し、イオン交換β型ゼオライトとすることができる。イオン交換β型ゼオライトは、有機SDA含有β型ゼオライト又は有機SDA除去後のβ型ゼオライトと、導入するイオンを含む水溶液等とを接触させ、固液分離、必要に応じて純水で洗浄して得ることができる。   In addition, the β-type zeolite of the present invention can be converted to an ion-exchanged β-type zeolite by exchanging part or all of the ion exchange sites as necessary. The ion-exchanged β-type zeolite is made by bringing the organic SDA-containing β-type zeolite or the β-type zeolite after removal of the organic SDA into contact with an aqueous solution containing ions to be introduced, solid-liquid separation, and washing with pure water as necessary. Can be obtained.

本発明のβ型ゼオライトはSiO/Alのモル比が25以上70以下、平均粒径が0.05μm以上0.20μm以下、X線結晶回折(302)面の半値幅(FWHM)が0.25°以上0.90°以下のβ型ゼオライトであり、触媒として用いた場合において、高活性、高選択性、高耐コーキング性、且つ高水熱耐久性が期待できる。 The β-type zeolite of the present invention has a SiO 2 / Al 2 O 3 molar ratio of 25 to 70, an average particle size of 0.05 μm to 0.20 μm, and an X-ray crystal diffraction (302) plane half-width (FWHM). Is a β-type zeolite of 0.25 ° to 0.90 °, and when used as a catalyst, high activity, high selectivity, high coking resistance and high hydrothermal durability can be expected.

実施例1で調製したβ型ゼオライトの粉末X線パターンを示す図である。1 is a diagram showing a powder X-ray pattern of β-type zeolite prepared in Example 1. FIG. 実施例1で調製したβ型ゼオライトのSEM写真を示す図である。1 is a view showing an SEM photograph of β-type zeolite prepared in Example 1. FIG. 比較例1で調製したβ型ゼオライトの粉末X線パターンを示す図である。3 is a diagram showing a powder X-ray pattern of β-type zeolite prepared in Comparative Example 1. FIG. 比較例1で調製したβ型ゼオライトのSEM写真を示す図である。4 is a view showing an SEM photograph of β-type zeolite prepared in Comparative Example 1. FIG.

以下の実施例により本発明を具体的に説明するが、本発明はこれら実施例に限定されるものではない。尚、実施例、比較例における各測定方法は、以下の通りである。   The present invention will be specifically described by the following examples, but the present invention is not limited to these examples. In addition, each measuring method in an Example and a comparative example is as follows.

(粉末X線回折)
マックサイエンス製MXP3システムを用いて、X線源CuKα、加速電圧40kV、管電流30mA、操作速度2θ=0.02°/sec、サンプリング間隔0.02sec、発散スリット1deg、散乱スリット1deg、受光スリット0.3mm、モノクロメーター使用、ゴニオ半径185mmで評価した。
(Powder X-ray diffraction)
Using the MXP3 system made by Mac Science, X-ray source CuKα, acceleration voltage 40 kV, tube current 30 mA, operation speed 2θ = 0.02 ° / sec, sampling interval 0.02 sec, divergence slit 1 deg, scattering slit 1 deg, light receiving slit 0 .3 mm, using a monochromator, evaluated with a gonio radius of 185 mm.

((302)面の半値幅(FWHM)の測定)
粉末X線回折測定により得られたプロファイルについて、MXP3システム付属プログラムを用いて、2θ=22〜24.5°において、2つのピーク(21.6°±0.5°と22.4°±0.5°)に分離した。その後、22.4°の分離ピークに対して更にKα1とKα2に分離し、分離後のKα1の半値幅を(302)面の半値幅(FWHM)とした。
(Measurement of half-width (FWHM) of (302) plane)
For the profile obtained by powder X-ray diffraction measurement, two peaks (21.6 ° ± 0.5 ° and 22.4 ° ± 0 at 2θ = 22 to 24.5 ° using the program attached to the MXP3 system were used. .5 °). Thereafter, the separation peak at 22.4 ° was further separated into Kα1 and Kα2, and the half width of Kα1 after separation was defined as the half width (FWHM) of the (302) plane.

(Si,Al,Na分析)
硝酸及びフッ酸の混合水溶液に測定用試料を溶解させ、パーキンエルマー製ICP発光分光分析Optima3000で評価した。
(Si, Al, Na analysis)
A sample for measurement was dissolved in a mixed aqueous solution of nitric acid and hydrofluoric acid, and evaluated by ICP emission spectroscopic analysis Optima 3000 manufactured by PerkinElmer.

(SEM観察)
日本電子製のJSM−6390LVを用いた。
(SEM observation)
JSM-6390LV manufactured by JEOL Ltd. was used.

(平均粒径)
試料をSEM観察し、得られたSEM写真から任意の10個以上の粒子を選択した。選択した粒子の径を測定し、これを平均して平均粒径とした。
(Average particle size)
The sample was observed by SEM, and arbitrary 10 or more particles were selected from the obtained SEM photograph. The diameter of the selected particles was measured and averaged to obtain the average particle diameter.

(炭素量)
パーキンエルマー社製のCHN元素分析装置2400IIを用いた。
(Carbon content)
A CHN elemental analyzer 2400II manufactured by PerkinElmer was used.

(Si収率)
β型ゼオライト合成条件において、溶解度の小さなAlを0と仮定し、仕込のSi/Al比と生成物(β型ゼオライト)のSi/Alの比から算出した。
(Si yield)
In beta zeolite synthesis conditions, the solubility of small Al assuming 0 was calculated from the ratio of Si / Al 2 of the Si / Al 2 ratio of product feed (beta type zeolite).

実施例1
Si/Al=48のアモルファスのシリカアルミナゲル、35重量%水酸化テトラエチルアンモニウム(TEAOH)溶液、48%水酸化ナトリウム溶液、純水を混合し、原料混合液を調製した。
Example 1
An amorphous silica alumina gel of Si / Al 2 = 48, a 35 wt% tetraethylammonium hydroxide (TEAOH) solution, a 48% sodium hydroxide solution, and pure water were mixed to prepare a raw material mixture.

溶解したSiとAl、及び最頻粒子径が0.01〜0.2μmのピークの粒子を含むテトラエチルアンモニウムカチオン液5重量%(混合液中のSiとAlの総量に対するテトラエチルアンモニウムカチオン液中のSiとAlの総量の割合)を、原料混合液に添加・混合し、反応液とした。   5% by weight of tetraethylammonium cation solution containing dissolved Si and Al and particles with a peak of mode diameter of 0.01 to 0.2 μm (Si in tetraethylammonium cation solution relative to the total amount of Si and Al in the mixture) And the ratio of the total amount of Al) were added to and mixed with the raw material mixture to obtain a reaction solution.

なお、テトラエチルアンモニウムカチオン液の組成は、モル比で、Si/Al比=50、HO/Si比=6.5、TEAOH/Si比=0.40であり、透明性の高い粘調で褐色の溶液である。 The tetraethylammonium cation solution has a molar ratio of Si / Al 2 ratio = 50, H 2 O / Si ratio = 6.5, TEAOH / Si ratio = 0.40, and a highly transparent viscosity. It is a brown solution.

反応液の仕込モル比は、Si/Al比=48、HO/Si比=10、TEA/Si比=0.13、Na/Si比=0.10、OH/Si比=0.23であった。 The charged molar ratio of the reaction solution was as follows: Si / Al 2 ratio = 48, H 2 O / Si ratio = 10, TEA / Si ratio = 0.13, Na / Si ratio = 0.10, OH / Si ratio = 0. 23.

反応液をオートクレーブ中、150℃で50時間水熱処理した後、室温まで放熱して結晶化した。結晶化後の反応液は、純水洗浄、10%塩化アンモニウム水溶液との接触、純水洗浄、110℃乾燥し、更に600℃、空気中で焼成した。   The reaction solution was hydrothermally treated in an autoclave at 150 ° C. for 50 hours, and then crystallized by releasing heat to room temperature. The reaction solution after crystallization was washed with pure water, contacted with a 10% aqueous ammonium chloride solution, washed with pure water, dried at 110 ° C., and further fired at 600 ° C. in air.

得られた焼成粉末のSEM写真を図1に、粉末X線回折パターンを図2に示す。   A SEM photograph of the obtained fired powder is shown in FIG. 1, and a powder X-ray diffraction pattern is shown in FIG.

実施例2
実施例1と同様な方法で原料混合液を調製し、実施例1と同様なテトラエチルアンモニウムカチオン液を15重量%添加・混合し、反応液とした。
Example 2
A raw material mixture was prepared in the same manner as in Example 1, and a tetraethylammonium cation solution similar to that in Example 1 was added and mixed at 15% by weight to obtain a reaction solution.

反応液の仕込モル比は、Si/Al比=48、HO/Si比=11、TEA/Si比=0.17、Na/Si比=0.10、OH/Si比=0.27であった。 The charged molar ratio of the reaction solution was as follows: Si / Al 2 ratio = 48, H 2 O / Si ratio = 11, TEA / Si ratio = 0.17, Na / Si ratio = 0.10, OH / Si ratio = 0. 27.

反応液をオートクレーブ中、150℃で50時間水熱処理し、室温まで放熱して結晶化した。結晶化後の反応液は、純水洗浄、10%塩化アンモニウム水溶液との接触、純水洗浄、110℃乾燥し、更に600℃、空気中で焼成した。   The reaction solution was hydrothermally treated in an autoclave at 150 ° C. for 50 hours, and crystallized by releasing heat to room temperature. The reaction solution after crystallization was washed with pure water, contacted with a 10% aqueous ammonium chloride solution, washed with pure water, dried at 110 ° C., and further fired at 600 ° C. in air.

実施例3
実施例1と同様な方法で原料混合液を調製し、実施例1と同様なテトラエチルアンモニウムカチオン液を15重量%添加・混合し、反応液とした。
Example 3
A raw material mixture was prepared in the same manner as in Example 1, and a tetraethylammonium cation solution similar to that in Example 1 was added and mixed at 15% by weight to obtain a reaction solution.

反応液の仕込モル比は、Si/Al比=48、HO/Si比=10、TEA/Si比=0.11、Na/Si比=0.10、OH/Si比=0.21であった。 The charged molar ratio of the reaction solution was as follows: Si / Al 2 ratio = 48, H 2 O / Si ratio = 10, TEA / Si ratio = 0.11, Na / Si ratio = 0.10, OH / Si ratio = 0. 21.

反応液をオートクレーブ中、150℃で50時間水熱処理し、室温まで放熱して結晶化した。結晶化後の反応液は、純水洗浄、10%塩化アンモニウム水溶液との接触、純水洗浄、110℃乾燥し、更に600℃で空気中焼成した。   The reaction solution was hydrothermally treated in an autoclave at 150 ° C. for 50 hours, and crystallized by releasing heat to room temperature. The reaction solution after crystallization was washed with pure water, contacted with a 10% aqueous ammonium chloride solution, washed with pure water, dried at 110 ° C., and fired at 600 ° C. in the air.

参考
東ソーシリカ製沈降法シリカ、住友化学製水酸化アルミニウム、35重量%水酸化テトラエチルアンモニウム溶液、48%水酸化ナトリウム溶液、純水を混合し、原料混合液を調製した。
Reference example 1
Tosoh silica-prepared silica, Sumitomo Chemical aluminum hydroxide, 35 wt% tetraethylammonium hydroxide solution, 48% sodium hydroxide solution, and pure water were mixed to prepare a raw material mixture.

原料混合液に、実施例1と同様なテトラエチルアンモニウムカチオン液を5重量%添加・混合し、反応液とした。   The same tetraethylammonium cation solution as in Example 1 was added to and mixed with the raw material mixture to prepare a reaction solution.

反応液の仕込モル比は、Si/Al比=28、HO/Si比=10、TEA/Si比=0.13、Na/Si比=0.10、OH/Si比=0.23であった。 The charged molar ratio of the reaction solution was as follows: Si / Al 2 ratio = 28, H 2 O / Si ratio = 10, TEA / Si ratio = 0.13, Na / Si ratio = 0.10, OH / Si ratio = 0. 23.

反応液をオートクレーブ中、150℃で50時間水熱処理し、室温まで放熱して結晶化した。結晶化後の反応液は、純水洗浄、10%塩化アンモニウム水溶液との接触、純水洗浄、110℃乾燥し、更に600℃で空気中焼成した。   The reaction solution was hydrothermally treated in an autoclave at 150 ° C. for 50 hours, and crystallized by releasing heat to room temperature. The reaction solution after crystallization was washed with pure water, contacted with a 10% aqueous ammonium chloride solution, washed with pure water, dried at 110 ° C., and fired at 600 ° C. in the air.

参考
参考と同様な方法で原料混合液を調製し、実施例1と同様なテトラエチルアンモニウムカチオン液を5重量%添加・混合し、反応液とした。
Reference example 2
A raw material mixture was prepared in the same manner as in Reference Example 1, and 5% by weight of the same tetraethylammonium cation solution as in Example 1 was added and mixed to obtain a reaction solution.

反応液の仕込モル比は、Si/Al比=38、HO/Si比=10、TEA/Si比=0.11、Na/Si比=0.10、OH/Si比=0.21であった。 The charged molar ratio of the reaction solution was as follows: Si / Al 2 ratio = 38, H 2 O / Si ratio = 10, TEA / Si ratio = 0.11, Na / Si ratio = 0.10, OH / Si ratio = 0. 21.

反応液をオートクレーブ中、150℃で50時間水熱処理し、室温まで放熱した。結晶化後の反応液は、純水洗浄、10%塩化アンモニウム水溶液との接触、純水洗浄、110℃乾燥し、更に600℃、空気中で焼成した。   The reaction solution was hydrothermally treated in an autoclave at 150 ° C. for 50 hours, and released to room temperature. The reaction solution after crystallization was washed with pure water, contacted with a 10% aqueous ammonium chloride solution, washed with pure water, dried at 110 ° C., and further fired at 600 ° C. in air.

実施例
Si/Al比=59アモルファスのシリカアルミナゲル、35重量%水酸化テトラエチルアンモニウム(TEAOH)溶液、48%水酸化ナトリウム溶液、純水を混合し、原料混合液を調製した。原料混合液に、実施例1と同様なテトラエチルアンモニウムカチオン液を5重量%添加・混合し、反応液とした。
Example 4
Si / Al 2 ratio = 59 amorphous silica alumina gel, 35 wt% tetraethylammonium hydroxide (TEAOH) solution, 48% sodium hydroxide solution, and pure water were mixed to prepare a raw material mixture. The same tetraethylammonium cation solution as in Example 1 was added to and mixed with the raw material mixture to prepare a reaction solution.

反応液の仕込モル比は、Si/Al比=59、HO/Si比=10、TEA/Si比=0.13、Na/Si比=0.10、OH/Si比=0.23であった。 The charged molar ratio of the reaction solution was as follows: Si / Al 2 ratio = 59, H 2 O / Si ratio = 10, TEA / Si ratio = 0.13, Na / Si ratio = 0.10, OH / Si ratio = 0. 23.

反応液をオートクレーブ中、150℃で120時間水熱処理し、室温まで放熱して結晶化した。結晶化後の反応液は、純水洗浄、10%塩化アンモニウム水溶液との接触、純水洗浄、110℃乾燥し、更に600℃、空気中で焼成した。   The reaction solution was hydrothermally treated in an autoclave at 150 ° C. for 120 hours, and crystallized by releasing heat to room temperature. The reaction solution after crystallization was washed with pure water, contacted with a 10% aqueous ammonium chloride solution, washed with pure water, dried at 110 ° C., and further fired at 600 ° C. in air.

比較例1
Si/Al比=48のアモルファスのシリカアルミナゲル、35重量%水酸化テトラエチルアンモニウム(TEAOH)溶液、48%水酸化ナトリウム溶液、純水を混合し、原料混合液を調製した。
Comparative Example 1
An amorphous silica alumina gel having a Si / Al 2 ratio = 48, a 35 wt% tetraethylammonium hydroxide (TEAOH) solution, a 48% sodium hydroxide solution, and pure water were mixed to prepare a raw material mixture.

原料混合液に、東ソー製のβ型ゼオライトHSZ−940NHAを1重量%添加・混合し、反応液とした。   1 wt% of β-type zeolite HSZ-940NHA manufactured by Tosoh was added to and mixed with the raw material mixture to prepare a reaction solution.

反応液の仕込モル比は、Si/Al比=48、HO/Si比=10、TEA/Si比=0.33、Na/Si比=0.10、OH/Si比=0.43であった。 The charged molar ratio of the reaction solution was as follows: Si / Al 2 ratio = 48, H 2 O / Si ratio = 10, TEA / Si ratio = 0.33, Na / Si ratio = 0.10, OH / Si ratio = 0. 43.

反応液をオートクレーブ中、150℃で50時間水熱処理し、室温まで放熱して結晶化した。結晶化後の反応液は、純水洗浄、10%塩化アンモニウム水溶液との接触、純水洗浄、110℃乾燥し、更に600℃、空気中で焼成した。   The reaction solution was hydrothermally treated in an autoclave at 150 ° C. for 50 hours, and crystallized by releasing heat to room temperature. The reaction solution after crystallization was washed with pure water, contacted with a 10% aqueous ammonium chloride solution, washed with pure water, dried at 110 ° C., and further fired at 600 ° C. in air.

得られた焼成粉末のSEM写真を図3に、粉末X線回折パターンを図4に示す。   The SEM photograph of the obtained fired powder is shown in FIG. 3, and the powder X-ray diffraction pattern is shown in FIG.

比較例2
Si/Al比=59のアモルファスのシリカアルミナゲルを用いて、反応液の仕込モル比を、Si/Al比=59、HO/Si比=11、TEA/Si比=0.68、Na/Si比=0.10、OH/Si比=0.78とした以外は実施例1と同様の処理を行った。
Comparative Example 2
Using amorphous silica alumina gel with Si / Al 2 ratio = 59, the reaction molar ratio of the reaction solution was Si / Al 2 ratio = 59, H 2 O / Si ratio = 11, TEA / Si ratio = 0.68. The same treatment as in Example 1 was performed except that the Na / Si ratio was 0.10 and the OH / Si ratio was 0.78.

表1に実施例1〜参考例1及び2、比較例1及び2の結晶化条件、および焼成による有機SDA除去後の各種物性を表1に示した。 Table 1 shows the crystallization conditions of Examples 1 to 4 , Reference Examples 1 and 2, and Comparative Examples 1 and 2, and various physical properties after removal of organic SDA by firing.

Figure 0005760435
Figure 0005760435

この表から明らかな様に、OH/Si比が0.3以下の実施例1〜では、得られたβ型ゼオライトのX線結晶回折(302)面の半値幅(FWHM)が0.25°以上0.90°以下範囲に入るのに対して、OH/Si比が0.3超える条件で結晶化された比較例1及び2では、X線結晶回折(302)面の半値幅(FWHM)が本発明の範囲(0.25°以上0.90°以下)の範囲外となる。 As is apparent from this table, in Examples 1 to 4 having an OH / Si ratio of 0.3 or less, the half width (FWHM) of the X-ray crystal diffraction (302) plane of the obtained β-type zeolite is 0.25. In Comparative Examples 1 and 2 crystallized under the condition that the OH / Si ratio exceeds 0.3 while the temperature falls within the range of 0 ° to 0.90 °, the full width at half maximum (FWHM) of the X-ray crystal diffraction (302) plane ) Is outside the range of the present invention (0.25 ° to 0.90 °).

また、OH/Si比が0.3を超える条件で結晶化された比較例1及び2では、β型ゼオライトの収率が低いのに対して、OH/Si比が0.3以下の条件で結晶化された実施例1〜では、β型ゼオライトの収率が高く、工業的にも有利である。
Further, in Comparative Examples 1 and 2 crystallized under the condition where the OH / Si ratio exceeds 0.3, the yield of β-type zeolite is low, whereas the OH / Si ratio is 0.3 or less. In the crystallized Examples 1 to 4 , the yield of β-type zeolite is high, which is industrially advantageous.

本発明のβ型ゼオライトは、高活性、高選択性、高耐コーキング性、且つ高水熱耐久性が要求される触媒および触媒基材などとして利用できる。   The β-type zeolite of the present invention can be used as a catalyst and a catalyst base material that are required to have high activity, high selectivity, high coking resistance, and high hydrothermal durability.

Claims (3)

SiO/Alのモル比が40以上70以下、平均粒径が0.05μm以上0.20μm以下、炭素量が0.3重量%以下、且つ、CuKα線を線源とするX線結晶回折(302)面の半値幅(FWHM)が0.25°以上0.90°以下のβ型ゼオライト。 X-rays having a SiO 2 / Al 2 O 3 molar ratio of 40 or more and 70 or less, an average particle size of 0.05 μm or more and 0.20 μm or less, a carbon content of 0.3% by weight or less, and CuKα rays as a radiation source Β-type zeolite having a half-width (FWHM) of crystal diffraction (302) plane of 0.25 ° or more and 0.90 ° or less. 少なくともSi源、Al源、有機構造指向材を含んだ混合液と、溶解したSiとAl、及び最頻粒子径が0.01〜0.2μmのピークの粒子を含むテトラエチルアンモニウムカチオン液とを混合した反応液を水熱処理する請求項1に記載のβ型ゼオライトの製造方法。   Mixing a mixture containing at least Si source, Al source and organic structure directing material, dissolved Si and Al, and tetraethylammonium cation solution containing particles with a peak of mode diameter of 0.01 to 0.2 μm The method for producing β-type zeolite according to claim 1, wherein the reaction solution is hydrothermally treated. 反応液中のOH/Siモル比が0.3以下であることを特徴とする請求項2に記載の製造方法。   The production method according to claim 2, wherein the molar ratio of OH / Si in the reaction solution is 0.3 or less.
JP2010291320A 2010-12-27 2010-12-27 Microcrystalline and highly crystalline β-type zeolite and method for producing the same Active JP5760435B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010291320A JP5760435B2 (en) 2010-12-27 2010-12-27 Microcrystalline and highly crystalline β-type zeolite and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010291320A JP5760435B2 (en) 2010-12-27 2010-12-27 Microcrystalline and highly crystalline β-type zeolite and method for producing the same

Publications (2)

Publication Number Publication Date
JP2012136409A JP2012136409A (en) 2012-07-19
JP5760435B2 true JP5760435B2 (en) 2015-08-12

Family

ID=46674169

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010291320A Active JP5760435B2 (en) 2010-12-27 2010-12-27 Microcrystalline and highly crystalline β-type zeolite and method for producing the same

Country Status (1)

Country Link
JP (1) JP5760435B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103121834B (en) * 2012-12-12 2015-05-20 上海电气钠硫储能技术有限公司 Beta''-aluminum oxide solid electrolyte ceramic and preparation method thereof
US11291979B2 (en) * 2017-12-14 2022-04-05 Tosoh Corporation β-zeolite and production method thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8432793D0 (en) * 1984-12-31 1985-02-06 Exxon Research Engineering Co Zeolite beta preparation
JP2001114511A (en) * 1999-10-18 2001-04-24 Masahiko Matsukata Beta-zeolite and method for producing the same
JP5082361B2 (en) * 2006-09-27 2012-11-28 東ソー株式会社 Β-type zeolite for SCR catalyst and method for purifying nitrogen oxides using the same
JP2010030800A (en) * 2008-07-25 2010-02-12 Tosoh Corp beta-ZEOLITE HAVING LARGE CRYSTALLITE
JP5549839B2 (en) * 2008-08-19 2014-07-16 東ソー株式会社 High heat-resistant β-type zeolite and SCR catalyst using the same
JP5594121B2 (en) * 2009-12-22 2014-09-24 東ソー株式会社 Novel metallosilicate and nitrogen oxide purification catalyst
JP5824805B2 (en) * 2010-12-27 2015-12-02 東ソー株式会社 Colloidal solution for producing β-type zeolite and method for producing β-type zeolite using the same

Also Published As

Publication number Publication date
JP2012136409A (en) 2012-07-19

Similar Documents

Publication Publication Date Title
US10035141B2 (en) AEI zeolite containing phosphorus and production method therefor
KR101697804B1 (en) Zeolite and method for producing same
EP2837596B1 (en) Beta zeolite and method for producing same
KR20110106854A (en) Chabazite-type zeolite and process for production of same
WO2017003627A1 (en) Synthesis of aluminosilicate zeolite ssz-98
JP6702759B2 (en) AEI-type zeolite containing titanium and method for producing the same
JP5810967B2 (en) Microcrystalline chabazite-type zeolite, method for producing the same, and use thereof
US10751705B2 (en) Chabazite zeolite with high hydrothermal resistance and method for producing same
JP5760435B2 (en) Microcrystalline and highly crystalline β-type zeolite and method for producing the same
JP2020066564A (en) Rho type zeolite and manufacturing method therefor
JP6108411B2 (en) Method for producing MAZ type zeolite
JP6058433B2 (en) Hydrocarbon reformer trap material and hydrocarbon removal method
TWI797384B (en) Rho zeolites and method of making the same
JP2023551654A (en) Synthesis of chabazite zeolite using a combination of organic templates
JP5609620B2 (en) New metallosilicate
CN109311685B (en) Process for producing beta-zeolite
KR20210047306A (en) Method for producing AEI zeolite with a high silica to alumina ratio (SAR)
WO2017213022A1 (en) Chabazite zeolite with high hydrothermal resistance and method for producing same
JP6391986B2 (en) Beta-type zeolite and method for producing the same
WO2023149439A1 (en) Novel yfi-type zeolite
JP2017178745A (en) Zsm-5 type zeolite having almond shape and manufacturing method therefor
CN116262622A (en) Nanoscale high-silicon Y molecular sieve, and preparation method and application thereof
CN116096479A (en) CHA type zeolite and preparation method thereof
KR20200119273A (en) Method for producing a zeolite material containing Ti and having a skeletal body type CHA
WO2021245491A1 (en) Synthesis of szr framework type molecular sieves

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140624

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150223

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150512

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150525

R151 Written notification of patent or utility model registration

Ref document number: 5760435

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151