WO2016180411A1 - Sensoranordnung mit einem winkelsensor sowie wälzlageranordnung mit sensoranordnung - Google Patents

Sensoranordnung mit einem winkelsensor sowie wälzlageranordnung mit sensoranordnung Download PDF

Info

Publication number
WO2016180411A1
WO2016180411A1 PCT/DE2016/200179 DE2016200179W WO2016180411A1 WO 2016180411 A1 WO2016180411 A1 WO 2016180411A1 DE 2016200179 W DE2016200179 W DE 2016200179W WO 2016180411 A1 WO2016180411 A1 WO 2016180411A1
Authority
WO
WIPO (PCT)
Prior art keywords
ring
ring segments
sensor
receiving coils
shell core
Prior art date
Application number
PCT/DE2016/200179
Other languages
English (en)
French (fr)
Inventor
Jörg KEGELER
Original Assignee
Schaeffler Technologies AG & Co. KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schaeffler Technologies AG & Co. KG filed Critical Schaeffler Technologies AG & Co. KG
Priority to US15/573,159 priority Critical patent/US10473487B2/en
Priority to CN201680027653.6A priority patent/CN107615074B/zh
Publication of WO2016180411A1 publication Critical patent/WO2016180411A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/20Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature
    • G01D5/204Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the mutual induction between two or more coils
    • G01D5/2046Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the mutual induction between two or more coils by a movable ferromagnetic element, e.g. a core
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/52Bearings with rolling contact, for exclusively rotary movement with devices affected by abnormal or undesired conditions
    • F16C19/522Bearings with rolling contact, for exclusively rotary movement with devices affected by abnormal or undesired conditions related to load on the bearing, e.g. bearings with load sensors or means to protect the bearing against overload
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C41/00Other accessories, e.g. devices integrated in the bearing not relating to the bearing function as such
    • F16C41/007Encoders, e.g. parts with a plurality of alternating magnetic poles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/20Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature
    • G01D5/2006Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the self-induction of one or more coils
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/0009Force sensors associated with a bearing
    • G01L5/0023Force sensors associated with a bearing by using magnetic sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P3/00Measuring linear or angular speed; Measuring differences of linear or angular speeds
    • G01P3/42Devices characterised by the use of electric or magnetic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P3/00Measuring linear or angular speed; Measuring differences of linear or angular speeds
    • G01P3/42Devices characterised by the use of electric or magnetic means
    • G01P3/44Devices characterised by the use of electric or magnetic means for measuring angular speed
    • G01P3/443Devices characterised by the use of electric or magnetic means for measuring angular speed mounted in bearings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P3/00Measuring linear or angular speed; Measuring differences of linear or angular speeds
    • G01P3/42Devices characterised by the use of electric or magnetic means
    • G01P3/44Devices characterised by the use of electric or magnetic means for measuring angular speed
    • G01P3/48Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage
    • G01P3/481Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage of pulse signals
    • G01P3/488Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage of pulse signals delivered by variable reluctance detectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/04Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly
    • F16C19/06Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly with a single row or balls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2233/00Monitoring condition, e.g. temperature, load, vibration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D2205/00Indexing scheme relating to details of means for transferring or converting the output of a sensing member
    • G01D2205/70Position sensors comprising a moving target with particular shapes, e.g. of soft magnetic targets
    • G01D2205/73Targets mounted eccentrically with respect to the axis of rotation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D2205/00Indexing scheme relating to details of means for transferring or converting the output of a sensing member
    • G01D2205/70Position sensors comprising a moving target with particular shapes, e.g. of soft magnetic targets
    • G01D2205/77Specific profiles
    • G01D2205/775Tapered profiles

Definitions

  • the present invention relates to a sensor arrangement with an angle sensor for measuring twists.
  • the sensor arrangement is in a broader sense a resolver.
  • the invention further relates to a rolling bearing arrangement, which comprises the sensor arrangement according to the invention.
  • In the rolling bearing assembly is in a broader sense to a resolver.
  • a generic sensor arrangement and a generic rolling bearing arrangement are known from WO 201 1/134955 A2.
  • the generic rolling bearing assembly is shown in the accompanying Fig. 2 in a perspective cross-sectional view.
  • the rolling bearing assembly initially comprises a roller bearing 01, to which axially adjacent an angle sensor 02 is added.
  • the roller bearing 01 comprises an inner ring 03 and a outer ring 06 rotatable about the inner ring 03 about a rotation axis 04.
  • Rolling elements 07 are in the form of balls between the inner ring 03 and the outer ring 06.
  • the rolling elements 07 are held in a cage 08 (shown in FIG. 3).
  • the space between the outer ring 06 and the inner ring 03 is sealed to the outside by a sealing washer 09.
  • the angle sensor 02 comprises a sensor ring 1 1, which is fastened by means of a holding element 12 in a formed in the outer ring 06 circumferential groove 13 on the outer ring 06.
  • the sensor ring 1 1 is not fixed in a rotationally fixed manner on the outer ring 06, since the annular holding element 12 can rotate in the circumferential groove 13 about the rotation axis 04.
  • the non-rotatable design of the attachment is due to the fact that the outer ring 06 is slightly rotated in the outer ring 06 receiving machine element (not shown) during a prolonged operation.
  • the sensor ring 1 1 can maintain its angular position on the axis of rotation 04 due to the non-rotatable design of the attachment, so that the measurements with the angle sensor 02 are not falsified.
  • the angle sensor 02 further comprises a material measure 14, which rotatably fixed in a formed in the inner ring 03 circumferential groove 16 with the inner ring 03 is done.
  • the material measure 14 has an eccentric Ringfornn and is shown in detail in Figs. 6 to 9. The material measure 14 closes the U-shaped
  • the annular shell core 17 consists of a ferromagnetic material.
  • the U-shaped cross section of the shell core 17 forms a radially inner U-leg 18 and a radially outer U leg 19, which are angled relative to a U-base 21.
  • the sensor ring 1 1 comprises an inner support ring 22 and an outer support ring 23, wherein between the inner support ring 22 and the outer support ring 23 a
  • Annular space 24 is formed, in which the shell core 17 and a circuit board 26 are located.
  • the board 26 is shown in detail in FIG. 4.
  • a transmitting coil 27 shown in FIG. 4
  • receiving coils 28 shown in FIG. 4
  • the transmitting coil 27 and the receiving coil 28 are electrically connected via a cable 29.
  • the cable 29 is guided via a cable holder 31 on the shell core 17 through a recess 32 in the outer support ring 23 to the outside of the annular space 24.
  • the cable holder 31 continues to serve the shell core 17 and the board
  • Fig. 3 shows the rolling bearing arrangement shown in Fig. 2 in a
  • Fig. 4 shows the board 26 shown in Fig. 2 in detail.
  • the circuit board 26 is a printed circuit board comprising a plurality of layers, wherein the transmitting coil
  • the board 26 has four equally distributed and identically formed openings 37.
  • the openings 37 each have the shape of a circular ring segment.
  • the circular ring segments each have a center angle of about 60 °.
  • the intrinsically annular outer U-leg 19 is interrupted in its ring shape, so that it can protrude through the openings 37 therethrough. Due to the interruptions of the ring shape of the outer U-leg 19 ring segments 38 are formed, which each have the approximate shape of a circular arc.
  • the circular arcs each have one
  • FIG. 6 shows an embodiment of the measuring standard 14, as is known for the rolling bearing arrangement shown in FIG. 2 from the prior art.
  • the measuring graduation 14 is shown in a cross-section perpendicular to the axis of rotation 04, wherein the radially outer U-leg 19 and the radially inner U-leg 18 are further illustrated.
  • the measuring scale 14 during a rotation of the same relative to the shell core 17 leads to a variable reluctance of the magnetic circuit formed by the shell core 17 and the measuring scale 14 with respect to individual ones of the reception coils 28 (shown in FIG. 4), because the material measure 14 is eccentric.
  • the eccentricity of the material measure 14 is given by the fact that a ring width of the annular measuring scale 14 changes circumferentially, namely from a minimum ring width to a maximum ring width and back to the minimum ring width.
  • FIG. 7 shows the material measure 14 shown in FIG. 2 in detail.
  • the material measure 14 in FIG. 7 is designed to be double eccentric, since both the outer circumference of the material measure 14 and the inner circumference of the material measure 14 are formed eccentrically.
  • the angle sensor 02 shown in FIG. 2 is less susceptible to displacements of the U-legs 18, 19 perpendicular to the axis of rotation 04.
  • the formation of the ring segments 38 (shown in Fig. 4) is not shown.
  • the rolling bearing arrangement shown in WO 201 1/134955 A2 allows absolute angle measurements between 0 ° and 360 °. As a result, it is suitable, for example, for supporting a shaft of a single-pole electric motor. Therefore, the angle sensor 02 shown in FIGS. 2 to 4 is also characterized as being single-pole. From DE 10 2012 223 942 A1, a sensor arrangement with a multi-pole angle sensor is known which is provided for measurements over n poles so that angle measurements within angles of rotation of the size 360 n are possible.
  • the multi-pole angle sensor is assigned to the same genus as the angle sensor shown in WO 201 1/134955 A2.
  • FIG. 8 shows a material measure 14 of the multi-pole angle sensor known from DE 10 2012 223 942 A1. This is the material measure 14 of a two-pole angle sensor.
  • the measuring graduation 14 is designed eccentrically, wherein a ring width of the annular measuring scale 14 along its circumference has two minima and two maxima.
  • FIG. 9 shows the material measure 14 of a further embodiment of the multi-pole angle sensor known from DE 10 2012 223 942 A1.
  • the material measure 14 shown in FIG. 9 differs from the material measure shown in FIG. 8 in that it is designed to be doubly eccentric.
  • the object of the present invention is based on the in the
  • the above object is achieved by a sensor arrangement according to the attached claim 1 and by a rolling bearing arrangement according to the attached independent claim 10.
  • the sensor arrangement according to the invention comprises an angle sensor and serves for the measurement of twists and rotations, wherein the angle characterizing the rotation or the rotation represents the measured variable.
  • the angle sensor initially comprises a sensor ring which at least partially surrounds a rotation axis and a material measure which can be rotated relative to this sensor ring. At least one transmitting coil and a plurality of receiving coils are arranged on the sensor ring. Between the transmitting coil and the receiving coils, a magnetic circuit is formed, via which a signal can be transmitted.
  • the rotatable material measure forms part of the magnetic circuit. In this case, the rotatable measuring graduation forms a variable reluctance in the magnetic circuit relative to each of the individual receiving coils.
  • the reluctance of the magnetic circuit for the individual receiving coils changes as the material measure rotates about the axis of rotation.
  • the change in the reluctance of the magnetic circuit is dependent on the angle of rotation of the rotatable material measure.
  • the magnetic circuit is further formed by an annular shell core, which preferably has a U-shaped cross-section in a plane comprising the axis of rotation.
  • the shell core preferably forms a component of the sensor ring, which is preferably non-rotatably seated in the sensor ring.
  • the ring shape of the shell core is preferably arranged coaxially to the axis of rotation.
  • the transmitting coil is arranged within the shell core.
  • the shell core has two legs, which also have a ring shape on their part.
  • the material measure is formed as a ring, which closes the magnetic circuit between the annular legs of the shell core.
  • the annular legs are preferably formed coaxially to the axis of rotation.
  • the receiver coils are each partially disposed within and partially outside of the shell core.
  • the receiving coils are each partially between the two legs of the shell core.
  • At least one of the two annular legs of the shell core is formed segment-like, so that it comprises ring segments.
  • at least the radially inner leg is formed segment-like.
  • the ring segments are preferably arranged coaxially to the axis of rotation.
  • the receiving coils each surround at least one of the ring segments of the shell core, wherein only the ring segments of one of the two annular legs of the shell core enclosed by the receiving coils are.
  • the ring segments each have substantially the shape of a circular arc.
  • the ring segments have this shape, in particular on a surface oriented to the material measure, which limits an air gap to be formed.
  • the ring segments can each have the form of a narrow circular ring segment, which can be considered in approximation as a circular arc.
  • the ring segments each form a circular arc whose center lies in the axis of rotation.
  • the circular arcs are each characterized by a
  • Center angle which describes the opening from the center.
  • the angular position of the circular arc with respect to the axis of rotation can be described with a center radius which forms an axis of symmetry of the respective circular arc.
  • the center radius includes the center of the arc in the axis of rotation and a central point on the circumference of the arc.
  • the angle sensor is designed for measurement over n poles, where n represents a natural number which is equal to 1 or greater than 1. It may thus be a single-pole or a multi-pole angle sensor.
  • the angle sensor allows absolute angle measurements within rotation angles of size 360 n. Of course, angles greater than 360 n can be measured; for example, by incremental measuring steps.
  • n 1, so that it is a single-pole angle sensor and absolute angle measurements within a rotation angle of 360 ° are possible.
  • n> 1 so that it is a multi-pole angle sensor and absolute angle measurements within a rotation angle of 360 n are possible.
  • the ring segments enclosed by the receiver coils are present in pairs as pairs, wherein the center radii of the two ring segments of the individual pairs have an angle of (60 n + i-3607n) to each other, where i is an integer and preferably i> 0. At least those Ringseg- pairs present in pairs, which are formed on the one of the two annular legs of the shell core, the ring segments are enclosed by the receiving coil.
  • the pairs each comprise two of the ring segments whose means radians have an angle of (60 n + i-3607n) to each other.
  • the paired ring segments can also be considered as two arrays of ring segments, the two arrays (60 n + i-3607n) being offset from each other.
  • Each of these two arrangements of ring segments already forms the ring segments necessary for an n-pole angle sensor.
  • the factor i is preferably equal to zero.
  • the 607n staggered arrangement of the ring segments achieves complete insensitivity of the measurement signal to this error component, regardless of its absolute size.
  • the two ring segments of the individual pairs are enclosed by one or more of the receiver coils, which are designed or are designed to add magnetic fluxes flowing through the two ring segments of the respective pair to convert into an induced electrical voltage.
  • the receiver coils which are designed or are designed to add magnetic fluxes flowing through the two ring segments of the respective pair to convert into an induced electrical voltage.
  • the two ring segments of each of the pairs of ring segments are one or a plurality of receiving coils enclosed, which is adapted to or are adapted to convert the flowing through the two ring segments of the respective pair of magnetic flux additively into an induced electrical voltage.
  • the two ring segments of the individual pairs are jointly enclosed by one of the receiving coils.
  • the magnetic fluxes flowing through the two ring segments of the respective pair add up, so that their sum induces an electrical voltage in the receiving coil surrounding the two ring segments.
  • the two ring segments of each of the pairs are jointly enclosed by one of the receiving coils.
  • the two ring segments of the individual pairs are each enclosed by one of the receiving coils, so that the pairs are each associated with two of the receiving coils, wherein the two receiving coils of the individual pairs are electrically connected in series. Consequently, in each case an electrical voltage is induced in the respective receiver coil by the magnetic fluxes flowing through the two ring segments of the respective pair, with the two induced voltages being added together by the series connection of the two receiver coils.
  • the two ring segments of each of the pairs are each enclosed by one of the receiver coils, so that each of the pairs are each associated with two of the receiver coils, wherein the two receiver coils of each of the pairs are electrically connected in series.
  • the two ring segments of the individual pairs are preferably identical.
  • the two ring segments of each of the pairs are identical.
  • the midpoint angle of the circular arcs of the two ring segments of the individual pairs are preferably the same size.
  • the center angles of the circular arcs of the two ring segments of each of the pairs are the same size.
  • the center angle of the circular arcs of the ring segments are preferably the same size, so that the circular arcs of all ring segments have the same center angle.
  • an angular spacing is formed in each case between two directly adjacent ring segments.
  • the angular distances on the at least one segment-like annular leg of the shell core are the same size. So that all angular distances are equal, it may be necessary that the
  • Center point angle of the circular arcs of the remaining ring segments are dimensioned.
  • both of the annular legs of the shell core are formed segment-like, wherein the circular arcs of the ring segments of one of the two annular legs each have an identical angular position and a same center angle as the circular arcs of the ring segments of the other of the two annular legs.
  • the stray fields are compensated in the tangential direction.
  • only the ring segments of one of the two annular legs of the shell core are enclosed by the receiving coils.
  • only the ring segments of the radially inner of the two annular legs of the shell core are enclosed by the receiving coils.
  • the receiving coils are preferably arranged circumferentially with respect to the axis of rotation along the segment-like annular leg of the shell core.
  • the receiving coils each have the same distance from the axis of rotation.
  • the receiver coils are arranged equidistantly with respect to the axis of rotation along the segment-like annular leg of the shell core.
  • the measuring graduation preferably has an annular cross-section perpendicular to the axis of rotation, so that it is formed by a ring which circumferentially has n equal circumferential sections along its ring shape.
  • the amount of ring width of the ring increases from a minimum ring width to a maximum ring width and back to the minimum ring width.
  • the variable ring width may be effected by a variable outer radius of the ring or by a variable inner radius of the ring.
  • the ring has both a variable inner radius and a variable outer radius to effect the variable ring width. This achieves a double eccentric shape.
  • Preferred embodiments of the sensor arrangement according to the invention further comprise an evaluation unit for determining the angle.
  • the evaluation unit is electrically connected to the receiving coils, so that signals of the receiving coils are received by the evaluation unit.
  • the evaluation unit is preferably configured to process the signals of the receiving coils assigned to the individual pairs of ring segments in a redundant manner.
  • the evaluation unit can be arranged inside or outside the angle sensor.
  • the rolling bearing assembly initially comprises a rolling bearing with a first bearing ring and a first bearing ring rotatable second bearing ring.
  • the rolling bearing assembly comprises the sensor arrangement according to the invention, wherein the sensor ring is coupled to the first bearing ring and wherein the material measure is rotatably connected to the second bearing ring.
  • the coupling of the sensor ring with the first bearing ring causes the sensor ring rotatably connected to a first bearing ring receiving machine element is connectable. Consequently, the sensor arrangement serves to measure a rotational angle between a machine element received by the second bearing ring and the machine element receiving the first bearing ring.
  • the first bearing ring is preferably formed by a bearing outer ring
  • the second bearing ring is preferably formed by a bearing inner ring
  • FIG. 1 shows a preferred embodiment of a sensor arrangement according to the invention in a cross-sectional representation
  • Fig. 2 is a perspective cross-sectional view of a generic rolling bearing assembly according to the prior art
  • FIG. 4 shows a circuit board shown in FIG. 2 in a detailed representation
  • FIG. 5 shows a further preferred embodiment of the sensor arrangement according to the invention in a cross-sectional representation
  • Fig. 6 is a sacrificed portion of the rolling bearing assembly shown in Figure 2 from the prior art.
  • FIG. 7 shows the material measure shown in FIG. 2 in detail
  • Fig. 1 shows a preferred embodiment of a sensor arrangement according to the invention in a cross-sectional view.
  • a material measure 14 and a shell core 17 are shown in this cross-sectional representation.
  • this embodiment of the sensor arrangement according to the invention is similar in construction to the angle sensor 02 shown in FIGS. 2 to 4, but differs in the design of the ring segments 38 (see FIG. 4) and the resulting arrangement of the reception coils 28 (shown in FIG Fig. 4).
  • the inventions also
  • the sensor arrangement according to the invention preferably comprises a roller bearing arrangement together with the roller bearing 01 shown in FIG. 2.
  • the illustrated embodiment of the sensor arrangement according to the invention comprises a single-pole angle sensor.
  • the rotatable measuring graduation 14 has an eccentricity (not shown) and is embodied in particular like the measuring graduations 14 shown in FIGS. 6 and 7.
  • the single-pole angle sensor is used for the absolute measurement of angles in the range of 0 ° to 360 °.
  • both the radially inner U-leg 18 and the radially outer U-leg 19 of the shell core 17 are segmented into the ring segments 38, wherein according to the invention, only one of the two U-legs 18, 19 must be segmented, the ring segments 38th are enclosed by the receiving coils 28 (shown in Fig. 4).
  • the ring segments 38 of the inner U-leg 18 or the ring segments 38 of the outer U-leg 19 of the receiving coils 28 (shown in Fig. 4) are enclosed.
  • the inner U-leg 18 and the outer U-leg 19 of the shell core 17 are segmented in the same manner in the ring segments 38.
  • Each of the two U-legs 18, 19 comprises eight of the ring segments 38, which together form two ring segment arrangements 41, 42, each with four of the ring segments 38.
  • Each of the two ring segment arrangements 41, 42 alone represents the arrangement of the ring segments 38 necessary for a single-pole angle sensor according to the prior art (shown in FIGS. 2 to 4).
  • the ring segments 38 on each of the two U-legs 18, 19 are paired.
  • the circular ring-segment-shaped ring segments 38 can each have a center radius 51 assigned to them. NEN.
  • All of the ring segments 38 have an equal center angle 2 ⁇ ⁇ .
  • the respective two ring segments 38 of the individual pairs 43, 44, 46, 47 extend symmetrically at an angle .alpha..sub.a around the center radii 51 arranged at angular positions of 0.degree. And 60.degree.
  • the receiver coils 28 are preferably formed by sinusoidal coils and cosine coils.
  • the terms "sine coil” and “cosine coil” are known from the prior art, for example from WO 201 1/134955 A2.
  • the sinusoidal coils are paired (not shown) in the illustrated embodiment, with each of the pairs of sinusoidal coils comprising a positive sinusoidal coil and a negative sinusoidal coil.
  • the cosine coils are paired (not shown), with each of the pairs of cosine coils having a positive cosine coil and a negative cosine coil
  • Cosine coil includes.
  • Ring segment 71 of the second ring segment arrangement 42 are enclosed by the positive sinusoidal coil (not shown).
  • a second ring segment 62 of the first ring segment arrangement 41 and a second ring segment 72 of the second ring segment arrangement 42 are enclosed by the negative sinusoidal coil (not shown).
  • a third ring segment 63 of the first ring segment arrangement 41 and a third ring segment 73 of the second ring segment arrangement 42 are of the positive one
  • a fourth ring segment 64 of the first ring segment arrangement 41 and a fourth ring segment 74 of the second ring segment arrangement 41 ment arrangement 42 are enclosed by the negative cosine coil (not shown).
  • FIG 5 shows a further preferred embodiment of the sensor arrangement according to the invention in a cross-sectional representation.
  • the shell core 17 is shown in this cross-sectional representation.
  • this embodiment of the sensor arrangement according to the invention is similar in its construction to the angle sensor 02 shown in FIGS. 2 to 4 and differs in the design of the ring segments 38 (see FIG. 4) and the resulting arrangement of the reception coils 28 (shown in FIG 4).
  • the illustrated embodiment of the sensor arrangement according to the invention comprises a four-pole angle sensor.
  • the rotatable material measure (not shown, compare FIGS. 8 and 9) has an eccentricity with four maxima and four minima of its ring width.
  • both the inner U-leg 18 and the outer U-leg 19 of the shell core 17 are segmented into the ring segments 38, wherein according to the invention only that of the two U-legs 18, 19 must be segmented, which of the Reception coil 28 (shown in Fig. 4) is enclosed.
  • either the ring segments 38 of the inner U-leg 18 or the ring segments 38 of the outer U-leg 19 of the receiving coils 28 (shown in Fig. 4) are enclosed.
  • the inner U-leg 18 and the outer U-leg 19 of the shell core 17 are segmented in the same manner in the ring segments 38.
  • Each of the two U-legs 18, 19 comprises 26 of the ring segments 38, which together form two ring segment arrangements 41, 42, each having 13 of the ring segments 38.
  • Each of the two ring segment arrangements 41, 42 alone represents the arrangement of the ring segments 38 necessary for a four-pole angle sensor according to the prior art.
  • the arrangement of the pairs 43, 44, 46, 47 of the ring segments 38 enables a redundant evaluation for determining the to-be-measured angle.
  • all necessary signals can be generated in a circular ring sector with a center angle ⁇ 180 °, so that redundant signals are available by using a second circular ring sector.
  • the redundant signals can be evaluated separately and increase the reliability. This evaluation can be done outside or inside the angle sensor.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

Die vorliegende Erfindung betrifft eine Sensoranordnung mit einem Winkelsensor zur Messung von Verdrehungen. Der Winkelsensor ist für eine Messung über n Pole mit n ≥ 1 ausgebildet und umfasst zunächst einen eine Rotationsachse (04) zumindest teilweise umschließenden Sensorring und eine relativ zu diesem Sensorring rotierbare Maßverkörperung (14). Auf dem Sensorring sind eine Sendespule und mehrere Empfangsspulen angeordnet. Zwischen der Sendespule und den Empfangsspulen ist ein magnetischer Kreis ausgebildet, welcher die Maßverkörperung (14) und einen Schalenkern (17) mit zwei Schenkeln (18, 19) umfasst. Dabei bildet die Maßverkörperung (14) eine variable Reluktanz in dem magnetischen Kreis. Zumindest einer der beiden Schenkel (18) des Schalenkernes (17) ist segmentartig ausgebildet, sodass er Ringsegmente (38) umfasst. Die Empfangsspulen umschließen jeweils mindestens eines der Ringsegmente (38). Die Ringsegmente (38) bilden jeweils einen Kreisbogen mit einem Mittelradius (51) aus. Erfindungsgemäß sind die Ringsegmente (38) paarweise als Paare (43, 44, 46, 47) vorhanden. Die Mittelradien (51) der beiden Ringsegmente (38) der einzelnen Paare (43, 44, 46, 47) weisen zueinander einen Winkel (ß) von (60°n + i⋅360°/n) auf, und wobei i eine ganze Zahl ist. Die Erfindung betrifft weiterhin eine Wälzlageranordnung.

Description

Sensoranordnung mit einem Winkelsensor sowie Wälzlageranordnung mit Sensoranordnung
Die vorliegende Erfindung betrifft eine Sensoranordnung mit einem Winkelsensor zur Messung von Verdrehungen. Bei der Sensoranordnung handelt es sich im weiteren Sinne um einen Resolver. Die Erfindung betrifft weiterhin eine Wälzlageranordnung, welche die erfindungsgemäße Sensoranordnung umfasst. Bei der Wälzlageranordnung handelt es sich im weiteren Sinne um ein Resolverlager. Eine gattungsgemäße Sensoranordnung und eine gattungsgemäße Wälzlageranordnung sind aus der WO 201 1/134955 A2 bekannt. Die gattungsgemäße Wälzlageranordnung ist in der beigefügten Fig. 2 in einer perspektivischen Querschnittsdarstellung gezeigt. Die Wälzlageranordnung umfasst zunächst ein Wälzlager 01 , an welches axial benachbart ein Winkelsensor 02 angefügt ist. Das Wälzlager 01 umfasst einen In- nenring 03 und einen um den Innenring 03 um eine Rotationsachse 04 rotierbaren Außenring 06. Zwischen dem Innenring 03 und dem Außenring 06 befinden sich Wälzkörper 07 in Form von Kugeln. Die Wälzkörper 07 werden in einem Käfig 08 (gezeigt in Fig. 3) gehalten. Der Raum zwischen dem Außenring 06 und dem Innenring 03 ist nach außen durch eine Dichtscheibe 09 abgedichtet.
Der Winkelsensor 02 umfasst einen Sensorring 1 1 , welcher mithilfe eines Halteelementes 12 in einer im Außenring 06 ausgebildeten umlaufenden Nut 13 am Außenring 06 befestigt ist. Dabei ist der Sensorring 1 1 jedoch nicht drehfest am Außenring 06 befestigt, da das ringförmige Halteelement 12 in der umlaufenden Nut 13 um die Rota- tionsachse 04 rotieren kann. Die nicht drehfeste Ausbildung der Befestigung ist dem Umstand geschuldet, dass der Außenring 06 in dem den Außenring 06 aufnehmenden Maschinenelement (nicht gezeigt) während eines längeren Betriebes geringfügig gedreht wird. Der Sensorring 1 1 kann aufgrund der nicht drehfesten Ausbildung der Befestigung seine Winkelposition auf der Rotationsachse 04 beibehalten, sodass die Messungen mit dem Winkelsensor 02 nicht verfälscht werden.
Der Winkelsensor 02 umfasst weiterhin eine Maßverkörperung 14, welche in einer im Innenring 03 ausgebildeten umlaufenden Nut 16 drehfest mit dem Innenring 03 befes- tigt ist. Die Maßverkörperung 14 weist eine exzentrische Ringfornn auf und ist im Detail in den Fig. 6 bis 9 dargestellt. Die Maßverkörperung 14 schließt die U-förmige
Querschnittsform eines U-förmigen Schalenkernes 17, welcher im Sensorring 1 1 befestigt ist. Der ringförmige Schalenkern 17 besteht aus einem ferromagnetischen Ma- terial. Der U-förmige Querschnitt des Schalenkernes 17 bildet einen radial inneren U-Schenkel 18 und einen radial äußeren U Schenkel 19, welche gegenüber einer U-Basis 21 abgewinkelt sind.
Der Sensorring 1 1 umfasst einen inneren Stützring 22 und einen äußeren Stützring 23, wobei zwischen dem inneren Stützring 22 und dem äußeren Stützring 23 ein
Ringraum 24 ausgebildet ist, in welchem sich der Schalenkern 17 und eine Platine 26 befinden. Die Platine 26 ist im Detail in Fig. 4 gezeigt. Auf der Platine 26 sind eine Sendespule 27 (gezeigt in Fig. 4) und Empfangsspulen 28 (gezeigt in Fig. 4) ausgebildet. Die Sendespule 27 und die Empfangsspule 28 sind über ein Kabel 29 elektrisch anschließbar. Das Kabel 29 ist über eine Kabelhalterung 31 am Schalenkern 17 durch eine Aussparung 32 im äußeren Stützring 23 nach außerhalb des Ringraumes 24 geführt. Die Kabelhalterung 31 dient weiterhin dazu, den Schalenkern 17 und die Platine
26 gegenüber dem die Wälzlageranordnung aufnehmenden Maschinenelement (nicht gezeigt) drehfest zu fixieren.
Fig. 3 zeigt die in Fig. 2 gezeigte Wälzlageranordnung in einer
Querschnittsdarstellung.
Fig. 4 zeigt die in Fig. 2 gezeigte Platine 26 im Detail. Auf der Platine 26 sind die Sen- despule 27 und die Empfangsspulen 28 ausgebildet. Bei der Platine 26 handelt es sich um eine Leiterplatte, welche mehrere Schichten umfasst, wobei die Sendespule
27 und die Empfangsspule 28 als Leiterbahnen 36 ausgebildet sind. Die Platine 26 weist vier gleich verteilte und gleichartig ausgebildete Öffnungen 37 auf. Die Öffnungen 37 weisen jeweils die Form eines Kreisringsegmentes auf. Die Kreisringsegmente besitzen jeweils einen Mittelpunktwinkel von etwa 60°. Durch die Öffnungen 37 hindurch ist der äußere U-Schenkel 19 des Schalenkernes 17 geführt, sodass der Schalenkern 17 die Sendespule 27 vollständig umschließt, während er die Empfangsspulen
28 jeweils etwa nur zur Hälfte umschließt. Der an sich ringförmig ausgebildete äußere U-Schenkel 19 ist in seiner Ringform unterbrochen, sodass er durch die Öffnungen 37 hindurch ragen kann. Aufgrund der Unterbrechungen der Ringform des äußeren U-Schenkels 19 sind Ringsegmente 38 ausgebildet, welche jeweils die angenäherte Form eines Kreisbogens besitzen. Die Kreisbögen weisen jeweils einen
Mittelpunktswinkel von etwa 60° auf.
Fig. 6 zeigt eine Ausführung der Maßverkörperung 14, wie sie für die in Fig. 2 gezeigte Wälzlageranordnung aus dem Stand der Technik bekannt ist. Die Maßverkörperung 14 ist in einem Querschnitt senkrecht zur Rotationsachse 04 dargestellt, wobei weiter- hin der radial äußere U-Schenkel 19 und der radial innere U-Schenkel 18 dargestellt sind. Die Maßverkörperung 14 führt während einer Verdrehung derselben gegenüber dem Schalenkern 17 (gezeigt in Fig. 2) zu einer variablen Reluktanz des durch den Schalenkern 17 und die Maßverkörperung 14 gebildeten magnetischen Kreises in Bezug auf einzelne der Empfangsspulen 28 (gezeigt in Fig. 4), da die Maßverkörperung 14 exzentrisch ausgebildet ist. Die Exzentrizität der Maßverkörperung 14 ist dadurch gegeben, dass sich eine Ringbreite der ringförmigen Maßverkörperung 14 umfänglich ändert, nämlich von einer minimalen Ringbreite hin zu einer maximalen Ringbreite und wieder zurück zur minimalen Ringbreite. Fig. 7 zeigt die in Fig. 2 gezeigte Maßverkörperung 14 im Detail. Im Gegensatz zu der in Fig. 6 gezeigten Maßverkörperung ist die Maßverkörperung 14 in Fig. 7 doppelexzentrisch ausgebildet, da sowohl der äußere Umfang der Maßverkörperung 14 als auch der innere Umfang der Maßverkörperung 14 exzentrisch ausgebildet sind. Hierdurch ist der Winkelsensor 02 (gezeigt in Fig. 2) unanfälliger gegenüber Verschiebun- gen der U-Schenkel 18, 19 senkrecht zur Rotationsachse 04.
Bei den in Fig. 9 und Fig. 10 gezeigten äußeren U-Schenkeln 19 ist die Ausbildung der Ringsegmente 38 (gezeigt in Fig. 4) nicht dargestellt. Die in der WO 201 1/134955 A2 gezeigte Wälzlageranordnung ermöglicht absolute Winkelmessungen zwischen 0° und 360°. Hierdurch ist sie beispielsweise zur Lagerung einer Welle eines einpoligen Elektromotors geeignet. Daher wird der in den Fig. 2 bis 4 gezeigte Winkelsensor 02 auch als einpolig charakterisiert. Aus der DE 10 2012 223 942 A1 ist eine Sensoranordnung mit einem mehrpoligen Winkelsensor bekannt, welcher für Messungen über n Pole vorgesehen ist, sodass Winkelmessungen innerhalb von Drehwinkeln der Größe 360 n ermöglicht sind. Der mehrpolige Winkelsensor ist derselben Gattung wie der in der WO 201 1/134955 A2 gezeigte Winkelsensor zuzuordnen.
Fig. 8 zeigt eine Maßverkörperung 14 des aus der DE 10 2012 223 942 A1 bekannten mehrpoligen Winkelsensors. Dabei handelt es sich um die Maßverkörperung 14 eines zweipoligen Winkelsensors. Die Maßverkörperung 14 ist exzentrisch ausgeführt, wobei eine Ringbreite der ringförmigen Maßverkörperung 14 entlang ihres Umfanges zwei Minima und zwei Maxima besitzt.
Fig. 9 zeigt die Maßverkörperung 14 einer weiteren Ausführungsform des aus der DE 10 2012 223 942 A1 bekannten mehrpoligen Winkelsensors. Die in Fig. 9 gezeigte Maßverkörperung 14 unterscheidet sich von der in Fig. 8 gezeigten Maßverkörperung darin, dass sie doppelt exzentrisch ausgebildet ist.
Die Aufgabe der vorliegenden Erfindung besteht ausgehend von den in der
WO 201 1/134955 A2 und in der DE 10 2012 223 942 A1 gezeigten Lösungen darin, eine Wälzlageranordnung sowie eine dafür geeignete Sensoranordnung bereitzustellen, mit denen eine Winkelmessung mit einer erhöhten Winkelgenauigkeit ermöglicht ist, bei welcher der Fehler bevorzugt weniger als 1 ° beträgt. Die genannte Aufgabe wird gelöst durch eine Sensoranordnung gemäß dem beigefügten Anspruch 1 sowie durch eine Wälzlageranordnung gemäß dem beigefügten nebengeordneten Anspruch 10.
Die erfindungsgemäße Sensoranordnung umfasst einen Winkelsensor und dient der Vermessung von Verdrehungen und Rotationen, wobei der die Rotation bzw. die Verdrehung kennzeichnende Winkel die Messgröße darstellt. Der Winkelsensor umfasst zunächst einen eine Rotationsachse zumindest teilweise umschließenden Sensorring und eine relativ zu diesem Sensorring rotierbare Maßverkörperung. Auf dem Sensorring sind mindestens eine Sendespule und mehrere Empfangsspulen angeordnet. Zwischen der Sendespule und den Empfangsspulen ist ein magnetischer Kreis ausgebildet, über den ein Signal übertragbar ist. Die rotierbare Maßverkörperung bildet einen Teil des magnetischen Kreises. Dabei bildet die rotierbare Maßverkörperung eine variable Reluktanz in dem magnetischen Kreis bezogen auf jeweils einzelne der Empfangsspulen aus. Dies führt dazu, dass sich die Reluktanz des magnetischen Kreises für die einzelnen Empfangsspulen ändert, wenn die Maßverkörperung um die Rotationsachse rotiert. Die Veränderung der Reluktanz des magnetischen Kreises ist von dem Drehwinkel der rotierbaren Maßverkörperung abhängig.
Der magnetische Kreis ist weiterhin durch einen ringförmigen Schalenkern gebildet, welcher in einer die Rotationsachse umfassenden Ebene bevorzugt einen U-förmigen Querschnitt aufweist. Der Schalenkern bildet bevorzugt eine Komponente des Sensorringes, die bevorzugt drehfest im Sensorring sitzt. Die Ringform des Schalenkernes ist bevorzugt koaxial zu der Rotationsachse angeordnet. Die Sendespule ist innerhalb des Schalenkernes angeordnet. Der Schalenkern weist zwei Schenkel auf, welche ih- rerseits ebenfalls eine Ringform besitzen. Die Maßverkörperung ist als Ring ausgebildet, weicher den magnetischen Kreis zwischen den ringförmigen Schenkeln des Schalenkernes schließt. Die ringförmigen Schenkel sind bevorzugt koaxial zur Rotationsachse ausgebildet. Die Empfangsspulen sind jeweils teilweise innerhalb und teilweise außerhalb des Schalenkernes angeordnet. Demzufolge befinden sich die Empfangsspulen jeweils teilweise zwischen den beiden Schenkeln des Schalenkernes. Zumindest einer der beiden ringförmigen Schenkel des Schalenkernes ist segmentartig ausgebildet, sodass er Ringsegmente umfasst. Bevorzugt ist zumindest der radial innere Schenkel segmentartig ausgebildet. Die Ringsegmente sind bevorzugt koaxial zur Rotationsachse angeordnet. Die Empfangsspulen umschließen jeweils mindestens eines der Ringsegmente des Schalenkernes, wobei nur die Ringsegmente eines der beiden ringförmigen Schenkel des Schalenkernes von den Empfangsspulen umschlossen sind. Die Ringsegmente weisen jeweils im Wesentlichen die Form eines Kreisbogens auf. Die Ringsegmente weisen diese Form insbesondere an einer zur Maßverkörperung ausgerichteten Fläche auf, die einen auszubildenden Luftspalt begrenzt. Die Ringsegmente können insbesondere jeweils die Form eines schmalen Kreisringseg- mentes aufweisen, die in Näherung als Kreisbogen angesehen werden kann. Jedenfalls bilden die Ringsegmente jeweils einen Kreisbogen aus, dessen Mittelpunkt in der Rotationsachse liegt. Die Kreisbögen sind jeweils charakterisiert durch einen
Mittelpunktswinkel, welcher die Öffnung gegenüber dem Mittelpunkt beschreibt. Die Winkellage des Kreisbogens zur Rotationsachse kann mit einem Mittelradius be- schrieben werden, welcher eine Symmetrieachse des jeweiligen Kreisbogens bildet. Der Mittelradius umfasst den Mittelpunkt des Kreisbogens in der Rotationsachse und einen mittleren Punkt auf dem Umfang des Kreisbogens.
Der Winkelsensor ist für eine Messung über n Pole ausgebildet, wobei n eine natürli- che Zahl darstellt, welche gleich 1 oder größer als 1 ist. Es kann sich somit um einen einpoligen oder um einen mehrpoligen Winkelsensor handeln. Der Winkelsensor ermöglicht absolute Winkelmessungen innerhalb von Drehwinkeln der Größe 360 n. Selbstverständlich können auch Winkel größer als 360 n gemessen werden; beispielsweise durch inkrementelle Messschritte. Bevorzugt beträgt n = 1 , sodass es sich um einen einpoligen Winkelsensor handelt und absolute Winkelmessungen innerhalb eines Drehwinkels von 360° ermöglicht sind. Alternativ bevorzugt beträgt n > 1 , sodass es sich um einen mehrpoligen Winkelsensor handelt und absolute Winkelmessungen innerhalb eines Drehwinkels von 360 n ermöglicht sind. Diese Ausführungsformen sind insbesondere für eine Messung von Drehwinkeln eines mehrpoligen elektrischen Motors geeignet, wobei der Winkelsensor und der elektrische Motor die gleiche Anzahl an Polen besitzen. In diesem Fall ist durch die Ansteuerung des Motors jederzeit bekannt, in welchem der n umfänglichen Abschnitte des Vollkreises der zu vermessende Winkel ausgebildet ist. Erfindungsgemäß sind die von den Empfangsspulen umschlossenen Ringsegmente paarweise als Paare vorhanden, wobei die Mittelradien der beiden Ringsegmente der einzelnen Paare einen Winkel von (60 n + i-3607n) zueinander aufweisen, wobei i eine ganze Zahl ist und bevorzugt i > 0 gilt. Es sind zumindest diejenigen Ringseg- mente paarweise vorhanden, die auf demjenigen der beiden ringförmigen Schenkel des Schalenkernes ausgebildet sind, dessen Ringsegmente von den Empfangsspulen umschlossen sind. Folglich weist dieser der beiden ringförmigen Schenkel mehrere Paare der Ringsegmente auf. Die Paare umfassen jeweils zwei der Ringsegmente, deren Mittel radien einen Winkel von (60 n + i-3607n) zueinander aufweisen. Die paarigen Ringsegmente können auch als zwei Anordnungen von Ringsegmenten aufge- fasst werden, wobei die beiden Anordnungen (60 n + i-3607n) zueinander versetzt sind. Jede dieser beiden Anordnungen von Ringsegmenten bildet bereits die für einen n-poligen Winkelsensor notwendigen Ringsegmente. Man kann die Ringsegmente somit als die Ringsegmente zweier n-poliger Winkelsensoren auffassen, die
(607n + i-3607n) zueinander bezogen auf die Rotationsachse versetzt sind. Der Faktor i ist bevorzugt gleich Null. Der Faktor i ist insbesondere im Falle n = 1 bevorzugt gleich Null. Ein besonderer Vorteil der erfindungsgemäßen Sensoranordnung besteht darin, dass sie die Beseitigung einer Hauptkomponente des systematischen Messfehlers der aus dem Stand der Technik bekannten Lösungen ermöglicht. Diese Hauptkomponente entsteht durch die Nichtlinearität des magnetischen Streufeldes. Diese Nichtlinearität erscheint im Messfehler typischerweise als dritte Harmonische des Messsignals.
Durch die 607n versetzte Anordnung der Ringsegmente wird eine vollständige Un- empfindlichkeit des Messsignals gegenüber dieser Fehlerkomponente erreicht, unabhängig von deren absoluter Größe.
Zur Beseitigung der oben genannten Hauptkomponente sind bei bevorzugten Ausfüh- rungsformen der erfindungsgemäßen Sensoranordnung die beiden Ringsegmente der einzelnen Paare von einer oder mehreren der Empfangsspulen umschlossen, welche dazu ausgebildet ist bzw. dazu ausgebildet sind, durch die beiden Ringsegmente des jeweiligen Paares fließende magnetische Flüsse additiv in eine induzierte elektrische Spannung zu wandeln. Es kommt somit zu einer Addition der durch die beiden Ring- segmente des jeweiligen Paares fließenden magnetische Flüsse bzw. der in den Empfangsspulen induzierten Spannungen. Bei dieser Addition der um 607n versetzten Signale hebt sich die dritte Harmonische der Fehlerkomponente auf. Bevorzugt sind die beiden Ringsegmente eines jeden der Paare der Ringsegmente von einer oder mehreren der Empfangsspulen umschlossen, welche dazu ausgebildet ist bzw. dazu ausgebildet sind, die durch die beiden Ringsegmente des jeweiligen Paares fließenden magnetischen Flüsse additiv in eine induzierte elektrische Spannung zu wandeln. Bei einer bevorzugten Ausführungsform sind die beiden Ringsegmente der einzelnen Paare gemeinsam von einer der Empfangsspulen umschlossen. Dadurch addieren sich die durch die beiden Ringsegmente des jeweiligen Paares fließenden magnetischen Flüsse, sodass durch deren Summe eine elektrische Spannung in der die beiden Ringsegmente umschließenden Empfangsspule induziert wird. Bevorzugt sind die beiden Ringsegmente eines jeden der Paare gemeinsam von einer der Empfangsspulen umschlossen.
Bei einer alternativ bevorzugten Ausführungsform sind die beiden Ringsegmente der einzelnen Paare jeweils von einer der Empfangsspulen umschlossen, sodass den Paaren jeweils zwei der Empfangsspulen zugeordnet sind, wobei die beiden Empfangsspulen der einzelnen Paare elektrisch in Reihe zusammengeschaltet sind. Folglich wird durch die durch die beiden Ringsegmente des jeweiligen Paares fließenden magnetischen Flüsse jeweils eine elektrische Spannung in der jeweiligen Empfangsspule induziert, wobei sich die beiden induzierten Spannungen durch die Reihenschal- tung der beiden Empfangsspulen addieren. Bevorzugt sind die beiden Ringsegmente eines jeden der Paare jeweils von einer der Empfangsspulen umschlossen, sodass jedem der Paare jeweils zwei der Empfangsspulen zugeordnet sind, wobei die beiden Empfangsspulen eines jeden der Paare elektrisch in Reihe zusammengeschaltet sind. Die beiden Ringsegmente der einzelnen Paare sind bevorzugt gleich ausgebildet. Bevorzugt sind die beiden Ringsegmente eines jeden der Paare gleich ausgebildet.
Die Mittelpunktswinkel der Kreisbögen der beiden Ringsegmente der einzelnen Paare sind bevorzugt gleich groß. Bevorzugt sind die Mittelpunktswinkel der Kreisbögen der beiden Ringsegmente eines jeden der Paare gleich groß. Darüber hinaus sind bevorzugt die Mittelpunktswinkel der Kreisbögen der Ringsegmente gleich groß, sodass die Kreisbögen aller Ringsegmente einen gleichen Mittelpunktswinkel aufweisen. Bei bevorzugten Ausführungsformen der erfindungsgemäßen Sensoranordnung ist jeweils zwischen zwei unmittelbar benachbarten der Ringsegmente ein Winkelabstand ausgebildet. Bevorzugt sind die Winkelabstände auf dem mindestens einen segmentartig ausgebildeten ringförmigen Schenkel des Schalenkernes gleich groß. Damit alle Winkelabstände gleich groß sind, kann es erforderlich sein, dass die
Mittelpunktswinkel der Kreisbögen einiger der Ringsegmente abweichend vom
Mittelpunktswinkel der Kreisbögen der übrigen Ringsegmente dimensioniert sind.
Bei bevorzugten Ausführungsformen der erfindungsgemäßen Sensoranordnung sind beide der ringförmigen Schenkel des Schalenkernes segmentartig ausgebildet, wobei die Kreisbögen der Ringsegmente des einen der beiden ringförmigen Schenkel jeweils eine gleiche Winkelposition und eine gleichen Mittelpunktswinkel wie die Kreisbögen der Ringsegmente des anderen der beiden ringförmigen Schenkel aufweisen. Bei dieser Ausführungsform sind auch die Streufelder in tangentialer Richtung kompensiert.
Bevorzugt sind ausschließlich die Ringsegmente des einen der beiden ringförmigen Schenkel des Schalenkernes von den Empfangsspulen umschlossen. Besonders bevorzugt sind ausschließlich die Ringsegmente des radial inneren der beiden ringförmigen Schenkel des Schalenkernes von den Empfangsspulen umschlossen.
Die Empfangsspulen sind bezogen auf die Rotationsachse bevorzugt umlaufend entlang des segmentartig ausgebildeten ringförmigen Schenkels des Schalenkernes angeordnet. Somit weisen die Empfangsspulen jeweils den gleichen Abstand zur Rotationsachse auf. Besonders bevorzugt sind die Empfangsspulen bezogen auf die Rotati- onachse äquidistant entlang des segmentartig ausgebildeten ringförmigen Schenkels des Schalenkernes angeordnet.
Die Maßverkörperung weist senkrecht zur Rotationsachse bevorzugt einen ringförmigen Querschnitt auf, sodass sie durch einen Ring gebildet ist, welcher umlaufend ent- lang seiner Ringform n gleichlange umfängliche Abschnitte aufweist. In jedem dieser umfänglichen Abschnitte nimmt das Maß einer Ringbreite des Ringes beginnend mit einer minimalen Ringbreite bis zu einer maximalen Ringbreite zu und wieder bis zur minimalen Ringbreite ab. Hierdurch ist ein exzentrisch ausgebildeter Ring gegeben, welcher n Maxima und n Minima aufweist. Die veränderliche Ringbreite kann durch einen veränderlichen äußeren Radius des Ringes oder durch einen veränderlichen inneren Radius des Ringes bewirkt sein. Bevorzugt weist der Ring sowohl einen veränderlichen inneren Radius als auch einen veränderlichen äußeren Radius auf, um die veränderliche Ringbreite zu bewirken. Hierdurch wird eine doppelexzentrische Form erzielt.
Bevorzugte Ausführungsformen der erfindungsgemäßen Sensoranordnung umfassen weiterhin eine Auswerteeinheit zum Bestimmen des Winkels. Die Auswerteeinheit ist mit den Empfangsspulen elektrisch verbunden, sodass Signale der Empfangsspulen von der Auswerteeinheit empfangen werden. Die Auswerteeinheit ist bevorzugt dazu konfiguriert, die den einzelnen Paaren der Ringsegmente zugeordneten Signale der Empfangsspulen redundant zu verarbeiten. Die Auswerteeinheit kann innerhalb oder außerhalb des Winkelsensors angeordnet sein.
Die erfindungsgemäße Wälzlageranordnung umfasst zunächst ein Wälzlager mit einem ersten Lagerring und einem zum ersten Lagerring rotierbaren zweiten Lagerring. Im Weiteren umfasst die Wälzlageranordnung die erfindungsgemäße Sensoranordnung, wobei der Sensorring mit dem ersten Lagerring gekoppelt ist und wobei die Maßverkörperung drehfest mit dem zweiten Lagerring verbunden ist. Die Koppelung des Sensorringes mit dem ersten Lagerring führt dazu, dass der Sensorring drehfest mit einem den ersten Lagerring aufnehmenden Maschinenelement verbindbar ist. Folglich dient die Sensoranordnung zur Messung eines Drehwinkels zwischen einem vom zweiten Lagerring aufgenommenen Maschinenelement gegenüber dem den ers- ten Lagerring aufnehmenden Maschinenelement.
Zwischen dem ersten Lagerring und dem zweiten Lagerring sind bevorzugt Wälzkörper angeordnet. Der erste Lagerring ist bevorzugt durch einen Lageraußenring gebildet, während der zweite Lagerring bevorzugt durch einen Lagerinnenring gebildet ist. Weitere Einzelheiten, Vorteile und Weiterbildungen der Erfindung ergeben sich aus der nachfolgenden Beschreibung bevorzugter Ausführungsformen der Erfindung, unter Bezugnahme auf die Zeichnung. Es zeigen:
Fig. 1 eine bevorzugte Ausführungsform einer erfindungsgemäßen Sensoranordnung in einer Querschnittsdarstellung;
Fig. 2 eine perspektivische Querschnittsdarstellung einer gattungsgemäßen Wälz lageranordnung gemäß dem Stand der Technik;
Fig. 3 die in Fig. 2 gezeigte Wälzlageranordnung in einer Querschnittsdarstellung
Fig. 4 eine in Fig. 2 gezeigte Platine in einer Detaildarstellung;
Fig. 5 eine weitere bevorzugte Ausführungsform der erfindungsgemäßen Sensoranordnung in einer Querschnittsdarstellung;
Fig. 6 eine Maßverkörperung, wie sie für die in Fig. 2 gezeigte Wälzlageranordnung aus dem Stand der Technik bekannt ist;
Fig. 7 die in Fig. 2 gezeigte Maßverkörperung im Detail;
Fig. 8 eine Maßverkörperung für einen zweipoligen Winkelsensor gemäß dem
Stand der Technik; und
Fig. 9 eine weitere Maßverkörperung für einen zweipoligen Winkelsensor gemäß dem Stand der Technik.
Fig. 1 zeigt eine bevorzugte Ausführungsform einer erfindungsgemäßen Sensoranordnung in einer Querschnittsdarstellung. In dieser Querschnittsdarstellung sind insbesondere eine Maßverkörperung 14 und ein Schalenkern 17 gezeigt. Im Übrigen gleicht diese Ausführungsform der erfindungsgemäßen Sensoranordnung in ihrem Aufbau dem in den Fig. 2 bis 4 gezeigten Winkelsensor 02 und unterscheidet sich aber in der Ausführung der Ringsegmente 38 (vgl. Fig. 4) und der daraus resultierenden Anordnung der Empfangsspulen 28 (gezeigt in Fig. 4). Auch bildet die erfin- dungsgemäße Sensoranordnung bevorzugt eine Wälzlageranordnung gemeinsam mit dem in Fig. 2 gezeigten Wälzlager 01 aus.
Die gezeigte Ausführungsform der erfindungsgemäßen Sensoranordnung umfasst ei- nen einpoligen Winkelsensor. Somit beträgt die Anzahl der Pole n = 1 . Die rotierbare Maßverkörperung 14 weist eine Exzentrizität (nicht dargestellt) auf und ist insbesondere wie die in Fig. 6 und Fig. 7 gezeigten Maßverkörperungen 14 ausgeführt. Der einpolige Winkelsensor dient der absoluten Messung von Winkeln im Bereich von 0° bis 360°.
Bei der gezeigten Ausführungsform sind sowohl der radial innere U-Schenkel 18 als auch der radial äußere U-Schenkel 19 des Schalenkernes 17 in die Ringsegmente 38 segmentiert, wobei erfindungsgemäß nur derjenige der beiden U-Schenkel 18, 19 segmentiert sein muss, dessen Ringsegmente 38 von den Empfangsspulen 28 (ge- zeigt in Fig. 4) umschlossen sind. Grundsätzlich sind entweder die Ringsegmente 38 des inneren U-Schenkels 18 oder die Ringsegmente 38 des äußeren U-Schenkels 19 von den Empfangsspulen 28 (gezeigt in Fig. 4) umschlossen. Bevorzugt sind der innere U-Schenkel 18 und der äußere U-Schenkel 19 des Schalenkernes 17 in gleicher Weise in die Ringsegmente 38 segmentiert.
Jeder der beiden U-Schenkel 18, 19 umfasst acht der Ringsegmente 38, die zusammen zwei Ringsegmentanordnungen 41 , 42 mit jeweils vier der Ringsegmente 38 ausbilden. Jede der beiden Ringsegmentanordnungen 41 , 42 stellt bereits für sich allein die für einen einpoligen Winkelsensor gemäß dem Stand der Technik (gezeigt in Fig. 2 bis Fig. 4) notwendige Anordnung der Ringsegmente 38 dar. Erfindungsgemäß sind zwei der Ringsegmentanordnungen 41 , 42 ausgebildet, welche um einen Rotationswinkel von ß = 60 n = 60 1 = 60° bezogen auf die Rotationsachse 04 zueinander versetzt sind. Aus diesem Grund sind die Ringsegmente 38 auf jedem der beiden U-Schenkel 18, 19 paarig vorhanden. Es sind vier Paare 43, 44, 46, 47 der Ringseg- mente 38 vorhanden. Bei jedem der Paare 43, 44, 46, 47 weisen die beiden Ringsegmente 38 des jeweiligen Paares 43, 44, 46, 47 einen Winkelversatz von
ß = 607n = 6071 = 60° zueinander bezogen auf die Rotationsachse 04 auf. Den kreis- ringsegmentförmigen Ringsegmenten 38 lässt sich jeweils ein Mittelradius 51 zuord- nen. Die Mittel radien 51 der beiden Ringsegmente 38 eines jeden der Paare 43, 44, 46, 47 weisen ebenfalls den Winkel ß = 607n = 60 1 = 60° zueinander auf.
Sämtliche der Ringsegmente 38 weisen einen gleich großen Mittelpunktswinkel 2·α auf. Entsprechend erstrecken sich die jeweils zwei Ringsegmente 38 der einzelnen Paare 43, 44, 46, 47 symmetrisch mit einem Winkel ± α um die bei jeweils bei Winkelpositionen von 0° und 60° angeordneten Mittelradien 51 .
Die Empfangsspulen 28 (gezeigt in Fig. 4) sind bevorzugt durch Sinusspulen und Kosinusspulen gebildet. Die Begriffe„Sinusspule" und„Kosinusspule" sind aus dem Stand der Technik, beispielsweise aus der WO 201 1/134955 A2 bekannt. Die Sinusspulen sind bei der gezeigten Ausführungsform paarweise ausgebildet (nicht dargestellt), wobei jedes der Paare der Sinusspulen eine positive Sinusspule und eine negative Sinusspule umfasst. Die mit der positiven Sinusspule und die mit der negativen Sinusspule während des Drehens der Maßverkörperung 14 messbaren Signale weisen eine elektrische Periode auf, welche einen Drehwinkel zwischen der Maßverkörperung und dem Sensorring von 3607n = 36071 = 360° repräsentiert. In gleicher Weise sind die Kosinusspulen paarweise ausgebildet (nicht dargestellt), wobei jedes der Paare der Kosinusspulen eine positive Kosinusspule und eine negative
Kosinusspule umfasst. Die mit der positiven Kosinusspule und die mit der negativen Kosinusspule während des Drehens der Maßverkörperung 14 messbaren Signale weisen eine elektrische Periode auf, welche einen Drehwinkel zwischen der Maßverkörperung und dem Sensorring von 3607n = 36071 = 360° repräsentiert. Ein erstes Ringsegment 61 der ersten Ringsegmentanordnung 41 und ein erstes
Ringsegment 71 der zweiten Ringsegmentanordnung 42 sind von der positiven Sinusspule umschlossen (nicht dargestellt). Ein zweites Ringsegment 62 der ersten Ringsegmentanordnung 41 und ein zweites Ringsegment 72 der zweiten Ringsegmentanordnung 42 sind von der negativen Sinusspule umschlossen (nicht dargestellt). Ein drittes Ringsegment 63 der ersten Ringsegmentanordnung 41 und ein drittes Ringsegment 73 der zweiten Ringsegmentanordnung 42 sind von der positiven
Kosinusspule umschlossen (nicht dargestellt). Ein viertes Ringsegment 64 der ersten Ringsegmentanordnung 41 und ein viertes Ringsegment 74 der zweiten Ringseg- mentanordnung 42 sind von der negativen Kosinusspule umschlossen (nicht dargestellt).
Fig. 5 zeigt eine weitere bevorzugte Ausführungsform der erfindungsgemäßen Sen- soranordnung in einer Querschnittsdarstellung. In dieser Querschnittsdarstellung ist insbesondere der Schalenkern 17 gezeigt. Im Übrigen gleicht diese Ausführungsform der erfindungsgemäßen Sensoranordnung in ihrem Aufbau dem in den Fig. 2 bis 4 gezeigten Winkelsensor 02 und unterscheidet sich in der Ausführung der Ringsegmente 38 (vgl. Fig. 4) und der daraus resultierenden Anordnung der Empfangsspulen 28 (gezeigt in Fig. 4).
Die gezeigte Ausführungsform der erfindungsgemäßen Sensoranordnung umfasst einen vierpoligen Winkelsensor. Somit beträgt die Anzahl der Pole n = 4. Die rotierbare Maßverkörperung (nicht gezeigt; vgl. Fig. 8 und 9) weist eine Exzentrizität mit vier Ma- xima und vier Minima ihrer Ringbreite auf. Der vierpolige Winkelsensor dient der absoluten Messung von Winkeln im Bereich von 0° bis 360 4 = 90°.
Bei der gezeigten Ausführungsform sind sowohl der innere U-Schenkel 18 als auch der äußere U-Schenkel 19 des Schalenkernes 17 in die Ringsegmente 38 segmen- tiert, wobei erfindungsgemäß nur derjenige der beiden U-Schenkel 18, 19 segmentiert sein muss, der von den Empfangsspulen 28 (gezeigt in Fig. 4) umschlossen ist.
Grundsätzlich sind entweder die Ringsegmente 38 des inneren U-Schenkels 18 oder die Ringsegmente 38 des äußeren U-Schenkels 19 von den Empfangsspulen 28 (gezeigt in Fig. 4) umschlossen. Bevorzugt sind der innere U-Schenkel 18 und der äuße- re U-Schenkel 19 des Schalenkernes 17 in gleicher Weise in die Ringsegmente 38 segmentiert.
Jeder der beiden U-Schenkel 18, 19 umfasst 26 der Ringsegmente 38, die zusammen zwei Ringsegmentanordnungen 41 , 42 mit jeweils 13 der Ringsegmente 38 ausbilden. Jede der beiden Ringsegmentanordnungen 41 , 42 stellt bereits für sich allein die für einen vierpoligen Winkelsensor gemäß dem Stand der Technik notwendige Anordnung der Ringsegmente 38 dar. Erfindungsgemäß sind zwei der Ringsegmentanordnungen 41 , 42 ausgebildet, welche um einen Rotationswinkel von ß = 60 n = 60 4 = 15° bzw. ß = 607n + 3·3607η = 6074 + 270° = 285° um bezogen auf die Rotationsachse 04 zueinander versetzt sind. Aus diesem Grund sind die Ringsegmente 38 auf jedem der beiden U-Schenkel 18, 19 paarig vorhanden. Es sind vier Paare 43, 44, 46, 47 der Ringsegmente 38 vorhanden. Bei drei der vier Paare 43, 44, 46 weisen die beiden Ringsegmente 38 des jeweiligen Paares 43, 44, 46 einen Winkelversatz von 607n = 6074 = 15° zueinander bezogen auf die Rotationsachse 04 auf. Bei einem der vier Paare 47 weisen die beiden Ringsegmente 38 dieses Paares 47 einen Winkelversatz von ß = 607n + 3·3607η = 6074 + 270° = 285° zueinander bezogen auf die Rotationsachse 04 auf.
Zwischen zwei unmittelbar benachbarten der Ringsegmente 38 ist jeweils ein Winkelabstand γ vorhanden. Sämtliche Winkelabstände γ auf dem inneren U-Schenkel 18 und auf dem äußeren U-Schenkel 19 des Schalenkernes 17 sind gleich groß. Hierfür sind einige verkürzte Ringsegmente 53 ausgebildet, die einen kleineren
Mittelpunktswinkel als die übrigen Ringsegmente 38 aufweisen.
Die Anordnung der Paare 43, 44, 46, 47 der Ringsegmente 38 ermöglicht eine redundante Auswertung zur Bestimmung des zu messenden Winkes. Bei dem mehrpoligen Winkelsensor können alle notwendigen Signale in einem Kreisringsektor mit einem Mittelpunktswinkel < 180° erzeugt werden, sodass durch Nutzung eines zweiten Kreisringsektors redundante Signale zur Verfügung stehen. Die redundanten Signale können getrennt ausgewertet werden und erhöhen die Funktionssicherheit. Diese Auswertung kann außerhalb oder innerhalb des Winkelsensors erfolgen.
Bezuqszeichenliste
Wälzlager
Winkelsensor
Innenring
Rotationsachse Außenring
Wälzkörper
Käfig
Dichtscheibe Sensorring
Halteelement
umlaufende Nut im Außenring
Maßverkörperung umlaufende Nut im Innenring
U-förmiger Schalenkern
innerer U-Schenkel
äußerer U-Schenkel U-Basis
innerer Stützring
äußerer Stützring
Ringraum Platine
Sendespule
Empfangsspulen
Kabel 31 Kabelhalterung
32 Aussparung im äußeren Stützring
35
36 Leiterbahnen
37 Öffnungen in der Platine
38 Ringsegmente
40
41 erste Ringsegmentanordnung
42 zweite Ringsegmentanordnung
43 Paar der Ringsegmente
44 Paar der Ringsegmente
45
46 Paar der Ringsegmente
47 Paar der Ringsegmente
50
51 Mittelradius
52
53 verkürztes Ringsegment
60
61 erstes Ringsegment der ersten Ringsegmentanordnung
62 zweites Ringsegment der ersten Ringsegmentanordnung
63 drittes Ringsegment der ersten Ringsegmentanordnung
64 viertes Ringsegment der ersten Ringsegmentanordnung 70
71 erstes Ringsegment der zweiten Ringsegmentanordnung
72 zweites Ringsegment der zweiten Ringsegmentanordnung
73 drittes Ringsegment der zweiten Ringsegmentanordnung
74 viertes Ringsegment der zweiten Ringsegmentanordnung
2·α Mittelpunktswinkel
ß Winkelversatz
γ Winkelabstand

Claims

Patentansprüche
Sensoranordnung mit einem Winkelsensor (02), umfassend einen eine Rotationsachse (04) zumindest teilweise umschließenden Sensorring (1 1 ) und eine relativ zu diesem rotierbare Maßverkörperung (14);
- wobei auf dem Sensorring (1 1 ) mindestens eine Sendespule (27) und
mehrere Empfangsspulen (28) angeordnet sind, wobei ein Signal über einen magnetischen Kreis zwischen der Sendespule (27) und den Empfangsspulen (28) übertragbar ist, und wobei die rotierbare Maßverkörperung (14) eine variable Reluktanz in dem magnetischen Kreis ausbildet;
- wobei die Sendespule (27) in einem einen Teil des magnetischen Kreis bildenden ringförmigen Schalenkern (17) angeordnet ist;
- wobei die Maßverkörperung (14) als rotierbarer Ring ausgebildet ist, weicher den magnetischen Kreis zwischen zwei ringförmigen Schenkeln (18, 19) des Schalenkernes (17) schließt;
- wobei die Empfangsspulen (28) jeweils teilweise innerhalb und teilweise außerhalb des Schalenkernes (17) angeordnet sind, wobei zumindest einer der beiden ringförmigen Schenkel (18) des Schalenkernes (17) segmentartig ausgebildet ist, sodass er Ringsegmente (38) umfasst, wobei die Empfangsspulen (28) jeweils mindestens eines der Ringsegmente (38) umschließen; wobei die Ringsegmente (38) bezogen auf die Rotationsachse (04) jeweils einen Kreisbogen ausbilden, wobei jeweils ein Mittelradius (51 ) des jeweiligen Kreisbogens eine Symmetrieachse des jeweiligen Kreisbogens ausbildet; und
- wobei der Winkelsensor für eine Messung über n Pole mit n > 1 ausgebildet ist;
dadurch gekennzeichnet, dass die Ringsegmente (38) paarweise als Paare (43, 44, 46, 47) vorhanden sind, wobei die Mittelradien (51 ) der beiden Ringsegmente (38) der einzelnen Paare (43, 44, 46, 47) einen Winkel (ß) von (60 n + i-360 n) zueinander aufweisen, und wobei i eine ganze Zahl ist.
Sensoranordnung nach Anspruch 1 , dadurch gekennzeichnet, dass die beiden Ringsegmente (38) der einzelnen Paare (43, 44, 46, 47) von einer oder mehreren der Empfangsspulen (28) umschlossen sind, welche dazu ausgebildet sind, durch die beiden Ringsegmente (38) des jeweiligen Paares (43, 44, 46, 47) fließende magnetische Flüsse additiv in eine induzierte elektrische Spannung zu wandeln.
Sensoranordnung nach Anspruch 2, dadurch gekennzeichnet, dass die beiden Ringsegmente (38) der einzelnen Paare (43, 44, 46, 47) gemeinsam von einer der Empfangsspulen (28) umschlossen sind.
Sensoranordnung nach Anspruch 2, dadurch gekennzeichnet, dass die beiden Ringsegmente (38) der einzelnen Paare (43, 44, 46, 47) jeweils von einer der Empfangsspulen (28) umschlossen sind, sodass den Paaren (43, 44, 46, 47) je weils zwei der Empfangsspulen (28) zugeordnet sind, wobei die beiden Empfangsspulen (28) der einzelnen Paare (43, 44, 46, 47) elektrisch in Reihe zusammengeschaltet sind.
Sensoranordnung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Kreisbögen der Ringsegmente (38) jeweils einen Mittelpunktswinkel (2·α) aufweisen, wobei die Mittelpunktswinkel (2·α) der Kreisbögen der beiden Ringsegmente (38) der einzelnen Paare (43, 44, 46, 47) gleich groß sind.
Sensoranordnung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass jeweils zwischen zwei benachbarten der Ringsegmente (38) ein Winkelab stand (γ) ausgebildet ist, wobei die Winkelabstände (γ) auf dem segmentartigen ausgebildeten ringförmigen Schenkel (18) des Schalenkernes (17) gleich groß sind.
7. Sensoranordnung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass beide der ringförmigen Schenkel (18, 19) des Schalenkernes (17) segmentartig ausgebildet sind, wobei die Kreisbögen der Ringsegmente (38) des einen der beiden ringförmigen Schenkel (18) jeweils eine gleiche Winkelposition und einen gleichen Mittelpunktswinkel (2·α) wie die Kreisbögen der Ringsegmente (38) des anderen der beiden ringförmigen Schenkel (19) aufweisen.
8. Sensoranordnung nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass ausschließlich die Ringsegmente (38) des radial inneren der beiden ringförmigen Schenkel (18) des Schalenkernes (17) von den Empfangsspulen (28) umschlossen sind.
9. Sensoranordnung nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass sie weiterhin eine Auswerteinheit umfasst, die elektrisch mit den Empfangsspulen (28) verbunden ist, um Signale von den Empfangsspulen (28) zu empfangen, wobei die Auswerteeinheit dazu konfiguriert ist, die den einzelnen Paaren (43, 44, 46, 47) der Ringsegmente (38) zugeordnete Signale der Empfangsspulen (28) redundant zu verarbeiten.
10. Wälzlageranordnung, umfassend ein Wälzlager (01 ) mit einem ersten Lagerring (06) und mit einem zu dem ersten Lagerring (06) rotierbaren zweiten Lagerring (03), dadurch gekennzeichnet, dass sie weiterhin eine Sensoranordnung nach einem der Ansprüche 1 bis 9 umfasst, wobei der Sensorring (1 1 ) mit dem ersten
Lagerring (06) gekoppelt ist, und wobei die Maßverkörperung (14) drehfest mit dem zweiten Lagerring (03) verbunden ist.
PCT/DE2016/200179 2015-05-13 2016-04-12 Sensoranordnung mit einem winkelsensor sowie wälzlageranordnung mit sensoranordnung WO2016180411A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/573,159 US10473487B2 (en) 2015-05-13 2016-04-12 Sensor arrangement comprising an angle sensor and rolling bearing arrangement comprising sensor arrangement
CN201680027653.6A CN107615074B (zh) 2015-05-13 2016-04-12 具有角度传感器的传感器装置以及具有传感器装置的滚动轴承装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102015208837.5A DE102015208837B4 (de) 2015-05-13 2015-05-13 Sensoranordnung mit einem Winkelsensor sowie Wälzlageranordnung mit Sensoranordnung
DE102015208837.5 2015-05-13

Publications (1)

Publication Number Publication Date
WO2016180411A1 true WO2016180411A1 (de) 2016-11-17

Family

ID=56024067

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2016/200179 WO2016180411A1 (de) 2015-05-13 2016-04-12 Sensoranordnung mit einem winkelsensor sowie wälzlageranordnung mit sensoranordnung

Country Status (4)

Country Link
US (1) US10473487B2 (de)
CN (1) CN107615074B (de)
DE (1) DE102015208837B4 (de)
WO (1) WO2016180411A1 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019125801A1 (de) * 2019-09-25 2021-03-25 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Wälzlager mit Sensor und Antriebseinheit
KR20210136638A (ko) * 2020-05-08 2021-11-17 현대모비스 주식회사 인휠 구동 장치 및 그 인휠 구동 장치를 포함하는 자동차
US11519757B2 (en) * 2020-06-11 2022-12-06 Honeywell International Inc. System and method for determining angular position in rotating machines
CN113231213B (zh) * 2021-05-11 2022-02-18 柳州市中晶科技有限公司 一种具有防油漆滴落机构的喷涂机器人

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011134955A2 (de) 2010-04-26 2011-11-03 Ina Drives, & Mechatronics Gmbh & Co. Ohg Wälzlageranordnung mit einem winkelsensor
DE102010021160A1 (de) * 2010-05-21 2011-11-24 Schaeffler Technologies Gmbh & Co. Kg Wälzlager mit integriertem Generator
US20130193957A1 (en) * 2010-06-22 2013-08-01 Ametek Airtechnology Group Limited Resolver
DE102012223942A1 (de) 2012-12-20 2014-06-26 Schaeffler Technologies Gmbh & Co. Kg Sensoranordnung mit einem Winkelsensor sowie Wälzlageranordnung

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1240482B (it) * 1990-07-04 1993-12-17 Skf Ind Spa Dispositivo atto a permettere la rilevazione della velocita' di rotazione tra due organi in rotazione relativa quali gli organi di sopporto di una ruota di un veicolo.
DE4232993C2 (de) * 1992-10-01 1995-11-02 A B Elektronik Gmbh Vorrichtung zur Messung der Torsion und/oder einer relativen Winkelbewegung
DE19532327A1 (de) * 1995-09-01 1997-03-06 Teves Gmbh Alfred Vorrichtung zur Messung von Dreh- und Winkelbewegungen
US5967669A (en) * 1996-10-11 1999-10-19 Nsk Ltd. Rolling bearing unit with rotational speed sensor
WO2004033995A1 (ja) * 2002-10-10 2004-04-22 Koyo Seiko Co., Ltd. 転がり軸受装置
EP1574823A4 (de) * 2002-12-20 2008-06-11 Jtekt Corp Welzlagereinheit mit sensor
US20060186627A1 (en) * 2003-03-10 2006-08-24 Katsura Koyagi Axle-supporting device
JP4211539B2 (ja) * 2003-08-29 2009-01-21 株式会社ジェイテクト 転がり軸受装置
JP2006064513A (ja) * 2004-08-26 2006-03-09 Minebea Co Ltd Vr型レゾルバおよびそれを用いた多重化レゾルバ
US7100434B2 (en) * 2004-10-07 2006-09-05 Ford Global Technologies, Llc Devices and methods for simulating tire non-uniformity forces for vehicle vibration sensitivity measurements and tuning
DE102007043392A1 (de) * 2007-09-12 2009-03-19 Schaeffler Kg Messanordnung für eine gelagerte Welle
DE102008013377A1 (de) * 2008-03-10 2009-09-17 Dr. Johannes Heidenhain Gmbh Winkelmesssystem und Verfahren zur Herstellung eines Winkelmesssystems
DE112009001282B4 (de) * 2008-05-27 2013-06-06 Mitsubishi Electric Corp. Drehwinkelerfassungsvorrichtung
DE102009044542B3 (de) * 2009-11-16 2011-05-19 Ina - Drives & Mechatronics Gmbh & Co. Ohg Wälzlager mit einer Sensoreinheit
JP2011151978A (ja) * 2010-01-22 2011-08-04 Jtekt Corp レゾルバセンサの固定構造
WO2012080780A1 (en) * 2010-12-17 2012-06-21 Aktiebolaget Skf Rotation detection set and bearing assembly comprising such a detection set
JP5778976B2 (ja) * 2011-04-28 2015-09-16 ミネベア株式会社 Vr型レゾルバおよび角度検出システム
CN103036386B (zh) * 2011-10-06 2015-07-15 爱三工业株式会社 角度传感器
US9322638B2 (en) * 2011-10-24 2016-04-26 Te Connectivity India Private Limited Magnetic flux enhancer system between magnetic field generating means and rotor for reluctance type sensors
JP5988573B2 (ja) * 2011-12-22 2016-09-07 ミネベア株式会社 Vr型レゾルバ
DE102012215957A1 (de) * 2012-09-10 2014-05-15 Schaeffler Technologies Gmbh & Co. Kg Resolverlager
DE102014210014A1 (de) * 2014-05-26 2015-11-26 Schaeffler Technologies AG & Co. KG Resolverlager, Resolverstator und Verfahren zu dessen Herstellung

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011134955A2 (de) 2010-04-26 2011-11-03 Ina Drives, & Mechatronics Gmbh & Co. Ohg Wälzlageranordnung mit einem winkelsensor
DE102010021160A1 (de) * 2010-05-21 2011-11-24 Schaeffler Technologies Gmbh & Co. Kg Wälzlager mit integriertem Generator
US20130193957A1 (en) * 2010-06-22 2013-08-01 Ametek Airtechnology Group Limited Resolver
DE102012223942A1 (de) 2012-12-20 2014-06-26 Schaeffler Technologies Gmbh & Co. Kg Sensoranordnung mit einem Winkelsensor sowie Wälzlageranordnung

Also Published As

Publication number Publication date
CN107615074B (zh) 2020-03-27
US20180356254A1 (en) 2018-12-13
DE102015208837A1 (de) 2016-11-17
US10473487B2 (en) 2019-11-12
DE102015208837B4 (de) 2017-03-30
CN107615074A (zh) 2018-01-19

Similar Documents

Publication Publication Date Title
EP3645977B1 (de) Sensorsystem zur bestimmung mindestens einer rotationseigenschaft eines rotierenden elements
DE102015220615A1 (de) Drehwinkelsensor
EP0551066A1 (de) Kapazitiver Drehwinkelsensor
EP3479071A1 (de) Drehwinkelsensor, statorelement sowie rotorelement für diesen
DE102015208837B4 (de) Sensoranordnung mit einem Winkelsensor sowie Wälzlageranordnung mit Sensoranordnung
DE112008003911T5 (de) Magnetischer Encoder und Aktuator
EP3283850A1 (de) Hallsensor
DE2743903C2 (de) Vorrichtung zum Ermitteln und Anzeigen der Winkelstellung eines um eine Drehachse drehbaren plattenförmigen Bauteils, insbesondere des Zeigers eines Meßgerätes
DE102015220617A1 (de) Drehwinkelsensor
DE10219091A1 (de) Drehbewegungsdetektor
DE102016217254B4 (de) Drehwinkelsensor, Statorelement sowie Rotorelement für diesen
EP0664441A2 (de) Induktiver Stellungsgeber
EP3884239B1 (de) Winkelsensor mit mehrpoligem magnet für eine kraftfahrzeuglenkung
EP3936828B1 (de) Gebersystem für einen antrieb
EP2893359A1 (de) Resolverlager
DE60125167T2 (de) Sternschaltung mit sensoren
WO2014173404A1 (de) Winkelmessung, insbesondere berührungslos, mit einzelsensoren
DE102012223942A1 (de) Sensoranordnung mit einem Winkelsensor sowie Wälzlageranordnung
EP2169356A1 (de) Vorrichtung zur Bestimmung der axialen Position des Läufers eines Linearmotors
DE102017222402B4 (de) Drehwinkelmesseinrichtung
EP0247997B1 (de) Drehgeber
DE4021637A1 (de) Induktiver stellungsgeber
DE202015103893U1 (de) Anordnung einer Mikrogenerator-Schaltung
EP0932018A2 (de) Induktive Winkelmessvorrichtung
EP2940432B1 (de) Winkelsensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16723642

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16723642

Country of ref document: EP

Kind code of ref document: A1