WO2016185149A1 - Procede de soudure avec apport de matiere et module electronique de puissance realise par ce procede - Google Patents

Procede de soudure avec apport de matiere et module electronique de puissance realise par ce procede Download PDF

Info

Publication number
WO2016185149A1
WO2016185149A1 PCT/FR2016/051202 FR2016051202W WO2016185149A1 WO 2016185149 A1 WO2016185149 A1 WO 2016185149A1 FR 2016051202 W FR2016051202 W FR 2016051202W WO 2016185149 A1 WO2016185149 A1 WO 2016185149A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
thickness
solder
melting temperature
assembly brick
Prior art date
Application number
PCT/FR2016/051202
Other languages
English (en)
Inventor
Ky Lim Tan
Jean-Michel Morelle
Serge LAVRENTIEFF
Original Assignee
Valeo Equipements Electriques Moteur
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Equipements Electriques Moteur filed Critical Valeo Equipements Electriques Moteur
Publication of WO2016185149A1 publication Critical patent/WO2016185149A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/06Soldering, e.g. brazing, or unsoldering making use of vibrations, e.g. supersonic vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/0008Soldering, e.g. brazing, or unsoldering specially adapted for particular articles or work
    • B23K1/0016Brazing of electronic components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/10Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating making use of vibrations, e.g. ultrasonic welding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies
    • H01L24/75Apparatus for connecting with bump connectors or layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices
    • B23K2101/42Printed circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29075Plural core members
    • H01L2224/2908Plural core members being stacked
    • H01L2224/29082Two-layer arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29075Plural core members
    • H01L2224/2908Plural core members being stacked
    • H01L2224/29083Three-layer arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29101Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • H01L2224/29111Tin [Sn] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29139Silver [Ag] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29144Gold [Au] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29147Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/325Material
    • H01L2224/32505Material outside the bonding interface, e.g. in the bulk of the layer connector
    • H01L2224/32507Material outside the bonding interface, e.g. in the bulk of the layer connector comprising an intermetallic compound
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/831Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus
    • H01L2224/83101Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus as prepeg comprising a layer connector, e.g. provided in an insulating plate member
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83192Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on another item or body to be connected to the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/832Applying energy for connecting
    • H01L2224/83201Compression bonding
    • H01L2224/83203Thermocompression bonding, e.g. diffusion bonding, pressure joining, thermocompression welding or solid-state welding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/832Applying energy for connecting
    • H01L2224/83201Compression bonding
    • H01L2224/83205Ultrasonic bonding
    • H01L2224/83206Direction of oscillation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/832Applying energy for connecting
    • H01L2224/83201Compression bonding
    • H01L2224/83205Ultrasonic bonding
    • H01L2224/83207Thermosonic bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/83801Soldering or alloying
    • H01L2224/8381Soldering or alloying involving forming an intermetallic compound at the bonding interface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/83801Soldering or alloying
    • H01L2224/8382Diffusion bonding
    • H01L2224/8383Solid-solid interdiffusion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19107Disposition of discrete passive components off-chip wires

Definitions

  • the present invention relates to a welding process with material supply for the realization of an electronic power module.
  • High lead solder has a melting point around 296 ° C which also has the disadvantage of reducing the life of a power module using semiconductors operating at a temperature above 200 ° C.
  • its brazing temperature profile is around 320 ° C, which requires choosing an expensive plastic material holding high temperature, such as PEEK polymer (acronym for "PolyEtherEtherKetone", that is to say polyetheretherketone) ) for overmolding a housing.
  • lead-free soldering used in electronics in general, does not meet the new requirements of power electronics applications in the automotive industry. Apart from a gold alloy, lead-free solders are not stable. Affordable lead free solders are generally high tin content and have a solidus temperature below 250 ° C (237 ° C for SnSb5, 223 ° C for SnAg3Cu1 Sb10). These solders do not meet the reliability requirements in a brazed joint subjected to high thermomechanical stresses.
  • Standard diffusion brazing which involves introducing a mounting bracket into a reflow oven to diffuse solder into a solid metal layer under a defined load, is also compelling because it requires a high solder cycle time. and it heats the entire housing, including the overmolded plastic, to a temperature profile around 250 ° C. It has also been proposed a thermo-ultrasonic method applied to a "Flip Chip” type assembly, that is to say consisting in a transfer of a semiconductor chip on a substrate by solder balls, but that it turns out to be complex to implement.
  • Thermo-compression welding processes are also known for the production of solder with material feed. But they require either high application pressure (30 MPa at 40 MPa for micrometric silver sintering) or high assembly cycle time for standard diffusion brazing.
  • thermo-compression process for diffusion brazing has been described by the company VALEO ELECTRONIQUE AND LIAISON SYSTEMS in the French patent application FR2905883 so as to improve a transfer of heat between the semiconductor chip and the substrate, and to reduce a compressive force so as not to damage this chip.
  • the temperature remains higher than a solder melting temperature, which can damage the casing of a power module made in an IML technology (acronym for "Insulated Molded Lead Frame” in English terminology, that is, “Isolated Molded Connection Grid”).
  • the present invention therefore aims to overcome the disadvantages of soldering processes of semiconductor chips known for the realization of electronic power modules.
  • It relates to a material-fed welding process for transferring a semiconductor chip to a substrate of the type in which an assembly brick is formed comprising:
  • the assembly brick further comprises a second layer having a second thickness of a second metal having a second high melting temperature selected from a second group comprising silver, copper, and gold, deposited on the substrate.
  • the assembly brick further comprises a preform formed by depositing the first layer on each side of a strip having a second thickness of a second metal having a second high melting temperature selected from a second group comprising silver, copper, and gold.
  • the first thickness is between 5 ⁇ and 10 ⁇
  • the second thickness is between 5 ⁇ and 10 ⁇
  • thermosonic temperature is lower than the first melting temperature, preferably between 150 ° C. and 210 ° C.
  • the pressure load is between 200 N and 400 N
  • the ultrasonic frequency is between 20 kHz and 80 kHz.
  • an ultrasonic power is between 20 W and 80 W, and a soldering time is less than one minute.
  • the substrate is copper, or of DBC or AMB type.
  • the invention also relates to an electronic power module of the type of those made in IML technology comprising a substrate and at least one semiconductor chip.
  • this semiconductor chip is transferred to the substrate by the solder method of material described above.
  • Figure 1 illustrates the principle of the soldering process with material supply according to the invention.
  • FIGS. 2a and 2b show schematically an assembly block formed respectively in the first and second embodiments of the method according to the invention
  • FIG. 3 shows an example of application of the material-supply welding method according to the invention to a power module produced using IML technology.
  • the principle of the process according to the invention is a diffusion brazing of the pairs of alloys (silver / tin), (copper / tin) and (gold / tin) by ultrasonic thermo-compression of the semiconductor chip 1 on the substrate 2, as shown in Figure 1.
  • An assembly brick comprising:
  • DBC direct Bonded Copper
  • AMB active Metal Brazing
  • a first tin layer 3 (which has a first melting temperature of 231.9 ° C.)
  • a second layer 4 of silver, copper or gold, metals having a second high melting point (respectively 960 ° C., 1083 ° C., 1063 ° C.);
  • the semiconductor chip in Si, SiC or GaN.
  • the assembly brick 1, 2, 3, 4 is compressed between a heating plate 5 and a holding flange 6 attached to an ultrasonic actuator assembly 7.
  • the holding flange 6 of the semiconductor chip 1 is a vacuum head comprising a suction channel 8, which is commonly used in the semiconductor industry. drivers to grip a dice 1.
  • the principle of the diffusion brazing method is to simultaneously apply a pressure load 9 (200 N to 400 N), to bring the assembly brick 1, 2 3, 4 to a thermo sonic temperature below the first temperature of melting the solder 3 formed by the first tin layer (150 ° C to 210 ° C) and exert lateral movement on the holding flange 6 (ultrasonic frequency 20 kHz to 80 kHz).
  • the combined action of the three factors makes it possible to diffuse the solder 3 in the second metallic layer 4 and to have a fast and complete formation of a metal-rich intermetallic alloy with a high second melting point.
  • the dominant intermetallic alloy is Ag3Sn which has a solidus temperature of 480 ° C and a liquidus temperature of 680 ° C.
  • solder 3 and metal 4 the first and second layers of which have first and second thicknesses which depend on the intermetallics to be obtained, can be done in two ways according to the embodiment.
  • the first tin layer 3 having a first thickness of between 5 m and 10 ⁇ , is deposited on the second metallic layer 4, a second thickness between 15 ⁇ and 30 ⁇ , which has been previously deposited on the substrate 2.
  • a multilayer preform 1 1 is produced with the first layer of tin 3 deposited on each of the faces of a metal strip 12 made of silver, copper , or gold.
  • thermo sonic temperature 150 ° C - 210 ° C;
  • brazing time ⁇ 1 min
  • the chip 1 is held at the ultrasonic actuator 7 by the vacuum created in the suction channel 8 of the flange. 6.
  • the vibratory motion exerted on the chip 1 is parallel to an interface of the two components 1, 2 to be assembled.
  • This diffusion brazing using ultrasonic thermo-compression can take place in an atmospheric environment or a controlled atmosphere chamber.
  • the soldering method with material supply according to the invention makes it possible to considerably reduce assembly time and process temperature, and thus avoid damaging the chip 1 or deforming the molded case with IML technology.
  • the proposed process temperature is below the first melt temperature of tin 231.9 ° C (150 ° C - 210 ° C), whereas the soldering temperature of the known processes is generally above 300 ° C .
  • the brazed joint 3, 4, 12 Due to the formation of new metal-rich intermetallic alloys at high second melting temperature (silver, copper, gold), the brazed joint 3, 4, 12 has characteristics enabling it to satisfy high thermomechanical stresses.
  • FIG. 3 shows an example of application of the solder method of material described above to a power module 13 using IML technology of a type embedded in an electric vehicle (EV) or hybrid vehicle (HEV).
  • EV electric vehicle
  • HEV hybrid vehicle
  • a power semiconductor 14 is connected by wired links (called “bonding” 15) to a control connector 16 overmolded in the plastic housing 17.
  • the power semiconductor 14 is brazed on a copper trace 18 of the lead frame ("lead frame" in English terminology) of the power module 13 molded in the housing 17 and in contact with the heat sink 19.
  • the brazed joint 20 produced under the temperature conditions of the method according to the invention makes it possible to avoid the use of a casing 17 molded in an expensive polymer such as PEEK, and consequently to reduce the manufacturing costs of the module of power 13.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Die Bonding (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Abstract

Le procédé de soudure avec apport de matière décrit dans la présente demande est destiné à reporter une puce à semi-conducteur (1) sur un substrat (2). Le procédé est du type dans lequel on forme une brique d'assemblage (1, 2, 3) comprenant le substrat (2), au moins une première couche (3) présentant une première épaisseur d'un premier métal possédant une première température de fusion basse choisi parmi un premier groupe comprenant l'étain, et la puce à semi-conducteur (1), et dans lequel on soumet longitudinalement la brique d'assemblage (1, 2, 3) à une charge de pression (9) entre une plaque chauffante (5) et une bride de maintien (6). De plus, un mouvement vibratoire transversal (10) à fréquence ultrasonique est imprimé à la brique d'assemblage (1, 2, 3).

Description

PROCEDE DE SOUDURE AVEC APPORT DE MATIERE ET MODULE ELECTRONIQUE DE PUISSANCE REALISE PAR CE PROCEDE
DOMAINE TECHNIQUE DE L'INVENTION.
La présente invention concerne un procédé de soudure avec apport de matière pour la réalisation d'un module électronique de puissance.
ARRIERE PLAN TECHNOLOGIQUE DE L'INVENTION.
La nouvelle génération de semi-conducteurs en nitrure de gallium (GaN) ou en carbure de silicium (SiC) peut fonctionner à une température au dessus de 200°C, mais un brasage classique sans plomb ne convient plus à une telle température et un brasage traditionnel à base de plomb, utilisé dans les modules de puissance actuels, sera remis en question dans le cadre de la réglementation d'utilisation des substances dangereuses (RoHS) en Europe.
La brasure à fort taux de plomb a un point de fusion autour de 296°C qui présente aussi l'inconvénient de réduire la durée de vie d'un module de puissance utilisant les semi conducteurs fonctionnant à une température au dessus de 200°C. De plus, son profil de température de brasage est autour de 320°C, ce qui exige de choisir une matière plastique coûteuse tenant à haute température, telle que le polymère PEEK (acronyme de "PolyEtherEtherKetone", c'est-à-dire polyétheréthercétone) pour le surmoulage d'un boîtier.
Le brasage traditionnel sans plomb, utilisé dans l'électronique en général, ne permet pas de satisfaire aux nouvelles exigences des applications de l'électronique de puissance dans l'automobile. A part un alliage d'or, les brasures sans plomb ne sont pas stables. Les brasures sans plomb, abordables, sont en général à fort taux d'étain et ont une température de solidus inférieure à 250°C (237°C pour SnSb5, 223°C pour SnAg3Cu1 Sb10). Ces brasures ne permettent pas de satisfaire aux exigences de fiabilité dans un joint brasé soumis à des contraintes thermo mécaniques élevées.
Le brasage par diffusion standard, qui consiste à introduire un support de montage dans un four à refusion pour faire diffuser de la brasure dans une couche de métal solide sous une charge définie, est contraignant également, car il nécessite un temps de cycle de brasage élevé et il chauffe l'ensemble du boîtier, y compris le plastique surmoulé, à un profil de température autour de 250°C. II a aussi été proposé un procédé thermo ultrasonique appliqué à un assemblage de type « Flip Chip », c'est-à-dire consistant en un report d'une puce à semi-conducteur sur un substrat par des billes de brasure, mais celui-ci se révèle complexe à mettre en œuvre.
Des procédés de soudage par thermo compression sont également connus pour la réalisation de soudure avec apport de matière. Mais ils exigent, soit une pression d'application élevée (30 MPa à 40 MPa pour le frittage d'argent micrométrique), soit un temps de cycle d'assemblage élevé pour le brasage par diffusion standard.
Une modification du procédé de thermo compression pour le brasage par diffusion a été décrite par la société VALEO ELECTRONIQUE ET SYSTEMES DE LIAISON dans la demande de brevet français FR2905883 de manière à améliorer un transfert de chaleur entre la puce à semi-conducteur et le substrat, et à diminuer une force de compression afin de ne pas endommager cette puce.
Toutefois dans ce procédé, la température demeure supérieure à une température de fusion de la brasure, ce qui peut endommager le boîtier d'un module de puissance réalisé dans une technologie de type IML (acronyme de "Insulated Molded Lead frame" en terminologie anglaise, c'est-à-dire "Grille de connexion Moulée Isolée").
DESCRIPTION GENERALE DE L'INVENTION.
La présente invention vise donc à pallier les inconvénients des procédés de soudure des puces à semi-conducteurs connus pour la réalisation de modules électroniques de puissance.
Elle concerne un procédé de soudure avec apport de matière destiné à reporter une puce à semi-conducteur sur un substrat du type dans lequel on forme une brique d'assemblage comprenant:
- le substrat;
- au moins une première couche présentant une première épaisseur d'un premier métal possédant une première température de fusion choisi parmi un premier groupe comprenant l'étain;
- la puce à semi-conducteur;
et dans lequel on soumet longitudinalement cette brique d'assemblage à une charge de pression entre une plaque chauffante et une bride de maintien. Dans le procédé selon l'invention on imprime un mouvement vibratoire transversal à la brique d'assemblage à une fréquence ultrasonique.
Dans un premier mode de réalisation du procédé selon l'invention, la brique d'assemblage comprend en outre une seconde couche présentant une seconde épaisseur d'un second métal possédant une seconde température de fusion élevée choisi parmi un second groupe comprenant l'argent, le cuivre, et l'or, déposée sur le substrat.
Alternativement, dans un second mode de réalisation du procédé selon l'invention, la brique d'assemblage comprend en outre une préforme constituée en déposant la première couche sur chacune des faces d'une bande présentant une seconde épaisseur d'un second métal possédant une seconde température de fusion élevée choisi parmi un second groupe comprenant l'argent, le cuivre, et l'or.
Dans l'un et l'autre modes de réalisation du procédé, la première épaisseur est comprise entre 5 μηη et 1 0 μηη, et la seconde épaisseur est comprise entre
Figure imgf000005_0001
Selon l'invention, une température thermosonique est inférieure à la première température de fusion, de préférence comprise entre 150 °C et 210° C.
Selon l'invention encore, la charge de pression est comprise entre 200 N et 400 N, et la fréquence ultrasonique est comprise entre 20 kHz et 80 kHz.
Dans le procédé de l'invention, une puissance ultrasonique est comprise entre 20 W et 80 W, et un temps de brasage est inférieur à une minute.
De préférence, le substrat est en cuivre, ou bien de type DBC ou AMB.
Dans le procédé de l'invention, on opère dans un environnement atmosphérique ou dans une chambre à atmosphère contrôlée.
L'invention concerne également un module électronique de puissance du type de ceux réalisés en technologie IML comprenant un substrat et au moins une puce à semi-conducteur.
Selon l'invention, cette puce à semi-conducteur est reportée sur le substrat par le procédé de soudure avec apport de matière décrit ci-dessus.
Ces quelques spécifications essentielles auront rendu évidents pour l'homme de métier les avantages apportés par un tel procédé de soudure avec apport de matière, et par le module électronique de puissance réalisé par ce procédé, par rapport à l'état de la technique antérieur.
Les spécifications détaillées de l'invention sont données dans la description qui suit en liaison avec les dessins ci-annexés. Il est à noter que ces dessins n'ont d'autre but que d'illustrer le texte de la description et ne constituent en aucune sorte une limitation de la portée de l'invention.
BREVE DESCRIPTION DES DESSINS.
La Figure 1 illustre le principe du procédé de soudure avec apport de matière selon l'invention.
Les Figures 2a et 2b montrent schématiquement une brique d'assemblage formée respectivement dans les premier et second modes de réalisation du procédé selon l'invention,
La Figure 3 montre un exemple d'application du procédé de soudure avec apport de matière selon l'invention à un module de puissance réalisé en technologie IML.
DESCRIPTION DES MODES DE REALISATION PREFERES DE L'INVENTION.
Le principe du procédé selon l'invention est un brasage par diffusion des couples d'alliages (argent / étain), (cuivre / étain) et (or / étain) par thermo compression ultrasonique de la puce à semi-conducteur 1 sur le substrat 2, comme l'illustre la Figure 1.
On forme une brique d'assemblage comprenant:
- le substrat 2 en cuivre, ou bien de type DBC (acronyme de "Direct Bonded Copper" en terminologie anglaise, ce qui désigne du cuivre et un matériau céramique directement liés), ou AMB (acronyme de "Active Métal Brazing", qui désigne un substrat céramique brasé);
- une première couche 3 d'étain (qui possède une première température de fusion de 231 ,9° C)
- une seconde couche 4 d'argent, de cuivre ou d'or, métaux possédant une seconde température de fusion élevée (respectivement 960°C, 1083°C, 1063°C);
- la puce à semi-conducteur (en Si, SiC ou GaN).
La brique d'assemblage 1 , 2, 3, 4 est comprimée entre une plaque chauffante 5 et une bride de maintien 6 fixée à un ensemble d'actionneur ultrasonique 7.
La bride de maintien 6 de la puce à semi-conducteur 1 est une tête à vide comportant un canal d'aspiration 8, d'utilisation habituelle dans l'industrie des semi- conducteurs pour assurer une préhension d'un dé 1 .
Le principe du procédé de brasage par diffusion consiste à appliquer simultanément une charge de pression 9 (200 N à 400 N), à porter la brique d'assemblage 1 , 2 3, 4 à une température thermo sonique en dessous de la première température de fusion de la brasure 3 formée par la première couche d'étain (de 150° C à 210°C) et à exercer un mouvement latéral 10 sur la bride de maintien 6 (fréquence ultrasonique de 20 kHz à 80 kHz).
L'action combinée des trois facteurs permet de diffuser la brasure 3 dans la seconde couche 4 métallique et d'avoir une formation rapide et complète d'un alliage intermétallique riche en métal à seconde température de fusion élevée.
Dans le cas du couple Ag / Sn, l'alliage intermétallique dominant est Ag3Sn qui a une température de solidus de 480°C et une température de liquidus de 680°C.
L'apport de brasure 3 et de métal 4, dont les première et seconde couches ont des première et seconde épaisseurs qui sont fonction des intermétalliques à obtenir, peut se faire de deux manières selon le mode de réalisation.
Dans un premier mode de réalisation du procédé selon l'invention, illustré sur la Figure 2a, la première couche 3 d'étain, d'une première épaisseur comprise entre 5 m et 10 μηη, est déposée sur la seconde couche 4 métallique, d'une seconde épaisseur comprise entre 15 μηη et 30 μηη, qui a été déposée préalablement sur le substrat 2.
Dans un second mode de réalisation du procédé selon l'invention, illustré sur la Figure 2b, on réalise une préforme 1 1 multicouche avec la première couche d'étain 3 déposée sur chacune des faces d'une bande de métal 12 en argent, cuivre, ou or.
Dans les modes de réalisation préférés de l'invention, les paramètres du procédé de thermo-compression ultrasonique sont en résumé les suivants:
- température thermo sonique: 150°C - 210°C;
- temps de brasage: < 1 min;
- charge de pression: 200 N - 400 N
- puissance ultrasonique: 20 W - 80 W
- fréquence ultrasonique: 20 kHz - 80 kHz
Durant l'opération de brasage, la puce 1 est maintenue à l'actionneur ultrasonique 7 par le vide créé dans le canal d'aspiration 8 de la bride de maintien 6. Le mouvement vibratoire 10 exercé sur la puce 1 est parallèle à une interface des deux composants 1 , 2 à assembler.
Ce brasage par diffusion utilisant la thermo compression ultrasonique peut s'opérer dans un environnement atmosphérique ou une chambre à l'atmosphère contrôlée.
Le procédé de soudure avec apport de matière selon l'invention permet de réduire considérablement une durée de l'assemblage et une température de procédé, et d'éviter ainsi de détériorer la puce 1 ou de déformer le boîtier surmoulé en technologie IML. La température du procédé proposée est en dessous de la première température de fusion de l'étain 231 ,9°C (150°C - 210°C), alors que la température de brasage des procédés connus est en général supérieure à 300°C.
Grâce à la formation de nouveaux alliages intermétalliques riches en métaux à seconde température de fusion élevée (argent, cuivre, or), le joint brasé 3, 4, 12 possède des caractéristiques lui permettant de satisfaire à des contraintes thermo mécaniques élevées.
La Figure 3 montre un exemple d'application du procédé de soudure avec apport de matière décrit ci-dessus à un module de puissance 13 en technologie IML d'un type embarqué dans un véhicule électrique (EV) ou hybride (HEV).
Un semi-conducteur de puissance 14 est relié par des liaisons filaires (dites "bonding" 15) à un connecteur de commande 16 surmoulé dans le boîtier 17 en plastique.
Le semi-conducteur de puissance 14 est brasé sur une trace en cuivre 18 de la grille de contact ("Lead frame" en terminologie anglaise) du module de puissance 13 moulée dans le boîtier 17 et en contact avec le dissipateur thermique 19.
Le joint brasé 20 réalisé dans les conditions de température du procédé selon l'invention permet d'éviter l'utilisation d'un boîtier 17 moulé dans un polymère onéreux tel que le PEEK, et par conséquent de diminuer les coûts de fabrication du module de puissance 13.
Comme il va de soi, l'invention ne se limite pas aux seuls modes d'exécution préférentiels décrits ci-dessus.
La description ci-dessus décrit en détail la mise en œuvre du couple argent/ étain. Une description similaire pourrait porter sur la mise en œuvre d'autres couples de métaux avec une première température de fusion basse et une seconde température de fusion élevée.
L'invention embrasse donc toutes les variantes possibles de réalisation, dans la mesure où elles ne sortent pas du cadre fixé par les revendications ci- après.

Claims

REVENDICATIONS
1) Procédé de soudure avec apport de matière destiné à reporter une puce à semiconducteur (1 ) sur un substrat (2) du type dans lequel on forme une brique d'assemblage (1 , 2, 3) comprenant ledit substrat (2), au moins une première couche (3) présentant une première épaisseur d'un premier métal possédant une première température de fusion basse choisi parmi un premier groupe comprenant l'étain, et ladite puce à semi-conducteur (1 ), et dans lequel on soumet longitudinalement ladite brique d'assemblage (1 , 2, 3) à une charge de pression (9) entre une plaque chauffante (5) et une bride de maintien (6), caractérisé en ce que l'on imprime un mouvement vibratoire transversal (10) à ladite brique d'assemblage (1 , 2, 3) à une fréquence ultrasonique.
2) Procédé de soudure avec apport de matière selon la revendication 1 précédente, caractérisé en ce que ladite brique d'assemblage (1 , 2, 3, 4) comprend en outre une seconde couche (4) présentant une seconde épaisseur d'un second métal possédant une seconde température de fusion élevée choisi parmi un second groupe comprenant l'argent, le cuivre, et l'or, déposée sur ledit substrat (2). 3) Procédé de soudure avec apport de matière selon la revendication 1 précédente, caractérisé en ce que ladite brique d'assemblage (1 , 2, 3, 4) comprend en outre une préforme (1 1 ) constituée en déposant ladite au moins une première couche (3) sur chacune des faces d'une bande (12) présentant une seconde épaisseur d'un métal possédant une seconde température de fusion élevée choisi parmi un groupe comprenant l'argent, le cuivre, et l'or.
4) Procédé de soudure avec apport de matière selon la revendication 2 ou 3 précédente, caractérisé en ce que ladite première épaisseur est comprise entre 5 μηη et 10 μηη, et ladite seconde épaisseur est comprise entre 15 μηη et 30 pm.
5) Procédé de soudure avec apport de matière selon l'une quelconque des revendications 1 à 4 précédentes, caractérisé en ce qu'une température thermosonique est inférieure à ladite première température de fusion, de préférence comprise entre 150 °C et 210° C.
6) Procédé de soudure avec apport de matière selon l'une quelconque des revendications 1 à 5 précédentes, caractérisé en ce que ladite charge de pression (9) est comprise entre 200 N et 400 N, et ladite fréquence ultrasonique est comprise entre 20 kHz et 80 kHz.
7) Procédé de soudure avec apport de matière selon l'une quelconque des revendications 1 à 6 précédentes, caractérisé en ce qu'une puissance ultrasonique est comprise entre 20 W et 80 W, et un temps de brasage est inférieur à une minute.
8) Procédé de soudure avec apport de matière selon l'une quelconque des revendications 1 à 7 précédentes, caractérisé en ce que ledit substrat (2) est en cuivre, ou bien de type DBC ou AMB.
9) Procédé de soudure avec apport de matière selon l'une quelconque des revendications 1 à 8 précédentes, caractérisé en ce que l'on opère dans un environnement atmosphérique ou dans une chambre à atmosphère contrôlée.
10) Module électronique de puissance (13) du type de ceux réalisés en technologie IML comprenant un substrat (2, 18) et au moins une puce à semi-conducteur (1 , 14), caractérisé en ce que ladite au moins une puce à semi-conducteur (1 , 14) est reportée sur ledit substrat (2, 18) par le procédé de soudure avec apport de matière selon l'une quelconque des revendications 1 à 9 précédentes.
PCT/FR2016/051202 2015-05-21 2016-05-20 Procede de soudure avec apport de matiere et module electronique de puissance realise par ce procede WO2016185149A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1554571 2015-05-21
FR1554571A FR3036301B1 (fr) 2015-05-21 2015-05-21 Procede de soudure avec apport de matiere et module electronique de puissance realise par ce procede

Publications (1)

Publication Number Publication Date
WO2016185149A1 true WO2016185149A1 (fr) 2016-11-24

Family

ID=54014972

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2016/051202 WO2016185149A1 (fr) 2015-05-21 2016-05-20 Procede de soudure avec apport de matiere et module electronique de puissance realise par ce procede

Country Status (2)

Country Link
FR (1) FR3036301B1 (fr)
WO (1) WO2016185149A1 (fr)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2843814B2 (ja) * 1994-12-14 1999-01-06 株式会社アルテクス 超音波半田接合方法
US20030029543A1 (en) * 1999-04-21 2003-02-13 Tdk Corp. Ultrasonic bonding method
JP2005288457A (ja) * 2004-03-31 2005-10-20 Mie Prefecture 異種金属材の超音波接合方法および超音波接合構造体
FR2905883A1 (fr) 2006-09-14 2008-03-21 Valeo Electronique Sys Liaison Procede de soudage d'un organe sur un support par apport de matiere et dispositif d'agencement de deux elements l'un sur l'autre
WO2015061295A1 (fr) * 2013-10-22 2015-04-30 Northeastern University Soudage direct sans flux par activation de surface par ultrasons

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2843814B2 (ja) * 1994-12-14 1999-01-06 株式会社アルテクス 超音波半田接合方法
US20030029543A1 (en) * 1999-04-21 2003-02-13 Tdk Corp. Ultrasonic bonding method
JP2005288457A (ja) * 2004-03-31 2005-10-20 Mie Prefecture 異種金属材の超音波接合方法および超音波接合構造体
FR2905883A1 (fr) 2006-09-14 2008-03-21 Valeo Electronique Sys Liaison Procede de soudage d'un organe sur un support par apport de matiere et dispositif d'agencement de deux elements l'un sur l'autre
WO2015061295A1 (fr) * 2013-10-22 2015-04-30 Northeastern University Soudage direct sans flux par activation de surface par ultrasons

Also Published As

Publication number Publication date
FR3036301B1 (fr) 2017-10-20
FR3036301A1 (fr) 2016-11-25

Similar Documents

Publication Publication Date Title
KR102224535B1 (ko) 파워 모듈용 기판의 제조 방법
KR102220852B1 (ko) 접합체의 제조 방법 및 파워 모듈용 기판의 제조 방법
EP1578559B1 (fr) Procede de soudage
Lu et al. A lead-free, low-temperature sintering die-attach technique for high-performance and high-temperature packaging
JP6061248B2 (ja) 接合方法及び半導体モジュールの製造方法
JP5731990B2 (ja) 半導体モジュールと接続相手との間に高温および温度変化に強い接続を形成する方法
JP5523680B2 (ja) 接合体、半導体装置および接合体の製造方法
US8975182B2 (en) Method for manufacturing semiconductor device, and semiconductor device
US20150123263A1 (en) Two-step method for joining a semiconductor to a substrate with connecting material based on silver
JP2008311273A (ja) 接合体および電子モジュールならびに接合方法
JP5968046B2 (ja) 半導体装置および半導体装置の製造方法
JP5708961B2 (ja) 半導体装置の製造方法
JP2003212670A (ja) 異種材料の接合体及びその製造方法
EP3115128A1 (fr) Assemblage comprenant deux elements de coefficient de dilatation thermique differents et un joint fritte heterogene en densite et procede de fabrication de l&#39;assemblage
CN108364914B (zh) 半导体封装用压片
JP2003197981A (ja) 熱電モジュール
EP3323144A1 (fr) Procede de brasage par frittage d&#39;une poudre conductrice par thermo-compression ultrasonique et module electronique de puissance realise par ce procede
WO2016185149A1 (fr) Procede de soudure avec apport de matiere et module electronique de puissance realise par ce procede
JP2018111111A (ja) 金属接合体及び半導体装置の製造方法
WO2013005555A1 (fr) Structure à soudage de métaux et procédé de fabrication de celle-ci
JP2006287259A (ja) 熱電モジュール
JP5733466B2 (ja) 半導体装置の製造方法
JP6156693B2 (ja) 半導体装置の製造方法
KR102344913B1 (ko) 열전 모듈 제조 방법 및 이에 의해 제조된 열전 모듈
WO2020021197A1 (fr) Procede de fabrication d&#39;un module electronique de puissance

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16732689

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16732689

Country of ref document: EP

Kind code of ref document: A1