WO2016180309A1 - Dispositif de positionnement et de chargement automatique pour véhicule aérien et procédé de positionnement d'atterrissage utilisant celui-ci - Google Patents

Dispositif de positionnement et de chargement automatique pour véhicule aérien et procédé de positionnement d'atterrissage utilisant celui-ci Download PDF

Info

Publication number
WO2016180309A1
WO2016180309A1 PCT/CN2016/081513 CN2016081513W WO2016180309A1 WO 2016180309 A1 WO2016180309 A1 WO 2016180309A1 CN 2016081513 W CN2016081513 W CN 2016081513W WO 2016180309 A1 WO2016180309 A1 WO 2016180309A1
Authority
WO
WIPO (PCT)
Prior art keywords
charging
aircraft
positioning
landing
beacon
Prior art date
Application number
PCT/CN2016/081513
Other languages
English (en)
Chinese (zh)
Inventor
陈乐春
Original Assignee
江苏数字鹰科技发展有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏数字鹰科技发展有限公司 filed Critical 江苏数字鹰科技发展有限公司
Publication of WO2016180309A1 publication Critical patent/WO2016180309A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64FGROUND OR AIRCRAFT-CARRIER-DECK INSTALLATIONS SPECIALLY ADAPTED FOR USE IN CONNECTION WITH AIRCRAFT; DESIGNING, MANUFACTURING, ASSEMBLING, CLEANING, MAINTAINING OR REPAIRING AIRCRAFT, NOT OTHERWISE PROVIDED FOR; HANDLING, TRANSPORTING, TESTING OR INSPECTING AIRCRAFT COMPONENTS, NOT OTHERWISE PROVIDED FOR
    • B64F1/00Ground or aircraft-carrier-deck installations
    • B64F1/35Ground or aircraft-carrier-deck installations for supplying electrical power to stationary aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64FGROUND OR AIRCRAFT-CARRIER-DECK INSTALLATIONS SPECIALLY ADAPTED FOR USE IN CONNECTION WITH AIRCRAFT; DESIGNING, MANUFACTURING, ASSEMBLING, CLEANING, MAINTAINING OR REPAIRING AIRCRAFT, NOT OTHERWISE PROVIDED FOR; HANDLING, TRANSPORTING, TESTING OR INSPECTING AIRCRAFT COMPONENTS, NOT OTHERWISE PROVIDED FOR
    • B64F1/00Ground or aircraft-carrier-deck installations
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries

Definitions

  • the present invention relates to the field of aircraft technology, and in particular, to an aircraft automatic positioning charging device and a method for landing positioning using the same.
  • Small aircraft can be used for a variety of purposes, such as high-altitude detection or high-altitude object throwing. It can be used in various fields such as agriculture, detection, meteorology, disaster prediction and rescue, and can even be used. Manned, instead of personal transportation.
  • the present invention discloses an aircraft automatic positioning charging device and a method of landing positioning using the same.
  • An aircraft automatic positioning charging device includes a stopping plate and a charging device and a charging rail located above the stopping plate; the charging rail is provided with a beacon, and both sides are provided with a landing gear fixing device;
  • the charging device comprises a battery and a charging conduit conveying device;
  • the charging conduit conveying device comprises a bracket, a rotatable gear mounted on the top of the bracket and a charging conduit; a side of the charging conduit is fixed with a linear sawtooth rod; the sawtooth rod The serrations match the teeth of the gear; the charging conduit is connected to the battery Pick up.
  • a further technical solution thereof is: further comprising a charging box that covers the charging device, and the charging box is provided with an upper cover that can be smashed.
  • the beacon is a visual beacon or an infrared beacon.
  • the charging end of the charging conduit is mounted with a spring, a charging interface, a first gasket and a second gasket;
  • the charging interface is a plug with a wire, and the wire passes through the charging conduit Connected to the battery;
  • the first gasket is annular and fixed to the inner wall of the charging duct;
  • the spring is mounted on the outer end of the first gasket;
  • the charging interface is mounted on the outer end of the spring;
  • the second gasket is mounted on an outer end of the charging interface to fix the charging interface within the charging conduit.
  • the charging rail is ridge-shaped, including an intermediate convex portion and two concave portions
  • the beacon is disposed at the convex portion
  • the landing gear fixing device Centered on the raised portion the number is equal and the position is symmetrically mounted in the recess.
  • the landing gear fixing device comprises an electromagnetic adsorption device installed inside the parking plate and/or a fixing hook mounted on an outer surface of the parking plate.
  • Step 1 The aircraft is provided with a GPS positioning device, and the GPS positioning device is used to perform positioning of the landing position with a precision of decimeter level;
  • Step 2 The camera is provided with a camera and a computing chip, and the camera captures and captures the beacon, and transmits the image to the computing chip for processing and calculation, and performs accuracy on the landing position with a precision of centimeter level; :
  • Step 3 The aircraft is dropped to the aircraft landing gear in contact with the charging rail, and the landing gear of the aircraft is mechanically positioned with the positioning charging device.
  • a further technical solution is: the aircraft is further provided with an ultrasonic or radar device, and in the step 2, the flying height of the aircraft is accurately positioned in a centimeter level using an ultrasonic or radar device.
  • the present invention is applicable to a small aircraft and a manned aircraft with electric energy as a main energy source, and can realize an automatic charging and energy replenishing process of the aircraft.
  • the beacon is set on the parking board of the invention, and the aircraft can automatically identify the beacon by means of infrared rays and the like, and find the position of the stopping plate, so that the aircraft can automatically find the rechargeable place without manual control. electric power.
  • the charging conduit conveyor automatically initiates connection to the aircraft and charges it, automating the entire process, especially for drone applications.
  • the present invention is further provided with a charging slide rail. Even if the accuracy of the alignment process of the aircraft with the charging device during the landing process is not high, the aircraft can automatically perform mechanical positioning, automatically slide to the proper position and fix, and complete the charging process. It is very practical to reduce the technical requirements of positional alignment without manual intervention and adjustment.
  • the landing gear fixing device provided by the invention can fix the straight rod-shaped landing gear and the universal wheel-shaped landing gear, and has wide application range, and the charging process can be successfully completed without special adjustment of the orientation of the landing device of the aircraft, and the aircraft can be simplified. Landing requirements and positioning requirements.
  • FIG. 1 is a schematic view of the present invention.
  • FIG. 2 is a schematic diagram of a beacon.
  • FIG. 3 is a schematic view of a charging slide.
  • FIG. 5 is a fixing method of a straight rod type landing gear
  • FIG. 6 is a schematic illustration of an aircraft ready landing for a straight rod landing gear.
  • FIG. 7 is a schematic illustration of an aircraft landing of a straight rod-shaped landing gear.
  • FIG. 8 is a schematic view of a charging hole of an aircraft of a straight rod-shaped landing gear.
  • FIG. 9 is a method of fixing a universal wheeled landing gear.
  • FIG. 10 is a schematic view of an aircraft ready landing for a universal wheeled landing gear.
  • FIG. 11 is a schematic illustration of an aircraft landing of a universal wheeled landing gear.
  • the direction indicated by the arrow in FIG. 12 is the position of the charging hole.
  • FIG. 13 is a schematic diagram of a charging device.
  • FIG. 14 is an enlarged schematic view of a portion A in FIG. 13.
  • FIG. 15 is a schematic view of a charging tip of a charging catheter.
  • FIG. 16 is a disassembled schematic view of FIG. 15.
  • FIG. 17 is a process diagram of an aircraft landing on a parking plate.
  • the 1 is a schematic view of the present invention, which includes a parking plate 1, a charging device located in the charging case 2, and a charging rail 3.
  • the top cover of the charging box 2 is provided with a top cover that can be smashed.
  • the charging box 2 as a whole covers the entire charging device, and the various structures for protecting the charging device are not exposed to rain and sun, increasing the service life and snoring.
  • the upper cover of the charging case 2 can inspect and maintain the charging device.
  • the charging rail 3 has a ridge shape, a convex portion in the middle, and groove-shaped recess portions on both sides. Multiple charging rails can be installed on one parking board, and multiple aircraft can be charged at the same time.
  • the beacon 2 is a schematic diagram of a beacon 4.
  • the beacon is mounted on the charging rail 3 and consists of an identification beacon and a positioning beacon.
  • the identification beacon is a cross shape, and may also be a shape that is easy to recognize by a circle, a square, or the like.
  • the identification of the beacon can be either visually recognized or recognized by the infrared system.
  • a circle of positioning beacons around the identification beacons together form a geometric figure that can be used to identify the location.
  • the charging duct extension hole 6 on the side of the charging case 2 can also be seen. After charging, the charging duct protrudes from the hole and is connected to the aircraft.
  • FIG. 3 is a schematic view of the charging slide 3. It can be seen from Fig. 3 that the fixing hooks 5 are mounted on the grooved portions on both sides of the charging rail 3.
  • Figure 4 is an enlarged view of the fixed hook 5 for fixing the straight rod-shaped landing gear of the aircraft landing on the parking plate 1.
  • the landing gear of an aircraft generally has two forms, one is two straight rods, and the other is four universal wheels, which are all symmetrically mounted on the lower part of the aircraft.
  • the landing gear fixture of the present invention can secure the aircraft to the immobilizer 1 smoothly.
  • FIG. 5 is a method of fixing a straight rod type landing gear.
  • the fixed hooks 5 can automatically move inwardly to fasten the landing gear of the aircraft, so that the aircraft is fixed at a specific position, so as to be completed.
  • Figure 6 is an aircraft with a straight rod-shaped landing gear
  • a schematic diagram of the preliminary landing, area B shows the state in which the fixed hook 5 is ready to fix the straight-shaped landing gear.
  • Fig. 7 is a schematic view showing the landing of the aircraft of the straight rod type landing gear, and the area C shows the state in which the straight rod type landing gear is fastened by the fixing hook 5.
  • FIG. 8 is a schematic view of the charging hole of the aircraft of the straight rod type landing gear. The direction indicated by the arrow in Fig. 8 is the position of the charging hole.
  • FIG. 9 is a method of fixing a universal wheeled landing gear.
  • the universal wheel of the aircraft is provided with a substance that can be electromagnetically adsorbed.
  • the electromagnetic adsorption device 7 installed inside the stopping plate 1 firmly adheres the universal wheel to the stopping plate 1 to serve as a fixed aircraft landing gear.
  • Fig. 10 is a schematic view of the aircraft preparatory landing of the universal wheeled landing gear, and the area D shows the state in which the universal wheel-shaped landing gear is about to land on the recessed portion of the charging rail 3.
  • Fig. 10 is a schematic view of the aircraft preparatory landing of the universal wheeled landing gear, and the area D shows the state in which the universal wheel-shaped landing gear is about to land on the recessed portion of the charging rail 3.
  • FIG. 11 is a view showing the descending of the aircraft of the universal wheel-shaped landing gear, and the area E shows the state in which the universal wheel-shaped landing gear is affixed and fixed by the electromagnetic adsorption device 7 inside the parking plate 1.
  • the fuselage of the aircraft is provided with four charging holes spaced 90° apart, and the aircraft can be lowered in any of four directions, and can be smoothly charged.
  • Figure 12 is a schematic view of the charging hole of the aircraft of the universal wheeled landing gear. The direction indicated by the arrow in Fig. 12 is the position of the charging hole.
  • the landing gear fixing device can also be mounted with only the electromagnetic adsorption device 7 or only the fixed hook 5 for a specific type of aircraft.
  • FIG. 13 is a schematic view of a charging device.
  • the charging device is mounted within the charging case 2 and includes a battery 21 and a charging conduit transfer device. If a plurality of charging slides are mounted on the parking plate 1, a plurality of charging conduit transfer devices are installed inside the charging case 2.
  • Figure 14 is an enlarged schematic view of a portion A of Figure 13.
  • the charging conduit conveying device comprises a bracket 25, a rotatable gear 24 mounted on the top end of the bracket, and a charging duct 22, and a linear sawtooth rod 23 is fixed to the side of the charging duct, and the serration of the sawtooth rod 23 matches the teeth of the gear 24, then The gear 24 is rotated to drive the sawtooth bar 23 in a linear direction.
  • the charging conduit 22 is connected to the battery 21.
  • FIG. 15 is a schematic view of a charging tip of a charging catheter.
  • Figure 16 is a schematic view of the disassembly of Figure 15.
  • the charging conduit 22 has a connection end connected to the battery 21 and a charging end for charging the aircraft.
  • the charging end of the charging duct 22 is mounted with a spring 25, a charging interface 26, a spacer 27 and a spacer 28, the charging interface 26 being a corded plug, and the other end of the electric wire being connected to the battery 21 through the charging duct 22.
  • Shim 27 is a ring And attached to the inner wall of the charging duct 22, the spring 25 is placed at the outer end of the spacer 27, the charging interface 26 is placed at the outer end of the spacer 27, and the spacer 28 is annular, and is mounted at the outer end of the charging interface 26.
  • the charging interface is fixed within the charging conduit 22.
  • the spacer 27 and the spacer 28 are disposed such that the charging interface 26 can be fixed to the end of the charging duct 22, and moves with the movement of the charging duct 22, and the spring 25 is disposed such that the charging interface 26 can be smoothly inserted into the aircraft during charging. , not to retreat back due to insertion resistance.
  • the present invention also discloses a method for automatic landing positioning of an aircraft, comprising the following steps:
  • Step 1 The GPS positioning device is disposed on the aircraft, and firstly, the GPS positioning device is used to perform positioning of the landing position with a precision of decimeter level;
  • Step 2 The camera is provided with a camera and a computing chip, and the camera captures the captured beacon 4, and transmits the image to the computing chip for processing and calculation, and the accuracy of the landing position is determined by the size and angular relationship of the beacon geometry. Positioning in centimeter level; specifically includes:
  • the relative position of the aircraft to the beacon is determined.
  • the aircraft is provided with an matching infrared camera; when the beacon is a visual beacon, the aircraft is provided with a matching white light camera.
  • An ultrasonic wave or radar device can also be provided on the aircraft, and in this step, the flight height of the aircraft can be further used to accurately position the flying height of the aircraft in centimeters.
  • Step 3 After the aircraft is dropped to contact the aircraft landing gear and the charging rail 3, the landing gear of the aircraft is mechanically positioned with the positioning charging device.
  • FIG. 17 is a process diagram of automatic positioning of an aircraft.
  • the aircraft in this embodiment is an aircraft with a straight rod-shaped landing gear.
  • the state a is the positioning state of the above steps 1 and 2.
  • the aircraft Before the landing, the aircraft firstly locates the position of the charging device by GPS positioning technology, and then captures the beacon through the camera to locate the position of the charging rail 3.
  • State b is the mechanical positioning state of the aircraft.
  • the accuracy of positioning via the beacon is in the centimeter level, and the accuracy of the positioning is not guaranteed, so in the state b, the aircraft is not fully aligned with the charging slip.
  • the landing gears on either side of the aircraft are not guaranteed to be on either side of the charging rail 3.
  • the charging rail 3 is ridge-shaped, as long as the offset positions of the landing gears on both sides do not cross the convex portion of the charging rail 3, the landing gear can automatically slide down to the correct position along the slope of the charging rail 3. That is, the landing gears on both sides of the aircraft will eventually be located on both sides of the charging rail 3, respectively. Depression.
  • the state of c in Fig. 9 is the state in which the aircraft is adjusted to the correct position, and the aircraft can continue to slide automatically along the charging rail 3, so that its landing gear just comes into contact with the fixed hook 5, and after the fixed hook 5 is sensed, it will automatically Fasten the landing gear of the aircraft to start the charging process.
  • the charging duct conveyor automatically operates, and the rotatable gear 24 mounted on the top end of the bracket 25 rotates to drive the sawtooth rod 23 to move linearly. Since the charging duct 22 is fixed on the sawtooth rod 23, the charging duct 22 also performs a branching movement, which extends out of the charging box 2 via the charging duct extension hole 6, and is connected to the aircraft to complete the charging process.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

La présente invention concerne un dispositif de positionnement et de chargement automatique pour un véhicule aérien, comprenant une planche d'atterrissage (1), et un boîtier de chargement (2) et des rails de chargement (3) situés sur la planche d'atterrissage (1). Une balise (4) est disposée sur le rail de chargement (3). Des dispositifs de fixation de train d'atterrissage sont disposés sur deux côtés du rail de chargement (3). Une batterie (21) et un dispositif de transmission de conduit de chargement sont installés à l'intérieur du boîtier de chargement (2). Le dispositif de transmission de conduit de chargement comprend un support (25), un engrenage rotatif (24) monté sur la partie supérieure du support (25), et un conduit de charge (22). Une barre en dents de scie linéaire (23) est fixée au niveau d'un côté du conduit de chargement (22). Les dents de scie de la barre en dents de scie (23) correspondent aux dents de l'engrenage (24). Le dispositif de charge peut automatiquement rechercher un site de chargement pour compléter l'énergie électrique lorsque le véhicule aérien présente un niveau d'énergie faible sans intervention humaine et sans réglage, réduisant l'exigence technique d'alignement de position, qui est pratique et utile. La présente invention concerne également un procédé de positionnement d'atterrissage à l'aide du dispositif de positionnement et de chargement automatique destiné au véhicule aérien.
PCT/CN2016/081513 2015-05-11 2016-05-10 Dispositif de positionnement et de chargement automatique pour véhicule aérien et procédé de positionnement d'atterrissage utilisant celui-ci WO2016180309A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510236881.1A CN104816834B (zh) 2015-05-11 2015-05-11 飞行器自动定位充电装置和利用该装置降落定位的方法
CN201510236881.1 2015-05-11

Publications (1)

Publication Number Publication Date
WO2016180309A1 true WO2016180309A1 (fr) 2016-11-17

Family

ID=53727365

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/081513 WO2016180309A1 (fr) 2015-05-11 2016-05-10 Dispositif de positionnement et de chargement automatique pour véhicule aérien et procédé de positionnement d'atterrissage utilisant celui-ci

Country Status (2)

Country Link
CN (1) CN104816834B (fr)
WO (1) WO2016180309A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118239025A (zh) * 2024-05-28 2024-06-25 巢湖学院 一种路面病害同源多特征图像获取装置

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104816834B (zh) * 2015-05-11 2017-01-25 江苏数字鹰科技发展有限公司 飞行器自动定位充电装置和利用该装置降落定位的方法
CN105059533A (zh) * 2015-08-14 2015-11-18 深圳市多翼创新科技有限公司 一种飞行器及其降落方法
CN108227741B (zh) * 2015-09-23 2021-03-05 郑州大学 一种生态文明监测飞行装置
DE102015116118B4 (de) * 2015-09-23 2021-06-02 Intel Deutschland Gmbh Bodenstationsvorrichtung für eine Mehrzahl an unbemannten Fluggeräten
CN105226836B (zh) * 2015-10-20 2017-12-29 杨珊珊 一种能够自动充电的无人机、无人机充电系统和充电方法
CN105391155B (zh) * 2015-12-07 2018-02-06 北京航空航天大学 一种无人机巡检基站
CN105388910A (zh) * 2015-12-15 2016-03-09 中广核工程有限公司 用于监视大型厂房的飞行器无线监视系统及监视方法
CN105471073A (zh) * 2015-12-30 2016-04-06 天津天瑞达自动化设备有限公司 智能充电装置
CN106998084A (zh) * 2016-01-26 2017-08-01 丰唐物联技术(深圳)有限公司 无人机充电方法及系统
KR20190018133A (ko) * 2016-02-29 2019-02-21 베리티 스튜디오스 아게 비행 기계의 충전, 운반 및 작동을 위한 시스템 및 방법
JP2017177912A (ja) * 2016-03-29 2017-10-05 株式会社ソーラーポート 充電システム
CN105896673B (zh) * 2016-05-31 2018-11-27 浙江国正安全技术有限公司 一种充电起落架、无人机、充电平台及无人机续航充电系统
CN105863353A (zh) * 2016-06-09 2016-08-17 徐洪军 一种小型无人机机群的起降补给机器人
CN106093330B (zh) * 2016-06-28 2018-07-10 张四玉 一种水利环境监测飞行器充电桩
CN106026313A (zh) * 2016-08-03 2016-10-12 安徽钰龙信息科技有限公司 一种船载无人机充电装置
US9937808B2 (en) * 2016-09-09 2018-04-10 Michael Steward Evans Drone charging stations
CN106444792A (zh) * 2016-09-18 2017-02-22 中国空气动力研究与发展中心高速空气动力研究所 一种基于红外线视觉识别的无人机降落定位系统与方法
CN106516089B (zh) * 2016-10-28 2019-05-21 深圳市道通智能航空技术有限公司 无人机
CN106672253A (zh) * 2016-12-02 2017-05-17 中国航空工业集团公司北京航空精密机械研究所 一种无人机收纳箱
CN106428616A (zh) * 2016-12-08 2017-02-22 隋东昊 小型飞行器降落辅助装置
CN106742013A (zh) * 2016-12-27 2017-05-31 纪泽源 一种模块化多轴无人机起落基站
CN106787231B (zh) * 2016-12-30 2023-09-22 伽行科技(北京)有限公司 一种无人机自动充电装置及其充电方法
CN106972597A (zh) * 2017-05-28 2017-07-21 佛山市神风航空科技有限公司 一种轨道式无人机自动充电装置
CN108698521B (zh) * 2017-09-30 2021-06-04 深圳市大疆创新科技有限公司 无人机的脚架套、连接组件及无人机的充电系统、方法
CN109153458B (zh) * 2017-10-31 2022-04-26 深圳市大疆创新科技有限公司 定位机构、无人机基站和无人机系统
CN109747849B (zh) * 2017-11-07 2021-10-01 中国科学院沈阳自动化研究所 一种小型巡检无人机动平台释放回收系统
JP6829677B2 (ja) * 2017-11-21 2021-02-10 本田技研工業株式会社 充電装置
CN108001694A (zh) * 2017-11-29 2018-05-08 天津聚飞创新科技有限公司 无人机降落系统及方法
CN107985556A (zh) * 2017-11-29 2018-05-04 天津聚飞创新科技有限公司 无人机悬停系统及方法
CN108230678B (zh) * 2018-03-01 2020-12-01 深圳联和智慧科技有限公司 应用无人机监控的交通道路监控系统
CN110155265B (zh) * 2019-05-31 2020-12-22 上海大学 一种用于无人艇平台的基于电磁的无人机降落装置
CN110143263B (zh) * 2019-06-04 2020-06-09 河南大域航空科技有限公司 一种基于无人机技术的海面搜救设备
CN110239685B (zh) * 2019-07-09 2021-01-15 上海大学 一种用于无人艇平台的基于平行四连杆机构的自平稳多无人机降落装置
CN110406672B (zh) * 2019-07-11 2021-05-04 杭州电子科技大学 多轴飞行器自动回坞充电系统和方法
CN111176323A (zh) * 2019-12-30 2020-05-19 湖南华诺星空电子技术有限公司 一种雷达与红外融合的无人机降落控制方法及装置
CN111301701B (zh) * 2020-03-07 2023-09-12 南方电网储能股份有限公司信息通信分公司 一种无人机充电系统、充电站及其充电定位方法
CN114212265B (zh) * 2021-12-31 2022-07-01 蜂巢航宇科技(北京)有限公司 一种多旋翼无人机机库
CN115339643B (zh) * 2022-09-06 2024-03-19 广东电网有限责任公司 无人机充电平台

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140236390A1 (en) * 2013-02-20 2014-08-21 Farrokh Mohamadi Vertical takeoff and landing (vtol) small unmanned aerial system for monitoring oil and gas pipelines
DE102013004881A1 (de) * 2013-03-07 2014-09-11 Daniel Dirks Lande- und (Akku-)Aufladestation - mit Kontakt oder kontaktlos - für einzelne oder mehrere im Verbund ferngesteuerte oder autonom fliegende Drohnen mit Drehflügeln (UAVs/Flugroboter/Multikopter)
CN104583078A (zh) * 2013-08-23 2015-04-29 韩国航空宇宙研究所 用于充电及容载垂直起降无人飞行机的设备及其方法
CN104816834A (zh) * 2015-05-11 2015-08-05 江苏数字鹰科技发展有限公司 飞行器自动定位充电装置和利用该装置降落定位的方法
CN204642164U (zh) * 2015-05-11 2015-09-16 江苏数字鹰科技发展有限公司 飞行器自动定位充电装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100929260B1 (ko) * 2009-04-28 2009-12-01 주식회사 업앤온 쿼드로콥터 발사장치 및 이를 이용한 쿼드로콥터 발사방법
CN204068303U (zh) * 2014-06-12 2014-12-31 深圳市大疆创新科技有限公司 一种充电系统、供电装置及飞行器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140236390A1 (en) * 2013-02-20 2014-08-21 Farrokh Mohamadi Vertical takeoff and landing (vtol) small unmanned aerial system for monitoring oil and gas pipelines
DE102013004881A1 (de) * 2013-03-07 2014-09-11 Daniel Dirks Lande- und (Akku-)Aufladestation - mit Kontakt oder kontaktlos - für einzelne oder mehrere im Verbund ferngesteuerte oder autonom fliegende Drohnen mit Drehflügeln (UAVs/Flugroboter/Multikopter)
CN104583078A (zh) * 2013-08-23 2015-04-29 韩国航空宇宙研究所 用于充电及容载垂直起降无人飞行机的设备及其方法
CN104816834A (zh) * 2015-05-11 2015-08-05 江苏数字鹰科技发展有限公司 飞行器自动定位充电装置和利用该装置降落定位的方法
CN204642164U (zh) * 2015-05-11 2015-09-16 江苏数字鹰科技发展有限公司 飞行器自动定位充电装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118239025A (zh) * 2024-05-28 2024-06-25 巢湖学院 一种路面病害同源多特征图像获取装置

Also Published As

Publication number Publication date
CN104816834B (zh) 2017-01-25
CN104816834A (zh) 2015-08-05

Similar Documents

Publication Publication Date Title
WO2016180309A1 (fr) Dispositif de positionnement et de chargement automatique pour véhicule aérien et procédé de positionnement d'atterrissage utilisant celui-ci
US20220396373A1 (en) Unmanned aerial vehicle airport, unmanned aerial vehicle system, tour inspection system and unmanned aerial vehicle cruise system
US9975442B2 (en) Post-type apparatus for containing and charging unmanned vertical take-off and landing aircraft and method of containing and charging unmanned vertical take-off and landing aircraft using the same
CN104298248B (zh) 旋翼无人机精确视觉定位定向方法
US9764652B2 (en) Apparatus for replenishing a vehicle energy source
CN110908403A (zh) 一种用于电力巡线无人机的自动定点降落装置及方法
ES2902933T3 (es) Sistemas de aterrizaje y acoplamiento de aeronaves de tipo dron
US20180029723A1 (en) Landing and charging system for drones
CN106715265B (zh) 无人飞行器起降平台
US20190197908A1 (en) Methods and systems for improving the precision of autonomous landings by drone aircraft on landing targets
US20160039541A1 (en) Robust and autonomous docking and recharging of quadrotors
US12032388B2 (en) Guidance system for landing a drone
CN109747824B (zh) 用于烟囱内部无人机避障的装置和避障方法
CN107181201A (zh) 一种基于激光的空中清障装置及系统
JP6791561B2 (ja) Uavにエネルギーを供給する方法、及び装置
CN105217054A (zh) 一种固定翼垂直起降无人机自动检测起降平台
WO2020097605A3 (fr) Réseau intelligent de levage de véhicule doté de capteurs répartis
CN106950989A (zh) 一种无人机定点定位方法及系统
CN104360688A (zh) 一种巡线无人机的导向装置及其控制方法
CN105739517A (zh) 一种旋翼无人机自主上下线绝缘作业的引导装置与方法
CN111301701A (zh) 一种无人机充电系统、充电站及其充电定位方法
CN210323885U (zh) 一种机器人
CN205959071U (zh) 一种无人机着陆引导系统
KR101786491B1 (ko) 착륙 보조장치를 이용한 비행체의 자동착륙 시스템
CN112269399A (zh) 应用于无人机的主动回收控制方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16792159

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16792159

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 23.08.2018)

122 Ep: pct application non-entry in european phase

Ref document number: 16792159

Country of ref document: EP

Kind code of ref document: A1