WO2016181864A1 - ガラス板 - Google Patents

ガラス板 Download PDF

Info

Publication number
WO2016181864A1
WO2016181864A1 PCT/JP2016/063408 JP2016063408W WO2016181864A1 WO 2016181864 A1 WO2016181864 A1 WO 2016181864A1 JP 2016063408 W JP2016063408 W JP 2016063408W WO 2016181864 A1 WO2016181864 A1 WO 2016181864A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
glass plate
less
sample
mass ppm
Prior art date
Application number
PCT/JP2016/063408
Other languages
English (en)
French (fr)
Inventor
雄介 荒井
和田 直哉
博之 土屋
中島 哲也
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to KR1020177032082A priority Critical patent/KR20180005661A/ko
Priority to JP2017517890A priority patent/JPWO2016181864A1/ja
Priority to CN201680026759.4A priority patent/CN107531554A/zh
Publication of WO2016181864A1 publication Critical patent/WO2016181864A1/ja
Priority to US15/801,540 priority patent/US10788172B2/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S2/00Systems of lighting devices, not provided for in main groups F21S4/00 - F21S10/00 or F21S19/00, e.g. of modular construction
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • C03C3/087Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/095Glass compositions containing silica with 40% to 90% silica, by weight containing rare earths
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/60Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction
    • F21K9/61Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction using light guides
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0013Means for improving the coupling-in of light from the light source into the light guide
    • G02B6/0023Means for improving the coupling-in of light from the light source into the light guide provided by one optical element, or plurality thereof, placed between the light guide and the light source, or around the light source
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0065Manufacturing aspects; Material aspects

Definitions

  • the present invention relates to a glass plate.
  • edge light type display devices and lighting devices using low power consumption light sources such as LEDs are known.
  • a light guide plate having two main surfaces facing each other and a light source arranged to face one end surface of the light guide plate are used.
  • the “end face” of the light guide plate means four side surfaces that connect the two main surfaces of the light guide plate to each other. Of the four side surfaces, the end surface facing the light source is particularly referred to as an “incident end surface”.
  • the edge light system In the edge light system, light from the light source is incident on the incident end face of the light guide plate. Thereafter, the light incident on the light guide plate is emitted from one main surface (referred to as “exit main surface”). Therefore, the edge light system is characterized in that the light incident direction and the light emitting direction in the light guide plate are perpendicular to each other.
  • an acrylic plate is used as such an edge light type light guide plate.
  • acrylic plates have problems from the viewpoints of scratch resistance, rigidity, heat resistance, and water resistance. Therefore, it is desired to use a glass plate that hardly causes such a problem as a light guide plate.
  • a glass plate As described above, it is desired to use a glass plate as an edge light type light guide plate.
  • the edge light system the light that has entered the light guide plate propagates in the direction of the main surface through the light guide plate while maintaining the total reflection conditions, so the optical path length until it exits from the light guide plate is the actual light guide plate. Longer than the size of the. Therefore, when a general glass plate is applied to such a light guide plate, a considerable amount of incident light is absorbed or scattered during propagation, and light with sufficient intensity is emitted from the emission main surface. There was concern that it would be difficult to do. Further, when a specific wavelength portion during light propagation is selectively absorbed, there is a concern that light having a color different from the color of incident light may be emitted. Even with existing high-transmission glass such as used in solar cell cover glass, similar concerns still remain, and with the increase in size of display devices and light guide plates, such concerns will continue in the future. It is expected to become more prominent.
  • the present invention when used as an edge light type light guide plate, a sufficient amount of emitted light can be obtained even with a long optical path length, and the color normal between the incident light and the emitted light is significantly suppressed. It aims at providing the glass plate excellent also in the optical characteristic of a direction.
  • the length L of one side is 200 mm or more
  • the thickness ⁇ is 1.0 mm or more
  • the first and second main surfaces and one or a plurality of end surfaces connecting the main surfaces are included.
  • a glass plate The total amount of iron converted to Fe 2 O 3 is 1 mass ppm to 80 mass ppm, Fe 2+ converted to Fe 2 O 3 is 0.1 mass ppm to 10.0 mass ppm, Ni, Mn, Cr, Co and V in total include 0.1 mass ppm or more and 10.0 mass ppm or less,
  • the glass plate is sampled from the central portion of the glass plate in a size of 50 mm long ⁇ 50 mm wide ⁇ thickness ⁇ , and the two main surfaces are opposed to each other.
  • the average extinction coefficient at a wavelength of 400 to 700 nm, measured in the normal direction on the first main surface, is ⁇ ave1
  • the wavelength of 400 to 400 measured in the direction perpendicular to the normal direction on the first cut surface is ⁇ ave1
  • the glass plate is provided.
  • a glass plate in which a sufficient amount of emitted light can be obtained even with a relatively long optical path length and the color shift between incident light and emitted light is significantly suppressed. can be provided.
  • FIG. 1 is a schematic exploded perspective view of a general edge light type display device.
  • the edge light type display device 10 usually includes a light source group 20, a light guide plate 30, and a display element 40.
  • the light source group 20 has one or more light sources 21 arranged in a line.
  • Each light source 21 may be a directional light source such as a light emitting diode (LED) or a laser diode.
  • the light guide plate 30 has first and second main surfaces 32A and 32B and four end faces 34A to 34D connecting the main surfaces.
  • the first main surface 32A of the light guide plate 30 is on the emission surface side, and is also referred to as “emission main surface 32A”.
  • the second main surface 32 ⁇ / b> B of the light guide plate 30 is the back side of the display device 10.
  • the end face 34 ⁇ / b> A of the light guide plate 30 faces the light source group 20 and serves as an incident surface of the display device 10. Therefore, the end surface 34A of the light guide plate 30 is also referred to as an “incident end surface 34A”. It should be noted that there may be one or more chamfered surfaces that connect the respective surfaces between the main surfaces 32A and 32B and the four end surfaces 34A to 34D and between the end surfaces.
  • the display element 40 is composed of, for example, a liquid crystal and an optical filter, and can form an image.
  • Display element 40 is arranged to face first main surface 32 ⁇ / b> A of light guide plate 30.
  • the display element 40 is omitted, or an optical filter or the like for correcting the color tone is disposed as the display element 40.
  • the display device 10 having such a configuration operates as follows. First, light is irradiated from each light source 21 constituting the light source group 20 toward the incident end face 34 ⁇ / b> A of the light guide plate 30, and the light enters the light guide plate 30.
  • the incident light (incident light) propagates through the light guide plate 30 while being reflected by each inner surface of the light guide plate 30, and is emitted from the first main surface 32 ⁇ / b> A of the light guide plate 30.
  • the light emitted from the light guide plate 30 is then applied to the display element 40.
  • the image formed by the display element 40 is displayed outside, and the viewer of the display device 10 can recognize the image formed by the display element 40.
  • the display element 40 can be simplified.
  • the light absorption in the normal direction of the end face cannot be reduced uniquely simply by reducing the light absorption in the main surface direction, so the light absorption in the main surface direction is simply reduced. It became clear that it was necessary to actively reduce the light absorption in the normal direction of the end face.
  • the absorbance of the glass is uniquely determined by the absorbance per unit length according to Lambert-Beer law.
  • the average extinction coefficient ⁇ ave1 in the main surface direction of the glass plate is equal to the average extinction coefficient ⁇ ave2 in the normal direction of the end face.
  • optical inhomogeneous factors such as fine bubbles, refractive index distribution in the order of ⁇ m, colored layers, refractive index heterogeneous layers, etc. inside the actual glass. I don't have it.
  • a normal glass plate since only optical homogeneity in the main surface direction is important, there is a concern that the optical homogeneity in the normal direction of the end face is deteriorated.
  • the optical path length is at most about the glass plate thickness.
  • the optical path length becomes as long as 200 mm or more, and the optical homogeneity in the normal direction of the end face is poor. The performance is greatly affected.
  • Such optical characteristics in the normal direction of the end face of the glass plate have not been recognized so far, for example, even in a cover glass for a solar cell that requires high transparency.
  • the total amount of iron converted to Fe 2 O 3 is 1 mass ppm or more and 80 mass ppm or less
  • Fe 2+ converted to Fe 2 O 3 is 0.1 mass ppm or more and 10.0 mass ppm or less
  • Ni, Mn, Cr, Co and V are 0.1 mass ppm or more and 10.0 mass ppm or less in total
  • the glass plate is cut from the central portion of the glass plate in a direction perpendicular to the first main surface, and a sample A having a length of 50 mm, a width of 50 mm, and a thickness ⁇ is taken.
  • the average extinction coefficient at a wavelength of 400 to 700 nm measured in the normal direction on the first main surface of the sample A is ⁇ ave1 and measured in the direction perpendicular to the normal direction on the first cut surface.
  • the average extinction coefficient at a wavelength of 400 to 700 nm is ⁇ ave2
  • the ⁇ ave1 is 0.009 or less
  • the ratio ⁇ ave2 / ⁇ ave1 is 1.3 or less.
  • the main factor of light absorption of the glass plate is iron ions contained as impurities. Iron is unavoidably contained as a raw material for industrially produced glass, and it is inevitable that iron is mixed into the glass.
  • the content of total iron oxide (t-Fe 2 O 3) which in terms of Fe 2 O 3 is 80 mass ppm or less in order to achieve very high transmittance over the entire visible range.
  • the content of t-Fe 2 O 3 is more preferably 60 ppm by mass or less, particularly preferably 45 ppm by mass or less, and most preferably 35 ppm by mass or less.
  • the total iron oxide content of the glass of the present invention is 1 ppm by mass or more. If it is less than 1 mass ppm, it becomes difficult to improve the meltability of the glass during the production of the multi-component oxide glass, and it is difficult to mass-produce at a low cost. Moreover, it is difficult to obtain raw materials. Preferably it is 5 mass ppm or more, More preferably, it is 8 mass ppm or more, More preferably, it is 10 mass ppm or more.
  • the total iron oxide amount of glass can be adjusted with the quantity of the iron component added at the time of glass manufacture.
  • the total iron oxide amount of the glass of the glass article is expressed as the amount of Fe 2 O 3 , but all the iron present in the glass exists as Fe 3+ (trivalent iron). is not.
  • Fe 3+ and Fe 2+ (divalent iron) are simultaneously present in the glass (hereinafter, these are collectively referred to as “iron component”).
  • iron component has an absorption in the visible light region, the absorption coefficient of the Fe 2+ (11cm -1 Mol -1), since an order of magnitude greater than the absorption coefficient of the Fe 3+ (0.96cm -1 Mol -1) , visible The internal transmittance of the light region is further reduced. Therefore, it is preferable that the Fe 2+ content is small in order to increase the internal transmittance in the visible light region.
  • the content of divalent iron (Fe 2+ ) converted to Fe 2 O 3 in terms of mass ppm is suppressed to 10 mass ppm or less.
  • it is 8.0 mass ppm or less, More preferably, it is 6.0 mass ppm or less, Especially preferably, it is 4.0 mass ppm or less, Most preferably, it is 3.5 mass ppm or less.
  • the absorption of light of a specific wavelength by the iron component can be significantly suppressed by controlling the amount of the iron component.
  • the total iron oxide content contained in the glass plate is suppressed to 80 ppm or less, and the content of divalent iron (Fe 2+ ) converted to Fe 2 O 3 in terms of mass ppm is 10.0 mass ppm or less.
  • the glass plate may be difficult to manufacture. In particular, the inventors have clarified that it is difficult to increase the homogeneity in the kiln during melting as compared with the conventional glass.
  • molten glass from which iron components, particularly Fe 2+ are excessively excluded has a characteristic that it is difficult to absorb light, particularly infrared light. For this reason, in order to heat such molten glass, it is necessary to administer a great deal of energy. As a result, there is a concern that the energy efficiency in the manufacturing process is reduced to an unrealistic level. Moreover, in such a heated state, there is a concern that the composition changes between the upper part and the bottom part of the molten glass and the composition of the finally obtained glass plate becomes non-uniform. Furthermore, there is a concern that the production facility may be damaged or deteriorated during operation at such a high temperature. Conversely, if the heating state is suppressed to the equivalent of ordinary glass, the melting of the glass will not be promoted, resulting in more foam defects, and the molten glass will be less homogeneous, resulting in lower quality. There is a concern.
  • the total content of metal ions selected from the group consisting of Ni, Mn, Cr, Co and V is 0.1 mass. It is controlled to be at least ppm.
  • These metal ions have the property of absorbing light in the range from the ultraviolet region to the near infrared region. For this reason, when these transition metal ions are contained in the molten glass, heating is relatively easy even when the iron component, particularly Fe 2+ is excessively excluded, and the above-described problems are reduced.
  • transition metal ions also function as a coloring component of glass. Therefore, by adjusting the amount of these transition metal ions, light absorption spectrum in the wavelength range of 400 to 700 nm can be obtained by intentionally causing weak light absorption in a wavelength region other than light absorption by the iron component. Can be flattened. This makes it possible to suppress the color shift between the incident light and the emitted light even when the optical path length is longer than 200 mm as compared with a glass plate obtained by simply reducing the iron component.
  • the total sum of these transition metal ions is controlled to be 10.0 mass ppm or less at the maximum.
  • a homogeneous glass plate can be manufactured by a realistic process, without having a bad influence on transparency.
  • the total of Ni, Cr, Co, and V which are particularly likely to adversely affect transparency, is preferably 7.0 ppm by mass or less, more preferably 3.0 ppm by mass or less, More preferably, it is 2.0 mass ppm or less, Most preferably, it is 1.5 mass ppm or less, Most preferably, it is 1.0 mass ppm or less.
  • the inventors of the present application clarified the degree of influence of Ni, Mn, Cr, Co, and V on transparency.
  • the average extinction coefficient in the wavelength range of 400 to 700 nm per 1 ppm of Ni is 0.0026.
  • the average extinction coefficient in the wavelength range of 400 to 700 nm per 1 ppm of Mn is 0.00005.
  • the average extinction coefficient in the wavelength range of 400 to 700 nm per 1 ppm of Cr is 0.0013.
  • the average extinction coefficient in the wavelength range of 400 to 700 nm per 1 ppm of Co is 0.0085.
  • the average extinction coefficient in the wavelength range of 400 to 700 nm per V 1 ppm is 0.00007.
  • the glass plate according to an embodiment of the present invention has a problem that the light of a specific wavelength is selectively absorbed in addition to having high transparency because the influence of various coloring components is minimized. Can be significantly suppressed. For this reason, the glass plate by one Embodiment of this invention is applicable also as a light guide plate of the edge light system of a comparatively big screen which was difficult to apply until now.
  • a glass plate according to an embodiment of the present invention is a sample having a length of 50 mm ⁇ width of 50 mm ⁇ thickness ⁇ by cutting the glass plate from a central portion of the glass plate in a direction perpendicular to the first main surface.
  • the arithmetic mean roughness Ra of the first and second main surfaces of the sample and the first and second cut surfaces facing each other of the sample are 0.1 ⁇ m or less.
  • the average extinction coefficient at a wavelength of 400 to 700 nm measured in the normal direction is ⁇ ave1
  • the first cut surface has a direction orthogonal to the normal direction.
  • the ratio ⁇ ave2 / ⁇ ave1 is characterized in that more than 1.3.
  • ⁇ ave1 is preferably 0.007 or less, more preferably 0.006 or less, further preferably 0.005 or less, and particularly preferably 0.0045 or less.
  • the ratio ⁇ ave2 / ⁇ ave1 is preferably 1.25 or less, more preferably 1.2 or less, further preferably 1.15 or less, and 1.1 or less. Most preferred.
  • the feature that the ratio of ⁇ ave1 and ⁇ ave2 is 1.3 or less means that there is little difference in optical homogeneity between the normal direction of the main surface of the glass plate and the normal direction of the end surface perpendicular to the glass plate main surface. .
  • Optical homogeneity in the normal direction of the end face is achieved by obtaining a homogeneous molten glass in the kiln when melting the glass, especially when viewed from the normal direction to the main surface of the glass plate.
  • the inventors experimentally found that the effect of homogeneity in the depth direction in the kiln at the time of melting is larger than the property.
  • the normal melting method is homogeneous in the depth direction in the kiln. It is difficult to increase the performance.
  • the mechanism by which the amount of ⁇ -OH in the glass affects the homogeneity in the depth direction in the kiln when the iron component, especially Fe 2+ is excessively excluded, is not yet fully understood. It can be explained by the hypothesis as follows. Note that the amount of ⁇ -OH discussed here is a value spectroscopically defined by a method described later. It is known that increasing the amount of ⁇ -OH in the glass improves the melting of the glass raw material batch and facilitates uniform melting. In addition, by increasing ⁇ -OH, the diameter of bubbles in the glass melt generated during melting can be increased, and there is also an effect of improving clarity.
  • the ⁇ -OH amount in the glass plate according to an embodiment of the present invention is preferably 0.015 ⁇ [Fe 2+ ] or more, more preferably 0.025 ⁇ [Fe 2+ ] or more, and Most preferably, it is 03 ⁇ [Fe 2+ ] or more.
  • [Fe 2+ ] is the amount of Fe 2+ (mass ppm) converted to Fe 2 O 3 .
  • the light guide plate 30 has a length L of 20 cm or more and a thickness ⁇ of 1.0 mm. Even with the large dimensions as described above, when light is incident from the incident end face 34A of the light guide plate 30 and is emitted from the emission main surface 32A, it is possible to emit outgoing light with relatively little attenuation. Become. Moreover, it becomes possible to suppress the selective absorption of a specific wavelength in the light guide plate 30, and the color shift between the incident light and the emitted light can be significantly suppressed.
  • the average extinction coefficients ⁇ ave1 and ⁇ ave2 of the glass plate can be evaluated by the following methods.
  • a glass plate is cut in a direction perpendicular to the first main surface, and a sample having a length of 50 mm, a width of 50 mm, and a thickness ⁇ mm is taken from a substantially central portion of the glass plate.
  • the sample A is prepared by polishing until the arithmetic average roughness Ra becomes 0.1 ⁇ m or less.
  • the reflectance R 1 and the transmittance T 1 are set to 1 nm in the wavelength range of 400 nm to 700 nm. Measure at intervals.
  • the reflectance R 1 is a value obtained in consideration of multiple reflections on both main surfaces of the sample A.
  • the absorption coefficient ⁇ 1 of the sample A is obtained at 1 nm intervals by the following equation (1), and this is averaged to obtain ⁇ ave1 :
  • ⁇ 1 -Log e ⁇ [T 1 2- (1-R 1 ) 2 + ((T 1 2- (1-R 1 ) 2 ) 2 + 4T 1 2 ) 0.5 ] / 2T 1 ⁇ / (0.1 ⁇ ) (1)
  • the average extinction coefficient ⁇ ave2 of sample A can be evaluated by the following method.
  • One of the end faces one of polished cut surface of the sample A to the (first end face), in the normal direction of the end face, in the wavelength range of 400 nm ⁇ 700 nm, measuring the transmittance T 2.
  • the average extinction coefficient ⁇ ave1 and the average extinction coefficient ⁇ ave2 of the glass plate can be evaluated.
  • the glass plate according to an embodiment of the present invention is characterized by high transparency and homogeneity, and in particular, high transparency and homogeneity in the normal direction of the end face, and thus has good light straightness.
  • High transparency and homogeneity in the normal direction of the end face means that fine bubbles and refractive index unevenness in the order of ⁇ m are suppressed, and light straightness is excellent.
  • the glass plate according to an embodiment of the present invention has a feature that the standard deviation ⁇ of the refractive index distribution ⁇ n in the cross section in the direction perpendicular to the two main surfaces is 5 ⁇ 10 ⁇ 5 or less.
  • the standard deviation ⁇ of the refractive index distribution ⁇ n of the glass plate is evaluated as follows.
  • a glass plate is cut in a direction perpendicular to the main surface, and a sample of 50 mm in length and 3 mm in width is collected from a substantially central portion of the glass plate.
  • the arithmetic average roughness Ra is 0.1 ⁇ m or less on both the main surface of the sample and each of the two cut surfaces having a length of one side of the sample of 50 mm.
  • the refractive index distribution ⁇ n (refractive index map in the measurement region) is measured on one side of the two cut surfaces of the sample B polished using a transmission type two-beam interference microscope.
  • the standard deviation ⁇ is calculated from the obtained refractive index distribution ⁇ n.
  • Such a standard deviation ⁇ of the refractive index distribution ⁇ n can be used as one index representing the homogeneity in the cross section in the direction perpendicular to the two main surfaces of the glass plate. That is, it can be said that the smaller the standard deviation ⁇ of the refractive index distribution ⁇ n, the fewer foreign substances and composition fluctuation regions that affect the optical characteristics, and the higher the homogeneity of the glass plate.
  • It standard deviation ⁇ of the refractive index distribution [Delta] n is preferably 4.0 ⁇ 10 -5 or less, more preferably 3.0 ⁇ 10 -5 or less, 2.5 ⁇ 10 -5 or less Is more preferable, and 2.0 ⁇ 10 ⁇ 5 or less is particularly preferable.
  • the straightness of light in the glass plate can be evaluated using an apparatus as shown in FIG.
  • the apparatus 100 includes a laser light source 110 and a screen 120.
  • a distance d 1 from the laser light source 110 to the screen 120 is 160 mm.
  • an evaluation sample is prepared.
  • a sample is obtained by cutting a glass plate to be measured in a direction perpendicular to the main surface and taking a dimension of 50 mm in length and 50 mm in width from a substantially central portion of the glass plate.
  • the arithmetic mean roughness Ra of each of the two main surfaces of the sample and the two cut surfaces facing the sample is 0.1 ⁇ m or less.
  • a sample 130 is prepared by polishing. Note that the sample 130 may be the sample A used in the evaluation of the above-described average extinction coefficients ⁇ ave1 and ⁇ ave2 .
  • laser light is applied toward the laser light source 110 on the screen 120, to measure the area S 0 of the spot 140 formed on the screen.
  • the sample 130 is disposed between the laser light source 110 and the screen 120, and the same measurement is performed. At this time, the sample 130 is arranged so that the laser beam is irradiated to a substantially central portion of one polished cut surface (hereinafter referred to as “irradiated surface”).
  • the distance d 2 from the laser light source 110 to the irradiation surface of the sample 130 is 40 mm.
  • the area of the spot 140 formed on the screen 120 to S 1.
  • a commercially available red laser pointer (wavelength 635 nm, etc.) may be mentioned.
  • an appropriate slit may be provided between the laser light source 110 and the sample 130 so that the beam diameter becomes smaller than the thickness of the sample 130.
  • the area of the spot 140 is evaluated by using a brightness profile function of image processing software for a spot image taken with a digital camera.
  • a brightness profile function of image processing software for a spot image taken with a digital camera.
  • the full width at half maximum of the peak intensity is defined as the area of the spot 140.
  • the areas S 0 and S 1 can be calculated by the product of the lengths of the vertical and horizontal sides of the spot 140.
  • the ratio S 1 / S 0 of S 0 and S 1 thus obtained can be used as an index representing the straightness of light in the glass plate. That is, it can be said that the smaller the ratio S 1 / S 0 (that is, closer to 1), the better the straightness of light propagating in the glass plate along the direction perpendicular to the end face of the glass plate.
  • the glass plate according to an embodiment of the present invention has a ratio S 1 / S 0 of 2.25 or less.
  • the ratio S 1 / S 0 is more preferably 2.0 or less, and most preferably 1.5 or less.
  • the dimension of the glass plate according to an embodiment of the present invention is not particularly limited as long as it has the above-described characteristics.
  • the glass plate may have large dimensions such that at least one side length L is 20 cm or more and thickness ⁇ is 1.0 mm or more.
  • the thickness of the glass plate is preferably thicker from the viewpoint of maintaining rigidity and increasing the light incident efficiency from the light source, particularly when used in a large area edge light type light guide plate having a side length of 50 cm or more.
  • 1.5 mm or more is preferable, 1.8 mm or more is more preferable, and 2.0 mm or more is further preferable.
  • 4.0 mm or less is preferable.
  • 3.5 mm or less is more preferable, 3.0 mm or less is more preferable, and 2.8 mm or less is particularly preferable.
  • the thickness is 1.0 mm or more depending on the design. You may select as appropriate.
  • a plurality of glass plates may be bonded and used.
  • the shape of the glass plate is not particularly limited, and the glass plate may be, for example, a rectangular shape or a disk shape.
  • a rectangular glass plate has four end faces, whereas a disc-shaped glass plate has one end face.
  • the glass plate may not be a flat plate, but a plate having a curvature on the main surface.
  • composition of glass plate The composition of the glass plate according to an embodiment of the present invention may vary widely as long as it has the above-described characteristics.
  • the following three types glass having glass composition A, glass composition B, and glass composition C are given as typical examples, but the glass composition in the glass of the present invention is limited to the glass composition examples shown here. It is not something.
  • a glass plate having the glass composition A is substantially expressed in terms of a mass percentage based on oxide, and is substantially 60 to 80% SiO 2 , 0 to 7% Al 2 O 3 , 0 to 10% MgO, CaO 0-20%, SrO 0-15%, BaO 0-15%, Na 2 O 3-20%, and K 2 O 0-10%.
  • the glass plate having the glass composition B is substantially expressed in terms of mass percentage on the basis of oxide, and the SiO 2 is substantially 45 to 80%, the Al 2 O 3 is more than 7% and not more than 30%, and the B 2 O 3 is 0 ⁇ 15%, MgO 0 ⁇ 15%, CaO 0 ⁇ 6%, SrO 0 ⁇ 5%, BaO 0 ⁇ 5%, Na 2 O 7 ⁇ 20%, K 2 O 0 ⁇ 10%, And ZrO 2 may be contained in an amount of 0 to 10%.
  • a glass plate having a glass composition C is substantially 45 to 70% of SiO 2 , 10 to 30% of Al 2 O 3 , and 0 to 15 of B 2 O 3 in terms of an oxide-based mass percentage.
  • One kind of component may be included in a total of 0% or more and less than 3%.
  • each component of the glass composition of the glass plate of the present invention having the above-described components will be described below.
  • the components of glass are expressed in terms of oxides such as SiO 2 and Al 2 O 3
  • the content (glass composition) of each component with respect to the entire glass is expressed in terms of mass percentage based on oxide or mass ppm ( The mass percentage is simply expressed as%, or the mass ppm may be simply expressed as ppm).
  • SiO 2 is a main component of glass.
  • the content of SiO 2 is preferably 60% or more, more preferably 63% or more in the glass composition A in terms of the oxide-based mass percentage.
  • composition B it is preferably 45% or more, more preferably 50% or more
  • glass composition C it is preferably 45% or more, more preferably 50% or more.
  • the content of SiO 2 is easy to dissolve and the foam quality is good, and the content of divalent iron (Fe 2+ ) in the glass is kept low, and the optical properties are good. Therefore, in the glass composition A, preferably 80% or less, more preferably 75% or less, in the glass composition B, preferably 80% or less, more preferably 70% or less, and in the glass composition C , Preferably 70% or less, more preferably 65% or less.
  • Al 2 O 3 is an essential component for improving the weather resistance of glass in the glass compositions B and C.
  • the content of Al 2 O 3 is preferably 1% or more, more preferably 2% or more in the glass composition A, and the glass composition In B, it is preferably more than 7%, more preferably 10% or more, and in the glass composition C, it is preferably 10% or more, more preferably 13% or more.
  • the content of Al 2 O 3 is preferably in the glass composition A. Is 7% or less, more preferably 5% or less.
  • the glass composition B preferably 30% or less, more preferably 23% or less.
  • the glass composition C preferably 30% or less, more preferably 20% or less.
  • B 2 O 3 is a component that promotes melting of the glass raw material and improves mechanical properties and weather resistance.
  • the striae due to volatilization (ream) Is preferably 5% or less, more preferably 2% or less, particularly preferably 1% or less, and substantially does not contain. Is most preferred.
  • the term “substantially not containing” in the present specification means not containing any inevitable impurities.
  • B 2 content of O 3 is preferably not more than 15%, more preferably 12% or less.
  • Alkali metal oxides such as Li 2 O, Na 2 O, and K 2 O are useful components for accelerating melting of glass raw materials and adjusting thermal expansion, viscosity, and the like.
  • the content of Na2O is preferably 3% or more, more preferably 8% or more.
  • the content of Na2O is preferably 7% or more, more preferably 10% or more.
  • the content of Na 2 O is preferably 20% or less in the glass compositions A and B in order to maintain the clarity during melting and maintain the foam quality of the produced glass, and 15% More preferably, the glass composition C is 3% or less, more preferably 1% or less in the glass composition C.
  • the content of K 2 O is preferably 10% or less, more preferably 7% or less in the glass compositions A and B, and preferably 2% or less, more preferably 1% in the glass composition C. It is as follows.
  • Li 2 O is an optional component, but facilitates vitrification, keeps the iron content contained as an impurity derived from the raw material low, and keeps the batch cost low.
  • glass compositions A, B and C can be contained Li 2 O 2% or less.
  • the total content of these alkali metal oxides maintains the clarification at the time of melting, and in order to maintain the foam quality of the produced glass, in the glass compositions A and B In the glass composition C, it is preferably 0% to 2%, more preferably 0% to 1%.
  • Alkaline earth metal oxides such as MgO, CaO, SrO, and BaO are useful components for accelerating melting of glass raw materials and adjusting thermal expansion, viscosity, and the like.
  • MgO has the effect of lowering the viscosity during glass melting and promoting melting. Moreover, since there exists an effect
  • CaO is a component that promotes melting of the glass raw material and adjusts viscosity, thermal expansion, and the like, and therefore can be contained in the glass compositions A, B, and C.
  • the content of CaO is preferably 3% or more, more preferably 5% or more.
  • the glass composition A is preferably 20% or less, more preferably 10% or less, and the glass composition B is preferably 6% or less, more preferably 4% or less.
  • SrO has the effect of increasing the thermal expansion coefficient and lowering the high temperature viscosity of the glass.
  • SrO can be contained in the glass compositions A, B and C.
  • the SrO content is preferably 15% or less, more preferably 10% or less, and in the glass composition B, 5%. % Or less, and more preferably 3% or less.
  • BaO like SrO, has the effect of increasing the coefficient of thermal expansion and lowering the high temperature viscosity of the glass. In order to obtain the above effect, BaO can be contained. However, in order to keep the thermal expansion coefficient of the glass low, the content of BaO in the glass compositions A and C is preferably 15% or less, more preferably 10% or less, and 5% in the glass composition B. The content is preferably set to 3% or less, more preferably 3% or less.
  • the total content of these alkaline earth metal oxides is preferably 10 in the glass composition A in order to keep the coefficient of thermal expansion low, good devitrification properties, and maintain strength. % Or more, more preferably 13% or more.
  • the glass composition B 1% or more, more preferably 10% or more.
  • the glass composition C preferably 5% or more, more preferably 10% or more. .
  • 30% or less is preferable, and more preferably 27% or less.
  • composition B it is preferably 15% or less, more preferably 10% or less
  • glass composition C it is preferably 30% or less, more preferably 20% or less.
  • ZrO 2 is an optional component
  • the glass compositions A, B and C are 10% or less, preferably 5%. You may make it contain below. However, if it exceeds 10%, the glass tends to be devitrified, which is not preferable.
  • the glass of the glass plate of the present invention may contain SO 3 as a fining agent.
  • the SO 3 content is preferably more than 0% and 0.5% or less in terms of mass percentage. 0.4% or less is more preferable, 0.3% or less is more preferable, and 0.25% or less is further preferable.
  • the glass of the glass plate of the present invention may contain one or more of Sb 2 O 3, SnO 2 and As 2 O 3 as an oxidizing agent and a clarifying agent.
  • the content of Sb 2 O 3 , SnO 2 or As 2 O 3 is preferably 0 to 0.5% in terms of mass percentage. 0.2% or less is more preferable, 0.1% or less is more preferable, and it is further more preferable not to contain substantially.
  • Sb 2 O 3 , SnO 2 and As 2 O 3 act as an oxidizing agent for glass, they may be added within the above range for the purpose of adjusting the amount of Fe 2+ in the glass.
  • As 2 O 3 is not positively contained from the environmental viewpoint.
  • the glass of the glass plate of the present invention may contain TiO 2 .
  • TiO 2 When TiO 2 is contained, TiO 2 also functions as a component that absorbs visible light. Therefore, the content of TiO 2 is preferably 1000 ppm or less with respect to the total amount of the glass composition described above.
  • the content of TiO 2 is more preferably 500 ppm or less, and particularly preferably 100 ppm or less, from the viewpoint of not reducing the internal transmittance of the glass plate at a wavelength of 400 to 700 nm.
  • Glass of the glass plate of the present invention may contain CeO 2.
  • CeO 2 has the effect of reducing the redox of iron, and can reduce the absorption of glass at a wavelength of 400 to 700 nm. However, if containing CeO 2 in a large amount, CeO 2, compared the total amount of the glass composition described above to function as a component which absorbs visible light not only causes solarization, and 1000ppm or less Is preferred.
  • the CeO 2 content is more preferably 500 ppm or less, further preferably 400 ppm or less, particularly preferably 300 ppm or less, and most preferably 250 ppm or less. When added, it is preferable that 0.1 ppm or more is always added in order to easily suppress variations in product characteristics during production, particularly color variations.
  • Addition of 1.0 ppm or more is preferable for color control, and addition of 5.0 ppm or more is more preferable.
  • the glass of the glass plate of the present invention may contain NiO.
  • NiO functions also as a coloring component
  • the content of NiO is preferably 10 ppm or less with respect to the total amount of the glass composition described above.
  • NiO is preferably 1.0 ppm or less, more preferably 0.8 ppm or less, and more preferably 0.6 ppm or less from the viewpoint of not reducing the internal transmittance of the glass plate at a wavelength of 400 to 700 nm. Is more preferable, and 0.5 ppm or less is particularly preferable.
  • the glass of the glass plate of the present invention may contain Cr 2 O 3 .
  • Cr 2 O 3 When Cr 2 O 3 is contained, Cr 2 O 3 also functions as a coloring component. Therefore, the content of Cr 2 O 3 is preferably 10 ppm or less with respect to the total amount of the glass composition described above.
  • Cr 2 O 3 is preferably 2.0 ppm or less, more preferably 1.6 ppm or less, from the viewpoint of not reducing the internal transmittance of the glass plate at a wavelength of 400 to 700 nm, and 1.2 ppm or less. More preferably, it is more preferably 1.0 ppm or less, even more preferably 0.8 ppm or less, and most preferably 0.6 ppm or less.
  • the glass of the glass plate of the present invention may contain MnO 2 .
  • MnO 2 is contained, since MnO 2 functions also as a component that absorbs visible light, the content of MnO 2 is preferably 50 ppm or less with respect to the total amount of the glass composition described above.
  • MnO 2 is preferably 30 ppm or less, more preferably 20 ppm or less, even more preferably 15 ppm or less, from the viewpoint of not reducing the internal transmittance of the glass plate at a wavelength of 400 to 700 nm. It is particularly preferable that the content be 10 ppm or less.
  • the glass of the glass plate of the present invention may contain at least one component selected from the group consisting of Se, CoO, V 2 O 5 and CuO. When these components are contained, they also function as components that absorb visible light. Therefore, the content of each component is preferably 5.0 ppm or less, more preferably 2.0 ppm or less. More preferably, it is 0 ppm or less. In particular, it is most preferable that these components are not substantially contained so as not to lower the internal transmittance of the glass plate at a wavelength of 400 to 700 nm.
  • first manufacturing method (About the manufacturing method of the glass plate by one Embodiment of this invention) Next, an example of a glass plate manufacturing method (hereinafter referred to as “first manufacturing method”) according to an embodiment of the present invention having the above-described features will be briefly described.
  • FIG. 3 shows a schematic flow of the first manufacturing method.
  • the first manufacturing method is: (1) a step (step S110) of manufacturing a molten glass by melting a glass raw material; (2) a step of forming molten glass on a glass ribbon (step S120); (3) a step of cooling the glass ribbon (step S130).
  • a glass raw material is prepared by mixing predetermined raw material components. Moreover, this glass raw material is heated and a molten glass is manufactured.
  • the molten glass is prepared so as not to contain iron components (particularly Fe 2+ ) as impurities as much as possible. For this reason, a high-purity glass raw material is used. Further, the mixing process and the dissolving process are performed in an environment with a high cleanliness.
  • the glass raw material from which iron is excessively excluded has a characteristic that it is difficult to absorb infrared light during melting. For this reason, in order to obtain molten glass from such a glass raw material with few iron components, it is necessary to administer a lot of energy to a glass raw material, and to heat a glass raw material. As a result, the energy efficiency in the manufacturing process is reduced to an unrealistic level.
  • the content of transition metal ions made of Ni, Mn, Cr, Co and V contained in the glass raw material is controlled. That is, these transition metal ions are adjusted so that the total content of the glass raw material is 0.1 mass ppm or more.
  • These transition metal ions have the property of absorbing light in the range from the ultraviolet region to the near infrared region. For this reason, when a molten glass contains these transition metal ions, even if an iron component is excessively excluded, heating becomes relatively easy, and the above-described problems are reduced.
  • transition metal ions also function as a coloring component of glass. For this reason, when many of these transition metal ions are contained in the glass raw material, the transparency of the finally obtained glass plate is lowered.
  • the total sum of these transition metal ions is controlled to be 10.0 mass ppm or less. This makes it possible to manufacture a homogeneous glass plate by a realistic process without adversely affecting the transparency.
  • optimization of the glass cullet ratio contained in the glass raw material control of the stirring speed by a stirrer in the glass melting tank, temperature in the depth direction by burner heating in the upper space of the molten glass and current heating to the molten glass Control, temperature gradient control from the maximum temperature range to the clarification temperature range in the melting tank, etc. may be combined in part or all, or in addition to these methods, the amount of ⁇ -OH contained in the glass
  • control of the stirring speed by a stirrer in the glass melting tank temperature in the depth direction by burner heating in the upper space of the molten glass and current heating to the molten glass Control
  • temperature gradient control from the maximum temperature range to the clarification temperature range in the melting tank etc.
  • the molten glass obtained in the above process is formed into a glass ribbon.
  • a forming method a float method, a roll-out method, a fusion method, a mold cast method, or the like is used.
  • molten glass is introduced into a float bath that contains molten tin in advance, floats on the molten tin, forms a glass ribbon, and forms a uniform thickness while moving over the molten tin. Is done.
  • a general molding method including the above-mentioned methods is appropriately selected in consideration of the temperature range suitable for molding depending on the glass composition, the thickness of the target plate, the convenience of the manufacturing equipment, etc. Good.
  • Step S130 Thereafter, the glass ribbon is gradually cooled to a predetermined temperature. Moreover, a glass plate is obtained by cutting the glass ribbon.
  • the main surface of the glass plate may be as it is formed, or may be polished and finished.
  • a glass plate according to one embodiment of the present invention can be manufactured.
  • the characteristics of the glass plate according to the embodiment of the present invention have been described by taking as an example a case where the glass plate according to the embodiment of the present invention is applied as an edge light type light guide plate.
  • the glass plate according to the present invention can be applied to various uses other than the light guide plate.
  • the glass plate according to the present invention since the glass plate according to the present invention has a low content of contaminants and a high transmittance, it can be used as a light source for various electronic devices including the above-mentioned various display devices and light guides for illumination devices, and solar cells. It can be effectively used for applications requiring high visible light transmittance, such as exterior glass for glass substrates, cover glasses, and various electronic devices.
  • it has not only high transmittance compared to conventional glass, but also has the characteristics of excellent transparency when viewed from the normal direction of the end face and little distortion of the image. It can also be applied to exterior materials, interior materials, furniture, and the like.
  • Examples 1 to 8 are examples, and Examples 9 to 11 are comparative examples.
  • Example 1 A glass plate was manufactured by the method shown in FIG. The float method was adopted as a forming method.
  • the mother composition of the glass is in the range of the glass composition A described above. Since the amounts of iron components and various transition metal ions contained in the raw material are extremely small, the input amount was appropriately adjusted so that it could be blended homogeneously in the raw material mixing process. In particular, since the transition metal ion raw material is expensive, the raw material configuration was also optimized so as to use those contained as impurities in other raw materials in order to reduce costs.
  • the temperature gradient of the glass melt in the kiln was controlled by using a stirrer whose rotation speed was controlled so that the glass melt became homogeneous, and also using auxiliary heating other than the burner used for normal combustion.
  • ⁇ OH was within an appropriate range.
  • glass plate 1 a glass plate having a thickness of 2.5 mm was produced through a glass ribbon production process and a cooling process.
  • Example 2 to Example 4 A glass plate was produced in the same manner as in Example 1.
  • the mother composition of the glass is in the range of the glass composition A described above.
  • the composition of the raw glass and the amount of ⁇ -OH in the glass were changed from those in Example 1.
  • Other manufacturing conditions are the same as in Example 1.
  • the glass raw material could be melted uniformly.
  • a glass ribbon manufacturing process and a cooling process a 2.1 mm thick glass plate (glass plate 2), a 1.8 mm thick glass plate (glass plate 3), and a 3.8 mm thick glass plate (Glass plate 4) was manufactured.
  • Example 5 A glass plate was produced using a roll-out method as a method for forming the glass plate.
  • the glass mother composition is in the range of the glass composition A described above, but was changed from that in Example 1 in consideration of the difference in heating state due to different kiln structure and molding method, and the difference in viscosity near the molding temperature. .
  • the glass raw material could be melted uniformly.
  • a glass plate (glass plate 5) having a thickness of 2.5 mm and a glass plate (glass plate 6) having a thickness of 4.0 mm were manufactured through a glass ribbon manufacturing process, a cooling process, and a polishing process.
  • Example 7 The glass plate was manufactured using the mold cast method as a shaping
  • the mother composition of Example 7 is in the range of the glass composition B described above, and the mother composition of Example 8 is in the range of the glass composition C described above. Since the amount of the iron component and various transition metal ions contained in the raw material is extremely small, a material previously mixed homogeneously with a part of the raw material silica sand was used so that it could be blended homogeneously in the raw material mixing process. Furthermore, a homogeneous glass melt was obtained by using a stirrer with a controlled rotation speed and by controlling the melting time, melting temperature profile and atmosphere.
  • Example 9 A glass plate was manufactured by the method shown in FIG. The float method was adopted as a forming method.
  • the glass mother composition is in the range of the glass composition A described above and is the same as the glass plate 1.
  • Example 9 was produced under the condition that Ni, Mn, Cr, Co, V was not added and ⁇ -OH was lowered, and a glass plate (glass plate 9) having a thickness of 2.5 mm was obtained.
  • Example 10 A glass plate was manufactured by the method shown in FIG. The float method was adopted as a forming method.
  • the mother composition of the glass is in the range of the glass composition A described above, and is a highly transparent soda lime silicate glass used as a substrate glass for solar cells.
  • the glass plate (glass plate 10) having a thickness of 1.8 mm was obtained under the production conditions such that the homogeneity seen in the normal direction of the main surface of the glass plate was sufficiently obtained.
  • Example 11 A glass plate was produced using a roll-out method as a method for forming the glass plate.
  • the mother composition of the glass is in the range of the glass composition A described above, and is a highly transparent soda lime silicate glass used as a cover glass for solar cells.
  • a glass plate (glass plate 11) having a thickness of 2.5 mm was obtained by polishing a product manufactured under manufacturing conditions such that the homogeneity seen in the normal direction of the main surface of the glass plate was sufficiently obtained. .
  • Table 1 summarizes the compositions and forming methods of the glass plates 1 to 11, the use of the stirrer during melting, and the presence or absence of auxiliary heating.
  • the total iron oxide content was measured by fluorescent X-ray analysis, and the Fe 2+ content was measured according to ASTM C169-92. The measured Fe 2+ content was expressed in terms of Fe 2 O 3 .
  • the Fe 2+ amount was determined by the following method.
  • X is the minimum value of the spectral transmittance in the wavelength range of 1000 to 1250 nm of glass whose Fe 2+ content is less than 4.0 mass ppm
  • Y is the Fe 2+ content contained in the glass.
  • the total cerium oxide amount, Ni amount, Cr amount, Mn amount, Co amount, and V amount converted to CeO 2 contained in the glass were determined by ICP emission analysis.
  • ⁇ -OH (mm ⁇ 1 ) which is an index of the moisture concentration contained in the glass, was calculated from the infrared transmission spectrum of the glass measured by FT-IR by the following equation.
  • T 3500 cm ⁇ 1 and T 4000 cm ⁇ 1 are the transmittance (%) at wave numbers 3500 cm ⁇ 1 and 4000 cm ⁇ 1 , respectively, and ⁇ is the thickness (mm) of the glass plate.
  • samples of 50 mm in length and 50 mm in width were taken out from the substantially central portions of the glass plates 1 to 11 (referred to as “sample 1” to “sample 11”, respectively).
  • the first main surface of each sample (the surface that was not in contact with the tin bath at the time of manufacture) in the wavelength range of 400 nm to 700 nm.
  • the transmittance T 1 and the reflectance R 1 were measured.
  • the reflectance was measured using an absolute reflection measurement unit at a wavelength interval of 1 nm.
  • the reflectance R 1 is a value obtained in consideration of multiple reflections on both main surfaces of the sample.
  • the extinction coefficient in the wavelength range of 400 nm to 700 nm was obtained at intervals of 1 nm by the above-described equation (1). These values were averaged to obtain an average extinction coefficient ⁇ ave1 .
  • the wavelength of the sample was measured from the side of any polished cross section using a long sample measurement unit of a spectrophotometer (UH-4150: manufactured by Hitachi High-Tech Co., Ltd.).
  • the transmittance T 2 in the range of 400 nm to 700 nm was measured.
  • the above equation (3) is used from the reflectance R 1 obtained in consideration of multiple reflections and the reflectance T 1 corresponding to the optical path length. Is the value obtained.
  • the extinction coefficient in the wavelength range of 400 nm to 700 nm was obtained at intervals of 1 nm by the above-described equation (2). These values were averaged to obtain an average extinction coefficient ⁇ ave2 .
  • Table 2 below collectively shows the average extinction coefficient ⁇ ave1 and ratio ⁇ ave2 / ⁇ ave1 obtained in each of Sample 1 (glass plate 1) to Sample 11 (glass plate 11).
  • sample 1A samples of 50 mm in length and 3 mm in width were taken out from the substantially central portions of the glass plates 1 to 11 (referred to as “sample 1A” to “sample 11A”, respectively).
  • a refractive index distribution ⁇ n (a refractive index map in the measurement region) is measured using a transmission type two-beam interference microscope (manufactured by Mizoji Optical Co., Ltd.). did.
  • the standard deviation ⁇ was calculated from the obtained refractive index distribution ⁇ n.
  • Table 2 described above collectively shows the standard deviation ⁇ of the refractive index distribution ⁇ n obtained in Sample 1A (glass plate 1) to Sample 11A (glass plate 11).
  • the standard deviation ⁇ of the refractive index distribution ⁇ n is 5.0 ⁇ 10 ⁇ 5 or less, and the refractive index variation is small. From this, it can be said that the glass plates 1 to 8 have high homogeneity. In particular, in the glass plates 1 to 5, ⁇ is 2.0 ⁇ 10 ⁇ 5 or less, and it can be said that the homogeneity is particularly good.
  • the standard deviation ⁇ of the flat refractive index distribution ⁇ n exceeds 5.0 ⁇ 10 ⁇ 5 , indicating that the refractive index variation is large. From this, in the glass plate 11, it can be said that the homogeneity of glass is not favorable.
  • Samples 1 to 11 with the cut surfaces polished in the above were used as samples.
  • a white screen (printed with grids with 1 mm intervals to facilitate size measurement) was installed vertically at a position 160 mm from the laser light source.
  • a semiconductor laser light source having a wavelength of 635 nm was used as the laser light source.
  • the area S 0 of the spot (referred to as “reference spot”) formed on the white screen was calculated.
  • any one of Sample 1 to Sample 11 was placed between the laser light source and the white screen, and the same measurement was performed.
  • the sample was arranged so that the laser beam was irradiated to a substantially central portion of one cut surface (irradiation surface) of the sample.
  • the distance from the laser light source to the irradiation surface of the sample is 40 mm.
  • the area S 1 of the spot (referred to as “evaluation spot”) formed on the white screen was measured.
  • Table 2 described above collectively shows the ratios S 1 / S 0 obtained in Sample 1 (glass plate 1) to Sample 11 (glass plate 11).
  • the glass plates 1 to 8 have a small amount of absorption component, high transparency, high glass homogeneity, and good light straightness in the direction perpendicular to the end face. It was confirmed that it was obtained.
  • Display apparatus 20 Light source group 21 Light source 30 Light guide plate 32A 1st main surface 32B 2nd main surface 34A-34D End surface 40 Display element 100 Apparatus 110 Laser light source 120 Screen 130 Sample 140 Spot

Abstract

所定の組成を有するガラス板において、第1の主表面に垂直な方向で切断することにより、中心部分から、縦50mm×横50mm×厚さθの寸法で採取され、2つの主表面、ならびに相互に対向する第1および第2の切断面が、算術平均粗さRa≦0.1μmとなるようにされたサンプルAにおいて、前記第1の主表面において、法線方向で測定した波長400~700nmにおける平均吸光係数をαave1とし、第1の切断面において、前記法線方向と直交する方向で測定した波長400~700nmにおける平均吸光係数をαave2としたとき、前記αave1は、0.009以下であり、比αave2/αave1は1.3以下である。

Description

ガラス板
 本発明は、ガラス板に関する。
 従来、LEDなどの低消費電力光源を使用したエッジライト方式の表示装置や照明装置が知られている。エッジライト方式の表示装置や照明装置では、相互に対向する2つの主表面を有する導光板と、該導光板の一つの端面に対向して配置された光源とが使用される。ここで、導光板の「端面」は、導光板の2つの主表面を相互に接続する4つの側面を意味する。また、4つの側面のうち、光源と面する端面を、特に、「入射端面」と称する。
 エッジライト方式では、光源からの光は、導光板の入射端面に入射される。その後、導光板に入射した光は、一つの主表面(「出射主表面」という)から出射される。従って、エッジライト方式では、導光板における光の入射方向と出射方向とが相互に垂直な関係にあると言う特徴がある。
 一般に、このようなエッジライト方式の導光板として、アクリル板が用いられている。しかしながら、アクリル板は、耐擦傷性、剛性、耐熱性、および耐水性の観点から問題がある。そのため、そのような問題が生じ難いガラス板を、導光板として使用することが要望されている。
 また、近年建築用外装およびガラスカーテン、ガラスリブのような内装材、テーブル、棚板のような家具、什器等において、意匠に高級感を与えるためにガラスを使用することが増えてきており、特に高透過ガラスの使用が要望されている。このような高透過ガラスは、その透明性を意匠において強調するために、板の主表面方向からだけでなく、端面の法線方向における外観も重要となる。
 前述のように、エッジライト方式の導光板として、ガラス板を使用することが要望されている。
 しかしながら、エッジライト方式では、導光板内に入射した光は、全反射条件を保ちつつ導光板内を主表面方向に伝播していくため、導光板から出射するまでの光路長が実際の導光板のサイズよりも長くなる。そのため、一般的なガラス板をそのような導光板に適用した場合、入射光のうち相当の量が伝播中に吸収されたり、散乱されたりして、十分な強度の光を出射主表面から出射しにくくなる懸念があった。また、光の伝播中にある特定の波長の部分が選択的に吸収されると、入射光の色とは異なる色の光が出射されてしまう懸念もあった。太陽電池用カバーガラス等で用いられるような既存の高透過ガラスであっても、同様の懸念は依然として有しており、表示装置さらには導光板の大型化にともない、このような懸念は、今後より顕著になるものと予想される。
 本発明では、エッジライト方式の導光板として用いた際には、長い光路長においても十分な出射光量が得られるとともに、入射光と出射光の色ずれが有意に抑制される、端面の法線方向の光学特性にも優れたガラス板を提供することを目的とする。
 本発明では、一辺の長さLが200mm以上、厚さθが1.0mm以上であり、第1および第2の主表面と、該主表面同士を接続する1または複数の端面と、を有するガラス板であって、
 Feに換算した鉄を総量で1質量ppm以上80質量ppm以下、Feに換算したFe2+を0.1質量ppm以上10.0質量ppm以下、
 Ni、Mn、Cr、CoおよびVを合計で0.1質量ppm以上10.0質量ppm以下含み、
 前記第1の主表面に垂直な方向で切断することにより、当該ガラス板の中心部分から、縦50mm×横50mm×厚さθの寸法で採取され、前記2つの主表面、ならびに相互に対向する第1および第2の切断面が、算術平均粗さRa≦0.1μmとなるようにされたサンプルAにおいて、
 前記第1の主表面において、法線方向で測定した、波長400~700nmにおける平均吸光係数をαave1とし、前記第1の切断面において、前記法線方向と直交する方向で測定した波長400~700nmにおける平均吸光係数をαave2としたとき、前記αave1は、0.009以下であり、比αave2/αave1は、1.3以下である、ガラス板が提供される。
 本発明では、エッジライト方式の導光板として用いた際には、比較的長い光路長においても十分な出射光量が得られるとともに、入射光と出射光の色ずれが有意に抑制されたガラス板を提供できる。
一般的なエッジライト方式の表示装置の構成を概略的に示した図である。 ガラス板内の光の直進性を評価する際に使用される装置の構成を模式的に示した図である。 本発明の一実施形態によるガラス板の製造方法の一例の概略的なフローを示した図である。
 以下、図面を参照して、本発明の一実施形態について説明する。
 図1には、一般的なエッジライト方式の表示装置の概略的な分解斜視図を示す。
 図1に示すように、通常、エッジライト方式の表示装置10は、光源群20と、導光板30と、表示素子40とを有する。
 光源群20は、一列に配置された1つ以上の光源21を有する。各光源21は、発光ダイオード(LED)またはレーザダイオードのような、指向性光源であっても良い。
 導光板30は、第1および第2の主表面32Aおよび32Bと、該主表面同士を接続する4つの端面34A~34Dを有する。導光板30の第1の主表面32Aは、出射表面側となり、「出射主表面32A」とも称される。導光板30の第2の主表面32Bは、表示装置10の背面側となる。導光板30の端面34Aは、光源群20と対面しており、表示装置10の入射表面となる。従って、導光板30の端面34Aは、「入射端面34A」とも称される。なお 、主表面32Aおよび32Bと4つの端面34A~34Dそれぞれの間、また、各端面同士の間には、それぞれの表面同士を接続する一つ以上の面取り面があっても良い。
 表示素子40は、例えば、液晶および光学フィルター等などで構成され、画像を形成できる。表示素子40は、導光板30の第1の主表面32Aと対面するように配置される。また、照明装置の場合、表示素子40は省略され、あるいは表示素子40として色調を補正するための光学フィルター等が配置される。
 このような構成の表示装置10は、以下のように作動する。まず、光源群20を構成する各光源21から、導光板30の入射端面34Aに向かって光が照射され、該光が導光板30に入射する。入射した光(入射光)は、導光板30の各内面で反射されながら導光板30の内部を伝播し、導光板30の第1の主表面32Aから出射される。導光板30から出射された光は、その後表示素子40に照射される。その結果、表示素子40で形成された画像が外部に表示され、表示装置10の視認者が表示素子40で形成された画像を認識できる。なお前述のように照明装置の場合、表示素子40は簡略化できる。
 ここで、前述のように、表示装置10の導光板30として、アクリル板に代えて、ガラス板を適用することが要望されている。
 しかしながら、建築用途や表示装置用途等に利用される一般的なガラス板を導光板30に適用した場合、入射光が導光板30内を伝播中に、光の相当量が吸収されたり、散乱されたりして、十分な強度の光を第1の主表面32Aから出射しにくくなる懸念があった。また、入射光の伝播中に、ある特定の波長の部分が導光板30で選択的に吸収されると、入射光の色とは異なる色の光が出射されてしまうという懸念もあった。上記の一般的なガラスにおいては、主としてガラス主表面の法線方向(以下、主表面方向ともいう)での光吸収や散乱などによる損失(以下光吸収ともいう)を低くすることは考慮されてきた一方、前記主表面の法線方向と直交する方向(以下、端面の法線方向ともいう)での光吸収を低くすることは考慮されてこなかったためである。
 これらは既に20インチ程度以上の大きさの液晶テレビなどを含む各種ディスプレイやデジタルサイネージ、照明等において問題となっており、そのため従来の一般的なガラス板では導光板としての使用に適さなかった。加えて、最近ではより大型のものが主流になってきており、太陽電池用カバーガラス等で用いられるような既存の高透過ガラスであっても、前記懸念から導光板としての使用に適さなくなってきている。表示装置10さらには導光板30のさらなる大型化にともない、前記懸念は、今後より顕著になるおそれがある。
 これらの問題を解決するためには、特に、端面の法線方向の光吸収は、主表面方向の光吸収を低減するだけでは一意的に低減できないため、単純に主表面方向の光吸収を低減するだけでなく、積極的に端面の法線方向の光吸収を低減する必要があることが明らかになった。
 これは以下の理由による。ガラスの内部が理想的に光学的均質な状態である場合、ガラスの吸光度はランバートベールの法則に従い、単位長あたりの吸光度によって一意的に決定される。この場合、ガラス板の主表面方向での平均吸光係数αave1と端面の法線方向での平均吸光係数αave2は等しくなる。しかし実際のガラス内部には、微細な泡やμmオーダーでの屈折率分布、着色層や屈折率異質層等による光学的不均質な要因が存在しており、光学的に完全な等方性を有していない。特に通常のガラス板では主表面方向での光学的均質性のみが重要とされるため、端面の法線方向での光学的均質性が悪くなる懸念がある。
 従来のガラス板では主表面方向での外観や光学特性のみが重視される上、光路長がせいぜいガラス板厚程度であるため上記のような課題は顕在化しにくい。しかし、本発明の課題のように端面の法線方向での光吸収等が重要となる用途では、光路長が200mm以上と長くなる上、端面の法線方向での光学的均質性の悪さが性能に大きく影響を与える。このようなガラス板の端面の法線方向での光学特性については、例えば高い透明性が必要とされる太陽電池用カバーガラス等においてさえもこれまで意識されてこなかった。
 しかしながら、本発明の一実施形態では、
 一辺の長さLが200mm以上、厚さθが1.0mm以上であり、第1および第2の主表面と、該主表面同士を接続する1または複数の端面と、を有するガラス板であって、
 Feに換算した鉄の総量が1質量ppm以上80質量ppm以下であり、Feに換算したFe2+が0.1質量ppm以上10.0質量ppm以下であり、
 Ni、Mn、Cr、CoおよびVが合計で0.1質量ppm以上10.0質量ppm以下であり、
 当該ガラス板の中心部分から、当該ガラス板を前記第1の主表面に垂直な方向で切断して、縦50mm×横50mm×厚さθのサンプルAを採取し、該サンプルAの前記2つの主表面、ならびに前記サンプルAの相互に対向する第1および第2の切断面を、算術平均粗さRaが0.1μm以下となるようにされたサンプルAにおいて、
 前記サンプルAの前記第1の主表面において、法線方向で測定した、波長400~700nmにおける平均吸光係数をαave1とし、前記第1の切断面において、前記法線方向と直交する方向で測定した波長400~700nmにおける平均吸光係数をαave2としたとき、前記αave1は、0.009以下であり、比αave2/αave1は、1.3以下である、ガラス板が提供される。
 ガラス板の光吸収の主要因は、不純物として含まれる鉄イオンである。鉄は、工業的に生産されるガラスの原料として不可避的に含有されるものであり、ガラス中への鉄の混入は避けられない。
 Feに換算した全酸化鉄(t-Fe)の含有量は、可視域全域にわたって極めて高い透過率を実現させるために80質量ppm以下とされる。t-Feの含有量は、さらに好ましくは60質量ppm以下であり、特に好ましくは45質量ppm以下であり、最も好ましくは35質量ppm以下である。
 一方、本発明のガラスの全酸化鉄量は、1質量ppm以上とされる。1質量ppm未満では多成分系の酸化物ガラス製造時においてガラスの熔解性を向上させることが難しくなり、又、低コストで大量生産することが難しくなる。又、原料の入手が困難である。好ましくは5質量ppm以上であり、より好ましくは8質量ppm以上であり、さらに好ましくは10質量ppm以上である。なお、ガラスの全酸化鉄量は、ガラス製造時に添加する鉄成分の量により調節できる。
 本発明においては、ガラス物品のガラスの全酸化鉄量を、Feの量として表しているが、ガラス中に存在する鉄がすべてFe3+(3価の鉄)として存在しているわけではない。通常、ガラス中にはFe3+とFe2+(2価の鉄)が同時に存在している(以下、これらをまとめて「鉄成分」という)。鉄成分は可視光域に吸収を持つが、Fe2+の吸収係数(11cm-1 Mol-1)は、Fe3+の吸収係数(0.96cm-1 Mol-1)よりも1桁大きいため、可視光域の内部透過率をより低下させる。そのため、Fe2+の含有量が少ないことが、可視光域の内部透過率を高めるうえで好ましい。
 本発明のガラスは、質量ppm表示でFeに換算した二価鉄(Fe2+)の含有量が10質量ppm以下に抑制されている。好ましくは8.0質量ppm以下であり、より好ましくは6.0質量ppm以下であり、特に好ましくは4.0質量ppm以下であり、最も好ましくは3.5質量ppm以下である。
 このように、本発明の一実施形態によるガラス板では、鉄成分の量を制御することで、鉄成分による特定波長の光の吸収を有意に抑制できる。
 なお、ガラス板に含まれる全酸化鉄量を80ppm以下に抑制し、かつ質量ppm表示でFeに換算した二価鉄(Fe2+)の含有量が10.0質量ppm以下であると、ガラス板の製造が難しくなることがある。特に、従来のガラスに比べて溶解時の窯内での均質性を高くしにくいということが本発明者らの検討により明らかとなった。
 すなわち、鉄成分、特にFe2+が過度に排除された溶融ガラスは、光、特に赤外光を吸収し難いという特性を有する。このため、そのような溶融ガラスを加熱するには、多大なエネルギーを投与する必要がある。その結果、製造工程におけるエネルギー効率が非現実的なレベルまで低下してしまう懸念がある。また、このような加熱状態では、溶融ガラスの上部と底部とで組成が変化し、最終的に得られるガラス板の組成が不均一になる懸念がある。さらに、そのような高温状態での操業では、製造設備の破損や劣化が生じる懸念がある。逆に加熱状態を通常のガラス相当に抑えてしまうと、ガラスの溶融が促進されないために泡欠点が多くなる、溶融ガラスの粘性が低いために不均質になる等、製品の品質を低下させてしまう懸念がある。
 しかしながら、本発明の一実施形態によるガラス板では、このような問題に対処するため、Ni、Mn、Cr、CoおよびVからなる群から選定された金属イオンの合計含有量が、0.1質量ppm以上となるように制御されている。
 これらの金属イオンは、紫外域から近赤外域の範囲で光を吸収する特性を有する。このため、溶融ガラスにこれらの遷移金属イオンが含まれる場合、鉄成分、特にFe2+が過度に排除された場合であっても、加熱が比較的容易になり、前述のような問題が軽減される。
 また、これらの遷移金属イオンはガラスの着色成分としても機能する。このため、これらの遷移金属イオンの量を調整することで、鉄成分による光吸収以外の波長域に意図的に微弱な光吸収を生じさせることで波長400~700nmの範囲における光吸収スペクトルをより平坦化できる。これにより、単純に鉄成分を減らして得られるガラス板と比べて、光路長が200mm以上と長くなっても入射光と出射光の色ずれを抑制することが可能となる。
 一方、ガラス原料中にこれらの遷移金属イオンが多く含まれると、最終的に得られるガラス板の透明性が低下してしまう。
 しかしながら、本発明の一実施形態によるガラス板では、これらの遷移金属イオンの総和は、最大10.0質量ppm以下となるように制御されている。このため、本発明の一実施形態では、透明性に悪影響を及ぼすことなく、均質なガラス板を、現実的なプロセスで製造可能となる。これらの遷移金属イオンのうち、特に透明性に悪影響を及ぼしやすいNi、Cr、Co、Vの総和は、好ましくは7.0質量ppm以下であり、より好ましくは3.0質量ppm以下であり、さらに好ましくは2.0質量ppm以下であり、特に好ましくは1.5質量ppm以下であり、最も好ましくは1.0質量ppm以下である。
 また、本願発明者らは、Ni、Mn、Cr、CoおよびVが透明性に与える影響の程度を明確にした。Ni1ppmあたりの波長400~700nmの範囲における平均吸光係数は、0.0026である。Mn1ppmあたりの波長400~700nmの範囲における平均吸光係数は、0.00005である。Cr1ppmあたりの波長400~700nmの範囲における平均吸光係数は、0.0013である。Co1ppmあたりの波長400~700nmの範囲における平均吸光係数は、0.0085である。V1ppmあたりの波長400~700nmの範囲における平均吸光係数は、0.00007である。本願発明者らは、これらの知見をもとに、下記(A)式を満たすことが所望の高透過ガラスを得るうえで好ましいことを見出した:
 
 26×[Ni]+0.5×[Mn]+13×[Cr]+85×[Co]
+0.7×[V]<70
                            (A)式
 
 また、下記(B)式を満たすことがさらに好ましい:
 
 26×[Ni]+0.5×[Mn]+13×[Cr]+85×[Co]
+0.7×[V]<18
                            (B)式
 
ここで、[Ni]、[Mn]、[Cr]、[Co]および[V]は、Ni、Mn、Cr、CoおよびVの各含有量(質量ppm)である。
 以上の特徴により、本発明の一実施形態によるガラス板は、各種着色成分の影響を最小に抑えているため高い透明性を有する上、特定の波長の光が選択的に吸収されるという問題を有意に抑制できる。このため、本発明の一実施形態によるガラス板は、これまで適用の難しかった、比較的大画面のエッジライト方式の導光板としても適用できる。
 また、本発明の一実施形態によるガラス板は、該ガラス板の中心部分から、該ガラス板を第1の主表面に垂直な方向で切断して、縦50mm×横50mm×厚さθのサンプルを採取し、該サンプルの第1および第2の主表面、ならびに前記サンプルの相互に対向する第1および第2の2つの切断面を、算術平均粗さRaが0.1μm以下となるようにされたサンプルAにおいて、
 該サンプルAの前記第1の主表面において、その法線方向で測定した、波長400~700nmにおける平均吸光係数をαave1とし、前記第1の切断面において、前記法線方向と直交する方向で測定した波長400~700nmにおける平均吸光係数をαave2としたとき、αave1は、0.009以下であり、比αave2/αave1は、1.3以下であるという特徴を有する。
 特に、αave1は、0.007以下であることが好ましく、0.006以下であることがより好ましく、0.005以下であることがさらに好ましく、0.0045以下であることが特に好ましい。また、比αave2/αave1は、1.25以下であることが好ましく、1.2以下であることがより好ましく、1.15以下であることがさらに好ましく、1.1以下であることがもっとも好ましい。
 このαave1とαave2の比が1.3以下であるという特徴は、ガラス板主表面の法線方向とそれに直交する端面の法線方向における光学的均質性の差が少ないということを意味する。
 端面の法線方向における光学的均質性はガラスを溶解する際に窯内で均質な溶融ガラスを得ることで実現され、特に、ガラス板の主表面に対する法線方向から見た場合の光学的均質性と比べて、溶解時の窯内での深さ方向の均質性の影響が大きいことを発明者らは実験的に見出した。しかし前述のように一般的なガラスや従来の高透過ガラスと異なり、ガラス板中の鉄成分、特にFe2+が過度に排除された場合、通常の溶解方法では窯内での深さ方向の均質性を高くすることが困難である。
 しかしながら鋭意検討の結果、ガラス原料に含まれるガラスカレット割合と清澄剤の量の最適化と、ガラス溶解槽内でのスターラーによる攪拌速度の制御、溶解ガラス上部空間でのバーナー加熱と溶解ガラスへの通電加熱による深さ方向での温度制御、溶解槽内での最高温度域から清澄温度域までの温度勾配制御等、の一部または全てを組みあわせること、またはこれらの方法に加えて、ガラス中に含まれるβ-OH量をガラス中に含まれるFe2+量に応じて制御することにより、鉄成分、特にFe2+が過度に排除されたガラスにおいても窯内での深さ方向での均質性を維持できることを見出した。本発明の一実施形態によるガラス板は、これらの方法により端面の法線方向における光学的均質性の低下を防ぎ、αave2/αave1が1.3以下となるよう制御されている。
 ガラス中のβ-OH量が、鉄成分、特にFe2+が過度に排除された場合において窯内での深さ方向での均質性に影響する機構についてはまだ完全に理解されていないが、以下のような仮説により説明できる。なお、ここで議論するβ-OH量は、後述の方法で分光的に定義される値である。ガラス中のβ-OH量を高くすることで、ガラス原料バッチの溶け落ちを良くし、均質な溶解をしやすくする効果が知られている。加えてβ-OHを高くすることで溶解中に発生するガラス融液中の泡の径を大きくすることができ、清澄性を改善する効果もある。さらに、本発明におけるガラスのように全酸化鉄量が80ppm以下と極めて低く、さらにFeに換算したFe2+量も4.0ppm以下と従来に無い極めて低い場合では、ガラス中のβ-OHを高くするとともに、ガラス融液の近赤外~赤外域での吸収を大きくすることでガラス融液の加熱を促進し、均質性を高くする作用があることを実験的に見出した。これはFe2+による吸光の影響がある波長域にβ-OHに起因する吸光が存在していることも影響している。Fe2+の量が低く抑制されると、Fe2+による吸光が小さくなるため分光的に定義されるβ-OHの値も低くなる。そのような状態でも十分な吸光が得られて加熱を促進するためには、β-OH量を高くする必要があるためである。
 本発明の一実施形態によるガラス板中のβ-OH量は、0.015×[Fe2+]以上であることが望ましく、0.025×[Fe2+]以上であることがより望ましく、0.03×[Fe2+]以上であることが最も望ましい。ここで、[Fe2+]は、Feに換算したFe2+量(質量ppm)である。
 このようなガラス板を導光板30に使用した場合、入射端面34Aから入射され、導光板30の内部を伝播して、出射主表面32Aから出射される光の光路長が比較的長くなっても、内部での光の減衰を有意に抑制できる。
 このような特徴により、本発明の一実施形態によるガラス板を表示装置10の導光板30に適用した場合、例えば、導光板30が、長さLが20cm以上で、厚さθが1.0mm以上のような大きな寸法であっても、導光板30の入射端面34Aから光を入射させて、出射主表面32Aから出射させた際に、比較的減衰の少ない出射光を出射させることが可能になる。また、導光板30内での特定の波長の選択的な吸収を抑制することが可能となり、入射光と出射光の色ずれを有意に抑制できる。
 (平均吸光係数αave1およびαave2の評価方法)
 ここで、本願における平均吸光係数αave1およびαave2の評価方法について、より詳しく説明する。
 ガラス板の平均吸光係数αave1およびαave2は、以下の方法により評価できる。
 まず、ガラス板を第1の主表面に垂直な方向で切断して、ガラス板の略中心部分から、縦50mm×横50mm×厚さθmmのサンプルを採取する。得られたサンプルの主表面および切断面が平滑でない場合は、サンプルの第1の主表面および第2の主表面、ならびにサンプルの相互に対向する第1および第2の2つの切断面を、それぞれの算術平均粗さRaが0.1μm以下となるまで研磨して、サンプルAを調製する。
 次に、サンプルAのいずれかの主表面(第1の主表面)に対して、該主表面の法線方向において、波長400nm~700nmの範囲で、反射率Rおよび透過率Tを1nm間隔で測定する。なお、反射率Rは、サンプルAの両主表面での多重反射を考慮して得られた値である。
 次に、得られた反射率Rおよび透過率Tから、以下の(1)式により、サンプルAの吸光係数αを1nm間隔で求め、これを平均することでαave1が求められる:
 
α
  -log{[T -(1-R+((T -(1-R
+4T 0.5]/2T}/(0.1θ)
                            (1)式
 
 一方、サンプルAの平均吸光係数αave2は、以下の方法で評価できる。
 サンプルAの研磨された切断面のうちいずれか一つの端面(第1の端面)に対して、該端面の法線方向において、波長400nm~700nmの範囲で、透過率Tを測定する。
 次に、得られた透過率Tから、以下の(2)式により、吸光係数αを1nm間隔で求め、これを平均することでαave2が求められる:
 
α=-log{[-(1-R+((1-R
+4R ・T 0.5]/2R ・T}/5
                            (2)式
 
ここで、RはサンプルAの片面における反射率であるため、多重反射を考慮して得られた反射率Rとその光路長に対応する透過率Tから、
 
   R=R/{1+T×exp(-α×0.1θ)} (3)式
 
となる。
 サンプルAにおいて得られた平均吸光係数αave1および平均吸光係数αave2を、そのガラス板の平均吸光係数αave1および平均吸光係数αave2とする。
 このような方法により、ガラス板の平均吸光係数αave1および平均吸光係数αave2を評価できる。
 (本発明の一実施形態によるガラス板のその他の特徴について)
 本発明の一実施形態によるガラス板は、透明性および均質性が高く、特に端面の法線方向において透明性および均質性が高いため、光の直進性が良いという特徴を有する。端面の法線方向における透明性および均質性が高いということは、μmオーダーでの微細な泡や屈折率ムラが抑制され、光の直進性が優れているということである。
 そこで、以下、これらの特徴について、定量的に説明する。
 (屈折率分布)
 本発明の一実施形態によるガラス板は、二つの主表面に垂直な方向での断面内における屈折率分布Δnの標準偏差σが5×10-5以下であるという特徴を有する。
 ここで、ガラス板の屈折率分布Δnの標準偏差σは、以下のように評価される。
 まず、ガラス板を主表面に垂直な方向で切断して、ガラス板の略中心部分から、縦50mm×横3mmのサンプルを採取する。得られたサンプルの主表面および切断面が平滑でない場合は、サンプルの両主表面、およびサンプルの一辺の長さが50mmの2つの切断面のそれぞれを、算術平均粗さRaが0.1μm以下となるまで研磨し、サンプルBを調製する。
 次に、サンプルBの研磨した2つの切断面の一方の側において、透過型二光束干渉顕微鏡を用いて、屈折率分布Δn(測定領域における屈折率のマップ)を測定する。得られた屈折率分布Δnから、標準偏差σを算定する。
 このような屈折率分布Δnの標準偏差σは、ガラス板の二つの主表面に垂直な方向での断面内における均質性を表す一つの指標として使用できる。すなわち、屈折率分布Δnの標準偏差σが小さいほど、光学特性に影響を及ぼす異物や組成変動領域が少なく、ガラス板の均質性が高いと言える。
 屈折率分布Δnの標準偏差σは、4.0×10-5以下であることが好ましく、3.0×10-5以下であることがより好ましく、2.5×10-5以下であることがさらに好ましく、2.0×10-5以下であることが特に好ましい。
 (光の直進性)
 本願において、ガラス板内の光の直進性は、図2に示したような装置を用いて、評価できる。
 図2には、ガラス板内の光の直進性を評価する際に使用される装置の構成を模式的に示す。図2に示すように、装置100は、レーザ光源110およびスクリーン120を有する。レーザ光源110からスクリーン120までの距離dは、160mmである。
 装置100を用いてガラス板内の光の直進性を評価する際には、まず評価用のサンプルが調製される。
 サンプルは、被測定対象となるガラス板を主表面に垂直な方向で切断して、ガラス板の略中心部分から、縦50mm×横50mmの寸法で採取される。なお、得られたサンプルの主表面および切断面が平滑でない場合は、サンプルの両主表面、およびサンプルの対向する2つの切断面のそれぞれを、算術平均粗さRaが0.1μm以下となるまで研磨して、サンプル130を調製する。なお、サンプル130は、前述の平均吸光係数αave1およびαave2の評価の際に使用されるサンプルAであっても良い。
 次に、装置100内にサンプル130を設置せずに、レーザ光源110からスクリーン120に向かってレーザ光を照射し、スクリーンに形成されたスポット140の面積Sを測定する。
 次に、レーザ光源110とスクリーン120の間に、サンプル130を配置して、同様の測定を行う。この際には、サンプル130は、研磨された一つの切断面(以下、「照射面」という)の略中央部分にレーザ光が照射されるように配置される。レーザ光源110からサンプル130の照射面までの距離dは、40mmである。スクリーン120に形成されたスポット140の面積をSとする。
 使用するレーザ光としては、一例として市販の赤色レーザポインタ(波長635nm等)が挙げられる。レーザ光のビーム径がサンプル130の厚さよりも大きい場合は、レーザ光源110とサンプル130の間に適宜スリットを設置して、ビーム径がサンプル130の厚さよりも小さくなるようにしても良い。
 スポット140の面積は、デジタルカメラにて撮影したスポット像を画像処理ソフトの輝度プロファイル機能を用いることで評価する。画像処理ソフトの輝度プロファイル機能の一例として、ImageJ 1.48vのPlot profile機能が挙げられる。本願では、ピーク強度の半値全幅区間をスポット140の面積と定めた。スポット140の形状が略矩形の場合、面積S、Sは、スポット140の縦、横それぞれの辺の長さの積により計算できる。
 このようにして得られたSとSの比S/Sは、ガラス板内の光の直進性を表す指標として、使用できる。すなわち、比S/Sが小さい(すなわち1に近い)ほど、ガラス板の端面に垂直な方向に沿ってガラス板内を伝播する光の直進性が良好であると言える。
 本発明の一実施形態によるガラス板は、2.25以下の比S/Sを有する。比S/Sは、2.0以下であることがより好ましく、1.5以下であることが最も好ましい。
 (ガラス板の形状)
 本発明の一実施形態によるガラス板の寸法は、前述の特徴を有する限り、特に限られない。ガラス板は、例えば、少なくとも一辺の長さLが20cm以上であり、厚さθが1.0mm以上のような、大きな寸法を有しても良い。
 ガラス板の厚さは、特に一辺の長さが50cm以上の大面積のエッジライト方式の導光板で用いる場合、剛性の維持と光源からの光の入射効率を高くする観点から厚い方が望ましい。1.5mm以上が好ましく、1.8mm以上がより好ましく、2.0mm以上がさらに好ましい。ただし、厚くなると重量が重くなるため、4.0mm以下が好ましい。3.5mm以下がより好ましく、3.0mm以下がさらに好ましく、2.8mm以下が特に好ましい。
 本発明のガラス板を建築用外装およびガラスカーテン、ガラスリブのような内装材、テーブル、棚板のような家具、什器等に用いる場合は、意匠性に応じて板厚を1.0mm以上の厚さで適宜選択して良い。板厚を12mm以上等、特に厚くしたい場合は複数枚のガラス板を貼合して用いても良い。
 また、ガラス板の形状は、特に限られず、ガラス板は、例えば、矩形状または円盤状等の形状であっても良い。
 なお、矩形状のガラス板では、端面が4つ存在するのに対して、円盤状のガラス板の場合、端面は一つとなることに留意する必要がある。
 また、ガラス板は平板でなく、主表面が曲率を持った板であっても良い。
 (ガラス板の組成)
 本発明の一実施形態によるガラス板の組成は、前述の特徴を有する限り、多種多様であって良い。下記する3種類(ガラス組成A、ガラス組成B、ガラス組成Cを有するガラス)が代表的な例として挙げられるが、本発明のガラスにおけるガラス組成は、ここにおいて示したガラス組成の例に限定されるものではない。
 例えば、ガラス組成Aであるガラス板は、酸化物基準の質量百分率表示で、実質的に、SiOを60~80%、Alを0~7%、MgOを0~10%、CaOを0~20%、SrOを0~15%、BaOを0~15%、NaOを3~20%、およびKOを0~10%含んでも良い。
 あるいは、ガラス組成Bであるガラス板は、酸化物基準の質量百分率表示で、実質的に、SiOを45~80%、Alを7%超30%以下、Bを0~15%、MgOを0~15%、CaOを0~6%、SrOを0~5%、BaOを0~5%、NaOを7~20%、KOを0~10%、およびZrOを0~10%含んでも良い。
 あるいは、ガラス組成Cであるガラス板は、酸化物基準の質量百分率表示で、実質的に、SiOを45~70%、Alを10~30%、Bを0~15%含むとともに、MgO、CaO、SrOおよびBaOからなる群から選ばれる少なくとも1種の成分を、合計5~30%含み、さらにLiO、NaOおよびKOからなる群から選ばれる少なくとも1種の成分を、合計0%以上3%未満含んでも良い。
 上記した成分を有する本発明のガラス板のガラスの組成の各成分の組成範囲について、以下に説明する。本明細書において、ガラスの成分は、SiO、Al等の酸化物換算で表し、ガラス全体に対する各成分の含有量(ガラス組成)は、酸化物基準の質量百分率、又は質量ppm(質量百分率を単に%、又は質量ppmを単にppmと表記する場合もある)で表す。
 SiOは、ガラスの主成分である。
 SiOの含有量は、ガラスの耐候性、失透特性を保つため、酸化物基準の質量百分率表示で、ガラス組成Aにおいては、好ましくは60%以上、より好ましくは63%以上であり、ガラス組成Bにおいては、好ましくは45%以上、より好ましくは50%以上であり、ガラス組成Cにおいては、好ましくは45%以上、より好ましくは50%以上である。
 一方、SiOの含有量は、溶解を容易にし、泡品質を良好なものとするために、またガラス中の二価鉄(Fe2+)の含有量を低く抑え、光学特性を良好なものとするため、ガラス組成Aにおいては、好ましくは80%以下、より好ましくは75%以下であり、ガラス組成Bにおいては、好ましくは80%以下、より好ましくは70%以下であり、ガラス組成Cにおいては、好ましくは70%以下、より好ましくは65%以下である。
 Alは、ガラス組成B及びCにおいてはガラスの耐候性を向上させる必須成分である。本発明のガラスにおいて実用上必要な耐候性を維持するためには、Alの含有量は、ガラス組成Aにおいては、好ましくは1%以上、より好ましくは2%以上であり、ガラス組成Bにおいては、好ましくは7%超、より好ましくは10%以上であり、ガラス組成Cにおいては、好ましくは10%以上、より好ましくは13%以上である。
 但し、二価鉄(Fe2+)の含有量を低く抑え、光学特性を良好なものとし、泡品質を良好なものとするため、Alの含有量は、ガラス組成Aにおいては、好ましくは7%以下、より好ましくは5%以下であり、ガラス組成Bにおいては、好ましくは30%以下、より好ましくは23%以下であり、ガラス組成Cにおいては、好ましくは30%以下、より好ましくは20%以下である。
 Bは、ガラス原料の溶融を促進し、機械的特性や耐候性を向上させる成分であるが、ガラス組成Aのようなソーダライムシリケート系のガラスにおいては、揮発による脈理(ream)の生成、炉壁の侵食等の不都合が生じないために5%以下であることが好ましく、2%以下であることがより好ましく、1%以下であることが特に好ましく、実質的に含有しないことが最も好ましい。以下、本明細書において、実質的に含有しないとは、不可避的不純物を除き含有しない意味である。また、ガラス組成B及びCにおいては、Bの含有量は好ましくは15%以下、より好ましくは、12%以下である。
 LiO、NaO、及び、KOといったアルカリ金属酸化物は、ガラス原料の溶融を促進し、熱膨張、粘性等を調整するのに有用な成分である。
 そのため、Na2Oの含有量は、ガラス組成Aにおいては、好ましくは3%以上、より好ましくは、8%以上である。Na2Oの含有量は、ガラス組成Bにおいては、好ましくは7%以上、より好ましくは、10%以上である。但し、溶解時の清澄性を保持し、製造されるガラスの泡品質を保つために、NaOの含有量は、ガラス組成A及びBにおいては、20%以下とするのが好ましく、15%以下とするのがさらに好ましく、ガラス組成Cにおいては、3%以下とするのが好ましく、1%以下とするのがより好ましい。
 また、KOの含有量は、ガラス組成A及びBにおいては、好ましくは10%以下、より好ましくは7%以下であり、ガラス組成Cにおいては、好ましくは2%以下、より好ましくは1%以下である。
 また、LiOは、任意成分であるが、ガラス化を容易にし、原料に由来する不純物として含まれる鉄含有量を低く抑え、バッチコストを低く抑える。このため、ガラス組成A、B及びCにおいて、LiOを2%以下含有させることができる。
 また、これらアルカリ金属酸化物の合計含有量(LiO+NaO+KO)は、溶解時の清澄性を保持し、製造されるガラスの泡品質を保つために、ガラス組成A及びBにおいては、好ましくは5%~20%、より好ましくは8%~15%であり、ガラス組成Cにおいては、好ましくは0%~2%、より好ましくは、0%~1%である。
 MgO、CaO、SrO、及びBaOといったアルカリ土類金属酸化物は、ガラス原料の溶融を促進し、熱膨張、粘性等を調整するのに有用な成分である。
 MgOは、ガラス溶解時の粘性を下げ、溶解を促進する作用がある。また、比重を低減させ、ガラス板に疵をつきにくくする作用があるために、ガラス組成A、B及びCにおいて、含有させることができる。また、ガラスの熱膨張係数を低く、失透特性を良好なものとするために、MgOの含有量は、ガラス組成Aにおいては、好ましくは10%以下、より好ましくは8%以下、さらに好ましくは5%以下であり、ガラス組成Bにおいては、好ましくは15%以下、より好ましくは12%以下、さらに好ましくは10%以下であり、ガラス組成Cにおいては、好ましくは10%以下、より好ましくは5%以下である。
 CaOは、ガラス原料の溶融を促進し、また粘性、熱膨張等を調整する成分であるので、ガラス組成A、B及びCにおいて含有させることができる。上記の作用を得るためには、ガラス組成Aにおいては、CaOの含有量は、好ましくは3%以上、より好ましくは5%以上である。また、失透を良好にするためには、ガラス組成Aにおいては、好ましくは20%以下、より好ましくは10%以下であり、ガラス組成Bにおいては、好ましくは6%以下であり、より好ましくは4%以下である。
 SrOは、熱膨張係数の増大及びガラスの高温粘度を下げる効果がある。かかる効果を得るために、ガラス組成A、B及びCにおいて、SrOを含有させることができる。但し、ガラスの熱膨張係数を低く抑えるため、ガラス組成A及びCにおいて、SrOの含有量は、15%以下とするのが好ましく、10%以下とするのがより好ましく、ガラス組成Bにおいては5%以下とするのが好ましく、3%以下とするのがより好ましい。
 BaOは、SrO同様に熱膨張係数の増大及びガラスの高温粘度を下げる効果がある。上記の効果を得るためにBaOを含有させることができる。但し、ガラスの熱膨張係数を低く抑えるため、ガラス組成A及びCにおいてBaOの含有量は、15%以下とするのが好ましく、10%以下とするのがより好ましく、ガラス組成Bにおいては5%以下とするのが好ましく、3%以下とするのがより好ましい。
 また、これらアルカリ土類金属酸化物の合計含有量(MgO+CaO+SrO+BaO)は、熱膨張係数を低く抑え、失透特性を良好なものとし、強度を維持するために、ガラス組成Aにおいては、好ましくは10%以上、より好ましくは13%以上であり、ガラス組成Bにおいては1%以上、より好ましくは10%以上であり、ガラス組成Cにおいては、好ましくは5%以上、より好ましくは10%以上である。ただし多くなると相対的に他の成分の量が少なくなることにより失透特性と強度に問題が出てしまうため、ガラス組成Aにおいては30%以下が好ましく、より好ましくは27%以下であり、ガラス組成Bにおいては、好ましくは15%以下、より好ましくは10%以下であり、ガラス組成Cにおいては、好ましくは30%以下、より好ましくは20%以下である。
 本発明のガラス板のガラスのガラス組成においては、ガラスの耐熱性及び表面硬度の向上のために、任意成分としてZrOを、ガラス組成A、B及びCにおいて、10%以下、好ましくは5%以下含有させてもよい。但し、10%超であると、ガラスが失透しやすくなるので、好ましくない。
 また、本発明のガラス板のガラスは、清澄剤としてSOを含有してもよい。この場合、SO含有量は、質量百分率表示で0%超、0.5%以下が好ましい。0.4%以下がより好ましく、0.3%以下がさらに好ましく、0.25%以下であることがさらに好ましい。
 また、本発明のガラス板のガラスは、酸化剤及び清澄剤としてSb、SnO及びAsのうちの一つ以上を含有してもよい。この場合、Sb、SnOまたはAsの含有量は、質量百分率表示で0~0.5%が好ましい。0.2%以下がより好ましく、0.1%以下がさらに好ましく、実質的に含有しないことがさらに好ましい。
 ただし、Sb、SnO及びAsは、ガラスの酸化剤として作用するため、ガラスのFe2+の量を調節する目的により上記範囲内で添加してもよい。ただし、Asは、環境面から積極的に含有させるものではない。
 本発明のガラス板のガラスは、TiOを含んでいてもよい。TiOを含有する場合、TiOは、可視光を吸収する成分としても機能するので、TiOの含有量は、上記したガラス組成の合量に対し、1000ppm以下とするのが好ましい。TiOは、波長400~700nmにおけるガラス板の内部透過率を低下させないという観点から、含有量を500ppm以下とすることがより好ましく、100ppm以下とすることが特に好ましい。
 本発明のガラス板のガラスは、CeOを含んでいてもよい。CeOには鉄のレドックスを下げる効果があり、波長400~700nmにおけるガラスの吸収を小さくすることができる。しかし、CeOを多量に含有する場合、CeOは、ソーラリゼーションの原因となるだけでなく可視光を吸収する成分としても機能するため上記したガラス組成の合量に対し、1000ppm以下とするのが好ましい。また、CeOの含有量は、500ppm以下とするのがより好ましく、400ppm以下とするのがさらに好ましく、300ppm以下とするのが特に好ましく、250ppm以下とするのが最も好ましい。添加する場合は製造時の製品特性のばらつき、特に色味のばらつきを抑制しやすくするために常に0.1ppm以上添加してあることが好ましい。色味の制御には1.0ppm以上の添加が好ましく5.0ppm以上の添加がより好ましい。鉄のレドックスを下げる効果を期待する場合は、ガラス中に含まれるFeに換算した鉄量(質量ppm)と同じ量以上添加することが好ましく、鉄量の1.5倍以上添加することがより好ましく、3倍以上添加することがさらに好ましく、5倍以上添加することが特に好ましい。
 また、本発明のガラス板のガラスは、NiOを含有してもよい。NiOを含有する場合、NiOは、着色成分としても機能するので、NiOの含有量は、上記したガラス組成の合量に対し、10ppm以下とするのが好ましい。特に、NiOは、波長400~700nmにおけるガラス板の内部透過率を低下させないという観点から、1.0ppm以下とするのが好ましく、0.8ppm以下とするのがより好ましく、0.6ppm以下とするのがさらに好ましく、0.5ppm以下とすることが特に好ましい。
 本発明のガラス板のガラスは、Crを含有してもよい。Crを含有する場合、Crは、着色成分としても機能するので、Crの含有量は、上記したガラス組成の合量に対し、10ppm以下とするのが好ましい。特に、Crは、波長400~700nmにおけるガラス板の内部透過率を低下させないという観点から、2.0ppm以下とするのが好ましく、1.6ppm以下とするのがより好ましく、1.2ppm以下とするのがさらに好ましく、1.0ppm以下とすることが特に好ましく、0.8ppm以下とすることが一段と好ましく、0.6ppm以下とすることが最も好ましい。
 本発明のガラス板のガラスは、MnOを含有してもよい。MnOを含有する場合、MnOは、可視光を吸収する成分としても機能するので、MnOの含有量は、上記したガラス組成の合量に対し、50ppm以下とするのが好ましい。特に、MnOは、波長400~700nmにおけるガラス板の内部透過率を低下させないという観点から、30ppm以下とするのが好ましく、20ppm以下とするのがより好ましく、15ppm以下とするのがさらに好ましく、10ppm以下とするのが特に好ましい。
 本発明のガラス板のガラスは、Se、CoO、V及びCuOからなる群より選ばれる少なくとも1種の成分を含んでいてもよい。これらの成分を含有する場合、可視光を吸収する成分としても機能するので、前記成分の含有量はそれぞれ5.0ppm以下とするのが好ましく、2.0ppm以下とすることがより好ましく、1.0ppm以下とするのがさらに好ましい。特に、これら成分は、波長400~700nmにおけるガラス板の内部透過率を低下させないように、実質的に含有しないことが最も好ましい。
 (本発明の一実施形態によるガラス板の製造方法について)
 次に、前述のような特徴を有する本発明の一実施形態によるガラス板の製造方法(以下、「第1の製造方法」と称する)の一例について、簡単に説明する。
 図3には、第1の製造方法の概略的なフローを示す。
 図3に示すように、第1の製造方法は、
 (1)ガラス原料を溶解して溶融ガラスを製造する工程(工程S110)と、
 (2)溶融ガラスをガラスリボンに形成する工程(工程S120)と、
 (3)ガラスリボンを冷却する工程(工程S130)と
 を有する。
 以下、各工程について、説明する。
 (工程S110)
 まず、所定の原料成分を混合することにより、ガラス原料が調合される。また、このガラス原料が加熱され、溶融ガラスが製造される。
 溶融ガラスは、不純物としての鉄成分(特にFe2+)ができる限り含まれないように調製される。このため、ガラス原料には、高純度のものが使用される。また、混合処理および溶解処理は、清浄度の高い環境で実施される。
 ただし、鉄が過度に排除されたガラス原料は、溶解の際に赤外光を吸収し難いという特性を有する。このため、そのような鉄成分の少ないガラス原料から溶融ガラスを得るには、ガラス原料に多大なエネルギーを投与して、ガラス原料を加熱する必要がある。その結果、製造工程おけるエネルギー効率が非現実的なレベルまで低下してしまう。
 また、このような加熱状態では、溶融ガラスの上部と底部とで、組成が変化し、最終的に得られるガラス板の組成が不均質になるおそれがある。さらに、そのような高温状態での操業では、製造設備の破損や劣化が生じる懸念がある。
 第1の製造方法では、このような問題に対処するため、ガラス原料に含まれるNi、Mn、Cr、CoおよびVの群からなる遷移金属イオンの含有量を制御する。すなわち、これらの遷移金属イオンは、ガラス原料中に、含有量を合計で0.1質量ppm以上含むように調整される。これらの遷移金属イオンは、紫外域から近赤外域の範囲で光を吸収する特性を有する。このため、溶融ガラスがこれらの遷移金属イオンを含む場合、鉄成分が過度に排除された場合であっても、加熱が比較的容易になり、前述のような問題が軽減される。
 ただし、これらの遷移金属イオンは、ガラスの着色成分としても機能する。このため、ガラス原料中にこれらの遷移金属イオンが多く含まれると、最終的に得られるガラス板の透明性が低下してしまう。
 そこで、第1の製造方法では、これらの遷移金属イオンの総和は、10.0質量ppm以下となるように制御される。これにより、透明性に悪影響を及ぼすことなく、均質なガラス板を、現実的なプロセスで製造することが可能となる。
 加えて、ガラス原料に含まれるガラスカレット割合の最適化、ガラス溶解槽内でのスターラーによる攪拌速度の制御、溶解ガラス上部空間でのバーナー加熱と溶解ガラスへの通電加熱による深さ方向での温度制御、溶解槽内での最高温度域から清澄温度域までの温度勾配制御等、の一部または全てを組みあわせること、またはこれらの方法に加えて、ガラス中に含まれるβ-OH量をガラス中に含まれるFe2+量に応じて制御することにより、鉄成分、特にFe2+が過度に排除されたガラスにおいても窯内での深さ方向での均質性を維持することを可能とした。
 (工程S120)
 次に、前述の工程で得られた溶融ガラスをガラスリボンに成形する。成形方法はフロート法、ロールアウト法、フュージョン法、モールドキャスト法等の方法が用いられる。例えばフロート法では、溶融ガラスは、予め溶融スズが収容されたフロートバスに流入され、溶融スズ上に浮遊して、ガラスリボンが形成され、溶融スズ上を移動する間に均一な厚さに形成される。
 成形方法は、ガラス組成により成形に適した温度域が異なることや、目的とする板の厚さ、製造設備の都合などを勘案して、上記した方法を含む一般的な成形方法を適宜選択して良い。
 (工程S130)
 その後、ガラスリボンは、所定の温度まで徐冷される。また、ガラスリボンを切断することにより、ガラス板が得られる。ガラス板の主表面は成形時のままでも良く、あるいは研磨して仕上げても良い。
 以上の工程により、本発明の一実施形態によるガラス板を製造できる。
 以上、本発明の一実施形態によるガラスの製造方法の一例について、詳しく説明した。ただし、本発明の一実施形態によるガラス板の製造方法は、以上の記載に限定されるものではない。
 また、上記記載では、本発明の一実施形態によるガラス板がエッジライト方式の導光板として適用される場合を例に、本発明の一実施形態によるガラス板の特徴を説明した。
 しかしながら、本発明によるガラス板は、導光板以外の各種用途にも適用できる。特に、本発明によるガラス板は、コンタミネーション物質の含有量が少なく、透過率が高いので、上記した各種表示装置や照明装置の導光体をはじめとする各種電子デバイスの光源用途や、太陽電池用基板ガラス、カバーガラス、各種電子デバイスの外装用途等の高い可視光透過率が要求される用途に有効に使用できる。加えて、従来のガラスに比べて透過率が高いだけでなく、端面の法線方向から見た際の透明性に優れ像の歪みが少ないという特徴を有するため、高い意匠性が要求される建築用外装材、内装材、および家具等にも適用可能である。
 以下、本発明の実施例について説明する。なお、以下の説明において、例1~例8は、実施例であり、例9~例11は、比較例である。
 (例1)
 前述の図3に示したような方法で、ガラス板を製造した。成形方法としてはフロート法を採用した。ガラスの母組成は前述のガラス組成Aの範囲である。原料中に含まれる鉄成分と各種の遷移金属イオン量は極めて微量であるため原料混合過程で均質に配合できるよう、適宜投入量の調整を行った。また、特に遷移金属イオン原料は高価であるため、コスト低減のために他の原料中に不純物として含まれるものも用いられるよう原料構成の最適化も行った。溶解工程では、ガラス融液が均質になるよう、回転数を制御したスターラーを用い、通常の燃焼に用いるバーナー以外の補助加熱も使用して窯内のガラス融液の温度勾配を制御した。また、原料調湿、原料バッチ中のガラスカレット比率を制御してβOHが適切な範囲となるようにした。
 これらの工夫により、ガラス原料を均一に溶融することができた。その後、ガラスリボンの製造工程、および冷却工程を経て、厚さが2.5mmのガラス板(「ガラス板1」と称する)が製造された。
 (例2~例4)
 例1と同様の方法で、ガラス板を製造した。ガラスの母組成は前述のガラス組成Aの範囲である。ただし、この例2~例4では、原料ガラスの組成とガラス中のβ-OH量を例1の場合とは変化させた。その他の製造条件は、例1の場合と同様である。これらの工夫により、ガラス原料を均一に溶融することができた。その後、ガラスリボンの製造工程、および冷却工程を経て、厚さ2.1mmのガラス板(ガラス板2)、厚さ1.8mmのガラス板(ガラス板3)、厚さ3.8mmのガラス板(ガラス板4)が製造された。
 (例5、例6)
 ガラス板の成形方法としてロールアウト法を用いて、ガラス板を製造した。ガラスの母組成は前述のガラス組成Aの範囲であるが、窯構造や成形方法が異なることによる加熱状態の違い、成形温度付近粘性の違いを考慮に入れて例1の場合とは変化させた。これらの工夫により、ガラス原料を均一に溶融することができた。その後、ガラスリボンの製造工程、および冷却工程、研磨工程を経て、厚さ2.5mmのガラス板(ガラス板5)、厚さ4.0mmのガラス板(ガラス板6)が製造された。
 (例7、例8)
 ガラス板の成形方法としてモールドキャスト法を用いて、ガラス板を製造した。例7の母組成は、前述のガラス組成Bの範囲であり、例8の母組成は、前述のガラス組成Cの範囲である。原料中に含まれる鉄成分と各種の遷移金属イオン量は極めて微量であるため原料混合過程で均質に配合できるよう、事前に原料珪砂の一部へ均質混合させておいたものを使用した。さらに、回転数を制御したスターラーの使用と、溶解時間、溶解温度プロファイルおよび雰囲気制御によって均質なガラス融液を得た。これを予熱した200mm×600mmのモールドへキャストし、徐冷工程、切断、研磨等の加工工程を経て、厚さ1.0mmのガラス板(ガラス板7)、厚さ1.8mmのガラス板(ガラス板8)が製造された。
 (例9)
 前述の図3に示したような方法で、ガラス板を製造した。成形方法としてはフロート法を採用した。ガラスの母組成は前述のガラス組成Aの範囲であり、ガラス板1と同じである。ただし例9はNi、Mn、Cr、Co、Vを加えず、β-OHも低くなるような条件で製造し、厚さ2.5mmのガラス板(ガラス板9)を得た。
 (例10)
 前述の図3に示したような方法で、ガラス板を製造した。成形方法としてはフロート法を採用した。ガラスの母組成は前述のガラス組成Aの範囲であり、太陽電池用基板ガラスとして用いられる高透過ソーダライムシリケートガラスである。ガラス溶解時は、ガラス板主表面の法線方向に見た均質性が十分得られるような製造条件で製造し、厚さ1.8mmのガラス板(ガラス板10)を得た。
 (例11)
 ガラス板の成形方法としてロールアウト法を用いて、ガラス板を製造した。ガラスの母組成は前述のガラス組成Aの範囲であり、太陽電池用カバーガラスとして用いられる高透過ソーダライムシリケートガラスである。ガラス溶解時は、ガラス板主表面の法線方向に見た均質性が十分得られるような製造条件で製造したものを研磨して厚さ2.5mmのガラス板(ガラス板11)を得た。
 以下の表1には、ガラス板1~ガラス板11の組成と成形方法、溶解時のスターラー使用状態、補助加熱の有無をまとめて示した。全酸化鉄量(質量ppm)は蛍光X線分析により、Fe2+の含有量はASTM C169-92に準じて測定した。なお、測定したFe2+の含有量は、Feに換算して表記した。
 ガラス中のFe2+含有量が4.0質量ppmを下回る場合は、以下の方法によってFe2+量を求めた。まず、同じガラス母組成で全鉄量を適宜調整してFe2+含有量が4.0質量ppmを上回るよう準備したガラスに対してASTMC169-92に準じる方法でFe2+含有量CFe2+(質量ppm)を測定した。このガラスの波長1000~1250nmの範囲の分光透過率を測定した。この範囲での透過率の極小値%TMINがガラス中のFe2+含有量と比例するため、検量線Y=(CFe2+/%TMIN)×Xを利用して、ガラス中のFe2+含有量を算出した。ここでXは、Fe2+含有量が4.0質量ppmを下回るガラスの波長1000~1250nmの範囲の分光透過率の極小値であり、Yがそのガラスに含まれるFe2+含有量である。
 又、ガラス中に含まれるCeOに換算した全酸化セリウム量、Ni量、Cr量、Mn量、Co量、V量に関しては、それぞれICP発光分析法により求めた。
 ガラス中に含まれる水分濃度の指標であるβ-OH(mm-1)はFT-IRにより測定したガラスの赤外透過スペクトルから次式により算出した。
 β-OH(mm-1)=Log10(T3500cm-1/T4000cm-1)/θ
ここでT3500cm-1、T4000cm-1はそれぞれ、波数3500cm-1、波数4000cm-1における透過率(%)であり、θはガラス板の厚さ(mm)である。
Figure JPOXMLDOC01-appb-T000001
 
 (評価)
 前述のガラス板1~ガラス板11を用いて、以下の評価を行った。
 (平均吸光係数の評価)
 前述のような方法で、各ガラス板における平均吸光係数αave1およびαave2を求めた。
 すなわち、まず、各ガラス板1~ガラス板11の略中心部分から、縦50mm×横50mmのサンプルを取り出した(それぞれ、「サンプル1」~「サンプル11」と称する)。
 次に、各サンプルの切断面を、算術平均粗さRaが0.1μm以下となるまで研磨した。切断面は、最終的に、#4000~#8000に相当する砥粒により鏡面仕上げした。なお、各サンプルの主表面は、採取直後の段階から比較的平滑であったため(算術平均粗さRa≦0.1μm)、研磨処理は実施しなかった。
 次に、分光測定器(U-4100:日立ハイテク株式会社製)を用いて、各サンプルの第1の主表面(製造時にスズ浴と接していなかった表面)において、波長400nm~700nmの範囲における透過率Tおよび反射率Rを測定した。反射率の測定には、絶対反射測定ユニットを用い、1nmの波長間隔で測定した。なお、反射率Rは、サンプルの両主表面での多重反射を考慮して得られた値である。
 得られた透過率Tおよび反射率Rを用いて、前述の(1)式により、波長400nm~700nmの範囲における吸光係数を1nm間隔で求めた。またこれらの値を平均して、平均吸光係数αave1を求めた。
 一方、平均吸光係数αave2の評価の際には、サンプルの研磨された一切断面の側から、分光測定器(UH-4150:日立ハイテク株式会社製)の長尺サンプル測定ユニットを用いて、波長400nm~700nmの範囲における透過率Tを測定した。
 反射率Rは、サンプルAの片面における反射率であるため、多重反射を考慮して得られた反射率Rとその光路長に対応する反射率Tから前述の(3)式を用いて得られた値である。
 得られた透過率Tおよび反射率Rを用いて、前述の(2)式により、波長400nm~700nmの範囲における吸光係数を1nm間隔で求めた。またこれらの値を平均して、平均吸光係数αave2を求めた。
 以下の表2には、サンプル1(ガラス板1)~サンプル11(ガラス板11)のそれぞれにおいて得られた平均吸光係数αave1、比αave2/αave1をまとめて示した。
Figure JPOXMLDOC01-appb-T000002
 
 この結果から、サンプル1~サンプル8では、平均吸光係数αave1が0.009以下であり、十分に小さいことがわかった。また、比αave2/αave1は、ほぼ1となり、主表面の法線方向における吸収率と切断面の法線方向の吸収率との差が十分に小さいことがわかった。
 一方、サンプル10、11では、平均吸光係数αave1が0.009超となり、比較的吸収率が大きいことがわかった。また、サンプル9、11では、比αave2/αave1は、1.3を大きく超えており、切断面の法線方向の吸収率は、主表面の法線方向における吸収率に比べて、よりいっそう大きくなっていることがわかった。サンプル10は、加熱が容易であるためαave2/αave1は1.3以下であり、主表面の法線方向における吸収率と切断面の法線方向の吸収率との差は低く抑えられているが、Fe2+が多いためαave1が高く透明性が悪かった。
 (屈折率の評価)
 前述のような方法で、各ガラス板における屈折率分布Δnの標準偏差σを求めた。
 すなわち、まず、各ガラス板1~ガラス板11の略中心部分から、縦50mm×横3mmのサンプルを取り出した(それぞれ、「サンプル1A」~「サンプル11A」と称する)。
 次に、各サンプルにおいて、一辺の長さが50mmの2つの切断面のそれぞれを、算術平均粗さRaが0.1μm以下となるまで研磨した。研磨面は、最終的に、#4000~#8000に相当する砥粒により鏡面仕上げした。なお、各サンプルの主表面は、採取直後の段階から比較的平滑であったため(算術平均粗さRa≦0.1μm)、研磨処理は実施しなかった。
 次に、各サンプルの研磨した2つの切断面の一方の側において、透過型二光束干渉顕微鏡(溝尻光学工業所製)を用いて、屈折率分布Δn(測定領域における屈折率のマップ)を測定した。
 得られた屈折率分布Δnから、標準偏差σを算定した。
 前述の表2には、サンプル1A(ガラス板1)~サンプル11A(ガラス板11)において得られた屈折率分布Δnの標準偏差σをまとめて示した。
 この結果から、ガラス板1~ガラス板8では、屈折率分布Δnの標準偏差σは、5.0×10-5以下であり、屈折率のばらつきが少ないことがわかった。このことから、ガラス板1~ガラス板8では、均質性が高いと言える。特に、ガラス板1~5ではσが2.0×10-5以下であり、特に均質性が良好であると言える。
 一方、ガラス板11では、平屈折率分布Δnの標準偏差σは、5.0×10-5を超えており、屈折率のばらつきが大きいことがわかった。このことから、ガラス板11では、ガラスの均質性は良好ではないと言える。
 (光の直進特性の評価)
 前述のような方法で、各ガラス板における光の直進特性を評価した。
 サンプルには、前述の(平均吸光係数の評価)において使用した、切断面が研磨されたサンプル1~サンプル11を使用した。
 まず、レーザ光源から160mmの位置に、白色スクリーン(サイズ測定を容易とするよう1mm間隔の方眼を印刷したもの)を垂直に設置した。レーザ光源には、波長635nmの半導体レーザ光源を使用した。
 この状態で、レーザ光源から白色スクリーンに向かってレーザ光を照射した。白色スクリーンに形成されたスポット(「参照スポット」という)の面積Sを算定した。
 次に、レーザ光源と白色スクリーンの間に、サンプル1~サンプル11のいずれかを配置して同様の測定を行った。サンプルは、サンプルの一つの切断面(照射面)の略中央部分にレーザ光が照射されるように配置した。レーザ光源からサンプルの照射面までの距離は、40mmである。白色スクリーンに形成されたスポット(「評価スポット」という)の面積Sを測定した。
 これらの測定から、各サンプル1~サンプル11において、比S/Sを求めた。
 前述の表2には、サンプル1(ガラス板1)~サンプル11(ガラス板11)において得られた比S/Sをまとめて示した。
 なお、各サンプルにおける測定において、白色スクリーン上の評価スポットの輝度を評価したところ、サンプル9~サンプル11では、評価スポットの輝度は、参照スポットの輝度に比べて、低下していることがわかった。これに対して、サンプル1~サンプル8では、評価スポットの輝度は、参照スポットの輝度とあまり差異がないことがわかった。
 表2に示すように、測定の結果、サンプル1~サンプル8では、比S/Sは、2.25以下であった。このことから、サンプル1(ガラス板1)~サンプル8(ガラス板8)では、サンプルの断面の法線方向において、良好な光の直進性が得られることがわかった。
 一方、サンプル9(ガラス板9)~サンプル11(ガラス板11)では、比S/Sは、2.25超であった。このことから、サンプル9(ガラス板9)~サンプル11(ガラス板11)では、サンプルの断面の法線方向における光の直進性は、あまり良好ではないことがわかった。
 以上の評価結果から、ガラス板1~ガラス板8では、含まれる吸収成分が少なく、透明性が高いとともに、ガラスの均質性が高く、端面に垂直な方向においても、良好な光の直進性が得られることが確認された。
 本願は、2015年5月13日に出願した日本国特許出願2015-098558号に基づく優先権を主張するものであり同日本国出願の全内容を本願に参照により援用する。
 10  表示装置
 20   光源群
 21   光源
 30   導光板
 32A  第1の主表面
 32B  第2の主表面
 34A~34D  端面
 40   表示素子
 100  装置
 110  レーザ光源
 120  スクリーン
 130  サンプル
 140  スポット

Claims (10)

  1.  一辺の長さLが200mm以上、厚さθが1.0mm以上であり、第1および第2の主表面と、該主表面同士を接続する1または複数の端面と、を有するガラス板であって、
     Feに換算した鉄を総量で1質量ppm以上80質量ppm以下、Feに換算したFe2+を0.1質量ppm以上10.0質量ppm以下、
     Ni、Mn、Cr、CoおよびVを合計で0.1質量ppm以上10.0質量ppm以下含み、
     前記第1の主表面に垂直な方向で切断することにより、当該ガラス板の中心部分から、縦50mm×横50mm×厚さθの寸法で採取され、前記2つの主表面、ならびに相互に対向する第1および第2の切断面が、算術平均粗さRa≦0.1μmとなるようにされたサンプルAにおいて、
     前記第1の主表面において、法線方向で測定した、波長400~700nmにおける平均吸光係数をαave1とし、前記第1の切断面において、前記法線方向と直交する方向で測定した波長400~700nmにおける平均吸光係数をαave2としたとき、前記αave1は、0.009以下であり、比αave2/αave1は、1.3以下である、ガラス板。
  2.  下記(A)式を満たす請求項1に記載のガラス板:
     
     26×[Ni]+0.5×[Mn]+13×[Cr]
    +85×[Co]+0.7×[V]<70
                               (A)式
     
    ここで、[Ni]、[Mn]、[Cr]、[Co]および[V]は、Ni、Mn、Cr、CoおよびVの各含有量(質量ppm)である。
  3.  前記第1の主表面に垂直な方向で切断することにより、当該ガラス板の中心部分から、縦50mm×横3mm×厚さθの寸法で採取され、前記2つの主表面、ならびに縦の長さが50mmの相互に対向する第3および第4の切断面が、算術平均粗さRa≦0.1μmとなるようにされたサンプルBにおいて、
     前記第3または第4の切断面から、二光束干渉法により測定される屈折率分布Δnの標準偏差は、5.0×10-5以下である、請求項1または2に記載のガラス板。
  4.  レーザ光源から160mmの距離にあるスクリーンに、該レーザ光源からビーム径が前記サンプルAの板厚よりも小さいレーザ光を照射した際に、前記スクリーンに形成される前記レーザ光のスポット面積をSとし、
     前記レーザ光源と前記スクリーンの間の、前記レーザ光源から距離40mmの位置に、前記サンプルAを前記第1の切断面が前記レーザ光源と対向するように配置した際に、前記スクリーンに形成される前記レーザ光のスポット面積をSとしたとき、
     比S/Sは2.25以下である、請求項1から3のいずれか一つに記載のガラス板。
  5.  β-OH(mm-1)が、0.015×[Fe2+]以上である、請求項1から4のいずれか一つに記載のガラス板。ここで[Fe2+]はFeに換算したFe2+量(質量ppm)である。
  6.  Feに換算したFe2+を0.1質量ppm以上4.0質量ppm以下含む、請求項1から5のいずれか一つに記載のガラス板。
  7.  CeOを0.1質量ppm以上500質量ppm以下含む、請求項1から6のいずれか一つに記載のガラス板。
  8.  AsおよびSbを実質的に含まない、請求項1から7のいずれか一つに記載のガラス板。
  9.  当該ガラス板は、前記第1または第2の主表面と前記端面の間、または前記端面同士の間が面取りされている、請求項1から8のいずれか一つに記載のガラス板。
  10.  当該ガラス板は、表示装置または照明装置に用いるエッジライト方式の導光板に用いられる、請求項1から9のいずれか一つに記載のガラス板。
PCT/JP2016/063408 2015-05-13 2016-04-28 ガラス板 WO2016181864A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020177032082A KR20180005661A (ko) 2015-05-13 2016-04-28 유리판
JP2017517890A JPWO2016181864A1 (ja) 2015-05-13 2016-04-28 ガラス板
CN201680026759.4A CN107531554A (zh) 2015-05-13 2016-04-28 玻璃板
US15/801,540 US10788172B2 (en) 2015-05-13 2017-11-02 Glass plate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015098558 2015-05-13
JP2015-098558 2015-05-13

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/801,540 Continuation US10788172B2 (en) 2015-05-13 2017-11-02 Glass plate

Publications (1)

Publication Number Publication Date
WO2016181864A1 true WO2016181864A1 (ja) 2016-11-17

Family

ID=57249137

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/063408 WO2016181864A1 (ja) 2015-05-13 2016-04-28 ガラス板

Country Status (6)

Country Link
US (1) US10788172B2 (ja)
JP (1) JPWO2016181864A1 (ja)
KR (1) KR20180005661A (ja)
CN (1) CN107531554A (ja)
TW (1) TW201700426A (ja)
WO (1) WO2016181864A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106514005A (zh) * 2017-01-05 2017-03-22 江苏大学 一种电连接器端子双面激光烧蚀建立镍屏障的方法及装备
US20200399164A1 (en) * 2018-02-28 2020-12-24 Agc Glass Europe Glass composition with nickel to reduce energy consumption during its melting step

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107922244A (zh) * 2015-08-18 2018-04-17 旭硝子株式会社 高透射玻璃
WO2017062442A1 (en) * 2015-10-06 2017-04-13 Corning Incorporated Spatial multiplexing coupler for light guide plates
CN107124900A (zh) * 2015-12-25 2017-09-01 松下知识产权经营株式会社 触摸面板和使用该触摸面板的显示装置
JP7333159B2 (ja) * 2016-12-26 2023-08-24 日本電気硝子株式会社 無アルカリガラス基板の製造方法
CN109084194B (zh) * 2018-09-13 2023-08-25 华域视觉科技(上海)有限公司 超窄细条发光件

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010084670A1 (ja) * 2009-01-21 2010-07-29 日本電気硝子株式会社 強化ガラスおよびガラス
JP2012144435A (ja) * 2005-10-19 2012-08-02 Nippon Electric Glass Co Ltd 放射線遮蔽ガラス及びその製造方法
WO2014128016A1 (fr) * 2013-02-19 2014-08-28 Agc Glass Europe Feuille de verre à haute transmission aux rayonnements infrarouges
WO2014180679A1 (fr) * 2013-05-07 2014-11-13 Agc Glass Europe Feuille de verre à haute transmission aux rayonnements infrarouges
JP2015072896A (ja) * 2013-09-03 2015-04-16 日本電気硝子株式会社 導光板

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101021897B1 (ko) 2005-10-19 2011-03-18 니폰 덴키 가라스 가부시키가이샤 방사선 차폐유리 및 그 제조방법
JP5751036B2 (ja) * 2011-06-09 2015-07-22 旭硝子株式会社 強化ガラス及びその製造方法、該強化ガラスの表面応力測定方法
US20130129947A1 (en) * 2011-11-18 2013-05-23 Daniel Ralph Harvey Glass article having high damage resistance
CN104487396A (zh) * 2012-08-09 2015-04-01 日本电气硝子株式会社 强化玻璃的制造方法及强化玻璃基板
CN105264284B (zh) * 2013-09-03 2018-04-06 日本电气硝子株式会社 导光板

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012144435A (ja) * 2005-10-19 2012-08-02 Nippon Electric Glass Co Ltd 放射線遮蔽ガラス及びその製造方法
WO2010084670A1 (ja) * 2009-01-21 2010-07-29 日本電気硝子株式会社 強化ガラスおよびガラス
WO2014128016A1 (fr) * 2013-02-19 2014-08-28 Agc Glass Europe Feuille de verre à haute transmission aux rayonnements infrarouges
WO2014180679A1 (fr) * 2013-05-07 2014-11-13 Agc Glass Europe Feuille de verre à haute transmission aux rayonnements infrarouges
JP2015072896A (ja) * 2013-09-03 2015-04-16 日本電気硝子株式会社 導光板

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106514005A (zh) * 2017-01-05 2017-03-22 江苏大学 一种电连接器端子双面激光烧蚀建立镍屏障的方法及装备
US20200399164A1 (en) * 2018-02-28 2020-12-24 Agc Glass Europe Glass composition with nickel to reduce energy consumption during its melting step
JP2021514925A (ja) * 2018-02-28 2021-06-17 エージーシー グラス ユーロップAgc Glass Europe 融解工程間のエネルギー消費量を減少させるためのニッケルを含むガラス組成物

Also Published As

Publication number Publication date
KR20180005661A (ko) 2018-01-16
TW201700426A (zh) 2017-01-01
JPWO2016181864A1 (ja) 2018-02-22
US10788172B2 (en) 2020-09-29
US20180066814A1 (en) 2018-03-08
CN107531554A (zh) 2018-01-02

Similar Documents

Publication Publication Date Title
WO2016181864A1 (ja) ガラス板
EP3365595B1 (en) High transmission light guide plates
TWI657276B (zh) 包含玻璃物件的光導板與顯示裝置
WO2015186486A1 (ja) 導光板用のガラス板
US10112864B2 (en) Glass article and light guide
WO2015178254A1 (ja) 導光板用のガラス板
US20190185367A1 (en) Method and apparatus for laminated backlight unit
JP2016210665A (ja) ガラス板
WO2016159362A1 (ja) ガラス物品
US11161769B2 (en) High transmission glasses with alkaline earth oxides as a modifier
JP7429093B2 (ja) 導光板
WO2016182054A1 (ja) ガラス板
WO2018159385A1 (ja) 導光板
WO2016031830A1 (ja) ガラス板
JP2016076478A (ja) 導光板用のガラス板
WO2018021279A1 (ja) ガラス板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16792589

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017517890

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20177032082

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16792589

Country of ref document: EP

Kind code of ref document: A1