WO2016184246A1 - 光纤放大器增益控制方法及装置 - Google Patents

光纤放大器增益控制方法及装置 Download PDF

Info

Publication number
WO2016184246A1
WO2016184246A1 PCT/CN2016/076902 CN2016076902W WO2016184246A1 WO 2016184246 A1 WO2016184246 A1 WO 2016184246A1 CN 2016076902 W CN2016076902 W CN 2016076902W WO 2016184246 A1 WO2016184246 A1 WO 2016184246A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
optical power
output
ase
gain
Prior art date
Application number
PCT/CN2016/076902
Other languages
English (en)
French (fr)
Inventor
朱墨
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP16795733.1A priority Critical patent/EP3300190A4/en
Priority to JP2017560571A priority patent/JP6458172B2/ja
Publication of WO2016184246A1 publication Critical patent/WO2016184246A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06754Fibre amplifiers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1601Solid materials characterised by an active (lasing) ion
    • H01S3/1603Solid materials characterised by an active (lasing) ion rare earth
    • H01S3/1608Solid materials characterised by an active (lasing) ion rare earth erbium
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/073Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an out-of-service signal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2301/00Functional characteristics
    • H01S2301/02ASE (amplified spontaneous emission), noise; Reduction thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2301/00Functional characteristics
    • H01S2301/06Gain non-linearity, distortion; Compensation thereof

Definitions

  • the present invention relates to the field of communications, and in particular to a fiber amplifier gain control method and apparatus.
  • Erbium Doped Fiber Amplifier is a key component of next-generation optical communication systems with high gain, large output power, wide operating bandwidth, independent polarization, low noise figure, amplification characteristics and system bits.
  • the rate is independent of the data format, and it is an indispensable key component in the Dense Wavelength Division Multiplexing (DWDM) system.
  • the effective working range of the EDFA is for the C-band of the DWDM system.
  • the center frequency is 193.1 THz
  • the wavelength range is 1528-1561 nm
  • the channel spacing is an integer multiple of 100 GHz (about 0.8 nm), which includes 40 waves.
  • the wavelength power in the saturation region remains stable.
  • the energy is transferred to those that are not due to gain competition.
  • the signal power of other wavelengths becomes higher.
  • a sudden increase in level may cause bit errors, and in the extreme case, if 7 out of 8 wavelengths are lost, all power is concentrated to the remaining wavelength, and the power may reach Around 17dBm, this will bring a strong nonlinearity or cause the receiving power of the receiver to be overloaded, which will bring a lot of errors.
  • the optical amplifier is required to have an automatic gain control function, so that the EDFA has a wide dynamic range of input optical power in actual system cascade use, ensuring that the input optical power in the DWDM system changes regardless of the optical power of the remaining channels. Affected.
  • FIG. 1 is a schematic diagram of a gain control device for a doped fiber amplifier according to the related art. As shown in FIG. 1 , the device includes a Pin photoelectric conversion module, a Pin program gain amplification or DAC module, and a Pout photoelectric conversion module.
  • Pout amplification module proportional integral control module, proportional differential control module, superimposing circuit and driving circuit
  • Pin photoelectric conversion module is set to convert input optical power into electric signal, and the signal is adjusted by gain by Pin-controlled gain amplification or DAC module Value and gain compensation control when inputting small signal
  • Pout photoelectric conversion module converts output optical power into electrical signal, Pout amplification module is set to amplify signal amplitude detected by Pout
  • Pin detection signal and Pout detection signal are used as differential input signal Simultaneously connected to the input terminals of the proportional integral control module and the proportional differential control module, the superposition circuit takes the sum of the voltage outputs of the two control modules, proportional integral and proportional differential, as the voltage control signal, and the voltage control signal is transformed by the driving circuit.
  • Drive current signal to meet pump laser drive requirements .
  • the gain is not adjustable, because the control unit is composed of analog circuits, the transfer function of the control unit is composed of Laplace transform models of various electronic components, so the transfer function is immutable, open loop gain and closed loop gain Immutable.
  • the control mode is single, and different control modes cannot be selected according to the change of the incoming optical power to achieve different control results.
  • the optical power output threshold cannot be set. Although the adoption of EDFA increases the optical power, the optical power is not as large as possible. When the power is large enough, the fiber will produce nonlinear effects (including Raman scattering and Brillouin scattering), and the nonlinear effect will greatly limit the amplification performance of the EDFA and the realization of long-distance non-relay transmission.
  • FIG. 2 is a schematic diagram of implementing a gain and power locking device in an EDFA by using a DSP according to a related art, as shown in FIG. 2, replacing the original closed-loop simulation with DSP, A/D, and D/A.
  • the control unit implements efficient and flexible control algorithms in software using DSP.
  • the whole control process includes four 14-bit TI A/D sampling chips, which respectively sample the input and output optical power in two stages. After the TI DSP reads the input and output optical power, according to the current control mode, according to the gain or output optical power. Set the value and combine the ASE compensation power to calculate the final output optical power.
  • the control voltage of the pump laser is calculated by a feedforward compensation digital proportional integral derivative (PID) control algorithm, and two pump lasers are controlled by a 14-bit TI dual-channel D/A chip.
  • PID digital proportional integral derivative
  • the entire closed-loop control system completes a control cycle of about 2us. With the adjusted control parameters, the gain and power lock can be effectively realized to meet the transient and steady-state indicators of the user.
  • the proportional differential control algorithm is based on the compensation of the incoming light as the disturbance amount, and the compensation process needs to last for 2 us, which is not fast enough to deal with the EDFA optical power input transient change.
  • the output jitter is too large when the EDFA pump is turned on.
  • ASE compensation accuracy is not high enough. Because ASE has a nonlinear relationship with gain, it is not accurate enough to perform ASE compensation calculations directly in the program code.
  • the invention provides a method and a device for controlling the gain of an optical fiber amplifier, so as to at least solve the problem that the ASE compensation precision of the optical fiber amplifier in the related art is not high and the differential control rate is slow.
  • a fiber amplifier gain control method including:
  • the target gain determines a corresponding ASE compensation power value according to the correspondence between the ASE noise power and the preset gain
  • the standard output optical power is calculated and output according to the input optical power, the ASE compensation power value, and the target gain.
  • determining, by the target gain, a corresponding ASE compensation power value according to a correspondence between the ASE noise power and a preset gain includes:
  • the target gain is used to find an ASE compensation power value corresponding to the target gain in the ASE compensation power value table, wherein the ASE compensation power value table is generated according to a correspondence between the ASE noise power and a preset gain.
  • the method after acquiring the input optical power and the output optical power of the optical fiber amplifier, the method includes:
  • a finite-length unit impulse response FIR filter is performed on the sampled input optical power.
  • the method further comprises: outputting the output optical power without the optical fiber amplifier being in a pump off state.
  • the method further includes: setting a slow-opening pump state when the optical fiber amplifier is turned on, wherein, in the slow-opening pump state, according to the input optical power and the target The gain setting is advanced, and the pumping of the fiber amplifier is completed according to the step.
  • the measuring the output optical power and generating the amplified spontaneous emission ASE noise power of the optical fiber amplifier according to the output optical power comprises:
  • the ASE compensation power value table is generated according to the correspondence between the ASE noise power and the preset gain, and includes:
  • the multi-segment compensation method is used to fit the relationship between the ASE noise power and the preset gain, and the ASE compensation power value table is generated.
  • the calculating and outputting the standard output optical power according to the input optical power, the ASE compensation power value, and the target gain includes:
  • the standard output optical power is calculated and output according to the input optical power after the change of the predetermined time delay, in combination with the target gain and the ASE compensation power value.
  • the method after calculating and outputting the standard output optical power according to the input optical power, the ASE compensation power value, and the target gain, the method includes:
  • the method after calculating and outputting the standard output optical power according to the input optical power, the ASE compensation power value, and the target gain, the method includes:
  • the method comprises:
  • the lowest clamp power is output, wherein the lowest clamp power is the minimum power value at which the fiber amplifier is operating normally.
  • the method comprises:
  • an inputless optical power alarm or a hardware interrupt indication is generated.
  • the method comprises:
  • the output of the standard output optical power is prohibited, and only the maximum clamp output optical power is output.
  • an optical fiber amplifier gain control apparatus including:
  • An acquisition module configured to collect input optical power and output optical power of the optical fiber amplifier
  • a measuring module configured to measure the output optical power and generate an amplified spontaneous emission ASE noise power of the optical fiber amplifier according to the output optical power
  • a searching module configured to determine, according to a correspondence between the ASE noise power and the preset gain, a corresponding ASE compensation power value
  • an output module configured to calculate and output a standard output optical power according to the input optical power, the ASE compensation power value, and the target gain.
  • the searching module further includes at least one of the following:
  • a table lookup unit configured to find the ASE compensation power value corresponding to the target gain in the ASE compensation power value table, wherein the ASE compensation power value table is based on the ASE noise power and a preset gain Relationship generated
  • the generating unit is configured to fit the relationship between the ASE noise power and the preset gain by using a multi-segment compensation method to generate the ASE compensation power value table.
  • the apparatus further comprises at least one of the following:
  • a filtering module configured to perform finite-length unit impulse response FIR filtering on the sampled input optical power
  • Turning off the pump module configured to not output the output optical power when the optical fiber amplifier is in a state of turning off the pump
  • Slowly opening the pump module configured to set a slow-opening pump state when the optical fiber amplifier is turned on, wherein, when in the slow-opening pump state, setting an advanced according to the input optical power and the target gain, according to The stepping of the fiber amplifier is advanced.
  • the measuring module comprises:
  • a measuring unit configured to measure a power spectral density at a preset range of the output optical power peak, collect output optical power of a plurality of points in the range, and average the plurality of point output optical powers to generate the ASE noise power.
  • the output module is further configured to calculate and output the standard output optical power according to the input optical power after the delay of the predetermined time delay, in combination with the target gain and the ASE compensation power value.
  • the apparatus further comprises at least one of the following:
  • a first integration control module configured to subtract the target gain, the ASE compensation power value, and the input optical power from the outputted standard output optical power to obtain an optical power error, according to the optical power error and a pre- Setting a steady-state integral rate control parameter to integrally control the standard output optical power, and outputting a final output optical power;
  • the pump module is not turned off, and is configured to output a minimum clamp power without the input optical power, wherein the minimum clamp power is a minimum power value of the optical fiber amplifier working normally;
  • the alarm module is configured to generate an input-free optical power alarm or a hardware interrupt indication if the input optical power is lower than a preset minimum input optical power;
  • the output module is prohibited from being set to prohibit output of the standard output optical power and output only the maximum clamp output optical power when the standard output optical power is higher than the preset maximum clamp output optical power.
  • the input optical power and the output optical power of the optical fiber amplifier are collected; the amplified spontaneous emission ASE noise power is generated according to the output optical power; and the corresponding ASE compensation power value is searched according to the target gain in the ASE compensation power value table, wherein the ASE
  • the compensation power value table is generated according to the correspondence between the ASE noise power and the preset gain; calculating and outputting the standard output optical power according to the input optical power, the ASE compensation power value, and the target gain, thereby solving the ASE compensation of the optical fiber amplifier
  • the problem of low precision and slow differential control rate improves the ASE compensation accuracy and differential control rate of the fiber amplifier.
  • FIG. 1 is a schematic diagram of a gain control apparatus for a doped fiber amplifier according to the related art
  • FIG. 2 is a schematic diagram of implementing a gain and power locking device in an EDFA with a DSP according to the related art
  • FIG. 3 is a flow chart of a method for controlling gain of an optical fiber amplifier according to an embodiment of the present invention
  • FIG. 4 is a block diagram showing the structure of a fiber amplifier gain control apparatus according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of an EDFA stable fast gain control device for a doped fiber amplifier according to a preferred embodiment of the present invention
  • FIG. 6 is a graph showing a relationship between ASE noise power and EDFA gain in accordance with a preferred embodiment of the present invention.
  • FIG. 7 is a schematic diagram of measuring ASE noise power with a spectrometer using direct measurement according to a preferred embodiment of the present invention.
  • Figure 8 is a schematic illustration of a measured spectrogram of a laser output in accordance with a preferred embodiment of the present invention.
  • FIG. 3 is a flowchart of a fiber amplifier gain control method according to an embodiment of the present invention. As shown in FIG. 3, the process includes the following steps:
  • Step S302 collecting input optical power and output optical power of the optical fiber amplifier
  • Step S304 measuring the output optical power and generating an amplified spontaneous emission ASE noise power of the optical fiber amplifier according to the output optical power;
  • Step S306 the target gain determines a corresponding ASE compensation power value according to the correspondence between the ASE noise power and the preset gain;
  • Step S308 calculating and outputting standard output optical power according to the input optical power, the ASE compensation power value, and the target gain.
  • the output optical power is directly measured and the amplified spontaneous emission ASE noise power of the optical fiber amplifier is generated, and the corresponding ASE compensation power value is determined according to the target gain according to the correspondence between the ASE noise power and the preset gain, thereby
  • the power, the ASE compensation power value and the target gain calculate and output the standard output optical power, which solves the problem that the ASE compensation precision of the optical fiber amplifier is not high and the differential control rate is slow, and the ASE compensation precision and the differential control rate of the optical fiber amplifier are improved.
  • the target gain determines the corresponding ASE compensation power value according to the correspondence between the ASE noise power and the preset gain, including:
  • the target gain is used to find the ASE compensation power value corresponding to the target gain in the ASE compensation power value table, wherein the ASE compensation power value table is generated according to the correspondence between the ASE noise power and the preset gain.
  • the input optical power obtained by sampling may be subjected to finite-length unit impulse response FIR filtering, thereby smoothing the input optical power, thereby eliminating the discrete noise of the input optical power.
  • the operating state of the pump of the optical fiber amplifier can be set to the off pump state, and the output optical power is not outputted when the optical fiber amplifier is in the state of turning off the pump.
  • the operating state of the pump of the fiber amplifier can be set to the state of the pump, and the fiber is amplified.
  • the slow-opening pump state is set, wherein, in the state of the slow-opening pump, the input optical power and the target gain are advanced according to the input, and the opening of the optical fiber amplifier is completed according to the advanced step, thereby reducing the super The occurrence of the adjustment.
  • the measuring the output optical power and generating the amplified spontaneous emission ASE noise power of the optical fiber amplifier comprises:
  • the ASE compensation power value table may be generated in various manners, and the methods all fit the corresponding ASE noise power according to the preset gain, for example, using the multi-stage compensation method to fit the ASE noise power and the pre- The gain relationship curve is generated to generate the ASE compensation power value table.
  • the proportional coefficient in each segment of the multi-segment compensation method is consistent, so that the problem of insufficient accuracy caused by the ASE compensation can be minimized.
  • the standard output optical power is calculated and output according to the input optical power after the change of the predetermined time delay, combined with the target gain and the ASE compensation power value, and is added to the ASE to calculate and output the standard output light.
  • the power increases the reaction speed of the instantaneous change of the input optical power and reduces the jitter of the output.
  • the output of the standard output optical power may be subtracted from the target gain, the ASE compensation power value, and the input optical power to obtain an optical power error, according to the optical power error and a preset steady state integral.
  • the rate control parameter integrates the standard output optical power and outputs the final output optical power.
  • the integration control is implemented to improve the steady state performance of the fiber amplifier.
  • the lowest clamp power is output without the input optical power, wherein the lowest clamp power is the minimum power value at which the fiber amplifier operates normally.
  • an inputless optical power alarm or a hardware interrupt indication is generated.
  • the output of the standard output optical power is prohibited, and only the maximum clamp output optical power is output.
  • a fiber amplifier gain control device is also provided, which is used to implement the above embodiments and preferred embodiments, and has not been described again.
  • the term "module” may implement a combination of software and/or hardware of a predetermined function.
  • the apparatus described in the following embodiments is preferably implemented in software, hardware, or a combination of software and hardware, is also possible and contemplated.
  • FIG. 4 is a block diagram showing the structure of a fiber amplifier gain control apparatus according to an embodiment of the present invention. As shown in FIG. 4, the apparatus includes
  • the acquisition module 42 is configured to collect input optical power and output optical power of the optical fiber amplifier
  • the measuring module 44 is configured to measure the output optical power and generate an amplified spontaneous emission ASE noise power of the optical fiber amplifier according to the output optical power;
  • the searching module 46 is configured to determine, according to the correspondence between the ASE noise power and the preset gain, a corresponding ASE compensation power value
  • the output module 48 is configured to calculate and output a standard output optical power according to the input optical power, the ASE compensation power value, and the target gain.
  • the lookup module 46 further includes at least one of the following:
  • a table lookup unit configured to find the ASE compensation power value corresponding to the target gain in the ASE compensation power value table, wherein the ASE compensation power value table is generated according to the correspondence between the ASE noise power and the preset gain;
  • the generating unit is configured to fit the relationship between the ASE noise power and the preset gain by using a multi-segment compensation method to generate the ASE compensation power value table.
  • the apparatus further comprises:
  • a filtering module configured to perform finite-length unit impulse response FIR filtering on the sampled input optical power
  • the pump module is slowly opened, and is configured to set a slow-opening pump state when the optical fiber amplifier is turned on, wherein, when in the slow-opening pump state, an advanced setting is performed according to the input optical power and the target gain, according to the step completion
  • the fiber amplifier is turned on.
  • the measurement module 44 comprises:
  • the measuring unit is configured to measure a power spectral density at a preset range of the output optical power peak, collect output optical power at a plurality of points in the range, and average the plurality of point output optical powers to generate the ASE noise power.
  • the output module 48 is further configured to calculate and output the standard output optical power according to the input optical power after the delay of the predetermined time delay, in combination with the target gain and the ASE compensation power value.
  • the apparatus further comprises:
  • the first integral control module is configured to subtract the target output optical power, the ASE compensation power value, and the input optical power to obtain an optical power error according to the optical power error and a preset steady state integral.
  • the rate control parameter performs integral control on the standard output optical power, and outputs a final output optical power;
  • the pump module is not turned off, and is configured to output a minimum clamp power without the input optical power, wherein the minimum clamp power is a minimum power value for the normal operation of the optical fiber amplifier;
  • the alarm module is configured to generate an inputless optical power alarm or a hardware interrupt indication when the input optical power is lower than a preset minimum input optical power;
  • the output module is disabled, and is set to prohibit output of the standard output optical power and output only the maximum clamp output optical power when the standard output optical power is higher than the preset maximum clamp output optical power.
  • FIG. 5 is a schematic diagram of a EDFA stable fast gain control device for a erbium-doped fiber amplifier according to the preferred embodiment, as shown in FIG.
  • the device includes:
  • Parameter configuration module This module can set different control modes and control parameters for the gain control algorithm and communication interface module; the control mode includes: lower clamp mode, nominal light exit mode, normal light exit mode; control parameters include: nominal light output power , light entrance threshold, steady state integral rate control parameter, nominal gain, lower clamp safety power, highest clamp output power, new set target gain.
  • Gain control algorithm and communication interface module This module is not only responsible for dynamic control and steady-state control, but also divides the working state of EDFA pump into three types, including pump off state, slow-open pump state, and transient state.
  • the control mode and control parameters are inconsistent, and are responsible for communication with various devices, including analog-digital acquisition module, digital-to-analog conversion module, temperature acquisition module, and storage module.
  • Analog-to-digital acquisition module This module separately collects the input optical power and output optical power of the EDFA, and transmits the collected digital signals to the gain control algorithm and the communication interface module.
  • the digital-to-analog conversion module the gain control algorithm and the gain control data calculated by the communication interface module are transmitted to the module, and then the discrete data is converted into analog data through the module, and then transmitted to the EDFA.
  • Temperature acquisition module This module is responsible for measuring the temperature of the device and transmitting the temperature value to the gain control algorithm and communication interface module in real time.
  • This module is responsible for storing the AES noise power compensation value and transmitting the compensation value to the gain control algorithm and the communication interface module.
  • the flow control method flow is as follows:
  • the optical power of the EDFA input and output is collected by the analog-digital acquisition module.
  • the input optical power is smoothed to eliminate the effect of discrete noise.
  • ASE compensation is performed on the input small signal, and ASE power compensation is performed.
  • the value is determined by measuring the power spectral density at an output optical power peak of 0.1 nm or 0.4 nm using an optical power meter, and then determining the linearly fitted polygonal line coefficient.
  • the compensation value of the ASE is stored in the storage device according to the value of the corresponding relationship with the gain. When the system is powered on, it is read from the storage module and stored in the cache, and then the corresponding relationship with the gain is used to read from the cache in a lookup table.
  • the calculation process is delayed because it is necessary to delay the change of the gain and the change of the incoming optical power by 1us, which has the advantage of reducing the generation of overshoot.
  • the above process is the differential control method. Then, according to the output optical power and the current control mode, the marked light (standard output optical power) and the optical power error are calculated, wherein the standard light output is used to determine the steady state integration rate according to whether it is smaller than the lower clamp optical power.
  • the control parameter, the output power (output optical power) error is used to control the integral parameter to compensate to prevent the incoming light (input optical power) threshold from being too low.
  • stepwise addition and subtraction to achieve the required optical power output this is the integral control method.
  • the algorithm not only improves the dynamic performance of the system, shortens the adjustment time, reduces the overshoot, and is suitable for solving the situation that the instantaneous change of optical power is too large, and improves the steady state performance of the system and reduces the steady state error. Reduce the error caused by ASE, mention High gain lock performance.
  • the entire closed-loop control system completes a control cycle of about 1us, which can effectively achieve gain control and power lock, and meet the user's dynamic and steady-state indicators.
  • the whole device includes: a parameter configuration module, a gain control algorithm and a communication interface module, an analog-digital acquisition module, a digital-to-analog conversion module, a temperature acquisition module, and a storage module.
  • a parameter configuration module As shown in FIG. 5, the whole device includes: a parameter configuration module, a gain control algorithm and a communication interface module, an analog-digital acquisition module, a digital-to-analog conversion module, a temperature acquisition module, and a storage module.
  • This design eliminates the differential control link and the integral control link composed of analog circuits. The advantage is that the problem of variable gain and single control mode is solved.
  • the working state of the EDFA pump is divided into three types, including the pump state, the pump state, and the transient state.
  • the state of the slow-opening pump is based on the EDFA pumping pump to generate a certain amount of overshoot, which will cause the output optical power to shake, so the slow-opening pump is added.
  • the principle is as follows: According to the configuration requirements of the system, a step of 100 steps is established between the initial power and the target gain, so that (target gain - initial power) ⁇ 100 * steps equals the amplitude difference between each step, and then the pump is turned on. From the first step, until the 100th step, this is the action of pumping.
  • the advantage of this method is to reduce the amount of overshoot in the pumping process.
  • the function of this link is to calculate the optical power of the input and output of the EDFA according to the current control mode, according to the gain or output optical power setting value, and combined with the ASE compensation power.
  • the differential control algorithm here can improve the dynamic performance of the system, shorten the adjustment time, reduce the overshoot, and is suitable for solving the situation that the instantaneous change of optical power is too large; and the integral control algorithm improves the steady state performance of the system and reduces Steady-state error.
  • the reason for using the FIR filter is that the phase delay is linear in its pass band.
  • the bait ion transition time is about ms, and the excitation time of the excited ion is 10 ms. Therefore, the optical pulse envelope variation range of the laser amplifier output is also the ms level, so the cutoff frequency of the filter is set to 10 KHz.
  • the transition band bandwidth is 19.5-21 KHz, and the maximum sidelobe assignment is -17-20.
  • the 512-order guarantees that the delay is not too large and does not affect the response speed of the differential control.
  • the optical power output by the EDFA is not the output pure optical power, and part of it is ASE noise, which is equivalent to a part of the gain converted into ASE noise, so in order to improve the accuracy of the gain lock, it is necessary to compensate these ASE noise.
  • the ASE compensation value is related to the length of the EDFA fiber, the doping density of the fiber, and the internal optical path loss of the EDFA. Therefore, when each EDFA is detected, different compensation values are obtained.
  • FIG. 6 is a graph showing the relationship between ASE noise power and EDFA gain, in accordance with a preferred embodiment of the present invention, as shown in FIG. 6, where the upper is the gain and the lower is the noise power.
  • ASE noise The acoustic component and the gain do not exhibit a fixed coefficient multiplier relationship, so the ASE cannot be calculated as a fixed value when performing the ASE compensation calculation.
  • the EDFA cascaded signal contains a large ASE cascade noise, and now most systems use the EDFA pump cascade for the farther transmission of fiber signals, this formula is no longer applicable. . Direct measurement should be used.
  • FIG. 7 is a schematic diagram of measuring ASE noise power with a spectrometer using a direct measurement method according to a preferred embodiment of the present invention, as shown in FIG. 7, by measuring the power at a distance of 0.1 nm or 0.4 nm from the peak of the output optical power by using an optical power meter.
  • the spectral density, a number of points are selected, and the obtained values are averaged to obtain the ASE power, so that the selection is to avoid the influence of the center wavelength.
  • Figure 8 is a schematic illustration of a measured spectrogram of a laser output in accordance with a preferred embodiment of the present invention.
  • a statistical table is created and found to be slightly curved. Therefore, when performing ASE compensation, the multi-stage compensation method is adopted, that is, the curve of ASE and gain is fitted by several fold lines, so that the proportional coefficients are consistent in each segment of the fold line. This can minimize the problem of inaccuracy caused by ASE compensation.
  • the differential control method stores the compensation value of the ASE in a storage device according to the correspondence value with the gain, and reads it from the storage device when the system is powered on, and stores it in the cache, and then uses the gain and the gain. Correspondence is read out from the cache in the form of a lookup table. Adding this value to the input optical power, plus the target gain, results in the compensated output current value.
  • the calculation process is delayed because it is necessary to delay the change of the gain and the change of the incoming optical power by 1us. This has the advantage of reducing the generation of overshoot and increasing the instantaneous power input. The rate of change of reaction.
  • the above process is the differential control method. It greatly improves the dynamic performance of the system without causing jitter in the output.
  • Integral control method because the system is a closed-loop system, it is necessary to subtract the currently set gain and incoming optical power according to the actual output power, and the resulting optical power error is obtained. With this error, the integral control is performed, and the module is configured according to the parameters.
  • the integral steady-state integral rate control parameter is used to reduce the error and the integral control can be realized. According to all the above measures, the steady state performance is greatly improved.
  • the incoming optical power may sometimes be unstable or too high, it is necessary to limit the maximum light output that the entire system can withstand, that is, to increase the maximum clamp output power.
  • a non-shutdown mode because in actual use, cable cut, equipment failure and other accidents will lead to loss of optical power or even shut down the pump, etc., for the redundancy of the entire system, in order to reconnect after the link is reconnected The system will recover and need a state that does not turn off the pump even if the input optical power is not available. Therefore, a non-shutdown mode is set in the system. When the light enters the light, the system can output the lowest clamp power, ensuring no. Turn off the pump.
  • the working state of the EDFA pump is divided into three types, including the pump off state, the slow pump state, and the transient state, as the control state of the laser switch to reduce the occurrence of overshoot.
  • the input optical power is smoothed, and the input and sampled values are subjected to FIR filtering to eliminate discrete noise.
  • Direct measurement is used to measure the power spectral density at a distance of 0.1 nm or 0.4 nm from the peak of the output optical power by using an optical power meter. Several points are collected in this range, and the measured power is averaged. This is ASE. Noise power.
  • the multi-stage compensation method is adopted, that is, the relationship between ASE and gain is fitted by several fold lines, so that the proportional coefficients are consistent in each segment of the fold line, so that the ASE compensation can be minimized. Not precise enough.
  • the compensation value of the ASE is stored in the storage device according to the corresponding value of the gain.
  • the system When the system is powered on, it is read from the storage device and stored in the cache, and then the corresponding relationship with the gain is used to read from the cache in a lookup table. come out.
  • the differential control algorithm is to delay the changed target gain size and the incoming optical power by 1 us, and then add the compensation value of the ASE to obtain an initial output current value.
  • the method according to the above embodiment can be implemented by means of software plus a necessary general hardware platform, and of course, by hardware, but in many cases, the former is A better implementation.
  • the technical solution of the present invention which is essential or contributes to the prior art, may be embodied in the form of a software product stored in a storage medium (such as ROM/RAM, disk,
  • the optical disc includes a number of instructions for causing a terminal device (which may be a mobile phone, a computer, a server, or a network device, etc.) to perform the method of various embodiments of the present invention.
  • Embodiments of the present invention also provide a storage medium.
  • the foregoing storage medium may be configured to store program code for performing the steps of the foregoing embodiment.
  • the foregoing storage medium may include, but not limited to, a USB flash drive.
  • a medium that can store program code such as a read-only memory (ROM), a random access memory (RAM), a mobile hard disk, a magnetic disk, or an optical disk.
  • the processor executes the method of the above embodiment according to the stored program code in the storage medium.
  • modules or steps of the present invention described above can be implemented by a general-purpose computing device that can be centralized on a single computing device or distributed across a network of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device such that they may be stored in the storage device by the computing device and, in some cases, may be different from the order herein.
  • the steps shown or described are performed, or they are separately fabricated into individual integrated circuit modules, or a plurality of modules or steps thereof are fabricated as a single integrated circuit module.
  • the invention is not limited to any specific combination of hardware and software.
  • the input optical power and the output optical power of the optical fiber amplifier are collected; the amplified spontaneous emission ASE noise power is generated according to the output optical power; and the corresponding ASE compensation is found in the ASE compensation power value table according to the target gain.
  • a power value wherein the ASE compensation power value table is generated according to a correspondence between the ASE noise power and a preset gain; calculating and outputting a standard output optical power according to the input optical power, the ASE compensation power value, and the target gain,
  • the problem that the ASE compensation precision of the optical fiber amplifier is not high and the differential control rate is slow is solved, and the ASE compensation precision and the differential control rate of the optical fiber amplifier are improved.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Lasers (AREA)
  • Optical Communication System (AREA)

Abstract

一种光纤放大器增益控制方法及装置,使用数字器件代替原有的闭环模拟控制单元,按当前的控制模式,根据增益或输出光功率设置值,并结合ASE补偿功率,计算出最终的输出光功率。对输入的光功率做了平滑处理,起到消除离散噪声的作用;同时还对输入的信号做了一定补偿。采用的微分控制算法和积分控制算法改善了系统的动态性能,整个闭环控制系统完成一次控制的周期为1μs左右,能有效地实现增益和功率锁定,满足用户的动态和稳态指标,解决了光纤放大器的ASE补偿精度不高、微分控制速率慢的问题,提高了光纤放大器的ASE补偿精度和微分控制速率。

Description

光纤放大器增益控制方法及装置 技术领域
本发明涉及通信领域,具体而言,涉及一种光纤放大器增益控制方法及装置。
背景技术
掺铒光纤放大器(Erbium Doped Fiber Amplifier,简称为EDFA)作为新一代光通信系统的关键部件,具有增益高、输出功率大、工作带宽较宽、与偏振无关、噪声系数低、放大特性与系统比特率和数据格式无关,它是大容量波分复用(Dense Wavelength Division Multiplexing,简称为DWDM)系统中必不可少的关键部件。EDFA的有效工作范围是针对DWDM系统的C波段,中心频率是193.1THz,波长范围是1528—1561nm,通道间隔是100GHz(约0.8nm)的整数倍,共包含40波。
因为DWDM系统是一个多波长的工作系统,又由于掺饵光纤放大器EDFA具有饱和特性,处于饱和区的波长功率保持稳定,当某些波长信号失去时,由于增益竞争,其能量会转移到那些未丢失的信号上,使其他波长的信号功率变高。在接收端,由于电平的突然提高可能会引起误码,而且在极限情况下,如果8路波长中有7路丢失时,所有的功率都集中到所剩的一路波长上,功率可能会达到17dBm左右,这将带来强烈的非线性或导致接收机的接收功率过载,会带来大量的误码。
因此要求光放大器具有自动增益控制功能,使得EDFA在实际的系统级联使用中,对输入光功率具有很宽的动态变化范围,确保DWDM系统中输入光功率不论如何变化,其余信道的光功率不受影响。
在相关技术中,图1是根据相关技术的一种掺饵光纤放大器增益控制装置示意图,如图1所示,该装置包括Pin光电转换模块、Pin程控增益放大或DAC模块、Pout光电转换模块、Pout放大模块、比例积分控制模块、比例微分控制模块、叠加电路和驱动电路;Pin光电转换模块设置为将输入光功率转换为电信号,该信号经过Pin程控增益放大或DAC模块,实现调整增益锁定值和进行输入小信号时的增益补偿控制;Pout光电转换模块将输出光功率转换为电信号,Pout放大模块设置为放大Pout所检测信号幅值;Pin检测信号和Pout检测信号作为差动输入信号,同时接在比例积分控制模块和比例微分控制模块的输入端,叠加电路取比例积分和比例微分这两个控制模块的电压输出之和Vc作为电压控制信号,通过驱动电路将该电压控制信号转变为满足泵浦激光器驱动要求的驱动电流信号。
该方案存在以下缺点:
1,增益不可调,因为控制单元是由模拟电路构成,控制单元的传递函数是由各种电子元器件的拉普拉斯变换模型构成的,所以传递函数不可变,开环增益和闭环增益即不可变。
2,控制模式单一,无法根据入光功率的变化选择不同的控制模式,以达到不同的控制结果。
3,无法避免超调量的产生,由于模拟电路的固有性质,在给系统输入阶跃信号时,即相
当于EDFA泵浦开泵时,会产生一定幅度的超调量,这会造成输出的光功率抖动。
4,不能设置光功率输出门限值。虽然EDFA的采用提高了光功率,但是这个光功率并非越大越好。当功率大到一定程度时,光纤将产生非线性效应(包括拉曼散射和布里渊散射),非线性效应会极大地限制EDFA的放大性能和长距离无中继传输的实现。
在相关技术中,图2是根据相关技术中一种用DSP实现EDFA中的增益和功率锁定装置的示意图,如图2所示,用DSP,A/D,D/A代替原有的闭环模拟控制单元,并在DSP内用软件的方式实现高效和灵活的控制算法。整个控制流程包括,4片14位TI的A/D采样芯片,分2级分别采样输入输出光功率,TI的DSP读取输入输出光功率后,按当前的控制模式,根据增益或输出光功率设置值,并结合ASE补偿功率,计算出最终的输出光功率。通过前馈补偿式的数字比例积分微分(PID)控制算法,计算出驱动泵浦激光器的控制电压,用1片14位TI双通道的D/A芯片控制2个泵浦激光器。整个闭环控制系统完成一次控制的周期为2us左右,配合整定过的控制参数,能有效地实现增益和功率锁定,满足用户的瞬态和稳态指标。
该方案存在以下缺点:
1,比例微分控制算法是根据将入光当做扰动量再进行补偿进行的,补偿的进程需要持续2us,导致在处理EDFA光功率输入瞬态变化时不够快速。
2,EDFA泵浦开泵时输出抖动过大。
3,ASE补偿精度不够高。因为ASE与增益呈非线性关系,所以直接在程序代码中进行ASE补偿计算是不够精确的。
针对相关技术中,光纤放大器的ASE补偿精度不高、微分控制速率慢的问题,目前尚未提出有效的解决方案。
发明内容
本发明提供了一种光纤放大器增益控制方法及装置,以至少解决相关技术中光纤放大器的ASE补偿精度不高、微分控制速率慢的问题。
根据本发明的一个实施例,提供了一种光纤放大器增益控制方法,包括:
采集光纤放大器的输入光功率和输出光功率;
测量所述输出光功率并根据所述输出光功率生成所述光纤放大器的放大自发辐射ASE噪声功率;
目标增益根据所述ASE噪声功率和预设增益的对应关系确定对应的ASE补偿功率值;
根据所述输入光功率、所述ASE补偿功率值和所述目标增益计算并输出标准输出光功率。
在本发明的实施例中,所述目标增益根据所述ASE噪声功率和预设增益的对应关系确定对应的ASE补偿功率值包括:
所述目标增益在ASE补偿功率值表查找所述目标增益对应的ASE补偿功率值,其中,所述ASE补偿功率值表是根据所述ASE噪声功率和预设增益的对应关系生成的。
在本发明的实施例中,采集光纤放大器的输入光功率和输出光功率之后,该方法包括:
对采样得到的所述输入光功率进行有限长单位冲激响应FIR滤波。
在本发明的实施例中,该方法还包括:在所述光纤放大器处于关泵的状态下,不输出所述输出光功率。
在本发明的实施例中,该方法还包括:在所述光纤放大器开泵时,设置缓开泵状态,其中,在处于所述缓开泵状态时,根据所述输入光功率和所述目标增益设置进阶,根据所述进阶完成所述光纤放大器的开泵。
在本发明的实施例中,所述测量所述输出光功率并根据所述输出光功率生成所述光纤放大器的放大自发辐射ASE噪声功率包括:
测量所述输出光功率峰值预设范围处的功率谱密度,采集所述范围内多个点的输出光功率,将所述多个点输出光功率取平均值,生成所述ASE噪声功率。
在本发明的实施例中,所述ASE补偿功率值表是根据所述ASE噪声功率和预设增益的对应关系生成的包括:
采用多段式补偿法拟合所述ASE噪声功率与预设增益的关系曲线,生成所述ASE补偿功率值表。
在本发明的实施例中,所述根据所述输入光功率、所述ASE补偿功率值和所述目标增益计算并输出标准输出光功率包括:
根据延迟预定时间的变化后的所述输入光功率,结合所述目标增益和所述ASE补偿功率值,计算并输出标准输出光功率。
在本发明的实施例中,所述根据所述输入光功率、所述ASE补偿功率值和所述目标增益计算并输出标准输出光功率之后包括:
将输出的所述标准输出光功率减去所述目标增益、所述ASE补偿功率值以及所述输入光功率,得到光功率误差,根据所述光功率误差以及预设的稳态积分速率控制参数对所述标准输出光功率进行积分控制,输出最终输出光功率。
在本发明的实施例中,所述根据所述输入光功率、所述ASE补偿功率值和所述目标增益计算并输出标准输出光功率之后包括:
在本发明的实施例中,该方法包括:
在没有所述输入光功率的情况下,输出最低钳位功率,其中,该最低钳位功率为所述光纤放大器正常工作的最小功率值。
在本发明的实施例中,该方法包括:
在所述输入光功率低于预设最小输入光功率的情况下,生成无输入光功率告警或者硬件中断指示。
在本发明的实施例中,该方法包括:
在所述标准输出光功率高于预设最大钳位输出光功率的情况下,禁止输出所述标准输出光功率,并仅输出最大钳位输出光功率。
根据本发明的另一个实施例,还提供了一种光纤放大器增益控制装置,包括:
采集模块,设置为采集光纤放大器的输入光功率和输出光功率;
测量模块,设置为测量所述输出光功率并根据所述输出光功率生成所述光纤放大器的放大自发辐射ASE噪声功率;
查找模块,设置为目标增益根据所述ASE噪声功率和预设增益的对应关系确定对应的ASE补偿功率值;
输出模块,设置为根据所述输入光功率、所述ASE补偿功率值和所述目标增益计算并输出标准输出光功率。
在本发明的实施例中,所述查找模块还包括以下至少之一:
查表单元,设置为所述目标增益在ASE补偿功率值表查找所述目标增益对应的ASE补偿功率值,其中,所述ASE补偿功率值表是根据所述ASE噪声功率和预设增益的对应关系生成的;
生成单元,设置为采用多段式补偿法拟合所述ASE噪声功率与预设增益的关系曲线,生成所述ASE补偿功率值表。
在本发明的实施例中,该装置还包括以下至少之一:
滤波模块,设置为对采样得到的所述输入光功率进行有限长单位冲激响应FIR滤波;
关泵模块,设置为在所述光纤放大器处于关泵的状态下,不输出所述输出光功率;
缓开泵模块,设置为在所述光纤放大器开泵时,设置缓开泵状态,其中,在处于所述缓开泵状态时,根据所述输入光功率和所述目标增益设置进阶,根据所述进阶完成所述光纤放大器的开泵。
在本发明的实施例中,所述测量模块包括:
测量单元,设置为测量所述输出光功率峰值预设范围处的功率谱密度,采集所述范围内多个点的输出光功率,将所述多个点输出光功率取平均值,生成所述ASE噪声功率。
在本发明的实施例中,所述输出模块还设置为根据延迟预定时间的变化后的所述输入光功率,结合所述目标增益和所述ASE补偿功率值,计算并输出标准输出光功率。
在本发明的实施例中,该装置还包括以下至少之一:
第一积分控制模块,设置为将输出的所述标准输出光功率减去所述目标增益、所述ASE补偿功率值以及所述输入光功率,得到光功率误差,根据所述光功率误差以及预设的稳态积分速率控制参数对所述标准输出光功率进行积分控制,输出最终输出光功率;
不关泵模块,设置为在没有所述输入光功率的情况下,输出最低钳位功率,其中,该最低钳位功率为所述光纤放大器正常工作的最小功率值;
告警模块,设置为在所述输入光功率低于预设最小输入光功率的情况下,生成无输入光功率告警或者硬件中断指示;
禁止输出模块,设置为在所述标准输出光功率高于预设最大钳位输出光功率的情况下,禁止输出所述标准输出光功率,并仅输出最大钳位输出光功率。
通过本发明,采集光纤放大器的输入光功率和输出光功率;依据该输出光功率生成放大自发辐射ASE噪声功率;根据目标增益在ASE补偿功率值表查找对应的ASE补偿功率值,其中,该ASE补偿功率值表是根据该ASE噪声功率和预设增益的对应关系生成的;根据该输入光功率、该ASE补偿功率值和该目标增益计算并输出标准输出光功率,解决了光纤放大器的ASE补偿精度不高、微分控制速率慢的问题,提高了光纤放大器的ASE补偿精度和微分控制速率。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1是根据相关技术的一种掺饵光纤放大器增益控制装置示意图;
图2是根据相关技术中一种用DSP实现EDFA中的增益和功率锁定装置的示意图;
图3是根据本发明实施例的一种光纤放大器增益控制方法的流程图;
图4是根据本发明实施例的一种光纤放大器增益控制装置的结构框图;
图5是根据本发明优选实施例的一种掺饵光纤放大器EDFA稳定快速增益控制装置示意图;
图6是根据本发明优选实施例的ASE噪声功率与EDFA增益关系的曲线示意图;
图7是根据本发明优选实施例的采用直接测量法用光谱仪测量ASE噪声功率的示意图;
图8是根据本发明优选实施例的激光器输出测得的频谱图的示意图。
具体实施方式
下文中将参考附图并结合实施例来详细说明本发明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
需要说明的是,本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
在本实施例中提供了一种光纤放大器增益控制方法,图3是根据本发明实施例的一种光纤放大器增益控制方法的流程图,如图3所示,该流程包括如下步骤:
步骤S302,采集光纤放大器的输入光功率和输出光功率;
步骤S304,测量该输出光功率并根据该输出光功率生成光纤放大器的放大自发辐射ASE噪声功率;
步骤S306,目标增益根据该ASE噪声功率和预设增益的对应关系确定对应的ASE补偿功率值;
步骤S308,根据该输入光功率、该ASE补偿功率值和该目标增益计算并输出标准输出光功率。
通过上述步骤,直接测量该输出光功率并生成光纤放大器的放大自发辐射ASE噪声功率,并根据目标增益根据该ASE噪声功率和预设增益的对应关系确定对应的ASE补偿功率值,从而根据输入光功率、该ASE补偿功率值和该目标增益计算并输出标准输出光功率,解决了光纤放大器的ASE补偿精度不高、微分控制速率慢的问题,提高了光纤放大器的ASE补偿精度和微分控制速率。
在本实施例中,该目标增益根据该ASE噪声功率和预设增益的对应关系确定对应的ASE补偿功率值包括:
该目标增益在ASE补偿功率值表查找该目标增益对应的ASE补偿功率值,其中,该ASE补偿功率值表是根据该ASE噪声功率和预设增益的对应关系生成的。
在本实施例中,可以对采样得到的该输入光功率进行有限长单位冲激响应FIR滤波,从而对输入的光功率做了平滑处理,起到了消除输入光功率离散噪声的作用。
在本实施例中,可以将光纤放大器的泵浦的工作状态设置为关泵状态,在该光纤放大器处于关泵的状态下,不输出该输出光功率。
在本实施例中,可以将光纤放大器的泵浦的工作状态设置为缓开泵状态,在该光纤放大 器开泵时,设置缓开泵状态,其中,在处于该缓开泵状态时,根据该输入光功率和该目标增益设置进阶,根据该进阶完成该光纤放大器的开泵,减少了超调量的发生。
在本实施例中,该测量该输出光功率并生成光纤放大器的放大自发辐射ASE噪声功率包括:
测量该输出光功率峰值预设范围处的功率谱密度,采集该范围内多个点的输出光功率,将该多个点输出光功率取平均值,生成该ASE噪声功率。
在本实施例中,ASE补偿功率值表的生成可以有多种方式,这些方式都是根据预设增益拟合对应的ASE噪声功率,例如,采用多段式补偿法拟合该ASE噪声功率与预设增益的关系曲线,生成该ASE补偿功率值表,该多段式补偿法中每段折线内比例系数都是一致的,这样可以尽量减小ASE补偿带来的不够精确问题。
在本实施例中,根据延迟预定时间的变化后的该输入光功率,结合该目标增益和该ASE补偿功率值,计算并输出标准输出光功率,与该ASE相加,计算并输出标准输出光功率,提高了输入光功率瞬间变化的反应速度,减少了输出的抖动。
在本实施例中,还可以将输出的该标准输出光功率减去该目标增益、该ASE补偿功率值以及该输入光功率,得到光功率误差,根据该光功率误差以及预设的稳态积分速率控制参数对该标准输出光功率进行积分控制,输出最终输出光功率。实现积分的控制,提高了光纤放大器的稳态性能。
在上述实施例中,在没有该输入光功率的情况下,输出最低钳位功率,其中,该最低钳位功率为该光纤放大器正常工作的最小功率值。
在该输入光功率低于预设最小输入光功率的情况下,生成无输入光功率告警或者硬件中断指示。
在该标准输出光功率高于预设最大钳位输出光功率的情况下,禁止输出该标准输出光功率,并仅输出最大钳位输出光功率。
在本实施例中还提供了一种光纤放大器增益控制装置,该装置用于实现上述实施例及优选实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图4是根据本发明实施例的一种光纤放大器增益控制装置的结构框图,如图4所示,该装置包括
采集模块42,设置为采集光纤放大器的输入光功率和输出光功率;
测量模块44,设置为测量该输出光功率并根据该输出光功率生成该光纤放大器的放大自发辐射ASE噪声功率;
查找模块46,设置为目标增益根据该ASE噪声功率和预设增益的对应关系确定对应的ASE补偿功率值;
输出模块48,设置为根据该输入光功率、该ASE补偿功率值和该目标增益计算并输出标准输出光功率。
在本发明的实施例中,该查找模块46还包括以下至少之一:
查表单元,设置为该目标增益在ASE补偿功率值表查找该目标增益对应的ASE补偿功率值,其中,该ASE补偿功率值表是根据该ASE噪声功率和预设增益的对应关系生成的;
生成单元,设置为采用多段式补偿法拟合该ASE噪声功率与预设增益的关系曲线,生成该ASE补偿功率值表。
在本发明的实施例中,该装置还包括:
滤波模块,设置为对采样得到的该输入光功率进行有限长单位冲激响应FIR滤波;
关泵模块,设置为在该光纤放大器处于关泵的状态下,不输出该输出光功率;
缓开泵模块,设置为在该光纤放大器开泵时,设置缓开泵状态,其中,在处于该缓开泵状态时,根据该输入光功率和该目标增益设置进阶,根据该进阶完成该光纤放大器的开泵。
在本发明的实施例中,该测量模块44包括:
测量单元,设置为测量该输出光功率峰值预设范围处的功率谱密度,采集该范围内多个点的输出光功率,将该多个点输出光功率取平均值,生成该ASE噪声功率。
在本发明的实施例中,该输出模块48还设置为根据延迟预定时间的变化后的该输入光功率,结合该目标增益和该ASE补偿功率值,计算并输出标准输出光功率。
在本发明的实施例中,该装置还包括:
第一积分控制模块,设置为将输出的该标准输出光功率减去该目标增益、该ASE补偿功率值以及该输入光功率,得到光功率误差,根据该光功率误差以及预设的稳态积分速率控制参数对该标准输出光功率进行积分控制,输出最终输出光功率;
不关泵模块,设置为在没有该输入光功率的情况下,输出最低钳位功率,其中,该最低钳位功率为该光纤放大器正常工作的最小功率值;
告警模块,设置为在该输入光功率低于预设最小输入光功率的情况下,生成无输入光功率告警或者硬件中断指示;
禁止输出模块,设置为在该标准输出光功率高于预设最大钳位输出光功率的情况下,禁止输出该标准输出光功率,并仅输出最大钳位输出光功率。
下面结合优选实施例和实施方式对本发明进行详细说明。
本优选实施例提供了一种掺饵光纤放大器EDFA稳定快速增益控制方法与装置,图5是根据本优选实施例的一种掺饵光纤放大器EDFA稳定快速增益控制装置示意图,如图5所示:
该装置包括:
参数配置模块:此模块可以给增益控制算法及通讯接口模块设置不同的控制模式和控制参数;控制模式包括:下钳位模式、标称出光模式、正常出光模式;控制参数包括:标称出光功率、入光无光门限值、稳态积分速率控制参数、标称增益、下箝位安全功率、最高箝位输出功率、新设定目标增益。
增益控制算法及通讯接口模块:此模块不仅负责动态控制和稳态控制,还将EDFA泵浦的工作状态划分为3种,包括关泵状态、缓开泵状态、瞬态状态,每种状态下的控制方式和控制参数都不一致,同时负责与各个器件的通讯,包括模数采集模块、数模转换模块、温度采集模块、存储模块。
模数采集模块:此模块分别采集EDFA的输入光功率、输出光功率,将采集到的数字传送给增益控制算法及通讯接口模块。
数模转换模块:增益控制算法及通讯接口模块计算得到的增益控制数据,传送至此模块,然后通过此模块将离散数据转换成模拟数据,再传送给EDFA。
温度采集模块:此模块负责测量装置的温度,将温度值实时的传送给增益控制算法及通讯接口模块。
存储模块:此模块负责存储AES噪声功率补偿值,并将补偿值传送给增益控制算法及通讯接口模块。
增益控制方法流程如下:
由模数采集模块采集EDFA输入和输出的光功率大小,首先对输入的光功率做了平滑处理,起到消除离散噪声的作用;同时还对输入的小信号做了ASE补偿,而ASE功率补偿值的确定是通过使用光功率计测量输出距离光功率峰值0.1nm或0.4nm处的功率谱密度得来,然后再按照线性拟合的折线系数确定的。将ASE的补偿值按照与增益的对应关系数值存入存储设备里,在系统上电时从存储模块里读出来存储在缓存里,再利用与增益的对应关系,以查找表的方式从缓存读出来,将这个数值加上输入光功率,再加上目标增益大小,得到的就是补偿后的输出电流数值。在这个过程中,要注意计算的过程是有延迟的,因为需要将增益的变化和入光功率的变化延迟1us,这样的好处是减少了超调量的产生。上面这个过程便是微分控制法。然后再根据输出的光功率和当前的控制模式,计算出标出光(标准输出光功率)和出光功率误差,其中标准出光是用来根据是否小于下钳位光功率来判决产生稳态积分速率控制参数的,出光功率(输出光功率)误差是用来控制积分参数一定补偿,以防止入光(输入光功率)阀值过低。然后逐步进行加减运算以达到要求的光功率输出,这便是积分控制法。此算法既改善了系统的动态性能,缩短了调节时间,减小了超调量,适合解决光功率瞬间变化过大的情况,又改善了系统的稳态性能,减小了稳态误差,又减小了ASE产生的误差,提 高了增益锁定性能。整个闭环控制系统完成一次控制的周期为1us左右,能有效地实现增益控制和功率锁定,满足用户的动态和稳态指标。
如图5所示,整个装置包括:参数配置模块、增益控制算法及通讯接口模块、模数采集模块、数模转换模块、温度采集模块、存储模块。这种设计取消了由模拟电路组成的微分控制环节和积分控制环节,好处是解决了增益不可变和控制模式单一的问题。
将EDFA泵浦的工作状态划分为3种,包括关泵状态、缓开泵状态、瞬态状态。
在关泵状态下,对外不输出功率。
缓开泵状态是根据EDFA泵浦开泵时会产生一定幅度的超调量,这会造成输出的光功率抖动,所以加入了缓开泵这一环节。原理如下:根据系统的配置要求,在初始功率与目标增益之间设立100步的进阶,这样(目标增益—初始功率)÷100*步数等于每步之间的幅度差值,然后开泵时从第1步开始,一直走到第100步,这样完即成了开泵这一动作。这种方法的好处是在开泵这一环节减少超调量的产生。
开泵完成后,进入瞬态状态,这个环节的作用是:将采集的EDFA输入和输出的光功率大小,按当前的控制模式,根据增益或输出光功率设置值,并结合ASE补偿功率,计算出最终的输出光功率。这里的微分控制算法可以改善系统的动态性能,缩短了调节时间,减小了超调量,适合解决光功率瞬间变化过大的情况;而积分控制算法改善了系统的稳态性能,减小了稳态误差。
对输入的光功率做了平滑处理,将输入的并经过采样后的数值进行FIR滤波,起到消除离散噪声的作用,这样可以保证对不规则的毛刺起到了过滤的效果。采用FIR滤波器的原因是在其通带内,相位延迟是线性的。同时饵离子跃迁约时间为ms级,受激铒离子的荧光时间为10ms,所以激光放大器输出的光脉冲包络变化范围也是ms级别,因此将滤波器的截止频率设定为10KHz。为了换取过渡带带宽和最大旁瓣的衰减幅值之间的平衡,选择过渡带带宽为19.5-21KHz,最大旁瓣赋值-17—-20的dB。而512阶数保证延迟不太大,不影响微分控制的响应速度。
对输入信号添加补偿。EDFA输出的光功率并不是输出纯光功率,还有一部分是ASE噪声,相当于有一部分增益转换成了ASE噪声,所以为了改进增益锁定的精度,需要补偿这些ASE噪声。同时ASE补偿值与EDFA的铒纤长度、铒纤掺杂浓度、EDFA内部光路损耗等都有关,所以在给每个EDFA检测时,都会得到不尽相同的补偿值。
ASE补偿量的计算。一般采用噪声功率近似法来计算ASE功率,噪声系数NC=10log{(1/G)+Pase/(h*v*G*w)},其中h为普朗克常数,Pase为ASE功率,v为频率,G为增益,w为频宽。即ASE噪声分量从公式中推导,基本上可以确认放大环节的增益有关。即EDFA的特性是无论输入光功率多少,其输出的ASE噪声只随着增益有所变化。
图6是根据本发明优选实施例的ASE噪声功率与EDFA增益关系的曲线示意图,如图6所示,图中上面的为增益,下面的为噪声功率。在但是经过光谱仪的精确测量发现,ASE噪 声分量与增益并不呈现固定系数倍关系,所以在进行ASE补偿计算时不能把ASE当成固定值进行运算。因为经过EDFA级联放大后的信号包含了较大的ASE级联噪声,而现在大多系统为了光纤信号传输的更远,都采用了EDFA泵浦级联的方式,所以此种公式已经不再适用。应该采用直接测量法。
图7是根据本发明优选实施例的采用直接测量法用光谱仪测量ASE噪声功率的示意图,如图7所示,就是通过使用光功率计测量距离输出光功率峰值左右0.1nm或0.4nm处的功率谱密度,选取若干个点,将所得到的值取平均值,即得到ASE功率,这样选取是避免中心波长的影响。
图8是根据本发明优选实施例的激光器输出测得的频谱图的示意图,如图8所示,做出一个统计表,发现这条曲线是有一点弯曲的。所以在进行ASE补偿时,采用多段式补偿法,即用几条折线拟合ASE与增益的曲线,这样在每段折线内比例系数都是一致的。这样可以尽量减小ASE补偿带来的不够精确问题。
在本优选实施例中,微分控制法,将ASE的补偿值按照与增益的对应关系数值存入存储设备里,在系统上电时从存储设备里读出来存储进缓存里,再利用与增益的对应关系,以查找表的方式从缓存读出来,将这个数值加上输入光功率,再加上目标增益大小,得到的就是补偿后的输出电流数值。在这个过程中,要注意计算的过程是有延迟的,因为需要将增益的变化和入光功率的变化延迟1us,这样的好处是减少了超调量的产生,又能提高对入光功率瞬间变化的反应速度。上面这个过程便是微分控制法。它极大的提高了系统的动态性能,同时也不会造成输出的抖动。
积分控制法,由于系统是闭环系统,所以需要跟据实际的出光功率减去当前设置的增益以及入光功率,得到的即是出光功率误差,用这个误差,进行积分控制,按照参数配置模块设定的稳态积分速率控制参数,进行减小误差的运算,即可实现积分控制。根据以上的所有措施,极大地提高了稳态性能。
设置一个入光功率门限,当入光功率低于这个门限时,将产生入光无光告警和硬件中断
由于入光功率可能有时候会不稳定,或者是过高,所以需要对整个系统所能承受的最大出光做一个限制,就是增加一个最大钳位出光功率。
设置一个不关断模式,因为在实际使用中,光缆切断、设备失效等事故会导致光功率丢失甚至是关泵等状态,出于整个系统的冗余性考虑,为了在链路重新连好后系统便与恢复,需要一个即使是入光功率没有也可以不关泵的状态,所以在系统中设置了一个不关断模式,当入光无光时,系统可以输出最低钳位功率,保证不关泵。
通过上述实施例,将EDFA泵浦的工作状态划分为3种,包括关泵状态、缓开泵状态、瞬态状态,作为激光器开关的控制状态,以减小超调量的发生。
对输入的光功率做了平滑处理,将输入的并经过采样后的数值进行FIR滤波,起到消除离散噪声的作用。
采用直接测量法,即通过使用光功率计测量距离输出光功率峰值左右0.1nm或0.4nm处的功率谱密度,在这个范围内采集若干个点,将测得的功率取平均值,此为ASE噪声功率。
在计算ASE补偿值时,采用多段式补偿法,即用几条折线拟合ASE与增益的关系曲线,这样在每段折线内比例系数都是一致的,这样可以尽量减小ASE补偿带来的不够精确问题。
将ASE的补偿值按照与增益的对应关系数值存入存储设备里,在系统上电时从存储设备里读出来存储在缓存中,再利用与增益的对应关系,以查找表的方式从缓存读出来。
增加一个最大钳位出光功率,以防止光功率过大。
微分控制算法是,将变化后的目标增益大小和入光功率延迟1us,然后与ASE的补偿值相加,得到初始输出电流值。
设置不关断模式。保证在实际使用中,光缆切断、设备失效等状态时,系统可以输出最低钳位功率,以便在链路重新连好后系统恢复,提高冗余性。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到根据上述实施例的方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本发明各个实施例该的方法。
本发明的实施例还提供了一种存储介质。可选地,在本实施例中,上述存储介质可以被设置为存储用于执行上述实施例步骤的程序代码,可选地,在本实施例中,上述存储介质可以包括但不限于:U盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
可选地,在本实施例中,处理器根据存储介质中已存储的程序代码执行上述实施例的方法。
显然,本领域的技术人员应该明白,上述的本发明的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本发明不限制于任何特定的硬件和软件结合。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
工业实用性
基于本发明实施例提供的上述技术方案,采集光纤放大器的输入光功率和输出光功率;依据该输出光功率生成放大自发辐射ASE噪声功率;根据目标增益在ASE补偿功率值表查找对应的ASE补偿功率值,其中,该ASE补偿功率值表是根据该ASE噪声功率和预设增益的对应关系生成的;根据该输入光功率、该ASE补偿功率值和该目标增益计算并输出标准输出光功率,解决了光纤放大器的ASE补偿精度不高、微分控制速率慢的问题,提高了光纤放大器的ASE补偿精度和微分控制速率。

Claims (18)

  1. 一种光纤放大器增益控制方法,包括:
    采集光纤放大器的输入光功率和输出光功率;
    测量所述输出光功率并根据所述输出光功率生成所述光纤放大器的放大自发辐射ASE噪声功率;
    目标增益根据所述ASE噪声功率和预设增益的对应关系确定对应的ASE补偿功率值;
    根据所述输入光功率、所述ASE补偿功率值和所述目标增益计算并输出标准输出光功率。
  2. 根据权利要求1所述的方法,其中,所述目标增益根据所述ASE噪声功率和预设增益的对应关系确定对应的ASE补偿功率值包括:
    所述目标增益在ASE补偿功率值表查找所述目标增益对应的ASE补偿功率值,其中,所述ASE补偿功率值表是根据所述ASE噪声功率和预设增益的对应关系生成的。
  3. 根据权利要求1所述的方法,其中,采集光纤放大器的输入光功率和输出光功率之后,该方法包括:
    对采集得到的所述输入光功率进行有限长单位冲激响应FIR滤波。
  4. 根据权利要求1所述的方法,其中,该方法还包括:在所述光纤放大器处于关泵的状态下,不输出所述输出光功率。
  5. 根据权利要求1所述的方法,其中,该方法还包括:在所述光纤放大器开泵时,设置缓开泵状态,其中,在处于所述缓开泵状态时,根据所述输入光功率和所述目标增益设置进阶,根据所述进阶完成所述光纤放大器的开泵。
  6. 根据权利要求1所述的方法,其中,所述测量所述输出光功率并根据所述输出光功率生成所述光纤放大器的放大自发辐射ASE噪声功率包括:
    测量所述输出光功率峰值预设范围处的功率谱密度,采集所述预设范围内多个点的输出光功率,将所述多个点的输出光功率取平均值,生成所述ASE噪声功率。
  7. 根据权利要求2所述的方法,其中,所述ASE补偿功率值表是根据所述ASE噪声功率和预设增益的对应关系生成的包括:
    采用多段式补偿法拟合所述ASE噪声功率与预设增益的关系曲线,生成所述ASE补偿功率值表。
  8. 根据权利要求1所述的方法,其中,所述根据所述输入光功率、所述ASE补偿功率值和所述目标增益计算并输出标准输出光功率包括:
    根据延迟预定时间的变化后的所述输入光功率,结合所述目标增益和所述ASE补偿 功率值,计算并输出标准输出光功率。
  9. 根据权利要求1所述的方法,其中,所述根据所述输入光功率、所述ASE补偿功率值和所述目标增益计算并输出标准输出光功率之后包括:
    将输出的所述标准输出光功率减去所述目标增益、所述ASE补偿功率值以及所述输入光功率,得到光功率误差,根据所述光功率误差以及预设的稳态积分速率控制参数对所述标准输出光功率进行积分控制,输出最终输出光功率。
  10. 根据权利要求1所述的方法,其中,该方法包括:
    在没有所述输入光功率的情况下,输出最低钳位功率,其中,该最低钳位功率为所述光纤放大器正常工作的最小功率值。
  11. 根据权利要求1至10任一项所述的方法,其中,该方法包括:
    在所述输入光功率低于预设最小输入光功率的情况下,生成无输入光功率告警或者硬件中断指示。
  12. 根据权利要求11所述的方法,其中,该方法包括:
    在所述标准输出光功率高于预设最大钳位输出光功率的情况下,禁止输出所述标准输出光功率,并仅输出最大钳位输出光功率。
  13. 一种光纤放大器增益控制装置,包括:
    采集模块,设置为采集光纤放大器的输入光功率和输出光功率;
    测量模块,设置为测量所述输出光功率并根据所述输出光功率生成所述光纤放大器的放大自发辐射ASE噪声功率;
    查找模块,设置为目标增益根据所述ASE噪声功率和预设增益的对应关系确定对应的ASE补偿功率值;
    输出模块,设置为根据所述输入光功率、所述ASE补偿功率值和所述目标增益计算并输出标准输出光功率。
  14. 根据权利要求13所述的装置,其中,所述查找模块还包括以下至少之一:
    查表单元,设置为所述目标增益在ASE补偿功率值表查找所述目标增益对应的ASE补偿功率值,其中,所述ASE补偿功率值表是根据所述ASE噪声功率和预设增益的对应关系生成的;
    生成单元,设置为采用多段式补偿法拟合所述ASE噪声功率与预设增益的关系曲线,生成所述ASE补偿功率值表。
  15. 根据权利要求13所述的装置,其中,该装置还包括以下至少之一:
    滤波模块,设置为对采样得到的所述输入光功率进行有限长单位冲激响应FIR滤波;
    关泵模块,设置为在所述光纤放大器处于关泵的状态下,不输出所述输出光功率;
    缓开泵模块,设置为在所述光纤放大器开泵时,设置缓开泵状态,其中,在处于所述缓开泵状态时,根据所述输入光功率和所述目标增益设置进阶,根据所述进阶完成所述光纤放大器的开泵。
  16. 根据权利要求13所述的装置,其中,所述测量模块包括:
    测量单元,设置为测量所述输出光功率峰值预设范围处的功率谱密度,采集所述范围内多个点的输出光功率,将所述多个点输出光功率取平均值,生成所述ASE噪声功率。
  17. 根据权利要求13所述的装置,其中,所述输出模块还设置为根据延迟预定时间的变化后的所述输入光功率,结合所述目标增益和所述ASE补偿功率值,计算并输出标准输出光功率。
  18. 根据权利要求13所述的装置,其中,该装置还包括以下至少之一:
    第一积分控制模块,设置为将输出的所述标准输出光功率减去所述目标增益、所述ASE补偿功率值以及所述输入光功率,得到光功率误差,根据所述光功率误差以及预设的稳态积分速率控制参数对所述标准输出光功率进行积分控制,输出最终输出光功率;
    不关泵模块,设置为在没有所述输入光功率的情况下,输出最低钳位功率,其中,该最低钳位功率为所述光纤放大器正常工作的最小功率值;
    告警模块,设置为在所述输入光功率低于预设最小输入光功率的情况下,生成无输入光功率告警或者硬件中断指示;
    禁止输出模块,设置为在所述标准输出光功率高于预设最大钳位输出光功率的情况下,禁止输出所述标准输出光功率,并仅输出最大钳位输出光功率。
PCT/CN2016/076902 2015-05-20 2016-03-21 光纤放大器增益控制方法及装置 WO2016184246A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP16795733.1A EP3300190A4 (en) 2015-05-20 2016-03-21 Method of controlling gain of fiber amplifier and device utilizing same
JP2017560571A JP6458172B2 (ja) 2015-05-20 2016-03-21 光ファイバ増幅器の利得制御方法及び装置、プログラムならびに記録媒体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510259520.9A CN106299992B (zh) 2015-05-20 2015-05-20 光纤放大器增益控制方法及装置
CN201510259520.9 2015-05-20

Publications (1)

Publication Number Publication Date
WO2016184246A1 true WO2016184246A1 (zh) 2016-11-24

Family

ID=57319359

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/076902 WO2016184246A1 (zh) 2015-05-20 2016-03-21 光纤放大器增益控制方法及装置

Country Status (4)

Country Link
EP (1) EP3300190A4 (zh)
JP (1) JP6458172B2 (zh)
CN (1) CN106299992B (zh)
WO (1) WO2016184246A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9985414B1 (en) 2017-06-16 2018-05-29 Banner Engineering Corp. Open-loop laser power-regulation
US11609116B2 (en) 2020-08-27 2023-03-21 Banner Engineering Corp Open-loop photodiode gain regulation

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110350977B (zh) * 2017-06-28 2022-05-13 武汉光迅科技股份有限公司 一种混合光纤放大器ase补偿参数使用方法
CN108054628B (zh) * 2017-12-05 2019-03-19 深圳市创鑫激光股份有限公司 激光器的控制系统、激光器、带有激光器的设备
CN109194390B (zh) * 2018-08-10 2021-03-26 无锡恒纳信息技术有限公司 一种光放大器的光学参数的测量方法
CN110601766B (zh) * 2019-09-10 2020-11-13 武汉光迅科技股份有限公司 一种控制方法及光纤放大器
CN110939433B (zh) * 2019-12-21 2023-06-27 中国电波传播研究所(中国电子科技集团公司第二十二研究所) 一种基于数字均衡的生产测井地面装置及其数据处理方法
CN113497666B (zh) * 2020-04-03 2022-09-23 华为技术有限公司 光信号补偿装置、方法、设备以及计算机可读存储介质
CN112310791B (zh) * 2020-10-23 2021-10-12 武汉光迅电子技术有限公司 一种增益调节方法和光纤放大器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040051938A1 (en) * 2002-09-16 2004-03-18 Chan Les Yu Chung Gain controlled optical amplifier
CN101017307A (zh) * 2007-02-13 2007-08-15 武汉光迅科技股份有限公司 增益可控多级掺铒光纤放大器噪声指数的改善方法
CN101141201A (zh) * 2007-02-28 2008-03-12 中兴通讯股份有限公司 光放大器增益噪声补偿方法和装置
CN101877615A (zh) * 2009-10-27 2010-11-03 无锡市中兴光电子技术有限公司 一种用dsp实现edfa中的增益和功率锁定装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002080318A1 (en) * 2001-03-31 2002-10-10 Corning Incorporated Noise-compensating gain controller for an optical amplifier
CN1570748A (zh) * 2003-07-12 2005-01-26 华为技术有限公司 一种掺饵光纤放大器edfa增益控制方法
WO2005117215A1 (ja) * 2004-05-26 2005-12-08 Mitsubishi Denki Kabushiki Kaisha 光増幅器およびその利得制御方法
CN101217319A (zh) * 2008-01-10 2008-07-09 复旦大学 增益可控的两段式掺铒光纤放大器
JP5211796B2 (ja) * 2008-03-26 2013-06-12 日本電気株式会社 光増幅装置および入力光レベル計算方法ならびに光増幅器制御装置
CN104242036B (zh) * 2014-10-11 2017-03-15 无锡市德科立光电子技术有限公司 拉曼光纤放大器自动增益控制方法和拉曼光纤放大器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040051938A1 (en) * 2002-09-16 2004-03-18 Chan Les Yu Chung Gain controlled optical amplifier
CN101017307A (zh) * 2007-02-13 2007-08-15 武汉光迅科技股份有限公司 增益可控多级掺铒光纤放大器噪声指数的改善方法
CN101141201A (zh) * 2007-02-28 2008-03-12 中兴通讯股份有限公司 光放大器增益噪声补偿方法和装置
CN101877615A (zh) * 2009-10-27 2010-11-03 无锡市中兴光电子技术有限公司 一种用dsp实现edfa中的增益和功率锁定装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HE, HUAJIE: "Comparison of Measurement Method for EDFA Gain and Noise Factor", GUANGDONG COMMUNICATION TECHNOLOGY, vol. 19, no. 2, 30 April 1999 (1999-04-30), pages 38, XP009502627 *
See also references of EP3300190A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9985414B1 (en) 2017-06-16 2018-05-29 Banner Engineering Corp. Open-loop laser power-regulation
US11609116B2 (en) 2020-08-27 2023-03-21 Banner Engineering Corp Open-loop photodiode gain regulation

Also Published As

Publication number Publication date
EP3300190A4 (en) 2018-05-30
CN106299992B (zh) 2019-11-12
JP2018519658A (ja) 2018-07-19
JP6458172B2 (ja) 2019-01-23
EP3300190A1 (en) 2018-03-28
CN106299992A (zh) 2017-01-04

Similar Documents

Publication Publication Date Title
WO2016184246A1 (zh) 光纤放大器增益控制方法及装置
US10484088B2 (en) Apparatus and method for monitoring optical performance parameter, and optical transmission system
US7317570B2 (en) Variable gain optical amplifiers
CN102307068B (zh) 一种实现目标拉曼增益锁定的方法及其拉曼光纤放大器
CA2711223C (en) Methods and systems for extending the range of fiber optic distributed temperature sensing (dts) systems
CN104242036B (zh) 拉曼光纤放大器自动增益控制方法和拉曼光纤放大器
US20160056891A1 (en) Optical signal-to-noise ratio measuring method
JP2008502162A (ja) 多段光増幅器および増幅自然放出光の補償方法
EP3098980B1 (en) Method and device for determining gain of raman optical amplifier, and raman optical amplifier
WO2017166869A1 (zh) 一种实现混合光纤放大器目标增益精确控制的方法及混合光纤放大器
CN111864509A (zh) 片上超窄线宽激光器
US7224515B2 (en) Optical amplifiers
CN101729186A (zh) 抑制edfa中瞬态效应的装置和控制方法
JP5493752B2 (ja) 光増幅器、制御回路、および、光増幅器の制御方法
US6028697A (en) Erbium doped optical fiber amplifier for automatically tracing and filtering wavelength of transmitted light and its operation method
US7379234B2 (en) Quality monitoring of an optical fiber amplifier
JP2004513552A (ja) 増幅器の制御方法及び装置
US8908265B2 (en) Optical fiber amplifier comprising an embedded filter and a control method with improved feedforward control performance
CN110601766B (zh) 一种控制方法及光纤放大器
US10205520B2 (en) Method and device for measuring optical signal-to-noise ratio
CN102364770A (zh) 基于并联标准具的激光波长精密控制方法
EP2018689B1 (en) Variable gain optical amplifiers
CN105897341A (zh) 光放大器瞬态抑制快速逼近装置和方法
CN106936509A (zh) 一种拉曼瞬态效应控制方法和装置
JP3744723B2 (ja) フーリエ分光器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16795733

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017560571

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016795733

Country of ref document: EP