WO2016184228A1 - 光网络拓扑图的部署方法及装置 - Google Patents

光网络拓扑图的部署方法及装置 Download PDF

Info

Publication number
WO2016184228A1
WO2016184228A1 PCT/CN2016/076058 CN2016076058W WO2016184228A1 WO 2016184228 A1 WO2016184228 A1 WO 2016184228A1 CN 2016076058 W CN2016076058 W CN 2016076058W WO 2016184228 A1 WO2016184228 A1 WO 2016184228A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical network
event
network device
test
test data
Prior art date
Application number
PCT/CN2016/076058
Other languages
English (en)
French (fr)
Inventor
陈其元
孙世强
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2016184228A1 publication Critical patent/WO2016184228A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/12Discovery or management of network topologies

Definitions

  • the present invention relates to the field of communications, and in particular to a method and apparatus for deploying an optical network topology map.
  • FIG. 1 is an optical network topology according to the related art.
  • a schematic diagram of the structure, as shown in FIG. 1 in the optical network topology diagram, there is a connector at a certain distance from the optical network device (Optical Line Terminal (OLT)), and there is a distance from the connector.
  • the grading splitter has a second-level optical splitter at a distance from the primary splitter, and an optical network unit (ONU) at a certain distance from the secondary splitter.
  • the optical network topology map is manually manually deployed, including manual labeling of optical network device types and optical network device locations. (distance from the optical network device), and the distance from the front and rear optical network devices.
  • FIG. 2 is a schematic diagram of the optical network topology structure manually deployed according to the related art, as shown in FIG. 2 . It is indicated that the manual operation of the maintenance personnel is cumbersome and frequently operated, which may cause errors; if the actual optical network topology changes, the EMS system is not updated at the same time, and manual deployment is required, which causes inconvenience and causes a lot of troubles and influences. Work efficiency; in addition, manual deployment, there must be someone involved, manpower consumption and improper man-made operation, it will easily lead to errors and inefficiency.
  • the invention provides a method and a device for deploying an optical network topology map, so as to at least solve the problem that the optical network topology map deployment efficiency in the related art is low.
  • a method for deploying an optical network topology diagram includes:
  • test data comparing the test data with the template data to identify the optical network device on the optical network topology line, where the template data is used to indicate a correspondence between the optical network device and a preset threshold range of the indicator parameter;
  • the method includes:
  • the test data is read from the database based on the identity ID of the optical network device port.
  • the method includes:
  • the deploying the optical network topology map according to the identified optical network device and the test data corresponding to the optical network device includes:
  • test parameters of the test template include at least one of the following:
  • optical network device comprises at least one of the following:
  • Optical line terminal OLT connector, primary splitter, secondary splitter, optical network unit ONU.
  • test data includes event data
  • event data includes at least one of the following:
  • Event type event location, event insertion loss, event return loss, event reflection peak value
  • the event type includes at least one of the following: a start event, a reflection event, a decay event, and an end event.
  • the method for identifying the primary splitter includes:
  • the event type corresponding to the test data is a reflection event, a decay event, or an end event, comparing whether the event insertion loss in the test data meets a threshold range of the first-order optical splitter in the template data;
  • the optical network device In the case of meeting the threshold range of the primary splitter, the optical network device is identified as the primary splitter.
  • the method of identifying the connector includes:
  • the event type corresponding to the first-stage optical splitter in the test data is a reflection event, a decay event or an end event, comparing whether the event insertion loss in the test data meets the threshold range of the connector in the template data ;
  • the optical network device is identified as a connector if the threshold range of the connector is met.
  • the method for identifying the secondary splitter includes:
  • the event type corresponding to the primary multiplexer in the test data is a reflection event or a decay event, comparing whether the event reflection peak in the test data meets a threshold range of the secondary splitter in the template data;
  • the optical network device is identified as a secondary splitter.
  • an apparatus for deploying an optical network topology diagram including:
  • the test module is configured to test the optical network topology line according to the test parameter in the configured test template, and generate test data of the indicator parameter, wherein the indicator parameter corresponds to the test template;
  • An identification module configured to compare the test data with the template data, and identify an optical network device on the optical network topology line, where the template data is used to indicate a correspondence between the optical network device and a preset threshold range of the indicator parameter;
  • a deployment module configured to deploy an optical network topology map according to the identified optical network device and the test data corresponding to the optical network device.
  • the device comprises:
  • a storage module configured to save the test data to the database, and save the association relationship between the identity ID of the tested optical network device port and the test data to the database;
  • the reading module is configured to receive a request message, where the request message carries an identity ID of the optical network device port, and the test data is read from the database according to the identity ID of the optical network device port.
  • the device includes:
  • a change module configured to change the test data and mark the optical network device corresponding to the test data according to the identified identity ID of the optical network device.
  • the deployment module includes:
  • a first deployment unit configured to read, according to the identified identity ID of the optical network device port, the test data corresponding to the identity ID and the optical network device corresponding to the identity ID, according to the Test data and an optical network topology diagram of the optical network device deployment.
  • test parameters of the test template include at least one of the following:
  • optical network device comprises at least one of the following:
  • Optical line terminal OLT connector, primary splitter, secondary splitter, optical network unit ONU.
  • test data includes event data
  • event data includes at least one of the following:
  • Event type event location, event insertion loss, event return loss, event reflection peak value
  • the event type includes at least one of the following: a start event, a reflection event, a decay event, and an end event.
  • the identification module includes:
  • a first confirming unit configured to confirm whether the event type corresponding to the test data is a reflection event, a decay event, or an end event, and compare whether the event insertion loss in the test data meets a threshold of the first-order optical splitter in the template data range;
  • the first identifying unit is configured to identify the optical network device as the first-level splitter if the threshold range of the primary splitter is met.
  • the identification module includes:
  • a second confirming unit configured to confirm whether the event type corresponding to the first-stage splitter in the test data is a reflection event, a decay event, or an end event, and comparing whether the event insertion loss in the test data conforms to the template data
  • the threshold range of the connector configured to confirm whether the event type corresponding to the first-stage splitter in the test data is a reflection event, a decay event, or an end event, and comparing whether the event insertion loss in the test data conforms to the template data
  • a second identifying unit configured to identify the optical network device as a connector if the threshold range of the connector is met.
  • the identification module includes:
  • a third confirming unit configured to confirm whether the event reflection type in the test data is in the second level of the template data, if the event type corresponding to the first-level splitter in the test data is a reflection event or a decay event
  • the threshold range of the splitter
  • a third identifying unit configured to identify the optical network device as a secondary splitter if the threshold range of the secondary splitter is met.
  • An embodiment of the present invention further provides an apparatus for deploying an optical network topology, including:
  • a memory for storing processor executable instructions
  • processor is configured to:
  • test data comparing the test data with the template data to identify the optical network device on the optical network topology line, where the template data is used to indicate a correspondence between the optical network device and a preset threshold range of the indicator parameter;
  • Embodiments of the present invention also provide a non-transitory computer readable storage medium having stored therein instructions that, when executed by a processor, cause the processor to implement a method of deploying an optical network topology map
  • the method includes the following steps:
  • test data comparing the test data with the template data to identify the optical network device on the optical network topology line, where the template data is used to indicate a correspondence between the optical network device and a preset threshold range of the indicator parameter;
  • the optical network topology line is tested according to the test parameters in the configured test template, and test data of the indicator parameter is generated, wherein the indicator parameter corresponds to the test template; comparing the test data with the template data, identifying the An optical network device on an optical network topology line, wherein the template data is used to indicate a correspondence between the optical network device and a preset threshold range of the indicator parameter; according to the identified optical network device and corresponding to the optical network device
  • the test data is used to deploy an optical network topology map, which solves the problem of low efficiency of optical network topology deployment and improves the efficiency of optical network topology deployment.
  • FIG. 1 is a schematic diagram of an optical network topology according to the related art
  • FIG. 2 is a schematic diagram of a topological structure of a manually deployed optical network according to the related art
  • FIG. 3 is a flowchart of a method for deploying an optical network topology diagram according to an embodiment of the present invention
  • FIG. 4 is a structural block diagram of an apparatus for deploying an optical network topology diagram according to an embodiment of the present invention
  • FIG. 5 is a flowchart of a method for automatically deploying an optical network topology diagram based on OTDR technology according to a preferred embodiment of the present invention
  • FIG. 6 is a flow chart of an algorithm for identifying a primary splitter in accordance with a preferred embodiment of the present invention.
  • FIG. 7 is a flow chart of an algorithm for identifying a connector in accordance with a preferred embodiment of the present invention.
  • FIG. 8 is a flow chart of an algorithm for identifying a secondary splitter in accordance with a preferred embodiment of the present invention.
  • FIG. 3 is a flowchart of a method for deploying an optical network topology according to an embodiment of the present invention. As shown in FIG. 3, the process includes the following steps. :
  • Step S302 Test the optical network topology line according to the test parameter in the configured test template, and generate test data of the indicator parameter, where the indicator parameter corresponds to the test template;
  • Step S304 comparing the test data with the template data, and identifying the optical network device on the optical network topology line, where the template data is used to indicate a correspondence between the optical network device and a preset threshold range of the indicator parameter;
  • Step S306 deploying an optical network topology map according to the identified optical network device and the test data corresponding to the optical network device.
  • testing the optical network topology line according to the configured test parameters generating test data of the indicator parameters, comparing the test data with the template data, and identifying the optical network device on the optical network topology line, according to the identified optical network.
  • the optical network topology map is deployed on the device and the test data corresponding to the optical network device, so that the optical network topology map is not manually deployed, and the optical network topology map deployment efficiency is low, and the optical network topology is improved. Deployment efficiency.
  • test data of the indicator parameter corresponding to the test template is generated, the test data is saved to the database, and the association relationship between the identity ID of the tested optical network device port and the test data is saved to the database.
  • the test data is read from the database based on the identity ID of the optical network device port.
  • the test data and the optical network device corresponding to the test data are changed according to the identified identity ID of the optical network device.
  • test data corresponding to the identity ID and the optical network device corresponding to the identity ID are read from the database according to the identified identity ID of the optical network device port, according to the test.
  • Data and optical network device deployment optical network topology map are read from the database according to the identified identity ID of the optical network device port, according to the test.
  • the test parameters of the test template include at least one of the following: light wavelength, test distance, test duration, and light refractive index.
  • the optical network device includes at least one of the following: an optical line terminal OLT, a connector, a primary splitter, a secondary splitter, and an optical network unit ONU.
  • the test data includes event data, and the event data includes at least one of the following: an event type, an event location, an event insertion loss, an event return loss, and an event reflection peak; wherein the event type includes at least one of: a start event, a reflection event , decay events, end events.
  • the method for identifying the first-level splitter includes: confirming that the event type corresponding to the test data is a reflection event, a decay event, or an end event, and comparing whether the event insertion loss in the test data conforms to the The threshold range of the primary splitter in the template data; if the threshold range of the primary splitter is met, the optical network device is identified as the primary splitter.
  • the method for identifying the connector includes: confirming that the event type corresponding to the first-stage optical splitter in the test data is a reflection event, a decay event, or an end event, and comparing the event in the test data. Whether the insertion loss conforms to the threshold range of the connector in the template data; if the threshold range of the connector is met, the optical network device is identified as a connector.
  • the method for identifying the secondary splitter includes: confirming that the event type in the test data is a reflection event or a decay event in the case where the corresponding event type in the test data is a reflection event or a decay event Whether the peak value meets the threshold range of the secondary splitter in the template data; if the threshold range of the secondary splitter is met, the optical network device is identified as a secondary splitter.
  • an apparatus for deploying an optical network topology is provided, which is used to implement the foregoing embodiments and preferred embodiments, and details are not described herein.
  • the term "module” may implement a combination of software and/or hardware of a predetermined function.
  • the apparatus described in the following embodiments is preferably implemented in software, hardware, or a combination of software and hardware, is also possible and contemplated.
  • FIG. 4 is a structural block diagram of an apparatus for deploying an optical network topology diagram according to an embodiment of the present invention. As shown in FIG. 4, the apparatus includes:
  • the test module 42 is configured to test the optical network topology line according to the test parameters in the configured test template, and generate test data of the indicator parameter, where the indicator parameter corresponds to the test template;
  • the identification module 44 is configured to compare the test data with the template data, and identify the optical network device on the optical network topology line, where the template data is used to indicate a correspondence between the optical network device and a preset threshold range of the indicator parameter. ;
  • the deployment module 46 is configured to deploy an optical network topology map according to the identified optical network device and the test data corresponding to the optical network device.
  • testing the optical network topology line according to the configured test parameters generating test data of the indicator parameters, comparing the test data with the template data, and identifying the optical network device on the optical network topology line, according to the identified optical network
  • the optical network topology map is deployed on the device and the test data corresponding to the optical network device, so that the optical network topology map is not manually deployed, and the optical network topology map deployment efficiency is low, and the optical network topology is improved. Deployment efficiency.
  • the device further includes:
  • a storage module configured to save the test data to the database, and save the association relationship between the identity ID of the tested optical network device port and the test data to the database;
  • the reading module is configured to receive a request message, where the request message carries an identity ID of the optical network device port, and the test data is read from the database according to the identity ID of the optical network device port.
  • the device further includes:
  • a change module configured to change the test data and mark the optical network device corresponding to the test data according to the identified identity ID of the optical network device.
  • the deployment module 46 includes:
  • a first deployment unit configured to read, according to the identified identity ID of the optical network device port, the test data corresponding to the identity ID and the optical network device corresponding to the identity ID, according to the Test data and an optical network topology diagram of the optical network device deployment.
  • the identification module 44 includes:
  • a first confirming unit configured to confirm whether the event type corresponding to the test data is a reflection event, a decay event, or an end event, and compare whether the event insertion loss in the test data meets a threshold of the first-order optical splitter in the template data range;
  • the first identifying unit is configured to identify the optical network device as the first-level splitter if the threshold range of the primary splitter is met.
  • the identification module 44 further includes:
  • a second confirming unit configured to confirm whether the event type corresponding to the first-stage splitter in the test data is a reflection event, a decay event, or an end event, and comparing whether the event insertion loss in the test data conforms to the template data
  • the threshold range of the connector configured to confirm whether the event type corresponding to the first-stage splitter in the test data is a reflection event, a decay event, or an end event, and comparing whether the event insertion loss in the test data conforms to the template data
  • a second identifying unit configured to identify the optical network device as a connector if the threshold range of the connector is met.
  • the identification module 44 further includes:
  • a third confirming unit configured to confirm whether the event reflection type in the test data is in the second level of the template data, if the event type corresponding to the first-level splitter in the test data is a reflection event or a decay event
  • the threshold range of the splitter
  • a third identifying unit configured to identify the optical network device as a secondary splitter if the threshold range of the secondary splitter is met.
  • the preferred embodiment relates to the field of the telecommunication device management system, and implements a method for the network element management system to manage the optical network device to automatically deploy the optical network topology diagram, especially an optical time domain reflectometer (OTDR).
  • the technology implements a method of automatically deploying an optical network topology map.
  • the preferred embodiment solves the problem of low efficiency and manual operation instability of the manual deployment of the optical network topology in the case of maintaining a large number of optical network devices in the above embodiments, and provides an efficient and automatic cloth.
  • the core of the technical solution of the preferred embodiment is based on the OTDR technology, so that the EMS maintains and manages a large number of optical network devices (the optical fiber network device involves all Fiber to The Curb (FTTC), fiber to the cell (Fiber). To The Zone, referred to as FTTZ), Fiber To The Building (FTTB), Fiber To The Home (FTTH) networking equipment, efficient and automatic A method of deploying an optical network topology map.
  • the optical network topology diagram here includes an optical network device, and the optical network device (the optical network device involves a primary splitter, a secondary splitter, a connector, etc.) constitutes a topological network.
  • an efficient and automatic deployment optical network topology diagram is implemented based on the OTDR technology, and includes the following specific modules:
  • OTDR optical path test module test the optical network topology line according to the configured test template parameters (including optical wavelength, test distance, optical refractive index, test duration, etc.), and generate test data of various index parameters (including event type, event position). , event insertion loss, reflection peak, return loss, etc.);
  • EMS data processing module receiving and storing test data generated by an OTDR optical path test module test;
  • EMS template data module configure test template data (data includes data correspondence between network devices and various indicator parameters);
  • EMS optical network device identification module automatically compares the test data with the template data to automatically identify the optical network device
  • EMS optical network topology map deployment module automatically deploys an optical network topology map according to the identified optical network device.
  • Step 1 The OTDR optical path test module performs illuminating test on the optical network topology line according to the configured test template parameters. After the test is finished, the OTDR optical path test module generates test data and uploads it to the EMS data processing module.
  • Step 2 The EMS data processing module receives the test data sent by the OTDR optical path test module, parses the data of various indicator parameters, and stores the data into the EMS database, and notifies the EMS optical network device identification module after completion.
  • Step 3 The EMS optical network device identification module receives the message sent by the EMS data processing module, starts to take test data from the database, and compares the template data in the EMS template data module by an algorithm, and conforms to the EMS template data template condition. Will identify the corresponding optical network device, including optical network device type, optical network device distance Wait, and store it to the database. After the completion, notify the EMS optical network topology map deployment module.
  • Step 4 The EMS optical network topology map deployment module receives the message sent by the EMS optical network device identification module, starts to extract the optical network device data from the database, automatically deploys the optical network topology map in the EMS system, and then ends the process.
  • the preferred embodiment adopts an OTDR technology to implement an EMS management optical network device, and can automatically deploy an optical network topology diagram, which overcomes the cumbersome manual deployment operation of engineering technicians; effectively avoids errors caused by manual deployment of engineering technicians. The problem; at the same time, it effectively improves the efficiency of optical network topology deployment and reduces the labor consumption of manual operations.
  • FIG. 5 is a flowchart of a method for automatically deploying an optical network topology diagram based on an OTDR technology according to a preferred embodiment of the present invention. As shown in FIG. 5, the method includes the following steps:
  • Step S501 the OTDR optical path test module, according to the configured test template
  • the test template includes the following parameters:
  • Test distance the distance from which the light is emitted.
  • Test duration The length of time the light is emitted.
  • Light Refractive Index The ratio of the speed of light in a vacuum to the speed of light in a medium.
  • event data means that when the OTDR optical path test module tests the line, a light reflection phenomenon or a light attenuation phenomenon occurs in the line somewhere, which is called an event, and the data is called event data.
  • the event data mainly includes:
  • Event type start event, reflection event, decay event, end event.
  • Event location The location of the event that follows the OTDR optical line module.
  • Event insertion loss refers to the loss of load power that occurs somewhere in the optical line due to the insertion of components or devices. It represents the power and insertion received by the component or device before the insertion of this event. The ratio of the power received on the same load.
  • Event Return Loss A parameter indicating the reflective performance of an optical signal indicating that a portion of the incident power is reflected back to the source, which is the ratio of reflected power to incident power.
  • Event reflection peak The maximum reflected power consumption at this event.
  • the sending request message After the event data is generated, the sending request message notifies the EMS data processing module, and transmits the result data to the EMS data processing module through a File Transfer Protocol (FTP).
  • FTP File Transfer Protocol
  • Step S502 the EMS data processing module receives the request message sent by the OTDR optical line test module, and starts receiving the result data.
  • the EMS data processing module starts parsing the event data in the result data, mainly including the event type and the event location. , event insertion loss and other data, and save the optical network device port ID and result data to the EMS database system.
  • the optical network device port ID and the result data are stored in correspondence, that is, the optical network device port is connected to the OTDR optical line test module, and there is a result data. After storage is complete, Send a request message to the EMS template data module.
  • Step S503 the EMS template data module receives the request message sent by the EMS data processing module.
  • the template data is started to be read, and the request message is sent to the EMS optical network device identification module after completion.
  • the template data mainly includes:
  • the optical network device corresponds to the parameter value or the parameter value range in the event data.
  • the optical network device herein only explains and explains the present invention, and is not limited to these optical network components, for example, the first-level optical splitter, the connector, and the second.
  • the class splitter is as follows.
  • the split ratio is 1:2, and the event insertion loss is greater than 2db and less than or equal to 3.5db.
  • the split ratio is 1:4, and the event insertion loss is greater than 3.5db and less than or equal to 6.5db.
  • the split ratio is 1:8, and the event insertion loss is greater than 6.5db and less than or equal to 9.5db.
  • the split ratio is 1:16, and the event insertion loss is greater than 9.5 db and less than or equal to 12.5 db.
  • the split ratio is 1:32, and the event insertion loss is greater than 12.5db and less than or equal to 15.5db.
  • the split ratio is 1:64, and the event insertion loss is greater than 15.5db and less than or equal to 18.5db.
  • the split ratio is 1:128, and the event insertion loss is greater than 18.5db and less than or equal to 22db.
  • the split ratio is 1:2, and the event reflection peak is greater than 3 db and less than or equal to 5 db.
  • the split ratio is 1:4, and the event reflection peak is greater than 5db and less than or equal to 7db.
  • the split ratio is 1:8, and the event reflection peak is greater than 7 db and less than or equal to 10 db.
  • the split ratio is 1:16, and the event reflection peak is greater than 10 db and less than or equal to 13 db.
  • the split ratio is 1:32, and the event reflection peak is greater than 13 db and less than or equal to 16 db.
  • the split ratio is 1:64, and the event reflection peak is greater than 16 db and less than or equal to 19 db.
  • the split ratio is 1:128, and the event reflection peak is greater than 19 db and less than or equal to 22 db.
  • the event insertion loss is greater than 0.8db.
  • the EMS template data generation method here mainly comes from the following ways:
  • the OTDR optical line test module tests the pre-deployed optical network topology diagram (including optical network equipment, optical network device connector, optical network device first-level optical splitter, optical network device secondary optical splitter). Etc., generating event data, comparing the actual optical network device position with the event data, finding the parameters of the event data at the corresponding position, and calculating the empirical value of the parameter range, that is, generating the template data.
  • Step S504 after receiving the request message sent by the EMS template data module, the EMS optical network device identification module starts to read the corresponding event data from the EMS database system according to the optical network device port ID, and then compares the event data with the template data. Identifying the corresponding optical network device;
  • Step S505 after receiving the request message sent by the EMS optical network device identification module, the EMS optical network topology map deployment module starts to read the corresponding event data from the EMS database system according to the optical network device port ID, according to the event in the event data.
  • the first-stage optical splitter, the connector, and the second-level splitter identification algorithm are as follows:
  • FIG. 6 is a flowchart of an algorithm for identifying a primary spectroscopy according to a preferred embodiment of the present invention. As shown in FIG. 6, the method includes the following steps:
  • Step S601 sequentially reading unidentified events in the event data
  • Step S602 determining whether it is an identified event
  • Step S603 determining whether the event is a reflection event, a decay event, and an end event
  • Step S604 determining whether the event insertion loss meets the threshold value of the primary splitter in the template data
  • Step S605 identifying a primary splitter, marked as an identified event
  • step S606 it is determined whether the event is an end event.
  • FIG. 7 is a flowchart of an algorithm for identifying a connector according to a preferred embodiment of the present invention. As shown in FIG. 7, the method includes the following steps:
  • Step S701 sequentially reading unidentified events in the event data
  • Step S702 determining whether it is an identified event
  • Step S703 the event is a reflection event, a decay event, and an end event before the first-stage splitter;
  • Step S704 whether the event insertion loss meets the connector threshold range in the template data
  • Step S705 identifying the connector, marked as an identified event
  • step S706 it is determined whether the event is an end event.
  • FIG. 8 is a flowchart of an algorithm for identifying a secondary splitter according to a preferred embodiment of the present invention. As shown in FIG. 8, the method includes the following steps:
  • Step S801 sequentially reading unidentified events in the event data
  • Step S802 determining whether it is an identified event
  • Step S803 the event is a reflection event and a decay event after the primary splitter
  • Step S804 whether the event reflection peak value meets the threshold value of the secondary beam splitter in the template data
  • Step S805 identifying a secondary splitter, marked as an identified event
  • step S806 it is determined whether the event is an end event.
  • the EMS optical network device identification module changes the corresponding event data from the EMS database system according to the optical network device port ID, and labels the optical network device corresponding to the event.
  • the request message is sent to the EMS optical network topology map deployment module.
  • the method according to the foregoing embodiment can be implemented by means of software plus a necessary general hardware platform, and of course, can also be through hardware, but in many cases.
  • the former is a better implementation.
  • the technical solution of the present invention which is essential or contributes to the prior art, may be embodied in the form of a software product stored in a storage medium (such as ROM/RAM, disk,
  • the optical disc includes a number of instructions for causing a terminal device (which may be a mobile phone, a computer, a server, or a network device, etc.) to perform the method of various embodiments of the present invention.
  • each of the above modules may be implemented by software or hardware.
  • the foregoing may be implemented by, but not limited to, the foregoing modules are all located in the same processor; or, the modules are located in multiple In the processor.
  • Embodiments of the present invention also provide a storage medium.
  • the foregoing storage medium may be configured to store program code for performing the method steps of the above embodiment:
  • the foregoing storage medium may include, but not limited to, a USB flash drive, a Read-Only Memory (ROM), a Random Access Memory (RAM), a mobile hard disk, and a magnetic memory.
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • a mobile hard disk e.g., a hard disk
  • magnetic memory e.g., a hard disk
  • the processor performs the method steps of the foregoing embodiments according to the stored program code in the storage medium.
  • modules or steps of the present invention described above can be implemented by a general-purpose computing device that can be centralized on a single computing device or distributed across a network of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device such that they may be stored in the storage device by the computing device and, in some cases, may be different from the order herein.
  • the steps shown or described are performed, or they are separately fabricated into individual integrated circuit modules, or a plurality of modules or steps thereof are fabricated as a single integrated circuit module.
  • the invention is not limited to any specific combination of hardware and software.
  • the method for deploying an optical network topology map may be applied to an optical network topology, which tests the optical network topology line according to the test parameters in the configured test template, and generates test data of the indicator parameter, wherein the indicator parameter and the parameter
  • the test template is corresponding; the test data and the template data are compared to identify an optical network device on the optical network topology line, wherein the template data is used to indicate a correspondence between the optical network device and a preset threshold range of the indicator parameter.
  • the optical network topology map is deployed according to the identified optical network device and the test data corresponding to the optical network device, which solves the problem of low efficiency of the optical network topology and improves the deployment efficiency of the optical network topology.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)
  • Optical Communication System (AREA)

Abstract

本发明提供了一种光网络拓扑图的部署方法及装置,通过本发明,根据配置的测试模板中的测试参数,测试光网络拓扑线路,产生指标参数的测试数据,其中,该指标参数与该测试模板是对应的;比较该测试数据与模板数据,识别该光网络拓扑线路上的光网络器件,其中,该模板数据用于指示该光网络器件与该指标参数的预设阈值范围的对应关系;根据识别出的该光网络器件及与该光网络器件对应的该测试数据,部署光网络拓扑图,解决了光网络拓扑图部署效率低问题,提高了光网络拓扑图部署效率。

Description

光网络拓扑图的部署方法及装置
本申请要求于2015年5月21日提交中国专利局、申请号为201510263211.9的中国专利申请的优先权,以上全部内容通过引用结合在本申请中。
技术领域
本发明涉及通信领域,具体而言,涉及一种光网络拓扑图的部署方法及装置。
背景技术
目前,在电信设备维护管理中,运营商的维护人员在布署和维护光网络拓扑图时,都是根据预先规划的光网络拓扑图,实际地部署,图1是根据相关技术中光网络拓扑结构的示意图,如图1所示,如光网络拓扑图里距离光网络设备(光线路终端(Optical Line Terminal,简称为OLT))端口某个距离有连接器,跟离连接器某个距离有一级分光器,再距离一级分光器的某个距离又有二级分光器,再距离二级分光器某个距离有光网络单元(Optical Network Unit,简称为ONU)等等。
在相关技术中,在网元管理系统(Element Management System,简称为EMS)里管理光网络设备时,光网络拓扑图都是人工手动布署的,这里包括手动标注光网络器件类型和光网络器件位置(离光网络设备的距离),以及与前后光网络器件之间的距离等。
在实际工程应用中,当在管理和维护大量光网络设备情况下,采用人工手动布署操作,会带来一些问题,图2是根据相关技术中手工部署光网络拓扑结构示意图,如图2所示,维护人员手工操作繁琐和操作频繁容易引起错误的发生;如实际光网络拓扑图的变化,在EMS系统没有同时更新,也需要手工修改布署,这样带来不便和造成很多麻烦,及影响工作效率;另外手工布署操作,必然要有人参与,消耗人力而且由于人为操作不当,会容易造成出错且效率低下。
针对相关技术中,光网络拓扑图部署效率低问题,目前尚未提出有效的解决方案。
发明内容
本发明提供了一种光网络拓扑图的部署方法及装置,以至少解决相关技术中光网络拓扑图部署效率低问题。
根据本发明的一个方面,提供了一种光网络拓扑图的部署方法,包括:
根据配置的测试模板中的测试参数,测试光网络拓扑线路,产生指标参数的测试数据,其中,该指标参数与该测试模板是对应的;
比较该测试数据与模板数据,识别该光网络拓扑线路上的光网络器件,其中,该模板数据用于指示该光网络器件与该指标参数的预设阈值范围的对应关系;
根据识别出的该光网络器件及与该光网络器件对应的该测试数据,部署光网络拓扑 图。
进一步地,在产生该测试模板对应的指标参数的测试数据之后,在比较该测试数据与模板数据之前,该方法包括:
保存该测试数据到数据库,以及将测试的光网络器件端口的身份标识ID与该测试数据的关联关系保存到该数据库;
接收请求消息,其中,该请求消息中携带有该光网络器件端口的身份标识ID;
根据该光网络器件端口的身份标识ID,从该数据库读取该测试数据。
进一步地,该识别该光网络拓扑线路上的光网络器件之后,该方法包括:
根据识别出的该光网络器件的身份标识ID,更改该测试数据以及标注该测试数据对应的光网络器件。
进一步地,该根据识别出的该光网络器件及与该光网络器件对应的该测试数据,部署光网络拓扑图包括:
根据识别出的该光网络器件端口的身份标识ID,从该数据库读取该身份标识ID对应的该测试数据及与该身份标识ID对应的该光网络器件,根据该测试数据及该光网络器件部署光网络拓扑图。
进一步地,该测试模板的测试参数包括以下至少之一:
光波长,测试距离,测试时长,光折射率。
进一步地,该光网络器件包括以下至少之一:
光线路终端OLT,连接器,一级分光器,二级分光器,光网络单元ONU。
进一步地,该测试数据包括事件数据,该事件数据包括以下至少之一:
事件类型,事件位置,事件插损,事件回损,事件反射峰值;
其中,该事件类型包括以下至少之一:开始事件,反射事件,衰减事件,结束事件。
进一步地,识别该一级分光器的方法包括:
确认该测试数据对应的事件类型为反射事件,衰减事件或结束事件的情况下,比较该测试数据中的该事件插损是否符合该模板数据中一级分光器的阈值范围;
在符合一级分光器的该阈值范围的情况下,识别该光网络器件为该一级分光器。
进一步地,识别该连接器的方法包括:
确认该测试数据中该一级分光器之前对应的事件类型为反射事件,衰减事件或结束事件的情况下,比较该测试数据中的该事件插损是否符合该模板数据中该连接器的阈值范围;
在符合连接器的该阈值范围的情况下,识别该光网络器件为连接器。
进一步地,识别该二级分光器的方法包括:
确认该测试数据中该一级分光器之后对应的事件类型为反射事件或衰减事件的情况下,比较该测试数据中的该事件反射峰值是否符合该模板数据中二级分光器的阈值范围;
在符合二级分光器的该阈值范围的情况下,识别该光网络器件为二级分光器。
根据本发明的另一个方面,还提供了一种光网络拓扑图的部署装置,包括:
测试模块,用于根据配置的测试模板中的测试参数,测试光网络拓扑线路,产生指标参数的测试数据,其中,该指标参数与该测试模板是对应的;
识别模块,用于比较该测试数据与模板数据,识别该光网络拓扑线路上的光网络器件,其中,该模板数据用于指示该光网络器件与该指标参数的预设阈值范围的对应关系;
部署模块,用于根据识别出的该光网络器件及与该光网络器件对应的该测试数据,部署光网络拓扑图。
进一步地,该装置包括:
存储模块,用于保存该测试数据到数据库,以及将测试的光网络器件端口的身份标识ID与该测试数据的关联关系保存到该数据库;
读取模块,用于接收请求消息,其中,该请求消息中携带有该光网络器件端口的身份标识ID,根据该光网络器件端口的身份标识ID,从该数据库读取该测试数据。
进一步地,述装置包括:
更改模块,用于根据识别出的该光网络器件的身份标识ID,更改该测试数据以及标注该测试数据对应的光网络器件。
进一步地,该部署模块包括:
第一部署单元,用于根据识别出的该光网络器件端口的身份标识ID,从该数据库读取该身份标识ID对应的该测试数据及与该身份标识ID对应的该光网络器件,根据该测试数据及该光网络器件部署光网络拓扑图。
进一步地,该测试模板的测试参数包括以下至少之一:
光波长,测试距离,测试时长,光折射率。
进一步地,该光网络器件包括以下至少之一:
光线路终端OLT,连接器,一级分光器,二级分光器,光网络单元ONU。
进一步地,该测试数据包括事件数据,该事件数据包括以下至少之一:
事件类型,事件位置,事件插损,事件回损,事件反射峰值;
其中,该事件类型包括以下至少之一:开始事件,反射事件,衰减事件,结束事件。
进一步地,该识别模块包括:
第一确认单元,用于确认该测试数据对应的事件类型为反射事件,衰减事件或结束事件的情况下,比较该测试数据中的该事件插损是否符合该模板数据中一级分光器的阈值范围;
第一识别单元,用于在符合一级分光器的该阈值范围的情况下,识别该光网络器件为该一级分光器。
进一步地,该识别模块包括:
第二确认单元,用于确认该测试数据中该一级分光器之前对应的事件类型为反射事件,衰减事件或结束事件的情况下,比较该测试数据中的该事件插损是否符合该模板数据 中该连接器的阈值范围;
第二识别单元,用于在符合连接器的该阈值范围的情况下,识别该光网络器件为连接器。
进一步地,该识别模块包括:
第三确认单元,用于确认该测试数据中该一级分光器之后对应的事件类型为反射事件或衰减事件的情况下,比较该测试数据中的该事件反射峰值是否符合该模板数据中二级分光器的阈值范围;
第三识别单元,用于在符合二级分光器的该阈值范围的情况下,识别该光网络器件为二级分光器。
本发明的实施例还提供了一种光网络拓扑图的部署设备,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为:
根据配置的测试模板中的测试参数,测试光网络拓扑线路,产生指标参数的测试数据,其中,该指标参数与该测试模板是对应的;
比较该测试数据与模板数据,识别该光网络拓扑线路上的光网络器件,其中,该模板数据用于指示该光网络器件与该指标参数的预设阈值范围的对应关系;
根据识别出的该光网络器件及与该光网络器件对应的该测试数据,部署光网络拓扑图。
本发明的实施例还提供了一种非易失性计算机可读存储介质,其中存储有指令,所述指令在由一处理器执行时使所述处理器实施一种光网络拓扑图的部署方法,所述方法包括以下步骤:
根据配置的测试模板中的测试参数,测试光网络拓扑线路,产生指标参数的测试数据,其中,该指标参数与该测试模板是对应的;
比较该测试数据与模板数据,识别该光网络拓扑线路上的光网络器件,其中,该模板数据用于指示该光网络器件与该指标参数的预设阈值范围的对应关系;
根据识别出的该光网络器件及与该光网络器件对应的该测试数据,部署光网络拓扑图。
通过本发明,根据配置的测试模板中的测试参数,测试光网络拓扑线路,产生指标参数的测试数据,其中,该指标参数与该测试模板是对应的;比较该测试数据与模板数据,识别该光网络拓扑线路上的光网络器件,其中,该模板数据用于指示该光网络器件与该指标参数的预设阈值范围的对应关系;根据识别出的该光网络器件及与该光网络器件对应的该测试数据,部署光网络拓扑图,解决了光网络拓扑图部署效率低问题,提高了光网络拓扑图部署效率。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1是根据相关技术中光网络拓扑结构的示意图;
图2是根据相关技术中手工部署光网络拓扑结构示意图;
图3是根据本发明实施例的一种光网络拓扑图的部署方法的流程图;
图4是根据本发明实施例的一种光网络拓扑图的部署装置的结构框图;
图5是根据本发明优选实施例的基于OTDR技术实现自动部署光网络拓扑图方法流程图;
图6是根据本发明优选实施例的识别一级分光器的算法流程图;
图7是根据本发明优选实施例的识别连接器的算法流程图;
图8是根据本发明优选实施例的识别二级分光器的算法流程图。
具体实施方式
下文中将参考附图并结合实施例来详细说明本发明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
需要说明的是,本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
在本实施例中提供了一种光网络拓扑图的部署方法,图3是根据本发明实施例的一种光网络拓扑图的部署方法的流程图,如图3所示,该流程包括如下步骤:
步骤S302,根据配置的测试模板中的测试参数,测试光网络拓扑线路,产生指标参数的测试数据,其中,该指标参数与该测试模板是对应的;
步骤S304,比较该测试数据与模板数据,识别该光网络拓扑线路上的光网络器件,其中,该模板数据用于指示该光网络器件与该指标参数的预设阈值范围的对应关系;
步骤S306,根据识别出的该光网络器件及与该光网络器件对应的该测试数据,部署光网络拓扑图。
通过上述步骤,根据配置的测试参数,测试光网络拓扑线路,产生指标参数的测试数据,比较该测试数据与模板数据,识别该光网络拓扑线路上的光网络器件,根据识别出的该光网络器件及与该光网络器件对应的该测试数据,部署光网络拓扑图,从而不需要采用人工手动布署操作光网络拓扑图,解决了光网络拓扑图部署效率低问题,提高了光网络拓扑图部署效率。
在本实施例中,在产生该测试模板对应的指标参数的测试数据之后,保存该测试数据到数据库,以及将测试的光网络器件端口的身份标识ID与该测试数据的关联关系保存到该数据库;
接收请求消息,其中,该请求消息中携带有该光网络器件端口的身份标识ID;
根据该光网络器件端口的身份标识ID,从该数据库读取该测试数据。
在本实施例中,该识别该光网络拓扑线路上的光网络器件之后,根据识别出的该光网络器件的身份标识ID,更改该测试数据以及标注该测试数据对应的光网络器件。
在本实施例中,根据识别出的该光网络器件端口的身份标识ID,从该数据库读取该身份标识ID对应的该测试数据及与该身份标识ID对应的该光网络器件,根据该测试数据及该光网络器件部署光网络拓扑图。
在本实施例中,该测试模板的测试参数包括以下至少之一:光波长,测试距离,测试时长,光折射率。该光网络器件包括以下至少之一:光线路终端OLT,连接器,一级分光器,二级分光器,光网络单元ONU。该测试数据包括事件数据,该事件数据包括以下至少之一:事件类型,事件位置,事件插损,事件回损,事件反射峰值;其中,该事件类型包括以下至少之一:开始事件,反射事件,衰减事件,结束事件。
在本实施例中,识别该一级分光器的方法包括:确认该测试数据对应的事件类型为反射事件,衰减事件或结束事件的情况下,比较该测试数据中的该事件插损是否符合该模板数据中一级分光器的阈值范围;在符合一级分光器的该阈值范围的情况下,识别该光网络器件为该一级分光器。
在本实施例中,识别该连接器的方法包括:确认该测试数据中该一级分光器之前对应的事件类型为反射事件,衰减事件或结束事件的情况下,比较该测试数据中的该事件插损是否符合该模板数据中该连接器的阈值范围;在符合连接器的该阈值范围的情况下,识别该光网络器件为连接器。
在本实施例中,识别该二级分光器的方法包括:确认该测试数据中该一级分光器之后对应的事件类型为反射事件或衰减事件的情况下,比较该测试数据中的该事件反射峰值是否符合该模板数据中二级分光器的阈值范围;在符合二级分光器的该阈值范围的情况下,识别该光网络器件为二级分光器。
在本实施例中还提供了一种光网络拓扑图的部署装置,该装置用于实现上述实施例及优选实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图4是根据本发明实施例的一种光网络拓扑图的部署装置的结构框图,如图4所示,该装置包括:
测试模块42,用于根据配置的测试模板中的测试参数,测试光网络拓扑线路,产生指标参数的测试数据,其中,该指标参数与该测试模板是对应的;
识别模块44,用于比较该测试数据与模板数据,识别该光网络拓扑线路上的光网络器件,其中,该模板数据用于指示该光网络器件与该指标参数的预设阈值范围的对应关系;
部署模块46,用于根据识别出的该光网络器件及与该光网络器件对应的该测试数据,部署光网络拓扑图。
通过上述装置,根据配置的测试参数,测试光网络拓扑线路,产生指标参数的测试数据,比较该测试数据与模板数据,识别该光网络拓扑线路上的光网络器件,根据识别出的该光网络器件及与该光网络器件对应的该测试数据,部署光网络拓扑图,从而不需要采用人工手动布署操作光网络拓扑图,解决了光网络拓扑图部署效率低问题,提高了光网络拓扑图部署效率。
在本实施例中,该装置还包括:
存储模块,用于保存该测试数据到数据库,以及将测试的光网络器件端口的身份标识ID与该测试数据的关联关系保存到该数据库;
读取模块,用于接收请求消息,其中,该请求消息中携带有该光网络器件端口的身份标识ID,根据该光网络器件端口的身份标识ID,从该数据库读取该测试数据。
在本实施例中,该装置还包括:
更改模块,用于根据识别出的该光网络器件的身份标识ID,更改该测试数据以及标注该测试数据对应的光网络器件。
在本实施例中,该部署模块46包括:
第一部署单元,用于根据识别出的该光网络器件端口的身份标识ID,从该数据库读取该身份标识ID对应的该测试数据及与该身份标识ID对应的该光网络器件,根据该测试数据及该光网络器件部署光网络拓扑图。
在本实施例中,该识别模块44包括:
第一确认单元,用于确认该测试数据对应的事件类型为反射事件,衰减事件或结束事件的情况下,比较该测试数据中的该事件插损是否符合该模板数据中一级分光器的阈值范围;
第一识别单元,用于在符合一级分光器的该阈值范围的情况下,识别该光网络器件为该一级分光器。
在本实施例中,该识别模块44还包括:
第二确认单元,用于确认该测试数据中该一级分光器之前对应的事件类型为反射事件,衰减事件或结束事件的情况下,比较该测试数据中的该事件插损是否符合该模板数据中该连接器的阈值范围;
第二识别单元,用于在符合连接器的该阈值范围的情况下,识别该光网络器件为连接器。
在本实施例中,该识别模块44还包括:
第三确认单元,用于确认该测试数据中该一级分光器之后对应的事件类型为反射事件或衰减事件的情况下,比较该测试数据中的该事件反射峰值是否符合该模板数据中二级分光器的阈值范围;
第三识别单元,用于在符合二级分光器的该阈值范围的情况下,识别该光网络器件为二级分光器。
下面结合优选实施例和实施方式对本发明进行详细说明。
本优选实施例涉及到电信设备管理系统领域,实现网元管理系统管理光纤网络设备能自动部署光网络拓扑图的方法,尤指一种基于光时域反射仪(Optical Time Domain Reflectometer,简称为OTDR)技术实现自动部署光网络拓扑图的方法。
本优选实施例所要解决了上述实施例中工程技术人员在维护大量光网络设备情况下,手工布署光网络拓扑图的效率低下以及手工操作不稳定性问题,而提供了一种高效及自动布署光网络拓扑图的方法。
本优选实施例的技术方案核心在采用基于OTDR技术,使EMS在维护和管理大量光网络设备(光纤网络设备涉及所有光纤到路边(Fiber To The Curb,简称为FTTC)、光纤到小区(Fiber To The Zone,简称为FTTZ)、光纤到楼(Fiber To The Building,简称为FTTB)、光纤到户(Fiber To The Home,简称为FTTH)组网方式的设备)的情况下,实现高效及自动地部署光网络拓扑图的方法。这里的光网络拓扑图包括光网络设备,光网络器件(光网络器件涉及一级分光器、二级分光器、连接器等)所构成拓扑网络。
本优选实施例中基于OTDR技术实现高效及自动部署光网络拓扑图,包含以下具体模块:
OTDR光路测试模块:根据配置的测试模板参数(包括光波长,测试距离,光折射率,测试时长等),测试光网络拓扑线路,并产生各种指标参数的测试数据(包括事件类型、事件位置、事件插损、反射峰值、回损等);
EMS数据处理模块:接收和存储OTDR光路测试模块测试产生的测试数据;
EMS模板数据模块:配置测试模板数据(数据包括网络器件与各种指标参数的数据对应关系);
EMS光网络器件识别模块:通过测试数据与模板数据进行比较,自动识别光网络器件;
EMS光网络拓扑图部署模块:根据识别出来的光网络器件,自动部署光网络拓扑图。
本优选实施例中所述的基于OTDR技术实现高效及自动部署光网络拓扑图以下具体步骤如下:
步骤1,OTDR光路测试模块,根据配置的测试模板参数,对光网络拓扑图线路进行发光测试,测试结束后,OTDR光路测试模块会产生测试数据,并且上传给EMS数据处理模块。
步骤2,EMS数据处理模块,接收到OTDR光路测试模块发送过来的测试数据,进行解析各种指标参数的数据并且存储到EMS数据库,完成后通知EMS光网络器件识别模块。
步骤3,EMS光网络器件识别模块接收到EMS数据处理模块发来的消息,开始从数据库取测试数据,并与EMS模板数据模块里的模板数据通过算法进行比较,符合EMS模板数据模板条件的,会识别出相应的光网络器件,包括光网络器件类型,光网络器件距离 等,并存储到数据库。完成后通知EMS光网络拓扑图部署模块。
步骤4,EMS光网络拓扑图部署模块,接收到EMS光网络器件识别模块发来的消息,开始从数据库取出光网络器件数据,在EMS系统中自动部署光网络拓扑图,然后结束流程。
本优选实施例采用了基于OTDR技术实现EMS管理光网络设备时,能自动部署光网络拓扑图的方法,克服了工程技术人员手工部署操作的繁琐;有效的避免了因工程技术人员手工部署操作出错的问题;同时有效地提高了光网络拓扑图部署的效率以及降低了手工操作人力的消耗。
图5是根据本发明优选实施例的基于OTDR技术实现自动部署光网络拓扑图方法流程图,如图5所示,该方法包括如下步骤:
步骤S501,OTDR光路测试模块,根据其配置的测试模板,
测试模板包括以下参数:
测试距离:光发射的距离。
测试时长:光发射的时长。
光折射率:光在真空中的速度与光在介质中的速度之比率。
开始测试现网的光网络拓扑线路,达到测试时长后,结束光线路测试,同时产生测试的结果数据,其结果数据中重要的数据就是事件数据。
所谓事件数据,就是OTDR光路测试模块在测试线路时,在线路中某处产生了光反射现象或光衰减现象,称之为事件,其中的数据称之为事件数据。
事件数据主要包括:
事件类型:开始事件、反射事件、衰减事件、结束事件。
事件位置:跟离OTDR光线路模块的事件位置。
事件插损(插入损耗):是指光线路的某处由于元件或器件的插入而发生的负载功率的损耗,它表示的是此事件处元件或器件插入前负载上所接收到的功率与插入后同一负载上所接收到的功率的比值。
事件回损(回波损耗):是表示光信号反射性能的参数,其表明入射功率的一部分被反射回到信号源,是一个反射功率与入射功率的比值。
事件反射峰值:该事件处最大的反射功耗。
事件数据生成完成后,发送请求消息通知EMS数据处理模块,并通过文件传输协议(FTP,File Transfer Protocol)传输结果数据给EMS数据处理模块。
步骤S502,EMS数据处理模块,接收到OTDR光线路测试模块发送过来的请求消息,开始接收结果数据,接收完成后,EMS数据处理模块开始解析结果数据中的事件数据,主要包括事件类型,事件位置,事件插损等数据,并保存光网络设备端口ID及结果数据到EMS数据库系统。且在EMS数据库系统中以光网络设备端口ID与结果数据对应关系存放,即光网络设备端口有接OTDR光线路测试模块的,就有一份结果数据。存放完成后, 发送请求消息到EMS模板数据模块。
步骤S503,EMS模板数据模块接收到EMS数据处理模块发送过来的请求消息。开始读取模板数据,完成后发送请求消息给EMS光网络器件识别模块。
模板数据主要包括:
光网络器件与事件数据中的参数值或参数值范围对应关系,此处的光网络器件只是说明和解释本发明,并不限定于这些光网络件,举例说明一级分光器,连接器,二级分光器,具体如下。
一级分光器:
分光比1:2,事件插损大于2db并小于等于3.5db。
分光比1:4,事件插损大于3.5db并小于等于6.5db。
分光比1:8,事件插损大于6.5db并小于等于9.5db。
分光比1:16,事件插损大于9.5db并小于等于12.5db。
分光比1:32,事件插损大于12.5db并小于等于15.5db。
分光比1:64,事件插损大于15.5db并小于等于18.5db。
分光比1:128,事件插损大于18.5db并小于等于22db。
二级分光器:
分光比1:2,事件反射峰值大于3db并小于等于5db。
分光比1:4,事件反射峰值大于5db并小于等于7db。
分光比1:8,事件反射峰值大于7db并小于等于10db。
分光比1:16,事件反射峰值大于10db并小于等于13db。
分光比1:32,事件反射峰值大于13db并小于等于16db。
分光比1:64,事件反射峰值大于16db并小于等于19db。
分光比1:128,事件反射峰值大于19db并小于等于22db。
连接器:
事件插损大于0.8db。
这里的EMS模板数据生成方式主要来自以下方式:
日常光网络拓扑图维护过程,OTDR光线路测试模块多次测试预先部署的光网络拓扑图(包括光网络设备,光网络器件连接器,光网络器件一级分光器,光网络器件二级分光器等),产生事件数据,实际光网络器件位置与事件数据进行对比,找出相应位置的事件数据的参数,计算出参数范围经验值,即生成模板数据。
值得注意的是,EMS模板数据是需要在不同环境下不断的加以修正,以达到尽可能的准确。
步骤S504,EMS光网络器件识别模块接收到EMS模板数据模块发来的请求消息后,开始根据光网络设备端口ID,从EMS数据库系统读取相应的事件数据,接着事件数据与模板数据进行算法比较,识别出相应的光网络器件;
步骤S505,EMS光网络拓扑图部署模块接收到EMS光网络器件识别模块发来的请求消息后,开始根据光网络设备端口ID,从EMS数据库系统读取相应的事件数据,根据事件数据中的事件位置,事件的光网络器件,在EMS系统中自动的部署和绘制光网络拓扑图。
上述实施例中的的光网络器件识别算法中一级分光器、连接器、二级分光器识别算法,算法如下:
图6是根据本发明优选实施例的识别一级分光器的算法流程图,如图6所示,包括如下步骤:
步骤S601,依次读取事件数据中的未识别事件;
步骤S602,判断是否是已识别事件;
步骤S603,判断事件是否为反射事件、衰减事件、结束事件;
步骤S604,判断事件插损是否符合模板数据里的一级分光器阀值范围;
步骤S605,识别出一级分光器,标记为已识别事件;
步骤S606,判断事件是否是末尾事件。
图7是根据本发明优选实施例的识别连接器的算法流程图,如图7所示,包括如下步骤:
步骤S701,依次读取事件数据中的未识别事件;
步骤S702,判断是否是已识别事件;
步骤S703,事件为一级分光器前的反射事件、衰减事件、结束事件;
步骤S704,事件插损是否符合模板数据里的连接器阀值范围;
步骤S705,识别出连接器,标记为已识别事件;
步骤S706,判断事件是否是末尾事件。
图8是根据本发明优选实施例的识别二级分光器的算法流程图,如图8所示,包括如下步骤:
步骤S801,依次读取事件数据中的未识别事件;
步骤S802,判断是否是已识别事件;
步骤S803,事件为一级分光器之后的反射事件、衰减事件;
步骤S804,事件反射峰值是否符合模板数据里的二级分光器阀值范围;
步骤S805,识别出二级分光器,标记为已识别事件;
步骤S806,判断事件是否是末尾事件。
识别出相应的光网络器件完成后,EMS光网络器件识别模块根据光网络设备端口ID,从EMS数据库系统更改相应的事件数据,标注事件对应的光网络器件。同时发送请求消息给EMS光网络拓扑图部署模块。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到根据上述实施例的方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况 下前者是更佳的实施方式。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本发明各个实施例该的方法。
需要说明的是,上述各个模块是可以通过软件或硬件来实现的,对于后者,可以通过以下方式实现,但不限于此:上述模块均位于同一处理器中;或者,上述模块分别位于多个处理器中。
本发明的实施例还提供了一种存储介质。可选地,在本实施例中,上述存储介质可以被设置为存储用于执行上述实施例方法步骤的程序代码:
可选地,在本实施例中,上述存储介质可以包括但不限于:U盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
可选地,在本实施例中,处理器根据存储介质中已存储的程序代码执行上述实施例的方法步骤。
显然,本领域的技术人员应该明白,上述的本发明的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本发明不限制于任何特定的硬件和软件结合。
以上该仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
工业实用性
本申请光网络拓扑图的部署方法,可应用于光网络拓扑结构中,其根据配置的测试模板中的测试参数,测试光网络拓扑线路,产生指标参数的测试数据,其中,该指标参数与该测试模板是对应的;比较该测试数据与模板数据,识别该光网络拓扑线路上的光网络器件,其中,该模板数据用于指示该光网络器件与该指标参数的预设阈值范围的对应关系;根据识别出的该光网络器件及与该光网络器件对应的该测试数据,部署光网络拓扑图,解决了光网络拓扑图部署效率低问题,提高了光网络拓扑图部署效率。

Claims (21)

  1. 一种光网络拓扑图的部署方法,其中,包括:
    根据配置的测试模板中的测试参数,测试光网络拓扑线路,产生指标参数的测试数据,其中,所述指标参数与所述测试模板是对应的;
    比较所述测试数据与模板数据,识别所述光网络拓扑线路上的光网络器件,其中,所述模板数据用于指示所述光网络器件与所述指标参数的预设阈值范围的对应关系;
    根据识别出的所述光网络器件及与所述光网络器件对应的所述测试数据,部署光网络拓扑图。
  2. 根据权利要求1所述的方法,其中,在产生所述测试模板对应的指标参数的测试数据之后,在比较所述测试数据与模板数据之前,所述方法包括:
    保存所述测试数据到数据库,以及将测试的光网络器件端口的身份标识ID与所述测试数据的关联关系保存到所述数据库;
    接收请求消息,其中,该请求消息中携带有所述光网络器件端口的身份标识ID;
    根据所述光网络器件端口的身份标识ID,从所述数据库读取所述测试数据。
  3. 根据权利要求2所述的方法,其中,所述识别所述光网络拓扑线路上的光网络器件之后,所述方法包括:
    根据识别出的所述光网络器件的身份标识ID,更改所述测试数据以及标注所述测试数据对应的光网络器件。
  4. 根据权利要求3所述的方法,其中,所述根据识别出的所述光网络器件及与所述光网络器件对应的所述测试数据,部署光网络拓扑图包括:
    根据识别出的所述光网络器件端口的身份标识ID,从所述数据库读取所述身份标识ID对应的所述测试数据及与所述身份标识ID对应的所述光网络器件,根据所述测试数据及所述光网络器件部署光网络拓扑图。
  5. 根据权利要求1所述的方法,其中,所述测试模板的测试参数包括以下至少之一:
    光波长,测试距离,测试时长,光折射率。
  6. 根据权利要求1所述的方法,其中,所述光网络器件包括以下至少之一:
    光线路终端OLT,连接器,一级分光器,二级分光器,光网络单元ONU。
  7. 根据权利要求6所述的方法,其中,所述测试数据包括事件数据,所述事件数据包括以下至少之一:
    事件类型,事件位置,事件插损,事件回损,事件反射峰值;
    其中,所述事件类型包括以下至少之一:开始事件,反射事件,衰减事件,结束事件。
  8. 根据权利要求7所述的方法,其中,识别所述一级分光器的方法包括:
    确认所述测试数据对应的事件类型为反射事件,衰减事件或结束事件的情况下,比较 所述测试数据中的所述事件插损是否符合所述模板数据中一级分光器的阈值范围;
    在符合一级分光器的所述阈值范围的情况下,识别所述光网络器件为所述一级分光器。
  9. 根据权利要求7所述的方法,其中,识别所述连接器的方法包括:
    确认所述测试数据中所述一级分光器之前对应的事件类型为反射事件,衰减事件或结束事件的情况下,比较所述测试数据中的所述事件插损是否符合所述模板数据中所述连接器的阈值范围;
    在符合连接器的所述阈值范围的情况下,识别所述光网络器件为连接器。
  10. 根据权利要求7所述的方法,其中,识别所述二级分光器的方法包括:
    确认所述测试数据中所述一级分光器之后对应的事件类型为反射事件或衰减事件的情况下,比较所述测试数据中的所述事件反射峰值是否符合所述模板数据中二级分光器的阈值范围;
    在符合二级分光器的所述阈值范围的情况下,识别所述光网络器件为二级分光器。
  11. 一种光网络拓扑图的部署装置,其中,包括:
    测试模块,设置为根据配置的测试模板中的测试参数,测试光网络拓扑线路,产生指标参数的测试数据,其中,所述指标参数与所述测试模板是对应的;
    识别模块,设置为比较所述测试数据与模板数据,识别所述光网络拓扑线路上的光网络器件,其中,所述模板数据用于指示所述光网络器件与所述指标参数的预设阈值范围的对应关系;
    部署模块,设置为根据识别出的所述光网络器件及与所述光网络器件对应的所述测试数据,部署光网络拓扑图。
  12. 根据权利要求11所述的装置,其中,所述装置包括:
    存储模块,设置为保存所述测试数据到数据库,以及将测试的光网络器件端口的身份标识ID与所述测试数据的关联关系保存到所述数据库;
    读取模块,设置为接收请求消息,其中,该请求消息中携带有所述光网络器件端口的身份标识ID,根据所述光网络器件端口的身份标识ID,从所述数据库读取所述测试数据。
  13. 根据权利要求12所述的装置,其中,所述装置包括:
    更改模块,设置为根据识别出的所述光网络器件的身份标识ID,更改所述测试数据以及标注所述测试数据对应的光网络器件。
  14. 根据权利要求13所述的装置,其中,所述部署模块包括:
    第一部署单元,设置为根据识别出的所述光网络器件端口的身份标识ID,从所述数据库读取所述身份标识ID对应的所述测试数据及与所述身份标识ID对应的所述光网络器件,根据所述测试数据及所述光网络器件部署光网络拓扑图。
  15. 根据权利要求11所述的装置,其中,所述测试模板的测试参数包括以下至少之一:
    光波长,测试距离,测试时长,光折射率。
  16. 根据权利要求11所述的装置,其中,所述光网络器件包括以下至少之一:
    光线路终端OLT,连接器,一级分光器,二级分光器,光网络单元ONU。
  17. 根据权利要求16所述的装置,其中,所述测试数据包括事件数据,所述事件数据包括以下至少之一:
    事件类型,事件位置,事件插损,事件回损,事件反射峰值;
    其中,所述事件类型包括以下至少之一:开始事件,反射事件,衰减事件,结束事件。
  18. 根据权利要求17所述的装置,其中,所述识别模块包括:
    第一确认单元,设置为确认所述测试数据对应的事件类型为反射事件,衰减事件或结束事件的情况下,比较所述测试数据中的所述事件插损是否符合所述模板数据中一级分光器的阈值范围;
    第一识别单元,设置为在符合一级分光器的所述阈值范围的情况下,识别所述光网络器件为所述一级分光器。
  19. 根据权利要求17所述的装置,其中,所述识别模块包括:
    第二确认单元,设置为确认所述测试数据中所述一级分光器之前对应的事件类型为反射事件,衰减事件或结束事件的情况下,比较所述测试数据中的所述事件插损是否符合所述模板数据中所述连接器的阈值范围;
    第二识别单元,设置为在符合连接器的所述阈值范围的情况下,识别所述光网络器件为连接器。
  20. 根据权利要求17所述的装置,其中,所述识别模块包括:
    第三确认单元,设置为确认所述测试数据中所述一级分光器之后对应的事件类型为反射事件或衰减事件的情况下,比较所述测试数据中的所述事件反射峰值是否符合所述模板数据中二级分光器的阈值范围;
    第三识别单元,设置为在符合二级分光器的所述阈值范围的情况下,识别所述光网络器件为二级分光器。
  21. 一种非易失性计算机可读存储介质,其中存储有指令,所述指令在由一处理器执行时使所述处理器实施一种如权利要求1-10任一项所述光网络拓扑图的部署方法。
PCT/CN2016/076058 2015-05-21 2016-03-10 光网络拓扑图的部署方法及装置 WO2016184228A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510263211.9A CN106301830B (zh) 2015-05-21 2015-05-21 光网络拓扑图的部署方法及装置
CN201510263211.9 2015-05-21

Publications (1)

Publication Number Publication Date
WO2016184228A1 true WO2016184228A1 (zh) 2016-11-24

Family

ID=57319389

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/076058 WO2016184228A1 (zh) 2015-05-21 2016-03-10 光网络拓扑图的部署方法及装置

Country Status (2)

Country Link
CN (1) CN106301830B (zh)
WO (1) WO2016184228A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109800251A (zh) * 2019-01-16 2019-05-24 北京明略软件系统有限公司 一种关系发现方法和装置、计算机可读存储介质
WO2020211482A1 (zh) * 2019-04-17 2020-10-22 华为技术有限公司 网络拓扑信息的获取方法、装置、设备及存储介质
CN113965455A (zh) * 2021-09-09 2022-01-21 阿里巴巴达摩院(杭州)科技有限公司 网络部署方法、装置及计算机存储介质
CN114007151A (zh) * 2021-10-28 2022-02-01 国网甘肃省电力公司金昌供电公司 一种ip网络与光网络协同的业务配置方法及装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110661569B (zh) * 2018-06-28 2022-08-02 中兴通讯股份有限公司 光纤故障定位的方法、设备和存储介质
CN110838928B (zh) * 2018-08-15 2021-03-30 华为技术有限公司 Odn的逻辑拓扑信息的获取方法、装置、设备和存储介质
CN116545529B (zh) * 2023-07-06 2023-09-12 国网浙江省电力有限公司湖州供电公司 基于光缆运维路径的故障数据处理方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100150546A1 (en) * 2008-12-15 2010-06-17 Kapil Shrikhande Management system for GPON based services
CN102118658A (zh) * 2009-12-31 2011-07-06 华为技术有限公司 分光器端口识别的方法和装置
CN102739306A (zh) * 2012-06-11 2012-10-17 烽火通信科技股份有限公司 无源光网络中光链路自动测试的方法
CN102204127B (zh) * 2011-05-11 2014-03-26 华为技术有限公司 检测网络设备类型的方法、装置和系统

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8774632B2 (en) * 2010-04-27 2014-07-08 Ciena Corporation Reconfigurable optical add drop multiplexer node automated topology discovery systems and methods
CN103108261B (zh) * 2013-02-06 2016-11-16 上海电信工程有限公司 Epon接入设备的开通方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100150546A1 (en) * 2008-12-15 2010-06-17 Kapil Shrikhande Management system for GPON based services
CN102118658A (zh) * 2009-12-31 2011-07-06 华为技术有限公司 分光器端口识别的方法和装置
CN102204127B (zh) * 2011-05-11 2014-03-26 华为技术有限公司 检测网络设备类型的方法、装置和系统
CN102739306A (zh) * 2012-06-11 2012-10-17 烽火通信科技股份有限公司 无源光网络中光链路自动测试的方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109800251A (zh) * 2019-01-16 2019-05-24 北京明略软件系统有限公司 一种关系发现方法和装置、计算机可读存储介质
WO2020211482A1 (zh) * 2019-04-17 2020-10-22 华为技术有限公司 网络拓扑信息的获取方法、装置、设备及存储介质
CN113965455A (zh) * 2021-09-09 2022-01-21 阿里巴巴达摩院(杭州)科技有限公司 网络部署方法、装置及计算机存储介质
CN114007151A (zh) * 2021-10-28 2022-02-01 国网甘肃省电力公司金昌供电公司 一种ip网络与光网络协同的业务配置方法及装置
CN114007151B (zh) * 2021-10-28 2024-02-13 国网甘肃省电力公司金昌供电公司 一种ip网络与光网络协同的业务配置方法及装置

Also Published As

Publication number Publication date
CN106301830B (zh) 2020-07-14
CN106301830A (zh) 2017-01-04

Similar Documents

Publication Publication Date Title
WO2016184228A1 (zh) 光网络拓扑图的部署方法及装置
CN110661569B (zh) 光纤故障定位的方法、设备和存储介质
CN109165136B (zh) 终端运行数据的监控方法、终端设备及介质
JP4762107B2 (ja) 異常onu特定装置、異常onu特定プログラムおよび異常onu特定方法
CN108964756B (zh) 光分配网络的故障检测方法及装置、无源光网络系统
TWI741505B (zh) 一種拓撲處理方法和裝置以及系統
EP3029853B1 (en) Method, device, and system for optical fiber link identification
US9712237B2 (en) Optical distribution method, device, and system
US20130051794A1 (en) Method for acquiring optical fiber connection relation, node device, and optical network system
CN110493670B (zh) 一种光缆中断判定方法及装置
WO2017206371A1 (zh) 光纤网络故障检测方法、装置和系统
CN103746850A (zh) 一种故障定位方法、装置及pon系统
CN114465661A (zh) 故障定位方法、装置及系统
CN105721186A (zh) 一种odn连接关系的确定方法及装置
US10454584B1 (en) Optical line terminal and method for managing passive optical network implemented thereon
WO2016202044A1 (zh) 一种检测光纤故障点的方法和装置
US20150381270A1 (en) Method and device for configuring otdr test parameter set
CN109995428A (zh) 无源光网络的光路检测方法和装置
US9640941B2 (en) Distributed Raman amplifier systems
CN115967445B (zh) 光网络拓扑的生成方法、设备和系统
CN113839706B (zh) 弱光onu的故障点确定方法、装置、存储介质和计算机设备
WO2016202058A1 (zh) 校验处理方法、装置及系统
CN110213681A (zh) 混合pon系统中对光功率临界onu的管理方法及装置
CN105577269A (zh) 一种光路检测方法和装置
US20170010424A1 (en) Method for constructing optical splitter and management terminal

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16795715

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16795715

Country of ref document: EP

Kind code of ref document: A1