WO2016185946A1 - ネットワーク装置及び基地局 - Google Patents

ネットワーク装置及び基地局 Download PDF

Info

Publication number
WO2016185946A1
WO2016185946A1 PCT/JP2016/063890 JP2016063890W WO2016185946A1 WO 2016185946 A1 WO2016185946 A1 WO 2016185946A1 JP 2016063890 W JP2016063890 W JP 2016063890W WO 2016185946 A1 WO2016185946 A1 WO 2016185946A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
henb
control unit
information
request message
Prior art date
Application number
PCT/JP2016/063890
Other languages
English (en)
French (fr)
Inventor
勝裕 三井
真人 藤代
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to JP2017519133A priority Critical patent/JP6971148B2/ja
Priority to EP16796340.4A priority patent/EP3297315A4/en
Priority to US15/573,102 priority patent/US10524253B2/en
Publication of WO2016185946A1 publication Critical patent/WO2016185946A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/27Control channels or signalling for resource management between access points
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/32Hierarchical cell structures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • H04W40/12Communication route or path selection, e.g. power-based or shortest path routing based on transmission quality or channel quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/22Processing or transfer of terminal data, e.g. status or physical capabilities
    • H04W8/24Transfer of terminal data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/20Interfaces between hierarchically similar devices between access points
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • H04W88/10Access point devices adapted for operation in multiple networks, e.g. multi-mode access points

Definitions

  • the present invention relates to a network device and a base station in a mobile communication system that supports a double connection method.
  • the user terminal establishes connections with multiple cells simultaneously.
  • each cell is managed by a different base station.
  • only one base station among the plurality of base stations that establish a connection with the user terminal establishes an RRC connection with the user terminal.
  • master base station among the plurality of base stations that establish a connection with the user terminal establishes an RRC connection with the user terminal.
  • secondary base stations among the plurality of base stations provide additional radio resources to the user terminal without establishing an RRC connection with the user terminal.
  • the network device is used in a mobile communication system capable of performing communication by a double connection method.
  • the mobile communication system includes a first base station that establishes an RRC connection with a user terminal, a second base station that can provide additional radio resources to the user terminal, the first base station, and the second base station.
  • the network device includes a control unit.
  • the control unit collects operation information indicating operation states of a plurality of the second base stations, and a radio quality measurement result related to the second base station reported by the user terminal to the first base station.
  • FIG. 1 is a configuration diagram of an LTE system according to a first embodiment. It is a block diagram of UE which concerns on 1st Embodiment. It is a block diagram of eNB which concerns on 1st Embodiment. It is a block diagram of HeNB which concerns on 1st Embodiment.
  • FIG. 3 is a block diagram of X2-GW according to the first embodiment. It is a protocol stack figure concerning a 1st embodiment. It is a figure for demonstrating the outline
  • HeNB home base station
  • the operation method of the double connection method when using the HeNB as the secondary base station is not yet defined.
  • the embodiment provides a network device and a base station that can execute a smooth process in the case of adding a home base station as a secondary base station in a double connection method.
  • the network device is used in a mobile communication system capable of executing communication by a double connection method.
  • the mobile communication system includes a first base station that establishes an RRC connection with a user terminal, a second base station that can provide additional radio resources to the user terminal, the first base station, and the second base station.
  • the network device includes a control unit.
  • the control unit collects operation information indicating operation states of a plurality of the second base stations, and a radio quality measurement result related to the second base station reported by the user terminal to the first base station.
  • control unit prioritizes each of the second base stations corresponding to the collected operation information if the operation information of the plurality of second base stations can be collected in the first process. An order is set, and the third process is executed from the second base station having a higher priority.
  • control unit continues the third process based on the priority order until receiving the acknowledgment message from the second base station.
  • the control unit may stop the third process when receiving the acknowledgment message.
  • the control unit when the control unit determines a plurality of the second base stations in the third process, the control unit simultaneously transmits the determined second base stations to the plurality of second base stations in the fourth process. To the second base station addition request message.
  • the control unit when the control unit acquires the acknowledgment message from the plurality of second base stations, based on the collected operation information, the control unit includes the plurality of second base stations. The second base station to which the acknowledgment message is to be sent to the first base station is selected. The control unit sends the acknowledgment message for the selected second base station to the first base station.
  • control unit further stores the operation information of the second base station collected in the first process, and further executes a process of sending the operation information to the first base station.
  • the operation information is information on a load of the second base station or information indicating an operation mode of the second base station.
  • the information regarding the load of the second base station includes the number of user terminals that can be accommodated by the second base station, and the number of user terminals currently connected to the second base station. And at least one piece of information among the number of radio resource blocks used in the second base station and the hardware load level of the second base station.
  • the second base station is a home base station
  • the information indicating the operation mode of the second base station is that the operation mode of the second base station is a hybrid mode or a closed mode.
  • the open mode is a hybrid mode or a closed mode.
  • the first base station is used in a mobile communication system capable of performing communication by a double connection method.
  • the mobile communication system includes: a first base station that establishes an RRC connection with a user terminal; a second base station that can provide additional radio resources to the user terminal; the first base station and the second base And the network device connected to each of the stations.
  • the first base station includes a control unit. When the control unit obtains, from the user terminal, a first process for obtaining a radio quality measurement result for the second base station, and a radio quality measurement result for the second base station, Second processing for transmitting a second base station addition request message including the measurement result to the network device, and receiving an acknowledgment message of the second base station for the second base station addition request message from the network device.
  • a third process and a fourth process for transmitting configuration information for the double connection scheme using the second base station that is a transmission source of the acknowledgment message to the user terminal are executed. .
  • the control unit of the first base station acquires operation information indicating an operation state of the plurality of second base stations via the network device, and acquires the acquired operation information and the measurement result. Based on this, when the first base station sends a second base station addition request message, the priority order of the second base station to which the second base station addition request message is sent is set.
  • the control unit of the first base station acquires operation information indicating an operation state of the plurality of second base stations via the network device.
  • the control unit determines whether to transmit the second base station addition request message to the network device based on the acquired operation information and the measurement result.
  • the control unit executes the second process when it is determined to transmit the second base station request message.
  • the operation information is information on a load of the second base station or information indicating an operation mode of the second base station.
  • the information regarding the load of the second base station includes the number of user terminals currently connected to the second base station, and the number of user terminals that can be accommodated by the second base station. And at least one piece of information among the number of radio resource blocks used in the second base station and the hardware load level of the second base station.
  • the second base station is a home base station
  • the information indicating the operation mode of the second base station is that the operation mode of the second base station is a hybrid mode or a closed mode.
  • the open mode is a hybrid mode or a closed mode.
  • the control unit of the first base station obtains a CSG (Closed Subscriber Group) cell identifier from the user terminal together with the measurement result, and in the second process, the CSG If the cell identifier is included in the CSG cell identifier list acquired in advance from the network device, a process of transmitting the second base station addition request message to the network device is executed.
  • CSG Cell Subscriber Group
  • the 2nd base station concerning one embodiment is used in a mobile communication system which can perform communication by a double connection method.
  • the mobile communication system includes a first base station that establishes an RRC connection with a user terminal, the second base station that can provide additional radio resources to the user terminal, the first base station, and the second base And the network device connected to each of the stations.
  • the second base station includes a control unit.
  • the control unit transmits first operation information indicating an operation state of the second base station to the network device, and transmits the operation information, and then transmits a second base station addition request message from the network device. And a third process for transmitting an acknowledgment message to the second base station addition request message to the network device.
  • the operation information is information on a load of the second base station or information indicating an operation mode of the second base station.
  • the information on the load of the second base station includes the number of user terminals that the second base station can accommodate, the number of user terminals currently connected to the second base station, and the second It is at least one piece of information among the number of radio resource blocks used in the base station and the hardware load level of the second base station.
  • the second base station is a home base station
  • the information indicating the operation mode of the second base station indicates that the operation mode of the second base station is a hybrid mode, a closed mode, or an open mode. It indicates which mode is selected.
  • FIG. 1 is a configuration diagram of an LTE system according to the first embodiment.
  • the LTE system according to the first embodiment includes a UE (User Equipment) 100, an E-UTRAN (Evolved Universal Terrestrial Radio Access Network) 10, and an EPC (Evolved Packet) 20.
  • UE User Equipment
  • E-UTRAN Evolved Universal Terrestrial Radio Access Network
  • EPC Evolved Packet
  • the UE 100 corresponds to a user terminal.
  • the UE 100 is a mobile communication device, and performs wireless communication with a connection destination cell (serving cell).
  • UE100 is provided with the function to perform radio
  • the E-UTRAN 10 corresponds to a radio access network.
  • the E-UTRAN 10 includes an eNB 200 (evolved Node-B), a HeNB 400, an X2-GW 500, and a HeNB-GW 600.
  • the configurations of the HeNB 400 and the X2-GW 500 will be described later.
  • ENB 200 corresponds to, for example, a macro base station.
  • the macro base station is a large-scale fixed wireless communication apparatus installed by an operator.
  • the eNB 200 will be described as a macro base station (MeNB).
  • the eNB 200 may be a micro base station, a pico base station, or the like that is a smaller type than the macro base station.
  • the eNB 200 is connected to each other via the X2 interface.
  • eNB200 is connected to HeNB (Home eNB) 400 mentioned later via X2 interface. The configuration of the eNB 200 will be described later.
  • the eNB 200 manages one or a plurality of cells and performs radio communication with the UE 100 that has established a connection with the own cell.
  • the eNB 200 has a radio resource management (RRM) function, a user data routing function, a measurement control function for mobility control / scheduling, and the like.
  • RRM radio resource management
  • Cell is used as a term indicating a minimum unit of a radio communication area, and is also used as a term indicating a function of performing radio communication with the UE 100.
  • the EPC 20 corresponds to a core network.
  • the E-UTRAN 10 and the EPC 20 constitute an LTE system network (LTE network).
  • the EPC 20 includes an MME (Mobility Management Entity) / S-GW (Serving-Gateway) 300.
  • the MME performs various mobility controls for the UE 100.
  • the S-GW controls user data transfer.
  • the MME / S-GW 300 is connected to the eNB 200, the HeNB 400, and the like via the S1 interface.
  • FIG. 2 is a block diagram of the UE 100.
  • the UE 100 includes an antenna 101, a radio transceiver 110, a user interface 120, a GNSS (Global Navigation Satellite System) receiver 130, a battery 140, a memory 150, and a processor 160.
  • the memory 150 corresponds to a storage unit
  • the processor 160 corresponds to a control unit (controller).
  • the UE 100 may not have the GNSS receiver 130.
  • the memory 150 may be integrated with the processor 160, and this set (that is, a chip set) may be used as a processor 160 '(controller) that constitutes a control unit.
  • the controller executes various processes and various communication protocols described later.
  • the antenna 101 and the wireless transceiver 110 are used for transmitting and receiving wireless signals.
  • the radio transceiver 110 converts the baseband signal (transmission signal) output from the processor 160 into a radio signal and transmits it from the antenna 101. Further, the radio transceiver 110 converts a radio signal received by the antenna 101 into a baseband signal (received signal) and outputs the baseband signal to the processor 160.
  • the user interface 120 is an interface with a user who owns the UE 100, and includes, for example, a display, a microphone, a speaker, and various buttons.
  • the user interface 120 receives an operation from the user and outputs a signal indicating the content of the operation to the processor 160.
  • the GNSS receiver 130 receives a GNSS signal and outputs the received signal to the processor 160 in order to obtain location information indicating the geographical location of the UE 100.
  • the battery 140 stores power to be supplied to each block of the UE 100.
  • the memory 150 stores a program executed by the processor 160 and information used for processing by the processor 160.
  • the memory 150 stores a CSG-ID list (white list) indicating CSG (Closed Subscriber Group) cells to which the UE 100 can be connected.
  • the processor 160 includes a baseband processor that modulates / demodulates and encodes / decodes a baseband signal, and a CPU (Central Processing Unit) that executes programs stored in the memory 150 and performs various processes. .
  • the processor 160 may further include a codec that performs encoding / decoding of an audio / video signal.
  • the processor 160 executes various processes and various communication protocols described later.
  • FIG. 3 is a block diagram of the eNB 200.
  • the eNB 200 includes an antenna 201, a radio transceiver 210, a network interface 220, a memory 230, and a processor 240 (controller).
  • the memory 230 may be integrated with the processor 240, and this set (that is, a chip set) may be used as a processor 240 '(controller) that constitutes a control unit.
  • the antenna 201 and the wireless transceiver 210 are used for transmitting and receiving wireless signals.
  • the radio transceiver 210 converts the baseband signal (transmission signal) output from the processor 240 into a radio signal and transmits it from the antenna 201.
  • the radio transceiver 210 converts a radio signal received by the antenna 201 into a baseband signal (received signal) and outputs the baseband signal to the processor 240.
  • the network interface 220 is connected to the neighboring eNB 200 and HeNB 400 via the X2 interface, and is connected to the MME / S-GW 300 via the S1 interface.
  • the network interface 220 is used for communication performed on the X2 interface and communication performed on the S1 interface.
  • the memory 230 stores a program executed by the processor 240 and information used for processing by the processor 240.
  • the memory 230 stores information provided from the X2-GW 500 described later.
  • the processor 240 includes a baseband processor that performs modulation / demodulation and encoding / decoding of a baseband signal, and a CPU that executes programs stored in the memory 230 and performs various processes.
  • the processor 240 executes various processes and various communication protocols described later.
  • FIG. 4 is a block diagram of the HeNB 400.
  • the HeNB 400 is a small base station used for a narrow range having a radius of several tens of meters.
  • the HeNB 400 may form a CSG cell, a hybrid cell, or an open cell.
  • the HeNB 400 that manages the CSG cell is referred to as a closed mode HeNB.
  • the HeNB 400 that manages the hybrid cell is referred to as a hybrid mode HeNB.
  • the HeNB 400 that manages the open cell is referred to as an open mode HeNB.
  • the HeNB 400 is a small fixed wireless communication apparatus that can be installed indoors.
  • the HeNB 400 forms a specific cell having a narrower coverage than the eNB 200.
  • the specific cell is referred to as a “CSG (Closed Subscriber Group) cell”, a “hybrid cell”, or an “open cell” depending on the set access mode.
  • the CSG cell is a cell that can be accessed only by the UE 100 having the access right (referred to as “member UE”), and broadcasts the CSG-ID.
  • the UE 100 holds a list of CSG-IDs to which it has access rights (referred to as “white list”) in the memory 150, and is based on the white list and the CSG-ID broadcast by the CSG cell. To determine whether there is an access right.
  • the hybrid cell is a cell in which member UEs are handled more favorably than non-member UEs, and broadcasts information indicating that the cells are also released to non-member UEs in addition to CSG-ID.
  • the UE 100 determines whether there is an access right based on the white list and the CSG-ID broadcast by the hybrid cell.
  • the HeNB 400 that manages the hybrid cell may be referred to as a hybrid mode HeNB.
  • An open cell is a cell that is handled equally by the UE 100 regardless of whether it is a member, and does not broadcast a CSG-ID. From the viewpoint of UE 100, an open cell is equivalent to a macro cell.
  • the HeNB 400 includes an antenna 401, a radio transceiver 410, a network interface 420, a memory 430, and a processor 440 (controller).
  • the memory 430 may be integrated with the processor 440, and this set (that is, a chip set) may be used as a processor 440 '(controller) that constitutes a control unit.
  • the antenna 401 and the wireless transmitter / receiver 410 are used for transmitting and receiving wireless signals.
  • the wireless transceiver 410 converts the baseband signal (transmission signal) output from the processor 440 into a wireless signal and transmits it from the antenna 401.
  • the radio transceiver 410 converts a radio signal received by the antenna 401 into a baseband signal (received signal) and outputs the baseband signal to the processor 440.
  • the radio transmission / reception unit forms a CSG cell, a hybrid cell, or an open cell.
  • the network interface 420 performs communication with the MME 300 via the HeNB-GW 600 when the S1 interface via the HeNB-GW 600 is established with the MME / S-GW 300.
  • the network communication unit 420 directly communicates with the MME 300 when the S5 interface that does not pass through the HeNB-GW 600 is established with the MME 300.
  • the network interface 420 communicates with the eNB 200 via the X2 interface.
  • the network interface 420 communicates with the X2-GW 500 via the X2 interface.
  • the memory 430 stores a program executed by the processor 440 and information used for processing by the processor 440.
  • the processor 440 includes a baseband processor that performs modulation / demodulation and encoding / decoding of a baseband signal, and a CPU that executes programs stored in the memory 430 and performs various processes.
  • the processor 440 executes various processes and various communication protocols described later.
  • the HeNB 400 can be connected to only one X2-GW 500.
  • the HeNB 400 is preset with information about the IP address of the X2-GW 500 to which the HeNB is connected.
  • FIG. 5 is a block diagram of the X2-GW 500.
  • X2-GW500 has the function of X2 Proxy server.
  • the X2-GW 500 includes a network interface 510, a memory 520, and a processor 530 (controller).
  • the memory 520 may be integrated with the processor 530, and this set (that is, a chip set) may be a processor 530 '(controller) that constitutes the control unit.
  • the network interface 510 communicates with the eNB 200 and the HeNB 400 via the X2 interface.
  • the memory 520 stores various information used for control by the processor 530.
  • the eNB 200 / HeNB 400 under the management of the X2-GW 500 is registered.
  • the memory 520 stores operation information of the HeNB 400 provided from the HeNB 400 described later.
  • the memory 520 further stores information provided from the eNB 200 described later.
  • the information provided from the eNB 200 corresponds to the content of the measurement report provided from the UE 100 to the eNB 200.
  • the processor 530 controls various functions of the X2-GW 500.
  • the processor 530 executes various processes and various communication protocols described later.
  • the X2-GW 500 does not terminate the X2AP procedure except for the X2AP message transfer procedure, but starts the X2 release procedure and the X2 error display procedure. Note that, when collecting operation information of the HeNB 400 described later, the X2-GW 500 may be defined as being able to start transmission of a Resource Status Request message as in an example illustrated in FIG. 11 described later. In addition, the X2-GW 500 may be configured to execute other processes that the device itself does not terminate.
  • FIG. 6 is a protocol stack diagram of a radio interface in the LTE system. As shown in FIG. 6, the radio interface protocol is divided into the first to third layers of the OSI reference model, and the first layer is a physical (PHY) layer.
  • the second layer includes a MAC (Medium Access Control) layer, an RLC (Radio Link Control) layer, and a PDCP (Packet Data Convergence Protocol) layer.
  • the third layer includes an RRC (Radio Resource Control) layer.
  • RRC Radio Resource Control
  • the physical layer performs encoding / decoding, modulation / demodulation, antenna mapping / demapping, and resource mapping / demapping. Between the physical layer of UE100 and the physical layer of eNB200 (HeNB400), user data and a control signal are transmitted via a physical channel.
  • the MAC layer performs data priority control, retransmission processing by hybrid ARQ (HARQ), and the like.
  • HARQ hybrid ARQ
  • UE100 user data and a control signal are transmitted via a transport channel.
  • the MAC layer of the eNB 200 includes a scheduler for determining (scheduling) an uplink / downlink transport format (transport block size, modulation / coding scheme) and resource blocks allocated to the UE 100.
  • the RLC layer transmits data to the RLC layer on the receiving side using the functions of the MAC layer and the physical layer. Between the RLC layer of the UE 100 and the RLC layer of the eNB 200, user data and control signals are transmitted via a logical channel.
  • the PDCP layer performs header compression / decompression and encryption / decryption.
  • the RRC layer is defined only in the control plane that handles control signals. Control signals (RRC messages) for various settings are transmitted between the RRC layer of the UE 100 and the RRC layer of the eNB 200 (HeNB).
  • the RRC layer controls the logical channel, the transport channel, and the physical channel according to establishment, re-establishment, and release of the radio bearer.
  • RRC connection When there is a connection (RRC connection) between the RRC of the UE 100 and the RRC of the eNB 200, the UE 100 is in the RRC connected state, and otherwise, the UE 100 is in the RRC idle state.
  • the NAS (Non-Access Stratum) layer located above the RRC layer performs session management and mobility management.
  • the physical layer or the RRC layer constitutes an AS (Access Stratum) entity 100A.
  • the NAS layer constitutes the NAS entity 100B.
  • the functions of the AS entity 100A and the NAS entity 100B are executed by the processor 160 (control unit). That is, the processor 160 (control unit) includes the AS entity 100A and the NAS entity 100B.
  • the AS entity 100A performs cell selection / reselection, and the NAS entity 100B performs PLMN selection.
  • the LTE system supports a double connection method.
  • the UE 100 establishes connections with a plurality of eNBs 200 at the same time.
  • a part of the plurality of eNBs 200 may be the HeNB 400. Since radio resources are allocated to the UE 100 from each eNB 200 (HeNB 400), an improvement in throughput is expected.
  • the double connection scheme may be referred to as inter-eNB carrier aggregation (inter-eNB CA).
  • FIG. 7 is a diagram for explaining the outline of the double connection method.
  • the double connection method only the master eNB (MeNB) 200M among the plurality of eNBs 200 that establish a connection with the UE 100 establishes an RRC connection with the UE 100.
  • the secondary eNB (SeNB) 200S (400S) among the plurality of eNBs 200 provides the UE 100 with additional radio resources without establishing an RRC connection with the UE 100.
  • the MeNB 200M establishes not only the user plane connection but also the control plane connection with the UE 100.
  • SeNB200S (400S) establishes a user plane connection with UE100, without establishing a control plane connection with UE100.
  • An Xn interface is set between the MeNB 200M and the SeNB 200S (400S).
  • the Xn interface is an X2 interface or a new interface.
  • the UE 100 can perform carrier aggregation using N cells managed by the MeNB 200M and M cells managed by the SeNB 200S (400S) at the same time.
  • the maximum number of serving cells of the UE 100 that is, the maximum number of (N + M) is, for example, 5.
  • the group consisting of N cells managed by the MeNB 200M is referred to as a master cell group (MCG).
  • MCG master cell group
  • SCG secondary cell group
  • a special cell in which the PUCCH of the UE 100 is provided is set in the SCG. The special cell performs a part of the function of the primary cell (PCell) in the carrier aggregation.
  • the HeNB 400 can also have the SeNB function.
  • the HeNB 400 in the example of FIG. 8, the HeNB 400-1 and the HeNB 400-2 correspond
  • the eNB 200 via the X2-GW 500 (in the example of FIG. 8, the eNB 200-1 corresponds).
  • the present invention is not limited to this. If there are two or more HeNBs 400 to which the UE 100 can be connected, the number may be two or more.
  • two or more HeNBs 400 will be described as simply two HeNBs 400 (HeNB 400-1 and HeNB 400-2).
  • the allowable number of UEs 100 that can be accommodated by the HeNB 400 is 2 to 5, for example.
  • HeNB400 is prescribed
  • the relationship of the allowable number of UE100 of each mode in HeNB400 is as follows, for example. *
  • the eNB 200 selects the HeNB 400 as a SeNB candidate
  • the HeNB 400 that has received the SeNB Addition request message has a different number of UEs that can be accommodated (for example, a macro cell, a micro cell, a pico cell) as described above. Etc.), the load is likely to be high.
  • the case where the load is high in the HeNB 400 is a case where the number of terminals accommodated in the selected HeNB 400 is a predetermined number.
  • the HeNB 400 will send a message (SeNB Addition Reject message) to the SeNB 200 to reject the SeNB Addition when the load on the own device is high. That is, in a scenario in which the HeNB 400 is selected as a SeNB candidate, a situation is assumed in which the probability that the SeNB Addition procedure fails will increase. Hereinafter, processing and configuration for dealing with such a situation will be described.
  • the operation according to the first embodiment will be described with reference to FIGS. 9 to FIG. 12 show that the X2-GW 500 has a plurality of HeNBs (HeNB400-1 / HeNB400 / HeNB400-1 / HeNB400-2) and operation information indicating the operation status of the plurality of HeNBs (HeNB400-1 / HeNB400-2) and the UE100 reported to the eNB200.
  • -2) shows a process of determining a HeNB that is a destination of the SeNB Addition request message received from the eNB 200 based on the measurement result of the downlink radio quality related to -2.
  • UE 100 and MeNB 200-1 are in the RRC connection state.
  • the X2-GW 500 collects HeNB operation information indicating an operation state in the HeNB 400-1 / HeNB 400-2 in the Resource Status Reporting Initiation procedure (Step S101). Details of step S101 are shown in FIGS.
  • the example (S101-01) illustrated in FIG. 10 is an example in which the MeNB 200-1 (in this case, “M” corresponds to “macro”) is the starting point of the collection process of HeNB operation information.
  • the example (S101-02) illustrated in FIG. 11 is an example in which the X2-GW 500 is the starting point for the collection process of HeNB operation information.
  • the MeNB 200-1 previously stores a CSG-ID list (white list) for the UE 100 provided from a network device (MME or the like).
  • the MeNB 200-1 sends a Resource Status request message to the X2-GW 500 at a predetermined timing (step S10).
  • the MeNB 200-1 transmits the CSG-ID identification information (CSG-ID IE) indicating the CSG-ID indicated in the white list in the Resource Status request message.
  • CSG-ID IE CSG-ID identification information
  • the X2-GW 500 When the X2-GW 500 obtains the Resource Status request message, the X2-GW 500 identifies the HeNB 400 that is the destination of the Resource Status request message based on the CSG-ID identification information included in the Resource Status request message. In the example of FIG. 10, it is assumed that the HeNB 400-1 and the HeNB 400-2 are specified. The X2-GW 500 sends the Resource Status request message acquired in step S10 to the identified HeNB 400-1 and HeNB 400-2 (step S11).
  • the HeNB 400-1 and the HeNB 400-2 that have acquired the Resource Status request message each send a Resource Status response message including HeNB operation information to the X2-GW 500 (step S12).
  • the Resource Status response message includes identification information (cell ID or the like) for specifying the HeNB that is the source of the message.
  • the HeNB operation information is information regarding the load of the HeNB 400-1 (HeNB 400-2) (first operation information) and information indicating the operation mode (second operation information).
  • the first operation information includes the number of user terminals currently connected to the HeNB 400-1 (HeNB 400-2), the number of user terminals that can be accommodated by the HeNB 400-1 (HeNB 400-2), and the HeNB 400-1 ( This is at least one piece of information among the number of radio resource blocks used in the HeNB 400-2) and the hardware load level of the HeNB 400-1 (HeNB 400-2).
  • the second operation information indicates whether the operation mode of the HeNB 400-1 (HeNB 400-2) is one of a hybrid mode, a closed mode, and an open mode. Note that the second operation information may indicate whether the cell managed by the HeNB 400-1 (HeNB 400-2) is a CSG cell, a hybrid cell, or an open cell.
  • the X2-GW 500 stores the first operation information and the second operation information provided from the HeNB 400-1, and the first operation information and the second operation information provided from the HeNB 400-2 (Step S13). ).
  • the X2-GW 500 includes first operation information from the HeNB 400-1, second operation information, information for the HeNB 400-1 that constitutes identification information of the HeNB 400-1, and first operation information from the HeNB 400-2.
  • a Resource Status response message including the second operation information and the information for HeNB 400-2 that configures the identification information of HeNB 400-2 is generated and transmitted to MeNB 200-1 (step S14).
  • the X2-GW 500 includes each operation information collected from the HeNB 400-1 and the HeNB 400-2 in one Resource Status response message and sends it to the MeNB 200-1, so that the X2-GW 500 sends the operation information to the MeNB 200-1. Transmission processing can be simplified. This contributes to the realization of rapid processing.
  • the X2-GW 500 replaces such a transmission method (first method) with a Resource Status response message (identification information of the HeNB 400-1) including the first operation information and the second operation information from the HeNB 400-1. And a Resource Status response message (including the identification information of HeNB 400-2) including the first operation information and the second operation information from the HeNB 400-2 are individually transmitted to the MeNB 200-1 The method may be applied. In this case, the HeNB-GW 500 may switch between the two methods described above as appropriate according to the operation status of the own X2-GW 500.
  • the MeNB 200-1 stores the HeNB operation information of the HeNB 400-1 and the HeNB operation information of the HeNB 400-2 provided from the X2-GW 500 in association with the identification information of each HeNB 400 (step S15).
  • the MeNB 200-1 uses a plurality of HeNB operation information of the HeNB 400-1 and the HeNB 400-2 and a plurality of eNBs including at least the HeNB 400-1 and the HeNB 400-2 based on the measurement results of the radio quality regarding the HeNB 400-1 and the HeNB 400-2.
  • Set the priority corresponds to the order of destinations of the SeNB Addition request message when the MeNB 200-1 sends the SeNB Addition request message. Note that the measurement results of the radio quality regarding the HeNB 400-1 and the HeNB 400-2 will be described later.
  • the X2-GW 500 stores a CSG-ID list (white list) for the UE 100 provided in advance from a network device (MME or the like).
  • the X2-GW 500 sends a Resource Status request message to the HeNB 400 (HeNB 400-1 and HeNB 400-2 in the example of FIG. 11) corresponding to the CSG-ID stored in the white list at a predetermined timing ( Step S20).
  • the HeNB 400-1 and the HeNB 400-2 that have acquired the Resource Status request message each send a Resource Status response message including HeNB operation information to the X2-GW 500 (step S21).
  • the Resource Status response message includes identification information (cell ID or the like) for specifying the HeNB that is the source of the message.
  • the HeNB operation information is the first operation information and the second operation information described above.
  • the X2-GW 500 stores the first operation information and the second operation information provided from the HeNB 400-1 and the first operation information and the second operation information provided from the HeNB 400-2 (Step S22). ).
  • the X2-GW 500 includes first operation information from the HeNB 400-1, second operation information, information for the HeNB 400-1 that constitutes identification information of the HeNB 400-1, and first operation information from the HeNB 400-2.
  • a Resource Status Information message including the second operation information and the information for HeNB 400-2 that constitutes the identification information of HeNB 400-2 is generated and transmitted to MeNB 200-1 (step S23).
  • the X2-GW 500 replaces such a transmission method (first method) with a Resource Status response message (identification of the HeNB 400-1) including the first operation information and the second operation information from the HeNB 400-1.
  • the HeNB-GW 500 may switch between the two methods described above as appropriate according to the operation status of the own X2-GW 500.
  • the MeNB 200-1 stores the HeNB operation information of the HeNB 400-1 and the HeNB operation information of the HeNB 400-2 provided from the X2-GW 500 in association with the identification information of each HeNB 400 (step S24). Similar to the example illustrated in FIG. 10, the MeNB 200-1 performs at least the HeNB 400-1 based on the HeNB operation information of the HeNB 400-1 / HeNB operation information of the HeNB 400-2 and the measurement result of the radio quality regarding the HeNB 400-1 and the HeNB 400-2. -1 and HeNB 400-2 are set to a plurality of eNBs.
  • the X2-GW 500 receives a Resource Status Update message including the above-described HeNB operation information (updated first operation information) from the HeNB 400-1 and the HeNB 400-2 at a predetermined timing after step S101. Can be obtained (step S102), the HeNB operation information (updated first operation information) included in the Resource Status Update message is stored in the first operation stored in the previous step S101. Overwrite and store information. Further, the X2-GW 500 transmits a Resource Status Update message including the HeNB operation information of the HeNB 400-1 and the HeNB operation information of the HeNB 400-2 acquired in Step S102 to the MeNB 200-1 (Step S103). In FIG. 9, the Resource Status Update message transmitted from the X2-GW 500 is described as one message. However, the Resource Status Update message from the HeNB 400-1 and the Resource Status Update message from the HeNB 400-2 are each shown. You may transmit to MeNB200-1.
  • the HeNB operation information (updated first operation information) of the HeNB 400-1 and the HeNB 400-2 provided from the X2-GW 500 to the MeNB 200-1 in step S103 is overwritten and stored in the MeNB 200-1.
  • the overwritten HeNB operation information of HeNB 400-1 and HeNB 400-2 is then used in the above-described priority setting in MeNB 200-1.
  • Step S104 is processing for detecting a synchronization signal from candidate cells (including HeNB 400-1 and HeNB 400-2 in the example of FIG. 9) in which UE 100 is a SeNB candidate.
  • the candidate cell is at least one of a CSG cell, a hybrid cell, and an open cell. Note that the candidate cell may be set according to the operation policy of the communication system.
  • the UE 100 when receiving the synchronization signal, the UE 100 identifies the PCI from the received synchronization signals (primary synchronization signal and secondary synchronization signal). At this stage, the UE 100 does not understand whether the source cell of the synchronization signal is a CSG cell, a hybrid cell, or an open cell.
  • the UE 100 receives PBCH (Physical Broadcast Channel) and acquires an MIB (Master Information Block) included in the PBCH.
  • the UE 100 acquires System information (System Information Block Type 1) broadcast from the candidate cell by PDSCH (Physical Broadcast Channel) (step S105). In the example of FIG. 9, it is assumed that the UE 100 acquires System information from the HeNB 400-1 and the HeNB 400-2.
  • the cell (candidate cell) managed by the HeNB 400-1 / HeNB 400-2 is determined from the predetermined information included in the system information. Understand whether it is a CSG cell, hybrid cell or open cell.
  • the predetermined information includes CGI (Cell Global Identity), TAI (Tracking Area Identity), and CSG-ID (CSG-ID indicating HeNB 400-1 from HeNB 400-1 / CSG indicating HeNB 400-2 from HeNB 400-2). -ID) and the like.
  • the CGI is an identifier for uniquely identifying a cell in the whole world.
  • the TAI indicates an area unit in which the UE performs location registration, and is configured with one or more cells.
  • the UE 100 understands that the cell managed by the HeNB 400-1 / HeNB 400-2 is at least a CSG cell or a hybrid cell. If the system information includes information (1-bit information) indicating that the cell information is also open to users who do not belong to the CSG together with the CSG-ID, the UE 100 includes the HeNB 400-1 / HeNB 400-2. It is understood that the cell managed by is a hybrid cell. In addition, even if the CSG-ID is included in the System information, but the UE 100 does not include information indicating that the cell is open to users who do not belong to the CSG, the UE 100 Understand that the cell to be managed is a CSG cell.
  • the UE 100 understands that the cell managed by the HeNB 400-1 / HeNB 400-2 is an open cell.
  • the candidate cell is a CGS cell and / or a hybrid cell. If the candidate cell is an open cell, a predetermined process is executed based on information excluding information related to CSG-ID described below.
  • the UE 100 After acquiring the system information from the HeNB 400-1 / HeNB 400-2, for example, the UE 100 is triggered by the fact that a predetermined condition applied during the handover process is satisfied. For example, measurement of RSRP or the like) is started. If the UE 100 can measure at least the radio quality related to the HeNB 400-1 and the HeNB 400-2, the UE 100 creates a measurement report in order to report the measurement result to the MeNB 200-1.
  • a predetermined condition applied during the handover process For example, measurement of RSRP or the like
  • the measurement report includes CGI, TAI acquired from HeNB400-1 / HeNB400-2, CSG-ID regarding HeNB400-1 / HeNB400-2, CSG member status regarding HeNB400-1 / HeNB400-2, and HeNB400-1 / HeNB400- 2 includes the measurement result of the radio quality for 2.
  • the CSG member status is information indicating whether or not the UE 100 belongs to the CSG.
  • the UE 100 transmits the created measurement report to the MeNB 200-1 (Step S106).
  • MeNB200-1 acquires a measurement report from UE100 (step S106).
  • MeNB200-1 performs the process shown in FIG.
  • Step S106 when the MeNB 200-1 acquires the measurement report (Step S106), the MeNB 200-1 determines whether to start the SeNB Addition process for the CSG cell / hybrid cell (Step S107-1).
  • step S107-1 the CNB-ID related to the HeNB 400-1 and the HeNB 400-2 included in the measurement report is stored in the CSG-ID list (white list) stored in advance in the own MeNB. This is done by checking whether it is included.
  • step S107-1 if the MeNB 200-1 can understand that the CSG-IDs related to the HeNB 400-1 and the HeNB 400-2 are included in the white list stored in advance, the MeNB 200-1 targets the CSG cell / hybrid cell. Decided to start SeNB Addition processing. In this case, the MeNB 200-1 sends a SeNB Addition request message to the X2-GW 500 (step S107). As illustrated in FIG. 9, the SeNB Addition request message includes a CSG member status related to the HeNB 400-1 / HeNB 400-2 and a radio quality measurement result related to the HeNB 400-1 / HeNB 400-2. The measurement result of the CSG member status and the radio quality is information included in the measurement report in step S106.
  • the MeNB 200-1 When the MeNB 200-1 sends the SeNB Addition request message to the X2-GW 500, the MeNB 200-1 sets X2-GW as the destination, and does not set the HeNB 400 existing before the X2-GW as the destination. That is, the MeNB 200-1 does not determine the HeNB 400 that is the destination of the SeNB Addition request message. Thereby, the processing load of MeNB200-1 can be reduced.
  • step S107-1 if the CSG-ID related to the HeNB 400-1 / HeNB 400-2 is not included in the previously stored whitelist, the MeNB 200-1 sends a SeNB Addition Request message to the X2-GW 500. Not sent (step S107-2).
  • MeNB 200-1 may apply the following method (second method) instead of the method described above.
  • the MeNB 200-1 has been able to acquire the above-described second operation information regarding the HeNB 400-1 / HeNB 400-2 from the X2-GW in step S14 shown in FIG. 10 (step S23 shown in FIG. 11).
  • the SeNB Addition process is started based on the second operation information. This process is executed according to the operation policy of MeNB 200-1. For example, if the MeNB 200-1 desires at least a hybrid mode HeNB as a SeNB candidate in operation, the SeNB is in a case where part or all of the second operation information related to the HeNB 400-1 / HeNB 400-2 is in the hybrid mode. Addition processing is started.
  • the MeNB 200-1 desires at least a closed mode HeNB as a SeNB candidate for operation, when part or all of the second operation information regarding the HeNB 400-1 / HeNB 400-2 is in the closed mode.
  • the SeNB Addition process is started.
  • step S108 the X2-GW 500 is included in the HeNB operation information (first operation information) related to the HeNB 400-1 / HeNB 400-2 acquired and stored in steps S101 to S102, and the SeNB Addition request message.
  • HeNB 400 that is the destination of the SeNB Addition request message received from MeNB 200-1 is determined.
  • the X2-GW 500 sets the priority order for each of the HeNB 400 (HeNB 400-1 / HeNB 400-2) corresponding to the HeNB operation information (first operation information).
  • Priority is set by the following policy, for example. *
  • the HeNB having a higher radio quality than other HeNBs and having a larger number of UEs that can be accommodated has a higher priority.
  • policies (1) to (4) above may be applied in combination.
  • the X2-GW 500 transmits a SeNB Addition request message from the HeNB 400 having higher priority (referred to as HeNB 400-1 in FIG. 9) according to the set priority (Step S109).
  • the SeNB Addition Request message is transmitted to the next-ranked HeNB 400 (referred to as HeNB 400-2 in FIG. 9) (step S110). If the X2-GW 500 obtains the SeNB Addition Acknowledgment message (including the identification information ⁇ cell ID, etc. of the HeNB 400-2) from the HeNB 400-2 that is the destination of the SeNB Addition Request message (Step S112), the SeNB Addition Request Stop sending messages.
  • the X2-GW 500 continues the transmission process of the SeNB Addition request message based on the priority order until receiving the SeNB Addition acknowledgment message from the HeNB 400-2 that is the transmission destination of the SeNB Addition request message.
  • the X2-GW 500 may transmit the SeNB Addition Failure message to the MeNB 200-1 when receiving a NACK equal to or greater than a certain threshold from the HeNB 400-2 that is the transmission destination of the eNB Addition Request message.
  • the threshold setting method in this case may be set in consideration of the latency required for the SeNB Addition operation or the movement speed of the UE 100 from the MeNB 200-1 if the movement speed of the UE 100 can be acquired.
  • the X2-GW 500 When the X2-GW 500 receives the SeNB Addition acknowledgment message from the HeNB 400-2 (Step S112), the X2-GW 500 sends the SeNB Addition acknowledgment message to the MeNB 200-1 (Step S113).
  • the MeNB 200-1 When the MeNB 200-1 acquires the SeNB Addition Acknowledgment message from the X2-GW 500, the MeNB 200-1 transmits an RRC Connection Reconfiguration message including the CSG-ID related to the HeNB 400-2 that is a SeNB candidate to the UE 100 (Step S114).
  • the UE 100 executes the setting for the SeNB in the UE 100.
  • the UE 100 transmits an RRC Connection Reconfiguration Complete message to the MeNB 200-1 (Step S115).
  • the MeNB 200-1 When the MeNB 200-1 acquires the RRC Connection Reconfiguration Complete message from the UE 100, the MeNB 200-1 transmits the SeNB Reconfiguration Complete message to the HeNB 400-2 via the X2-GW 500 (Step S116). Note that if the MeNB 200-1 has established an X2 interface with the HeNB 400-2, the MeNB 200-1 directly sends an RRC Connection Reconfiguration Complete message to the HeNB 400-2 via the X2 interface without passing through the X2-GW 500. May be.
  • the Random Access process is executed between the UE 100 and the HeNB 400-2 (step S117).
  • UE100 can perform communication by the double connection system which used MeNB200-1 as a master base station and HeNB400-2 as a secondary base station.
  • the X2-GW 500 is based on the HeNB operation information (first operation information) related to the HeNB 400-1 / HeNB 400-2 and the measurement result of the radio quality related to the HeNB 400-1 / HeNB 400-2.
  • the HeNB 400 that is the destination of the SeNB Addition request message is determined. That is, the X2-GW 500 can determine an appropriate HeNB 400 as the SeNB for the UE 100 in consideration of the operation status and radio quality of the HeNB 400.
  • the X2-GW 500 can identify an appropriate SeNB for the UE 100 instead of the MeNB 200-1, the processing load for the SeNB Addition procedure by the MeNB 200-1 can be reduced.
  • the X2-GW 500 sets priorities for each of the HeNB 400 (HeNB 400-1 / HeNB 400-2) corresponding to the HeNB operation information (first operation information) in step S108, Although the SeNB Addition request message was sequentially transmitted from the higher HeHB 400, the second embodiment is directed to the HeNB 400 (HeNB 400-1 and HeNB 400-2 in FIGS. 13 and 14) from the highest priority to the predetermined priority. At the same time, the SeNB Addition Request message is transmitted simultaneously (S109A). Note that the X2-GW 500 may transmit the SeNB Addition request message to all the HeNBs 400 corresponding to the HeNB operation information (first operation information) without setting the priority in the step S108. Good.
  • FIGS. 13 and 14 After the X2-GW 500 transmits the SeNB Addition request message simultaneously to the plurality of HeNBs 400, the processing illustrated in FIGS. 13 and 14 is assumed.
  • FIG. 13 shows an operation when the X2-GW 500 acquires a SeNB Addition acknowledgment message from one HeNB 400 (HeNB 400-2 in FIG. 13).
  • FIG. 14 illustrates an operation when the X2-GW 500 acquires SeNB Addition acknowledgment messages from a plurality of HeNBs 400 (HeNB 400-1 and HeNB 400-2 in FIG. 14).
  • the X2-GW 500 when the X2-GW 500 obtains the SeNB Addition Reject message (including the identification information ⁇ cell ID, etc. of the HeNB 400-1) from the HeNB 400-1 (Step S110), the X2-GW 500 particularly handles the SeNB Addition Reject message no response.
  • the X2-GW 500 obtains the SeNB Addition acknowledgment message (including the identification information ⁇ cell ID and the like of HeNB400-2) from the HeNB 400-2, the X2-GW 500 sends the SeNB Addition acknowledge message to the MeNB 200-1 (Step S113). . Subsequent operations are the same as those in the first embodiment.
  • step S112 when the X2-GW 500 obtains an SeNB Addition acknowledgment message (including identification information ⁇ cell ID, etc.) of each HeNB 400 from the HeNB 400-1 / HeNB 400-2 (step S112), the X2-GW 500 executes step S201.
  • step S201 the X2-GW 500 is included in the HeNB operation information (first operation information) related to the HeNB 400-1 / HeNB 400-2 acquired and stored in steps S101 to S102 and the SeNB Addition request message.
  • HeNB 400 HeNB 400-1 / HeNB 400-2
  • the HeNB 400 to be selected is selected (specified).
  • the HeNB 400-2 is selected.
  • the X2-GW 500 preferably uses the priority order used in step S108 when executing step S201.
  • the X2-GW 500 selects the HeNB 400-2 in step S201, the X2-GW 500 sends the SeNB Addition acknowledgment message (including the identification information ⁇ cell ID, etc.) of the HeNB 400-2) acquired from the HeNB 400-2 to the MeNB 200-1 (Ste S113).
  • the operation after step S113 is the same as that in the first embodiment.
  • a SeNB Release request message is sent to the HeNB 400-1 not selected in step S201 (step S202).
  • step S109A the X2-GW 500 transmits the SeNB Addition request message simultaneously to the plurality of HeNBs 400 at the same time, and then transmits a plurality of SeNB Addition acknowledgment messages corresponding to the plurality of SeNB Addition acknowledgment messages acquired during a predetermined time.
  • Step S201 may be executed for the HeNB 400. In this case, if the SeNB Addition acknowledgment message is not returned from only one HeNB 400 during the predetermined time, the SeNB Addition acknowledgment message may be sent to the MeNB 200-1.
  • the second embodiment described above can avoid a situation in which the probability that the SeNB Addition procedure fails becomes high in a scenario in which the HeNB 400 is selected as a SeNB candidate. Further, since the X2-GW 500 can identify an appropriate SeNB for the UE 100 instead of the MeNB 200-1, the processing load for the SeNB Addition procedure by the MeNB 200-1 can be reduced.
  • the X2-GW 500 has identified an appropriate SeNB for the UE 100 on behalf of the MeNB 200-1, but a network device other than the X2-GW (eg, MME, HeNB-GW, etc.) executes it. You may be able to do it.
  • a network device other than the X2-GW eg, MME, HeNB-GW, etc.
  • the LTE system has been described as an example of the mobile communication system.
  • the present invention is not limited to the LTE system, and the present invention may be applied to a system other than the LTE system.
  • the present invention is useful in the communication field.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

二重接続方式において、X2-GWは、複数のHeNBから運用情報を収集する。X2-GWは、UEがMeNBに報告した無線品質の測定結果をMeNBから取得する。X2-GWは、HeNBの運用情報及び前記測定結果に基づいて、MeNBから受け取ったSeNB追加要求メッセージの送り先を特定し、特定されたHeNBに対して、SeNB追加要求メッセージを送る。X2-GWは、HeNBからSeNB追加要求メッセージに対する肯定応答メッセージを取得すると、当該メッセージをMeNBに送る。

Description

ネットワーク装置及び基地局
 本発明は、二重接続方式をサポートする移動通信システムにおけるネットワーク装置及び基地局に関する。
 移動通信システムの標準化プロジェクトである3GPP(3rd Generation Partnership Project)では、二重接続方式(Dual connectivity)が導入されている(非特許文献1参照)。
 二重接続方式では、ユーザ端末は、複数のセルとの接続を同時に確立する。この場合、各セルは、それぞれ異なる基地局によって管理される。
 二重接続方式では、ユーザ端末との接続を確立する複数の基地局のうち、1つの基地局(以下、「マスタ基地局」という)のみが当該ユーザ端末とのRRC接続を確立する。これに対し、当該複数の基地局のうち他の基地局(以下、「セカンダリ基地局」という)は、RRC接続をユーザ端末と確立せずに、追加的な無線リソースを当該ユーザ端末に提供する。
3GPP技術仕様書「TS36.300 v12.4.0」 2014年12月
 一実施形態に係るネットワーク装置は、二重接続方式による通信を実行可能な移動通信システムにおいて用いられる。前記移動通信システムは、ユーザ端末とRRC接続を確立する第1基地局と、前記ユーザ端末に追加的な無線リソースを提供可能な第2基地局と、前記第1基地局及び前記第2基地局にそれぞれ接続された前記ネットワーク装置と、を有する。前記ネットワーク装置は、制御部を備える。前記制御部は、複数の前記第2基地局の運用状態を示す運用情報を収集する第1処理と、前記ユーザ端末が前記第1基地局に報告した前記第2基地局に関する無線品質の測定結果を前記第1基地局から取得する第2処理と、前記収集された運用情報及び前記取得された測定結果に基づいて、前記第1基地局から受け取った第2基地局追加要求メッセージの送り先となる前記第2基地局を決定する第3処理と、前記第3処理において決定された前記第2基地局に対して、前記第2基地局追加要求メッセージを送る第4処理と、前記第2基地局追加要求メッセージの送り先である前記第2基地局から、前記第2基地局追加要求メッセージに対する肯定応答メッセージを取得した場合には、当該肯定応答メッセージを前記第1基地局に送る第5処理と、を実行する。
第1実施形態に係るLTEシステムの構成図である。 第1実施形態に係るUEのブロック図である。 第1実施形態に係るeNBのブロック図である。 第1実施形態に係るHeNBのブロック図である。 第1実施形態に係るX2-GWのブロック図である。 第1実施形態に係るプロトコルスタック図である。 二重接続方式の概要を説明するための図である。 第1実施形態に係る運用状況を示す概念図である。 第1実施形態に係る動作を説明するためのシーケンス図である。 Resource Status Reporting initiationプロシージャの第1の例を示す図である。 Resource Status Reporting initiationプロシージャの第2の例を示す図である。 MeNBの動作を説明するためのシーケンス図である。 第2実施形態に係る動作を説明するためのシーケンス図である。 第2実施形態に係る別の動作を説明するためのシーケンス図である。
 [実施形態の概要]
 ところで、二重接続方式では、ホーム基地局(Home-eNB)(以下、「HeNB」という)をセカンダリ基地局として使用することも想定し得る。しかし、セカンダリ基地局としてHeNBを用いる場合の二重接続方式の運用方法が未だ規定されていない。
 このため、特に、ホーム基地局をセカンダリ基地局として追加する場合等におけるスムーズな処理が望まれている。
 そこで、実施形態は、二重接続方式において、ホーム基地局をセカンダリ基地局として追加する場合等におけるスムーズな処理を実行可能とするネットワーク装置及び基地局を提供する。
 実施形態に係るネットワーク装置は、二重接続方式による通信を実行可能な移動通信システムにおいて用いられる。前記移動通信システムは、ユーザ端末とRRC接続を確立する第1基地局と、前記ユーザ端末に追加的な無線リソースを提供可能な第2基地局と、前記第1基地局及び前記第2基地局にそれぞれ接続された前記ネットワーク装置と、を有する。前記ネットワーク装置は、制御部を備える。前記制御部は、複数の前記第2基地局の運用状態を示す運用情報を収集する第1処理と、前記ユーザ端末が前記第1基地局に報告した前記第2基地局に関する無線品質の測定結果を前記第1基地局から取得する第2処理と、前記収集された運用情報及び前記取得された測定結果に基づいて、前記第1基地局から受け取った第2基地局追加要求メッセージの送り先となる前記第2基地局を決定する第3処理と、前記第3処理において決定された前記第2基地局に対して、前記第2基地局追加要求メッセージを送る第4処理と、前記第2基地局追加要求メッセージの送り先である前記第2基地局から、前記第2基地局追加要求メッセージに対する肯定応答メッセージを取得した場合には、当該肯定応答メッセージを前記第1基地局に送る第5処理と、を実行する。
 一実施形態において、前記制御部は、前記第1処理において複数の前記第2基地局の運用情報を収集できたならば、収集された前記運用情報に対応する前記第2基地局の各々について優先順位を設定し、優先順位の高い前記第2基地局から前記第3処理を実行する。
 一実施形態において、前記制御部は、前記第2基地局から前記肯定応答メッセージを受け取るまで、前記優先順位に基づいて前記第3処理を続行する。なお、前記制御部は、前記肯定応答メッセージを受け取ったら前記第3処理を停止してもよい。
 他の実施形態において、前記制御部は、前記第3処理において、前記第2基地局を複数決定した場合には、前記第4処理において、前記決定された複数の第2基地局に対して一斉に前記第2基地局追加要求メッセージを送る。前記制御部は、前記第5処理において、前記複数の第2基地局から、前記肯定応答メッセージをそれぞれ取得した場合には、前記収集された運用情報に基づいて、当該複数の第2基地局の中から、前記肯定応答メッセージを前記第1基地局に送る対象の前記第2基地局を選択する。前記制御部は、該選択された前記第2基地局についての前記肯定応答メッセージを前記第1基地局に送る。
 一実施形態において、前記制御部は、前記第1処理において収集された前記第2基地局の運用情報を記憶し、且つ、前記運用情報を前記第1基地局へ送る処理を更に実行する。
 一実施形態及び他の実施形態において、前記運用情報は、前記第2基地局の負荷に関する情報、あるいは、前記第2基地局の運用モードを示す情報である。
 一実施形態及び他の実施形態において、前記第2基地局の負荷に関する情報は、前記第2基地局が収容可能であるユーザ端末の数、前記第2基地局に現在接続されているユーザ端末の数、前記第2基地局において使用されている無線リソースブロック数、及び前記第2基地局のハードウェアの負荷度合のうち、少なくとも一つの情報である。
 一実施形態及び他の実施形態において、前記第2基地局はホーム基地局であり、前記第2基地局の運用モードを示す情報は、前記第2基地局の運用モードが、ハイブリッドモード、クローズドモード、及びオープンモードのうち、何れかのモードであるかを示す。
 一実施形態に係る第1基地局は、二重接続方式による通信を実行可能な移動通信システムにおいて用いられる。前記移動通信システムは、ユーザ端末とRRC接続を確立する前記第1基地局と、前記ユーザ端末に追加的な無線リソースを提供可能な第2基地局と、前記第1基地局及び前記第2基地局にそれぞれ接続された前記ネットワーク装置と、を有する。前記第1基地局は、制御部を備える。前記制御部は、前記ユーザ端末から、前記第2基地局についての無線品質の測定結果を取得する第1処理と、前記第2基地局についての無線品質の測定結果を取得した場合には、前記ネットワーク装置に、前記測定結果を含む第2基地局追加要求メッセージを送信する第2処理と、前記ネットワーク装置から、前記第2基地局追加要求メッセージに対する前記第2基地局の肯定応答メッセージを受信する第3処理と、前記ユーザ端末に対して、前記肯定応答メッセージの送信元である前記第2基地局を用いた前記二重接続方式のための構成情報を送信する第4処理と、を実行する。
 一実施形態に係る第1基地局の制御部は、前記ネットワーク装置を介して、複数の前記第2基地局の運用状態を示す運用情報を取得し、該取得された運用情報と前記測定結果に基づいて、前記第1基地局が第2基地局追加要求メッセージを送る場合における、該第2基地局追加要求メッセージの送り先となる前記第2基地局の優先順位を設定する。
 他の実施形態に係る第1基地局の制御部は、前記ネットワーク装置を介して、複数の前記第2基地局の運用状態を示す運用情報を取得する。前記制御部は、該取得された運用情報と前記測定結果に基づいて、前記第2基地局追加要求メッセージを前記ネットワーク装置へ送信するか否かを判断する。前記制御部は、前記第2基地局要求メッセージを送信すると決めた場合に前記2処理を実行する。
 一実施形態及び他の実施形態において、前記運用情報は、前記第2基地局の負荷に関する情報、あるいは、前記第2基地局の運用モードを示す情報である。
 一実施形態及び他の実施形態において、前記第2基地局の負荷に関する情報は、前記第2基地局に現在接続されているユーザ端末の数、前記第2基地局が収容可能であるユーザ端末の数、前記第2基地局において使用されている無線リソースブロック数、及び前記第2基地局のハードウェアの負荷度合のうち、少なくとも一つの情報である。
 一実施形態及び他の実施形態において、前記第2基地局はホーム基地局であり、前記第2基地局の運用モードを示す情報は、前記第2基地局の運用モードが、ハイブリッドモード、クローズドモード、及びオープンモードのうち、何れかのモードであるかを示す。
 他の実施形態に係る第1基地局の制御部は、前記第1処理において、前記ユーザ端末から、CSG(Closed Subscriber Group)セル識別子を前記測定結果とともに取得し、前記第2処理において、前記CSGセル識別子が、前記ネットワーク装置から予め取得していたCSGセル識別子リストに含まれているならば、前記第2基地局追加要求メッセージを、前記ネットワーク装置に送信する処理を実行する。
 一実施形態に係る第2基地局は、二重接続方式による通信を実行可能な移動通信システムにおいて用いられる。前記移動通信システムは、ユーザ端末とRRC接続を確立する第1基地局と、前記ユーザ端末に追加的な無線リソースを提供可能な前記第2基地局と、前記第1基地局及び前記第2基地局にそれぞれ接続された前記ネットワーク装置と、を有する。前記第2基地局は、制御部を備える。前記制御部は、前記ネットワーク装置に、該第2基地局の運用状態を示す運用情報を送信する第1処理と、前記運用情報を送信した後、前記ネットワーク装置から、第2基地局追加要求メッセージを取得する第2処理と、前記第2基地局追加要求メッセージに対する肯定応答メッセージを、前記ネットワーク装置に送信する第3処理と、を実行する。
 一実施形態において、前記運用情報は、前記第2基地局の負荷に関する情報、あるいは、前記第2基地局の運用モードを示す情報である。
 一実施形態において、前記第2基地局の負荷に関する情報は、前記第2基地局が収容可能であるユーザ端末の数、前記第2基地局に現在接続されているユーザ端末の数、前記第2基地局において使用されている無線リソースブロック数、及び前記第2基地局のハードウェアの負荷度合のうち、少なくとも一つの情報である。
 一実施形態において、前記第2基地局はホーム基地局であり、前記第2基地局の運用モードを示す情報は、前記第2基地局の運用モードが、ハイブリッドモード、クローズドモード、及びオープンモードのうち、何れかのモードであるかを示す。
 [第1実施形態] 
 以下において、本発明をLTEシステムに適用する場合の実施形態を説明する。
 (システム構成) 
 図1は、第1実施形態に係るLTEシステムの構成図である。図1に示すように、第1の実施形態に係るLTEシステムは、UE(User Equipment)100、E-UTRAN(Evolved Universal Terrestrial Radio Access Network)10、及びEPC(Evolved Packet Core)20を備える。
 UE100は、ユーザ端末に相当する。UE100は、移動型の通信装置であり、接続先のセル(サービングセル)との無線通信を行う。UE100は、後述するCSGセル/ハイブリッドセル/オープンセルとの無線通信を実行する機能を備える。UE100の構成については後述する。
 E-UTRAN10は、無線アクセスネットワークに相当する。E-UTRAN10は、eNB200(evolved Node-B)と、HeNB400と、X2-GW500と、HeNB-GW600を含む。HeNB400と、X2-GW500の構成については後述する。
 eNB200は、例えばマクロ基地局に相当する。マクロ基地局は、オペレータが設置する大規模な固定型無線通信装置である。本実施形態ではeNB200をマクロ基地局(MeNB)として説明する。なお、eNB200は、マクロ基地局よりも小型のタイプであるマイクロ基地局やピコ基地局等であってもよい。eNB200は、X2インターフェイスを介して相互に接続される。また、eNB200は、X2インターフェイスを介して後述するHeNB(Home eNB)400に接続される。eNB200の構成については後述する。
 eNB200は、1又は複数のセルを管理しており、自セルとの接続を確立したUE100との無線通信を行う。eNB200は、無線リソース管理(RRM)機能、ユーザデータのルーティング機能、モビリティ制御・スケジューリングのための測定制御機能などを有する。「セル」は、無線通信エリアの最小単位を示す用語として使用される他に、UE100との無線通信を行う機能を示す用語としても使用される。
 EPC20は、コアネットワークに相当する。E-UTRAN10及びEPC20によりLTEシステムのネットワーク(LTEネットワーク)が構成される。EPC20は、MME(Mobility Management Entity)/S-GW(Serving-Gateway)300を含む。MMEは、UE100に対する各種モビリティ制御などを行う。S-GWは、ユーザデータの転送制御を行う。MME/S-GW300は、S1インターフェイスを介してeNB200やHeNB400等と接続される。
 図2は、UE100のブロック図である。図2に示すように、UE100は、アンテナ101、無線送受信機110、ユーザインターフェイス120、GNSS(Global Navigation Satellite System)受信機130、バッテリ140、メモリ150、及びプロセッサ160を備える。メモリ150は記憶部に相当し、プロセッサ160は制御部(コントローラ)に相当する。UE100は、GNSS受信機130を有していなくてもよい。また、メモリ150をプロセッサ160と一体化し、このセット(すなわち、チップセット)を、制御部を構成するプロセッサ160’(コントローラ)としてもよい。コントローラは、後述する各種の処理及び各種の通信プロトコルを実行する。
 アンテナ101及び無線送受信機110は、無線信号の送受信に用いられる。無線送受信機110は、プロセッサ160が出力するベースバンド信号(送信信号)を無線信号に変換してアンテナ101から送信する。また、無線送受信機110は、アンテナ101が受信する無線信号をベースバンド信号(受信信号)に変換してプロセッサ160に出力する。
 ユーザインターフェイス120は、UE100を所持するユーザとのインターフェイスであり、例えば、ディスプレイ、マイク、スピーカ、及び各種ボタンなどを含む。ユーザインターフェイス120は、ユーザからの操作を受け付けて、該操作の内容を示す信号をプロセッサ160に出力する。GNSS受信機130は、UE100の地理的な位置を示す位置情報を得るために、GNSS信号を受信して、受信した信号をプロセッサ160に出力する。バッテリ140は、UE100の各ブロックに供給すべき電力を蓄える。
 メモリ150は、プロセッサ160により実行されるプログラム、及びプロセッサ160による処理に使用される情報を記憶する。メモリ150は、UE100が接続可能なCSG(Closed Subscriber Group)セルを示すCSG-IDのリスト(ホワイトリスト)を記憶する。
 プロセッサ160は、ベースバンド信号の変調・復調及び符号化・復号などを行うベースバンドプロセッサと、メモリ150に記憶されるプログラムを実行して各種の処理を行うCPU(Central Processing Unit)と、を含む。プロセッサ160は、更に、音声・映像信号の符号化・復号を行うコーデックを含んでもよい。プロセッサ160は、後述する各種の処理及び各種の通信プロトコルを実行する。
 図3は、eNB200のブロック図である。図3に示すように、eNB200は、アンテナ201、無線送受信機210、ネットワークインターフェイス220、メモリ230、及びプロセッサ240(コントローラ)を備える。なお、メモリ230をプロセッサ240と一体化し、このセット(すなわち、チップセット)を、制御部を構成するプロセッサ240’(コントローラ)としてもよい。
 アンテナ201及び無線送受信機210は、無線信号の送受信に用いられる。無線送受信機210は、プロセッサ240が出力するベースバンド信号(送信信号)を無線信号に変換してアンテナ201から送信する。また、無線送受信機210は、アンテナ201が受信する無線信号をベースバンド信号(受信信号)に変換してプロセッサ240に出力する。
 ネットワークインターフェイス220は、X2インターフェイスを介して隣接eNB200やHeNB400と接続され、S1インターフェイスを介してMME/S-GW300と接続される。ネットワークインターフェイス220は、X2インターフェイス上で行う通信及びS1インターフェイス上で行う通信に用いられる。
 メモリ230は、プロセッサ240により実行されるプログラム、及びプロセッサ240による処理に使用される情報を記憶する。メモリ230は、後述するX2-GW500から提供された情報を記憶する。
 プロセッサ240は、ベースバンド信号の変調・復調及び符号化・復号などを行うベースバンドプロセッサと、メモリ230に記憶されるプログラムを実行して各種の処理を行うCPUと、を含む。プロセッサ240は、後述する各種の処理及び各種の通信プロトコルを実行する。
 図4は、HeNB400のブロック図である。HeNB400は、半径数十メートルの狭い範囲に対して使用される小型基地局である。HeNB400は、CSGセル、ハイブリッドセル、又はオープンセルを形成し得る。なお、例えば、CSGセルを管理するHeNB400は、クローズドモードのHeNBと称される。ハイブリッドセルを管理するHeNB400は、ハイブリッドモードのHeNBと称される。オープンセルを管理するHeNB400は、オープンモードのHeNBと称される。
 HeNB400は、屋内に設置可能な小規模な固定型無線通信装置である。HeNB400は、eNB200よりもカバー範囲が狭い特定セルを形成する。特定セルは、設定されるアクセスモードに応じて、「CSG(Closed Subscriber Group)セル」、「ハイブリッドセル」、又は「オープンセル」と称される。
 CSGセルは、アクセス権を有するUE100(「メンバーUE」と称される)のみがアクセス可能なセルであり、CSG-IDをブロードキャストする。UE100は、自身がアクセス権を有するCSG-IDのリスト(「ホワイトリスト」と称される)をメモリ150に保持しており、当該ホワイトリストと、CSGセルがブロードキャストするCSG-IDと、に基づいて、アクセス権の有無を判断する。
 ハイブリッドセルは、メンバーUEが非メンバーUEよりも有利に取り扱われるセルであり、CSG-IDに加えて、非メンバーUEにも解放されたセルであることを示す情報をブロードキャストする。UE100は、ホワイトリストと、ハイブリッドセルがブロードキャストするCSG-IDと、に基づいて、アクセス権の有無を判断する。ハイブリッドセルを管理するHeNB400は、ハイブリッドモードのHeNBと称され得る。
 オープンセルは、メンバーであるか否かを問わずUE100が同等に取り扱われるセルであり、CSG-IDをブロードキャストしない。UE100の視点では、オープンセルはマクロセルと同等である。
 図4に示すように、HeNB400は、アンテナ401、無線送受信機410、ネットワークインターフェイス420、メモリ430、及びプロセッサ440(コントローラ)を備える。なお、メモリ430をプロセッサ440と一体化し、このセット(すなわち、チップセット)を、制御部を構成するプロセッサ440’(コントローラ)としてもよい。
 アンテナ401及び無線送受信機410(無線送受信部)は、無線信号の送受信に用いられる。無線送受信機410は、プロセッサ440が出力するベースバンド信号(送信信号)を無線信号に変換してアンテナ401から送信する。また、無線送受信機410は、アンテナ401が受信する無線信号をベースバンド信号(受信信号)に変換してプロセッサ440に出力する。無線送受信部は、CSGセル、ハイブリッドセル、又はオープンセルを形成する。
 ネットワークインターフェイス420は、HeNB-GW600を経由するS1インターフェイスをMME/S-GW300との間に確立している場合には、HeNB-GW600を介してMME300との通信を行う。これに対し、ネットワーク通信部420は、HeNB-GW600を経由しないS5インターフェイスをMME300との間に確立している場合には、MME300と直接的に通信を行う。
 ネットワークインターフェイス420は、X2インターフェイスを介してeNB200との通信を行う。また、ネットワークインターフェイス420は、X2インターフェイスを介してX2-GW500との通信を行う。
 メモリ430は、プロセッサ440により実行されるプログラム、及びプロセッサ440による処理に使用される情報を記憶する。
 プロセッサ440は、ベースバンド信号の変調・復調及び符号化・復号などを行うベースバンドプロセッサと、メモリ430に記憶されるプログラムを実行して各種の処理を行うCPUと、を含む。プロセッサ440は、後述する各種の処理及び各種の通信プロトコルを実行する。
 HeNB400は、一つのX2-GW500にのみ接続し得る。HeNB400は、例えば、自HeNBが接続するX2-GW500のIPアドレスについての情報を事前に設定される。
 図5は、X2-GW500のブロック図である。X2-GW500は、X2 Proxy serverの機能を備える。図5に示すように、X2-GW500は、ネットワークインターフェイス510、メモリ520、及びプロセッサ530(コントローラ)を備える。なお、メモリ520をプロセッサ530と一体化し、このセット(すなわち、チップセット)を、制御部を構成するプロセッサ530’(コントローラ)としてもよい。
 ネットワークインターフェイス510は、X2インターフェイスを介してeNB200やHeNB400との通信を行う。
 メモリ520は、プロセッサ530による制御に使用される各種情報を記憶する。メモリ520には、X2-GW500の管理下にあるeNB200/HeNB400が登録されている。メモリ520は、後述するHeNB400から提供された該HeNB400の運用情報を記憶する。メモリ520は、更に、後述するeNB200から提供された情報を記憶する。eNB200から提供された情報は、UE100からeNB200に提供されたMeasurement reportの内容に対応する。
 プロセッサ530は、X2-GW500の各種機能を制御する。プロセッサ530は、後述する各種処理及び各種の通信プロトコルを実行する。
 X2-GW500は、X2APメッセージ転送手続きを除いてX2AP手続きを終端しないが、X2解放手順とX2エラー表示手順を開始する。なお、X2-GW500は、後述するHeNB400の運用情報を収集する場合、後述する図11に示した例のように、Resource Status Requestメッセージの送信を開始し得ると定義されてもよい。その他、X2-GW500は、自装置が終端しないその他の処理を実行するように構成されてもよい。
 図6は、LTEシステムにおける無線インターフェイスのプロトコルスタック図である。図6に示すように、無線インターフェイスプロトコルは、OSI参照モデルの第1層乃至第3層に区分されており、第1層は物理(PHY)層である。第2層は、MAC(Medium Access Control)層、RLC(Radio Link Control)層、及びPDCP(Packet Data Convergence Protocol)層を含む。第3層は、RRC(Radio Resource Control)層を含む。
 物理層は、符号化・復号、変調・復調、アンテナマッピング・デマッピング、及びリソースマッピング・デマッピングを行う。UE100の物理層とeNB200(HeNB400)の物理層との間では、物理チャネルを介してユーザデータ及び制御信号が伝送される。
 MAC層は、データの優先制御、及びハイブリッドARQ(HARQ)による再送処理などを行う。UE100のMAC層とeNB200(HeNB400)のMAC層との間では、トランスポートチャネルを介してユーザデータ及び制御信号が伝送される。eNB200(HeNB400)のMAC層は、上下リンクのトランスポートフォーマット(トランスポートブロックサイズ、変調・符号化方式)、UE100への割当リソースブロックを決定(スケジューリング)するケジューラを含む。
 RLC層は、MAC層及び物理層の機能を利用してデータを受信側のRLC層に伝送する。UE100のRLC層とeNB200のRLC層との間では、論理チャネルを介してユーザデータ及び制御信号が伝送される。
 PDCP層は、ヘッダ圧縮・伸張、及び暗号化・復号化を行う。
 RRC層は、制御信号を取り扱う制御プレーンでのみ定義される。UE100のRRC層とeNB200(HeNB)のRRC層との間では、各種設定のための制御信号(RRCメッセージ)が伝送される。RRC層は、無線ベアラの確立、再確立及び解放に応じて、論理チャネル、トランスポートチャネル、及び物理チャネルを制御する。UE100のRRCとeNB200のRRCとの間に接続(RRC接続)がある場合、UE100はRRCコネクティッド状態であり、そうでない場合、UE100はRRCアイドル状態である。
 RRC層の上位に位置するNAS(Non-Access Stratum)層は、セッション管理及びモビリティ管理などを行う。
 UE100において、物理層乃至RRC層は、AS(Access Stratum)エンティティ100Aを構成する。NAS層は、NASエンティティ100Bを構成する。ASエンティティ100A及びNASエンティティ100Bの機能はプロセッサ160(制御部)により実行される。すなわち、プロセッサ160(制御部)は、ASエンティティ100A及びNASエンティティ100Bを含む。アイドルモードにおいて、ASエンティティ100Aはセル選択/再選択を行い、NASエンティティ100BはPLMN選択を行う。
 (二重接続方式) 
 実施形態に係るLTEシステムは、二重接続方式をサポートする。二重接続方式では、UE100は、複数のeNB200との接続を同時に確立する。なお、前記複数のeNB200のうちの一部がHeNB400であってもよい。UE100には、各eNB200(HeNB400)から無線リソースが割り当てられるため、スループットの向上が見込まれる。なお、二重接続方式は、eNB間キャリアアグリゲーション(inter-eNB CA)と称されることもある。
 図7は、二重接続方式の概要を説明するための図である。図7に示すように、二重接続方式では、UE100との接続を確立する複数のeNB200のうち、マスタeNB(MeNB)200Mのみが当該UE100とのRRC接続を確立する。これに対し、当該複数のeNB200のうちセカンダリeNB(SeNB)200S(400S)は、RRC接続をUE100と確立せずに、追加的な無線リソースをUE100に提供する。言い換えると、MeNB200Mは、ユーザプレーン接続だけでなく制御プレーン接続をUE100と確立する。これに対し、SeNB200S(400S)は、制御プレーン接続をUE100と確立せずに、ユーザプレーン接続をUE100と確立する。MeNB200MとSeNB200S(400S)との間にはXnインターフェイスが設定される。Xnインターフェイスは、X2インターフェイス又は新たなインターフェイスである。
 二重接続方式では、UE100は、MeNB200Mが管理するN個のセル及びSeNB200S(400S)が管理するM個のセルを同時に利用したキャリアアグリゲーションが可能である。二重接続方式においてUE100のサービングセルの最大数、すなわち、(N+M)の最大数は、例えば5である。ここで、MeNB200Mが管理するN個のセルからなるグループは、マスタセルグループ(MCG)と称される。また、SeNB200S(400S)が管理するM個のセルからなるグループは、セカンダリセルグループ(SCG)と称される。SCGには、UE100のPUCCHを設ける特別なセルが設定される。特別なセルは、キャリアアグリゲーションにおけるプライマリセル(PCell)の機能の一部を遂行する。
 二重接続方式では、HeNB400もSeNBの機能を有することができる。この場合、図8に示すように、HeNB400(図8の例では、HeNB400-1とHeNB400-2が対応する)は、X2-GW500を介してeNB200(図8の例では、eNB200-1が対応する)に接続されることが想定される。なお、図8以降の説明においては、説明の便宜上、2つのHeNB400(HeNB400-1とHeNB400-2)を挙げて説明しているが、これに限定されるものではない。UE100が接続可能なHeNB400が2以上あるならば2以上であってよい。以降、説明の便宜上、2以上のHeNB400を、単に2つのHeNB400(HeNB400-1とHeNB400-2)として説明する。
 HeNB400が収容できるUE100の許容数は、例えば2~5である。なお、HeNB400がSeNBの候補として規定されるならば、その収容許容数は、5よりも多い数が規定されてもよい。なお、HeNB400における各モードのUE100の許容数の関係は、例えば、次のようになる。 
 ・オープンモードの収容許容数>ハイブリッドモードの収容許容数>クローズドモードの収容許容数
 eNB200がHeNB400をSeNBの候補として選択した場合には、次の事態が想定される。eNB200は、選択されたHeNB400に向けて、SeNB Addition要求メッセージを送ると、SeNB Addition要求メッセージを受け取ったHeNB400において、上述した通り、収容可能UE数が他のセル(例えば、マクロセル,マイクロセル,ピコセル等)よりも少ないという特性上、負荷が高くなっている可能性が高い。HeNB400において負荷が高くなっている場合とは、選択されたHeNB400において収容されている端末数が所定数になっている場合等である。HeNB400は、自装置における負荷が高い場合には、SeNB Additionを拒否する旨のメッセージ(SeNB Addition Rejectメッセージ)をeNB200に送るだろう。つまり、HeNB400がSeNBの候補として選択されるシナリオでは、SeNB Additionプロシージャが失敗する確率が高くなるという事態が想定される。以下、このような事態に対応するための処理や構成について説明する。
 (SeNB Addition処理) 
 図9乃至図12に基づいて、第1実施形態に係る動作を説明する。図9乃至図12は、X2-GW500が、複数のHeNB(HeNB400-1/HeNB400-2)についての運用状態を示す運用情報と、UE100からeNB200に報告された複数のHeNB(HeNB400-1/HeNB400-2)に関する下り方向の無線品質の測定結果と、に基づいて、eNB200から受け取ったSeNB Addition要求メッセージの送り先となるHeNBを決定する処理を示す。なお、図9において、UE100とMeNB200-1はRRC接続状態である。
 図9において、X2-GW500は、Resource Status Reporting Initiation procedureにて、HeNB400-1/HeNB400-2における運用状態を示すHeNB運用情報を収集する(ステップS101)。ステップS101の詳細を図10及び図11に示す。図10に示す例(S101-01)は、MeNB200-1(この場合の「M」は「マクロ」に対応する。)がHeNB運用情報の収集処理の起点となる例である。図11に示す例(S101-02)は、X2-GW500がHeNB運用情報の収集処理の起点となる例である。
 図10に示す例において、MeNB200-1は、事前にUE100のためのCSG-IDのリスト(ホワイトリスト)をネットワーク装置(MME等)から提供されて記憶しているものとする。MeNB200-1は、所定のタイミングで、X2-GW500にResource Status要求メッセージを送る(ステップS10)。この場合、MeNB200-1は、ホワイトリストに示されたCSG-IDを示すCSG-ID識別情報(CSG-ID IE)をResource Status要求メッセージに含めて送信する。
 X2-GW500は、Resource Status要求メッセージを取得すると、Resource Status要求メッセージに含まれていたCSG-ID識別情報に基づいて、Resource Status要求メッセージの送り先であるHeNB400を特定する。図10の例では、HeNB400-1及びHeNB400-2が特定されたものとする。X2-GW500は、特定されたHeNB400-1及びHeNB400-2に対して、ステップS10で取得されたResource Status要求メッセージを送る(ステップS11)。
 Resource Status要求メッセージを取得したHeNB400-1及びHeNB400-2は、それぞれ、HeNB運用情報を含んだResource Status応答メッセージをX2-GW500に送る(ステップS12)。Resource Status応答メッセージは、該メッセージの送り元であるHeNBを特定するための識別情報(セルID等)を含む。HeNB運用情報は、HeNB400-1(HeNB400-2)の負荷に関する情報(第1の運用情報)、及び運用モードを示す情報(第2の運用情報)である。まず、第1の運用情報は、HeNB400-1(HeNB400-2)に現在接続されているユーザ端末の数、HeNB400-1(HeNB400-2)が収容可能であるユーザ端末の数、HeNB400-1(HeNB400-2)において使用されている無線リソースブロック数、及びHeNB400-1(HeNB400-2)のハードウェアの負荷度合のうち、少なくとも一つの情報である。第2の運用情報は、HeNB400-1(HeNB400-2)の運用モードが、ハイブリッドモード、クローズドモード、及びオープンモードのうち、何れかのモードであるかを示す。なお、第2の運用情報は、HeNB400-1(HeNB400-2)が運用管理するセルが、CSGセル、ハイブリッドセル、及びオープンセルのうち、何れかのセルであるかを示してもよい。
 X2-GW500は、HeNB400-1から提供された第1の運用情報及び第2の運用情報と、HeNB400-2から提供された第1の運用情報と第2の運用情報とを記憶する(ステップS13)。
 X2-GW500は、HeNB400-1からの第1の運用情報、第2の運用情報及びHeNB400-1の識別情報を構成したHeNB400-1用の情報と、HeNB400-2からの第1の運用情報、第2の運用情報及びHeNB400-2の識別情報を構成したHeNB400-2用の情報と、を含んだResource Status応答メッセージを生成し、MeNB200-1に送信する(ステップS14)。これにより、X2-GW500は、HeNB400-1とHeNB400-2からそれぞれ収集した各運用情報等を、一つのResource Status応答メッセージに含めてMeNB200-1に送るので、X2-GW500からMeNB200-1への送信処理を簡略化できる。このことは、迅速な処理の実現に貢献する。なお、X2-GW500は、このような送信方法(第1方法)に代えて、HeNB400-1からの第1の運用情報及び第2の運用情報を含むResource Status応答メッセージ(HeNB400-1の識別情報を含む)と、HeNB400-2からの第1の運用情報及び第2の運用情報を含むResource Status応答メッセージ(HeNB400-2の識別情報を含む)とを、個別にMeNB200-1に送信する第2の方法を適用してもよい。この場合、HeNB-GW500は、上述した2つの方法を、自X2-GW500における動作状況に応じて適宜切り替えて運用するようにしてもよい。
 MeNB200-1は、X2-GW500から提供された、HeNB400-1のHeNB運用情報と、HeNB400-2のHeNB運用情報とを、それぞれ、各HeNB400の識別情報と対応付けて記憶する(ステップS15)。MeNB200-1は、HeNB400-1とHeNB400-2の各HeNB運用情報と、HeNB400-1及びHeNB400-2に関する無線品質の測定結果に基づいて、少なくともHeNB400-1及びHeNB400-2を含む複数のeNBについて優先順位を設定する。優先順位は、MeNB200-1が、SeNB Addition要求メッセージを送る場合における、該SeNB Addition要求メッセージの送り先の順番に対応する。なお、HeNB400-1及びHeNB400-2に関する無線品質の測定結果については後述する。
 図11に示す例において、X2-GW500は、事前にUE100のためのCSG-IDのリスト(ホワイトリスト)をネットワーク装置(MME等)から提供されて記憶しているものとする。X2-GW500は、所定のタイミングで、Resource Status要求メッセージをホワイトリストに記憶されていたCSG-IDに対応するHeNB400(図11の例ではHeNB400-1、HeNB400-2とする)に対して送る(ステップS20)。
 Resource Status要求メッセージを取得したHeNB400-1及びHeNB400-2は、それぞれ、HeNB運用情報を含んだResource Status応答メッセージをX2-GW500に送る(ステップS21)。Resource Status応答メッセージは、該メッセージの送り元であるHeNBを特定するための識別情報(セルID等)を含む。HeNB運用情報は、前述した第1の運用情報及び第2の運用情報である。
 X2-GW500は、HeNB400-1から提供された第1の運用情報及び第2の運用情報と、HeNB400-2から提供された第1の運用情報及び第2の運用情報とを記憶する(ステップS22)。
 X2-GW500は、HeNB400-1からの第1の運用情報、第2の運用情報及びHeNB400-1の識別情報を構成したHeNB400-1用の情報と、HeNB400-2からの第1の運用情報、第2の運用情報及びHeNB400-2の識別情報を構成したHeNB400-2用の情報と、を含んだResource Status Informationメッセージを生成し、MeNB200-1に送信する(ステップS23)。なお、X2-GW500は、このような送信方法(第1の方法)に代えて、HeNB400-1からの第1の運用情報及び第2の運用情報を含むResource Status応答メッセージ(HeNB400-1の識別情報を含む)と、HeNB400-2からの第1の運用情報及び第2の運用情報を含むResource Status応答メッセージ(HeNB400-2の識別情報を含む)とを、それぞれ、Resource Status Informationメッセージに置き換えた上でMeNB200-1に送信する第2の方法を適用してもよい。この場合、HeNB-GW500は、上述した2つの方法を、自X2-GW500における動作状況に応じて適宜切り替えて運用するようにしてもよい。
 MeNB200-1は、X2-GW500から提供された、HeNB400-1のHeNB運用情報と、HeNB400-2のHeNB運用情報とを、それぞれ、各HeNB400の識別情報と対応付けて記憶する(ステップS24)。MeNB200-1は、図10に示した例と同様、HeNB400-1のHeNB運用情報/HeNB400-2のHeNB運用情報と、HeNB400-1及びHeNB400-2に関する無線品質の測定結果に基づいて、少なくともHeNB400-1及びHeNB400-2を含む複数のeNBについて優先順位を設定する。
 次に、図9に示す動作説明を再開する。図9において、X2-GW500は、ステップS101の後、所定のタイミングでHeNB400-1及びHeNB400-2から、それぞれ、上述したHeNB運用情報(更新された第1の運用情報)を含むResource Status Updateメッセージを取得できたならば(ステップS102)、該Resource Status Updateメッセージに含まれたHeNB運用情報(更新された第1の運用情報)を、先のステップS101の段階で記憶されていた第1の運用情報に上書きして記憶する。更に、X2-GW500は、ステップS102において取得されたHeNB400-1のHeNB運用情報とHeNB400-2のHeNB運用情報とを含んだResource Status UpdateメッセージをMeNB200-1に送信する(ステップS103)。なお、図9では、X2-GW500から送信されるResource Status Updateメッセージは一つのメッセージとして記載しているが、HeNB400-1からのResource Status Updateメッセージと、HeNB400-2からのResource Status UpdateメッセージをそれぞれMeNB200-1に送信してもよい。
 ステップS103においてX2-GW500からMeNB200-1に提供されたHeNB400-1及びHeNB400-2の各HeNB運用情報(更新された第1の運用情報)は、MeNB200-1において上書きされて記憶される。上書きされたHeNB400-1及びHeNB400-2の各HeNB運用情報は、その後、MeNB200-1における上述した優先順位の設定において利用される。
 ステップS101~ステップS103の処理(バックホール側での処理)とは独立して、UE100はステップS104を実行する。ここで、UE100は、予め、CSGに関するホワイトリスト(CSG-IDリスト)をメモリ150に記憶しているものとする。ステップS104は、UE100がSeNB候補となる候補セル(図9の例では、HeNB400-1とHeNB400-2を含む)からの同期信号を検出する処理である。候補セルは、CSGセル、ハイブリッドセル、及びオープンセルのうち、少なくとも何れか一つのセルである。なお、候補セルは、通信システムの運用ポリシーに従って設定されてよい。まず、UE100は、同期信号を受信すると、受信された同期信号(プライマリー同期信号及びセカンダリ同期信号)からPCIを特定する。UE100は、この段階で、同期信号の送り元のセルが、CSGセルかハイブリッドセルかオープンセルかを理解していない。次に、UE100は、PBCH(Physical Broadcast Channel)を受信し、PBCHに含まれるMIB(Master Information Block)を取得する。その後、UE100は、候補セルからPDSCH(Physical Broadcast Channel)によって報知された、System情報(System Information Block Type 1)を取得する(ステップS105)。図9の例では、UE100が、HeNB400-1及びHeNB400-2からSystem情報を取得するものとする。
 UE100は、ステップS105において、HeNB400-1/HeNB400-2から、System情報を取得すると、System情報に含まれた所定の情報から、HeNB400-1/HeNB400-2の管理するセル(候補セル)が、CSGセルかハイブリッドセルかオープンセルかを理解する。所定の情報は、CGI(Cell Global Identity)と、TAI(Tracking Area Identity)と、CSG-ID(HeNB400-1からはHeNB400-1を示すCSG-ID/HeNB400-2からはHeNB400-2を示すCSG-ID)等を含む。なお、CGIは、全世界でセルを一意に識別するための識別子である。TAIは、UEが位置登録を行うエリア単位を示し、1つ以上のセルで構成される。UE100は、System情報にCSG-IDが含まれていれば、HeNB400-1/HeNB400-2の管理するセルが、少なくともCSGセル又はハイブリッドセルであると理解する。なお、UE100は、System情報に、CSG-IDとともに、CSGに属さないユーザにも開放されたセルであることを示す情報(1ビット情報)が含まれていれば、HeNB400-1/HeNB400-2の管理するセルがハイブリッドセルであると理解する。また、UE100は、System情報にCSG-IDが含まれていても、CSGに属さないユーザにも開放されたセルであることを示す情報が含まれていなければ、HeNB400-1/HeNB400-2の管理するセルがCSGセルであると理解する。UE100は、System情報にCSG-IDが含まれていなければ、HeNB400-1/HeNB400-2の管理するセルがオープンセルであると理解する。図9の例では、候補セルがCGSセル及び/又はハイブリッドセルであるとして説明する。なお、候補セルがオープンセルの場合には、以降に説明するCSG-IDに関連した情報を除いた情報に基づいて所定の処理が実行される。
 UE100は、HeNB400-1/HeNB400-2から、System情報を取得した後、例えば、ハンドオーバ処理時に適用される所定の条件が満たされたことを契機として、HeNB400-1とHeNB400-2に関する無線品質(例えば、RSRP等)の測定を開始する。UE100は、少なくともHeNB400-1とHeNB400-2に関する無線品質を測定できたならば、その測定結果をMeNB200-1に報告するために、メジャーメントレポートを作成する。
 メジャーメントレポートは、HeNB400-1/HeNB400-2から取得したCGI、TAI、HeNB400-1/HeNB400-2に関するCSG-ID、HeNB400-1/HeNB400-2に関するCSGメンバーステータス、及びHeNB400-1/HeNB400-2についての無線品質の測定結果を含む。CSGメンバーステータスは、UE100が、CSGに属するか否かを示す情報である。UE100は、作成されたメジャーメントレポートをMeNB200-1に送信する(ステップS106)。MeNB200-1は、UE100からメジャーメントレポートを取得する(ステップS106)。MeNB200-1は、図12に示す処理を実行する。
 図12において、MeNB200-1は、メジャーメントレポートを取得すると(ステップS106)、CSGセル/ハイブリッドセルを対象にしたSeNB Addition処理を開始するか否か決定する(ステップS107-1)。ステップS107-1は、MeNB200-1が、メジャーメントレポートに含まれたHeNB400-1及びHeNB400-2に関する各CSG-IDが、自MeNBにおいて予め記憶していたCSG-IDのリスト(ホワイトリスト)に含まれているか否かを確認することによって行われる。
 ステップS107-1において、MeNB200-1は、HeNB400-1とHeNB400-2に関するCSG-IDが、予め記憶していたホワイトリストに含まれていると理解できたならば、CSGセル/ハイブリッドセルを対象にしたSeNB Addition処理を開始すると決める。その場合、MeNB200-1は、X2-GW500に、SeNB Addition要求メッセージを送る(ステップS107)。SeNB Addition要求メッセージは、図9に示すように、HeNB400-1/HeNB400-2に関するCSGメンバーステータスと、HeNB400-1/HeNB400-2についての無線品質の測定結果と、を含む。CSGメンバーステータスと無線品質の測定結果は、ステップS106におけるメジャーメントレポートに含まれていた情報である。MeNB200-1は、X2-GW500に、SeNB Addition要求メッセージを送るとき、X2-GWを送り先として設定し、X2-GWよりも先に存在するHeNB400を送り先に設定しない。つまり、MeNB200-1は、SeNB Addition要求メッセージの送り先となるHeNB400を決めない。これにより、MeNB200-1の処理負荷を減らすことができる。
 ステップS107-1において、MeNB200-1は、HeNB400-1/HeNB400-2に関するCSG-IDが、予め記憶していたホワイトリストに含まれていなかったならば、X2-GW500に、SeNB Addition要求メッセージを送らない(ステップS107-2)。
 なお、ステップS107-01において、MeNB200-1は、先に説明した方法に代えて、次の方法(第2方法)を適用してもよい。第2方法では、MeNB200-1は、図10に示すステップS14(図11に示すステップS23)において、X2-GWから、HeNB400-1/HeNB400-2に関する上述した第2の運用情報を取得できていたならば、第2の運用情報に基づいてSeNB Addition処理を開始する。この処理は、MeNB200-1の運用ポリシーに従って実行される。例えば、MeNB200-1は、運用上、SeNBの候補として少なくともハイブリッドモードのHeNBを望むならば、HeNB400-1/HeNB400-2に関する第2の運用情報の一部又は全部がハイブリッドモードである場合にSeNB Addition処理を開始する。一方で、MeNB200-1は、運用上、SeNBの候補として少なくともクローズドモードのHeNBを望むならば、HeNB400-1/HeNB400-2に関する第2の運用情報の一部又は全部がクローズドモードである場合にSeNB Addition処理を開始する。
 次に、図9に示す動作説明を再開する。図9において、X2-GW500は、ステップS107においてMeNB200-1からSeNB Addition要求メッセージを取得すると、ステップS108を実行する。ステップS108では、X2-GW500が、ステップS101乃至ステップS102において取得して記憶していたHeNB400-1/HeNB400-2に関するHeNB運用情報(第1の運用情報)と、SeNB Addition要求メッセージに含まれていたHeNB400-1/HeNB400-2に関する無線品質の測定結果に基づいて、MeNB200-1から受け取ったSeNB Addition要求メッセージの送り先となるHeNB400を決定する。この場合、X2-GW500は、HeNB運用情報(第1の運用情報)に対応するHeNB400の各々(HeNB400-1/HeNB400-2)について優先順位を設定する。
 優先順位は、例えば、以下に示すポリシーによって設定される。 
 (1)無線品質が他のHeNBよりも相対的に良く、収容可能であるUE数が多いHeNBほど優先順位を高くする。 
 (2)無線品質が他のHeNBよりも相対的に良く、現在接続されているUE数の少ないHeNBほど優先順位を高くする。 
 (3)無線品質が他のHeNBよりも相対的に良く、使用されている無線リソースブロック数が少ないHeNBほど優先順位を高くする。 
 (4)無線品質が他のHeNBよりも相対的に良く、ハードウェアの負荷度合が小さいHeNBほど優先順位を高くする。 
 なお、上記(1)~(4)のポリシーを複合して適用してもよい。
 X2-GW500は、設定された優先順位に従って、優先順位の高いHeNB400(図9ではHeNB400-1とする)からSeNB Addition要求メッセージを送信する(ステップS109)。
 X2-GW500は、SeNB Addition要求メッセージの送り先であるHeNB400-1から、SeNB Addition拒否メッセージ(HeNB400-1の識別情報{セルID等}を含む)を取得したならば(ステップS110)、優先順位に従って、次の順位のHeNB400(図9ではHeNB400-2とする)に対してSeNB Addition要求メッセージを送信する(ステップS110)。X2-GW500は、SeNB Addition要求メッセージの送信先のHeNB400-2からSeNB Addition肯定応答メッセージ(HeNB400-2の識別情報{セルID等}を含む)を取得したならば(ステップS112)、SeNB Addition要求メッセージの送信処理を停止する。つまり、X2-GW500は、SeNB Addition要求メッセージの送信先のHeNB400-2からSeNB Addition肯定応答メッセージを受け取るまで、優先順位に基づいてSeNB Addition要求メッセージの送信処理を続行する。なお、X2-GW500は、eNB Addition要求メッセージの送信先のHeNB400-2から一定閾値以上のNACKを受信した場合にSeNB Addition FailureメッセージをMeNB200-1に送信してもよい。この場合の閾値の設定方法は、SeNB Addition動作に要するLatencyや、MeNB200-1からUE100の移動速度を取得できたならば、そのUE100の移動速度等を考慮して設定されてもよい。
 X2-GW500は、HeNB400-2からSeNB Addition肯定応答メッセージを受け取ると(ステップS112)、そのSeNB Addition肯定応答メッセージを、MeNB200-1に送る(ステップS113)。
 MeNB200-1は、X2-GW500からSeNB Addition肯定応答メッセージを取得すると、UE100に対して、SeNBの候補となるHeNB400-2に関するCSG-IDを含んだRRC Connection Reconfigurationメッセージを送る(ステップS114)。
 UE100は、MeNB200-1からRRC Connection Reconfigurationメッセージを取得すると、該UE100におけるSeNBのための設定を実行する。UE100は、設定が完了すると、MeNB200-1にRRC Connection Reconfiguration Completeメッセージを送信する(ステップS115)。
 MeNB200-1は、UE100からRRC Connection Reconfiguration Completeメッセージを取得すると、X2-GW500を介してHeNB400-2にSeNB Reconfiguration Completeメッセージを送信する(ステップS116)。なお、MeNB200-1は、HeNB400-2との間にX2インターフェイスを構築しているならば、X2-GW500を介さずに、そのX2インターフェイスを介して直接RRC Connection Reconfiguration CompleteメッセージをHeNB400-2に送ってもよい。
 以上の処理が完了すると、UE100とHeNB400-2との間でRandom Access処理が実行される(ステップS117)。これにより、UE100は、MeNB200-1をマスタ基地局、HeNB400-2をセカンダリ基地局とした二重接続方式による通信を実行できる。
 (第1実施形態のまとめ) 
 上述した第1実施形態では、X2-GW500が、HeNB400-1/HeNB400-2に関するHeNB運用情報(第1の運用情報)と、HeNB400-1/HeNB400-2に関する無線品質の測定結果に基づいて、SeNB Addition要求メッセージの送り先となるHeNB400を決定する。つまり、X2-GW500が、UE100のために、HeNB400の運用状況や無線品質を考慮して、SeNBとして適切なHeNB400を決めることができる。これにより、HeNB400がSeNBの候補として選択されるシナリオにおいて、SeNB Additionプロシージャが失敗する確立が高くなるという事態を回避することが可能となる。また、X2-GW500が、MeNB200-1に代わって、UE100にとって適切なSeNBを特定することができるので、MeNB200-1によるSeNB Additionプロシージャのための処理負荷を低減できる。
 [第2実施形態] 
 次に、図13及び図14を用いて、第2実施形態を説明する。第2実施形態については、第1実施形態との相違点を主として説明する。
 第1実施形態では、X2-GW500が、ステップS108において、HeNB運用情報(第1の運用情報)に対応するHeNB400の各々(HeNB400-1/HeNB400-2)について優先順位を設定し、優先順位の高いHeHB400から順次SeNB Addition要求メッセージを送信していたが、第2実施形態は、優先順位の最上位から所定順位までのHeNB400(図13及び図14ではHeNB400-1とHeNB400-2)に対して、同時に一斉にSeNB Addition要求メッセージを送信する(S109A)。なお、X2-GW500は、ステップS108の段階で優先順位を設定せずに、HeNB運用情報(第1の運用情報)に対応するHeNB400の全てに対して一斉にSeNB Addition要求メッセージを送信してもよい。
 X2-GW500が、複数のHeNB400に対して一斉にSeNB Addition要求メッセージを送信した後は、図13及び図14に示す処理が想定される。図13は、X2-GW500が、一つのHeNB400(図13では、HeNB400-2)から、SeNB Addition肯定応答メッセージを取得した場合の動作を示す。図14は、X2-GW500が、複数のHeNB400(図14では、HeNB400-1とHeNB400-2)から、それぞれSeNB Addition肯定応答メッセージを取得した場合の動作を示す。
 図13において、X2-GW500は、HeNB400-1からSeNB Addition拒否メッセージ(HeNB400-1の識別情報{セルID等}を含む)を取得すると(ステップS110)、そのSeNB Addition拒否メッセージに対しては特に反応しない。X2-GW500は、HeNB400-2からSeNB Addition肯定応答メッセージ(HeNB400-2の識別情報{セルID等}を含む)を取得すると、そのSeNB Addition肯定応答メッセージを、MeNB200-1に送る(ステップS113)。その後の動作は、第1実施形態を同様である。
 図14において、X2-GW500は、HeNB400-1/HeNB400-2からそれぞれSeNB Addition肯定応答メッセージ(各HeNB400の識別情報{セルID等}を含む)を取得すると(ステップS112)、ステップS201を実行する。ステップS201では、X2-GW500が、ステップS101乃至ステップS102において取得して記憶していたHeNB400-1/HeNB400-2に関するHeNB運用情報(第1の運用情報)と、SeNB Addition要求メッセージに含まれていたHeNB400-1/HeNB400-2に関する無線品質の測定結果に基づいて、どのHeNB400(HeNB400-1/HeNB400-2)のSeNB Addition肯定応答メッセージをMeNB200-1に送るべきかを判断し、その対象となるHeNB400を選択(特定)する。図14では、HeNB400-2が選択されたものとする。なお、X2-GW500は、ステップS201を実行するにあたり、ステップS108において用いた優先順位を利用するのが望ましい。
 X2-GW500は、ステップS201でHeNB400-2を選択すると、HeNB400-2から取得していたSeNB Addition肯定応答メッセージ(HeNB400-2の識別情報{セルID等}を含む)をMeNB200-1に送る(ステップS113)。ステップS113から後の動作は、第1実施形態と同様である。一方で、ステップS201において選択されなかったHeNB400-1には、SeNB Release要求メッセージを送る(ステップS202)。
 なお、X2-GW500は、ステップS109Aにおいて、複数のHeNB400に対して同時に一斉にSeNB Addition要求メッセージを送信してから、所定時間の間に取得された複数のSeNB Addition肯定応答メッセージに対応した複数のHeNB400を対象にしてステップS201を実行してもよい。この場合、所定時間の間に一つのHeNB400のみからSeNB Addition肯定応答メッセージが返ってこなかったならば、そのSeNB Addition肯定応答メッセージをMeNB200-1に送るようにしてもよい。
 (第2実施形態のまとめ) 
 上述した第2実施形態は、第1実施形態と同様に、HeNB400がSeNBの候補として選択されるシナリオにおいて、SeNB Additionプロシージャが失敗する確立が高くなるという事態を回避することが可能となる。また、X2-GW500が、MeNB200-1に代わって、UE100にとって適切なSeNBを特定することができるので、MeNB200-1によるSeNB Additionプロシージャのための処理負荷を低減できる。
 [その他の実施形態] 
 上述した各実施形態では、X2-GW500が、MeNB200-1に代わって、UE100にとって適切なSeNBを特定していたが、X2-GW以外のネットワーク装置(例えば、MMEやHeNB-GW等)が実行できるようにしてもよい。
 上述した実施形態では、移動通信システムの一例としてLTEシステムを説明したが、LTEシステムに限定されるものではなく、LTEシステム以外のシステムに本発明を適用してもよい。
 [相互参照]
 日本国特許出願第2015-100130号(2015年5月15日出願)の全内容が参照により本願明細書に組み込まれている。
 本発明は、通信分野において有用である。

Claims (19)

  1.  二重接続方式による通信を実行可能な移動通信システムにおけるネットワーク装置であって、
     前記移動通信システムは、
      ユーザ端末とRRC接続を確立する第1基地局と、
      前記ユーザ端末に追加的な無線リソースを提供可能な第2基地局と、
      前記第1基地局及び前記第2基地局にそれぞれ接続された前記ネットワーク装置と、を有し、
     前記ネットワーク装置は、制御部を備え、
     前記制御部は、複数の前記第2基地局の運用状態を示す運用情報を収集する第1処理と、
     前記ユーザ端末が前記第1基地局に報告した前記第2基地局に関する無線品質の測定結果を前記第1基地局から取得する第2処理と、
     前記収集された運用情報及び前記取得された測定結果に基づいて、前記第1基地局から受け取った第2基地局追加要求メッセージの送り先となる前記第2基地局を決定する第3処理と、
     前記第3処理において決定された前記第2基地局に対して、前記第2基地局追加要求メッセージを送る第4処理と、
     前記第2基地局追加要求メッセージの送り先である前記第2基地局から、前記第2基地局追加要求メッセージに対する肯定応答メッセージを取得した場合には、当該肯定応答メッセージを前記第1基地局に送る第5処理と、を実行するネットワーク装置。
  2.  前記制御部は、前記第1処理において複数の前記第2基地局の運用情報を収集できたならば、収集された前記運用情報に対応する前記第2基地局の各々について優先順位を設定し、優先順位の高い前記第2基地局から前記第3処理を実行する前記請求項1に記載のネットワーク装置。
  3.  前記制御部は、前記第2基地局から前記肯定応答メッセージを受け取るまで、前記優先順位に基づいて前記第3処理を続行する前記請求項2記載のネットワーク装置。
  4.  前記制御部は、前記第3処理において、前記第2基地局を複数決定した場合には、前記第4処理において、前記決定された複数の第2基地局に対して一斉に前記第2基地局追加要求メッセージを送り、
     前記制御部は、前記第5処理において、前記複数の第2基地局から、前記肯定応答メッセージをそれぞれ取得した場合には、前記収集された運用情報に基づいて、当該複数の第2基地局の中から、前記肯定応答メッセージを前記第1基地局に送る対象の前記第2基地局を選択し、
     前記制御部は、該選択された前記第2基地局についての前記肯定応答メッセージを前記第1基地局に送る前記請求項1記載のネットワーク装置。
  5.  前記制御部は、前記第1処理において収集された前記第2基地局の運用情報を記憶し、且つ、前記運用情報を前記第1基地局へ送る処理を更に実行する前記請求項1記載のネットワーク装置。
  6.  前記運用情報は、前記第2基地局の負荷に関する情報、あるいは、前記第2基地局の運用モードを示す情報である前記請求項1記載のネットワーク装置。
  7.  前記第2基地局の負荷に関する情報は、前記第2基地局が収容可能であるユーザ端末の数、前記第2基地局に現在接続されているユーザ端末の数、前記第2基地局において使用されている無線リソースブロック数、及び前記第2基地局のハードウェアの負荷度合のうち、少なくとも一つの情報である前記請求項6記載のネットワーク装置。
  8.  前記第2基地局はホーム基地局であり、
     前記第2基地局の運用モードを示す情報は、前記第2基地局の運用モードが、ハイブリッドモード、クローズドモード、及びオープンモードのうち、何れかのモードであるかを示す前記請求項6に記載のネットワーク装置。
  9.  二重接続方式による通信を実行可能な移動通信システムにおける第1基地局であって、
     前記移動通信システムは、
      ユーザ端末とRRC接続を確立する前記第1基地局と、
      前記ユーザ端末に追加的な無線リソースを提供可能な第2基地局と、
      前記第1基地局及び前記第2基地局にそれぞれ接続された前記ネットワーク装置と、を有し、
     前記第1基地局は、制御部を備え、
     前記制御部は、前記ユーザ端末から、前記第2基地局についての無線品質の測定結果を取得する第1処理と、
     前記第2基地局についての無線品質の測定結果を取得した場合には、前記ネットワーク装置に、前記測定結果を含む第2基地局追加要求メッセージを送信する第2処理と、
     前記ネットワーク装置から、前記第2基地局追加要求メッセージに対する前記第2基地局の肯定応答メッセージを受信する第3処理と、
     前記ユーザ端末に対して、前記肯定応答メッセージの送信元である前記第2基地局を用いた前記二重接続方式のための構成情報を送信する第4処理と、を実行する第1基地局。
  10.  前記制御部は、前記ネットワーク装置を介して、複数の前記第2基地局の運用状態を示す運用情報を取得し、
     前記制御部は、該取得された運用情報と前記測定結果に基づいて、前記第1基地局が第2基地局追加要求メッセージを送る場合における、該第2基地局追加要求メッセージの送り先となる前記第2基地局の優先順位を設定する請求項9に記載の第1基地局。
  11.  前記制御部は、前記ネットワーク装置を介して、複数の前記第2基地局の運用状態を示す運用情報を取得し、
     前記制御部は、該取得された運用情報と前記測定結果に基づいて、前記第2基地局追加要求メッセージを前記ネットワーク装置へ送信するか否かを判断し、
     前記制御部は、前記第2基地局要求メッセージを送信すると決めた場合に前記2処理を実行する前記請求項9に記載の第1基地局。
  12.  前記運用情報は、前記第2基地局の負荷に関する情報、あるいは、前記第2基地局の運用モードを示す情報である前記請求項10に記載の第1基地局。
  13.  前記第2基地局の負荷に関する情報は、前記第2基地局に現在接続されているユーザ端末の数、前記第2基地局が収容可能であるユーザ端末の数、前記第2基地局において使用されている無線リソースブロック数、及び前記第2基地局のハードウェアの負荷度合のうち、少なくとも一つの情報である前記請求項12に記載の第1基地局。
  14.  前記第2基地局はホーム基地局であり、
     前記第2基地局の運用モードを示す情報は、前記第2基地局の運用モードが、ハイブリッドモード、クローズドモード、及びオープンモードのうち、何れかのモードであるかを示す前記請求項13に記載の第1基地局。
  15.  前記制御部は、前記第1処理において、前記ユーザ端末から、CSG(Closed Subscriber Group)セル識別子を前記測定結果とともに取得し、
     前記第2処理において、前記CSGセル識別子が、前記ネットワーク装置から予め取得していたCSGセル識別子リストに含まれているならば、前記第2基地局追加要求メッセージを、前記ネットワーク装置に送信する処理を実行する前記請求項9に記載の第1基地局。
  16.  二重接続方式による通信を実行可能な移動通信システムにおける第2基地局であって、
     前記移動通信システムは、
      ユーザ端末とRRC接続を確立する第1基地局と、
      前記ユーザ端末に追加的な無線リソースを提供可能な前記第2基地局と、
      前記第1基地局及び前記第2基地局にそれぞれ接続された前記ネットワーク装置と、を有し、
     前記第2基地局は、制御部を備え、
     前記制御部は、前記ネットワーク装置に、該第2基地局の運用状態を示す運用情報を送信する第1処理と、
     前記運用情報を送信した後、前記ネットワーク装置から、第2基地局追加要求メッセージを取得する第2処理と、
     前記第2基地局追加要求メッセージに対する肯定応答メッセージを、前記ネットワーク装置に送信する第3処理と、を実行する第2基地局。
  17.  前記運用情報は、前記第2基地局の負荷に関する情報、あるいは、前記第2基地局の運用モードを示す情報である前記請求項16に記載の第2基地局。
  18.  前記第2基地局の負荷に関する情報は、前記第2基地局が収容可能であるユーザ端末の数、前記第2基地局に現在接続されているユーザ端末の数、前記第2基地局において使用されている無線リソースブロック数、及び前記第2基地局のハードウェアの負荷度合のうち、少なくとも一つの情報である前記請求項16に記載の第2基地局。
  19.  前記第2基地局はホーム基地局であり、
     前記第2基地局の運用モードを示す情報は、前記第2基地局の運用モードが、ハイブリッドモード、クローズドモード、及びオープンモードのうち、何れかのモードであるかを示す前記請求項16に記載の第2基地局。
PCT/JP2016/063890 2015-05-15 2016-05-10 ネットワーク装置及び基地局 WO2016185946A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017519133A JP6971148B2 (ja) 2015-05-15 2016-05-10 ネットワーク装置及び基地局
EP16796340.4A EP3297315A4 (en) 2015-05-15 2016-05-10 Network device and base station
US15/573,102 US10524253B2 (en) 2015-05-15 2016-05-10 Network apparatus and base station

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015100130 2015-05-15
JP2015-100130 2015-05-15

Publications (1)

Publication Number Publication Date
WO2016185946A1 true WO2016185946A1 (ja) 2016-11-24

Family

ID=57320253

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/063890 WO2016185946A1 (ja) 2015-05-15 2016-05-10 ネットワーク装置及び基地局

Country Status (4)

Country Link
US (1) US10524253B2 (ja)
EP (1) EP3297315A4 (ja)
JP (1) JP6971148B2 (ja)
WO (1) WO2016185946A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019201352A (ja) * 2018-05-17 2019-11-21 日本電信電話株式会社 無線通信システム、中継通信装置及び通信制御方法
JP2020507255A (ja) * 2017-01-26 2020-03-05 華為技術有限公司Huawei Technologies Co.,Ltd. 目標セルアクセス方法及び装置
US10728844B2 (en) 2016-09-29 2020-07-28 British Telecommunications Public Limited Company Cellular telecommunications network
US11039388B2 (en) 2019-07-29 2021-06-15 British Telecommunications Public Limited Company Cellular telecommunications network
US11470548B2 (en) 2016-09-29 2022-10-11 British Telecommunications Public Limited Company Cellular telecommunications network
US11558854B2 (en) 2017-07-18 2023-01-17 British Telecommunications Public Limited Company Cellular telecommunications network
US11683752B2 (en) 2020-06-18 2023-06-20 British Telecommunications Public Limited Company Cellular telecommunications network
US11812320B2 (en) 2019-07-29 2023-11-07 British Telecommunications Public Limited Company Initiation of transfer of user equipment to base station according to visual data

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11240879B2 (en) * 2017-01-06 2022-02-01 Parallel Wireless, Inc. X2 brokering with aggregation optimization
US10757621B2 (en) * 2017-03-22 2020-08-25 Ofinno, Llc Conditional handover execution
US10512036B2 (en) * 2017-03-22 2019-12-17 Ofinno, Llc Secondary base station change
WO2020001451A1 (zh) * 2018-06-27 2020-01-02 华为技术有限公司 一种通信方法及装置
CN112956242A (zh) * 2018-12-19 2021-06-11 Oppo广东移动通信有限公司 一种小区选择或重选方法及装置、终端

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013141086A1 (ja) * 2012-03-19 2013-09-26 京セラ株式会社 通信制御方法、基地局、ホーム基地局、及びゲートウェイ装置
WO2014163143A1 (ja) * 2013-04-05 2014-10-09 京セラ株式会社 移動通信システム及びユーザ端末

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101677455A (zh) * 2008-09-19 2010-03-24 三星电子株式会社 协助网络寻找目的节点的方法
CN101860940A (zh) * 2009-04-10 2010-10-13 北京三星通信技术研究有限公司 一种进行接入控制的方法和系统以及无线资源管理实体
JP4648474B2 (ja) * 2009-08-18 2011-03-09 株式会社エヌ・ティ・ティ・ドコモ 移動通信方法
JP5654496B2 (ja) * 2010-01-15 2015-01-14 パナソニック インテレクチュアル プロパティ コーポレーション オブアメリカPanasonic Intellectual Property Corporation of America ハンドオーバ前処理システム、移動端末、基地局
WO2011090556A1 (en) * 2010-01-19 2011-07-28 Verinata Health, Inc. Methods for determining fraction of fetal nucleic acid in maternal samples
US20120023029A1 (en) * 2010-07-20 2012-01-26 Geibel Dean E Method to Capture Direct Patent Infringement By Indirect Infringement Acts
WO2012043523A1 (ja) * 2010-10-01 2012-04-05 三菱電機株式会社 通信システム
US8831608B2 (en) * 2010-10-25 2014-09-09 Acer Incorporated Apparatuses, systems, and methods for inbound handover enhancement
KR101918734B1 (ko) * 2011-07-13 2019-02-08 한국전자통신연구원 모바일 방송 서비스를 위한 시스템 및 방법, 컨트롤러 및 컨트롤러의 구동 방법, 프로그램을 기록한 컴퓨터로 읽을 수 있는 매체
EP2575391B1 (en) * 2011-09-30 2016-07-20 Telefonaktiebolaget LM Ericsson (publ) Neighbor cell selection based on cell access mode for X2 based handover in a E-UTRAN
TWI590680B (zh) * 2011-09-30 2017-07-01 內數位專利控股公司 對在區域網路與另一網路之間移動的無線傳輸/接收單元(wtru)進行切換的方法及存取點(ap)
WO2013167589A1 (en) * 2012-05-11 2013-11-14 Telefonaktiebolaget L M Ericsson (Publ) Home base station location information
US8750181B2 (en) * 2012-05-14 2014-06-10 Blackberry Limited Maintaining MBMS continuity
CN103716787B (zh) * 2012-09-29 2020-06-23 北京三星通信技术研究有限公司 一种支持对家用基站进行验证的方法
US20160286449A1 (en) 2013-03-22 2016-09-29 Lg Electronics Inc. Method for performing handover in wireless access system supporting double connection mode, and apparatus supporting same
CN104349443B (zh) * 2013-08-09 2019-02-12 电信科学技术研究院 一种上行功率控制方法和装置
CN104185227B (zh) 2014-04-14 2020-05-15 中兴通讯股份有限公司 一种双连接架构下的csg接入控制方法及系统
CN107005866B (zh) * 2014-11-06 2020-04-07 Lg 电子株式会社 在无线通信系统中通过终端否定传输的方法和设备
MY192121A (en) * 2015-01-30 2022-07-28 Ericsson Telefon Ab L M Mobility signalling for user equipment using dual connectivity

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013141086A1 (ja) * 2012-03-19 2013-09-26 京セラ株式会社 通信制御方法、基地局、ホーム基地局、及びゲートウェイ装置
WO2014163143A1 (ja) * 2013-04-05 2014-10-09 京セラ株式会社 移動通信システム及びユーザ端末

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "Open issues on support of CSG for DC", 3GPP TSG-RAN WG3#87BIS R3-150751, 20 April 2015 (2015-04-20), XP050937362 *
See also references of EP3297315A4 *
ZTE ET AL.: "CSG Support in dual connectivity", 3GPP TSG-RAN WG3#87 R3-150237, 9 February 2015 (2015-02-09), XP050936990 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10728844B2 (en) 2016-09-29 2020-07-28 British Telecommunications Public Limited Company Cellular telecommunications network
US11470548B2 (en) 2016-09-29 2022-10-11 British Telecommunications Public Limited Company Cellular telecommunications network
JP2021185665A (ja) * 2017-01-26 2021-12-09 華為技術有限公司Huawei Technologies Co., Ltd. 目標セルアクセス方法及び装置
JP2020507255A (ja) * 2017-01-26 2020-03-05 華為技術有限公司Huawei Technologies Co.,Ltd. 目標セルアクセス方法及び装置
US10945194B2 (en) 2017-01-26 2021-03-09 Huawei Technologies Co., Ltd. Target cell access method and device
US11849385B2 (en) 2017-01-26 2023-12-19 Huawei Technologies Co., Ltd. Target cell access method and device
JP7425024B2 (ja) 2017-01-26 2024-01-30 華為技術有限公司 目標セルアクセス方法及び装置
US11558854B2 (en) 2017-07-18 2023-01-17 British Telecommunications Public Limited Company Cellular telecommunications network
JP2019201352A (ja) * 2018-05-17 2019-11-21 日本電信電話株式会社 無線通信システム、中継通信装置及び通信制御方法
WO2019220984A1 (ja) * 2018-05-17 2019-11-21 日本電信電話株式会社 無線通信システム、中継通信装置及び通信制御方法
US11039388B2 (en) 2019-07-29 2021-06-15 British Telecommunications Public Limited Company Cellular telecommunications network
US11812320B2 (en) 2019-07-29 2023-11-07 British Telecommunications Public Limited Company Initiation of transfer of user equipment to base station according to visual data
US11683752B2 (en) 2020-06-18 2023-06-20 British Telecommunications Public Limited Company Cellular telecommunications network

Also Published As

Publication number Publication date
US20180146475A1 (en) 2018-05-24
JP6971148B2 (ja) 2021-11-24
EP3297315A4 (en) 2018-11-14
US10524253B2 (en) 2019-12-31
JPWO2016185946A1 (ja) 2018-03-01
EP3297315A1 (en) 2018-03-21

Similar Documents

Publication Publication Date Title
JP6971148B2 (ja) ネットワーク装置及び基地局
JP6509990B2 (ja) 通信システム、基地局及びプロセッサ
US11395196B2 (en) Base station and user terminal
JP6668378B2 (ja) ワイヤレス通信ネットワークにおけるリレー接続を管理するためのシステム、方法、および装置
JP6253833B2 (ja) ユーザ端末、プロセッサ、及び方法
JP6280669B1 (ja) 基地局、方法、及びシステム
JP6272444B2 (ja) 通信方法、基地局、及びプロセッサ
JP6618801B2 (ja) 通信制御方法及びユーザ端末
US10327181B2 (en) Communication control method, base station, and user terminal
WO2015125716A1 (ja) 移動体通信システム、基地局、及びユーザ端末
WO2014157398A1 (ja) 通信制御方法及びプロセッサ
WO2015093569A1 (ja) 通信制御方法
JPWO2017130743A1 (ja) 無線端末、通信装置及び基地局
JPWO2015076345A1 (ja) 通信制御方法、ユーザ端末、及びプロセッサ
WO2015046104A1 (ja) 基地局及びユーザ端末
WO2020145241A1 (ja) 通信制御方法
WO2014161192A1 (zh) 一种数据的传输方法、通信设备和通信系统
WO2015046105A1 (ja) 通信制御方法、基地局、及びユーザ端末
JP6538026B2 (ja) ネットワーク選択制御方法、基地局、及びユーザ端末
WO2015080040A1 (ja) 通信制御方法及び基地局
WO2015046138A1 (ja) 基地局及びユーザ端末

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16796340

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017519133

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15573102

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016796340

Country of ref document: EP