WO2016182013A1 - 窒化鋼部材及び窒化鋼部材の製造方法 - Google Patents

窒化鋼部材及び窒化鋼部材の製造方法 Download PDF

Info

Publication number
WO2016182013A1
WO2016182013A1 PCT/JP2016/064100 JP2016064100W WO2016182013A1 WO 2016182013 A1 WO2016182013 A1 WO 2016182013A1 JP 2016064100 W JP2016064100 W JP 2016064100W WO 2016182013 A1 WO2016182013 A1 WO 2016182013A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound layer
phase
nitriding
gas
furnace
Prior art date
Application number
PCT/JP2016/064100
Other languages
English (en)
French (fr)
Inventor
泰 平岡
陽一 渡邊
Original Assignee
パーカー熱処理工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016042580A external-priority patent/JP6636829B2/ja
Application filed by パーカー熱処理工業株式会社 filed Critical パーカー熱処理工業株式会社
Publication of WO2016182013A1 publication Critical patent/WO2016182013A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/06Surface hardening
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/30Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for crankshafts; for camshafts
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/32Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for gear wheels, worm wheels, or the like
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/24Nitriding
    • C23C8/26Nitriding of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese

Definitions

  • the present invention relates to a nitrided steel member and a method for producing the nitrided steel member. More specifically, the present invention is useful for automobiles and transmission gears, crankshafts, and the like.
  • the present invention relates to a nitrided steel member having a sufficiently thick compound layer having excellent fatigue resistance and a method for producing the nitrided steel member.
  • Patent Document 2 relates to a soft nitriding gear for the purpose of reducing gear noise, but defines the compound layer thickness and the porous layer thickness to be 12 ⁇ m or less.
  • stress concentration avoidance due to unevenness is performed by reducing the compound layer thickness to 5 ⁇ m or less.
  • bending straightening is performed at a compound layer thickness of 5 ⁇ m or less. The crack is suppressed by.
  • nitriding is first performed in an atmosphere with a high NH 3 partial pressure in the furnace, and then in the furnace.
  • a two-stage nitriding method is performed to bring the atmosphere into a state with a low NH 3 partial pressure (see Patent Document 5).
  • the atmosphere in the first stage is set to a higher K N, 'be selected to K N of the phase field, gamma' gamma the second stage compound layer of a phase mainly it can be thickened It is.
  • Patent Document 5 states that the thickness of the compound layer is preferably 4 to 16 ⁇ m.
  • Patent Document 5 describes that when the thickness exceeds 16 ⁇ m, the ratio of the ⁇ phase increases and becomes brittle, so that improvement in fatigue strength cannot be expected.
  • the thickness of the compound layer is Although there is a description that the lots vary, there is no description about the thickness of the compound layer in the examples, and it is estimated that the thickness of the compound layer that can be put into practical use by this technique does not reach 16 ⁇ m.
  • the nitriding time in the second-stage gas atmosphere is not managed, and according to the embodiment, the nitriding time is long. According to the study by the present inventors, the crystal grains of the formed ⁇ ′ phase become large under such conditions, which causes a decrease in mechanical properties such as wear resistance. is there.
  • JP 2013-221203 A JP-A-11-72159 JP 2009-30134 A JP 2014-129607 A International Publication No. 2015/046593
  • the formation of the compound layer mainly composed of the ⁇ ′ phase is a process with a low K N , it is necessary to increase the processing temperature or to process for a long time in order to increase the thickness of the compound layer. .
  • the higher temperature and longer time of the gas nitriding process lead to a decrease in compressive residual stress and hardness formed in the nitrided diffusion layer, and the load on production and the environment increases.
  • the construction method could not be established industrially and could not be realized.
  • the ⁇ '-based compound layer formed by gas nitriding treatment can improve the fatigue strength without reducing the fatigue strength, and can be made into a thickness that satisfies the desired wear resistance.
  • an object of the present invention is to make it possible to increase the thickness of a compound layer mainly composed of ⁇ ′ phase to 13 ⁇ m or more, preferably 15 ⁇ m or more, even during normal gas nitriding treatment time.
  • a technology that can provide a nitriding member that can improve the fatigue strength by increasing the thickness of the layer and can improve the wear resistance while having a higher fatigue strength than the conventional technology. It is to be.
  • the inventors of the present invention have a specific volume ratio of ⁇ ′ phase and ⁇ phase in the iron nitrogen compound layer, and in addition, the thickness of the compound layer is 13 ⁇ m or more.
  • the above problem is achieved when the ratio of the thickness CLT [ ⁇ m] of the compound layer after the gas nitriding treatment to the practical hardening depth DLT [ ⁇ m] of the nitrided diffusion layer after the gas nitriding treatment satisfies a specific relationship. As a result, the present invention has been completed.
  • the present invention is a nitrided steel member in which an iron-nitrogen compound layer is formed on the surface of a steel member made of a steel component produced by a ⁇ ′ phase main compound layer, and ⁇ ′ occupies the iron-nitrogen compound layer.
  • V ⁇ ′ and V ⁇ the volume ratio of the phase and the ⁇ phase
  • V ⁇ ′ + V ⁇ the ratio of the ⁇ ′ phase
  • the thickness of the compound layer mainly composed of the phase is 13 ⁇ m to 30 ⁇ m
  • the iron nitrogen compound layer represents the thickness [ ⁇ m] of the compound layer after the gas nitriding treatment as CLT
  • a nitrided steel member characterized by satisfying the relationship of the following formula (1) when the value of the practical hardening depth [ ⁇ m] of the nitrided diffusion layer is expressed as DLT.
  • the ⁇ ′ phase main compound layer preferably has a thickness of 15 ⁇ m to 30 ⁇ m, and can be suitably applied to a gear or a crankshaft.
  • the nitriding member according to claim 1 wherein the material to be treated in the furnace is subjected to gas nitriding while adjusting the nitriding potential (K N ) in the gas nitriding furnace.
  • the gas introduced into the gas nitriding furnace is a mixed gas of only two types of ammonia and ammonia decomposition gas, or a plurality of mixtures containing ammonia and ammonia decomposition gas
  • the gas is continuously detected in the vicinity of the material to be treated, the hydrogen partial pressure in the furnace is estimated based on the detection result, and the atmosphere is controlled automatically to the set nitriding potential.
  • the nitriding potential K N p NH3 / p H2 1.5 in the atmosphere during the gas nitriding treatment is first set to K N1, and then the nitriding potential is changed to K N2 to K Nx-1 , K Nx as necessary. Even However, the final K Nx is controlled so that the following formula (2) and the following formula (3) are simultaneously satisfied, and the nitriding time at the final K Nx controlled so as to satisfy the above requirements is 5 to Provided is a method for producing a nitrided steel member characterized by being 60 minutes.
  • the K N1 is preferably 1.0 to 2.0.
  • a compound layer mainly composed of a ⁇ ′ phase can be made thicker than a compound layer mainly composed of an ⁇ phase even during a normal gas nitriding treatment time. Even when the film thickness is increased, the fatigue strength can be improved without lowering the bending fatigue strength as compared with the compound layer mainly composed of ⁇ ′ phase formed with low K N , and An unprecedented new nitriding member capable of improving wearability can be provided.
  • the “compound layer mainly composed of ⁇ ′ phase” as used in the present invention refers to the proportion of the ⁇ ′ phase present in the iron-nitrogen compound layer formed on the surface of the steel member.
  • V ⁇ ′ / (V ⁇ ′ + V ⁇ ) means a portion whose value is 0.5 or more.
  • the present invention is a nitrided steel member in which an iron-nitrogen compound layer mainly composed of a ⁇ ′ phase is formed on the surface of the steel member, and a specific volume ratio of the ⁇ ′ phase and the ⁇ phase in the iron-nitrogen compound layer is specified. Therefore, the steel material on which the compound layer is formed needs to have a component that produces a compound layer mainly composed of the ⁇ ′ phase.
  • Another object of the present invention is to provide a nitrided steel member that can be effectively applied to gears and crankshafts for automobiles and transmissions, and is therefore necessary for functions such as machinability and manufacturability of steel materials.
  • Some elements are indispensable and some elements are always present as impurity elements. Including these points, it is preferable that the “steel composed of the steel component produced by the ⁇ ′ phase main compound layer” constituting the present invention is a steel type satisfying the following component ranges. Note that the following% is based on mass.
  • C can be said to be an essential element for securing the strength of the nitrided part, and a content of 0.05% or more is necessary.
  • the C content increases and exceeds 0.5%, the hardness before nitriding increases and machinability decreases, so the C content is 0.05 to 0.5%. It is preferable that
  • Si has a deoxidizing action.
  • a Si content of 0.10% or more is necessary.
  • the Si content is preferably 0.10 to 0.90%.
  • Mn has a deoxidizing action. In order to obtain this effect, a Mn content of 0.3% or more is necessary. However, if the Mn content increases and exceeds 1.65%, the hardness before nitriding becomes too high, and the machinability is lowered, which is not preferable. Therefore, the Mn content is preferably 0.3 to 1.65%.
  • Ni does not necessarily have to be contained. However, since Ni is a component that contributes to improvement of hardenability and toughness, it may be contained from this viewpoint. However, if the content is too large, the above effect not only leads to saturation, but also causes an increase in cost, and also causes a decrease in machinability, which is not preferable. Therefore, the content is preferably limited to 2.10% or less.
  • ⁇ Chromium (Cr)> Cr does not necessarily need to be contained.
  • the Cr content is preferably 0 to 2.7%.
  • Mo Mo
  • Mo is an element that is necessary for some mechanical parts because it combines with C in steel to form a carbide at the nitriding temperature, thereby improving the core hardness after nitriding.
  • the Mo content increases and exceeds 0.50%, not only the raw material cost is increased, but also the hardness before nitriding is increased and the machinability is lowered, which is not preferable. Therefore, the Mo content is preferably 0.50% or less.
  • V does not necessarily have to be contained.
  • V when V is contained, like Mo, it combines with C in the steel at the nitriding temperature to form carbides, and has the effect of improving the core hardness after nitriding, and also penetrates from the surface during nitriding -It combines with diffusing N and C to form nitrides and carbonitrides, and has the effect of improving surface hardness, and is an element that is necessary in some cases.
  • the V content increases and exceeds 0.40%, the hardness before nitriding becomes too high and the machinability deteriorates, and the V is contained in the matrix by hot forging and subsequent normalization. Will not be dissolved, and the above effect will be saturated. Therefore, the V content is preferably 0 to 0.40%.
  • Al does not necessarily have to be contained. However, if the Al content increases and exceeds 1.1%, the amount of nitride compound layer formed decreases, and the effect of the ⁇ ′ phase-based compound layer of the present invention cannot be sufficiently obtained. Therefore, the Al content is preferably 0 to 1.1%.
  • S combines with Mn to form MnS and has the effect of improving machinability.
  • the S content is preferably 0.002 to 0.030%.
  • the S content is preferably 0.010% or more.
  • the S content is preferably 0.025% or less.
  • P is an impurity contained in the steel and segregates at the grain boundaries to embrittle the steel.
  • the degree of embrittlement may become significant. Therefore, in the present invention, it is necessary that the content of P in the impurities is 0.030% or less.
  • content of P in an impurity is 0.020% or less.
  • the steel member used in the present invention has a chemical composition in which the balance is composed of Fe and other impurities in addition to the elements listed above.
  • Fe and impurities as the balance are inevitably mixed from ore as a raw material when industrially producing steel materials, for example, copper (Cu), titanium (Ti), or production environment It means that components other than Fe, such as O (oxygen), are inevitably mixed.
  • the nitrided steel member of the present invention is characterized in that an iron-nitrogen compound layer having a specific configuration is formed on the surface of a steel member made of a steel material component as described above, which is formed by a ⁇ ′ phase main compound layer. To do. That is, in the iron-nitrogen compound layer characterizing the nitrided steel member of the present invention, the relationship between the volume ratios V ⁇ ′ and V ⁇ of the ⁇ ′ phase and the ⁇ phase in the layer is defined by V ⁇ ′ / (V ⁇ ′ + V ⁇ ).
  • the thickness of the ⁇ ′ phase main compound layer is 13 ⁇ m to 30 ⁇ m, the value of which is 0.5 or more (the existence ratio of the ⁇ ′ phase is 0.5 or more),
  • the iron nitrogen compound layer satisfies the relationship of the following formula (1).
  • CLT ⁇ DLT ⁇ 0.04 (1) (However, CLT in the formula (1) represents the value of the thickness [ ⁇ m] of the compound layer after the gas nitriding treatment, and DLT represents the practical hardening depth [ ⁇ m] of the nitrided diffusion layer after the gas nitriding treatment. Represents a value)
  • CLT in the formula (1) represents the value of the thickness [ ⁇ m] of the compound layer after the gas nitriding treatment
  • DLT represents the practical hardening depth [ ⁇ m] of the nitrided diffusion layer after the gas nitriding treatment. Represents a value
  • the “iron-nitrogen compound layer” (sometimes referred to as a nitrogen compound layer or a compound layer) is a ⁇ ′ phase (Fe 4 N) or ⁇ phase on the surface of a steel member formed by gas soft nitriding ( A layer made of an iron nitrogen compound represented by Fe 2-3 N).
  • gas soft nitriding A layer made of an iron nitrogen compound represented by Fe 2-3 N.
  • steel contains carbon in the base material, and a part of this carbon is also contained in the compound layer, it is strictly a carbonitride.
  • the nitrogen compound layer is deposited on the surface as a layered state.
  • a nitride compound layer composed of these ⁇ ′ phase and ⁇ phase is formed on the surface of a steel member (base material) in a thickness range of 13 to 30 ⁇ m.
  • the thickness means the thickness of the compound layer mainly composed of the ⁇ ′ phase.
  • the relationship between the volume ratios V ⁇ ′ and V ⁇ of the ⁇ ′ phase and the ⁇ phase in the nitrogen compound layer is V ⁇ ′ /
  • the ratio defined by (V ⁇ ′ + V ⁇ ) needs to be 0.5 or more. That is, in the nitrided steel member of the present invention, the fatigue strength and wear resistance are improved by adopting a structure in which the iron-nitrogen compound layer is mainly composed of the ⁇ ′ phase.
  • the reason why the nitrided steel member of the present invention having the above configuration is excellent in fatigue strength and wear resistance is considered as follows.
  • the crystal structure of the ⁇ ′ phase is FCC (face-centered cubic) and has 12 slip systems, so that the crystal structure itself is rich in toughness. Furthermore, since the crystal structure of the ⁇ ′ phase forms a fine equiaxed structure, it is considered that the fatigue strength is improved.
  • the crystal structure of the ⁇ phase is HCP (hexagonal close-packed) and the bottom surface slip is prioritized, it is considered that the crystal structure itself has the property of being “deformable and brittle”. For this reason, in the present invention, it is considered that the fatigue strength can be improved by adopting a configuration mainly composed of the ⁇ ′ phase.
  • the volume ratio V ⁇ ′ and V ⁇ of the ⁇ ′ phase and the ⁇ phase in the iron nitrogen compound layer is V ⁇ ′ / (V ⁇ ′ + V ⁇ ).
  • the “nitrogen compound layer” is a layer composed of ⁇ phase (Fe 2-3 N), ⁇ ′ phase (Fe 4 N), etc. having the above-described characteristics.
  • the distribution state of is determined from the result (volume ratio) of the phase distribution analysis of the ⁇ ′ phase and the ⁇ phase in the depth direction cross section of the compound layer by EBSD (Electron BackScatter Diffraction) with a width of 100 ⁇ m ⁇ 3 fields of view.
  • EBSD Electro BackScatter Diffraction
  • the volume ratio is preferably 0.7 or more, and more preferably 0.8 or more.
  • the thickness of the iron-nitrogen compound layer (hereinafter also simply referred to as the compound layer) formed on the surface of the nitrided steel member of the present invention is defined by 13 to 30 ⁇ m, and this point will be described. Since the rotational bending fatigue strength tends to increase as the compound layer thickness increases, it is advantageous that the compound layer is thicker. On the other hand, in the conventional two-stage gas nitriding method, as described in Patent Document 5, the compound layer mainly composed of ⁇ ′ phase could not be made 16 ⁇ m or more.
  • a compound layer mainly composed of a ⁇ ′ phase of 16 ⁇ m or more can be formed by adopting the gas nitriding method defined by the method for producing a nitrided steel member of the present invention.
  • the present invention is a technique that makes it possible to obtain a compound layer having a thickness of more than 16 ⁇ m, which was not obtained by the technique described in Patent Document 5.
  • the advantage of the present invention over the technique described in Patent Document 5 is that not only the thickness of the compound layer but also the compound layer satisfies the relationship of the formula (1) defined in the present invention, as will be described later. It differs in that it can be made excellent in functionality.
  • the steel that is the subject of Patent Document 5 is a steel for machine structural use in which Cr is about 1.2%
  • the present invention is a steel made of a steel material component produced by a compound layer mainly composed of a ⁇ ′ phase.
  • it is a highly versatile technology, it can be applied to any material and can reliably form useful compound layers with excellent functionality on various steel surfaces with the desired thickness.
  • the thickness of the compound layer is slightly smaller than the mechanical structural steel targeted by the technique described in Patent Document 5. Tend to be.
  • a thickness of the compound layer of about 13 ⁇ m is often sufficient.
  • regulated by this invention is prescribed
  • the compound layer is most likely to be thickest in a practical nitriding time, and is similar to carbon steel. In consideration of the point that can be reached by the steel type, it is defined as 30 ⁇ m.
  • K Nx 5-60 minutes In the method for producing a nitrided steel member of the present invention, the nitriding time at K Nx is defined as 5 to 60 minutes. This point will be described below.
  • K 1 to K Nx-1 stipulated in the method for manufacturing a nitrided steel member of the present invention is a region containing an ⁇ phase. The ⁇ phase formed at this time is changed to ⁇ ′ by changing the atmosphere to K Nx . Transform to phase. The transformation rate at this time is limited by the rate at which nitrogen in the compound layer is denitrified into the atmosphere.
  • the holding time for nitriding under the control of K Nx required to obtain a sufficient ⁇ ′ phase up to the inside of the compound layer varies depending on the temperature.
  • the holding time may be as short as 5 to 20 minutes at 580 ° C., but 20 to 60 minutes are required at a temperature of 500 ° C.
  • the holding time is short, there is a tendency that a sufficient ⁇ ′ phase cannot be obtained.
  • the crystal grains of the ⁇ ′ phase may increase, and in this case, the mechanical characteristics are deteriorated.
  • the lower limit is defined as 5 minutes as the holding time at which a sufficient ⁇ ′ phase is obtained at 580 ° C. or higher even in a short time.
  • the upper limit value of the nitriding time controlled by K Nx was defined as 60 minutes at which a sufficient ⁇ ′ phase was obtained at 500 ° C., which is the lower limit value of the practical nitriding temperature. More preferably, it is about 5 to 30 minutes.
  • the crystal grains in the ⁇ ′ phase do not increase even at a nitriding temperature of 580 ° C. or higher, which can shorten the holding time, and there is no possibility that mechanical properties such as wear resistance are deteriorated.
  • the iron nitrogen compound layer formed on the surface of the nitrided steel member of the present invention satisfies the following formula (1) in addition to the above-described volume ratio of the ⁇ ′ phase and the ⁇ phase satisfying a specific relationship.
  • CLT ⁇ DLT ⁇ 0.04 (1) (However, CLT in the formula (1) represents the value of the thickness [ ⁇ m] of the compound layer after the gas nitriding treatment, and DLT represents the practical hardening depth [ ⁇ m] of the nitrided diffusion layer after the gas nitriding treatment. Represents a value)
  • the above formula (1) is an index that represents the ratio between the thickness of the compound layer after nitriding and the depth of the nitrided diffusion layer (hereinafter sometimes referred to simply as the diffusion layer).
  • Method of forming a compound layer of gamma 'phase mainly described in Patent Document 1 mentioned above is a typical gas nitriding conditions, and Lehrer diagram shown in FIG. 1 (K N and temperature axis (Equilibrium state diagram) is performed by a combination of the temperature of the ⁇ ′ phase region and K N.
  • the difference between this prior art and the present invention is that even if the compound layer is mainly composed of ⁇ ′ phase, the layer thickness becomes as large as the compound layer composed mainly of ⁇ phase. Is specified.
  • the compound layer mainly composed of ⁇ phase is brittle, there is a tendency for mechanical properties such as fatigue strength to be deteriorated. Generally, this phase is not selected, but the composition of nitrogen is compared with that of ⁇ ′ phase. Since the width is large, the growth rate is higher than that of the ⁇ ′ phase.
  • the compound layer mainly composed of the ⁇ ′ phase is formed thick by using the growth rate of the ⁇ phase, and the compound layer mainly composed of the ⁇ ′ phase is mentioned above even in the normal gas nitriding time. As described in Patent Document 5, the thickness is increased to 16 ⁇ m or more which cannot be achieved by the conventional two-stage nitriding method.
  • the compound layer mainly composed of ⁇ ′ phase is made thicker than the compound layer mainly composed of ⁇ ′ phase formed with low K N , without reducing the bending fatigue strength, In addition, it is possible to achieve the provision of an unprecedented new nitriding member capable of improving the wear resistance.
  • the practical cure depth indicates the cure depth at the position of core hardness + 50 HV in the hardness distribution in the nitride layer (JIS-0563).
  • the practical curing depth indicates the sum of the compound layer thickness and the diffusion layer depth.
  • the compound layer thickness is 1/10 or less of the diffusion layer thickness, and the practical curing depth ⁇ diffusion. It can be regarded as the layer depth.
  • the growth of the nitrided diffusion layer proceeds as N atoms supplied from the compound layer diffuse into the steel material.
  • the growth rate of this layer is controlled by temperature and time regardless of the growth rate of the compound layer, the temperature on the right side of the formula (1) obtained by dividing the growth rate of this diffusion layer by the thickness of the compound layer It can be indirectly known as the growth rate of the compound layer with respect to time.
  • the inventors of the present invention are characterized in that the formed compound layer is a compound layer mainly composed of ⁇ ′ phase, and the growth of the compound layer is fast. It is possible to improve the wear resistance and fatigue resistance by increasing the thickness of the compound layer, and to achieve the effect of shortening the nitriding time, without reducing the compressive residual stress and hardness in the diffusion layer.
  • the value of the right side of the above formula (1) was 0.04 or more to become a nitrided steel member having higher fatigue strength than the main compound layer, and the present invention was completed.
  • the total nitriding time is preferably 6 hours or less. Further, in the gas nitriding treatment with low K N in the prior art, even if a compound layer mainly composed of ⁇ ′ phase can be formed, the growth rate is less than 0.040 defined by the formula (1), and the above-described present invention It is not a nitrided steel member that can achieve the above effect.
  • the method for producing a nitrided steel member according to the present invention is for obtaining a nitrided steel member having the above-described configuration.
  • the material to be treated in the processing furnace is heat-treated while flowing a nitriding gas into the furnace.
  • the processing conditions for the gas nitriding process are configured as follows. That is, in the method for producing a nitrided steel member of the present invention, the gas introduced into the gas nitriding furnace is a mixed gas of only two types of ammonia and ammonia decomposition gas, or a plurality of gases containing ammonia and ammonia decomposition gas.
  • K N1 ⁇ K Nx-1 > K Nx (2) 126.7034-5.68797 ⁇ 10 ⁇ 1 ⁇ T + 8.64682 ⁇ 10 ⁇ 4 ⁇ T 2 ⁇ 4.43596 ⁇ 10 ⁇ 7 ⁇ T 3 > K Nx > 22.2265 ⁇ 1.15 ⁇ 10 ⁇ 1 ⁇ T + 2.03 ⁇ 10 ⁇ 4 ⁇ T 2 ⁇ 1.21466 ⁇ 10 -7 ⁇ T 3 (3) (However, the p NH3, p H2, NH 3 partial pressure and the H 2 partial pressure of the nitriding treatment furnace, in the formula (3), T is the temperature [° C.].)
  • phase structure ( ⁇ ′ phase or ⁇ phase) of the surface nitrogen compound layer formed during the gas nitriding treatment is determined by the temperature and the nitriding potential K N from the iron Lehrer diagram shown in FIG.
  • K N during the gas nitriding process is constant.
  • the final compound layer phase structure in the present invention is governed by the last K Nx in the gas nitriding process through any atmosphere control process.
  • the final K Nx satisfies the above equations (2) and (3) at the same time, and the nitriding time at the final K Nx controlled to satisfy these requirements is 5 It has been found that a nitrided steel member having a phase structure capable of achieving the object of the present invention can be obtained by setting the time to ⁇ 60 minutes.
  • the K N1 ⁇ K Nx-1 of the first and intermediate stage the relationship between the final K Nx is, in addition to satisfying the K N1 ⁇ K Nx-1> K Nx of formula (2), the final The range of K Nx needs to be limited to “in the ⁇ ′ phase region” defined by Equation (3).
  • K N1 to K Nx-1 in the first and middle stages are regions outside the “ ⁇ ′ phase region”.
  • the compound layer in order to make the nitride compound layer a ⁇ ′ phase, the compound layer cannot be made thick because it has been treated with a low K N which is a ⁇ ′ phase region.
  • the method of the present invention it is possible to freely set K N from the beginning until reaching K Nx , and in order to increase the film thickness, It is effective to increase K N1 more. Further, the nitriding time during the final K Nx retention is limited by the diffusion rate of nitrogen in the compound layer flowing into the atmosphere, and according to the study by the present inventors, the thickness of the compound layer, the steel type, and the change of the atmosphere It takes 10-60 minutes including time.
  • the purpose of the technique described in Patent Document 5 is to produce a compound layer mainly composed of ⁇ 'at each position of the component to be processed, in a large amount, without being restricted by the wind speed, and increase the thickness of the compound layer.
  • the thickness of the compound layer capable of forming the ⁇ ′ phase is limited to 4 ⁇ m to 16 ⁇ m. If the compound layer becomes thicker than this, the proportion of the ⁇ phase increases and becomes brittle. It is said that improvement in strength cannot be expected.
  • the gas nitriding time for the second stage is not optimized and the nitriding time is long, so that the crystal grains in the ⁇ ′ phase become large and mechanical properties such as wear resistance are deteriorated.
  • the method defined in the present invention can also form a ⁇ ′ phase thicker than 16 ⁇ m, which could not be achieved by the conventional technique, and the ⁇ ′ phase in the formed ⁇ ′ phase can be formed.
  • This is a two-step nitriding method in which the crystal grains are fine and the hardness of the diffusion layer and the compressive residual stress are not reduced. Since the method defined in the present invention has a different purpose from the conventional method, the final nitriding atmosphere (K Nx ) in the second stage is reduced, but the region is limited to the ⁇ ′ phase region, and nitriding is performed. The time is 5 minutes to 60 minutes, which is shorter than the nitriding time of the first stage. By this second stage treatment, the compound layer containing the ⁇ phase formed in the first stage is transformed into the ⁇ ′ phase. It is characterized by being transformed into.
  • Patent Document 5 (Regarding automatic control of atmosphere to control nitriding potential)
  • NH 3 gas introduced into the furnace is inserted at a constant flow rate, and the NH 3 concentration in the furnace is continuously absorbed by an infrared absorption system, and the H 2 concentration in the furnace is continuously formed by a high corrosion resistance thermal conductivity system.
  • the nitriding potential required in the furnace is adjusted by changing the flow rate of H 2 gas.
  • analysis is performed on the furnace air drawn to the outside of the furnace, and the response speed is slower than that of a thermal conductivity type hydrogen sensor.
  • thermal conductivity type hydrogen sensor has good responsiveness and is generally used to measure the atmosphere of a nitriding furnace.
  • the thermal conductivity type hydrogen sensor can measure the furnace air drawn to the outside of the furnace in the same way as NH 3 and can directly measure the furnace air near the workpiece by inserting the sensor into the furnace.
  • the accuracy differs depending on the position of the furnace air selected. From the above, the method of simultaneously performing NH 3 concentration analysis and H 2 concentration analysis and controlling the furnace air while referring to these values adversely affects the accuracy of nitriding potential control, and is not the best method. .
  • the method for producing a nitrided steel member of the present invention only involves continuous detection of the H 2 concentration in the vicinity of the material to be treated, specifically, only the thermal conductivity type H 2 sensor.
  • the furnace air is controlled by continuously measuring the H 2 concentration in the vicinity. That is, in the manufacturing method of the nitride steel member of the present invention, as a gas to be utilized in order to reduce the nitriding potential, rather than the H 2 gas, the use of the NH 3 decomposing gas, the furnace NH 3 concentration alone hydrogen sensor Know exactly.
  • the control method described in Patent Document 5 since the amount of H 2 gas inserted into the furnace fluctuates, it is difficult to accurately grasp the NH 3 partial pressure in the furnace using only the H 2 sensor.
  • the processing furnace for performing the gas nitriding treatment performed in the manufacturing method of the present invention may be a pit type or a batch type, and regardless of the shape of the furnace, as described above, the processing result is the temperature in the processing furnace. It is determined by the time and the K N of the atmosphere. This can be known from the phase diagram centered on K N and temperature shown in FIG. 1, generally called the Lehrer diagram (Source: Dietary Toke et al. “Iron nitriding and soft nitriding” Agne Technical Center p. 131). The nitriding method using the pit type and batch type processing furnaces performed by the manufacturing method of the present invention will be described below.
  • FIG. 2 A schematic diagram of the pit furnace is shown in FIG. 2, and an example of processing conditions in the pit furnace is shown in FIG.
  • the H 2 sensor 21 and the PLC + K N regulator 22 in order to control the K N in the furnace, the H 2 sensor 21 and the PLC + K N regulator 22, and each process gas is set with a mass flow meter (MFC) 23. is there.
  • MFC mass flow meter
  • the processed product 24 to be subjected to the gas nitriding treatment is preliminarily placed in the center of the furnace and sealed in the furnace, the inside of the furnace is evacuated, the inside of the furnace is decompressed with N 2 gas, and then fixed. Heating is started while flowing a flow rate of N 2 gas into the furnace.
  • the heating is performed by heating the retort 25 from the outside with a heater (not shown) set on the outer periphery, and the temperature adjustment is adjusted by a temperature controller to a desired temperature based on the temperature measured by the thermocouple 26 in the furnace. Is done. 2 in FIG. 2 is a stirrer.
  • the nitride compound layer formed at a high K N is a compound layer containing an ⁇ phase, and has a higher growth rate than the ⁇ ′ phase.
  • the high growth rate at the high K N is used to make the compound layer
  • the technique devised in the present invention is to increase the film thickness and then change the atmosphere to K Nx to transform from the ⁇ phase to the ⁇ ′ phase. Then, after cooling to about 400 ° C.
  • the atmosphere is again replaced with N 2 gas, and the inside of the furnace is cooled to 100 ° C. or lower.
  • FIG. 4 A schematic diagram of a straight-through type batch furnace is shown in FIG. 4, and an example of processing conditions in the batch furnace is shown in FIG.
  • the H 2 sensor 41, the PLC + K N regulator 42, and the MFC 43 are set in each process gas are the same as in the pit furnace. is there.
  • the processed product 44 is inserted into the furnace by opening the door 48 into the furnace previously heated to 580 ° C. in an NH 3 gas atmosphere.
  • a desired K N value Atmosphere control is started so as to be K N1 .
  • the atmosphere is changed to K Nx and held for 20 minutes, so that the thick ⁇ 'phase main body is the same as in the pit furnace. It is possible to form a nitride compound layer.
  • 46 is a thermocouple
  • 47 is a stirrer
  • 49 is a cooling tank.
  • Table 1 shows the steel material components used in the examples and comparative examples.
  • the balance is iron (Fe).
  • all steel materials are composed of steel components that can make the ⁇ 'phase main compound layer thicker, and are steel types that can be satisfied from the viewpoint of the purpose of use such as machinability and manufacturability of steel materials. is there.
  • Table 2 shows the gas nitriding conditions for each.
  • the batch-type or pit-type furnace described above was used, and both were performed in a two-stage process in which the nitriding potential K N in the atmosphere during gas nitriding was different between the first K N1 and the final K Nx .
  • the nitriding potential K N1 in the first stage of each example is on the Lehrer diagram in each alloy steel [FIG.
  • Ono-type rotating bending fatigue test Using notched test pieces with the shape shown in FIG. 6, after performing gas nitriding treatment under the conditions of the examples, the Ono-type rotating bending fatigue test (JIS Z 2274) was carried out. did.
  • the test load was selected from two levels of 30 kgf or 50 kgf depending on the steel material component, and the rotation speed was set to 3000 rpm in common.
  • the evaluation of the test result was evaluated as “Good” when passing 10 7 rotations, and “No” when not passing, otherwise.
  • Friction and wear test The friction and wear test (sliding property evaluation) was measured using the SRV (Schwingings Rehound and Vershesis) tester shown in Fig. 7 as follows. Nitrided ⁇ 25 ⁇ 8mm size sample as fixed piece, ⁇ 10mm ball made of JIS-SUJ2 steel as slider, under oil drop lubrication environment (80 °C, Nissan genuine CVT fluid NS-2 (80mg)) This was done by measuring the coefficient of friction when sliding back and forth (amplitude 2 mm, 20 Hz) while applying a load (FIGS. 7 and 8). The sliding distance was 100 m.
  • the friction coefficient is determined by applying a load load (600 N) from above the slider, vibrating the slider with an electromagnetic servo, and detecting the sliding resistance force generated between the ball and the sample with a load cell.
  • the coefficient of friction was calculated from the values of dynamic resistance and applied load. Judgment of the test result was evaluated as “Good” when the friction coefficient during the test (after sliding for 5 m or more) was 0.15 or less, and “No” when it was more than that.
  • FIG. 9 shows an example of an EBSD analysis result having a compound layer mainly composed of ⁇ ′ phase and a compound layer mainly composed of ⁇ phase. The upper part of FIG.
  • phase Map 9 is a micrograph of the ⁇ ′ phase main compound layer, and the lower part is a micrograph of the ⁇ phase main compound layer.
  • Each right column is Phase Map, and a portion colored in gray is a portion of ⁇ ′ phase.
  • this Phase Map is used to determine the ratio defined by V ⁇ ′ / (V ⁇ ′ + V ⁇ ), and the ratio of the ⁇ ′ phase and the ⁇ phase in the iron-nitrogen compound layer is thereby compared.
  • Comparative Examples 4, 5, 6 In Comparative Examples 4, 5, and 6, the same two-stage nitriding treatment was performed using the same steel materials as used in Examples 3, 5, and 7, respectively. However, the second stage nitriding time was 60 minutes or more. As a result, as shown in Table 3, since the second-stage nitridation time held in K Nx was 60 minutes or more as stipulated in the present invention, the crystal grains in the ⁇ ′ phase were enlarged and obtained. As a result of performing the same test as that of the example on the nitrided steel material, as shown in Table 3, not only the fatigue strength (50 kgf) but also the wear resistance were rejected.
  • Comparative Examples 7, 8, 9 steel materials similar to those used in Examples 3, 5, and 7 were used, respectively, and K N was set to 0.25 that forms a ⁇ ′ phase in the same manner as in the conventional technique. Processed in stages.
  • the nitriding time is set to the long side in Comparative Examples 7 and 8, and the nitriding temperature is increased and the time is shortened in Comparative Example 9. did. Specifically, the nitriding time was 10 hours in Comparative Example 7, 12 hours in Comparative Example 8, and in Comparative Example 9, the nitriding temperature was increased to 610 ° C.
  • the thickness of the iron nitrogen compound layer of the obtained nitrided steel material was able to satisfy 13 ⁇ m or more.
  • the compound layer did not satisfy the formula (1) defined in the present invention.
  • a compound layer mainly composed of a ⁇ ′ phase can be made thicker than a compound layer mainly composed of an ⁇ phase even during a normal gas nitriding treatment time. Nitriding that can improve the wear resistance without lowering the bending fatigue strength as compared with the compound layer mainly composed of ⁇ ′ phase formed with low K N even if the film thickness is increased.
  • a steel member can be provided, and the nitrided steel member provided by the present invention is expected to be used, for example, for automobiles, transmission gears, crankshafts, and the like.
  • Oscillation block head plate 2a Torsion sensor 2b: Test piece fixture 3: Upper test piece amplitude motion arm 3a: Upper test piece holder 4: Vertical load shaft

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Abstract

通常のガス窒化処理時間でもγ'相を主体とする化合物層を厚膜化ができ、また、該厚膜化を行うことで疲労強度を向上させることができ、従来技術よりも高い疲労強度を備えながらも耐摩耗性を向上させることが可能な窒化処理部材とできる技術の提供。 γ'相主体化合物層が生成する鋼材成分からなる鋼部材の表面に鉄窒素化合物層が形成されてなる窒化鋼部材で、前記鉄窒素化合物層中に占めるγ'相とε相の体積割合をVγ'とVεとし、γ'相の存在割合をVγ'/(Vγ'+Vε)で規定される比で表した場合に、その値が0.5以上であるγ'相主体の化合物層の厚さが13μm~30μmであり、且つ、前記鉄窒素化合物層は、ガス窒化処理後の化合物層の厚さの値をCLTと表し、ガス窒化処理後の窒化拡散層の実用硬化深さの値をDLTと表した場合に、CLT÷DLT≧0.04の関係を満たす窒化鋼部材及びその製造方法。

Description

窒化鋼部材及び窒化鋼部材の製造方法
 本発明は、窒化鋼部材及び窒化鋼部材の製造方法に関し、さらに詳しくは、自動車用や変速機用の歯車やクランクシャフト等に有用な、ガス窒化処理により表面が窒化されてなる耐摩耗性や耐疲労性に優れる十分な厚みの化合物層を有する窒化鋼部材及び窒化鋼部材の製造方法に関する。
 鋼の表面硬化処理の中でも低ひずみ処理である窒化処理のニーズは多く、最近では特にガス窒化処理の雰囲気制御技術への関心が高まっている。この背景には、ガス窒化処理によれば、機械部品に対する焼入れを伴う浸炭や浸炭窒化処理、また、高周波焼入れによるひずみが改善されることによる。ガス窒化処理による雰囲気制御の基本は、炉内の窒化ポテンシャル(KN)を制御することにあり、これによって、鋼材表面に生成する化合物層中のγ’相(Fe4N)とε相(Fe2-3N)の体積分率の制御、あるいは化合物層の生成しない処理など、幅広い窒化品質を得ることが可能であり、様々な提案がされている。例えば、特許文献1では、γ’相の選択により、曲げ疲労強度や面疲労を改善し、浸炭代替が行われている。
 一方で、耐摩耗性や耐疲労性の観点から厚い化合物層の形成が望まれているが、従来のε相主体の窒化では化合物層が剥離し易く、厚膜化できていなかった(特許文献2~4参照)。具体的には、特許文献2の技術は、ギアノイズの低減を目的とした軟窒化歯車に関するが、化合物層厚さとポーラス層厚さを12μm以下であると規定している。また、特許文献3の技術では、凹凸による応力集中回避を、化合物層厚さを5μm以下に低減することにより実施しており、特許文献4の技術では、化合物層厚さ5μm以下で、曲げ矯正によるき裂抑制をしている。さらに、前記した特許文献1の技術でも、γ’相は低KNで処理されるため、γ’相を厚膜化する場合は、窒化処理に長時間を要し、その結果、拡散層の軟化や圧縮残留応力の低下が起こるため、厚膜化が困難であった。
 一方、γ’相主体の化合物層を、被処理材の量や流速、また、均一に形成する方法として、最初に炉内のNH3分圧が高い雰囲気で窒化を行い、その後、炉内の雰囲気をNH3分圧の低い状態にする2段窒化法が実施されている(特許文献5参照)。この方法を用いれば、1段目の雰囲気を高いKNへ設定し、2段目にγ’相領域のKNを選定すれば、γ’相主体の化合物層を厚膜化することが可能である。特許文献5では、化合物層の厚さが4~16μmであることが好ましいとしている。しかし、特許文献5には、16μmを超えるとε相の割合が増加して脆くなることから、疲労強度の向上が期待できないと記載されており、また、比較例2で化合物層の厚さがロットでばらついたとの記載があるものの、その実施例には化合物層の厚みについての記載はなく、この技術で実用化できる化合物層の厚みは16μmに達していないと推定される。また、特許文献5に記載の技術では、2段目のガス雰囲気中における窒化時間も管理されておらず、実施例によれば窒化時間が長いものになっている。本発明者らの検討によれば、このような条件下では、形成したγ’相の結晶粒が大きくなるため、耐摩耗性などの機械的特性を低下させる要因になり、この点でも課題がある。
特開2013-221203号公報 特開平11-72159号公報 特開2009-30134号公報 特開2014-129607号公報 国際公開第2015/046593号公報
 上記したように厚膜化が困難であるといった問題があるものの、従来から、鋼部材にガス窒化やガス軟窒化処理をすると、未処理材よりも耐摩耗性や疲労強度が向上するため、これらの処理が用いられてきた。耐摩耗性や耐疲労性を向上させるためには、化合物層が厚いことが望まれているが、化合物層の厚膜化は疲労強度を低下させるため、上記したように、部品の使用環境に応じた厚さの最適化を行うことで、これらの問題への対応がなされている(特許文献2~4参照)。一方、最近では、特許文献1や5の記載からわかるように、従来使われてきたε相主体の化合物層よりも、γ’相主体の化合物層とする方が、疲労強度が向上することが明らかとなっている。
 しかし、γ’相主体の化合物層を生成させるのは低KNでの処理であるので、化合物層を厚膜化するためには、処理温度を高めるか、長時間処理することが必要となる。これに対し、ガス窒化処理の高温化や長時間化は、窒化拡散層に形成される圧縮残留応力や硬さの低下を招くことや、生産上や環境への負荷が高くなることから、こうした工法は工業的には成立し得ず、実現化することができなかった。また、特許文献5に記載されているような2段ガス窒化処理により、γ’主体の化合物層を厚膜化することも可能であるが、この技術では、16μm以上ではε相の割合が増加して脆くなることから、疲労強度の向上が望めないとしており、さらなる厚膜化は望めない。また、特許文献5に記載の技術では、2段目のガス窒化処理時間も最適化されておらず、先に述べたように、窒化時間が長くなっているため、形成したγ’相中の結晶粒が大きくなり、耐磨耗性など機械特性を低下させるという課題がある。
 すなわち、ガス窒化処理によって形成されるγ’主体の化合物層を、疲労強度を低下させることなく、むしろ疲労強度を向上させることができ、所望の耐摩耗性を満足する厚みにできる、簡便な実用化できる従来の技術はこれまでになく、実現できれば、その工業的価値は極めて大きい。
 したがって、本発明の目的は、通常のガス窒化処理時間でも、γ’相を主体とする化合物層を13μm以上、好適には15μm以上に厚膜化することができ、また、γ’相主体化合物層の厚膜化を行うことによってさらに疲労強度を向上させることができ、従来技術よりも高い疲労強度を備えながらも、耐摩耗性を向上させることが可能な窒化処理部材を提供できる技術を開発することである。
 本発明者らは上記課題を達成すべく鋭意検討した結果、鉄窒素化合物層中に占めるγ’相とε相の体積割合が特定のもので、加えて、化合物層の厚みが13μm以上であり、ガス窒化処理後の窒化拡散層の実用硬化深さDLT[μm]に対するガス窒化処理後の化合物層の厚さCLT[μm]の比が特定の関係を満たす場合に、上記課題を達成することができることを見出して本発明を完成するに至った。
 すなわち、本発明は、γ’相主体化合物層が生成する鋼材成分からなる鋼部材の表面に鉄窒素化合物層が形成されてなる窒化鋼部材であって、前記鉄窒素化合物層中に占めるγ’相とε相の体積割合をVγ’とVεとし、γ’相の存在割合をVγ’/(Vγ’+Vε)で規定される比で表した場合に、その値が0.5以上であるγ’相主体の化合物層の厚さが13μm~30μmであり、且つ、前記鉄窒素化合物層は、ガス窒化処理後の化合物層の厚さ[μm]の値をCLTと表し、ガス窒化処理後の窒化拡散層の実用硬化深さ[μm]の値をDLTと表した場合に、下記式(1)の関係を満たすことを特徴とする窒化鋼部材を提供する。
 CLT÷DLT≧0.04 ・・・(1)
 本発明の窒化鋼部材は、前記γ’相主体化合物層の厚さが、15μm~30μmであることが好ましく、また、歯車又はクランクシャフトに好適に適用できる。
 本発明は、別の実施形態として、ガス窒化処理炉内の窒化ポテンシャル(KN)を調整しながら、前記炉内の被処理材にガス窒化処理を行って、請求項1に記載の窒化部材を製造するための製造方法であって、前記ガス窒化炉内へ導入するガスを、アンモニアとアンモニア分解ガスの2種類のみの混合ガスとするか、或いは、アンモニアとアンモニア分解ガスを含む複数の混合ガスとし、前記被処理材近傍における水素濃度の連続的な検出を行い、該検出結果を元にして前記炉内のアンモニア分圧を推定し、設定の窒化ポテンシャルへ制御する雰囲気の自動制御を行い、制御の際に、ガス窒化処理中雰囲気の窒化ポテンシャルKN=pNH3/pH2 1.5を、最初にKN1とし、続いて必要に応じて窒化ポテンシャルをKN2~KNx-1、KNxとしてもよいが、最終のKNxを、下記式(2)と下記式(3)とを同時に満たすように制御し、且つ、上記要件を満たすように制御した最終のKNxでの窒化時間を5~60分とすることを特徴とする窒化鋼部材の製造方法を提供する。
 KN1~KNx-1>KNx ・・・(2)
 126.7034-5.68797×10-1×T+8.64682×10-4×T2-4.43596×10-7×T3 >KNx >22.2265-1.15×10-1×T+2.03×10-4×T2-1.21466×10-7×T3 ・・・(3)
(ただし、pNH3、pH2は、窒化処理炉内のNH3分圧とH2分圧、式(3)中の、Tは温度[℃]である。)
 本発明の窒化鋼部材の製造方法は、前記KN1が、1.0~2.0であることが好ましい。
 本発明によれば、通常のガス窒化処理時間でも、γ’相を主体とする化合物層をε相主体とする化合物層と同様に厚膜化することができ、また、γ’相主体化合物層の厚膜化を行っても、低KNで形成したγ’相を主体とする化合物層と比べて、曲げ疲労強度を低下させることなく、むしろ疲労強度を向上させることができ、且つ、耐摩耗性を向上させることが可能な、従来にない新規な窒化処理部材の提供が可能になる。なお、本発明で規定するように、本発明でいう「γ’相を主体とする化合物層」とは、鋼部材の表面に形成されている鉄窒素化合物層において、γ’相の存在割合を、Vγ’/(Vγ’+Vε)で規定される比で表した場合に、その値が0.5以上である部分を意味する。
鉄のLehrer図(E.Lehrer: Zeitschrift fur Elektrochemie,36,p.383(1930).)である。 ピット型ガス窒化処理炉の概略図である。 ヒートパターン(ピット炉)である。 バッチ型ガス窒化処理炉の概略図である。 ヒートパターン(バッチ炉)である。 小野式回転曲げ疲労試験片形状である。 SRV試験機の概要の説明図である。 オッシレーション法の説明図である。 EBSD解析結果の例(黒部分:解析不能)を示す図である。
 以下、本発明の実施の形態について説明するが、本発明は以下の実施の形態に限定されるものではない。まず、本発明の技術の前提について述べる。本発明は、鋼部材の表面にγ’相主体の鉄窒素化合物層が形成されてなる窒化鋼部材であり、該鉄窒素化合物層中に占めるγ’相とε相の体積割合を特定のものとしていることから、該化合物層を形成させる鋼材は、γ’相主体の化合物層が生成される成分のものであることを要する。また、本発明は、自動車用や変速機用の歯車やクランクシャフト等に有効に適用できる窒化鋼部材の提供をも目的としていることから、鋼材の被削性や製造性といった機能に対して必要不可欠な元素が存在することや、不純物元素として必ず存在する元素もある。これらの点も含めて、本発明を構成する「γ’相主体化合物層が生成する鋼材成分からなる鋼」としては、下記のような成分範囲を満足する鋼種であることが好ましい。なお、下記の%は、質量基準である。
〔母材である鋼成分〕
<炭素(C)>
 Cは、窒化部品の強度確保のために必須の元素であるといえ、0.05%以上の含有量が必要である。一方、Cの含有量が多くなって0.5%を超えると、窒化前の硬さが高くなって被削性の低下をきたすため、Cの含有量は、0.05~0.5%であることが好ましい。
<ケイ素(Si)>
 Siは、脱酸作用を有する。この効果を得るには、0.10%以上のSi含有量が必要である。しかし、Siの含有量が多くなって0.90%を超えると、窒化前の硬さが高くなって被削性が低下するので好ましくない。したがって、Siの含有量は、0.10~0.90%であることが好ましい。
<マンガン(Mn)>
 Mnは、脱酸作用を有する。この効果を得るには、0.3%以上のMn含有量が必要である。しかし、Mnの含有量が多くなって1.65%を超えると、窒化前の硬さが高くなりすぎて被削性が低下するので好ましくない。したがって、Mnの含有量は、0.3~1.65%であることが好ましい。
<ニッケル(Ni)>
 Niは必ずしも含有していなくてもよい。ただし、Niは、焼入れ性と靱性の向上に資する成分であるので、この観点から含有させてもよい。しかし、あまり多く含有させても、上記効果は飽和に達するのみで徒にコストアップを招くだけではなく、被削性の低下も引き起こすので、好ましくない。したがって、その含有量は2.10%以下に制限することが好ましい。
<クロム(Cr)>
 Crは必ずしも含有していなくてもよい。ただし、Crの含有量が多くなって2.7%を超えると、窒化化合物層の厚さが低下して、本発明を構成するγ’相主体の化合物層の効果が十分に得られなくなる。したがって、Crの含有量は0~2.7%であることが好ましい。
<モリブデン(Mo)>
 Moは必ずしも含有していなくてもよい。ただし、Moは、窒化温度で、鋼中のCと結合して炭化物を形成し、窒化後の芯部硬さの向上作用をもたらし、機械部品によっては必要となる元素である。しかし、Moの含有量が多くなって0.50%を超えると、原料コストが高くなるだけでなく、窒化前の硬さが高くなって被削性が低下するので好ましくない。したがって、Moの含有量は0.50%以下であることが好ましい。
<バナジウム(V)>
 Vは必ずしも含有していなくてもよい。ただし、Vを含有させると、Moと同じく、窒化温度で鋼中のCと結合して炭化物を形成し、窒化後の芯部硬さを向上させる作用を有し、また、窒化時に表面から侵入・拡散するNやCと結合して窒化物や炭窒化物を形成し、表面硬さを向上させる作用も有し、場合によっては必要となる元素である。しかし、Vの含有量が多くなって0.40%を超えると、窒化前の硬さが高くなりすぎて被削性が低下するばかりか、熱間鍛造やその後の焼準でマトリックス中にVが固溶しなくなるため、前記の効果が飽和する。したがって、Vの含有量は0~0.40%であることが好ましい。
<アルミニウム(Al)>
 Alは必ずしも含有していなくてもよい。ただし、Alの含有量が多くなって1.1%を超えると、窒化化合物層の形成量が低下して、本発明のγ’相主体の化合物層の効果が十分に得られなくなる。したがって、Alの含有量は0~1.1%であることが好ましい。
<硫黄(S)>
 Sは、Mnと結合してMnSを形成し、被削性を向上させる作用がある。しかし、Sの含有量が0.030%を超えると、粗大なMnSを形成して、熱間鍛造性および曲げ疲労強度が低下する。そのため、Sの含有量は0.002~0.030%であることが好ましい。より安定して被削性を確保するためには、Sの含有量は0.010%以上であることが好ましい。また、熱間鍛造性および曲げ疲労強度がより重視される用途に適用する部材の場合には、Sの含有量は0.025%以下であることが好ましい。
<リン(P)>
 Pは、鋼に含有される不純物であり、結晶粒界に偏析して鋼を脆化させ、特に、その含有量が0.030%を超えると、脆化の程度が著しくなる場合がある。したがって、本発明においては、不純物中のPの含有量が0.030%以下であることを必要とする。なお、不純物中のPの含有量は0.020%以下であることが好ましい。
<その他の元素>
 本発明で用いる鋼部材は、上記に挙げた各元素の他、残部がFe及びその他の不純物からなる化学組成を有するものである。なお、残部としての「Feおよび不純物」とは、鋼材を工業的に製造する際に、原料としての鉱石から不可避的に混入する、例えば、銅(Cu)やチタン(Ti)、または、製造環境から不可避的に混入する、例えば、O(酸素)などのFe以外の成分を含むことを意味している。
〔窒化鋼部材〕
 本発明の窒化鋼部材は、γ’相主体化合物層が生成する上記に挙げたような鋼材成分からなる鋼部材の表面に、特有の構成の鉄窒素化合物層が形成されてなることを特徴とする。すなわち、本発明の窒化鋼部材を特徴づける鉄窒素化合物層は、該層中に占めるγ’相とε相の体積割合Vγ’とVεとの関係が、Vγ’/(Vγ’+Vε)で規定される比で表した場合に、その値が0.5以上(γ’相の存在割合が0.5以上)である、γ’相主体化合物層の厚さが、13μm~30μmであり、さらに、前記鉄窒素化合物層が下記式(1)の関係を満たすものであることを特徴とする。
 CLT÷DLT≧0.04 ・・・(1)
(ただし、式(1)中のCLTは、ガス窒化処理後の化合物層の厚さ[μm]の値を表わし、DLTは、ガス窒化処理後の窒化拡散層の実用硬化深さ[μm]の値を表わす。)
 以下、これらについて説明する。
<窒素化合物層>
 本発明において、「鉄窒素化合物層」(窒素化合物層或いは化合物層とも呼ぶ場合がある)とは、ガス軟窒化処理によって形成された鋼部材表面のγ’相(Fe4N)やε相(Fe2-3N)に代表される鉄の窒素化合物からなる層をいう。ただし、鋼材には、母材に炭素を含有しており、この炭素分の一部が化合物層中にも含有されるため、厳密には炭窒化物である。窒素化合物層は、図9に示したように、表面に層状態として析出している。本発明では、鋼部材(母材)の表面に、これらγ’相、ε相からなる窒化化合物層が、厚さ13~30μmの範囲で形成されている。なお、ここでいう厚みは、γ’相主体の化合物層の厚みを意味する。鋼部材の表面に鉄窒素化合物層が形成されてなる本発明の窒化鋼部材は、まず、窒素化合物層中に占めるγ’相とε相の体積割合Vγ’とVεの関係が、Vγ’/(Vγ’+Vε)で規定される比で0.5以上であることを要する。すなわち、本発明の窒化鋼部材では、鉄窒素化合物層を、このようにγ’相を主体とする構成としたことで、疲労強度や耐摩耗性を改善する。
(機械的特性向上について)
 上記構成を有する本発明の窒化鋼部材が、疲労強度や耐摩耗性に優れる理由は次のように考えられる。γ’相の結晶構造はFCC(面心立方晶)であり、12個のすべり系を有するため、結晶構造自体が靭性に富んでいる。さらに、γ’相の結晶構造は微細な等軸組織を形成するため、疲労強度が向上すると考えられる。これに対し、ε相の結晶構造はHCP(六方最密充填)であり、底面すべりが優先されるため、結晶構造自体に「変形しにくく脆い」という性質があると考えられる。このため、本発明では、γ’相を主体とする構成としたことで、疲労強度が改善できたものと考えられる。
(γ’相とε相の体積割合)
 本発明の窒化鋼部材の表面に形成された鉄窒素化合物層は、鉄窒素化合物層中に占めるγ’相とε相の体積割合Vγ’とVεの関係が、Vγ’/(Vγ’+Vε)で規定される比で0.5以上であることを要するが、この点について説明する。前述の通り「窒素化合物層」は、上記したような特性を有するε相(Fe2-3N)やγ’相(Fe4N)等からなる層であるが、化合物層中におけるこれらの相の分布状態は、EBSD(Electron BackScatter Diffraction)によって、化合物層の深さ方向断面のγ’相とε相の相分布解析を、幅100μm×3視野で行った結果(体積比率)から判定する。本発明者らの検討によれば、この体積比率が0.5以上であれば、窒化鋼部材の疲労強度が優れたものとなる。前記体積比は0.7以上が好ましく、さらには0.8以上であることがより好ましい。
(化合物層厚さ)
 本発明の窒化鋼部材の表面に形成された鉄窒素化合物層(以下、単に化合物層とも呼ぶ)の厚みは、13~30μmで規定されるが、この点について説明する。回転曲げ疲労強度は化合物層厚さが厚いほど高くなる傾向があるため、化合物層は厚い方が有利である。一方、従来の2段ガス窒化法では特許文献5に記載されている通り、γ’相主体の化合物層を16μm以上とすることができなかった。これに対し、本発明の窒化鋼部材の製造方法で規定するガス窒化処理方法を採用することによって、16μm以上のγ’相を主体とした化合物層をも形成することができる。このため、単に化合物層の厚みに関しての比較で言えば、本発明は、特許文献5に記載の技術では得られなかった16μm超の厚みの化合物層を得ることを可能にした技術である。しかし、特許文献5に記載の技術に対する本発明の優位性は、化合物層の厚さの点だけでなく、後述するように、化合物層が、本発明で規定する式(1)の関係を満たす機能性に優れるものにできる点で異なる。さらに、特許文献5で対象としている鋼は、Crが1.2%程度の機械構造用鋼であるのに対し、本発明は、「γ’相主体の化合物層が生成する鋼材成分からなる鋼部材」であれば、いずれに対しても適用可能であり、多様な鋼材表面に所望する厚みで、機能性に優れる有用な化合物層を確実に形成できる、凡用性の高い技術である点でも異なる。具体的には、例えば、JIS-SACM645鋼や、DIN-31CrMoV9鋼のような窒化鋼においては、特許文献5に記載の技術が対象としている機械構造用鋼よりも化合物層の厚さは若干薄くなる傾向がある。そうした窒化鋼では、化合物層の厚さは13μm程度あれば足る場合も多い。このため、本発明では、本発明で規定する式(1)の関係を満たす機能性に優れる化合物層の厚みを13μm以上であると規定している。また、本発明で規定する式(1)の関係を満たす機能性に優れる化合物層の厚み上限値については、実用的な窒化時間で、化合物層が最も厚くなりやすく、且つ、炭素鋼のような鋼種で到達できる点を勘案して、30μmと規定した。
(KNxでの窒化時間5~60分)
 本発明の窒化鋼部材の製造方法では、KNxでの窒化時間は5~60分と規定しているが、以下、この点について説明する。本発明の窒化鋼部材の製造方法で規定しているK1~KNx-1はε相を含む領域であるが、このとき形成されたε相は、KNxへ雰囲気を変えることでγ’相へ変態する。このときの変態速度は、化合物層中の窒素が雰囲気へ脱窒する速度に律速される。本発明者らの検討によれば、化合物層内部まで十分なγ’相を得るのに必要になるKNxで制御して窒化する保持時間は、温度に応じて変わる。例えば、580℃であれば5分~20分と保持時間が短くて済むが、500℃の温度では20分~60分を要する。また、上記保持時間が短いと十分なγ’相が得られない傾向があり、逆に長くなるとγ’相の結晶粒が大きくなる場合があり、その場合には機械的特性の低下を生じる。しがたって、本発明の窒化鋼部材の製造方法では、580℃以上で、短時間でも十分なγ’相が得られる上記保持時間として、その下限値を5分と規定した。また、KNxで制御して窒化する保持時間の上限値については、実用窒化温度の下限値である500℃で十分なγ’相が得られる60分と規定した。より好ましくは5~30分程度である。上記した範囲内であれば、保持時間を短くできる580℃以上の窒化温度でもγ’相中の結晶粒が大きくなることがなく、耐摩耗性などの機械特性を低下させるおそれもない。
 本発明の窒化鋼部材の表面に形成された鉄窒素化合物層は、上記したγ’相とε相の体積割合が特定の関係を満足することに加えて、下記式(1)を満たすことを特徴とする。
 CLT÷DLT≧0.04 ・・・(1)
(ただし、式(1)中のCLTは、ガス窒化処理後の化合物層の厚さ[μm]の値を表わし、DLTは、ガス窒化処理後の窒化拡散層の実用硬化深さ[μm]の値を表わす。)
 上記式(1)は、窒化処理後の化合物層厚さと、窒化拡散層(以下、単に拡散層と呼ぶ場合もある)の深さの割合を表す指標である。先に挙げた特許文献1に記載されているγ’相主体の化合物層の形成方法は、一般的なガス窒化処理条件であり、図1に示したLehrer線図(KNと温度を軸とした平衡状態図)の、γ’相領域の温度とKNの組み合わせにより実施されている。この従来技術と本発明の異なる点は、γ’相主体の化合物層であっても、層厚さがε相主体の化合物層並に厚くなる点であり、上記式(1)は、この点を規定したものである。通常、ε相主体の化合物層は脆いため、疲労強度などの機械的特性が悪くなる傾向があり、一般的にこの相を選択する処理は行われないが、γ’相と比べると窒素の組成幅が大きいため、成長速度がγ’相に比べると大きいという特徴がある。本発明では、このε相の成長速度を利用し、γ’相の主体の化合物層を厚く形成し、通常のガス窒化処理時間でも、γ’相を主体とする化合物層を、先に挙げた特許文献5に記載されているような、従来の2段窒化法では達成できなかった16μm以上に厚くすることを達成している。また、本発明によって、γ’相主体の化合物層の厚膜化を行っても、低KNで形成したγ’相を主体とする化合物層と比べて、曲げ疲労強度を低下させることなく、且つ、耐摩耗性を向上させることが可能な、従来にない新規な窒化処理部材の提供の達成が実現できる。
 ここで、実用硬化深さは、窒化層中の硬さ分布において、芯部硬さ+50HVの位置における硬化深さを示している(JIS-0563)。実用硬化深さは、化合物層厚さと拡散層深さの和を示しているが、一般的に、化合物層厚さは、拡散層厚さの1/10以下であり、実用硬化深さ≒拡散層深さ、とみなせる。この窒化拡散層の成長は、化合物層から供給されるN原子が鋼材内部へ拡散することにより進んでいく。この層の成長速度は、化合物層の成長速度とは無関係に温度と時間で律速されるため、この拡散層の成長速度を化合物層厚さで割った式(1)の右辺の値によって、温度と時間に対する化合物層の成長速度として間接的に知ることが可能である。本発明者らは、前記した本発明の目的を達成するため鋭意検討した結果、形成される化合物層がγ’相主体の化合物層であり、且つ、この化合物層の成長が速いことを特徴とし、化合物層の厚膜化による耐摩耗性や耐疲労性の向上が可能で、且つ、窒化時間の短縮効果を達成でき、拡散層内の圧縮残留応力や硬さを低下させることなく、ε相主体の化合物層と比べ疲労強度が高くなる窒化鋼部材となるのは、上記式(1)の右辺の値が0.04以上であることを発見して、本発明を完成するに至った。なお、全窒化時間は、好ましくは6時間以下とすることが望ましい。また、従来技術における低KNによるガス窒化処理では、γ’相主体の化合物層を形成できても、その成長速度は(1)式で規定される0.040未満であり、上記した本発明の効果を達成できる窒化鋼部材とはならない。
〔窒化鋼部材の製造方法〕
 本発明の窒化鋼部材の製造方法は、上記した構成の窒化鋼部材を得るためのものであるが、処理炉内の被処理材に対して、炉内に窒化性ガスを流しながら加熱処理するガス窒化処理する際の処理条件を、下記のように構成したことを特徴とする。すなわち、本発明の窒化鋼部材の製造方法では、ガス窒化炉内へ導入するガスを、アンモニアとアンモニア分解ガスの2種類のみの混合ガスとするか、或いは、アンモニアとアンモニア分解ガスを含む複数の混合ガスとし、炉内の前記被処理材近傍における水素濃度の連続的な検出を行い、該検出結果を元にして、炉内のアンモニア分圧を推定し、設定の窒化ポテンシャルへ制御する雰囲気の自動制御を行い、制御の際に、ガス窒化処理中雰囲気の窒化ポテンシャルKN=pNH3/pH2 1.5を、最初にKN1とし、続いて必要に応じて窒化ポテンシャルをKN2~KNx-1、KNxとしてもよいが、本発明で重要なことは、最終のKNxを、下記式(2)と下記式(3)とを同時に満たすように制御し、且つ、これらの要件を満たすように制御した最終のKNxでの窒化時間を、5~60分、より好ましくは5~30分としたことを特徴とする。
 KN1~KNx-1>KNx ・・・(2)
 126.7034-5.68797×10-1×T+8.64682×10-4×T2-4.43596×10-7×T3 >KNx >22.2265-1.15×10-1×T+2.03×10-4×T2-1.21466×10-7×T3 ・・・(3)
(ただし、pNH3、pH2は、窒化処理炉内のNH3分圧とH2分圧、式(3)中の、Tは温度[℃]である。)
 ガス窒化処理中に形成される表面窒素化合物層の相構造(γ’相又はε相)は、図1に示した鉄のLehrer図から、温度と窒化ポテンシャルKNで決定される。そして、一般的には、ガス窒化処理中のKNは一定で行われる。これに対し、本発明者らの検討によれば、本発明において最終的な化合物層の相構造を支配するのは、どのような雰囲気制御過程を経てもガス窒化処理中の最後のKNxであり、さらに、その場合に、最後のKNxが上記式(2)と上記式(3)とを同時に満たし、且つ、これらの要件を満たすように制御した最終のKNxでの窒化時間を5~60分とすることで、本発明の目的を達成することができる相構造の窒化鋼部材となることを発見した。
 本発明では、最初及び途中段階のKN1~KNx-1と、最終のKNxとの関係が、式(2)のKN1~KNx-1>KNxを満足することに加え、最終のKNxの範囲は、式(3)で規定した「γ’相領域中」に限定されることを要す。換言すれば、最初及び途中段階のKN1~KNx-1は、「γ’相領域」外の領域であることになる。これに対し従来技術では、窒化化合物層をγ’相とするために、一貫してγ’相領域である低KNで処理してきたため、化合物層を厚くすることができなかった。上記した効果を利用することにより、本発明の方法では、KNxに到達するまでの最初から途中のKNの設定は自由にすることが可能であり、厚膜化するためには、最初のKN1をより高めることが有効である。また、最終のKNx保持中の窒化処理時間は、化合物層中の窒素が雰囲気へ流れる拡散速度に律速され、本発明者らの検討によれば、化合物層厚さや鋼種、また、雰囲気の変更時間を含め10~60分を要する。
(従来の2段窒化との相違点)
 以下に、本発明と、窒化ポテンシャルKNを途中で変更する従来の2段窒化法の違いについて説明する。例えば、先に挙げた特許文献5に記載されている従来の2段窒化法は、最初に炉内のNH3分圧が高い雰囲気で窒化を行い、その後、炉内の雰囲気を、NH3分圧の低い状態にする2段窒化法が実施されている。特許文献5に記載の技術における目的は、γ’主体の化合物層を、被処理部品の各位置で均一に、また大量に、風速に制約されずに生産することであり、化合物層厚みを厚くすることを目的としていない。また、特許文献5に記載の技術では、γ’相を形成できる化合物層厚さを4μm~16μmに限定し、これ以上化合物層が厚くなるとε相の割合が増加して脆くなることから、疲労強度の向上が望めないとしている。また、2段目のガス窒化処理時間も最適化されておらず、窒化時間が長いため、γ’相中の結晶粒が大きくなり、耐磨耗性など機械特性を低下させる。これに対し、本発明で規定する手法は、上記したように、従来の技術では達成できなかった16μmよりも厚いγ’相の形成をも可能にでき、また、形成されたγ’相中の結晶粒が微細であり、さらに、拡散層の硬さや圧縮残留応力を低減することのない、2段窒化法である。この本発明で規定する手法は、従来の方法とは目的が異なるため、2段目の最終の窒化雰囲気(KNx)は小さくするが、その領域はγ’相領域に限定され、且つ、窒化時間も5分~60分と、1段目の窒化時間よりも短時間で行っており、この2段目の処理で、1段目で形成されたε相を含んだ化合物層をγ’相へ変態させることを特徴としている。
(設定の窒化ポテンシャル制御する雰囲気の自動制御について)
 特許文献5では、炉内に導入するNH3ガスを一定の流量で挿入し、炉内のNH3濃度を赤外線吸収方式で、また、炉内のH2濃度を高耐食熱伝導度方式で連続的に分析することで、炉内に必要な窒化ポテンシャルを、H2ガスの導入流量を変えることで調整している。しかし、赤外線吸収方式による炉内のNH3濃度の測定については、炉外まで引き込んだ炉気に対して分析が行われること、また、熱伝導度方式の水素センサと比べて応答速度が遅いこと、さらに、一般的に、炭酸アンモニウムの析出によるサンプルラインの閉塞や、サンプルラインの汚れによるNH3の吸着等による損失に起因して測定精度上の問題を生じる、といったいくつかの技術的課題がまだ残されている(藤原雅彦著、熱処理、45巻、5号、p.311、「窒化処理におけるアンモニア濃度連続測定装置」参照)。一方、熱伝導度方式の水素センサは、応答性がよく、一般的に窒化処理炉の炉気を測定するために利用されている。しかし、熱伝導度方式の水素センサは、NH3と同様に炉外まで引き込んだ炉気に対しても測定でき、また、直接炉内にセンサを差し込むことで被処理材近傍の炉気に対しても測定でき、いずれのケースでも測定が可能であることから、どこの位置の炉気を選択するかで精度が異なる。以上のことから、NH3濃度分析とH2濃度分析を同時に行い、これらの値を参照しながら炉気を制御する方法は、窒化ポテンシャル制御の精度に悪影響を及ぼし、最善の方法とは言い難い。
 これに対し、本発明の窒化鋼部材の製造方法は、被処理材近傍におけるH2濃度の連続的な検出のみで、具体的には、熱伝導度方式のH2センサのみで、被処理材近傍におけるH2濃度の連続的な測定を行って炉気を制御している。すなわち、本発明の窒化鋼部材の製造方法では、窒化ポテンシャルを下げるために利用するガスとして、H2ガスではなく、NH3分解ガスを用いているため、水素センサだけでも炉内NH3濃度を正確に知ることができる。一方、特許文献5に記載の制御方法では、炉内に挿入するH2ガス量が変動しているため、H2センサだけでは炉内のNH3分圧を正確に把握することは困難であり正確な制御は難しい。この結果、本発明の製造方法では、特許文献5に記載の技術ではできないとされている16μm以上の厚みの厚い化合物層を形成させても、ε相が増加することなく、γ’相主体の化合物層が形成できたものと考えている。
 本発明の製造方法で実施されるガス窒化処理を行う処理炉は、ピット型でもバッチ型等でもよく、炉の形状を問わず、前記したように、その処理結果は、処理炉での温度と時間、また、雰囲気のKNで決定される。このことは、一般的にLehrer図と呼ばれている、図1に示したKNと温度を軸とした状態図から知ることができる(出典:ディータリートケほか「鉄の窒化と軟窒化」、アグネ技術センターp.131)。本発明の製造方法で行うピット型、バッチ型の各処理炉を用いた場合の窒化処理方法を下記に記す。
(ピット型の例)
 ピット炉の概略図を図2に示し、ピット炉での処理条件の例を図3に示した。図2に示したように、炉内のKNを制御するために、H2センサ21とPLC+KN調整器22、また、各プロセスガスには、それぞれ質量流量計(MFC)23が設定してある。そして、ガス窒化処理の対象となる処理品24は、予め炉内中央に設置して炉内に封入し、炉内を真空に引いた後、N2ガスで炉内を復圧し、その後、一定流量のN2ガスを炉内に流しながら加熱を始める。加熱は、外周に設定されているヒーター(不図示)でレトルト25を外側から加熱し、温度調整は、炉内熱電対26で測定された温度を元に、所望の温度まで温調計により調整される。図2中の27は、撹拌機である。
 上記した構成のピット炉で処理する場合は、例えば、図3に示したように、炉内が約400℃に達した後、プロセスガスを、N2ガスからNH3+AXガス(NH3分解ガスH2+N2=3:1)へ切替え、所望のKN値(=KN1)になるよう雰囲気制御を始める。一般的にγ’相主体の化合物層とするためは、均熱域でKN1を低KN一定(例えば、KN=0.3)とし、冷却途中の400℃ぐらいまでこのKN1保持しながら処理が行われる。一方、本発明では、KN1を高KN(例えば、KN=1.3)とし、冷却の20分前からKNx(例えば、KN=0.3)へ変更することも好ましい形態である。高KNで形成される窒化化合物層はε相を含む化合物層であり、γ’相よりも成長速度が速く、本発明では、この高KNでの速い成長速度を利用して化合物層の厚膜化を行い、その後、KNxへ雰囲気を変更し、ε相からγ’相へ変態させるのが本発明で考案した手法である。その後、KNxのまま約400℃まで冷却した後、再びN2ガスへ雰囲気を置き換えて、100℃以下まで炉内を冷却する。冷却時は、ヒーターを止め、レトルトの外周をファン冷却しながら炉内を冷却する。
(バッチ型の場合)
 ストレートスルータイプバッチ炉の概略図を図4に示し、バッチ炉での処理条件の例を図5に示した。図4に示したように、炉内のKNを制御するために、H2センサ41とPLC+KN調整器42、また、各プロセスガスにはMFC43が設定してある点はピット炉と同様である。バッチ炉の場合は、処理品44は予めNH3ガス雰囲気で580℃に加熱された炉内へ扉48を開けることで、炉内へ挿入される。上記した構成のバッチ炉で処理する場合は、例えば、図5に示したように、炉内へ処理品44が挿入された後、プロセスガスをNH3+AXガスへ切替え、所望のKN値(=KN1)になるよう雰囲気制御を始める。上述のピット炉と同様に、高KNで2hrのガス窒化処理を行った後、雰囲気をKNxへ変更し20分保持することで、ピット炉での処理と同様に、厚いγ’相主体の窒化化合物層を形成することが可能である。図4中の46は熱電対、47は攪拌機、49は冷却槽である。
 以下、本発明を実施例及び比較例に基づいて具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
 実施例及び比較例で用いた鋼材成分を表1に示した。なお、残部は鉄(Fe)である。下記に示したように、いずれの鋼材も、γ’相主体化合物層の厚膜化が可能な鋼材成分からなり、鋼材の被削性や製造性といった使用目的からの観点からも満足できる鋼種である。
Figure JPOXMLDOC01-appb-I000001
(実施例1~15)
 表2に、それぞれに対するガス窒化処理条件を示した。先に説明したバッチ型又はピット型の炉を用い、いずれも、ガス窒化処理中雰囲気の窒化ポテンシャルKNが、最初KN1と最終KNxで異なる2段処理で行った。実施例の一段目の窒化ポテンシャルKN1は、いずれも、それぞれの合金鋼におけるLehrer線図上〔図1は純鉄のもので、それとは異なる(平岡泰、渡邊陽一著、熱処理、55巻、1号、p.7、「ガス窒化における窒化ポテンシャル制御および熱力学計算手法を活用した低合金鋼の化合物層相構造制御」参照)〕において、ε相形成領域で実施しており、この間にε相の速い成長速度を利用した化合物層の厚膜化が行われる。続いて2段目の窒化ポテンシャルKNxは、いずれもγ’相領域で実施し、形成する化合物層厚さや炉の特性に応じて、窒化時間を15~50分の間で設定した。
Figure JPOXMLDOC01-appb-I000002
 各条件で行ったガス窒化処理後に得られた窒化鋼部材について、表面に形成された鉄窒素化合物層の厚さCLTと、拡散層の実用硬化深さDLTをそれぞれ測定し、CLT÷DLTの値をそれぞれ算出し、結果を表3にまとめて示した。また、鉄窒素化合物層中に占めるγ’相とε相との関係において、γ’相の存在割合を後述する方法で求めて、結果を表3にまとめて示した。さらに、得られた各窒化鋼部材について、下記で説明する回転曲げ疲労試験と摩擦摩耗試験を行い、機械的特性を調べて評価した。その結果を表3にそれぞれまとめて示した。
<評価>
(1)小野式回転曲げ疲労試験
 図6に示した形状の切欠き試験片を用い、実施例の条件でそれぞれガス窒化処理を施した後、小野式回転曲げ疲労試験(JIS Z 2274)を実施した。試験荷重は鋼材成分に応じて、30kgf又は50kgfの2水準のうちいずれかを選択し、また、回転数は3000rpm共通として実施した。試験結果の評価は、107回転を迎えた場合を合格で○とし、そうでない場合は不合格で×として評価した。
(2)摩擦摩耗試験
 摩擦摩耗試験(摺動特性評価)は、図7に示したSRV(Schwingungs Reihungund und Vershceiss)試験機を用い、下記のようにして測定した。窒化処理したφ25×8mmサイズの試料を固定片とし、φ10mmのJIS-SUJ2鋼製のボールを摺動子とし、油滴潤滑環境下(80℃、日産純正 CVTフルード NS-2(80mg))において、負荷荷重を与えながら往復摺動(振幅2mm、20Hz)させた場合の摩擦係数を測定することで行った(図7、図8)。また、摺動距離は、100mとした。摩擦係数は、摺動子の上方より負荷荷重(600N)を与えながら、電磁サーボによって摺動子を加振し,ボールと試料との間に発生した摺動抵抗力をロードセルで検出し、摺動抵抗力と負荷荷重の値から摩擦係数を算出した。試験結果の判定は、試験中(5m以上摺動させた後)の摩擦係数が0.15以下である場合を合格で○とし、それ以上であれば不合格で×として評価した。
(3)窒素化合物層の測定方法
 φ20×5mmのコイン状の試験片を用い、実施例の条件でそれぞれガス窒化処理を行い、ガス窒化処理後の試験片の平面部を平面部と垂直に切断し、JIS-0562に従い断面の化合物層の厚さを測定した。
(4)EBSDによる相分布解析方法
 窒化処理を施した鋼材について、断面を機械的に鏡面研磨した後、走査型電子顕微鏡(FEI社製Sirion)に装着された後方散乱電子回折(EBSD)装置(Oxford Instruments社製、 Inca Crystal)を用いて、Phase Mapの測定を行った。Phase Mapは、実測された電子回折図形と候補となる相の電子回折図形をマッチングして判定した相を色分けしたものである。図9に、γ’相主体の化合物層とε相主体の化合物層を有するEBSD解析結果の例を示した。図9の上段は、γ’相主体化合物層の顕微鏡写真であり、下段はε相主体化合物層の顕微鏡写真である。それぞれの右欄は、Phase Mapであり、灰色に色分けされた部分がγ’相の部分である。本発明では、このPhase Mapを用い、Vγ’/(Vγ’+Vε)で規定される比を求め、これによって、鉄窒素化合物層中に占めるγ’相とε相との存在割合を比較した。
Figure JPOXMLDOC01-appb-I000003
(比較例1~3)
 比較例1~3では、表2に示したように、それぞれ実施例1、5、9で用いたと同様の鋼材を用い、従来の技術と同様にγ’相領域となる低KN(=0.25)における1段のみのガス窒化処理を行い、得られた窒化鋼材について実施例と同様の試験をした。その結果、表3に示したように、回転曲げ疲労強度は問題なかったものの、摩擦摩耗試験の結果は不合格であった。
(比較例4、5、6)
 比較例4、5、6では、それぞれ実施例3、5、7で用いたと同様の鋼材を用い、同じ2段窒化処理を行った。しかし、2段目の窒化時間を60分以上とした。その結果、表3に示したように、KNxに保持する2段目の窒化時間が本発明の規定とする60分以上であったため、γ’相中の結晶粒が大きくなり、得られた窒化鋼材について実施例と同様の試験をした結果、表3に示したように、疲労強度(50kgf)だけでなく耐摩耗性も不合格であった。
(比較例7、8、9)
 比較例7、8、9では、それぞれ実施例3、5、7で用いたと同様の鋼材を用い、KNを、従来の技術と同様にγ’相を形成する0.25にとり、いずれも1段で処理した。そして、化合物層の厚さを本発明で規定した13μm以上にするために、比較例7、8では窒化時間を長時間側にし、比較例9では窒化温度を高くして時間を短くして実施した。具体的には、比較例7では窒化時間を10時間、比較例8では12時間とし、比較例9では窒化温度を610℃と高くして窒化時間を3時間と短くして実施した。その結果、得られた窒化鋼材の鉄窒素化合物層の厚みは、13μm以上を満たすものができた。しかし、表3に示したように、本発明で規定した式(1)を満足する化合物層にはならなかった。得られた窒化鋼材について実施例と同様の試験をした結果、表3に示したように、いずれも疲労強度が不合格(50kgf)であった。
 本発明によれば、通常のガス窒化処理時間でも、γ’相を主体とする化合物層をε相主体とする化合物層と同様に厚膜化することができ、また、γ’相主体化合物層の厚膜化を行っても、低KNで形成したγ’相を主体とする化合物層と比べて、曲げ疲労強度を低下させることなく、且つ、耐摩耗性を向上させることが可能な窒化鋼部材の提供が可能になり、本発明によって提供される窒化鋼部材としては、例えば、自動車用や変速機用の歯車やクランクシャフト等への使用が期待される。
 1:オシレーションブロックヘッドプレート
 2a:ねじれセンサー
 2b:試験片用固定具
 3:上部試験片振幅運動用アーム
 3a:上部試験片ホルダー
 4:垂直荷重軸

Claims (3)

  1.  γ’相主体の化合物層が生成する鋼材成分からなる鋼部材の表面に鉄窒素化合物層が形成されてなる窒化鋼部材であって、
     前記鉄窒素化合物層中に占めるγ’相とε相の体積割合をVγ’とVεとし、γ’相の存在割合をVγ’/(Vγ’+Vε)で規定される比で表した場合に、その値が0.5以上であるγ’相主体の化合物層の厚さが13μm~30μmであり、且つ、前記鉄窒素化合物層は、ガス窒化処理後の化合物層の厚さ[μm]の値をCLTと表し、ガス窒化処理後の窒化拡散層の実用硬化深さ[μm]の値をDLTと表した場合に、下記式(1)の関係を満たすことを特徴とする窒化鋼部材。
     CLT÷DLT≧0.04 ・・・(1)
  2.  ガス窒化処理炉内の窒化ポテンシャル(KN)を調整しながら、前記炉内の被処理材にガス窒化処理を行って、請求項1に記載の窒化部材を製造するための製造方法であって、
     前記ガス窒化炉内へ導入するガスを、アンモニアとアンモニア分解ガスの2種類のみの混合ガスとするか、或いは、アンモニアとアンモニア分解ガスを含む複数の混合ガスとし、前記被処理材近傍における水素濃度の連続的な検出を行い、該検出結果を元にして前記炉内のアンモニア分圧を推定し、設定の窒化ポテンシャルへ制御する雰囲気の自動制御を行い、制御の際に、ガス窒化処理中雰囲気の窒化ポテンシャルKN=pNH3/pH2 1.5を、最初にKN1とし、続いて必要に応じて窒化ポテンシャルをKN2~KNx-1、KNxとしてもよいが、最終のKNxを、下記式(2)と下記式(3)とを同時に満たすように制御し、且つ、上記要件を満たすように制御した最終のKNxでの窒化時間を5~60分とすることを特徴とする窒化鋼部材の製造方法。
     KN1~KNx-1>KNx ・・・(2)
     126.7034-5.68797×10-1×T+8.64682×10-4×T2-4.43596×10-7×T3 >KNx >22.2265-1.15×10-1×T+2.03×10-4×T2-1.21466×10-7×T3 ・・・(3)
    (ただし、pNH3、pH2は、窒化処理炉内のNH3分圧とH2分圧、式(3)中の、Tは温度[℃]である。)
  3.  前記KN1が、1.0~2.0である請求項2に記載の窒化鋼部材の製造方法。
PCT/JP2016/064100 2015-05-12 2016-05-12 窒化鋼部材及び窒化鋼部材の製造方法 WO2016182013A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015-097198 2015-05-12
JP2015097198 2015-05-12
JP2016042580A JP6636829B2 (ja) 2015-05-12 2016-03-04 窒化鋼部材及び窒化鋼部材の製造方法
JP2016-042580 2016-03-04

Publications (1)

Publication Number Publication Date
WO2016182013A1 true WO2016182013A1 (ja) 2016-11-17

Family

ID=57249214

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/064100 WO2016182013A1 (ja) 2015-05-12 2016-05-12 窒化鋼部材及び窒化鋼部材の製造方法

Country Status (1)

Country Link
WO (1) WO2016182013A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20240013186A (ko) 2021-05-26 2024-01-30 닛폰세이테츠 가부시키가이샤 강재, 및, 그 강재를 소재로 하는 크랭크 샤프트

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5669979B1 (ja) * 2014-08-10 2015-02-18 タイ パーカライジング カンパニー リミテッドThai Parkerizing Co.,Ltd. 鉄鋼部材の表面硬化処理方法及び表面硬化処理装置
WO2015046593A1 (ja) * 2013-09-30 2015-04-02 Dowaサーモテック株式会社 鋼部材の窒化処理方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015046593A1 (ja) * 2013-09-30 2015-04-02 Dowaサーモテック株式会社 鋼部材の窒化処理方法
JP5669979B1 (ja) * 2014-08-10 2015-02-18 タイ パーカライジング カンパニー リミテッドThai Parkerizing Co.,Ltd. 鉄鋼部材の表面硬化処理方法及び表面硬化処理装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
TAKAAKI UMEDA ET AL.: "Development of Manufacturing Technology for Nitriding Processes Using Nitriding Potential Control", KOMATSU TECHNICAL REPORT, vol. 60, no. 167, 2014, pages 17 - 23, XP055328950 *
YASUSHI HIRAOKA ET AL.: "Chikka Potential Seigyo shita Gas Chikka Shori ni yoru Tei Gokinko no Kagobutsu Soso Kozo Seigyo", NETSU SHORI, vol. 55, no. 1, 28 February 2015 (2015-02-28), pages 1 - 2 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20240013186A (ko) 2021-05-26 2024-01-30 닛폰세이테츠 가부시키가이샤 강재, 및, 그 강재를 소재로 하는 크랭크 샤프트

Similar Documents

Publication Publication Date Title
JP6636829B2 (ja) 窒化鋼部材及び窒化鋼部材の製造方法
US9783879B2 (en) Nitrided steel member and manufacturing method thereof
JP6755106B2 (ja) 窒化鋼部材及び窒化鋼部材の製造方法
JP5994924B2 (ja) 高周波焼入れ部品の素形材及びその製造方法
JP6212190B2 (ja) 窒化鋼部材の製造方法
WO2010064617A1 (ja) 浸炭窒化部材および浸炭窒化部材の製造方法
CN107406959B (zh) 耐磨性和耐点蚀性优异的氮化处理部件和软氮化处理部件以及氮化处理方法、软氮化处理方法
WO2009054530A1 (ja) 高温での面圧疲労強度に優れた浸炭窒化高周波焼入れ鋼部品及びその製造方法
EP3118346B1 (en) Nitriding method and nitrided part production method
JP6520347B2 (ja) 高周波焼入れ部品の素形材、高周波焼入れ部品、及びそれらの製造方法
JP6772499B2 (ja) 鋼部品及びその製造方法
CN107849679B (zh) 氮化处理钢部件及其制造方法
JP2013018999A (ja) 冷鍛窒化用鋼材
WO2012070349A1 (ja) 軟窒化用非調質鋼および軟窒化部品
WO2016182013A1 (ja) 窒化鋼部材及び窒化鋼部材の製造方法
JP2021113338A (ja) 鋼部品及びその製造方法
JP2015117412A (ja) 窒化処理方法及び窒化部品
JP7013833B2 (ja) 浸炭部品
WO2020090999A1 (ja) 窒化鋼部材並びに窒化鋼部材の製造方法及び製造装置
JP7063070B2 (ja) 浸炭部品
WO2022224849A1 (ja) 浸炭窒化処理用鋼材および浸炭窒化鋼材
JP6881496B2 (ja) 部品およびその製造方法
JP6881497B2 (ja) 部品およびその製造方法
JP6881498B2 (ja) 部品およびその製造方法
JP7275665B2 (ja) 浸炭浸窒処理用鋼材

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16792738

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16792738

Country of ref document: EP

Kind code of ref document: A1