WO2016181557A1 - 冷凍サイクル装置 - Google Patents
冷凍サイクル装置 Download PDFInfo
- Publication number
- WO2016181557A1 WO2016181557A1 PCT/JP2015/063944 JP2015063944W WO2016181557A1 WO 2016181557 A1 WO2016181557 A1 WO 2016181557A1 JP 2015063944 W JP2015063944 W JP 2015063944W WO 2016181557 A1 WO2016181557 A1 WO 2016181557A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- inner bottom
- refrigerant
- bottom portion
- refrigeration cycle
- sludge
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B43/00—Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
- F25B43/003—Filters
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B41/00—Fluid-circulation arrangements
- F25B41/40—Fluid line arrangements
Definitions
- the present invention relates to a refrigeration cycle apparatus having a refrigerant pipe for capturing sludge.
- Sludge contained in the refrigerant circulating through the refrigeration system may cause wear of piping, clogging of the expansion device, failure of the compressor, and the like.
- a strainer having a fibrous filter is installed in a refrigerant circulation path through which refrigerant circulates to capture a solid polymer (see Patent Document 1).
- Patent Document 1 since the refrigeration cycle apparatus of Patent Document 1 is configured to add a strainer to the refrigerant circulation path, the cost increases. Furthermore, in the configuration of Patent Document 1, the fibrous filter that has captured the sludge may be clogged, and the circulation of the refrigerant may be hindered.
- the present invention has been made against the background of the above problems, and has a refrigerant pipe that can capture sludge contained in the refrigerant with a simple configuration and can suppress the possibility of clogging of the refrigerant circuit.
- the purpose is to obtain a refrigeration cycle apparatus.
- a refrigeration cycle apparatus includes a refrigerant circuit through which a refrigerant circulates, the refrigerant circuit having a condenser, an expansion device, and a refrigerant pipe connecting the condenser and the expansion device.
- the first inner bottom portion and the second inner bottom portion, the second inner bottom portion is located between the first inner bottom portion and the expansion device, and the first inner bottom portion and the second inner bottom portion are formed of the refrigerant pipe.
- the bottom portion is configured, and the first inner bottom portion is recessed from the second inner bottom portion.
- sludge contained in the refrigerant can be captured with a simple configuration, and the possibility of clogging the refrigerant circuit can be suppressed.
- FIG. 3 is a diagram schematically showing an AA cross section of FIG. 2. It is the figure which described typically the modification 1 of Embodiment 1 which is a modification of FIG. It is the figure which described typically the modification 2 of Embodiment 1 which is a modification of FIG. It is the figure which described typically the modification 3 of Embodiment 1 which is a modification of FIG. It is the figure which described typically the modification 4 of Embodiment 1 which is a modification of FIG.
- FIG. 1 is a diagram schematically illustrating an example of a refrigerant circuit of a refrigeration cycle apparatus according to Embodiment 1 of the present invention.
- thick arrows indicate the direction of refrigerant flow.
- the refrigeration cycle apparatus 10 includes a compressor 1, a first heat exchanger 2 that functions as a condenser, an expansion device 3, and a second heat that functions as an evaporator.
- the exchanger 4 is annularly connected by piping, and has a refrigerant circuit in which the refrigerant circulates.
- the refrigerant used in this embodiment includes, for example, a substance having a double bond in a molecule such as HFO-1123, HFO-1234yf, or HFO-1234ze as a component, but a substance having a double bond. May not be included.
- At least a part of the pipe 50 that connects the refrigerant outlet side of the first heat exchanger 2 that functions as a condenser and the expansion device 3 is constituted by a refrigerant pipe 100 having a sludge trapping part 110.
- the first heat exchanger 2 corresponds to the “condenser” of the present invention.
- the compressor 1 is an inverter compressor that is controlled by an inverter, for example, and can change the capacity (the amount of refrigerant sent out per unit time) by arbitrarily changing the operating frequency.
- the 1st heat exchanger 2 which functions as a condenser makes the refrigerant which flows through the 1st heat exchanger 2 heat-exchange with air, for example, and condenses a refrigerant.
- a blower (not shown) that guides air to the first heat exchanger 2 is installed in the vicinity of the first heat exchanger 2.
- the expansion device 3 expands the refrigerant that passes through the expansion device 3, and includes, for example, an expansion valve or a capillary tube whose opening degree can be adjusted.
- the 2nd heat exchanger 4 which functions as an evaporator makes a refrigerant
- a blower (not shown) that guides air to the second heat exchanger 4 is installed in the vicinity of the second heat exchanger 4.
- the refrigerant compressed by the compressor 1 is heat-exchanged by the first heat exchanger 2 and condensed.
- the refrigerant condensed in the first heat exchanger 2 is expanded by the expansion device 3.
- the refrigerant expanded by the expansion device 3 undergoes heat exchange by the second heat exchanger 4 and evaporates.
- the refrigerant evaporated in the second heat exchanger 4 is sucked into the compressor 1 and compressed again.
- the refrigerant pipe 100 constitutes at least a part of the pipe 50 that connects the refrigerant outflow side of the first heat exchanger 2 and the expansion device 3.
- the liquid phase refrigerant condensed in the first heat exchanger 2 flows to the expansion device 3 through the refrigerant pipe 100.
- the refrigerant pipe 100 has a sludge capturing unit 110, and the sludge capturing unit 110 separates and captures sludge from the liquid refrigerant condensed in the first heat exchanger 2.
- Sludge is a solid polymer or the like generated from impurities contained in the refrigerant or a substance having a double bond.
- FIG. 2 is a diagram schematically illustrating an example of a longitudinal section of the refrigerant pipe illustrated in FIG. 1
- FIG. 3 is a diagram schematically illustrating the AA section of FIG.
- thick arrows indicate the direction in which the refrigerant flows.
- the cross-sectional part is described with the continuous line, and the part other than a cross section is described with the dotted line.
- the refrigerant pipe 100 includes a first cylinder part 106, a second cylinder part 102, and a third cylinder part 104.
- the 1st cylinder part 106, the 2nd cylinder part 102, and the 3rd cylinder part 104 are connected linearly, and the refrigerant
- the first tube portion 106 is connected between the second tube portion 102 and the third tube portion 104.
- the inner peripheral surface of the first tube portion 106 includes a first inner bottom portion 107.
- the first inner bottom portion 107 is a portion of the inner peripheral surface of the first tube portion 106 that is located below the gravity direction when the refrigerant pipe 100 is installed.
- the second cylinder portion 102 is connected between the first cylinder portion 106 and the expansion device 3.
- the inner peripheral surface of the second cylindrical portion 102 includes a second inner bottom portion 103.
- the second inner bottom portion 103 is a portion of the inner peripheral surface of the second cylindrical portion 102 that is located below the gravity direction when the refrigerant pipe 100 is installed.
- the third cylinder part 104 is connected between the first cylinder part 106 and the first heat exchanger 2.
- the inner peripheral surface of the third cylindrical portion 104 includes a third inner bottom portion 105.
- the third inner bottom portion 105 is a portion located below the gravitational direction on the inner peripheral surface of the third cylindrical portion 104 when the refrigerant pipe 100 is installed.
- the first inner bottom portion 107 is positioned below the gravitational direction as compared with the second inner bottom portion 103 and the third inner bottom portion 105. That is, the first inner bottom portion 107 is recessed from the second inner bottom portion 103 and the third inner bottom portion 105, and the recessed space from the second inner bottom portion 103 and the third inner bottom portion 105 to the first inner bottom portion 107 is sludge.
- the capturing unit 110 is configured.
- the first tube portion 106 has a larger equivalent diameter than the second tube portion 102 and the third tube portion 104.
- the second cylinder part 102 and the third cylinder part 104 have substantially the same cross-sectional shape.
- the cross-sectional shapes of the second tube portion 102 and the third tube portion 104 are not particularly limited, and may be rectangular or elliptical, but the cross-sectional shapes of the second tube portion 102 and the third tube portion 104 are not limited. When is circular, the pressure resistance of the second cylinder portion 102 and the third cylinder portion 104 can be improved.
- the upper portion of the first cylindrical portion 106 has a semicircular shape, and has substantially the same cross-sectional shape as the upper portions of the second cylindrical portion 102 and the third cylindrical portion 104.
- the lower portion of the first cylindrical portion 106 has a substantially box shape having a linear portion extending downward from both ends of the semicircular portion at the upper portion of the first cylindrical portion 106 and a bottom portion connecting the lower ends of the linear portions. It has a cross-sectional shape.
- the sludge capturing part 110 of the example of this embodiment has substantially the same width as the inner diameters of the second cylinder part 102 and the third cylinder part 104.
- the cross-sectional shape of the lower part of the 1st cylinder part 106 is not limited to the box shape which has 2 times bending shape of FIG. 3,
- it has cross-sectional shapes, such as U shape, Also good.
- the refrigerant pipe 100 can be obtained by drilling a hole in the lower part of one cylindrical pipe and brazing or welding a box-shaped member covering the processed hole.
- the outer peripheral surface of the first cylindrical portion 106 is positioned such that the portion where the sludge capturing portion 110 of the first cylindrical portion 106 is formed is located radially outside the outer peripheral surfaces of the second cylindrical portion 102 and the third cylindrical portion 104. is doing. That is, in the refrigerant pipe 100 of this embodiment, the portion where the sludge trapping portion 110 of the first cylindrical portion 106 is formed is more radially outward than the second cylindrical portion 102 and the third cylindrical portion 104. It has a swollen appearance. Therefore, in the refrigerant pipe 100 of the example of this embodiment, the sludge trapping portion 110 is directed downward by directing the swelled portion of the first cylindrical portion 106 downward in the direction of gravity.
- At least a part of the pipe 50 that connects the refrigerant outlet side of the first heat exchanger 2 that functions as a condenser and the expansion device 3 has the sludge trapping part 110. It consists of The sludge trapping part 110 is lower than the inner peripheral surfaces of the second cylindrical part 102 and the third cylindrical part 104 of the first cylindrical part 106 connected between the second cylindrical part 102 and the third cylindrical part 104. A space that spreads out. That is, the first inner bottom portion 107 of the first tube portion 106 is recessed from the second inner bottom portion 103 of the second tube portion 102 and the third inner bottom portion 105 of the third tube portion 104.
- the sludge contained in the refrigerant flows while sinking downward in the refrigerant pipe 100 and is captured by the sludge capturing unit 110. This is because the sludge contained in the refrigerant has a higher density than the refrigerant.
- the sludge contained in the refrigerant circulating in the refrigerant circuit can be reduced only by connecting the refrigerant pipe 100 between the first heat exchanger 2 and the expansion device 3.
- the expansion device 3 may be clogged, the sliding portion of the compressor 1 may be worn, the piping may be worn, and the like.
- the liquid refrigerant condensed in the first heat exchanger 2 is configured to flow into the refrigerant pipe 100.
- the sludge capturing part 110 of the refrigerant pipe 100 can capture sludge efficiently.
- the sludge capturing part 110 is provided in the first cylinder part 106 having an equivalent diameter larger than that of the second cylinder part 102 and the third cylinder part 104. Therefore, in the 1st cylinder part 106, since the flow of a refrigerant
- the sludge trapping part 110 is provided below the first cylindrical part 106, even if sludge is accumulated in the sludge trapping part 110, the sludge of the first cylindrical part 106 is provided. Since the refrigerant flows above the capturing unit 110, the possibility that the refrigerant pipe 100 is clogged is suppressed.
- coolant which circulates through the refrigerating-cycle apparatus 10 contains the substance which has a double bond in molecular structure, said effect becomes still more remarkable. That is, the substance having a double bond may generate a solid polymer, and if the refrigerant containing the solid polymer circulates through the refrigeration cycle apparatus 10, the piping may be accelerated and the expansion device 3 may be clogged. There is a fear, and there is a risk of promoting wear of the sliding portion of the compressor 1. According to this embodiment, even when a solid polymer is generated, the sludge capturing unit 110 captures the solid polymer, so that the reliability of the refrigeration cycle apparatus 10 can be improved.
- This embodiment is not limited to the above example, and has a plurality of modifications as described below. Note that, in the following description of the modified examples, the description overlapping with the above description is omitted.
- FIG. 4 is a diagram schematically showing Modification 1 of Embodiment 1 which is a modification of FIG.
- the refrigerant pipe 100A of the first modification shown in FIG. 4 is the width of the portion where the sludge trapping part 110A of the first cylindrical part 106A is formed, that is, the first The width of the inner bottom portion 107 ⁇ / b> A is narrower than that of the second cylindrical portion 102 and the third cylindrical portion 104. Therefore, in the modification 1, the freedom degree of the arrangement space which arrange
- FIG. 5 is a diagram schematically showing Modification 2 of Embodiment 1 which is a modification of FIG.
- the refrigerant pipe 100B of the second modification shown in FIG. 5 is the width of the sludge trapping part 110B of the first cylinder part 106B, that is, the first inner bottom part 107B.
- the width is larger than the inner diameters of the second cylinder part 102 and the third cylinder part 104. Therefore, in the modified example 2, the accommodation amount in which the sludge capturing part 110B accommodates the sludge is increased.
- FIG. 6 is a diagram schematically showing Modification 3 of Embodiment 1 which is a modification of FIG. Compared to the example of the first embodiment described in FIG. 2, the refrigerant pipe 100 ⁇ / b> C of the modified example 3 illustrated in FIG. It has.
- the first cover portion 112 ⁇ / b> A protrudes from the second inner bottom portion 103 of the second cylinder portion 102 to above the first inner bottom portion 107 of the first cylinder portion 106 and covers the upper portion of the first inner bottom portion 107.
- the sludge accumulated in the sludge trapping portion 110 is wound up by the flow of the refrigerant, and the sludge The possibility of flowing out from the capturing unit 110 is suppressed. Further, in the vicinity of the first cover portion 112A, the flow direction of the refrigerant changes, so that the stagnation of the refrigerant flow is likely to occur. Therefore, in the third modification, the sludge capturing unit 110 can capture sludge efficiently.
- the first covering portion 112A is preferably a portion of the second cylindrical portion 102 that protrudes above the sludge capturing portion 110. That is, the first cover portion 112 ⁇ / b> A is formed by projecting the second inner bottom portion 103 of the second cylinder portion 102 above the first inner bottom portion 107. By forming the first cover portion 112 ⁇ / b> A by causing the second tube portion 102 to protrude above the sludge capturing portion 110, a box-shaped member constituting the lower portion of the first tube portion 106 can be easily attached.
- the first cover portion 112 ⁇ / b> A may be a part of the first tube portion 106, or may be configured by the second tube portion 102 or another member attached to the first tube portion 106.
- FIG. 7 is a diagram schematically showing Modification 4 of Embodiment 1, which is a modification of FIG. Compared to the third modification shown in FIG. 6, the refrigerant piping 100 ⁇ / b> D of the fourth modification shown in FIG. ing. That is, the refrigerant pipe 100D of Modification 4 includes a first cover portion 112A that covers the upper side of the sludge trapping portion 110 on the second tube portion 102 side and a second cover portion that covers the upper side of the sludge trapping portion 110 on the third tube portion 104 side. And a cover portion 112B.
- the second cover part 112 ⁇ / b> B protrudes from the third inner bottom part 105 of the third cylinder part 104 above the first inner bottom part 107 of the first cylinder part 106 and covers the upper part of the first inner bottom part 107. Therefore, in the modified example 4, even if the refrigerant pipe 100D is attached in the reverse direction, the sludge accumulated in the sludge trapping part 110 is wound up by the refrigerant flow and flows out of the sludge trapping part 110. The fear is suppressed.
- the second cover portion 112B is preferably a portion of the third cylinder portion 104 that protrudes above the sludge capturing portion 110. That is, the second cover portion 112 ⁇ / b> B is formed by projecting the portion of the third inner bottom portion 105 of the third cylindrical portion 104 above the first inner bottom portion 107. By making the third cylindrical portion 104 protrude above the sludge capturing portion 110 to form the second cover portion 112B, a box-shaped member that forms the lower portion of the first cylindrical portion 106 can be easily attached.
- the 2nd cover part 112B may be a part of the 1st cylinder part 106, or may be comprised by the separate member attached to the 3rd cylinder part 104 or the 1st cylinder part 106.
- FIG. 8 is a diagram schematically showing Modification 5 of Embodiment 1, which is a modification of FIG. Compared to the example of the first embodiment shown in FIG. 2, in the refrigerant pipe 100E of the modified example 5 shown in FIG. 8, the first cylindrical portion 106A is the first inner portion that is the inner bottom portion of the first cylindrical portion 106A. A plurality of partition walls 114 projecting upward from the bottom 107A are provided. In the modified example 5, the sludge trapping part 110 is divided into a plurality along the axial direction of the first cylinder part 106A, which is the direction in which the refrigerant flows, by the partition wall 114, and the sludge is trapped between the partition walls 114. .
- the possibility that the sludge accumulated in the sludge trapping part 110 is wound up by the flow of the refrigerant and flows out of the sludge trapping part 110 is reduced.
- the height of the partition wall 114 is appropriately determined. For example, as shown in FIG. 8, the height of the partition wall 114 is lower than the inner peripheral surfaces of the second cylinder portion 102 and the third cylinder portion 104. If formed, the flow rate of the refrigerant flowing through the first cylindrical portion 106A can be slowed down, so that sludge can be captured efficiently.
- the sludge accumulated in the sludge trapping part 110 is wound up by the flow of the refrigerant.
- the risk of flowing out of the sludge trapping part 110 can be reduced.
- FIG. 9 is a diagram schematically showing Modification 6 of Embodiment 1, which is a modification of FIG. Compared to the example of the first embodiment shown in FIG. 2, in the modified example 6 of FIG. 9, the refrigerant pipe 100F has a linear shape in which the second cylindrical portion 102 and the first cylindrical portion 106B are linearly connected. And a bent shape portion in which the first cylindrical portion 106B and the third cylindrical portion 104A are connected in a bent shape.
- the first inner bottom portion 107B is located below the gravitational direction as compared with the second inner bottom portion 103, and a depressed space from the second inner bottom portion 103 to the first inner bottom portion 107 is
- the sludge trapping part 110 is configured.
- the sludge capturing part 110 of the first cylinder part 106B can capture sludge efficiently.
- the third cylindrical portion 104A is connected to the upper side of the first cylindrical portion 106B, and the refrigerant that has flowed down the third cylindrical portion 104A is directed to the first cylindrical portion 106B. And change to flow in a substantially horizontal direction. With this configuration, the sludge can be captured by the sludge capturing unit 110 by efficiently using gravity.
- sludge has a higher density and inertial force than refrigerant, so when the flow of refrigerant containing sludge changes from downward to horizontal, the sludge is in the direction of gravity compared to refrigerant. Easy to go down.
- FIG. 10 is a diagram schematically showing Modification Example 7 of Embodiment 1, which is a modification example of FIG. 2, and FIG. 11 is a diagram schematically showing a BB cross section of FIG.
- FIG. 11 in order to facilitate understanding of the modified example 7, the cross-sectional portion is indicated by a solid line and the portion other than the cross-section is indicated by a dotted line.
- the inner peripheral surface is located on the outer side in the radial direction from the inner peripheral surfaces of the second cylindrical portion 102 and the third cylindrical portion 104.
- the outer peripheral surface of the first cylindrical portion 106C is located on the outer side in the radial direction than the outer peripheral surfaces of the second cylindrical portion 102 and the third cylindrical portion 104. That is, the refrigerant pipe 100G of the modified example 7 has the first cylinder part 106C on the outer side in the radial direction compared to the second cylinder part 102 and the third cylinder part 104 on the entire circumference in the circumferential direction of the refrigerant pipe 100G. It has a swollen appearance.
- the cross-sectional shapes of the second cylindrical portion 102, the third cylindrical portion 104, and the first cylindrical portion 106C are not particularly limited, and may be rectangular or elliptical. As shown, when the cross-sectional shapes of the second cylindrical portion 102, the third cylindrical portion 104, and the first cylindrical portion 106C are circular, the second cylindrical portion 102, the third cylindrical portion 104, and the first cylindrical portion 106C Pressure resistance is improved. Moreover, when the 2nd cylinder part 102 and the 3rd cylinder part 104 have the same cross-sectional shape, the member which forms the 2nd cylinder part 102 and the 3rd cylinder part 104 can be shared.
- the refrigerant pipe 100 ⁇ / b> G according to the modified example 7 has a first cylinder having a larger equivalent diameter between the second cylinder part 102 and the third cylinder part 104 than the second cylinder part 102 and the third cylinder part 104.
- the part 106C is obtained by brazing or welding.
- the first inner bottom part 107C of the first cylinder part 106C is connected to the second inner bottom part 103 of the second cylinder part 102 no matter which part along the circumferential direction of the refrigerant pipe 100G faces downward.
- the workability when the refrigerant pipe 100G is attached is improved. Furthermore, in the refrigerant pipe 100G of the modified example 7, since the volume of the sludge capturing part 110C can be increased, sludge can be captured efficiently.
- the cross-sectional shape of the 2nd cylinder part 102, the 3rd cylinder part 104, and the 1st cylinder part 106C shall be circular, the central axis of the 2nd cylinder part 102, the central axis of the 3rd cylinder part 104, and the 1st cylinder part 106C. By substantially matching the central axis of the refrigerant pipe 100G, the refrigerant pipe 100G can exhibit an equivalent function regardless of which portion along the circumferential direction of the refrigerant pipe 100G faces downward.
- FIG. 12 is a diagram schematically showing Modification 8 of Embodiment 1, which is a modification of FIG.
- the refrigerant pipe 100H of the modified example 8 shown in FIG. 12 includes a first cover part 112C that covers the second cylinder part 102 side of the sludge trapping part 110C.
- the first cover portion 112C includes at least a portion that protrudes from the second inner bottom portion 103 of the second tube portion 102 above the first inner bottom portion 107C of the first tube portion 106C and covers the upper portion of the first inner bottom portion 107C. It is out.
- the first cover portion 112C is preferably a portion of the second cylinder portion 102 that protrudes toward the sludge capturing portion 110C.
- the first tube portion 106C can be easily attached to the second tube portion 102 by configuring the first cover portion 112 by projecting the second tube portion 102 into the first tube portion 106C.
- the first cover portion 112C may be a portion of the first tube portion 106C, or may be configured by another member attached to the second tube portion 102 or the first tube portion 106C.
- FIG. 13 is a diagram schematically showing Modification 9 of Embodiment 1, which is a modification of FIG. Compared with the modification 8 shown in FIG. 12, the refrigerant
- the second cover portion 112D includes at least a portion that protrudes from the third inner bottom portion 105 of the third tube portion 104 to the upper side of the first inner bottom portion 107C of the first tube portion 106C and covers the upper portion of the first inner bottom portion 107C. It is out. Therefore, in the modified example 9, even if the refrigerant pipe 100I is attached in the reverse direction, the sludge accumulated in the sludge trapping part 110C is wound up by the flow of the refrigerant and flows out of the sludge trapping part 110C. The fear can be suppressed.
- the second covering portion 112D is, for example, a portion of the third cylindrical portion 104 that protrudes toward the sludge capturing portion 110C.
- the third cylindrical portion 104 can be easily attached to the first cylindrical portion 106C.
- the second cover portion 112D may be a portion of the first cylinder portion 106C, or may be configured by the third cylinder portion 104 or another member attached to the first cylinder portion 106C.
- FIG. 14 is a diagram schematically showing Modification 10 of Embodiment 1, which is a modification of FIG. Compared to the example of the first embodiment shown in FIG. 2, in the refrigerant pipe 100J of the modified example 10 shown in FIG. 14, the sludge trapping part 110D is lowered downward at the first angle ⁇ 1 from the second cylindrical part 102 side.
- a first inclined portion 116A that is inclined and a second inclined portion 116B that is inclined downward at a second angle ⁇ 2 that is smaller than the first angle ⁇ 1 from the third cylindrical portion 104 side are included.
- the second inclined portion 116B is inclined downward from the third inner bottom portion 105 of the third cylindrical portion 104 to the first inner bottom portion 107D of the first cylindrical portion 106D at a second angle ⁇ 2 that is smaller than the first angle ⁇ 1.
- the inclination of the second inclined portion 116B on the side where the refrigerant flows into the first cylinder portion 106D is gentle, and the sludge flows smoothly into the sludge capturing portion 110D.
- the slope of the first inclined portion 116A on the side from which the refrigerant flows out of the first cylinder portion 106D is steep, and the flow of the refrigerant is easily stagnated. Therefore, in the modified example 10, the sludge capturing unit 110D can capture sludge efficiently.
- FIG. 15 is a diagram schematically showing Modification 11 of Embodiment 1, which is a modification of FIG.
- the refrigerant pipe 100K of the modified example 11 illustrated in FIG. 15 includes a first cover portion 112F that covers the upper side of the sludge capturing unit 110D on the second tube portion 102 side. Yes.
- the first cover portion 112F protrudes toward the third tube portion 104 from the bottom portion of the first inclined portion 116A. That is, the first cover portion 112F projects from the second inner bottom portion 103 of the second cylinder portion 102 to the upper side of the first inner bottom portion 107D of the first cylinder portion 106D and covers the upper portion of the first inner bottom portion 107D.
- the first cover portion 112F is preferably a portion of the second tube portion 102 that protrudes above the sludge capturing portion 110D. That is, the first cover portion 112F is formed by projecting the second inner bottom portion 103 of the second cylinder portion 102 above the first inner bottom portion 107D. By making the second cylinder portion 102 protrude above the sludge capturing portion 110D to form the first cover portion 112F, a box-shaped member constituting the lower portion of the first cylinder portion 106D can be easily attached.
- the 1st cover part 112F may be a part of 1st cylinder part 106D, or may be comprised by the separate member attached to the 2nd cylinder part 102 or 1st cylinder part 106D.
- FIG. 16 is a diagram schematically showing Modification 12 of Embodiment 1, which is a modification of FIG. Compared with the modification example 7 shown in FIG. 10, in the modification example 12 shown in FIG. 16, the sludge trapping part 110E is inclined first in the inner diameter direction at the first angle ⁇ 1 from the second cylindrical part 102 side. 116C and 2nd inclination part 116D which inclines in the internal diameter direction at 2nd angle (theta) 2 of an angle smaller than 1st angle (theta) 1 from the 3rd cylinder part 104 side.
- the inclination of the second inclined portion 116D on the side where the refrigerant flows into the first cylindrical portion 106E is gentle, and the sludge flows smoothly into the sludge capturing portion 110E. Then, the inclination of the first inclined portion 116C on the side from which the refrigerant flows out from the first cylinder portion 106E is steep, and the flow of the refrigerant is easily stagnated. Therefore, in the modified example 12, the sludge capturing part 110E can capture sludge efficiently.
- the refrigerant pipe 100 ⁇ / b> L of the modified example 12 has a larger equivalent diameter between the second cylinder portion 102 and the third cylinder portion 104 than the second cylinder portion 102 and the third cylinder portion 104. It can be obtained by brazing or welding fixing the first cylindrical portion 106E formed with an inclination.
- the first cylindrical portion 106E is obtained by, for example, performing a drawing process in which both sides of a cylindrical member are processed to be thin, so that the productivity of the modified example 12 is improved.
- FIG. 17 is a diagram schematically showing Modification 13 of Embodiment 1, which is a modification of FIG. Compared with the modification 12 shown in FIG. 16, the refrigerant
- the first cover portion 112G includes at least a portion that protrudes above the first inner bottom portion 107E of the first tube portion 106E from the second inner bottom portion 103 of the second tube portion 102 and covers the upper portion of the first inner bottom portion 107E. It is out.
- the first cover portion 112G is preferably a portion of the second cylinder portion 102 that protrudes above the sludge capturing portion 110E.
- the first cylinder part 106E can be easily attached to the second cylinder part 102 by projecting the second cylinder part 102 above the sludge capturing part 110E to form the first cover part 112G.
- the first cover portion 112G may be a portion of the first tube portion 106E, or may be configured by another member attached to the second tube portion 102 or the first tube portion 106E.
- FIG. FIG. 18 is a diagram schematically illustrating an example of the refrigerant circuit of the refrigeration cycle apparatus according to Embodiment 2 of the present invention.
- the flow path switching device 5 switches the direction of the refrigerant flowing through the refrigeration cycle apparatus 10A, and is configured by, for example, a four-way valve.
- the flow path switching device 5 causes the first heat exchanger 2 to function as an evaporator and the second heat exchanger 4 to function as a condenser, and causes the first heat exchanger 2 to function as a condenser.
- the flow path switching device 5 connects the refrigerant suction side of the compressor 1 and the first heat exchanger 2 and connects the refrigerant discharge side of the compressor 1 and the second heat exchanger 4.
- the refrigeration cycle apparatus 10A is in the first operation mode in which the first heat exchanger 2 functions as an evaporator and the second heat exchanger 4 functions as a condenser.
- the flow path switching device 5 is switched to a setting for connecting the refrigerant discharge side of the compressor 1 and the first heat exchanger 2 and connecting the refrigerant suction side of the compressor 1 and the second heat exchanger 4.
- the refrigeration cycle apparatus 10A is in the second operation mode in which the first heat exchanger 2 functions as a condenser and the second heat exchanger 4 functions as an evaporator.
- the refrigeration cycle apparatus 10A of this embodiment includes a first operation mode in which the second heat exchanger 4 functions as a condenser, and a second operation mode in which the first heat exchanger 2 functions as a condenser. . Therefore, in this embodiment, the refrigerant pipe 100 is connected between the first heat exchanger 2 and the expansion device 3 and between the second heat exchanger 4 and the expansion device 3. In the refrigeration cycle apparatus 10A of this embodiment, the refrigerant pipe 100 disposed on the first heat exchanger 2 side and the second heat exchanger 4 side of the expansion device 3 captures the sludge and serves as the refrigerant. Since the contained sludge can be reduced, the reliability of the refrigeration cycle apparatus 10A can be improved.
- any one of the refrigerant pipes 100 of the first embodiment and the modified example of the first embodiment may be selected.
- One of 100G and the refrigerant pipe 100I of the modified example 9 illustrated in FIG. 13 may be selected.
- the refrigerant pipe 100D of the modified example 4 illustrated in FIG. 7 or the refrigerant pipe 100I of the modified example 9 illustrated in FIG. 13 including the first cover part and the second cover part is selected, the refrigerant Even when the flow direction changes, the first cover portion and the second cover portion suppress the outflow of sludge, so that the reliability of the refrigeration cycle apparatus 10A can be improved.
- the present invention is not limited to the above embodiment, and can be variously modified within the scope of the present invention. That is, the configuration of the above embodiment may be improved as appropriate, or at least a part of the configuration may be replaced with another configuration. Further, the configuration requirements that are not particularly limited with respect to the arrangement are not limited to the arrangement disclosed in the embodiment, and can be arranged at a position where the function can be achieved.
- a plurality of refrigerant pipes including a sludge trapping part may be connected between the refrigerant outlet side of the heat exchanger functioning as a condenser and the expansion device.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Power Engineering (AREA)
- Applications Or Details Of Rotary Compressors (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
- Drying Of Gases (AREA)
Abstract
Description
実施の形態1.
図1は、この発明の実施の形態1に係る冷凍サイクル装置の冷媒回路の一例を模式的に記載した図である。図1において、太線の矢印は、冷媒の流れの向きを示している。図1に示すように、この実施の形態に係る冷凍サイクル装置10は、圧縮機1と、凝縮器として機能する第1熱交換器2と、膨張装置3と、蒸発器として機能する第2熱交換器4とが配管で環状に接続され、内部に冷媒が循環する冷媒回路を有するものである。この実施の形態で使用される冷媒は、例えば、HFO-1123、HFO-1234yfまたはHFO-1234ze等の分子中に二重結合を有する物質を少なくとも一成分として含むものであるが、二重結合を有する物質を含まないものであってもよい。凝縮器として機能する第1熱交換器2の冷媒流出側と膨張装置3とを接続する配管50の少なくとも一部分は、スラッジ捕捉部110を有する冷媒配管100で構成されている。なお、第1熱交換器2は、この発明の「凝縮器」に相当するものである。
次に、冷凍サイクル装置10の動作の一例について説明する。圧縮機1で圧縮された冷媒は、第1熱交換器2で熱交換されて凝縮する。第1熱交換器2で凝縮した冷媒は、膨張装置3で膨張される。膨張装置3で膨張された冷媒は、第2熱交換器4で熱交換されて蒸発する。第2熱交換器4で蒸発した冷媒は、圧縮機1に吸入され、再び圧縮される。
次に、この実施の形態の冷凍サイクル装置10に適用される冷媒配管100について説明する。この実施の形態に係る冷媒配管100は、第1熱交換器2の冷媒流出側と膨張装置3とを接続する配管50の少なくとも一部分を構成するものである。第1熱交換器2で凝縮された液相の冷媒は、冷媒配管100を通って、膨張装置3に流れる。冷媒配管100は、スラッジ捕捉部110を有しており、スラッジ捕捉部110は、第1熱交換器2で凝縮された液冷媒から、スラッジを分離して捕捉する。なお、スラッジは、冷媒に含まれる不純物、または二重結合を有する物質から生じる固体重合物等である。
図4は、図3の変形例である実施の形態1の変形例1を模式的に記載した図である。図3に記載の実施の形態1の例と比較して、図4に記載の変形例1の冷媒配管100Aは、第1筒部106Aのスラッジ捕捉部110Aが形成された部分の幅、すなわち第1内底部107Aの幅が、第2筒部102および第3筒部104と比較して細い形状を有している。そのため、変形例1では、冷媒配管100Aを配置する配置スペースの自由度が向上されている。
図5は、図3の変形例である実施の形態1の変形例2を模式的に記載した図である。図3に記載の実施の形態1の例と比較して、図5に記載の変形例2の冷媒配管100Bは、第1筒部106Bのスラッジ捕捉部110Bの幅、すなわち第1内底部107Bの幅が、第2筒部102および第3筒部104の内径と比較して、大きく形成されている。そのため、変形例2では、スラッジ捕捉部110Bがスラッジを収容する収容量が増大されている。さらに、変形例2では、第1筒部106Bの相当直径が大きくなっているため、第1筒部106Bに流れる冷媒の流れが遅くなり、冷媒からスラッジを分離しやすい。したがって、変形例3では、冷媒配管100Bの第1筒部106Bに形成されたスラッジ捕捉部110Bが効率良くスラッジを捕捉することができる。
図6は、図2の変形例である実施の形態1の変形例3を模式的に記載した図である。図2に記載の実施の形態1の例と比較して、図6に記載の変形例3の冷媒配管100Cは、スラッジ捕捉部110の第2筒部102側の上方を覆う第1覆い部112Aを備えている。第1覆い部112Aは、第2筒部102の第2内底部103から、第1筒部106の第1内底部107の上方に突出し、第1内底部107の上方を覆うものである。変形例3では、第1覆い部112Aが、スラッジ捕捉部110の第2筒部102側の上方を覆っているため、スラッジ捕捉部110に溜まったスラッジが、冷媒の流れによって巻き上げられて、スラッジ捕捉部110から流出するおそれが抑制されている。さらに、第1覆い部112Aの近傍では、冷媒の流れの向きが変化するため、冷媒の流れに淀みが生じやすくなっている。したがって、変形例3では、スラッジ捕捉部110が、スラッジを効率良く捕捉することができる。さらに、第1覆い部112Aの近傍では、冷媒の流れに淀みが生じており、密度が大きく慣性力が大きいスラッジは、冷媒の流れる向きに沿って、スラッジ捕捉部110の奥側まで進入する。そのため、変形例3では、スラッジ捕捉部110に溜まったスラッジが、冷媒の流れによって巻き上げられて、スラッジ捕捉部110から流出するおそれが抑制されている。
図7は、図6の変形例である実施の形態1の変形例4を模式的に記載した図である。図6に記載の変形例3と比較して、図7に記載の変形例4の冷媒配管100Dは、スラッジ捕捉部110の第3筒部104側の上方を覆う第2覆い部112Bをさらに備えている。すなわち、変形例4の冷媒配管100Dは、スラッジ捕捉部110の第2筒部102側の上方を覆う第1覆い部112Aと、スラッジ捕捉部110の第3筒部104側の上方を覆う第2覆い部112Bと、を備えている。第2覆い部112Bは、第3筒部104の第3内底部105から、第1筒部106の第1内底部107の上方に突出し、第1内底部107の上方を覆うものである。したがって、変形例4では、仮に、冷媒配管100Dが逆向きに取り付けられた場合であっても、スラッジ捕捉部110に溜まったスラッジが、冷媒の流れによって巻き上げられて、スラッジ捕捉部110から流出するおそれが抑制される。
図8は、図2の変形例である実施の形態1の変形例5を模式的に記載した図である。図2に記載の実施の形態1の例と比較して、図8に記載の変形例5の冷媒配管100Eでは、第1筒部106Aが、第1筒部106Aの内底部である第1内底部107Aから上方に突出した複数の隔壁114を備えている。変形例5では、スラッジ捕捉部110が、隔壁114によって、冷媒が流れる方向である第1筒部106Aの軸方向に沿って複数に分割されており、隔壁114の間に、スラッジが捕捉される。その結果、変形例5では、スラッジ捕捉部110に溜まったスラッジが、冷媒の流れによって巻き上げられて、スラッジ捕捉部110から流出するおそれが低減されている。なお、隔壁114の高さは、適宜定められるものであるが、例えば、図8に示すように、隔壁114の高さが第2筒部102および第3筒部104の内周面よりも低く形成されている場合には、第1筒部106Aを流れる冷媒の流速を遅くすることができるため、スラッジを効率良く捕捉することができる。また、隔壁114の高さが、第2筒部102および第3筒部104の内周面よりも高く形成された場合には、スラッジ捕捉部110に溜まったスラッジが、冷媒の流れによって巻き上げられて、スラッジ捕捉部110から流出するおそれを低減することができる。
図9は、図2の変形例である実施の形態1の変形例6を模式的に記載した図である。図2に記載の実施の形態1の例と比較して、図9の変形例6では、冷媒配管100Fは、第2筒部102と第1筒部106Bとが直線状に接続された直線形状部と、第1筒部106Bと第3筒部104Aとが曲げ形状を成して接続された曲げ形状部と、を有する。変形例6では、第1内底部107Bが、第2内底部103と比較して、重力方向の下方に位置しており、第2内底部103から第1内底部107までの窪んだ空間が、スラッジ捕捉部110を構成する。変形例3では、冷媒が第3筒部104Aから第1筒部106Bに流れるときに、冷媒の流れの向きが変わるため、冷媒の流速が遅くなる。したがって、変形例6では、第1筒部106Bのスラッジ捕捉部110が、スラッジを効率良く捕捉することができる。好適には、図9に示すように、第3筒部104Aが、第1筒部106Bの上方に接続され、第3筒部104Aを下降流で流れた冷媒が、第1筒部106Bで向きを変えて、略水平方向に流れる。このように構成することによって、重力を効率良く利用して、スラッジ捕捉部110にスラッジを捕捉させることができる。なぜなら、スラッジは、冷媒と比較して密度が大きく慣性力が大きいため、スラッジを含む冷媒の流れが、下向きから水平方向に向きを変えたときに、スラッジは、冷媒と比較して、重力方向の下方に進みやすい。
図10は、図2の変形例である実施の形態1の変形例7を模式的に記載した図であり、図11は、図10のB-B断面を模式的に記載した図である。なお、図11では、変形例7の理解を容易にするために、断面部分を実線で記載し、断面以外の部分を点線で記載してある。図2および図3に記載された実施の形態1の例と比較して、図10および図11に記載の変形例7では、冷媒配管100Gの周方向の全周において、第1筒部106Cの内周面が、第2筒部102および第3筒部104の内周面よりも、径方向の外側に位置している。また、冷媒配管100Gの周方向の全周において、第1筒部106Cの外周面は、第2筒部102および第3筒部104の外周面よりも、径方向の外側に位置している。つまり、変形例7の冷媒配管100Gは、冷媒配管100Gの周方向の全周において、第1筒部106Cが、第2筒部102および第3筒部104と比較して、径方向の外側に膨らんだ外観形状を有している。なお、第2筒部102、第3筒部104および第1筒部106Cの断面形状は、特に限定されるものではなく、矩形または楕円形等であってもよいが、図10および図11に示すように、第2筒部102、第3筒部104および第1筒部106Cの断面形状が円形である場合には、第2筒部102、第3筒部104および第1筒部106Cの耐圧性が向上する。また、第2筒部102および第3筒部104が、同じ断面形状を有している場合には、第2筒部102および第3筒部104を形成する部材を共通化することができる。
図12は、図10の変形例である実施の形態1の変形例8を模式的に記載した図である。図10に記載の変形例7と比較して、図12に記載の変形例8の冷媒配管100Hは、スラッジ捕捉部110Cの第2筒部102側を覆う第1覆い部112Cを備えている。第1覆い部112Cは、少なくとも、第2筒部102の第2内底部103から、第1筒部106Cの第1内底部107Cの上方に突出し、第1内底部107Cの上方を覆う部分を含んでいる。変形例8では、第1覆い部112Cが、スラッジ捕捉部110Cの第2筒部102側を覆っているため、スラッジ捕捉部110Cに溜まったスラッジが、冷媒の流れによって巻き上げられて、スラッジ捕捉部110Cから流出するおそれが抑制されている。さらに、第1覆い部112Cの近傍では、冷媒の流れの向きが変化するため、冷媒の流れに淀みが生じやすくなっている。したがって、変形例8では、スラッジ捕捉部110Cが、スラッジを効率良く捕捉することができる。さらに、第1覆い部112Cの近傍では、冷媒の流れに淀みが生じており、密度が大きく慣性力が大きいスラッジは、冷媒の流れる向きに沿って、スラッジ捕捉部110Cの奥側まで進入する。そのため、変形例8では、スラッジ捕捉部110Cに溜まったスラッジが、冷媒の流れによって巻き上げられて、スラッジ捕捉部110Cから流出するおそれが抑制されている。
図13は、図12の変形例である実施の形態1の変形例9を模式的に記載した図である。図12に記載の変形例8と比較して、図13に記載の変形例9の冷媒配管100Iは、スラッジ捕捉部110Cの第3筒部104側を覆う第2覆い部112Dをさらに備えている。すなわち、変形例9の冷媒配管100Iは、スラッジ捕捉部110Cの第2筒部102側を覆う第1覆い部112Cと、スラッジ捕捉部110Cの第3筒部104側を覆う第2覆い部112Dと、を備えている。第2覆い部112Dは、少なくとも、第3筒部104の第3内底部105から、第1筒部106Cの第1内底部107Cの上方に突出し、第1内底部107Cの上方を覆う部分を含んでいる。したがって、変形例9では、仮に、冷媒配管100Iが逆向きに取り付けられた場合であっても、スラッジ捕捉部110Cに溜まったスラッジが、冷媒の流れによって巻き上げられて、スラッジ捕捉部110Cから流出するおそれを抑制することができる。
図14は、図2の変形例である実施の形態1の変形例10を模式的に記載した図である。図2に記載の実施の形態1の例と比較して、図14に記載の変形例10の冷媒配管100Jでは、スラッジ捕捉部110Dは、第2筒部102側から第1角度θ1で下方に傾斜する第1傾斜部116Aと、第3筒部104側から第1角度θ1よりも小さい角度の第2角度θ2で下方に傾斜する第2傾斜部116Bとを含んでいる。第1傾斜部116Aは、第2筒部102の第2内底部103から第1筒部106Dの第1内底部107Dまで第1角度θ1で下方に傾斜している。第2傾斜部116Bは、第3筒部104の第3内底部105から第1筒部106Dの第1内底部107Dまで第1角度θ1よりも小さい角度の第2角度θ2で下方に傾斜している。変形例10では、第1筒部106Dに冷媒が流入する側の第2傾斜部116Bの傾斜が緩やかになっており、スラッジがスラッジ捕捉部110Dに滑らかに流入する。そして、第1筒部106Dから冷媒が流出する側の第1傾斜部116Aの傾斜が急になっており、冷媒の流れが淀みやすくなっている。したがって、変形例10では、スラッジ捕捉部110Dが、スラッジを効率良く捕捉することができる。
図15は、図14の変形例である実施の形態1の変形例11を模式的に記載した図である。図14に記載の変形例10と比較して、図15に記載の変形例11の冷媒配管100Kは、スラッジ捕捉部110Dの第2筒部102側の上方を覆う第1覆い部112Fを備えている。第1覆い部112Fは、第1傾斜部116Aの底部よりも、第3筒部104側に突出している。すなわち、第1覆い部112Fは、第2筒部102の第2内底部103から、第1筒部106Dの第1内底部107Dの上方に突出し、第1内底部107Dの上方を覆うものである。変形例11では、第1覆い部112Fが、スラッジ捕捉部110Dの第2筒部102側の上方を覆っているため、スラッジ捕捉部110Dに溜まったスラッジが、冷媒の流れによって巻き上げられて、スラッジ捕捉部110Dから流出するおそれが抑制されている。さらに、第1覆い部112Fの近傍では、冷媒の流れの向きが変化するため、冷媒の流れに淀みが生じやすくなっている。したがって、変形例11では、スラッジ捕捉部110Dが、スラッジを効率良く捕捉することができる。さらに、第1覆い部112Fの近傍では、冷媒の流れに淀みが生じており、密度が大きく慣性力が大きいスラッジは、冷媒の流れる向きに沿って、スラッジ捕捉部110Dの奥側まで進入する。そのため、変形例3では、スラッジ捕捉部110Dに溜まったスラッジが、冷媒の流れによって巻き上げられて、スラッジ捕捉部110Dから流出するおそれが抑制されている。
図16は、図10の変形例である実施の形態1の変形例12を模式的に記載した図である。図10に記載された変形例7と比較して、図16に記載の変形例12では、スラッジ捕捉部110Eは、第2筒部102側から第1角度θ1で内径方向に傾斜する第1傾斜部116Cと、第3筒部104側から第1角度θ1よりも小さい角度の第2角度θ2で内径方向に傾斜する第2傾斜部116Dとを含んでいる。変形例12では、第1筒部106Eに冷媒が流入する側の第2傾斜部116Dの傾斜が緩やかになっており、スラッジがスラッジ捕捉部110Eに滑らかに流入する。そして、第1筒部106Eから冷媒が流出する側の第1傾斜部116Cの傾斜が急になっており、冷媒の流れが淀みやすくなっている。したがって、変形例12では、スラッジ捕捉部110Eが、スラッジを効率良く捕捉することができる。
図17は、図16の変形例である実施の形態1の変形例13を模式的に記載した図である。図16に記載の変形例12と比較して、図17に記載の変形例13の冷媒配管100Mは、スラッジ捕捉部110Eの第2筒部102側を覆う第1覆い部112Gを備えている。第1覆い部112Gは、少なくとも、第2筒部102の第2内底部103から、第1筒部106Eの第1内底部107Eの上方に突出し、第1内底部107Eの上方を覆う部分を含んでいる。変形例13では、第1覆い部112Gが、スラッジ捕捉部110Eの第2筒部102側を覆っているため、スラッジ捕捉部110Eに溜まったスラッジが、冷媒の流れによって巻き上げられて、スラッジ捕捉部110Eから流出するおそれが抑制されている。さらに、第1覆い部112Gの近傍では、冷媒の流れの向きが変化するため、冷媒の流れに淀みが生じやすくなっている。したがって、変形例13では、スラッジ捕捉部110Eが、スラッジを効率良く捕捉することができる。さらに、第1覆い部112Gの近傍では、冷媒の流れに淀みが生じており、密度が大きく慣性力が大きいスラッジは、冷媒の流れる向きに沿って、スラッジ捕捉部110Eの奥側まで進入する。そのため、変形例13では、スラッジ捕捉部110Eに溜まったスラッジが、冷媒の流れによって巻き上げられて、スラッジ捕捉部110Eから流出するおそれが抑制されている。第1覆い部112Gは、好適には、第2筒部102の、スラッジ捕捉部110Eの上方に突出した部分である。第2筒部102をスラッジ捕捉部110Eの上方に突出させて第1覆い部112Gを構成することによって、第2筒部102に第1筒部106Eを容易に取り付けることができる。なお、第1覆い部112Gは、第1筒部106Eの部分であってもよく、または、第2筒部102もしくは第1筒部106Eに取り付けられた別部材で構成されていてもよい。
図18は、この発明の実施の形態2に係る冷凍サイクル装置の冷媒回路の一例を模式的に記載した図である。図1に記載の実施の形態1の冷凍サイクル装置10と比較して、図18に記載の実施の形態2に係る冷凍サイクル装置10Aは、流路切替装置5を備えている。流路切替装置5は、冷凍サイクル装置10Aに流れる冷媒の向きを切り替えるものであり、例えば四方弁等で構成されている。流路切替装置5は、第1熱交換器2を蒸発器として機能させ且つ第2熱交換器4を凝縮器として機能させる第1運転モードと、第1熱交換器2を凝縮器として機能させ且つ第2熱交換器4を蒸発器として機能させる第2運転モードとを切り替えるものである。図18に示す例では、流路切替装置5は、圧縮機1の冷媒吸入側と第1熱交換器2とを接続し且つ圧縮機1の冷媒吐出側と第2熱交換器4とを接続する設定となっており、冷凍サイクル装置10Aは、第1熱交換器2を蒸発器として機能させ且つ第2熱交換器4を凝縮器として機能させる第1運転モードとなっている。なお、流路切替装置5が、圧縮機1の冷媒吐出側と第1熱交換器2とを接続し且つ圧縮機1の冷媒吸入側と第2熱交換器4とを接続する設定に切り替えられると、冷凍サイクル装置10Aは、第1熱交換器2を凝縮器として機能させ且つ第2熱交換器4を蒸発器として機能させる第2運転モードとなる。
Claims (14)
- 冷媒が循環する冷媒回路を備え、
前記冷媒回路は、凝縮器と、膨張装置と、前記凝縮器と前記膨張装置とを接続する冷媒配管と、を有し、
前記冷媒配管は、第1内底部と第2内底部とを含み、前記第2内底部は、前記第1内底部と前記膨張装置との間に位置しており、前記第1内底部および前記第2内底部は、前記冷媒配管の底部を構成するものであり、
前記第1内底部は、前記第2内底部から窪んでいる、
冷凍サイクル装置。 - 前記冷媒配管は、前記第1内底部を含む第1筒部と、前記第2内底部を含み前記第1筒部と前記膨張装置との間に接続された第2筒部と、前記第1筒部と前記凝縮器との間に接続された第3筒部と、を有し、
前記第1筒部の相当直径は、前記第2筒部および前記第3筒部の相当直径と比較して大きい、
請求項1記載の冷凍サイクル装置。 - 前記第1筒部の内周面は、全周にわたって、前記第2筒部および前記第3筒部の内周面と比較して、径方向の外側に突出している、
請求項2記載の冷凍サイクル装置。 - 前記冷媒配管は、前記第1筒部と前記第2筒部と前記第3筒部とが直線状に接続された直線形状を有する、
請求項2または請求項3に記載の冷凍サイクル装置。 - 前記第1筒部の中心軸と前記第2筒部の中心軸と前記第3筒部の中心軸とが、実質的に一致している、
請求項4記載の冷凍サイクル装置。 - 前記第2筒部の断面形状と前記第3筒部の断面形状とが同じである、
請求項2~請求項5の何れか1項に記載の冷凍サイクル装置。 - 前記第1筒部と前記第2筒部と前記第3筒部とは、円形の断面形状を有する、
請求項2~請求項6の何れか1項に記載の冷凍サイクル装置。 - 前記冷媒配管は、前記第2内底部から前記第1内底部の上方に突出し、前記第1内底部の上方の一部分を覆う第1覆い部を有する、
請求項1~請求項7の何れか1項に記載の冷凍サイクル装置。 - 前記冷媒配管は、前記第1内底部と前記凝縮器との間に位置し、前記冷媒配管の底部を構成する第3内底部を含み、
前記第1内底部は、前記第2内底部および前記第3内底部から窪んでいる、
請求項1~請求項8の何れか1項に記載の冷凍サイクル装置。 - 前記冷媒配管は、前記第3内底部から前記第1内底部の上方に突出し、前記第1内底部の上方の一部分を覆う第2覆い部を有する、
請求項9記載の冷凍サイクル装置。 - 前記冷媒配管は、前記第2内底部から前記第1内底部まで第1角度で下方に傾斜する第1傾斜部と、前記第3内底部から前記第1内底部まで前記第1角度よりも小さい角度の第2角度で下方に傾斜する第2傾斜部とを含む、
請求項9または請求項10に記載の冷凍サイクル装置。 - 前記冷媒配管は、前記第1筒部と前記第2筒部とが直線状に接続された直線形状部と、前記第1筒部と前記第3筒部とが曲げ形状を成して接続された曲げ形状部と、を有する、
請求項2記載の冷凍サイクル装置。 - 前記第1内底部から上方に突出した隔壁を有する、
請求項1~請求項12の何れか1項に記載の冷凍サイクル装置。 - 二重結合を有する物質を含む冷媒が循環する、
請求項1~請求項13の何れか1項に記載の冷凍サイクル装置。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE112015006536.9T DE112015006536T5 (de) | 2015-05-14 | 2015-05-14 | Kältekreislauf-vorrichtung |
PCT/JP2015/063944 WO2016181557A1 (ja) | 2015-05-14 | 2015-05-14 | 冷凍サイクル装置 |
JP2017517571A JP6430002B2 (ja) | 2015-05-14 | 2015-05-14 | 冷凍サイクル装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2015/063944 WO2016181557A1 (ja) | 2015-05-14 | 2015-05-14 | 冷凍サイクル装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016181557A1 true WO2016181557A1 (ja) | 2016-11-17 |
Family
ID=57247894
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/063944 WO2016181557A1 (ja) | 2015-05-14 | 2015-05-14 | 冷凍サイクル装置 |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP6430002B2 (ja) |
DE (1) | DE112015006536T5 (ja) |
WO (1) | WO2016181557A1 (ja) |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63108058U (ja) * | 1986-12-27 | 1988-07-12 | ||
JPH0814715A (ja) * | 1994-06-30 | 1996-01-19 | Toshiba Corp | 冷凍装置 |
JPH0875320A (ja) * | 1994-08-31 | 1996-03-19 | Sanyo Electric Co Ltd | 冷凍装置 |
JPH08240360A (ja) * | 1995-03-02 | 1996-09-17 | Daikin Ind Ltd | 冷凍機及び冷凍機用の減圧装置 |
JPH10502737A (ja) * | 1994-08-29 | 1998-03-10 | スペクトロニクス コーポレイション | 漏洩検出用流体を導入する方法 |
JPH10205930A (ja) * | 1997-01-22 | 1998-08-04 | Matsushita Refrig Co Ltd | 冷凍サイクル |
JPH10300286A (ja) * | 1996-11-25 | 1998-11-13 | Mitsubishi Electric Corp | スラッジ捕捉装置、その製造方法及びスラッジ捕捉装置を備えた冷凍空調機器 |
JP2001141338A (ja) * | 1999-11-11 | 2001-05-25 | Matsushita Refrig Co Ltd | 空気調和機 |
JP2002098447A (ja) * | 2000-09-26 | 2002-04-05 | Nippon Airtec Kk | 冷暖房装置用配管のストレーナ |
JP2006275413A (ja) * | 2005-03-29 | 2006-10-12 | Hoshizaki Electric Co Ltd | 冷凍回路 |
JP2010032126A (ja) * | 2008-07-29 | 2010-02-12 | Mitsubishi Electric Corp | 空気調和装置 |
-
2015
- 2015-05-14 WO PCT/JP2015/063944 patent/WO2016181557A1/ja active Application Filing
- 2015-05-14 JP JP2017517571A patent/JP6430002B2/ja active Active
- 2015-05-14 DE DE112015006536.9T patent/DE112015006536T5/de active Pending
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63108058U (ja) * | 1986-12-27 | 1988-07-12 | ||
JPH0814715A (ja) * | 1994-06-30 | 1996-01-19 | Toshiba Corp | 冷凍装置 |
JPH10502737A (ja) * | 1994-08-29 | 1998-03-10 | スペクトロニクス コーポレイション | 漏洩検出用流体を導入する方法 |
JPH0875320A (ja) * | 1994-08-31 | 1996-03-19 | Sanyo Electric Co Ltd | 冷凍装置 |
JPH08240360A (ja) * | 1995-03-02 | 1996-09-17 | Daikin Ind Ltd | 冷凍機及び冷凍機用の減圧装置 |
JPH10300286A (ja) * | 1996-11-25 | 1998-11-13 | Mitsubishi Electric Corp | スラッジ捕捉装置、その製造方法及びスラッジ捕捉装置を備えた冷凍空調機器 |
JPH10205930A (ja) * | 1997-01-22 | 1998-08-04 | Matsushita Refrig Co Ltd | 冷凍サイクル |
JP2001141338A (ja) * | 1999-11-11 | 2001-05-25 | Matsushita Refrig Co Ltd | 空気調和機 |
JP2002098447A (ja) * | 2000-09-26 | 2002-04-05 | Nippon Airtec Kk | 冷暖房装置用配管のストレーナ |
JP2006275413A (ja) * | 2005-03-29 | 2006-10-12 | Hoshizaki Electric Co Ltd | 冷凍回路 |
JP2010032126A (ja) * | 2008-07-29 | 2010-02-12 | Mitsubishi Electric Corp | 空気調和装置 |
Also Published As
Publication number | Publication date |
---|---|
DE112015006536T5 (de) | 2018-02-15 |
JP6430002B2 (ja) | 2018-11-28 |
JPWO2016181557A1 (ja) | 2017-12-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6188951B2 (ja) | 冷媒分配器、熱交換器および冷凍サイクル装置 | |
JP5452367B2 (ja) | 気液分離器および冷凍サイクル装置 | |
JP2006275452A (ja) | 膨張弁 | |
JP2008051344A (ja) | 気液分離器及び該気液分離器を備えた冷凍装置 | |
JPWO2020194517A1 (ja) | 熱交換器および冷凍サイクル装置 | |
JP2018004093A (ja) | 冷凍サイクル装置のアキュームレータ | |
JP6073002B1 (ja) | プレート型熱交換器および冷凍サイクル装置 | |
JP2013160417A (ja) | エコノマイザ及び冷凍機 | |
JP6430002B2 (ja) | 冷凍サイクル装置 | |
JP2009008349A (ja) | 気液分離器 | |
JP5601764B2 (ja) | 気液分離器並びにこれを搭載した空気圧縮装置および空気調和装置 | |
JP5625699B2 (ja) | 冷凍回路 | |
JP6650335B2 (ja) | 冷媒分流器結合型膨張弁及びこれを用いた冷凍サイクル装置及び空気調和装置 | |
US20160313036A1 (en) | Subcooler and air conditioner including the same | |
JP2016038133A (ja) | 流体容器の支持構造 | |
JP2015001367A (ja) | 気液分離器とそれを搭載した空気調和装置 | |
JP2012184866A (ja) | 冷凍サイクル装置 | |
JP2017172873A (ja) | 中間圧レシーバ及びこの中間圧レシーバを用いた冷凍サイクル装置 | |
JP6138271B2 (ja) | 膨張弁及びそれを搭載した冷凍サイクル装置 | |
JP5034485B2 (ja) | 冷凍装置 | |
JP7118251B2 (ja) | 気液分離装置および冷凍サイクル装置 | |
JP2016038134A (ja) | 冷凍装置の室外機 | |
WO2006067766A2 (en) | A cooling device | |
WO2023238234A1 (ja) | 熱交換器 | |
JP6341321B2 (ja) | 空気調和機 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15891881 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017517571 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 112015006536 Country of ref document: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15891881 Country of ref document: EP Kind code of ref document: A1 |