WO2016178451A2 - 삼각망 배근에 의한 psc구조 및 이의 시공방법 - Google Patents

삼각망 배근에 의한 psc구조 및 이의 시공방법 Download PDF

Info

Publication number
WO2016178451A2
WO2016178451A2 PCT/KR2015/005313 KR2015005313W WO2016178451A2 WO 2016178451 A2 WO2016178451 A2 WO 2016178451A2 KR 2015005313 W KR2015005313 W KR 2015005313W WO 2016178451 A2 WO2016178451 A2 WO 2016178451A2
Authority
WO
WIPO (PCT)
Prior art keywords
triangular
steel
reinforcement
nets
bar
Prior art date
Application number
PCT/KR2015/005313
Other languages
English (en)
French (fr)
Other versions
WO2016178451A3 (ko
Inventor
김태훈
Original Assignee
삼성물산 (주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성물산 (주) filed Critical 삼성물산 (주)
Publication of WO2016178451A2 publication Critical patent/WO2016178451A2/ko
Publication of WO2016178451A3 publication Critical patent/WO2016178451A3/ko

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D19/00Structural or constructional details of bridges
    • E01D19/02Piers; Abutments ; Protecting same against drifting ice
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D29/00Independent underground or underwater structures; Retaining walls
    • E02D29/02Retaining or protecting walls
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D29/00Independent underground or underwater structures; Retaining walls
    • E02D29/045Underground structures, e.g. tunnels or galleries, built in the open air or by methods involving disturbance of the ground surface all along the location line; Methods of making them
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/92Protection against other undesired influences or dangers
    • E04B1/98Protection against other undesired influences or dangers against vibrations or shocks; against mechanical destruction, e.g. by air-raids
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C3/00Structural elongated elements designed for load-supporting
    • E04C3/30Columns; Pillars; Struts
    • E04C3/34Columns; Pillars; Struts of concrete other stone-like material, with or without permanent form elements, with or without internal or external reinforcement, e.g. metal coverings

Definitions

  • the present invention relates to a PSC structure and a preferred construction method of reinforcing the reinforcement to the PS steel in a triangular net of a triangular structure capable of self-reliance in a vertical member such as a column or wall requiring seismic detail.
  • Reinforced concrete structure is a structure in which reinforcing steel and concrete are integrated, so that the compressive force is burdened by the concrete and the tensile and shear forces are burdened by the rebar.
  • vertical members such as columns and walls receive upper loads as axial forces and transfer them to the ground, as well as designed to resist lateral loads such as earthquakes.
  • the piers, basement walls, core walls, retaining walls, and wall piers are designed as structural materials capable of resisting lateral loads.
  • FIG. 1 is a cross-sectional detail of a column or a wall in which a conventional cross tie reinforcing bar is a representative example of reinforcing bar reinforcement details for seismic design of hollow columns (a), solid columns (b), and bearing walls (c), respectively.
  • a conventional cross tie reinforcing bar is a representative example of reinforcing bar reinforcement details for seismic design of hollow columns (a), solid columns (b), and bearing walls (c), respectively.
  • Lateral reinforcing bars (cross tie reinforcing bars, band reinforcing bars, 12, 13) constrain the flexural reinforcing bars (axial reinforcing bars, 11) to improve seismic performance, and delay the collapse by restraining the concrete (14) of the compression zone when shear failure occurs. And increased shear strength.
  • the reinforcement design as shown in FIG. 1 is applied to buildings and civil engineering structures in
  • the reinforcement design as shown in Figure 1 has the disadvantage of poor workability because of the cross tie reinforcement (12).
  • the cross tie reinforcement 12 In other words, in the construction site, it is necessary to reinforce the cross tie reinforcement 12 while crossing the cross section.
  • This reinforcement work is not only cumbersome but requires a long working time, and in some cases, it is necessary to use a crane to prevent the fall of the reinforcing bar 11. It should be carried out while holding the main reinforcing bars (11), etc. may reduce the crane use efficiency.
  • the cross tie reinforcement 12 may make it difficult to pour concrete due to interference with concrete aggregate.
  • the present invention was developed by further developing a triangular reinforcing bar reinforcement structure developed to improve the construction problem of the conventional reinforced concrete structure, which was difficult to construct due to the interference of cross tie reinforcement, and introduces prestress to vertical members such as columns or walls.
  • a technical problem in providing a PSC structure by the triangular network reinforcement to further strengthen the strength is a technical problem in providing a PSC structure by the triangular network reinforcement to further strengthen the strength.
  • the present invention is to provide a construction method that can improve the workability and shorten the air through the modularization of the back muscle as a preferred construction method of the PSC structure by the triangular network reinforcement.
  • the present invention provides a PSC structure by triangular reinforcement and its preferred construction method as a PSC structure for a column or a wall.
  • PSC structure by triangular reinforcement is composed of two or three first steel rods, one second steel rods and triangular band reinforcement, while the first steel bar is located on the outside along the column cross section A plurality of triangular nets arranged side by side; Outer strip reinforcing bars to be wound around the lateral direction at the same time a plurality of triangular nets side by side; Triangular nets and periphery reinforcing bars are laid concrete; including columns, triangular nets are provided with a PS steel that is tension-settled steel rods including two bones located at the corners of the triangular sphere of the first steel bar It is characterized in that the PS steel is provided to be settled by the injection of non-contraction mortar after the tension is installed therein.
  • the PSC structure of the triangular reinforcement bar is composed of two or three first steel bars, one second steel bar, and a triangular band reinforcing bar, so that the first steel bar and the second steel bar are adjacent to each other.
  • the construction method of the PSC structure comprises: a first step of assembling a triangular net while connecting a first steel bar and a second steel bar with a triangular band reinforcing bar; A second step of reinforcing the plurality of triangular nets in parallel along the cross section of the column or wall, and reinforcing the outer band reinforcing bar while simultaneously winding the plurality of triangular nets arranged in parallel in the transverse direction; A third step of placing concrete to embed the triangular net and the outer band reinforcement bar in the second step; but the steel rods that are settled in the triangular net are assembled into a triangular net by installing a sheath pipe in the first step. Then, after the concrete is poured in the third step, the PS steel is installed in the sheath tube, and then tensioned, and then pre-stress is introduced by injecting and fixing non-shrink mortar into the sheath tube.
  • a triangular net is assembled by connecting a first steel bar and a second steel bar with triangular band bars, and a plurality of assembled triangular nets are arranged side by side along a cross section of a column or a wall.
  • the precast segments of a predetermined size are manufactured by placing concrete in such a way that the reinforcing triangular nets and the rim reinforcing bars are embedded.
  • FIG. 1 is a cross-sectional detail of a column or a wall to which a conventional cross tie reinforcing bar is reinforced.
  • FIG. 2 is a cross-sectional detail of a hollow pillar as an embodiment of the PSC structure according to the present invention.
  • FIG 3 is a cross-sectional detail of a solid pillar as another embodiment of the PSC structure according to the present invention.
  • FIG. 4 is a cross-sectional view of the bearing wall as another embodiment of the PSC structure according to the present invention.
  • Figure 6 shows the assembled state of the triangular net using a jig in the construction method of the PSC structure according to the present invention.
  • Figure 7 shows the reinforcement method in the construction method of the PSC structure according to the present invention.
  • FIG 8 shows the installation state of the guide plate in the construction method of the PSC structure according to the present invention.
  • the present invention is a triangular network (110a, 110a ', 110b of a triangular composition assembled from two or three first steel rods 111 and one second steel rods 112 and triangular band reinforcement 113 in the PSC structure) , 110b ', 110c is the reinforcement, while the first steel bar 111 to the second steel bar 112 of the triangular network is characterized in that the reinforcement while providing the PS steel (PS) to be tension-fixed.
  • PS PS steel
  • the first and second steel bars 111 and 112 and the triangular band reinforcement 113 exhibit stable restraint stress of triangular composition and prestress is introduced to realize triaxial restraint of the concrete and advantageously resist brittle fracture.
  • the PSC structure according to the present invention can increase the shear strength and improve the seismic performance.
  • the steel bar is embedded in the concrete encompasses the steel to reinforce the concrete, for example, including reinforcing steel, steel wire, steel bar, PS steel that is tension-fixed.
  • the column includes not only a general building column but also a bridge pier, and the like, as well as a circular column or a square column as shown in FIG. 2, as well as a cross-section where the cross tie reinforcement includes a hexagonal column, an octagonal column, a track column, and the like.
  • PSC hollow pillar 100a
  • a plurality of triangular network 110a, 110b
  • Outer strip reinforcing bars 130 are arranged so as to surround the plurality of triangular networks (110a, 110b) are arranged side by side at the same time in the transverse direction; It is configured to include; triangular net (110a, 110b) and the concrete belt 140 is not poured into the inside of the triangular net (110a, 110b) while the outer band reinforcement 130 is embedded.
  • the first steel bar 111 and the second steel bar 112 is connected in the transverse direction triangular band reinforcement 113 to be constrained to a triangular sphere; is assembled.
  • These triangular nets (110a, 110b) are placed side by side along the column cross-section while positioning the first steel bar 111 to the outside.
  • FIG. 2 (a) illustrates a circular hollow column 100a and FIG. 2 (b) illustrates a square hollow column 100a.
  • the square hollow column 100a of FIG. 2 (b) has an outer steel rod 120 at a corner. ) Is getting more busy.
  • PS PS steel material
  • the rebar can be applied.
  • a triangular network 110a of an isosceles triangular structure composed of two first steel bars 111 and one second steel bar 112 and a triangular band reinforcement 113 is applied.
  • an isosceles triangle triangle 110b assembled from three first steel rods 111, one second steel rods 112, and a triangular band reinforcement 113 may be applied (FIG. 3). (b)).
  • the present invention is composed of a PS steel that is tension-fixed steel rods including two bones located at the corners of the triangular sphere of the first steel bar 111 in the triangular network (110a, 110b).
  • the first steel bar 111 is composed of two pieces, both pieces are composed of PS steel which is tension-fixed, and when the first steel bar 111 is composed of three pieces, two pieces of corners are essentially settled in tension.
  • PS PS steel
  • one of the center can be composed of PS steel (PS), as well as reinforcing steel (R) is settled tension.
  • the first steel bar 111 should be designed as a column head, but the second steel bar 112 is formed to form a triangular composition with the first steel bar 111 as well as the column head It is also possible to design a simple reinforcing bar not included.
  • the present invention while the first steel bar 111 is essentially composed of PS steel (PS), the second steel bar 112 is composed of reinforcing steel (R) as well as PS steel (PS) to be tension-fixed. Can be. Pre-stress is introduced as a post-tension, and in particular, as shown in FIG.
  • the sheath pipe (P) is installed before the concrete 140 is poured, and the PS steel material (PS) is installed inside the sheath pipe (P) after the concrete 140 is poured. After tensioning the PS steel (PS) is injected into the non-contraction mortar (M) to fix. At this time, the sheath pipe (P) is to adopt a surface formed with irregularities to improve the adhesion with concrete.
  • PSC solid pillar (100b) is the same as the above-described PSC hollow pillar (100a), the only difference is that the concrete is filled up to the inside of the triangular network (110a, 110b).
  • 3 illustrates a PSC rectangular solid pillar 100b.
  • a triangular net 110a by two first steel bars 111 is used, and in FIG. The triangular net 110b by the one steel rod 111 is used.
  • the bearing wall 100c encompasses a wall designed as a shear bearing wall such as an underground outer wall, a core wall, a retaining wall, and a wall pier.
  • the PSC bearing wall 100c is generally similar to the PSC solid column 100a to the hollow column 100b described above, but there are some differences in the construction method and the arrangement method of the triangular nets 110a ', 110b' and 110c. .
  • the triangular nets 110a ', 110b', and 110c are not only steel rods including two bones located at the corners of the triangular sphere among the first steel rods 111 but also the second steel rods 112 are tension-fixed. It is made of steel (PS).
  • the triangular net (110a ', 110b', 110c) are arranged in parallel along the wall cross-section while the plurality of directions change in the longitudinal direction of the wall so that the first steel bar 111 and the second steel bar 112 are located adjacent.
  • FIG. 4 (a) is a cross-sectional detail of the boundary element of the special reinforced concrete shear bearing wall (100c).
  • two triangular nets 110b 'of an isosceles triangular structure formed by three first steel rods 111, one second steel rod 112, and a triangular band reinforcing rod 113 are arranged in parallel to each other. While the reinforcement, the triangular network 110c of the right triangle triangle by the two first steel rods 111 and one second steel rod 112 and the triangular band reinforcement 113 are placed at one end of the boundary element, The outer steel rod 120 is placed at the other end of the boundary element.
  • the outer steel rod 120 is placed in parallel with the first steel rod 111 or the second steel rod 112 in a continuous line outside the triangular network (110b ', 110c) while being rolled around the outer band reinforcement (130) And is embedded in the concrete 140, in Figure 4 (a) is positioned to be positioned on a continuous line with the second steel bar 112 outside the triangular network (110b ') of the isosceles triangle triangle.
  • FIG. 4 (b) and 4 (c) show examples in which triangular networks 110a ', 110b', and 110c are applied to various structures in the bearing wall 100c.
  • FIG. 4 (b) shows four triangular nets 110c of right angle triangular diagrams by two first steel rods 111, one second steel rods 112, and a triangular band reinforcing rod 113, and an outer band reinforcing rod 130.
  • 4 (c) shows an isosceles triangle triangle 110a 'by two first steel rods 111, one second steel rod 112, and a triangular band reinforcing rod 113. 4) and two external steel rods 120 and the outer band reinforcement 130 is an example of the reinforcement.
  • the triangular nets 110a ', 110b', and 100c may be assembled into a triangular sphere of another form and may be variously arranged.
  • Triangular network 110b is applied to the PS steel (PS) to the reinforcing bars (R) to be tension-fixed to the first and second steel rods (111, 112), the closed triangular band reinforcement 113 is closed reinforcement (113a) or spiral Rebar 113b is applied.
  • the first steel bar 111 to the second steel bar 112 is assembled with a sheath pipe (P) at a position provided with the PS steel material PS in which tension is fixed.
  • the reinforcing bar 113 and the outer band reinforcing bar 130 may be adopted as the closed reinforcing bar 113a or the spiral reinforcing bar 113b according to a conventional method.
  • the first and second steel bars 111 and 112 are treated as mechanical joints using a coupler and the like without overlapping joints, and the first and second steel bars 111 and 112 are made of PS steel in which tension is fixed.
  • the sheath pipe may be treated with a mechanical joint.
  • the outer band reinforcement 130 is adopted as a closed reinforcing bar, both ends are treated with 135 ° hooks having an extension length greater than 6 times the diameter and the larger value of 80mm.
  • the hook is placed on the outer steel rod 120 while being treated with a 135 ° hook having an extension length greater than 80 mm, while the plastic hinge section is treated with a mechanical connection or a full weld joint instead of the overlap joint.
  • the hook of the triangular band reinforcing rod 113 is handled to be caught on the first and second steel bars 111 and 112, so that the hook of the triangular band reinforcing rod 113 is not hooked to the same first and second steel bars 111 and 112 in succession. Change the position (see Figure 5).
  • the present invention proposes a preferred construction method of the PSC structure
  • the construction method of the PSC structure according to the present invention can be largely divided into a field casting method and a field assembly method.
  • On-site casting method is a method to perform triangular reinforcement and concrete pouring at the construction site
  • on-site assembly method is to assemble the precast segment at the construction site after fabricating the precast segment.
  • 6 to 8 illustrate a triangular net (110a, 110b) construction module for the construction of the PSC pillar, with reference to this looks at the construction method of the PSC structure according to the present invention.
  • Step 1 assembling two or three first steel rods 111 and one second steel rods 112 with triangular band reinforcing bars 113 and assembling them with triangular nets 110a, 110a ', 110b, 110b' and 110c.
  • the triangular nets 110a, 110a ', 110b, 110b', and 110c can be easily assembled using the jigs Z1 and Z2 as shown in FIG. In other words, while assembling two or three first steel rods 111 and one second steel bar 112 to a pair of jigs Z1 and Z2, the triangular strip reinforcing rods 113 are assembled. .
  • the first steel bar 111 to the second steel bar 112 is provided with a PS steel material (PS) that is tension-fixed while installing a sheath pipe (P) while the triangular net (110a, 110a ', 110b, 110b', 110c Assemble).
  • PS PS steel material
  • P sheath pipe
  • this step can be divided into three as shown in Figure 7 according to a specific method .
  • the first method is a method of assembling the triangular net (110a, 110a ', 110b, 110b', 110c) and the outer band reinforcement 130 in the construction position as shown in Figure 7 (a)
  • triangular net (110a, 110a ', 110b, 110b ', 110c) is a method using one construction module.
  • triangular nets (110a, 110a ', 110b, 110b', 110c) in the construction position of the column to the wall to arrange the column to the cross-section, triangular nets (110a, 110a ', 110b, 110b', 110c) is wound around the outer band reinforcement 130 to the outside.
  • the second method is wound around the outer band reinforcing bars 130 to the outside of the triangular network (110a, 110a ', 110b, 110b', 110c) as shown in Fig.
  • the pillar net or the wall net as a construction module.
  • the third method is a compromise between the first method and the second method as described above, and as shown in FIG. 7 (b), a plurality of triangular networks 110a, 110a ', 110b, 110b', and 110c using a dedicated jig. It is installed on the wall while lifting by crane at the same time.
  • a plurality of triangular nets (110a, 110a ', 110b, 110b', 110c) to be removed in a certain section from the pillar to the wall to be installed at the same time hanging on a dedicated jig and lifted by a crane and installed in the wall position, triangular net (110a) , 110a ', 110b, 110b', 110c) the outer band around the reinforcing bar 130 is a method.
  • the outer steel rod 120 as shown in Figure 7 (b) can be installed on a dedicated jig monthly with a plurality of triangular net (110a, 110a ', 110b, 110b', 110c), not shown, although it is possible to install in the process of installing the outer band reinforcing bars 130.
  • the present invention allows the first and second steel bars 111 and 112, which are the pillars to the main wall of the wall, to be self-supporting in a triangular network (110a, 110a ', 110b, 110b', 110c) to a pillar network or a wall network. Since it is installed, it can be installed stably without fear of falling. Meanwhile, after embedding the guide plate GP having the reinforcing bar insertion hole H formed on the top of the base F, the first steel bar 111 or the second steel bar 112 is inserted into the steel rod insertion hole H of the guide plate. While performing the second step (see Fig. 8), the reinforcement work can be carried out more easily.
  • the concrete 140 is poured into the triangular nets 110a, 110a ', 110b, 110b', and 110c to the outer band reinforcing rods 130 and the outer bars 120 installed in the second step, and the prestress is introduced. do.
  • the prestress is introduced in such a manner that the PS steel material (PS) is installed in the sheath pipe (P) installed in the first step and then tensioned, followed by injecting and fixing the non-contraction mortar (M) into the sheath pipe (P). This completes the PSC structure.
  • precast segments are manufactured in the appropriate construction unit size in consideration of the manufacturing environment and construction environment (step 1).
  • the precast segment is assembled with the triangular net (110a, 110a ', 110b, 110b', 110c) and then installed the triangular net (110a, 110a ', 110b, 110b', 110c) and the outer band reinforcement 130 and then concrete Produced in the process of pouring 140.
  • This manufacturing process is different in that it is carried out at the factory, and is similar to the overall casting method.
  • the triangular network (110a, 110a ', 110b, 110b', 110c) is assembled, the assembled triangular network (110a, 110a) ', 110b, 110b', 110c)
  • the assembled triangular network (110a, 110a) ', 110b, 110b', 110c)
  • the outer band Reinforce the reinforcing rod 130, and precast segment of predetermined size while placing the concrete 140 so that the reinforcement triangular network (110a, 110a ', 110b, 110b', 110c) and the outer band reinforcement 130 is embedded It is.
  • the triangular net (110a, 110a ', 110b, 110b', 110c) is assembled while installing the sheath pipe (P) at the position provided by the PS steel material PS that is tension-fixed among the first and second steel bars (111, 112).
  • it can be assembled while installing as a sheath pipe (P) also in the position provided as the reinforcing bars (R) of the first and second steel bars (111, 112).
  • the precast segment is brought in to the construction site and installed in a lamination (second step).
  • the first and second steel rods 111 and 112 of the triangular network between the upper and lower precast segments are laminated and installed.
  • the sheath pipe (P) is installed at the first and second steel bars (111, 112) of the triangular network, the upper and lower sheath pipes (P) to match the position by simply connecting or also connected by a mechanical joint, the reinforcing bar is installed as it is In this case, the bars are connected by mechanical joints.
  • the mechanical joint may be treated as a normal coupler joint.
  • the PS steel material (PS) is installed inside the sheath pipe (P) of the precast segment, and then tension-free mortar (M) is injected (step 3).
  • tension-free mortar (M) is injected (step 3).
  • the sheath pipe (P) is also installed in the position provided as the reinforcing bars (R) of the first and second steel bars (111, 112), this sheath pipe (P) )
  • this sheath pipe (P) After installing the reinforcing bar (R) inside the insulated mortar (M) is injected.
  • This on-site assembly method can omit on-site work for concrete placement can lead to air shortening.
  • the triangular net can be self-supporting and can be easily assembled and modularized so that it is possible to carry out field work stably and easily without worrying about reinforcement of reinforcing bars. You can easily work your back muscles. As a result, it is possible to increase safety by minimizing manpower at the height of the operation and minimize the surcharge for aerial operation.
  • the sheath pipe is essentially used to introduce prestress as a post tension
  • the PSC structural material can be manufactured in units of precast segments while utilizing the sheath pipe, thereby implementing prefabricated construction that can simplify field work.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Paleontology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Reinforcement Elements For Buildings (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)

Abstract

본 발명은 내진상세가 필요한 기둥 또는 벽체 등과 같은 수직부재에서 철근 내지 PS강재를 자립이 가능한 삼각구도의 삼각망으로 조립하여 배근한 PSC구조와 이의 바람직한 시공방법에 관한 것이다. 본 발명에 따른 삼각망 배근에 의한 PSC구조는, 2본 또는 3본의 제1강봉과 1본의 제2강봉 및 삼각띠철근으로 조립 구성되는 것으로 기둥 또는 벽체 단면에 따라 나란하게 배근되는 복수개의 삼각망; 나란하게 배근된 복수개의 삼각망을 동시에 횡방향으로 둘러 감도록 배근되는 외곽띠철근; 삼각망 및 외곽띠철근이 매설되게 타설되는 콘크리트;를 포함하여 구성되되, 삼각망 중 제1강봉 내지 제2강봉이 긴장 정착되는 PS강재로 마련되는 것을 특징으로 한다. 제1,2강봉과 삼각띠철근이 안정적인 삼각 구도로 구속 응력을 발휘함과 동시에 프리스트레스가 도입됨으로써 콘크리트의 3축 구속을 실현하면서 취성 파괴에 유리하게 저항하도록 한 것이다, 이로써 본 발명에 따른 PSC구조는 전단강도를 증대시키고 내진성능을 향상시킬 수 있다.

Description

삼각망 배근에 의한 PSC구조 및 이의 시공방법
본 발명은 내진상세가 필요한 기둥 또는 벽체 등과 같은 수직부재에서 철근 내지 PS강재를 자립이 가능한 삼각구도의 삼각망으로 조립하여 배근한 PSC구조와 이의 바람직한 시공방법에 관한 것이다.
철근콘크리트 구조는 철근과 콘크리트를 일체화한 구조로서, 압축력은 콘크리트가 부담하고 인장력과 전단력은 철근이 부담하도록 한 구조이다. 내진설계가 강화되면서 기둥이나 벽체 등 수직부재는 상부하중을 축력으로 받아 지반으로 전달하는 것은 물론 지진과 같은 횡하중을 주요하게 저항하는 구조로 설계되기도 한다. 실제 교각기둥, 지하외벽, 코어벽(core wall), 옹벽, 벽식교각 등은 횡하중 저항이 가능한 구조재로 설계된다.
도 1은 종래 크로스 타이 철근이 배근되는 기둥 내지 벽체의 단면상세로, 각각 중공기둥(a), 중실기둥(b), 내력벽체(c)의 내진설계를 위한 철근 배근상세의 대표적인 예이다. 보는 바와 같이 크로스 타이 철근(12), 띠철근(13) 등을 횡방향으로 배근하여 소성거동을 보이도록 소성설계하는 것이 일반적이다. 횡철근(크로스 타이 철근, 띠철근, 12, 13)이 휨철근(축방향 주철근, 11)을 구속하여 내진성능을 향상시키고, 더불어 전단파괴 발생 시 압축대 콘크리트(14)를 구속하여 압괴를 지연시키고 전단강도를 증대시킨 것이다. 실제 도 1과 같은 배근설계는 경제적 및 구조적인 측면에서 건물, 토목 구조물에 적용되는 실정이며, 실제 심부구속 횡방향철근 상세에 대한 도로교설계기준 내지 콘크리트구조기준이 정립되어 널리 적용되고 있다.
그런데 도 1과 같은 배근설계는 크로스 타이 철근(12) 때문에 시공성이 떨어지는 단점이 있다. 다시 말해 시공현장에서 단면을 가로지르면서 크로스 타이 철근(12)을 배근해야 하는데, 이 배근작업은 상당히 번거로울 뿐만 아니라 오랜 작업시간이 필요하고 또한 경우에 따라 주철근(11)의 전도 방지를 위해 크레인으로 주철근(11) 등을 붙잡은 상태에서 실시해야 하여 크레인 사용 효율을 떨어뜨리기도 한다. 나아가 크로스 타이 철근(12)은 콘크리트 골재와의 간섭으로 콘크리트의 타설을 어렵게 하기도 한다.
위와 같은 문제를 개선하고자 본 발명자는 단면을 가로지르는 크로스 타이 철근의 생략 내지 감축을 도모할 수 있는 삼각철근망 배근구조를 개발한 바 있으며, 개발한 기술은 특허 제10-1195119로 특허받거나 특허출원 제10-2013-0132884호와 특허출원 제10-2014-0072847호로 출원 계속 중에 있다.
본 발명은 크로스 타이 철근 배근의 간섭 등으로 시공이 어려웠던 종래 철근콘크리트구조의 시공성 문제를 개선하고자 개발된 삼각철근망 배근구조를 더욱 발전시켜 개발된 것으로서, 기둥 또는 벽체 등과 같은 수직부재에 프리스트레스를 도입하여 내력 증대를 더욱 강화할 수 있는 삼각망 배근에 의한 PSC구조를 제공하는데 기술적 과제가 있다.
또한 본 발명은 삼각망 배근에 의한 PSC구조의 바람직한 시공방법으로 배근의 모듈화를 통해 시공성을 향상시키고 공기를 단축할 수 있는 시공방법을 제공하고자 한다.
상기한 기술적 과제를 해결하기 위해 본 발명은 기둥 또는 벽체를 위한 PSC구조로서 삼각망 배근에 의한 PSC구조와 이의 바람직한 시공방법을 제공한다.
본 발명에 따른 삼각망 배근에 의한 PSC구조는, 2본 또는 3본의 제1강봉과 1본의 제2강봉 및 삼각띠철근으로 조립 구성되는 것으로 제1강봉을 외측에 위치시키면서 기둥 단면에 따라 나란하게 배근되는 복수개의 삼각망; 나란하게 배근된 복수개의 삼각망을 동시에 횡방향으로 둘러 감도록 배근되는 외곽띠철근; 삼각망 및 외곽띠철근이 매설되게 타설되는 콘크리트;를 포함하여 구성되는 기둥으로, 삼각망은 제1강봉 중 삼각구도의 모서리에 위치한 2본을 포함한 강봉이 긴장 정착되는 PS강재로 마련되되 쉬스관 내부에 PS강재가 설치되어 긴장된 후 무수축모르타르의 주입에 의해 정착되도록 마련되는 것을 특징으로 한다.
또 다른 본 발명에 따른 삼각망 배근에 의한 PSC구조는, 2본 또는 3본의 제1강봉과 1본의 제2강봉 및 삼각띠철근으로 조립 구성되는 것으로 제1강봉과 제2강봉이 이웃하게 위치하도록 벽체 길이방향으로 방향을 바꿔가면서 벽체 단면에 따라 나란하게 배근되는 복수개의 삼각망; 나란하게 배근된 복수개의 삼각망을 동시에 횡방향으로 둘러 감도록 배근되는 외곽띠철근; 삼각망 및 외곽띠철근이 매설되게 타설되는 콘크리트;를 포함하여 구성되는 벽체로, 삼각망은 제1강봉 중 삼각구도의 모서리에 위치한 2본을 포함한 강봉과 제2강봉이 긴장 정착되는 PS강재로 마련되되 쉬스관 내부에 PS강재가 설치되어 긴장된 후 무수축모르타르의 주입에 의해 정착되도록 마련되는 것을 특징으로 하는 것을 특징으로 한다.
본 발명에 따른 PSC구조의 시공방법은, 제1강봉과 제2강봉을 삼각띠철근으로 연결하면서 삼각망을 조립하는 제1단계; 삼각망 복수개를 기둥 또는 벽체의 단면에 따라 나란하게 배근하고, 나란하게 배근된 복수개의 삼각망을 동시에 횡방향으로 둘러 감으면서 외곽띠철근을 배근하는 제2단계; 제2단계에서 배근된 삼각망 및 외곽띠철근이 매설되게 콘크리트를 타설하는 제3단계;를 포함하여 이루어지되, 삼각망 중 긴장 정착되는 강봉은 제1단계에서 쉬스관을 설치하여 삼각망으로 조립한 후 제3단계에서 콘크리트 타설하고 나서 쉬스관 내부에 PS강재를 설치하여 긴장시킨 다음 쉬스관 내부에 무수축모르타르 주입하여 정착시킴으로써 프리스트레스를 도입하는 것을 특징으로 한다.
또 다른 본 발명에 따른 PSC구조의 시공방법은, 제1강봉과 제2강봉을 삼각띠철근으로 연결하면서 삼각망을 조립하고, 조립된 삼각망 복수개를 기둥 또는 벽체의 단면에 따라 나란하게 배근한 후 복수개의 삼각망을 동시에 횡방향으로 둘러 감으면서 외곽띠철근을 배근하고, 배근된 삼각망 및 외곽띠철근이 매설되게 콘크리트를 타설하는 방법으로 소정 크기의 프리캐스트 세그먼트를 제작하되, 삼각망을 긴장 정착되는 PS강재로 마련되는 위치에 쉬스관으로 설치 조립하면서 프리캐스트 세그먼트를 제작하는 제1단계; 시공현장에서 프리캐스트 세그먼트를 적층 설치하되, 상하 프리캐스트 세그먼트 상호간 삼각망의 제1,2강봉을 연결하면서 설치하는 제2단계; 프리캐스트 세그먼트의 쉬스관 내부에 PS강재를 설치하여 긴장시킨 후 무수축모르타르를 주입하는 제3단계;를 포함하여 이루어지는 것을 특징으로 한다.
도 1은 종래 크로스 타이 철근이 배근되는 기둥 내지 벽체의 단면상세이다.
도 2는 본 발명에 따른 PSC구조의 일실시예로서, 중공기둥의 단면상세이다.
도 3은 본 발명에 따른 PSC구조의 다른 실시예로서, 중실기둥의 단면상세이다.
도 4는 본 발명에 따른 PSC구조의 또 다른 실시예로서, 내력벽체의 단면상세이다.
도 5는 본 발명에 따른 PSC구조에 적용되는 삼각망의 조립상세이다.
도 6은 본 발명에 따른 PSC구조의 시공방법에서 지그를 이용한 삼각망의 조립상태를 보여준다.
도 7은 본 발명에 따른 PSC구조의 시공방법에서 배근방법을 보여준다.
도 8은 본 발명에 따른 PSC구조의 시공방법에서 가이드판의 설치상태를 보여준다.
[부호의 설명]
100a: 중공기둥
100b: 중실기둥
100c: 내력벽체
110a, 110a', 110b, 110b', 100c: 삼각망
111: 제1강봉
112: 제2강봉
113: 삼각띠철근
113a: 폐합띠철근
113b: 나선철근
120: 외부강봉
130: 외곽띠철근
140: 콘크리트
R: 철근
P: 쉬스관
PS: PS강재
M: 무수축모르타르
Z1, Z2: 지그
F: 기초
GP: 가이드판
H: 강봉삽입구멍
이하 첨부한 도면 및 바람직한 실시예에 따라 본 발명을 상세히 설명한다.
도 2 내지 도 4는 본 발명에 따른 PSC구조의 다양한 실시예로 각각 중공기둥, 중실기둥, 내력벽체에 대한 단면상세이다. 본 발명은 PSC구조에서 2본 또는 3본의 제1강봉(111)과 1본의 제2강봉(112) 및 삼각띠철근(113)으로 조립된 삼각구도의 삼각망(110a, 110a', 110b, 110b', 110c)을 배근하되, 삼각망 중 제1강봉(111) 내지 제2강봉(112)을 긴장 정착되는 PS강재(PS)로 마련하면서 배근한다는데 특징이 있다. 제1,2강봉(111, 112)과 삼각띠철근(113)이 안정적인 삼각 구도의 구속 응력을 발휘함과 동시에 프리스트레스가 도입됨으로써 콘크리트의 3축 구속을 실현하면서 취성 파괴에 유리하게 저항하도록 한 것이다, 이로써 본 발명에 따른 PSC구조는 전단강도를 증대시키고 내진성능을 향상시킬 수 있다. 본 발명에서 강봉은 콘크리트에 매설되어 콘크리트를 보강하는 강재를 포괄하며, 가령 철근은 물론 강선, 강연선, 봉강 등 긴장 정착되는 PS강재도 포함한다.
도 2는 본 발명에 따른 PSC 중공기둥(100a)의 단면상세이다. 본 발명에서 기둥은 일반적인 건물 기둥은 물론 교량의 교각 등도 포함하며, 도 2에서와 같은 원형 기둥이나 사각형 기둥은 물론 크로스 타이 철근이 배근되는 단면이면 육각형 기둥, 팔각형 기둥, 트랙형 기둥 등도 포함한다. PSC 중공기둥(100a)은, 기둥 단면에 따라 나란하게 배근되는 복수개의 삼각망(110a, 110b); 나란하게 배근된 복수개의 삼각망(110a, 110b)을 동시에 횡방향으로 둘러 감도록 배근되는 외곽띠철근(130); 삼각망(110a, 110b) 및 외곽띠철근(130)이 매설되게 하면서 삼각망(110a, 110b) 내측으로 채워지지 않게 타설되는 콘크리트(140);를 포함하여 구성된다. 여기서 삼각망(110a, 110b)은, 축방향으로 연속선상에 위치하도록 나란히 배근되는 2본 또는 3본의 제1강봉(111); 제1강봉(111) 내측으로 2본 또는 3본의 제1강봉(111) 사이에 위치하도록 축방향으로 배근되는 1본의 제2강봉(112); 제1강봉(111)과 제2강봉(112)을 횡방향으로 연결하여 삼각구도로 구속하도록 배근되는 삼각띠철근(113);으로 조립된다. 이러한 삼각망(110a, 110b)은 제1강봉(111)을 외측에 위치시키면서 기둥 단면에 따라 나란하게 배근된다.
도 2(a)에서는 원형 중공기둥(100a)을 예시하고 도 2(b)에서는 사각 중공기둥(100a)을 예시하는데, 도 2(b)의 사각 중공기둥(100a)은 모서리에 외부강봉(120)이 더 배근되고 있다. 도 2(b)에서는 외부강봉(120)으로 긴장 정착되는 PS강재(PS)가 적용되고 있으나, 철근이 적용될 수 있음은 물론이다. 도 2의 중공기둥(100a)에서는 2본의 제1강봉(111)과 1본의 제2강봉(112) 및 삼각띠철근(113)으로 조립된 이등변삼각 구도의 삼각망(110a)이 적용되고 있으나, 3본의 제1강봉(111)과 1본의 제2강봉(112) 및 삼각띠철근(113)으로 조립된 이등변삼각 구도의 삼각망(110b)이 적용될 수 있음은 물론이다(도 3(b) 참조).
특히 본 발명은 삼각망(110a, 110b)에서 제1강봉(111) 중 삼각구도의 모서리에 위치한 2본을 포함한 강봉을 긴장 정착되는 PS강재(PS)로 구성한다. 제1강봉(111)이 2본으로 이루어지는 경우에는 2본 모두 긴장 정작되는 PS강재(PS)로 구성하며, 제1강봉(111)이 3본으로 이루어지는 경우에는 모서리의 2본은 필수적으로 긴장 정착되는 PS강재(PS)로 구성하고 가운데의 1본은 긴장 정착되는 PS강재(PS)는 물론 철근(R)으로도 구성할 수 있다. 제1강봉(111)을 긴장 정착되는 PS강재(PS)로 구성함으로써 프리스트레스를 도입하여 내력을 더욱 증대시킨 것이다. 삼각망(110, 110b)에서 제1강봉(111)은 기둥 주근으로 설계되어야 하나, 제2강봉(112)은 기둥 주근은 물론 제1강봉(111)과 삼각 구도를 형성시키기 위한 구성으로 강성에 포함되지 않게 단순 조립철근으로 설계되는 것도 가능하다. 이러한 사정에 따라 본 발명은 제1강봉(111)이 필수적으로 PS강재(PS)로 구성되는 반면, 제2강봉(112)은 긴장 정착되는 PS강재(PS)는 물론 철근(R)으로도 구성될 수 있다. 프리스트레스는 포스트텐션으로 도입하며, 구체적으로 도 2에서와 같이 콘크리트(140) 타설 전에 쉬스관(P)을 설치하고 콘크리트(140) 타설 후에 쉬스관(P) 내부에 PS강재(PS)를 설치하고 PS강재(PS)를 긴장한 후 무수축모르타르(M)를 주입하여 정착시킨다. 이때 쉬스관(P)은 표면이 요철로 형성된 것을 채택하여 콘크리트와의 부착력 향상을 꾀하도록 한다.
도 3은 본 발명에 따른 PSC 중실기둥(100b)의 단면상세이다. PSC 중실기둥(100b)은 삼각망(110a, 110b) 내측까지 콘크리트가 다 채워진다는 점에서만 차이가 있을 뿐 앞서 살펴본 PSC 중공기둥(100a)과 동일하다. 도 3은 PSC 사각 중실기둥(100b)을 예시하는데, 도 3(a)에서는 2본의 제1강봉(111)에 의한 삼각망(110a)을 이용하고, 도 3(b)에서는 3본의 제1강봉(111)에 의한 삼각망(110b)을 이용하고 있다. 특히 도 3(b)에서는 3본의 제1강봉(111) 중 모서리에 위치한 2본은 긴장 정착되는 PS강재(PS)로 마련하고 가운데 위치한 1본은 철근(R)으로 마련한 것을 확인할 수 있는데, 이는 양 모서리에서 균형있게 프리스트레스를 도입하여 안정적인 삼각구도로 완성하면서 경제적인 배근설계를 하고자 한 것이다. 물론 도시하지 않았지만 더욱 강화된 내력증대를 위해 삼각망(110a, 110b)에서 제2강봉(112)이나 3본의 제1강봉(111) 중 가운데 위치한 1본을 긴장 정착되는 PS강재(PS)로 마련할 수도 있다.
도 4는 본 발명에 따른 PSC 내력벽체(100c)의 단면상세로, 내력벽체(100c)는 지하외벽, 코어벽(core wall), 옹벽, 벽식교각 등과 같이 전단내력벽체로 설계되는 벽체를 포괄한다. PSC 내력벽체(100c)는 앞서 살펴본 PSC 중실기둥(100a) 내지 중공기둥(100b)과 전반적으로 유사하나, 삼각망(110a', 110b', 110c)의 구성방법과 배치방법에서 약간의 차이가 있다. PSC 내력벽체(100c)에서 삼각망(110a', 110b', 110c)은 제1강봉(111) 중 삼각구도의 모서리에 위치한 2본을 포함한 강봉뿐만 아니라 제2강봉(112)도 긴장 정착되는 PS강재(PS)로 마련된다. 내력벽체(100c)에서 나란히 배근되는 제1,2강봉(111, 112)은 모두 주근으로 역할하기 때문에 이를 감안한 결과이다. 이러한 삼각망(110a', 110b', 110c)은 제1강봉(111)과 제2강봉(112)이 이웃하게 위치하도록 복수개가 벽체 길이방향으로 방향을 바꿔가면서 벽체 단면에 따라 나란하게 배근된다.
도 4(a)는 특수철근콘크리트 전단 내력벽체(100c)의 경계요소에 대한 단면상세가 된다. 보는 바와 같이 3본의 제1강봉(111)과 1본의 제2강봉(112) 및 삼각띠철근(113)에 의한 이등변 삼각구도의 삼각망(110b') 2개를 서로 방향을 바꾸어 나란하게 배근하는 한편, 2본의 제1강봉(111)과 1본의 제2강봉(112) 및 삼각띠철근(113)에 의한 직각 삼각구도의 삼각망(110c)을 경계요소 일측 단부에 배근하고, 경계요소 타측 단부에 외부강봉(120)을 배근한다. 외부강봉(120)은 삼각망(110b', 110c) 외부에서 제1강봉(111) 또는 제2강봉(112)과 연속선상에 위치하도록 나란하게 배근되면서 외곽띠철근(130)에 둘러 감기게 배근되어 콘크리트(140)에 매설되는데, 도 4(a)에서는 이등변 삼각구도의 삼각망(110b') 바깥에서 제2강봉(112)과 연속선상에 위치하도록 배근되고 있다.
도 4(b)와 도 4(c)는 내력벽체(100c)에서 삼각망(110a', 110b', 110c)이 다양한 구도로 적용된 예를 보여준다. 도 4(b)는 2본의 제1강봉(111)과 1본의 제2강봉(112) 및 삼각띠철근(113)에 의한 직각 삼각구도의 삼각망(110c) 4개와 외곽띠철근(130)이 배근된 예가 되고, 도 4(c)는 2본의 제1강봉(111)과 1본의 제2강봉(112) 및 삼각띠철근(113)에 의한 이등변 삼각구도의 삼각망(110a') 4개와 외부강봉(120) 2개 그리고 외곽띠철근(130)이 배근된 예가 된다. PSC 내력벽체(100c)에서 삼각망(110a', 110b', 100c)은 또 다른 형태의 삼각구도로 조립되어 다양하게 배근될 수 있음은 물론이다.
도 5는 본 발명에 따른 PSC구조에 적용되는 삼각망의 조립상세로, 3본의 제1강봉(111)과 1본의 제2강봉(112) 및 삼각띠철근(113)에 의한 이등변 삼각구도의 삼각망(110b)의 조립상세이다. 삼각망(110b)은 제1,2강봉(111, 112)으로 긴장 정착되는 PS강재(PS) 내지 철근(R)이 적용되고, 둘러 감는 삼각띠철근(113)으로 폐합철근(113a) 또는 나선철근(113b)이 적용된다. 제1강봉(111) 내지 제2강봉(112)이 긴장 정착되는 PS강재(PS)로 마련되는 위치에는 쉬스관(P)으로 조립된다.
본 발명에서 제1,2강봉(111, 112)의 이음, 삼각띠철근(113)과 외곽띠철근(130)의 갈고리 끝단 처리는 통상의 방법(도로교설계기준 등)을 따르면 되며, 또한 삼각띠철근(113)과 외곽띠철근(130)은 폐합철근(113a) 또는 나선철근(113b)으로 채택하여 통상의 방법을 따르면 된다. 가령 소성힌지 구간에서는 제1,2강봉(111, 112)은 겹침이음하지 않으면서 커플러 등을 이용하면서 기계적 이음으로 처리하는데, 제1,2강봉(111, 112)이 긴장 정착되는 PS강재로 마련되는 경우에는 쉬스관을 기계적 이음으로 처리하면 된다. 외곽띠철근(130)을 폐합철근으로 채택한 경우라면 양단을 지름의 6배와 80mm 중 큰 값 이상의 연장길이를 갖는 135°갈고리로 처리하고, 나선철근으로 채용한 경우라면 양단을 지름의 6배와 80mm 중 큰 값 이상의 연장길이를 갖는 135°갈고리로 처리하면서 이 갈고리가 외부강봉(120)에 걸리게 배근하는 한편 소성힌지 구간에서 겹침이음 대신에 기계적 연결이나 완전 용접이음으로 처리한다. 더불어 삼각띠철근(113)의 갈고리는 제1,2강봉(111, 112)에 걸리게 처리하는데, 삼각띠철근(113)의 갈고리가 동일한 제1,2강봉(111, 112)에 연달아 걸리지 않도록 갈고리 위치를 바꿔준다(도 5 참고).
한편 본 발명은 PSC구조의 바람직한 시공방법을 제안하는데, 본 발명에 따른 PSC구조의 시공방법은 크게 현장타설방식과 현장조립방식으로 구분할 수 있다. 현장타설방식은 시공현장에서 삼각망 배근, 콘크리트 타설을 실시하는 방식이고, 현장조립방식은 프리캐스트 세그먼트로 제작한 후 시공현장에서 프리캐스트 세그먼트를 조립하는 방식이다. 도 6 내지 도 8은 PSC 기둥 시공을 위한 삼각망(110a, 110b) 시공모듈을 예시하는데, 이를 참고하여 본 발명에 따른 PSC구조의 시공방법을 살펴본다.
먼저 현장타설방식을 살펴본다. 우선 2본 또는 3본의 제1강봉(111)과 1본의 제2강봉(112)을 삼각띠철근(113)으로 연결하면서 삼각망(110a, 110a', 110b, 110b', 110c)으로 조립한다(제1단계). 삼각망(110a, 110a', 110b, 110b', 110c)은 도 6에서와 같이 지그(Z1, Z2)를 이용하면 간단하게 조립할 수 있다. 즉 한 쌍의 지그(Z1, Z2)에 2본 또는 3본의 제1강봉(111)과 1본의 제2강봉(112)을 위치 고정한 상태에서 삼각띠철근(113)을 연결하면서 조립하는 것이다. 한편 제1강봉(111) 내지 제2강봉(112)이 긴장 정착되는 PS강재(PS)로 마련되는 위치에는 쉬스관(P)으로 설치하면서 삼각망(110a, 110a', 110b, 110b', 110c)을 조립한다.
이어 삼각망(110a, 110a', 110b, 110b', 110c)과 외곽띠철근(130)을 설치하는데(제2단계), 본 단계는 구체적인 방법에 따라 도 7에서와 같이 3가지로 구분할 수 있다. 첫 번째 방법은 도 7(a)와 같이 시공위치에서 삼각망(110a, 110a', 110b, 110b', 110c)과 외곽띠철근(130)을 조립하는 방법으로, 삼각망(110a, 110a', 110b, 110b', 110c)을 하나의 시공모듈로 한 방식이 된다. 즉 기둥 내지 벽체의 시공위치에서 삼각망(110a, 110a', 110b, 110b', 110c) 복수개를 기둥 내지 벽체 단면에 맞게 배열하면서 설치한 후, 삼각망(110a, 110a', 110b, 110b', 110c) 외곽으로 외곽띠철근(130)을 둘러 감는다.
두 번째 방법은 도 7(c)와 같이 삼각망(110a, 110a', 110b, 110b', 110c) 외곽으로 외곽띠철근(130)을 둘러 감아 기둥망 내지 벽체망으로 조립한 후 기둥망 내지 벽체망을 시공위치에 설치하는 방법으로, 기둥망 내지 벽체망을 하나의 시공모듈로 한 방식이다. 즉 시공할 위치에서 기둥 또는 벽체에 배근될 삼각망(110a, 110a', 110b, 110b', 110c) 전부와 필요에 따른 외부강봉(120)을 배열하고 삼각망(110a, 110a', 110b, 110b', 110c)과 외부강봉(120) 외곽으로 외곽띠철근(130)을 둘러 감아 기둥망 내지 벽체망으로 조립한 후 크레인으로 양중하여 시공위치에 설치한다.
세 번째 방법은 앞서 살펴본 첫 번째 방법과 두 번째 방법을 절충한 방법으로, 도 7(b)에서와 같이 복수개의 삼각망(110a, 110a', 110b, 110b', 110c)을 전용 지그를 이용하여 크레인으로 동시에 인양하면서 벽체 위치에 설치하는 방식이다. 즉, 시공할 기둥 내지 벽체에서 일정 구간에 배근될 삼각망(110a, 110a', 110b, 110b', 110c) 복수개를 동시에 전용 지그에 매달아 크레인으로 양중하여 벽체 위치에 설치한 후, 삼각망(110a, 110a', 110b, 110b', 110c) 외곽으로 외곽띠철근(130)을 둘러 감는 방법이 된다. 필요에 따른 외부강봉(120)은, 도 7(b)에서와 같이 복수개의 삼각망(110a, 110a', 110b, 110b', 110c)과 함께 전용 지그에 매달에 양중하여 설치할 수 있으며, 도시하지 않았지만 외곽띠철근(130) 설치 과정에서 설치하는 것도 가능하다.
이와 같이 본 발명은 기둥 내지 벽체 주근이 되는 제1,2강봉(111, 112)을 삼각망(110a, 110a', 110b, 110b', 110c) 내지 기둥망 또는 벽체망 등으로 자립이 가능한 상태로 설치하기 때문에 전도의 우려 없이 안정적으로 설치할 수 있다. 한편 기초(F) 상단에 철근삽입구멍(H)이 형성된 가이드판(GP)을 매설한 후 가이드판의 강봉삽입구멍(H)에 제1강봉(111) 또는 제2강봉(112)을 끼움 설치하면서 제2단계를 실시한다면(도 8 참조), 배근작업은 더욱 용이하게 진행할 수 있다.
마지막으로 제2단계에서 설치된 삼각망(110a, 110a', 110b, 110b', 110c) 내지 외곽띠철근(130), 외부봉강(120) 등이 매설되게 콘크리트(140)를 타설하고, 프리스트레스를 도입한다. 프리스트레스는 제1단계에서 설치된 쉬스관(P) 내부에 PS강재(PS)를 설치하여 긴장시킨 다음 쉬스관(P) 내부에 무수축모르타르(M)를 주입하여 정착시키는 방식으로 도입한다. 이로써 PSC구조가 완성된다.
다음으로 현장조립방식을 살펴본다. 우선 제작환경, 시공환경 등을 고려하여 적절한 시공단위 크기로 프리캐스트 세그먼트를 제작한다(제1단계). 프리캐스트 세그먼트는 삼각망(110a, 110a', 110b, 110b', 110c)을 조립한 후 삼각망(110a, 110a', 110b, 110b', 110c)과 외곽띠철근(130)을 설치한 다음 콘크리트(140)를 타설하는 과정으로 제작한다. 이러한 제작과정은 공장에서 실시한다는 점에서 차이가 있을 뿐 앞서 살펴본 현장타설방식과 전반적으로 유사하다. 제1강봉(111)과 제2강봉(112)을 삼각띠철근(113)으로 연결하면서 삼각망(110a, 110a', 110b, 110b', 110c)을 조립하고, 조립된 삼각망(110a, 110a', 110b, 110b', 110c) 복수개를 기둥 또는 벽체의 단면에 따라 나란하게 배근한 후 복수개의 삼각망(110a, 110a', 110b, 110b', 110c)을 동시에 횡방향으로 둘러 감으면서 외곽띠철근(130)을 배근하고, 배근된 삼각망(110a, 110a', 110b, 110b', 110c) 및 외곽띠철근(130)이 매설되게 콘크리트(140)를 타설하면서 소정 크기의 프리캐스트 세그먼트를 제작하는 것이다. 이때 삼각망(110a, 110a', 110b, 110b', 110c)은 제1,2강봉(111, 112) 중 긴장 정착되는 PS강재(PS)로 마련되는 위치에 쉬스관(P)으로 설치하면서 조립하며, 나아가 제1,2강봉(111, 112) 중 철근(R)으로 마련되는 위치에도 쉬스관(P)으로 설치하면서 조립할 수도 있다.
이어 프리캐스트 세그먼트를 시공현장에 반입하고 적층 설치한다(제2단계). 상하 프리캐스트 세그먼트 상호간 삼각망의 제1,2강봉(111, 112)을 연결하면서 적층 설치한다. 삼각망의 제1,2강봉(111, 112) 위치에 쉬스관(P)이 설치된 경우에는 상하 쉬스관(P)끼리 위치를 맞추는 것으로 단순 연결하거나 또한 기계적 이음으로 연결하며, 철근이 그대로 설치되는 경우에는 철근끼리 기계적 이음으로 연결한다. 기계적 이음은 통상의 커플러 이음으로 처리하면 된다.
마지막으로 프리캐스트 세그먼트의 쉬스관(P) 내부에 PS강재(PS)를 설치하여 긴장시킨 후 무수축모르타트(M)를 주입한다(제3단계). 삼각망(110a, 110a', 110b, 110b', 110c)에서 제1,2강봉(111, 112) 중 철근(R)으로 마련되는 위치에도 쉬스관(P)으로 설치되었다면, 이 쉬스관(P) 내부에도 철근(R)을 설치한 후 무수축모르타르(M)를 주입한다. 이로써 PSC구조가 완성된다. 이와 같은 현장조립방식은 콘크리트 타설을 위한 현장작업을 생략할 수 있어 공기단축을 이끌 수 있다.
이상에서 본 발명은 구체적인 실시예를 참조하여 상세히 설명되었으며, 다만 실시예는 본 발명을 예시하기 위한 것일 뿐이므로 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 치환, 부가 및 변형된 실시 형태들 역시 아래에 첨부한 특허청구범위에 의하여 정하여지는 본 발명의 보호범위에 속한다고 할 것이다.
본 발명에 따르면 다음과 같은 효과를 기대할 수 있다.
첫째, 내진설계에서 2본 또는 3본의 제1강봉과 1본의 제2강봉 및 삼각띠철근에 의한 삼각구도의 삼각망을 배근하는 것으로 충분한 구속효과를 이끌 수 있다. 특히 삼각망 중 제1강봉 내지 제2강봉을 긴장 정착되는 PS강재로 구성하기 때문에 프리스트레스의 도입으로 더욱 효과적으로 내력보강할 수 있다.
둘째, 삼각망 배근으로 기둥 또는 벽체 단면을 가로지르는 크로스 타이 철근을 생략 내지 감축하는 것이 가능하여 경제적인 내진 단면으로 완성할 수 있다. 특히 삼각망은 조립이 간단하여 전반적으로 배근의 간소화를 이끌기 때문에 시공성 향상, 공기단축, 시공원가 절감을 도모할 수 있다.
셋째, 삼각망은 자립이 가능한 구조로 간단하게 선조립하여 모듈화할 수 있기 때문에 철근의 전도 우려없이 현장작업을 안정적으로 간소하게 진행할 수 있으며, 나아가 크레인 전용 지그를 이용한다면 다수개의 삼각망을 동시에 인양하면서 간편하게 배근 작업을 실시할 수 있다. 이로써 고소 작업시 인력 최소화를 통해 안전성을 제고하고 고소작업 할증을 최소화할 수 있다.
넷째, 프리스트레스를 포스트텐션으로 도입하기 위해 쉬스관을 필수적으로 사용하기 때문에 PSC구조재는 쉬스관을 활용하면서 프리캐스트 세그먼트 단위로 제작할 수 있으며, 이로써 현장작업을 간소화할 수 있는 조립식 시공을 구현할 수 있다.

Claims (13)

  1. 기둥을 위한 PSC구조로서,
    축방향으로 연속선상에 위치하도록 나란히 배근되는 2본 또는 3본의 제1강봉(111); 상기 제1강봉(110) 내측으로 2본 또는 3본의 제1강봉(110) 사이에 위치하도록 축방향으로 배근되는 1본의 제2강봉(112); 상기 제1강봉(111)과 제2강봉(112)을 횡방향으로 연결하여 삼각구도로 구속하도록 배근되는 삼각띠철근(113);으로 조립 구성되는 것으로, 상기 제1강봉(111)을 외측에 위치시키면서 기둥 단면에 따라 나란하게 배근되는 복수개의 삼각망(110a, 110b);
    나란하게 배근된 상기 복수개의 삼각망(110a, 110b)을 동시에 횡방향으로 둘러 감도록 배근되는 외곽띠철근(130);
    상기 삼각망(110a, 110b) 및 외곽띠철근(130)이 매설되게 타설되는 콘크리트(140);
    를 포함하여 구성되는 기둥(100a, 100b)로,
    상기 삼각망(110a, 110b)은, 제1강봉(111) 중 삼각구도의 모서리에 위치한 2본을 포함한 강봉이 긴장 정착되는 PS강재(PS)로 마련되되, 쉬스관(P) 내부에 PS강재(PS)가 설치되어 긴장된 후 무수축모르타르(M)의 주입에 의해 정착되도록 마련되는 것을 특징으로 하는 삼각망 배근에 의한 PSC구조.
  2. 제1항에서,
    상기 콘크리트(140)는, 삼각망(110a, 110b) 내측으로 다 채워진 중실 콘크리트이거나 삼각망(110a, 110b) 내측으로 채워지지 않은 중공 콘크리트인 것을 특징으로 하는 삼각망 배근에 의한 PSC구조.
  3. 벽체를 위한 PSC구조로서,
    축방향으로 연속선상에 위치하도록 나란히 배근되는 2본 또는 3본의 제1강봉(111); 상기 제1강봉(110)에 이격하여 평행하게 축방향으로 배근되는 제2강봉(112); 상기 제1강봉(111)과 제2강봉(112)을 횡방향으로 연결하여 삼각구도로 구속하도록 배근되는 삼각띠철근(113);으로 조립 구성되는 것으로, 제1강봉(111)과 제2강봉(112)이 이웃하게 위치하도록 벽체 길이방향으로 방향을 바꿔가면서 벽체 단면에 따라 나란하게 배근되는 복수개의 삼각망(110a', 110b', 110c);
    나란하게 배근된 상기 복수개의 삼각망(110a', 110b', 110c)을 동시에 횡방향으로 둘러 감도록 배근되는 외곽띠철근(130);
    상기 삼각망(110a', 110b', 110c) 및 외곽띠철근(130)이 매설되게 타설되는 콘크리트(140);
    를 포함하여 구성되는 벽체(100c)로,
    상기 삼각망(110a', 110b', 110c)은, 제1강봉(111) 중 삼각구도의 모서리에 위치한 2본을 포함한 강봉과 제2강봉(112)이 긴장 정착되는 PS강재(PS)로 마련되되, 쉬스관(P) 내부에 PS강재(PS)가 설치되어 긴장된 후 무수축모르타르(M)의 주입에 의해 정착되도록 마련되는 것을 특징으로 하는 삼각망 배근에 의한 PSC구조.
  4. 제3항에서,
    상기 삼각망(110a', 110b', 110c)은,
    3본의 제1강봉(111)에 의한 이등변 삼각구도(110a', 110b')나, 2본 또는 3본의 제1강봉(111)에 의한 직각 삼각구도(110c)로 조립 구성되는 것을 특징으로 하는 것을 특징으로 하는 삼각망 배근에 의한 PSC구조.
  5. 제1항 내지 제4항 중 어느 한 항에서,
    상기 삼각망의 삼각띠철근(113)은,
    폐합철근(113a) 또는 나선철근(113b)으로 마련되는 것을 특징으로 하는 삼각망 배근에 의한 PSC구조.
  6. 제1항 내지 제4항 중 어느 한 항에 따른 PSC구조를 시공하는 방법으로,
    제1강봉(111)과 제2강봉(112)을 삼각띠철근(113)으로 연결하면서 삼각망(110a, 110a', 110b, 110b', 110c)을 조립하는 제1단계;
    삼각망(110a, 110a', 110b, 110b', 110c) 복수개를 기둥 또는 벽체의 단면에 따라 나란하게 배근하고, 나란하게 배근된 복수개의 삼각망(110a, 110a', 110b, 110b', 110c)을 동시에 횡방향으로 둘러 감으면서 외곽띠철근(130)을 배근하는 제2단계;
    제2단계에서 배근된 삼각망(110a, 110a', 110b, 110b', 110c) 및 외곽띠철근(130)이 매설되게 콘크리트(140)를 타설하는 제3단계;를 포함하여 이루어지되,
    삼각망(110a, 110a', 110b, 110b', 110c) 중 긴장 정착되는 PS강재는, 상기 제1단계에서 쉬스관(P)을 설치하여 삼각망(110a, 110a', 110b, 110b', 110c)으로 조립한 후 제3단계에서 콘크리트(140)를 타설하고 나서 쉬스관(P) 내부에 PS강재(PS)를 설치하여 긴장시킨 다음 쉬스관(P) 내부에 무수축모르타르(M) 주입하여 정착시킴으로써 프리스트레스를 도입하는 것을 특징으로 하는 PSC구조의 시공방법.
  7. 제6항에서,
    상기 제1단계는, 한 쌍의 지그(Z1, Z2)에 2본 또는 3본의 제1강봉(111)과 1본의 제2강봉(112)을 위치 고정한 상태에서 삼각띠철근(113)을 연결하면서 실시하는 것을 특징으로 하는 PSC구조의 시공방법.
  8. 제6항에서,
    상기 제2단계는, 기둥 또는 벽체의 시공위치에서 삼각망(110a, 110a', 110b, 110b', 110c) 복수개를 배근한 후 외곽띠철근(130)을 둘러 감으면서 실시하는 것을 특징으로 하는 PSC구조의 시공방법.
  9. 제6항에서,
    상기 제2단계는,
    삼각망(110a, 110a', 110b, 110b', 110c) 복수개를 배열하고 외곽띠보강(130)을 둘러 감아 기둥망 또는 벽체망으로 조립한 후, 기둥망 또는 벽체망을 크레인으로 양중하여 기둥 또는 벽체의 시공위치에 설치하면서 실시하는 것을 특징으로 하는 PSC구조의 시공방법.
  10. 제6항에서,
    상기 제2단계는,
    삼각망(110a, 110a', 110b, 110b', 110c) 복수개를 동시에 전용 지그에 매달아 크레인으로 양중하여 기둥 또는 벽체의 시공위치에 설치한 후, 삼각망(110a, 110a', 110b, 110b', 110c) 외곽으로 외곽띠철근(130)을 둘러 감으면서 실시하는 것을 특징으로 하는 PSC구조의 시공방법.
  11. 제6항에서,
    상기 제2단계는,
    기초(F) 상단에 강봉삽입구멍(H)이 형성된 가이드판(GP)을 매설한 후 가이드판의 강봉삽입구멍(H)에 제1강봉(111) 또는 제2강봉(112)을 끼움 설치하여 정착시키는 것으로 삼각망(110a, 110a', 110b, 110b', 110c)을 설치하면서 실시하는 것을 특징으로 하는 PSC구조의 시공방법.
  12. 제1항 내지 제4항 중 어느 한 항에 따른 PSC구조를 시공하는 방법으로,
    제1강봉(111)과 제2강봉(112)을 삼각띠철근(113)으로 연결하면서 삼각망(110a, 110a', 110b, 110b', 110c)을 조립하고, 조립된 삼각망(110a, 110a', 110b, 110b', 110c) 복수개를 기둥 또는 벽체의 단면에 따라 나란하게 배근한 후 복수개의 삼각망(110a, 110a', 110b, 110b', 110c)을 동시에 횡방향으로 둘러 감으면서 외곽띠철근(130)을 배근하고, 배근된 삼각망(110a, 110a', 110b, 110b', 110c) 및 외곽띠철근(130)이 매설되게 콘크리트(140)를 타설하는 방법으로 소정 크기의 프리캐스트 세그먼트를 제작하되, 상기 삼각망(110a, 110a', 110b, 110b', 110c)을 제1,2강봉(111, 112) 중 긴장 정착되는 PS강재(PS)로 마련되는 위치에 쉬스관(P)으로 설치 조립하면서 프리캐스트 세그먼트를 제작하는 제1단계;
    시공현장에서 프리캐스트 세그먼트를 적층 설치하되, 상하 프리캐스트 세그먼트 상호간 삼각망의 제1,2강봉(111, 112)을 연결하면서 설치하는 제2단계;
    적층 설치된 프리캐스트 세그먼트의 쉬스관(P) 내부에 PS강재(PS)를 설치하여 긴장시킨 후 무수축모르타르(M)를 주입하는 제3단계;
    를 포함하여 이루어지는 것을 특징으로 하는 PSC구조의 시공방법.
  13. 제12항에서,
    상기 제1단계는, 상기 삼각망(110a, 110a', 110b, 110b', 110c)을 제1,2강봉(111, 112)이 설치되는 위치 모두에 쉬스관(P)으로 설치 조립하면서 실시하고,
    상기 제3단계는, 제1,2강봉(111, 112) 중 긴장 정착되는 PS강재(PS)로 마련되는 위치에는 쉬스관(P) 내부에 PS강재(PS)를 설치하여 긴장시킨 후 무수축모르타르(M)를 주입하는 한편, 제1,2강봉(111, 112) 중 철근(R)으로 마련되는 위치에는 쉬스관(P) 내부에 철근(R)을 설치하여 무수축모르타르(M)를 주입하면서 실시하는 것을 특징으로 하는 PSC구조의 시공방법.
PCT/KR2015/005313 2015-05-04 2015-05-27 삼각망 배근에 의한 psc구조 및 이의 시공방법 WO2016178451A2 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0062633 2015-05-04
KR1020150062633A KR20160130625A (ko) 2015-05-04 2015-05-04 삼각망 배근에 의한 psc구조 및 이의 시공방법

Publications (2)

Publication Number Publication Date
WO2016178451A2 true WO2016178451A2 (ko) 2016-11-10
WO2016178451A3 WO2016178451A3 (ko) 2017-05-18

Family

ID=57218261

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/005313 WO2016178451A2 (ko) 2015-05-04 2015-05-27 삼각망 배근에 의한 psc구조 및 이의 시공방법

Country Status (2)

Country Link
KR (1) KR20160130625A (ko)
WO (1) WO2016178451A2 (ko)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107130738A (zh) * 2017-05-18 2017-09-05 中国航天建设集团有限公司 高密实混凝土柱及其施工方法
CN107217791A (zh) * 2017-07-31 2017-09-29 广西路桥工程集团有限公司 一种轻型高强度的钢筋混凝土弓形结构梁
CN108560423A (zh) * 2018-02-05 2018-09-21 四川动和工程咨询有限公司 一种普通钢筋与精轧螺纹钢筋混合配筋拼装墩的施工方法
CN108842602A (zh) * 2018-07-16 2018-11-20 浙江交工集团股份有限公司 一种双曲面花瓶墩钢筋骨架
CN108842629A (zh) * 2018-07-16 2018-11-20 浙江交工集团股份有限公司 一种双曲面墩身钢筋骨架现场安装定位方法
CN109610729A (zh) * 2018-12-07 2019-04-12 中国建筑西北设计研究院有限公司 一种t字形钢筋混凝土异形柱
CN109723148A (zh) * 2018-03-22 2019-05-07 王维奇 带有可施加预应力的铰的自应力结构单元体和其应用及其制作方法
CN110924703A (zh) * 2019-12-09 2020-03-27 扬州工业职业技术学院 一种抗震性古建筑桁条连接结构
CN113339013A (zh) * 2021-06-03 2021-09-03 上海市城市建设设计研究总院(集团)有限公司 全断面受力的离散方钢管管排支护结构及其施工方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102636104B1 (ko) * 2023-01-11 2024-02-13 동진파일(주) Pc강선을 이용한 콘크리트 전주의 제조방법

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4151245B2 (ja) * 2001-08-16 2008-09-17 高周波熱錬株式会社 付着割裂防止筋及びコンクリート部材
KR101036852B1 (ko) * 2008-07-21 2011-05-25 (주)대우건설 강재 덕트와 강관 및 철근을 구비하는 프리캐스트 콘크리트세그먼트로 조립된 psc 교각 및 이의 시공 방법
KR100946274B1 (ko) * 2009-06-19 2010-03-09 공주대학교 산학협력단 콘크리트 구조물의 강도강화용 구조재
KR101195119B1 (ko) * 2011-04-06 2012-10-29 삼성물산 주식회사 물량감축을 위한 중공교각의 철근 배근구조와 이를 적용한 중공교각의 시공방법
KR101418689B1 (ko) * 2013-11-28 2014-07-10 경기대학교 산학협력단 내진 설계를 위한 시공성이 개선된 철근콘크리트 기둥의 띠철근 배근 방법

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107130738A (zh) * 2017-05-18 2017-09-05 中国航天建设集团有限公司 高密实混凝土柱及其施工方法
CN107217791A (zh) * 2017-07-31 2017-09-29 广西路桥工程集团有限公司 一种轻型高强度的钢筋混凝土弓形结构梁
CN107217791B (zh) * 2017-07-31 2023-06-20 广西路桥工程集团有限公司 一种轻型高强度的钢筋混凝土弓形结构梁
CN108560423A (zh) * 2018-02-05 2018-09-21 四川动和工程咨询有限公司 一种普通钢筋与精轧螺纹钢筋混合配筋拼装墩的施工方法
CN109723148A (zh) * 2018-03-22 2019-05-07 王维奇 带有可施加预应力的铰的自应力结构单元体和其应用及其制作方法
CN108842602A (zh) * 2018-07-16 2018-11-20 浙江交工集团股份有限公司 一种双曲面花瓶墩钢筋骨架
CN108842629A (zh) * 2018-07-16 2018-11-20 浙江交工集团股份有限公司 一种双曲面墩身钢筋骨架现场安装定位方法
CN109610729A (zh) * 2018-12-07 2019-04-12 中国建筑西北设计研究院有限公司 一种t字形钢筋混凝土异形柱
CN110924703A (zh) * 2019-12-09 2020-03-27 扬州工业职业技术学院 一种抗震性古建筑桁条连接结构
CN113339013A (zh) * 2021-06-03 2021-09-03 上海市城市建设设计研究总院(集团)有限公司 全断面受力的离散方钢管管排支护结构及其施工方法

Also Published As

Publication number Publication date
WO2016178451A3 (ko) 2017-05-18
KR20160130625A (ko) 2016-11-14

Similar Documents

Publication Publication Date Title
WO2016178451A2 (ko) 삼각망 배근에 의한 psc구조 및 이의 시공방법
WO2015064821A1 (ko) 삼각 철근망 배근에 의한 중실 철근콘크리트 기둥 및 이의 시공방법
US20210087810A1 (en) Precast wall panels and method of erecting a high-rise building using the panels
WO2015194695A1 (ko) 삼각 철근망 배근에 의한 철근콘크리트 벽체 및 이의 시공방법
WO2016129826A1 (ko) 안전성이 강화된 피씨 트러스 벽체 구조물 및 이를 이용한 지하구조물 시공방법
WO2011093556A1 (ko) 강합성 거더교 시공방법
US20100180519A1 (en) Precast Wall Panels and Method of Erecting a High-Rise Building Using the Panels
WO2016060334A1 (ko) 프리캐스트 교각 및 이를 이용하는 프리캐스트 교각 시공 방법
CN103850363B (zh) 预制通孔装配式钢筋混凝土剪力墙的施工方法
CN104499568A (zh) 方钢管预制柱-预制叠合梁装配整体式框架及施工方法
WO2020197061A1 (ko) 토목섬유거푸집을 이용한 지하의 수중구조물과 그 시공방법
KR101478131B1 (ko) 블록을 이용한 조립식 교각의 시공방법
KR100981982B1 (ko) 프리캐스트 코핑용 인양 시스템
WO2021002529A1 (ko) 라멘구조에서 교대 또는 외측기둥과 상부구조를 일체화할 시 발생되는 부모멘트에 대응되는 압축응력을 도입시키는 시공법
JP4314712B2 (ja) 橋脚構造物及びその構築方法
JP3818072B2 (ja) 多柱合成橋脚構造およびその構築方法
KR101576865B1 (ko) 역 t형 주형보를 이용한 교량 슬래브의 무지보 시공 방법
CN212025899U (zh) 混凝土管和桥墩结构
CN104453013A (zh) 预制墙体构件以及装配式钢筋混凝土剪力墙
CN108797343B (zh) 一种半灌浆套筒连接预制装配式frp筋材混凝土中央防撞护栏
KR100599768B1 (ko) 프리캐스트 콘크리트 거푸집을 이용한 합성 중공 교각구조물 및 그 시공방법
WO2013125778A1 (ko) 강연선 위치 고정수단을 가진 pc슬래브 및 이를 이용한 1방향 장선 슬래브의 연속화 시공방법
WO2018097498A1 (ko) 크로스바를 포함한 기초구조물 시공방법
WO2021157952A1 (ko) 콘크리트 충전 합성 부재
CN215330693U (zh) 一种装配式建筑墙板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15891315

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase in:

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 19/03/2018)

122 Ep: pct application non-entry in european phase

Ref document number: 15891315

Country of ref document: EP

Kind code of ref document: A2