WO2016180258A1 - Igbt芯片的结构及其控制方法 - Google Patents

Igbt芯片的结构及其控制方法 Download PDF

Info

Publication number
WO2016180258A1
WO2016180258A1 PCT/CN2016/080923 CN2016080923W WO2016180258A1 WO 2016180258 A1 WO2016180258 A1 WO 2016180258A1 CN 2016080923 W CN2016080923 W CN 2016080923W WO 2016180258 A1 WO2016180258 A1 WO 2016180258A1
Authority
WO
WIPO (PCT)
Prior art keywords
igbt
control switch
state
electrode
reverse
Prior art date
Application number
PCT/CN2016/080923
Other languages
English (en)
French (fr)
Inventor
邓华鲜
Original Assignee
邓华鲜
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201510231603.7A external-priority patent/CN104835841B/zh
Priority claimed from CN201510231512.3A external-priority patent/CN104966714B/zh
Application filed by 邓华鲜 filed Critical 邓华鲜
Publication of WO2016180258A1 publication Critical patent/WO2016180258A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/07Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration the components having an active region in common
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]

Definitions

  • the invention relates to a structure of an IGBT chip and a control method thereof, and belongs to the technical field of semiconductor devices.
  • IGBT has high frequency, high current, high back pressure and other excellent characteristics, it is widely used in automotive, high-speed rail, home appliances, power electronics, aerospace, military and other fields.
  • various new processes and new technologies of IGBTs have emerged and produced, which has made the performance of IGBTs more perfect and excellent.
  • a trench gate IGBT chip disclosed in Chinese Patent Publication No. "104183634A” has a publication date of 2014- 12 ⁇ 03.
  • a high-speed IGBT disclosed in Chinese Patent Publication No. "101494239” has a publication date of 2009-07-29.
  • the main method for increasing the switching speed and reducing the tailback is to reduce the emissivity of P+ holes, reduce the unbalanced carrier lifetime and the anode short circuit, etc., from reducing the emissivity of holes, it is possible to improve the tailing problem, for example, Chinese patent "101494239", but due to the lower emissivity, the effect of electrical modulation is weakened, and the conduction voltage drop is increased, so that the heat generation of the device will also affect the reliability of the device.
  • the method of anode short circuit and reducing the unbalanced carrier lifetime is essentially the same as reducing the emissivity, which can reduce the snapback and increase the switching speed, but the increase of the turn-on voltage drop does not really improve the performance of the IGBT, but The balance between the conduction voltage drop and the switching speed.
  • An excellent IGBT should have both a reduced on-state voltage and a good switching speed. And since the IGBT itself is only a one-way conduction device, it is necessary to connect a diode in parallel to withstand the reverse voltage in the application, which increases the difficulty and cost of the subsequent package.
  • An object of the present invention is to overcome the above problems of the prior art and to provide a structure of an IGBT chip and a control method thereof.
  • the invention basically solves the tailback without affecting the performance parameters, and effectively integrates the diode inside the IGBT, realizing the IGBT has both low conduction voltage drop and good switching speed, and greatly improves the IGBT. Device reliability.
  • an IGBT chip comprising an IGBT unit composed of a MOS field effect transistor and a triode, further comprising: a control switch Q, an electrode N 2 + and an isolation cover, wherein the IGBT unit is disposed in the isolation cover, and the isolation cover is disposed at In the electrode N 2 + , the control switch Q is respectively connected to the electrode N 2 + and the triode.
  • the control switch Q When the IGBT unit is forward-conducting, the control switch Q is in a closed state, and when the IGBT unit is reverse-conducted, the control switch Q is in an on state.
  • the control switch Q When the IGBT unit is in forward conduction, the control switch Q is in the off state, the PN junction J 2 is in the reverse bias state, and J 1 is in the forward bias state.
  • the control switch Q When the IGBT unit is in reverse conduction, the control switch Q is in an on state, the PN junction J 1 is in a reverse bias state, the PN junction J 2 is in a forward bias state, and P + forms a potential barrier for electron outflow, the electrode N 2 + The circuit connected to the control switch Q forms an electron outflow path.
  • the electrode N 2 + , the depletion region N ⁇ and P form a diode
  • the N terminal of the diode is connected to the polyelectrode P + of the triode
  • the P end of the diode is connected to the emitter of the triode.
  • the IGBT unit is in contact with the inner wall of the spacer, and the outer wall of the spacer is in contact with the inner wall of the electrode N 2 + .
  • the IGBT cells are one or more.
  • the spacer is a cylindrical spacer made of the same insulating material.
  • the spacer includes an insulating filler and an oxide layer on the surface of the insulating filler, and the expansion coefficient of the insulating filler is close to the expansion coefficient of the IGBT body material.
  • the control switch Q is connected to the polyelectrode P + of the triode.
  • a method for controlling an IGBT chip characterized in that:
  • the control switch Q When the IGBT is in forward conduction, the control switch Q is in the off state, the PN junction J 2 is in the reverse bias state, and J 1 is in the forward bias state, and the electric field has no influence on the electrode N 2 + due to the action of the spacer;
  • the control switch Q When the IGBT is in reverse conduction, the control switch Q is in the on state, the PN junction J 1 is in the reverse bias state, the PN junction J 2 is in the forward bias state, and the electron outflow is hindered by the P + barrier, and then the electrode N 2 + Movement, through the control switch Q movement out.
  • the present invention further includes a control switch Q, an electrode N 2 + and an isolation cover.
  • the IGBT unit is disposed in the isolation cover, the isolation cover is disposed in the electrode N 2 + , and the control switch Q is respectively connected to the electrode N 2 + and the triode.
  • the isolation cover, N 2 + and device Q are introduced on the basis of the conventional IGBT, and the problem of the snapback is basically solved without affecting the performance parameters, and the diode is effectively integrated inside the IGBT, and the real
  • the IGBT has both low on-voltage drop and good switching speed, which greatly improves the reliability of the device.
  • the control switch Q when the IGBT unit is reverse-conducting, the control switch Q is turned on, the electrode N 2 + , the depletion region N ⁇ and P form a diode, and the N terminal of the diode is connected to the polyelectrode P + of the triode.
  • the P terminal of the diode is connected to the emitter of the triode.
  • the IGBT unit is in contact with the inner wall of the spacer, and the outer wall of the spacer is in contact with the inner wall of the electrode N 2 + .
  • the amount of material can be reduced, thereby reducing the production cost, compared with the non-contact. Reduce the drawbacks of circuit connections.
  • the IGBT unit is one or more, and the number of IGBT units can be selected according to the required current, and the application range is wider.
  • the isolation cover is a cylindrical isolation cover made of the same insulating material, which has a simple manufacturing process and low cost, but is prone to voids.
  • the spacer includes an insulating filler and an oxide layer on a surface of the insulating filler.
  • the expansion coefficient of the insulating filler is close to the expansion coefficient of the IGBT bulk material, so that the variation of the expansion coefficient of the whole device is basically the same, and the reliability of the device is higher.
  • the present invention and the conventional IGBT need to have a larger area by setting the voltage dividing ring than the setting of the voltage dividing ring, resulting in a larger volume of the entire IGBT.
  • the present invention does not need to provide a voltage dividing ring by setting the isolation cover, thereby reducing the size. Volume reduces manufacturing costs.
  • An IGBT chip structure comprising an IGBT unit composed of a MOS field effect transistor and a triode, further comprising a control switch Q, an electrode N 2 + and an isolation cover, wherein the IGBT unit is disposed in the isolation cover, and the isolation cover is disposed on the electrode N 2 +
  • the control switch Q is respectively connected to the electrode N 2 + and the triode.
  • the control switch Q when the IGBT unit is in the forward conduction state, the control switch Q is in the off state, the PN junction J 2 is in the reverse bias state, and J 1 is in the forward bias state.
  • the control switch Q when the IGBT unit is in reverse conduction, the control switch Q is in an on state, the PN junction J 1 is in a reverse bias state, the PN junction J 2 is in a forward bias state, and P + forms a barrier against electron outflow.
  • the circuit connecting the electrode N 2 + and the control switch Q forms an electron outflow path.
  • the electrode N 2 + , the depletion region N ⁇ and P form a diode, and the N terminal of the diode is connected to the polyelectrode P + of the triode, the P terminal of the diode and the triode Emitter connection.
  • the IGBT unit is in contact with the inner wall of the spacer, and the outer wall of the spacer is in contact with the inner wall of the electrode N 2 + .
  • the IGBT unit is one or more.
  • the isolation cover is a cylindrical isolation cover made of the same insulating material.
  • the spacer includes an insulating filler and an oxide layer on the surface of the insulating filler.
  • the expansion coefficient of the insulating filler is close to the expansion coefficient of the IGBT body material, and the closer to the coefficient of expansion, the smaller the influence.
  • control switch Q is connected to the polyelectrode P + of the triode.
  • the upper end of the spacer is disposed within the electrode N 2 + .
  • the control switch Q When the IGBT is in forward conduction, the control switch Q is in the off state, the PN junction J 2 is in the reverse bias state, and J 1 is in the forward bias state, and the electric field has no influence on the electrode N 2 + due to the action of the spacer; when the IGBT When in reverse conduction, the control switch Q is in an on state, the PN junction J 1 is in a reverse bias state, and the PN junction J 2 is in a positively biased state, and the electron outflow is hindered by the P + barrier, and then moves toward the electrode N 2 + . The path movement formed by controlling the opening of the switch Q is discharged.
  • the invention is a gate type high speed IGBT structure, which is based on a conventional IGBT, and is provided with an isolation cover, N 2 + and device Q.
  • the isolation cover serves as an isolation function, since the isolation cover has a sufficiently thick insulating material, the pair N 2 + has no effect, so the IGBT is the same as the conventional IGBT in the forward conduction state, and the current direction is as shown in Fig. 2.
  • J 1 is in the reverse bias state
  • J 2 is in the forward bias
  • the electrons flow out due to the influence of the P + barrier.
  • the IGBT of the present invention the field effect transistor Q is turned on in the reverse direction, and N 2 + and Q to the polyelectrode have no barrier resistance such as P + , so the electrons move to a place where the resistance is small, so that the electrons are not subjected to the resistance quickly. It leaves the N - Floating Zone, and the time required is short, almost negligible, and the problem of the snapback is also resolved. Therefore, the IGBT of the structure has the characteristics of low on-voltage and high frequency, and greatly reduces the difficulty of the manufacturing process.
  • the insulating filler may be an insulating material such as SiO, SiN 4 , oxygen-containing polysilicon, or glass.
  • a method for controlling an IGBT chip comprising:
  • the control switch Q When the IGBT is in forward conduction, the control switch Q is in the off state, the PN junction J 2 is in the reverse bias state, and J 1 is in the forward bias state, and the electric field has no influence on the electrode N 2 + due to the action of the spacer;
  • the control switch Q When the IGBT is in reverse conduction, the control switch Q is in the on state, the PN junction J 1 is in the reverse bias state, the PN junction J 2 is in the forward bias state, and the electron outflow is hindered by the P + barrier, and then the electrode N 2 + Movement, through the control switch Q movement out.
  • the IGBT chip includes an IGBT unit composed of a MOS field effect transistor and a triode, and further includes a control switch Q, an electrode N 2 + and an isolation cover.
  • the IGBT unit is disposed in the isolation cover, and the isolation cover is disposed on the electrode N.
  • the control switch Q is connected to the electrode N 2 + and the triode, respectively.
  • the control switch Q when the IGBT unit is reverse-conducting, the control switch Q is turned on, the electrode N 2 + , the depletion region N ⁇ and P form a diode, and the N terminal of the diode is connected to the polyelectrode P + of the triode, and the diode The P terminal is connected to the emitter of the triode.
  • the IGBT unit is in contact with the inner wall of the spacer, and the outer wall of the spacer is in contact with the inner wall of the electrode N 2 + .
  • the IGBT unit is one or more.
  • the isolation cover is a cylindrical isolation cover made of the same insulating material.
  • the spacer comprises an insulating filler and an oxide layer on the surface of the insulating filler.
  • the expansion coefficient of the insulating filler is close to the expansion coefficient of the IGBT body material, and the closer to the coefficient of expansion, the smaller the influence.
  • control switch Q is connected to the polyelectrode P + of the triode.
  • the upper end of the spacer is disposed within the electrode N 2 + .

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Electronic Switches (AREA)

Abstract

一种IGBT芯片的结构及其控制方法,IGBT芯片的结构包括MOS场效应晶体管和三极管组成的IGBT单元,还包括控制开关Q、电极N 2 +和隔离罩,所述IGBT单元设置隔离罩内,隔离罩设置在电极N 2 +内,控制开关Q分别与电极N 2 +和三极管连接,当IGBT单元正向导通时,控制开关Q处于关闭状态,当IGBT单元反向导通时,控制开关Q处于开启状态。在不影响性能参数的同时基本解决了拖尾(snapback),并有效的将二极管集成在IGBT内部,真正实现了IGBT既有低的导通压降又有良好的开关速度,大大提高了器件的可靠性。

Description

IGBT芯片的结构及其控制方法 技术领域
本发明涉及一种IGBT芯片的结构及其控制方法,属于半导体器件技术领域。
背景技术
由于IGBT具有高频率、大电流、高反压等优良特性,被广泛应用于汽车、高铁、家电、电力电子、航天航空、军事等领域。近年来IGBT各种新工艺、新技术不断的涌现和产生,使IGBT的性能更加完善和优良,例如,中国专利公开号“104183634A”公开的一种沟槽栅IGBT芯片,其公开日为2014‐12‐03。再如,中国专利公开号“101494239”公开的一种高速IGBT,其公开日为2009‐07‐29。
但现有IGBT器件还存在一些问题需要解决,或者解决得并不能让人满意,比如拖尾(snapback)问题,该问题解决的好坏会影响器件发热,从而影响器件的可靠性。
目前提高开关速度减少拖尾(snapback)的主要方法是减少P+空穴的发射率,减少非平衡载流子寿命和阳极短路等方法,从减少空穴的发射率是能够改善拖尾问题,例如中国专利“101494239”,但是因发射率降低带来的是电调制的效果减弱,导通压降增高,使器件的发热量增大也会影响器件的可靠性。阳极短路和减少非平衡载流子寿命的方法其本质都是同减少发射率一样,可减少拖尾(snapback)和提高开关速度,但导通压降的增高并没有真正提高IGBT的性能,只是在导通压降和开关速度之间的平衡。一个优良的IGBT应同时具有导通压降低和良好的开关速度。并且由于IGBT本身只是一个单向导通器件,因此在应用中需要并联一个二级管来承受反向电压,这样对后道封装增加了难度,成本也上升了。
发明内容
本发明的目的在于克服现有技术存在的上述问题,提供一种IGBT芯片的结构及其控制方法。本发明在不影响性能参数的同时基本解决了拖尾(snapback),并有效的将二极管集成在IGBT内部,真正实现了IGBT既有低的导通压降又有良好的开关速度,大大提高了器件的可靠性。
为实现上述目的,本发明采用的技术方案如下:
一种IGBT芯片的结构,包括MOS场效应晶体管和三极管组成的IGBT单元,其特征在于:还包括控制开关Q、电极N2 +和隔离罩,所述IGBT单元设置隔离罩内,隔离罩设置在电极N2 +内,控制开关Q分别与电极N2 +和三极管连接,当IGBT单元正向导通时,控制开关Q处于关闭状态,当IGBT单元反向导通时,控制开关Q处于开启状态。
所述当IGBT单元处于正向导通时,控制开关Q处于关闭状态,PN结J2处于反 向偏置状态,J1处于正偏状态。
所述当IGBT单元处于反向导通时,控制开关Q处于开启状态,PN结J1处于反偏状态,PN结J2处于正偏状态,P+形成电子流出受阻的势垒,电极N2 +和控制开关Q连接的电路形成电子流出通路。
所述IGBT单元反向导通时,电极N2 +、耗尽区N和P形成一个二极管,二极管的N端连接在三极管的聚电极P+,二极管的P端与三极管的发射极连接。
所述IGBT单元与隔离罩内壁相接触,隔离罩外壁与电极N2 +内壁相接触。
所述IGBT单元为一个或多个。
所述隔离罩为由同一种绝缘材料制成的呈筒状的隔离罩。
所述隔离罩包括绝缘填充料和位于绝缘填充料表面的氧化层,绝缘填充料的膨胀系数与IGBT本体材料的膨胀系数接近。
所述控制开关Q与三极管的聚电极P+连接。
一种IGBT芯片的控制方法,其特征在于:
当IGBT处于正向导通时,控制开关Q处于关闭状态,PN结J2处于反向偏置状态,J1处于正偏状态,由于隔离罩的作用,电场对电极N2 +无影响;
当IGBT处于反向导通时,控制开关Q处于开启状态,PN结J1处于反偏状态,PN结J2处于正偏状态,电子流出受P+势垒的影响受阻后,向电极N2 +运动,通过控制开关Q运动流出。
采用本发明的优点在于:
一、本发明还包括控制开关Q、电极N2 +和隔离罩,所述IGBT单元设置隔离罩内,隔离罩设置在电极N2 +内,控制开关Q分别与电极N2 +和三极管连接,采用此结构,是在传统IGBT的基础上引入隔离罩、N2 +和器件Q,在不影响性能参数的同时基本解决了拖尾(snapback)问题,并有效的将二极管集成在IGBT内部,真正实现了IGBT既有低的导通压降又有良好的开关速度,大大提高了器件的可靠性。
二、本发明中,所述IGBT单元反向导通时,控制开关Q导通,电极N2 +、耗尽区N和P形成一个二极管,二极管的N端连接在三极管的聚电极P+,二极管的P端与三极管的发射极连接,采用此结构,不需要单独设置二极管,不仅降低了制造成本,而且从造工艺上来讲,工艺更简单,减少了设置的二极管,可靠性更高。
三、本发明中,所述IGBT单元与隔离罩内壁相接触,隔离罩外壁与电极N2 +内壁相接触,采用此结构,与不相接触相比,可减少材料用量,从而降低生产成本,减少电路连接容易出现的弊端。
四、本发明中,所述IGBT单元为一个或多个,根据需求电流大小,可选择设置IGBT单元的个数,适用范围更广。
五、本发明中,所述隔离罩为由同一种绝缘材料制成的呈筒状的隔离罩,制造工艺简单,成本低,但容易出现空洞。
六、本发明中,所述隔离罩包括绝缘填充料和位于绝缘填充料表面的氧化层, 绝缘填充料的膨胀系数与IGBT本体材料的膨胀系数接近,使整个器件受膨胀系数影响变化基本一致,器件可靠性更高。
七、本发明与传统IGBT需要通过设置分压环相比,设置分压环需要较大的面积,导致整个IGBT体积较大,本发明通过设置隔离罩,不需要设置分压环,减小了体积,降低了制造成本。
附图说明
图1为本发明结构示意图
图2为本发明正向导通原理示意图
图3为本发明反向导通原理示意图
具体实施方式
实施例1
一种IGBT芯片的结构,包括MOS场效应晶体管和三极管组成的IGBT单元,还包括控制开关Q、电极N2 +和隔离罩,所述IGBT单元设置隔离罩内,隔离罩设置在电极N2 +内,控制开关Q分别与电极N2 +和三极管连接,当IGBT单元正向导通时,控制开关Q处于关闭状态,当IGBT单元反向导通时,控制开关Q处于开启状态。
本实施例中,所述当IGBT单元处于正向导通时,控制开关Q处于关闭状态,PN结J2处于反向偏置状态,J1处于正偏状态。
本实施例中,所述当IGBT单元处于反向导通时,控制开关Q处于开启状态,PN结J1处于反偏状态,PN结J2处于正偏状态,P+形成电子流出受阻的势垒,电极N2 +和控制开关Q连接的电路形成电子流出通路。
本实施例中,所述IGBT单元反向导通时,电极N2 +、耗尽区N和P形成一个二极管,二极管的N端连接在三极管的聚电极P+,二极管的P端与三极管的发射极连接。
本实施例中,所述IGBT单元与隔离罩内壁相接触,隔离罩外壁与电极N2 +内壁相接触。
本实施例中,所述IGBT单元为一个或多个。
本实施例中,所述隔离罩为由同一种绝缘材料制成的呈筒状的隔离罩。或者,所述隔离罩包括绝缘填充料和位于绝缘填充料表面的氧化层,绝缘填充料的膨胀系数与IGBT本体材料的膨胀系数接近,越接近受膨胀系数的影响越小。
本实施例中,如图所示,所述控制开关Q与三极管的聚电极P+连接。隔离罩的上端设置在电极N2 +内。
本发明的工作原理如下:
当IGBT处于正向导通时,控制开关Q处于关闭状态,PN结J2处于反向偏置状态,J1处于正偏状态,由于隔离罩的作用,电场对电极N2 +无影响;当IGBT处于反向导通时,控制开关Q处于开启状态,PN结J1处于反偏状态,PN结J2处于正偏状 态,电子流出受P+势垒的影响受阻后,向电极N2 +运动,通过控制开关Q开启形成的通路运动流出。
实施例2
本发明是栅式高速IGBT结构,是在传统IGBT的基础上引入隔离罩、N2 +和器件Q。当IGBT处于正向导通时PN结J2处于反向偏置状态,PN结J1处于正偏状态,由于有隔离罩起到了一个隔离作用,因为隔离罩内有足够厚的绝缘材料,对N2 +没有任何影响,这样IGBT与传统的IGBT在正向导通的状态下是一样的,电流的方向如图2所式。当IGBT处于反向时,J1处于反偏状态,J2处于正偏,电子流出来就会因为P+势垒的影响受阻,电子要克服势垒阻力作功就会产生热量,电子数量越多热量就越大,就会影响器件的可靠性,因此目前主要是采取减薄厚度来减少电子数量,但减薄之后工艺制造难度就会加大,对设备和生产的要求就会很高。本发明IGBT在反向时场效应晶体管Q导通,N2 +、Q到聚电极没有P+那样的势垒阻力,所以电子就会向阻力小的地方运动,这样由于没有受到阻力电子很快就离开了N飘逸区,而且所需要的时间很短,几乎可忽略,拖尾(snapback)问题因此也得到解决。因此该结构的IGBT既有导通压降低又有高频率的特点,同时大大降低了制造工艺难度。
本发明中,绝缘填充料可以是SiO、SiN4、含氧多晶硅、玻璃等绝缘材料。
实施例3
一种IGBT芯片的控制方法,包括:
当IGBT处于正向导通时,控制开关Q处于关闭状态,PN结J2处于反向偏置状态,J1处于正偏状态,由于隔离罩的作用,电场对电极N2 +无影响;
当IGBT处于反向导通时,控制开关Q处于开启状态,PN结J1处于反偏状态,PN结J2处于正偏状态,电子流出受P+势垒的影响受阻后,向电极N2 +运动,通过控制开关Q运动流出。
本实施例中,所述IGBT芯片包括MOS场效应晶体管和三极管组成的IGBT单元,还包括控制开关Q、电极N2 +和隔离罩,所述IGBT单元设置隔离罩内,隔离罩设置在电极N2 +内,控制开关Q分别与电极N2 +和三极管连接。当IGBT单元正向导通时,控制开关Q处于关闭状态,当IGBT单元反向导通时,控制开关Q处于开启状态,电极N2 +和控制开关Q连接的电路形成电子流出通路。
本实施例中,所述IGBT单元反向导通时,控制开关Q导通,电极N2 +、耗尽区N和P形成一个二极管,二极管的N端连接在三极管的聚电极P+,二极管的P端与三极管的发射极连接。
本实施例中,所述IGBT单元与隔离罩内壁相接触,隔离罩外壁与电极N2 +内壁相接触。
本实施例中,所述IGBT单元为一个或多个。
本实施例中,所述隔离罩为由同一种绝缘材料制成的呈筒状的隔离罩。或者, 所述隔离罩包括绝缘填充料和位于绝缘填充料表面的氧化层,绝缘填充料的膨胀系数与IGBT本体材料的膨胀系数接近,越接近受膨胀系数的影响越小。
本实施例中,如图所示,所述控制开关Q与三极管的聚电极P+连接。隔离罩的上端设置在电极N2 +内。

Claims (10)

  1. 一种IGBT芯片的结构,包括MOS场效应晶体管和三极管组成的IGBT单元,其特征在于:还包括控制开关Q、电极N2 +和隔离罩,所述IGBT单元设置隔离罩内,隔离罩设置在电极N2 +内,控制开关Q分别与电极N2 +和三极管连接,当IGBT单元正向导通时,控制开关Q处于关闭状态,当IGBT单元反向导通时,控制开关Q处于开启状态。
  2. 根据权利要求1所述的IGBT芯片的结构,其特征在于:所述当IGBT单元处于正向导通时,控制开关Q处于关闭状态,PN结J2处于反向偏置状态,J1处于正偏状态。
  3. 根据权利要求1所述的IGBT芯片的结构,其特征在于:所述当IGBT单元处于反向导通时,控制开关Q处于开启状态,PN结J1处于反偏状态,PN结J2处于正偏状态,P+形成电子流出受阻的势垒,电极N2 +和控制开关Q连接的电路形成电子流出通路。
  4. 根据权利要求1、2或3所述的IGBT芯片的结构,其特征在于:所述IGBT单元反向导通时,电极N2 +、耗尽区N和P形成一个二极管,二极管的N端连接在三极管的聚电极P+,二极管的P端与三极管的发射极连接。
  5. 根据权利要求4所述的IGBT芯片的结构,其特征在于:所述IGBT单元与隔离罩内壁相接触,隔离罩外壁与电极N2 +内壁相接触。
  6. 根据权利要求1、2、3或5所述的IGBT芯片的结构,其特征在于:所述IGBT单元为一个或多个。
  7. 根据权利要求6所述的IGBT芯片的结构,其特征在于:所述隔离罩为由同一种绝缘材料制成的呈筒状的隔离罩。
  8. 根据权利要求1、2、3或5所述的IGBT芯片的结构,其特征在于:所述隔离罩包括绝缘填充料和位于绝缘填充料表面的氧化层,绝缘填充料的膨胀系数与IGBT本体材料的膨胀系数接近。
  9. 根据权利要求8所述的IGBT芯片的结构,其特征在于:所述控制开关Q与三极管的聚电极P+连接。
  10. 根据权利要求1所述的IGBT芯片的结构的控制方法,其特征在于:
    当IGBT处于正向导通时,控制开关Q处于关闭状态,PN结J2处于反向偏置状态,J1处于正偏状态,由于隔离罩的作用,电场对电极N2 +无影响;
    当IGBT处于反向导通时,控制开关Q处于开启状态,PN结J1处于反偏状态,PN结J2处于正偏状态,电子流出受P+势垒的影响受阻后,向电极N2 +运动,通过控制开关Q运动流出。
PCT/CN2016/080923 2015-05-08 2016-05-03 Igbt芯片的结构及其控制方法 WO2016180258A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201510231512.3 2015-05-08
CN201510231603.7A CN104835841B (zh) 2015-05-08 2015-05-08 Igbt芯片的结构
CN201510231603.7 2015-05-08
CN201510231512.3A CN104966714B (zh) 2015-05-08 2015-05-08 Igbt芯片的控制方法

Publications (1)

Publication Number Publication Date
WO2016180258A1 true WO2016180258A1 (zh) 2016-11-17

Family

ID=57248534

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/080923 WO2016180258A1 (zh) 2015-05-08 2016-05-03 Igbt芯片的结构及其控制方法

Country Status (1)

Country Link
WO (1) WO2016180258A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1529363A (zh) * 2003-10-16 2004-09-15 �������ӿƼ���ѧ 横向低侧高压器件及高侧高压器件
CN203243298U (zh) * 2013-03-25 2013-10-16 许有联 一种隔离控制双向功率mos管
CN103367357A (zh) * 2012-03-26 2013-10-23 英特尔移动通信有限责任公司 使用高压设备的低压esd箝位
CN203553172U (zh) * 2013-08-29 2014-04-16 英飞凌科技奥地利有限公司 半导体器件
CN104091826A (zh) * 2014-06-17 2014-10-08 江苏中科君芯科技有限公司 一种沟槽隔离igbt器件
CN104835841A (zh) * 2015-05-08 2015-08-12 邓华鲜 Igbt芯片的结构
CN104966714A (zh) * 2015-05-08 2015-10-07 邓华鲜 Igbt芯片的控制方法
CN204706564U (zh) * 2015-05-08 2015-10-14 邓华鲜 一种igbt芯片的结构

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1529363A (zh) * 2003-10-16 2004-09-15 �������ӿƼ���ѧ 横向低侧高压器件及高侧高压器件
CN103367357A (zh) * 2012-03-26 2013-10-23 英特尔移动通信有限责任公司 使用高压设备的低压esd箝位
CN203243298U (zh) * 2013-03-25 2013-10-16 许有联 一种隔离控制双向功率mos管
CN203553172U (zh) * 2013-08-29 2014-04-16 英飞凌科技奥地利有限公司 半导体器件
CN104091826A (zh) * 2014-06-17 2014-10-08 江苏中科君芯科技有限公司 一种沟槽隔离igbt器件
CN104835841A (zh) * 2015-05-08 2015-08-12 邓华鲜 Igbt芯片的结构
CN104966714A (zh) * 2015-05-08 2015-10-07 邓华鲜 Igbt芯片的控制方法
CN204706564U (zh) * 2015-05-08 2015-10-14 邓华鲜 一种igbt芯片的结构

Similar Documents

Publication Publication Date Title
CN104916670B (zh) 半导体装置
US10361191B2 (en) Semiconductor device
JP7379327B2 (ja) 半導体デバイス
WO2017157289A1 (zh) 一种大电流绝缘体上硅横向绝缘栅双极型晶体管器件
KR101613442B1 (ko) 절연 게이트형 바이폴라 트랜지스터
JP6947915B2 (ja) Igbtパワーデバイス
JP2013251395A (ja) 半導体装置
CN107331707A (zh) 具有抗单粒子效应的vdmos器件
US9263560B2 (en) Power semiconductor device having reduced gate-collector capacitance
US11296216B2 (en) Power MOSFET device
CN105489644B (zh) Igbt器件及其制作方法
CN109755303B (zh) 一种igbt功率器件
CN105023943A (zh) 一种纵向rc-igbt器件
CN104835841B (zh) Igbt芯片的结构
US8907374B2 (en) Insulated gate bipolar transistor
JP2016012581A (ja) 半導体装置及びそれを用いた電力変換装置
US20150144990A1 (en) Power semiconductor device and method of manufacturing the same
WO2016180258A1 (zh) Igbt芯片的结构及其控制方法
CN204706564U (zh) 一种igbt芯片的结构
CN104078494A (zh) 功率半导体设备及其制作方法
US20150187922A1 (en) Power semiconductor device
CN103606557A (zh) 一种集成二极管的集电极短路igbt结构
US9105486B2 (en) Semiconductor device
CN104966714A (zh) Igbt芯片的控制方法
US20150187869A1 (en) Power semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16792108

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16792108

Country of ref document: EP

Kind code of ref document: A1