WO2016177194A1 - 隔离型开关电源和隔离型开关电源控制方法 - Google Patents

隔离型开关电源和隔离型开关电源控制方法 Download PDF

Info

Publication number
WO2016177194A1
WO2016177194A1 PCT/CN2016/077642 CN2016077642W WO2016177194A1 WO 2016177194 A1 WO2016177194 A1 WO 2016177194A1 CN 2016077642 W CN2016077642 W CN 2016077642W WO 2016177194 A1 WO2016177194 A1 WO 2016177194A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
inductor
switch
switching power
circuit
Prior art date
Application number
PCT/CN2016/077642
Other languages
English (en)
French (fr)
Inventor
王林国
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2016177194A1 publication Critical patent/WO2016177194A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the present invention relates to the field of communications, and in particular to an isolated switching power supply and an isolated switching power supply control method.
  • the switching power supply has been widely used in the current electrical and electronic fields due to its miniaturization due to its high frequency and high conversion efficiency due to only working in the switching state.
  • the requirements for power density and efficiency of switching power supplies are also increasing.
  • switching losses are a major factor preventing further increases in efficiency and switching frequency to reduce the mention.
  • the switching loss is caused by the voltage and current of the switching device during the switching process. Therefore, in the related art, the soft switching circuit including the zero voltage conduction ZVS and the zero current shutdown ZCS is to reduce or even eliminate the switching loss, further improve the switching.
  • FIG. 1 is a schematic diagram of a switching power supply structure in the related art (1).
  • a resonant circuit formed by an inductor and a capacitor causes a current to be a sine wave of a resonant frequency.
  • the switching frequency is equal to a resonant frequency, a zero voltage and a zero current switch can be formed. . Therefore, this type of circuit tends to have the best soft-switching effect when the switching frequency is close to the resonant frequency.
  • the input-output voltage gain of the circuit also changes little. In the case where the output voltage is usually required to be stable, the wide-range input voltage cannot be satisfied. application.
  • the buck-boost Buck Boost circuit formed by the step-down Buck circuit and the boost type Boost circuit is a common circuit applied to a wide range of input voltages, and the input voltage is relatively high.
  • the Buck circuit When low, the Buck circuit is straight through.
  • the Boost circuit When the input voltage is high, the Boost circuit is straight through, which is equivalent to reducing the input voltage range.
  • U.S. Patent 6,678,033 Vicor implements soft-switching control of the circuit and achieves a switching frequency of up to 1 MHz in its commercialization for the pre-regulated converter of its patented split-rate power supply architecture.
  • this scheme is similar to the traditional flyback power supply in energy transmission.
  • the energy is transmitted to the secondary side only when the primary inductor current is turned off.
  • the magnetic core of the inductor is unidirectionally magnetized, and the utilization rate is low, resulting in conduction loss and magnetic core. Large loss and low efficiency, only suitable for applications with low power Hehe.
  • the resonant soft switching circuit cannot satisfy the wide range of input and regulated output, and the Buck Boost circuit suitable for a wide range of inputs cannot effectively realize the isolated output. No effective solution has been proposed.
  • Embodiments of the present invention provide an isolated switching power supply and an isolated switching power supply control method to at least solve the related art that a resonant soft switching circuit cannot satisfy a wide range of input regulated output, and a Buck Boost circuit suitable for a wide range of inputs cannot Efficient implementation of isolated output issues.
  • an isolated switching power supply includes: an input power source, a switch, an inductor, an inverter circuit, an isolation transformer, a rectifier circuit, and a switch controller; wherein the isolation transformer includes a first original a side winding and a first secondary winding; one end of the switch is connected to the input power source, and the other end of the switch is connected to an input end of the inductor; an output end of the inductor is connected to an input end of the inverter circuit; The output end of the variable circuit is connected to the first primary winding of the isolation transformer; the first secondary winding of the isolation transformer is connected to the rectifier circuit; and the switch controller is connected to the switch and the inverter circuit When the current of the above inductor is a negative value, the above switch is turned on.
  • the switch controller is further configured to turn off at least one switch of the inverter circuit, and connect an output end of the inductor to the first primary winding to discharge the inductor.
  • the switch controller is further configured to control at least two switches of the inverter circuit to be simultaneously turned on when the inductor current is discharged to a negative value, and connect an output end of the inductor to a negative pole of the input power source, so that The above input power source charges the above inductor.
  • the rectifier circuit includes at least two switches, and the switch controller is further configured to turn on at least one switch of the rectifier circuit to connect an output end of the switching power supply to the first secondary winding.
  • the isolation transformer includes a second primary winding
  • the inverter circuit includes at least two switches respectively connected to the first primary winding and the second primary winding; an output end of the inductor is connected to the foregoing A primary winding and the second primary winding described above.
  • the isolation transformer includes a second secondary winding
  • the rectifier circuit includes at least two switches respectively connected to the first secondary winding and the second secondary winding; an output end of the switching power supply is connected to the rectification a switch of the circuit and the first secondary winding and the second secondary winding.
  • the method includes: the foregoing inverter circuit includes a full bridge inverter circuit; and/or, the rectifier circuit includes a full bridge rectifier circuit.
  • the above inverter circuit comprises a circuit composed of a series and/or a parallel connection between a plurality of switching tubes.
  • the inverter circuit includes: a plurality of switch tubes connected in series and/or in parallel, wherein one end of the primary winding is connected to a first connection between two switches, and the other end of the primary winding is connected Different from the two switches The second connection at the first connection.
  • the rectifying circuit comprises a circuit composed of a series and/or a parallel connection between the plurality of switching tubes.
  • the rectifying circuit includes: a plurality of switching tubes connected in series and/or in parallel, wherein one end of the secondary winding is connected to a first connection between two switching tubes, and the other end of the secondary winding is connected To a second connection between the two switching tubes different from the first connection described above.
  • the isolated switching power supply further includes: an input rectifying circuit connected to the input power source and configured to rectify the AC power to a DC voltage.
  • the input rectifier circuit is a rectifier bridge circuit composed of a diode.
  • the above switch comprises a Mosfet.
  • an isolated switching power supply control method wherein the method is applied to any of the above-mentioned isolated switching power supplies, the method comprising: acquiring indication information; wherein the indication information indicates When the current of the inductor in the isolated switching power supply is negative, the switch in the isolated switching power supply is turned on.
  • an isolated switching power supply comprising: an input power source, a switch, an inductor, an inverter circuit, an isolation transformer, a rectifier circuit, and a switch controller; wherein the isolation transformer includes a first primary winding and a first a pair of side windings; one end of the switch is connected to the input power source, and the other end of the switch is connected to the input end of the inductor; the output end of the inductor is connected to the input end of the inverter circuit; the output end of the inverter circuit Connecting to the first primary winding of the isolation transformer; the first secondary winding of the isolation transformer is connected to the rectifier circuit; and the switch controller is connected to the switch and the inverter circuit for negative current at the inductor When the value is turned on, the switch is turned on.
  • the resonant soft-switching circuit cannot meet the wide range of input and regulated output, and the Buck Boost circuit suitable for a wide range of inputs cannot effectively realize the isolated output, thereby achieving a wide range of input and regulated output requirements.
  • High efficiency isolated soft switching converter
  • FIG. 1 is a schematic structural view of a switching power supply in the related art (1)
  • FIG. 2 is a schematic structural view of a switching power supply in the related art (2)
  • FIG. 3 is a schematic structural view of a switching power supply in the related art (3)
  • FIG. 4 is a schematic structural view of an isolated switching power supply according to an embodiment of the present invention.
  • Figure 5 is a schematic view showing a specific embodiment of the structure diagram of Figure 4 of the present invention.
  • FIG. 6 is a schematic diagram of a specific circuit operating voltage and current waveform of the structure diagram of FIG. 4 according to the present invention.
  • Figure 7 is a schematic diagram of an operation waveform of an input voltage of 75V
  • Figure 8 is a schematic diagram of an operation waveform of an input voltage of 36V
  • FIG. 9 is a schematic structural view of an embodiment of a center tap rectification of a transformer secondary winding according to the present invention.
  • FIG. 10 is a schematic structural view of an embodiment of a primary side inverter circuit using a push-pull circuit of the present invention
  • FIG. 11 is a schematic structural view of an embodiment of the present invention in which two inductors L1 and L2 are doubled;
  • Figure 12 is a schematic structural view of the present invention for an AC input
  • FIG. 13 is a flow chart of a method for controlling an isolated switching power supply according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of an isolated switching power supply according to an embodiment of the present invention.
  • the isolated switching power supply includes: an input power supply, a switch, an inductor, and an inverter.
  • the isolation transformer includes a first primary winding and a first secondary winding; one end of the switch is coupled to the input power source, and the other end of the switch is coupled to the inductor An output end of the inductor is connected to an input end of the inverter circuit; an output end of the inverter circuit is connected to the first primary winding of the isolation transformer; the first secondary winding of the isolation transformer is connected to the rectifier circuit;
  • a switch controller is coupled to the switch and the inverter circuit for turning on the switch when the current of the inductor is negative.
  • the resonant soft switching circuit cannot satisfy the wide range of input and regulated output, and the Buck Boost circuit suitable for a wide range of inputs cannot effectively realize the isolated output, thereby achieving a wide tolerance.
  • the switch controller is further configured to turn off at least one switch of the inverter circuit, and connect an output end of the inductor to the first primary winding to discharge the inductor.
  • the switch controller is further configured to control at least two switches of the inverter circuit to be simultaneously turned on when the inductor current is discharged to a negative value, and the output end of the inductor is connected to the input power source. The negative pole causes the input power source to charge the inductor.
  • the switch controller is further configured to conduct at least one switch of the rectifier circuit, the output of the switching power supply being coupled to the first secondary winding.
  • the isolation transformer includes a second primary winding
  • the inverter circuit includes at least two switches respectively connected to the first primary winding and the second primary winding
  • the output of the inductor is coupled to the first primary winding and the second primary winding.
  • the isolation transformer includes a second secondary winding
  • the rectifier circuit includes at least two switches respectively connected to the first secondary winding and the second secondary winding, and the output of the switching power supply is connected. a switch to the rectifier circuit and the first secondary winding and the second secondary winding.
  • the inverter circuit includes a full bridge inverter circuit
  • the rectifier circuit includes a full bridge rectifier circuit
  • the inverter circuit described above may be comprised of a plurality of forms of circuitry.
  • the inverter circuit includes a circuit comprising series and/or parallel connections between a plurality of switching transistors.
  • the inverter circuit includes: a plurality of switching tubes connected in series and/or in parallel, wherein one end of the primary winding is connected to a first connection between two switches, the primary side The other end of the winding is connected to a second connection between the two switches that is different from the first connection.
  • the rectifying circuit described above may be comprised of a plurality of forms of circuitry.
  • the rectifying circuit includes a series of parallel and/or parallel circuits between the plurality of switching transistors.
  • the rectifying circuit comprises: a plurality of switching tubes connected in series and/or in parallel, wherein one end of the secondary winding is connected to a first connection between the two switching tubes, the secondary winding The other end is connected to a second connection between the two switch tubes that is different from the first connection.
  • the switching power supply may further include: an input rectifying circuit connected to the input power source, configured to rectify the alternating current power source into a direct current voltage.
  • the input rectification circuit is a rectifier bridge circuit composed of diodes.
  • the switch comprises a Mosfet.
  • the embodiment of the present invention provides a circuit topology, which can implement a A highly efficient isolated soft-switching converter that meets the requirements of a wide range of input regulated output.
  • An alternative embodiment of the present invention provides an isolated output switching power converter that enables the power supply to be soft-switched within a wide range of input voltages.
  • an alternative embodiment of the present invention provides a switching power supply device, including:
  • Input power non-isolated pre-stage switching circuit, first inductor, primary side inverter circuit, transformer, secondary side rectifier circuit and output voltage.
  • the first switch connects one end of the first inductor to the input power source, and the other end of the first inductor is connected to the inverter circuit, the output of the inverter circuit is connected to the primary side of the transformer, the secondary side of the transformer is connected to the rectifier circuit, and the rectifier circuit is connected to the output voltage. .
  • a controller is configured to turn on each of the switching devices including the first switch and the inverter circuit and the rectifier circuit when the voltage is near zero.
  • a control method is configured to cause the first switch to be turned on when the first inductor current is in a negative direction.
  • FIG. 1 is a schematic structural diagram (1) of a switching power supply in the related art.
  • FIG. 1 shows an isolated soft switching circuit typical in the related art.
  • a resonant circuit formed by an inductor and a capacitor causes a current to be a resonant frequency.
  • Sine wave When the off frequency is equal to the resonant frequency, zero voltage and zero current switching can be formed. Therefore, this type of circuit tends to have the best soft-switching effect when the switching frequency is close to the resonant frequency.
  • the input-output voltage gain of the circuit also changes little. In the case where the output voltage is usually required to be stable, the wide-range input voltage cannot be satisfied. application.
  • FIG. 2 is a schematic diagram of a switching power supply structure in the related art (2).
  • FIG. 2 shows a non-isolated Buck Boost topology, which is formed by cascading a buck type Buck circuit and a boost type boost circuit.
  • a common circuit for input voltage range when the input voltage is low, Q1 is turned on, and the Buck circuit is turned on.
  • Q3 When the input voltage is high, Q3 is turned on, and the Boost circuit is turned on, which is equivalent to reducing the input voltage range.
  • Vicor implements soft switching control of the circuit by turning on the upper tube Q1 when the inductor current is negative.
  • FIG. 3 is a schematic diagram of a structure of a switching power supply in the related art (3), and FIG. 3 is a modification of the non-isolated topology of FIG. 2 applied to an isolated switching power supply as described in US Pat. No. 7,561,446.
  • an inductor is shown in FIG. Replaced by the coupled inductor, when the switching transistors Q2, Q4 are turned on, the diode of the coupled inductor secondary is turned on, and the inductor energy is transmitted to the secondary side to obtain an isolated output voltage to supply power to the load.
  • This scheme is similar to a flyback power supply and has a low efficiency problem that cannot be applied to high power output applications.
  • FIG. 4 is a schematic structural diagram of an isolated switching power supply according to an embodiment of the present invention.
  • the optional embodiment adopts the structural schematic diagram shown in FIG. 4, which can realize a soft-switching isolated power conversion that satisfies a wide range of inputs. And efficient.
  • the schematic diagram of the embodiment of the present invention shown in FIG. 4 includes an input power source, a first switch Q1, a first inductor L1, an isolation transformer, a transformer primary side inverter circuit, a transformer secondary side rectifier circuit and a load, and a controller.
  • the first switch Q1 is connected to the input power source and the input end of the first inductor, the output end of the first inductor is connected to the inverter circuit, the output of the inverter circuit is connected to the primary winding of the transformer, and the secondary winding of the transformer is connected to the rectifier circuit, and the rectifier circuit Connect to the load.
  • the rectifier circuit connects the load voltage to the secondary winding of the transformer when supplying power to the load, and the inverter circuit can connect the output end of the first inductor to the negative end of the input power supply or to the primary winding of the transformer to achieve the inductor current Charging and discharging.
  • the controller turns on when the first switch Q1 is controlled to have a negative value of the first inductor current discharge, and completes the zero voltage conduction of the first switch Q1 to implement soft switching control.
  • FIG. 5 is a schematic diagram of a specific embodiment of the structure diagram of FIG. 4 according to an embodiment of the present invention.
  • a non-isolated front-stage switch circuit composed of Q1 and Q2 is connected to an input by inputting an input end of the inductor L1.
  • the power or reference ground enables charging and discharging of the inductor L1.
  • the output of the inductor is connected to the post isolation circuit.
  • the post-stage isolation circuit uses an efficient full-bridge circuit, including a primary-side full-bridge inverter circuit composed of Q3 to Q6, a transformer T1, and a secondary-side full-bridge rectifier circuit composed of Q7 to Q10.
  • the output end of the inductor L1 can be connected to the primary side reference ground or coupled to the power supply output terminal through the transformer T1 to realize charging of the inductor and transfer energy to the output terminal of the secondary side.
  • the inductor output terminal is connected to the primary side reference ground, and when the Q1 is turned on, the inductor is charged by the input voltage; when Q3Q6 and Q4Q5 are alternately turned on, the secondary side rectifier circuit is passed.
  • the output of the inductor L1 is coupled to the output of the power supply through the transformer T1, and the inductor energy is transmitted to the load.
  • the voltage at the output of the inductor to the primary side is Vo*N, where Vo is the output voltage and N is the ratio of the turns of the primary winding of the transformer.
  • C1 to C10 are the parasitic capacitances of the switching tubes Q1 to Q10.
  • the capacitor When the switching tube is turned off, the capacitor is subjected to the switching tube.
  • the voltage drop at both ends, in the circuit without soft switch control, the capacitor is directly short-circuited when the switch tube is turned on, and discharged through the on-resistance of the switch tube, and the energy stored during the turn-off is lost in the form of heat.
  • the capacitor is first released back to the main circuit before the switch is turned on, usually including an energy storage device such as an input power supply, an output load, or an inductor, and then turns on the switch when the capacitor voltage approaches zero. Zero voltage conduction reduces switching losses.
  • FIG. 6 is a schematic diagram of a specific circuit operating voltage and current waveform of the structure diagram of FIG. 4 according to an embodiment of the present invention, for illustrating specific control of implementing a soft switch.
  • the input voltage is 48V
  • the output voltage is 12V
  • the turns ratio of the primary and secondary windings of the transformer is 4:1.
  • 801 is the current waveform of the inductor L1
  • 802 is the voltage waveform of the inductor input terminal
  • 803 is the voltage waveform of the inductor output terminal.
  • 804 is the driving waveform of the switching tube Q1
  • 805 is the driving waveform of the switching tube Q2
  • 806 is the driving waveform of the switching tubes Q4, Q5, the driving waveform of the 807-position switching tubes Q3, Q6, and 808 is the secondary side rectifying circuit switching tube Q8 , Q9 drive waveform
  • 809 is the drive waveform of the secondary side rectifier circuit switch tubes Q7, Q10.
  • the inductor current drops to a negative value
  • the secondary side rectifier circuit switches Q8, Q9 are turned off, the negative inductor current continues to flow in the parasitic capacitances C4, C5 of Q4, Q5, and the energy stored by C4, C5 is turned off.
  • the primary switching transistors Q4 and Q5 achieve zero voltage conduction.
  • the working process at t5 ⁇ t9 is similar to that of t1 ⁇ t5.
  • the post-isolated full-bridge topology works on the other bridge arm to realize zero-voltage conduction of the switching transistors Q1, Q2, Q3, Q6, Q7 and Q10.
  • Figure 7 is a schematic diagram of the operating waveform with an input voltage of 75V. Since Vin is greater than N*Vo, the inductor is infused at t2 ⁇ t3. The input voltage 902 is greater than the inductor output voltage 903, and the inductor current 901 continues to increase.
  • the input power supply simultaneously charges the inductor and supplies power to the load, similar to working in the Buck state to implement the buck function. The control of other working moments is consistent with that described in Fig. 6, and the zero voltage conduction of each switching tube can be realized.
  • Figure 8 is a schematic diagram of the operating waveform with an input voltage of 36V. Since Vin is less than N*Vo, at the time t2 ⁇ t3, the inductor input voltage 1002 is smaller than the inductor output terminal voltage 1003, the inductor current 1001 is reduced, and the inductor storage energy is released to the load. Similar to working in the Boost state, the boost function is implemented. The control of other working moments is consistent with that described in Fig. 6, and the zero voltage conduction of each switching tube can be realized.
  • the optional embodiment of the present invention provides a high-efficiency isolated power converter, which can meet the soft switching control of all switching tubes under a wide range of input voltages, is beneficial to reduce switching losses, and further increases the switching frequency, thereby improving efficiency. And power density.
  • the isolation circuit of the embodiment of the present invention includes, but is not limited to, the full bridge inverter circuit and the full bridge rectifier circuit described in FIG. 7, and can also be applied to other high efficiency inverter and rectifier circuits commonly used in the field.
  • FIG. 9 is a schematic structural view of an embodiment of a center tap rectification of a secondary winding of a transformer according to an embodiment of the present invention.
  • the rectifier circuit only needs two switching tubes Q7 and Q8, which are suitable for low voltage output applications. Specifically, when the primary sides Q3 and Q6 are turned on, Q8 is turned on to transfer the inductor energy to the load. When the primary sides Q4 and Q5 are turned on, Q7 is turned on to transfer the inductor energy to the load to discharge the inductor current.
  • FIG. 10 is a schematic structural diagram of an embodiment of a primary side inverter circuit using a push-pull circuit according to an embodiment of the present invention.
  • the inverter circuit only needs two switch tubes Q3 and Q4, which is suitable for low voltage input occasions. Specifically, when Q3 and Q4 are simultaneously turned on, the primary winding is short-circuited, and the output of the inductor L1 is connected to the negative terminal of the input power through the primary winding and Q3 and Q4 to realize charging of the inductor current.
  • the secondary rectifier circuit Q5 When only Q3 is turned on, the secondary rectifier circuit Q5 is turned on to transfer the inductor energy to the load; when only Q4 is turned on, the secondary rectifier circuit Q6 is turned on, and the inductor energy is transmitted to the load to discharge the inductor current. .
  • FIG. 11 is a schematic structural diagram of an embodiment in which the primary side uses two inductors L1 and L2 to double current according to an embodiment of the present invention, and the scheme is suitable for an application where the input voltage is low and the input current is large.
  • the output terminal of the inductor L1 is connected to the negative terminal of the input power supply through Q3 to charge the inductor L1, and the inductor L2 is discharged to the secondary side through the primary winding of the transformer and Q3, and the secondary side
  • the rectifier circuits Q7 and Q10 are turned on, and the inductor energy is transmitted to the load to discharge the inductor L2.
  • FIG. 12 is a schematic structural diagram of an AC input according to an embodiment of the present invention.
  • an AC power source is connected to an input end of the embodiment of FIG. 6 of the embodiment of the present invention after passing through a rectifier bridge. Since the amplitude of the DC voltage changes after the AC input power source passes through the rectifier bridge, the control characteristics of the soft switch can be realized by using the wide input voltage range described in the embodiment of the present invention, so that the efficiency and power density of the application can be greatly improved.
  • FIG. 13 is an embodiment according to the present invention.
  • Step S1302 Obtain indication information.
  • step S1304 when the indication information indicates that the current of the inductor in the isolated switching power supply is a negative value, the switch in the isolated switching power supply is turned on.
  • the related art has solved the problem that the resonant soft switching circuit cannot satisfy a wide range of input and regulated output, and the Buck Boost circuit suitable for a wide range of inputs cannot efficiently realize the isolated output, thereby achieving a wide range of input. High-efficiency isolated soft-switching converter required for regulated output.
  • the apparatus and method in the above embodiments of the present invention solve the related art that the resonant soft switching circuit cannot meet a wide range of input regulated output, and the Buck Boost circuit suitable for a wide range of inputs cannot be effectively isolated.
  • the problem of output in turn, achieves a highly efficient isolated soft-switching converter that meets the requirements of a wide range of input regulated output.
  • the method according to the above embodiment can be implemented by means of software plus a necessary general hardware platform, and of course, by hardware, but in many cases, the former is A better implementation.
  • the technical solution of the embodiments of the present invention may be embodied in the form of a software product in essence or in the form of a software product stored in a storage medium (such as ROM/RAM, disk).
  • the optical disc includes a plurality of instructions for causing a terminal device (which may be a mobile phone, a computer, a server, or a network device, etc.) to perform the method described in various embodiments of the present invention.
  • Embodiments of the present invention also provide a storage medium.
  • the foregoing storage medium may be configured to store program code for performing the following steps:
  • the foregoing storage medium may include, but is not limited to, a USB flash drive, a Read-Only Memory (ROM), and a Random Access Memory (RAM).
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • the processor executes the above-mentioned S1-S2 according to the stored program code in the storage medium.
  • modules or steps of the present invention described above can be implemented by a general-purpose computing device that can be centralized on a single computing device or distributed across a network of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device such that they may be stored in the storage device by the computing device and, in some cases, may be different from the order herein.
  • the steps shown or described are performed, or they are separately fabricated into individual integrated circuit modules, or a plurality of modules or steps thereof are fabricated as a single integrated circuit module.
  • the invention is not limited to any specific combination of hardware and software.
  • an isolated switching power supply including: an input power source, a switch, an inductor, an inverter circuit, an isolation transformer, a rectifier circuit, and a switch controller; wherein the isolation transformer includes a first primary winding and a first secondary winding; one end of the switch is connected to the input power source, and the other end of the switch is connected to an input end of the inductor; an output end of the inductor is connected to an input end of the inverter circuit; an output of the inverter circuit An end is connected to the first primary winding of the isolation transformer; the first secondary winding of the isolation transformer is connected to the rectifier circuit; a switch controller is connected to the switch and the inverter circuit, and the current used in the inductor is When the value is negative, the switch is turned on.
  • the resonant soft-switching circuit cannot meet the wide range of input and regulated output, and the Buck Boost circuit suitable for a wide range of inputs cannot effectively realize the isolated output, thereby achieving a wide range of input and regulated output requirements.
  • High efficiency isolated soft switching converter

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

一种隔离型开关电源和隔离型开关电源控制方法。该隔离型开关电源包括:输入电源、开关(Q1)、电感(L1)、逆变电路、隔离变压器(T1)、整流电路和开关控制器。隔离型开关电源控制方法包括在电感的电流为负值时,导通开关。该隔离型开关电源能够解决谐振式软开关电路不能宽范围输入稳压输出以及适合宽范围输入的BUCK-BOOST电路无法高效实现隔离输出的问题。该隔离型开关电源能够满足宽范围输入稳压输出要求。

Description

隔离型开关电源和隔离型开关电源控制方法 技术领域
本发明涉及通信领域,具体而言,涉及一种隔离型开关电源和隔离型开关电源控制方法。
背景技术
开关电源因其高频化带来的小型化和仅工作在开关状态带来的转换效率高等特性在当前电气及电子领域得到了最广泛的应用。随着电子电气设备供电功率的不断发展以及对节能减排的日益重视,对开关电源的功率密度和效率的要求也不断提高。在传统开关电源中,开关损耗成了阻止进一步提升效率和开关频率以减小提及的主要因素。开关损耗是在开关过程中,开关器件同时承受电压、电流引起的,因此在相关技术中,软开关电路包括零电压导通ZVS和零电流关断ZCS是减小甚至消除开关损耗,进一步提高开关频率的主要手段。
图1是相关技术中的开关电源结构示意图(一),通过由电感、电容形成的谐振电路,使得电流为谐振频率的正弦波,当开关频率等于谐振频率时,能形成零电压和零电流开关。因此,该类电路往往在开关频率接近谐振频率时软开关效果最好,但此时电路的输入输出电压增益也变化较小,在通常要求输出电压稳定输出的场合,无法满足宽范围输入电压的应用。
在实际系统中,由于历史遗留等原因,各种设备及应用场景中,存在多个不同电压的供电系统,如交流电网的220V和110V系统,直流供电的24V、48V、及60V系统。在实际产品中,从经济效益和应用便利性考虑,开关电源通常都要求设计成同时兼容不同的供电系统,如通讯系统的DC/DC总线电源,需要将36~75V的宽范围输入电压转换成12V隔离总线电压给后续设备供电。
在非隔离电路中,如图2所示,由降压型Buck电路和升压型Boost电路级联形成的升降压型Buck Boost电路是应用于宽范围输入电压的常用电路,在输入电压较低时,Buck电路直通,在输入电压较高时,Boost电路直通,等效于缩减了输入电压范围。在美国专利US6788033中,Vicor公司对该电路实现了软开关控制,并在其产品化中实现了高达1MHz的开关频率,用于其专利方案分比式供电架构的前级稳压变换器。
在Vicor公司的如上方案中,需要再后接一个隔离的DC/DC变换器以实现最终隔离输出,因此,该方案应用于传统总线电源变换器有器件较多、体积较大的问题。在美国专利US7561446中,Vicor公司对该方案进行了改进,如图3所示,将其中的电感用隔离的耦合电感取代,形成带隔离输出的Buck Boost软开关方案。具体地,将原方案电感上的电压耦合至副边再通过整流得到隔离的输出电压。在该方案中,仅增加一个电感的副边绕组和一个整流二极管或Mosfet,体积比上述Buck Boost加隔离DC/DC变换器的两级结构大大减小。但该方案在能量传输上类似于传统的反激式电源,能量仅在原边电感电流关断时传递至副边,电感的磁芯单向磁化,利用率较低,导致导通损耗和磁芯损耗较大,效率较低,只适合功率较小的应用场 合。
针对相关技术中,谐振式软开关电路无法满足宽范围输入稳压输出,以及适合宽范围输入的Buck Boost电路无法高效实现隔离输出的问题,还未提出有效的解决方案。
发明内容
本发明实施例提供了一种隔离型开关电源和隔离型开关电源控制方法,以至少解决相关技术中谐振式软开关电路无法满足宽范围输入稳压输出,以及适合宽范围输入的Buck Boost电路无法高效实现隔离输出的问题。
根据本发明实施例的一个方面,提供了一种隔离型开关电源,包括:输入电源、开关、电感、逆变电路、隔离变压器、整流电路和开关控制器;其中,上述隔离变压器包括第一原边绕组和第一副边绕组;上述开关的一端连接至上述输入电源,以及上述开关的另一端连接至上述电感的输入端;上述电感的输出端连接至上述逆变电路的输入端;上述逆变电路的输出端连接至上述隔离变压器的上述第一原边绕组;上述隔离变压器的上述第一副边绕组连接至上述整流电路;上述开关控制器,与上述开关和上述逆变电路连接,设置为在上述电感的电流为负值时,导通上述开关。
可选地,上述开关控制器还设置为关闭上述逆变电路的至少一个开关,将上述电感的输出端连接至上述第一原边绕组,使上述电感进行放电。
可选地,上述开关控制器还设置为在上述电感电流放电至负值时,控制上述逆变电路的至少两个开关同时导通,将上述电感的输出端连接至上述输入电源的负极,使上述输入电源为上述电感充电。
可选地,上述整流电路包括至少两个开关,上述开关控制器还设置为导通上述整流电路的至少一个开关,将上述开关电源的输出端连接至上述第一副边绕组。
可选地,上述隔离变压器包括第二原边绕组,上述逆变电路包括的至少两个开关分别连接至上述第一原边绕组和上述第二原边绕组;上述电感的输出端连接至上述第一原边绕组和上述第二原边绕组。
可选地,上述隔离变压器包括第二副边绕组,上述整流电路包括的至少两个开关分别连接至上述第一副边绕组和上述第二副边绕组;上述开关电源的输出端连接至上述整流电路的开关及上述第一副边绕组和上述第二副边绕组。
可选地,包括:上述逆变电路包括全桥逆变电路;和/或,上述整流电路包括全桥整流电路。
可选地,上述逆变电路包括多个开关管之间的串联和/或并联组成的电路。
可选地,上述逆变电路包括:串联和/或并联的多个开关管,其中,上述原边绕组的一端连接至两个开关之间的第一连接处,上述原边绕组的另一端连接至两个开关之间的不同于上 述第一连接处的第二连接处。
可选地,上述整流电路包括多个开关管之间的串联和/或并联组成的电路。
可选地,上述整流电路包括:串联和/或并联的多个开关管,其中,上述副边绕组的一端连接至两个开关管之间的第一连接处,上述副边绕组的另一端连接至两个开关管之间的不同于上述第一连接处的第二连接处。
可选地,上述隔离型开关电源还包括:输入整流电路,连接至上述输入电源,设置为将交流电源整流为直流电压。
可选地,上述输入整流电路为二极管组成的整流桥电路。
可选地,上述开关包括Mosfet。
根据本发明实施例的一个方面,提供了一种隔离型开关电源控制方法,上述方法应用于上述任一项上述的隔离型开关电源中,上述方法包括:获取指示信息;在上述指示信息指示上述隔离型开关电源中的电感的电流为负值时,导通上述隔离型开关电源中的开关。
通过本发明实施例,采用一种隔离型开关电源,包括:输入电源、开关、电感、逆变电路、隔离变压器、整流电路和开关控制器;其中,该隔离变压器包括第一原边绕组和第一副边绕组;该开关的一端连接至该输入电源,以及该开关的另一端连接至该电感的输入端;该电感的输出端连接至该逆变电路的输入端;逆变电路的输出端连接至该隔离变压器的该第一原边绕组;隔离变压器的该第一副边绕组连接至该整流电路;开关控制器,与该开关和逆变电路连接,用于在该电感的电流为负值时,导通该开关。解决了相关技术中,谐振式软开关电路无法满足宽范围输入稳压输出,以及适合宽范围输入的Buck Boost电路无法高效实现隔离输出的问题,进而实现了一种满足宽范围输入稳压输出要求的高效隔离型软开关变换器。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1是相关技术中的开关电源结构示意图(一);
图2是相关技术中的开关电源结构示意图(二);
图3是相关技术中的开关电源结构示意图(三);
图4是根据本发明实施例的隔离型开关电源结构示意图;
图5是本发明图4所述结构示意图的一种具体实施例的示意图;
图6是本发明图4所述结构示意图的一种具体电路工作电压电流波形示意图;
图7是输入电压为75V的工作波形示意图;
图8是输入电压为36V的工作波形示意图;
图9是本发明采用变压器副边绕组中心抽头整流的一种实施例的结构示意图;
图10是本发明原边逆变电路采用推挽电路的一种实施例的结构示意图;
图11是本发明原边采用两个电感L1、L2倍流的一种实施例的结构示意图;
图12是本发明用于交流输入的一种结构示意图;
图13是根据本发明实施例的隔离型开关电源控制方法流程图。
具体实施方式
下文中将参考附图并结合实施例来详细说明本发明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
需要说明的是,本发明实施例的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
在本实施例中提供了一种开关电源,图4是根据本发明实施例的隔离型开关电源结构示意图,如图4所示,隔离型开关电源,包括:输入电源、开关、电感、逆变电路、隔离变压器、整流电路和开关控制器;其中,隔离变压器包括第一原边绕组和第一副边绕组;该开关的一端连接至该输入电源,以及该开关的另一端连接至该电感的输入端;电感的输出端连接至该逆变电路的输入端;逆变电路的输出端连接至隔离变压器的该第一原边绕组;隔离变压器的该第一副边绕组连接至该整流电路;开关控制器,与该开关和逆变电路连接,用于在该电感的电流为负值时,导通该开关。
通过上述隔离型开关电源解决了相关技术中,谐振式软开关电路无法满足宽范围输入稳压输出,以及适合宽范围输入的Buck Boost电路无法高效实现隔离输出的问题,进而实现了一种满足宽范围输入稳压输出要求的高效隔离型软开关变换器。
在一个可选实施例中,上述开关控制器还设置为关闭该逆变电路的至少一个开关,将该电感的输出端连接至该第一原边绕组,使该电感进行放电。在另一个可选实施例中,上述开关控制器还设置为在该电感电流放电至负值时,控制逆变电路的至少两个开关同时导通,将该电感的输出端连接至该输入电源的负极,使该输入电源为该电感充电。在再一个可选实施例中,开关控制器还设置为导通该整流电路的至少一个开关,将该开关电源的输出端连接至该第一副边绕组。
上述隔离变压器的结构中,在一个可选实施例中,隔离变压器包括第二原边绕组,该逆变电路包括的至少两个开关分别连接至该第一原边绕组和该第二原边绕组,电感的输出端连接至该第一原边绕组和该第二原边绕组。在另一个可选实施例中,隔离变压器包括第二副边绕组,该整流电路包括的至少两个开关分别连接至该第一副边绕组和该第二副边绕组,开关电源的输出端连接至该整流电路的开关及该第一副边绕组和该第二副边绕组。
在一个可选实施例中,逆变电路包括全桥逆变电路,在另一个可选实施例中,整流电路包括全桥整流电路。
上述逆变电路可以由多种形式的电路组成,在一个可选实施例中,逆变电路包括多个开关管之间的串联和/或并联组成的电路。
在一个可选实施例中,上述的逆变电路包括:串联和/或并联的多个开关管,其中,该原边绕组的一端连接至两个开关之间的第一连接处,该原边绕组的另一端连接至两个开关之间的不同于该第一连接处的第二连接处。
上述整流电路可以由多种形式的电路组成,在一个可选实施例中,整流电路包括多个开关管之间的串联和/或并联组成的电路。
在一个可选实施例中,整流电路包括:串联和/或并联的多个开关管,其中,该副边绕组的一端连接至两个开关管之间的第一连接处,该副边绕组的另一端连接至两个开关管之间的不同于该第一连接处的第二连接处。
在一个可选实施例中,上述开关电源还可以包括:输入整流电路,连接至该输入电源,设置为将交流电源整流为直流电压。
在一个可选实施例中,该输入整流电路为二极管组成的整流桥电路。
在一个可选实施例中,该开关包括Mosfet。
为解决如上传统谐振式软开关电路无法满足宽范围输入稳压输出,以及适合宽范围输入的Buck Boost电路无法高效实现隔离输出的问题,本发明实施例提供了一种电路拓扑,可以实现一种满足宽范围输入稳压输出要求的高效隔离型软开关变换器。
本发明可选实施例提供了一种隔离输出的开关电源变换器,使电源在较宽的输入电压范围内,能实现开关管的软开关。
为解决上述问题,本发明可选实施例提供了开关电源装置,包括:
输入电源,非隔离前级开关电路,第一电感,原边逆变电路,变压器,副边整流电路和输出电压。
其中第一开关将第一电感的一端连接至输入电源,第一电感的另一端连接至逆变电路,逆变电路的输出连接变压器原边,变压器副边连接整流电路,整流电路连接至输出电压。
一种控制器,使包括第一开关及逆变电路、整流电路中的各开关器件在电压接近零时导通。
具体的,一种控制方法,使所述第一开关,在所述第一电感电流为负向时导通。
图1是相关技术中的开关电源结构示意图(一),如图1示出了相关技术中典型的一种隔离型软开关电路,通过由电感、电容形成的谐振电路,使得电流为谐振频率的正弦波,当开 关频率等于谐振频率时,能形成零电压和零电流开关。因此,该类电路往往在开关频率接近谐振频率时软开关效果最好,但此时电路的输入输出电压增益也变化较小,在通常要求输出电压稳定输出的场合,无法满足宽范围输入电压的应用。
图2是相关技术中的开关电源结构示意图(二),如图2示出了为非隔离的Buck Boost拓扑,由降压型Buck电路和升压型Boost电路级联而成,是应用于宽范围输入电压的常用电路,在输入电压较低时,Q1导通,Buck电路直通,在输入电压较高时,Q3导通,Boost电路直通,等效于缩减了输入电压范围。在美国专利US6788033中,Vicor公司对该电路通过在电感电流为负时导通上管Q1实现了软开关控制。
图3是相关技术中的开关电源结构示意图(三),图3为美国专利US7561446所述,Vicor公司将图2所述非隔离拓扑应用于隔离型开关电源的一种改进,图3中,电感用耦合电感取代,当开关管Q2、Q4导通时,耦合电感副边的二极管导通,将电感能量传递至副边,得到隔离的输出电压给负载供电。该方案类似于反激式电源,存在效率较低的问题,无法应用于大功率输出场合。
图4是根据本发明实施例的隔离型开关电源结构示意图,为解决如上所述问题,本可选实施例采用图4所示的结构示意图,可以实现满足宽范围输入的软开关隔离型电源变换器,并且效率较高。
图4中所述本发明实施例结构示意图包括输入电源,第一开关Q1,第一电感L1,隔离变压器,变压器原边逆变电路,变压器副边整流电路和负载,以及控制器。其中第一开关Q1连接输入电源与第一电感的输入端,第一电感的输出端连接至逆变电路,逆变电路输出连接至变压器原边绕组,变压器副边绕组连接至整流电路,整流电路连接至负载。所述整流电路在向负载供电时将负载电压连接至变压器副边绕组,所述逆变电路可以将第一电感的输出端连接至输入电源负端或连接至变压器原边绕组,实现对电感电流的充电和放电。所述控制器在控制第一开关Q1在第一电感电流放电之负值时导通,完成第一开关Q1的零电压导通,实现软开关控制。
图5是本发明实施例图4所述结构示意图的一种具体实施例的示意图,如图5所示,Q1、Q2组成的非隔离前级开关电路,通过将电感L1的输入端连接至输入电源或参考地,实现对电感L1的充电和放电。电感的输出端连接后级隔离电路。图3中,后级隔离电路采用高效的全桥电路,包括由Q3~Q6组成的原边全桥逆变电路、变压器T1和由Q7~Q10组成的副边全桥整流电路。通过所述后级隔离电路,可以将电感L1的输出端连接至原边参考地或通过变压器T1耦合至电源输出端,实现电感的充电和向副边输出端传递能量。具体地,当Q3~Q6全部导通时,电感输出端连接至原边参考地,在Q1导通时,通过输入电压对电感进行充电;当Q3Q6、Q4Q5交替导通时,通过副边整流电路对应Q8Q9、Q7、Q10的导通,将电感L1的输出端通过变压器T1耦合至电源输出端,电感能量传递至负载。电感输出端对原边参考地电压为Vo*N,其中Vo为输出电压,N为变压器原副边绕组匝数之比。
图5中,C1~C10为开关管Q1~Q10的寄生电容,在开关管关断状态,改电容承受开关管 两端压降,在没有软开关控制的电路中,该电容在开关管导通时直接短路,通过开关管的导通电阻放电,其在关断时存储的能量以热的形式损耗。在实现软开关控制的电路中,在开关导通前,该电容先被释放回主电路,通常包括输入电源、输出负载或电感等储能器件,在电容电压接近零时再导通开关,实现零电压导通,减小开关损耗。
图6是本发明实施例图4所述结构示意图的一种具体电路工作电压电流波形示意图,用于阐述实现软开关的具体控制。图6中,输入电压为48V,输出电压为12V,变压器原副边绕组匝数比为4:1。801为电感L1的电流波形,802为电感输入端电压波形,803为电感输出端电压波形,804为开关管Q1的驱动波形,805为开关管Q2的驱动波形,806为开关管Q4、Q5的驱动波形,807位开关管Q3、Q6的驱动波形,808为副边整流电路开关管Q8、Q9的驱动波形,809为副边整流电路开关管Q7、Q10的驱动波形。
图6中,在t1~t2时刻,Q1导通,电感输入端连接至Vin,Q3~Q6导通,电感的输出端连接至原边参考地,电感上承受正向压降Vin,电感电流上升。
t2时刻,Q4、Q5关断,电感电流在原边通过Q3、Q6及变压器原边绕组续流,副边感应电流在Q8、Q9的寄生电容C8、C9续流。C8、C9在开关管关断时存储的能量释放至负载,在电容电压释放至接近零时,相应开关管Q8、Q9导通,实现Q8、Q9的零电压导通。
t2~t3时刻,Q8、Q9导通,变压器副边绕组连接至输出电压Vo,电感输出端连接至原边绕组感应电压N*Vo,电感上承受压降Vin-N*Vo,由于Vin与N*Vo较为接近,电感电流501接近保持不变,能量直接从输入电源传递至负载。
t3时刻,Q1关断,电感电流通过Q2的寄生电容C2续流,C2在开关管关断时存储的能量释放至负载,在电容电压释放至接近零时,Q2导通,实现Q2的零电压导通。
t3~t4时刻,Q2导通,电感输入端连接至原边参考地,电感上承受压降-N*Vo,电感电流下降,由电感中存储的能量传递至负载。
t4时刻,电感电流下降至负值,副边整流电路开关管Q8、Q9关闭,负向的电感电流在Q4、Q5的寄生电容C4、C5续流,C4、C5在关断时存储的能量释放至电感L1,在C4、C5电压释放至接近零时,原边开关管Q4、Q5实现零电压导通。
t4~t5时刻,Q2导通、Q3~Q6导通,电感L1的输出端均连接至参考地,电感电流保持负向续流。
t5时刻,Q2关断,电感负向电流通过开关管Q1的寄生电容C1续流,C1在关断时存储的能量释放至输入电源,在C1电压释放至接近零时,Q1实现零电压导通。
以上,实现开关管Q1、Q2,Q4、Q5,Q8、Q9的零电压导通。
t5~t9时刻的工作过程与t1~t5类似,后级隔离全桥拓扑工作在另一桥臂,实现开关管Q1、Q2,Q3、Q6,Q7、Q10的零电压导通。
图7是输入电压为75V的工作波形示意图,由于Vin大于N*Vo,在t2~t3时刻,电感输 入端电压902大于电感输出端电压903,电感电流901继续增大,输入电源同时对电感充电和对负载供电,类似于工作在Buck状态,实现降压功能。其他工作时刻的控制与图6所述一致,能实现各开关管的零电压导通。
图8是输入电压为36V的工作波形示意图,由于Vin小于N*Vo,在t2~t3时刻,电感输入端电压1002小于电感输出端电压1003,电感电流1001减小,电感储能向负载释放,类似于工作在Boost状态,实现升压功能。其他工作时刻的控制与图6所述一致,能实现各开关管的零电压导通。
综上,本发明可选实施例提供了高效隔离型电源变换器,能满足宽范围输入电压下所有开关管的软开关控制,有利于减小开关损耗,进一股提高开关频率,进而提高效率和功率密度。
本发明实施例的隔离电路包括但不限于图7所述的全桥逆变电路和全桥整流电路,也可应用于本领域范围内常见的其他高效逆变和整流电路。
图9是本发明实施例采用变压器副边绕组中心抽头整流的一种实施例的结构示意图,该整流电路仅需两个开关管Q7,Q8,适合于低压输出场合。具体的,在原边Q3、Q6导通时,Q8导通将电感能量传递至负载,在原边Q4、Q5导通时,Q7导通将电感能量传递至负载,实现对电感电流的放电。
图10是本发明实施例原边逆变电路采用推挽电路的一种实施例的结构示意图,该逆变电路仅需两个开关管Q3、Q4,适合低压输入场合。具体的,在Q3、Q4同时导通时,原边绕组被短路,电感L1输出端通过原边绕组和Q3、Q4连接至输入电源负端,实现电感电流的充电。在仅Q3导通时,副边整流电路Q5导通,将电感能量传递至负载;在仅Q4导通时,副边整流电路Q6导通,将电感能量传递至负载,实现对电感电流的放电。
图11是本发明实施例原边采用两个电感L1、L2倍流的一种实施例的结构示意图,该方案适合输入电压较低,输入电流较大的应用场合。具体的,在Q3导通、Q4关断时,电感L1的输出端通过Q3连接至输入电源负端,实现对电感L1的充电,电感L2通过变压器原边绕组和Q3向副边放电,副边整流电路Q7、Q10导通,将电感能量传递至负载,实现对电感L2的放电;在Q3关断、Q4导通时,电感L1的输出端通过Q3连接至输入电源负端,实现对电感L1的充电,电感L2通过变压器原边绕组和Q4向副边放电,副边整流电路Q8、Q9导通,将电感能量传递至负载,实现对电感L1的放电;
此外,本可选实施例上述结构和实施例还可以进一步应用于交流输入电源的场合,实现AC/DC变换器的隔离和软开关控制。图12是本发明实施例用于交流输入的一种结构示意图,如图12所示,交流电源经过整流桥后连接至本发明实施例图6所述实施例的输入端。由于交流输入电源经过整流桥后的直流电压幅值变化较大,利用本发明实施例所述的宽输入电压范围实现软开关的控制特性,可以使应用场合的效率和功率密度得到较大提升。
在本发明实施例中还提供了一种隔离型开关电源控制方法,图13是根据本发明实施例的 隔离型开关电源控制方法流程图,如图13所示,该流程包括如下步骤:
步骤S1302,获取指示信息;
步骤S1304,在上述指示信息指示上述隔离型开关电源中的电感的电流为负值时,导通该隔离型开关电源中的开关。
通过上述步骤,解决了相关技术中,谐振式软开关电路无法满足宽范围输入稳压输出,以及适合宽范围输入的Buck Boost电路无法高效实现隔离输出的问题,进而实现了一种满足宽范围输入稳压输出要求的高效隔离型软开关变换器。
综上所述,通过本发明上述实施例中的装置和方法,解决了相关技术中,谐振式软开关电路无法满足宽范围输入稳压输出,以及适合宽范围输入的Buck Boost电路无法高效实现隔离输出的问题,进而实现了一种满足宽范围输入稳压输出要求的高效隔离型软开关变换器。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到根据上述实施例的方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明实施例的技术方案本质上或者说对相关技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本发明各个实施例所述的方法。
本发明的实施例还提供了一种存储介质。可选地,在本实施例中,上述存储介质可以被设置为存储用于执行以下步骤的程序代码:
S1,获取指示信息;
S2,在上述指示信息指示上述隔离型开关电源中的电感的电流为负值时,导通该隔离型开关电源中的开关。
可选地,在本实施例中,上述存储介质可以包括但不限于:U盘、只读存储器(Read-Only Memory,简称为ROM)、随机存取存储器(Random Access Memory,简称为RAM)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
可选地,在本实施例中,处理器根据存储介质中已存储的程序代码执行上述S1-S2。
可选地,本实施例中的具体示例可以参考上述实施例及可选实施方式中所描述的示例,本实施例在此不再赘述。
显然,本领域的技术人员应该明白,上述的本发明的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本发明不限制于任何特定的硬件和软件结合。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
工业实用性
在本发明实施例中,采用一种隔离型开关电源,包括:输入电源、开关、电感、逆变电路、隔离变压器、整流电路和开关控制器;其中,该隔离变压器包括第一原边绕组和第一副边绕组;该开关的一端连接至该输入电源,以及该开关的另一端连接至该电感的输入端;该电感的输出端连接至该逆变电路的输入端;逆变电路的输出端连接至该隔离变压器的该第一原边绕组;隔离变压器的该第一副边绕组连接至该整流电路;开关控制器,与该开关和逆变电路连接,用于在该电感的电流为负值时,导通该开关。解决了相关技术中,谐振式软开关电路无法满足宽范围输入稳压输出,以及适合宽范围输入的Buck Boost电路无法高效实现隔离输出的问题,进而实现了一种满足宽范围输入稳压输出要求的高效隔离型软开关变换器。

Claims (15)

  1. 一种隔离型开关电源,包括:
    输入电源、开关、电感、逆变电路、隔离变压器、整流电路和开关控制器;
    其中,所述隔离变压器包括第一原边绕组和第一副边绕组;所述开关的一端连接至所述输入电源,以及所述开关的另一端连接至所述电感的输入端;所述电感的输出端连接至所述逆变电路的输入端;所述逆变电路的输出端连接至所述隔离变压器的所述第一原边绕组;所述隔离变压器的所述第一副边绕组连接至所述整流电路;所述开关控制器,与所述开关和所述逆变电路连接,设置为在所述电感的电流为负值时,导通所述开关。
  2. 根据权利要求1所述的隔离型开关电源,其中,所述开关控制器还设置为关闭所述逆变电路的至少一个开关,将所述电感的输出端连接至所述第一原边绕组,使所述电感进行放电。
  3. 根据权利要求1所述的隔离型开关电源,其中,所述开关控制器还设置为在所述电感电流放电至负值时,控制所述逆变电路的至少两个开关同时导通,将所述电感的输出端连接至所述输入电源的负极,使所述输入电源为所述电感充电。
  4. 根据权利要求1所述的隔离型开关电源,其中,所述整流电路包括至少两个开关,所述开关控制器还设置为导通所述整流电路的至少一个开关,将所述开关电源的输出端连接至所述第一副边绕组。
  5. 根据权利要求1所述的隔离型开关电源,其中,所述隔离变压器包括第二原边绕组,所述逆变电路包括的至少两个开关分别连接至所述第一原边绕组和所述第二原边绕组;所述电感的输出端连接至所述第一原边绕组和所述第二原边绕组。
  6. 根据权利要求1所述的隔离型开关电源,其中,所述隔离变压器包括第二副边绕组,所述整流电路包括的至少两个开关分别连接至所述第一副边绕组和所述第二副边绕组;所述开关电源的输出端连接至所述整流电路的开关及所述第一副边绕组和所述第二副边绕组。
  7. 根据权利要求1所述的隔离型开关电源,其中,包括:所述逆变电路包括全桥逆变电路;和/或,所述整流电路包括全桥整流电路。
  8. 根据权利要求1所述的隔离型开关电源,其中,所述逆变电路包括多个开关管之间的串联和/或并联组成的电路。
  9. 根据权利要求8所述的隔离型开关电源,其中,所述逆变电路包括:
    串联和/或并联的多个开关管,其中,所述原边绕组的一端连接至两个开关之间的第一连接处,所述原边绕组的另一端连接至两个开关之间的不同于所述第一连接处的第二连接处。
  10. 根据权利要求1所述的隔离型开关电源,其中,所述整流电路包括多个开关管之间的串 联和/或并联组成的电路。
  11. 根据权利要求10所述的隔离型开关电源,其中,所述整流电路包括:
    串联和/或并联的多个开关管,其中,所述副边绕组的一端连接至两个开关管之间的第一连接处,所述副边绕组的另一端连接至两个开关管之间的不同于所述第一连接处的第二连接处。
  12. 根据权利要求1至11中任一项所述的隔离型开关电源,其中,所述隔离型开关电源还包括:
    输入整流电路,连接至所述输入电源,设置为将交流电源整流为直流电压。
  13. 根据权利要求12所述的隔离型开关电源,其中,所述输入整流电路为二极管组成的整流桥电路。
  14. 根据权利要求1至11中任一项所述的隔离型开关电源,其中,所述开关包括Mosfet。
  15. 一种隔离型开关电源控制方法,应用于权利要求1至14中任一项所述的隔离型开关电源中,所述方法包括:
    获取指示信息;
    在所述指示信息指示所述隔离型开关电源中的电感的电流为负值时,导通所述隔离型开关电源中的开关。
PCT/CN2016/077642 2015-09-10 2016-03-29 隔离型开关电源和隔离型开关电源控制方法 WO2016177194A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510574964.1A CN106533178B (zh) 2015-09-10 2015-09-10 隔离型开关电源和隔离型开关电源控制方法
CN201510574964.1 2015-09-10

Publications (1)

Publication Number Publication Date
WO2016177194A1 true WO2016177194A1 (zh) 2016-11-10

Family

ID=57217493

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/077642 WO2016177194A1 (zh) 2015-09-10 2016-03-29 隔离型开关电源和隔离型开关电源控制方法

Country Status (2)

Country Link
CN (1) CN106533178B (zh)
WO (1) WO2016177194A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110492751A (zh) * 2019-08-07 2019-11-22 苏州汇川联合动力系统有限公司 直流降压电路、方法、设备以及计算机可读存储介质
CN113647004A (zh) * 2019-05-14 2021-11-12 Oppo广东移动通信有限公司 降压电路、电子设备和降压方法
CN115864795A (zh) * 2023-02-28 2023-03-28 昱能科技股份有限公司 一种一级逆变电路的控制方法、电子设备及可读存储介质
CN116365837A (zh) * 2022-12-16 2023-06-30 南京航空航天大学 一种隔离型四管Buck-Boost变换器控制方法和控制电路

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107623363A (zh) * 2017-09-13 2018-01-23 嘉善中正新能源科技有限公司 一种dc/dc转换器和车载充电机的合并电路
CN110492746A (zh) * 2019-08-23 2019-11-22 四川甘华电源科技有限公司 一种宽输入电压范围的两级变换器及其控制方法
CN110995035B (zh) * 2019-12-25 2021-10-15 中国科学院电工研究所 基于非隔离逆变模块的高频逆变或整流拓扑及切换方法
CN114094839B (zh) * 2022-01-11 2022-04-08 四川大学 一种电感储能型隔离式dc-dc变换器及其控制方法
CN117240096A (zh) * 2022-06-06 2023-12-15 华为技术有限公司 变换器及电子设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1014550A2 (en) * 1998-12-18 2000-06-28 FORFAS, (trading as PEI Technologies) An AC/DC converter
US6728118B1 (en) * 2002-11-13 2004-04-27 Innoveta Technologies, Inc. Highly efficient, tightly regulated DC-to-DC converter
CN101777770A (zh) * 2010-02-12 2010-07-14 浙江大学 降压型功率因数校正器的控制电路
CN101951156A (zh) * 2010-09-20 2011-01-19 魏其萃 电流调节型隔离式直流-直流变换器
CN203301368U (zh) * 2013-02-28 2013-11-20 上海新进半导体制造有限公司 降压式开关电源及其控制电路
CN204156727U (zh) * 2014-07-07 2015-02-11 中国电子科技集团公司第四十一研究所 一种高压电源功率变换电路

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104218813B (zh) * 2014-09-26 2017-08-15 浙江大学 电感电容复合利用的级联型谐振dc‑dc变换电路

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1014550A2 (en) * 1998-12-18 2000-06-28 FORFAS, (trading as PEI Technologies) An AC/DC converter
US6728118B1 (en) * 2002-11-13 2004-04-27 Innoveta Technologies, Inc. Highly efficient, tightly regulated DC-to-DC converter
CN101777770A (zh) * 2010-02-12 2010-07-14 浙江大学 降压型功率因数校正器的控制电路
CN101951156A (zh) * 2010-09-20 2011-01-19 魏其萃 电流调节型隔离式直流-直流变换器
CN203301368U (zh) * 2013-02-28 2013-11-20 上海新进半导体制造有限公司 降压式开关电源及其控制电路
CN204156727U (zh) * 2014-07-07 2015-02-11 中国电子科技集团公司第四十一研究所 一种高压电源功率变换电路

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113647004A (zh) * 2019-05-14 2021-11-12 Oppo广东移动通信有限公司 降压电路、电子设备和降压方法
CN110492751A (zh) * 2019-08-07 2019-11-22 苏州汇川联合动力系统有限公司 直流降压电路、方法、设备以及计算机可读存储介质
CN110492751B (zh) * 2019-08-07 2024-02-27 苏州汇川联合动力系统股份有限公司 直流降压电路、方法、设备以及计算机可读存储介质
CN116365837A (zh) * 2022-12-16 2023-06-30 南京航空航天大学 一种隔离型四管Buck-Boost变换器控制方法和控制电路
CN116365837B (zh) * 2022-12-16 2023-11-17 南京航空航天大学 一种隔离型四管Buck-Boost变换器控制方法和控制电路
CN115864795A (zh) * 2023-02-28 2023-03-28 昱能科技股份有限公司 一种一级逆变电路的控制方法、电子设备及可读存储介质
CN115864795B (zh) * 2023-02-28 2023-05-05 昱能科技股份有限公司 一种一级逆变电路的控制方法、电子设备及可读存储介质

Also Published As

Publication number Publication date
CN106533178B (zh) 2020-06-30
CN106533178A (zh) 2017-03-22

Similar Documents

Publication Publication Date Title
WO2016177194A1 (zh) 隔离型开关电源和隔离型开关电源控制方法
US10637363B2 (en) Converters with hold-up operation
WO2021103415A1 (zh) 一种基于倍压整流电路的高增益准谐振dc-dc变换器
Tang et al. Hybrid switched-inductor converters for high step-up conversion
US9660536B2 (en) Switching power supply device performs power transmission by using resonance phenomenon
CN106059313B (zh) 有源钳位的反激电路及其控制方法
US10284093B2 (en) Power conversion apparatus and method for configuring the same
WO2020248472A1 (zh) 不对称半桥变换器及控制方法
US9490694B2 (en) Hybrid resonant bridgeless AC-DC power factor correction converter
US8102678B2 (en) High power factor isolated buck-type power factor correction converter
EP2670037B1 (en) Switching power supply device
Dusmez et al. A fully integrated three-level isolated single-stage PFC converter
WO2023098218A1 (zh) 一种宽范围谐振式软开关双向直流变换器及其控制方法
CN103066854B (zh) 全桥拓扑电源、控制方法及通信设备
CN110034683B (zh) 一种能实现自然双向功率流的llc变换器调制方法
TWI513164B (zh) 返馳式主動箝位電源轉換器
KR20180004675A (ko) 보조 lc 공진 회로를 갖는 양방향 컨버터 및 그 구동 방법
US20110069513A1 (en) Current-Sharing Power Supply Apparatus With Bridge Rectifier Circuit
US20220278609A1 (en) Dual-capacitor resonant circuit for use with quasi-resonant zero-current-switching dc-dc converters
US9356527B2 (en) Multi-mode active clamping power converter
CN111884521B (zh) 单级式Boost全桥升压零电流开关直流变换器及其控制方法
WO2024051317A1 (zh) 一种三相交错宽范围高效隔离双向变换器
Montazerolghaem et al. Zero voltage switching high step-down buck converter with continuous output current
TWI823250B (zh) 具有隔離之雙向直流/直流能量轉換裝置
TWI741560B (zh) 交流電源供應系統

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16789188

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16789188

Country of ref document: EP

Kind code of ref document: A1