WO2016177095A1 - Matériau d'alliage d'aluminium et son procédé de préparation - Google Patents

Matériau d'alliage d'aluminium et son procédé de préparation Download PDF

Info

Publication number
WO2016177095A1
WO2016177095A1 PCT/CN2016/076070 CN2016076070W WO2016177095A1 WO 2016177095 A1 WO2016177095 A1 WO 2016177095A1 CN 2016076070 W CN2016076070 W CN 2016076070W WO 2016177095 A1 WO2016177095 A1 WO 2016177095A1
Authority
WO
WIPO (PCT)
Prior art keywords
alloy material
aluminum alloy
zinc
nickel
iron
Prior art date
Application number
PCT/CN2016/076070
Other languages
English (en)
Chinese (zh)
Inventor
刘金
杨洪亮
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2016177095A1 publication Critical patent/WO2016177095A1/fr

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/03Making non-ferrous alloys by melting using master alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent

Definitions

  • the application relates to, but is not limited to, the field of metal materials, and in particular to an aluminum alloy material and a preparation method thereof.
  • aluminum alloy material Because aluminum alloy material has the characteristics of good processing performance, light specific gravity, beautiful surface, excellent corrosion resistance, high production efficiency and low cost, it is the preferred material for mass production. Therefore, aluminum alloy materials have obtained a large number of applications in many industries such as automobiles, electronics, communications, and aerospace. Although there are many types of aluminum alloys, there are fewer types of aluminum alloys used for die casting, especially those with high thermal conductivity. At present, the thermal conductivity of the current die-cast aluminum alloy such as ADC12 in the as-cast state is about (96-110) W / (m ⁇ K), and AlSi12 is about 121 W / (m ⁇ K) in the as-cast state.
  • ADC1 belongs to The die-casting aluminum alloy with castability deviation has a thermal conductivity of about 142 W/(m ⁇ K). It is already a material with high thermal conductivity in die-cast aluminum alloy, but it is pure relative to the thermal conductivity of 230 W/(m ⁇ K). There is still a big gap between aluminum and deformed aluminum alloy 6063 with a thermal conductivity of up to 192 W/(m ⁇ K). Moreover, most of the die-casting parts have many defects such as internal pores, and heat treatment cannot solve the problem.
  • NIKKEI MC ALUMINIUM has developed Al-2Ni-Fe die-casting aluminum alloys with a thermal conductivity of 190 W/(m ⁇ K in the as-cast state. ), but the casting performance is more than 35% lower than ADC12, and its hardness is low and its strength is low.
  • the embodiment of the invention provides an aluminum alloy material which has good casting performance and mechanical properties and high thermal conductivity.
  • Embodiments of the present invention provide an aluminum alloy material.
  • An aluminum alloy material includes silicon, iron, zinc, nickel, aluminum and impurities, and the mass percentages of silicon, iron, zinc and nickel are respectively 2-4% of silicon, 0.01-0.8% of iron, 0.01-3% of zinc and 0.01 of nickel. ⁇ 3.5%, the impurity mass percentage does not exceed 0.3%, and the rest is aluminum;
  • the aluminum alloy material further comprises at least one of cerium, zirconium and vanadium;
  • the mass percentage of cerium, zirconium and vanadium is 0.001 to 0.2%, zirconium 0.001 to 0.2%, and vanadium 0.001 to 0.2%.
  • an embodiment of the present invention further provides a method for preparing the above aluminum alloy material, comprising the following steps: alloy melting and casting molding;
  • At least one of Al-Sr, Al-V, and Al-Zr intermediate alloys is added to the alloy when it is melted.
  • the utility model has the advantages that the aluminum alloy provided by the technical solution of the present application has good casting performance and can be used for a thin-walled shell with a complicated die-casting structure, and the heat-transducing rate of the die-casting part produced by the method is higher than 196 W/(m ⁇ K under normal temperature conditions. ), the tensile strength is not less than 180MPa, the thermal conductivity is excellent, and the mechanical properties are more prominent.
  • FIG. 1 Three aluminum alloy forming ratios of the embodiments of the present invention are provided in FIG. 1
  • the composition of the aluminum alloy material in the first embodiment is 2.09 wt% silicon, 0.06 wt% iron, 2.96 wt% nickel, 1.53 wt% zinc, 0.05 wt% bismuth, the balance being aluminum and impurities, and the impurity mass percentage does not exceed 0.3%.
  • Step 1 According to 2.09wt% silicon, 0.06wt% iron, 2.96wt% nickel, 1.53wt% zinc, 0.05wt% bismuth, the balance is aluminum, weigh the ingredients according to the total weight of 99.5Kg, and prepare 0.5 Kg of Al-10Sr master alloy.
  • Step 2 Preheat the crucible. When the temperature reaches 300 °C or higher, add aluminum, zinc, silicon, and iron to melt. When the temperature rises above 780 °C, add nickel and niobium, and keep the temperature within 680-850 °C. After the feed was melted, the Al-10Sr master alloy was added, and after it was completely melted, the solution temperature was adjusted to 700 ⁇ 10 ° C, and refined with a general-purpose aluminum alloy refining agent for 10 min. After refining, remove the solvent and scum from the liquid surface. Then let stand for 5 min to make the inclusions fully float or sink, and slag.
  • Step 3 After adjusting the solution to 680-720 ° C, the aluminum alloy melt is poured into a high-pressure die-casting machine for die-casting production.
  • the composition of the aluminum alloy material in the second embodiment is 3.08 wt% silicon, 0.07 wt% iron, 2.58 wt% nickel, 1.71 wt% zinc, 0.05 wt% zirconium, and the balance is aluminum and impurities, and the impurity mass percentage does not exceed 0.3%.
  • Step 1 According to 3.08wt% silicon, 0.07wt% iron, 2.58wt% nickel, 1.71wt% zinc, 0.05wt% zirconium, the balance is aluminum and impurities, the impurity mass percentage does not exceed 0.3%, according to the total Weighing 99Kg of ingredients, while preparing 1Kg of Al-5Zr master alloy.
  • Step 2 Preheat the crucible. When the temperature reaches 300 °C or higher, add aluminum, zinc, silicon and iron to melt. When the temperature rises above 780 °C, add nickel and zirconium and keep the temperature within 680-850 °C. After the feed was melted, the Al-5Zr master alloy was added, and after the whole was melted, the temperature of the solution was adjusted to 700 ⁇ 10 ° C, and argon gas was refined by GBF (Gas Bubbling Filtration) for 8 min. After refining, remove the solvent and scum from the liquid surface. Then let stand for 10 min to make the inclusions fully float or sink, and slag.
  • GBF Gas Bubbling Filtration
  • Step 3 After adjusting the solution to 680-720 ° C, the aluminum alloy melt is subjected to semi-solid pulping treatment and then poured into a die-casting machine for die-casting production.
  • composition of the aluminum alloy material in the third embodiment is 3.79 wt% silicon, 0.08 wt% iron, 1.21 wt% nickel, 2.50 wt% zinc, 0.11 wt% vanadium, the balance being aluminum and impurities, wherein the impurity quality The percentage does not exceed 0.3%.
  • Step 1 According to 3.79 wt% silicon, 0.08 wt% iron, 1.21 wt% nickel, 2.50 wt% zinc, 0.11 wt% vanadium, the balance being aluminum and impurities, wherein the impurity mass percentage does not exceed 0.3%, The ingredients were weighed at a total weight of 100 Kg while preparing a 0.2 Kg Al-55V master alloy.
  • Step 2 preheating ⁇ , when the temperature reaches 300 ° C or more, aluminum, zinc, silicon, iron, vanadium, Al-55V intermediate alloy is sequentially added for melting. When the temperature rises above 780 ° C, nickel, manganese and copper are added. After all of it was melted, the temperature of the solution was adjusted to 700 ⁇ 10 ° C, and nitrogen gas refining was carried out for 12 min by GBF (bubble filtration). After refining, remove the solvent and scum from the liquid surface. Then, it was allowed to stand for 12 minutes to make the inclusions fully float or sink, and slag.
  • GBF bubble filtration
  • Step 3 After adjusting the solution to 680-700 ° C, the aluminum alloy melt is poured into a high-pressure die-casting machine for die-casting production.
  • Figure 2 is a graph showing the performance parameters of the aluminum alloy materials prepared in the above three examples.
  • the performance parameters of the aluminum alloy material in the first embodiment are tensile strength of 175.7 MPa, elongation after fracture of 4.2%, and thermal conductivity of 209.3 W/(m ⁇ K).
  • the performance parameters of the aluminum alloy material in the second embodiment are tensile strength 193.9 MPa, elongation after fracture 3.9%, and thermal conductivity 206.5 W/(m ⁇ K).
  • the performance parameters of the aluminum alloy material in the third embodiment are tensile strength 203.2 MPa, elongation after fracture 3.8%, and thermal conductivity 196.8 W/(m ⁇ K).
  • the embodiment of the invention provides an aluminum alloy material and a preparation method thereof.
  • the aluminum alloy material has good casting performance and can be used for a thin-walled shell with a complicated die-casting structure, and the heat-transfer rate of the die-casting part produced under normal temperature conditions It is more than 196W/(m ⁇ K), the tensile strength is not less than 180MPa, the thermal conductivity is excellent, and the mechanical properties are more prominent.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Continuous Casting (AREA)

Abstract

L'invention concerne un matériau d'alliage d'aluminium et son procédé de préparation. Le matériau d'alliage d'aluminium comprend du silicium, du fer, du zinc, du nickel, de l'aluminium et des impuretés, les pourcentages massiques de silicium, de fer, de zinc et de nickel étant respectivement de 2 % à 4 % de silicium, 0,01 % à 0,8 % de fer, 0,01 % à 3 % de zinc et 0,01 % à 3,5 % de nickel, le pourcentage massique des impuretés n'étant pas supérieur à 0,3 % et le reste étant constitué d'aluminium. Le procédé comprend des étapes de fusion, de coulée et de moulage de l'alliage, un ou plusieurs alliages intermédiaires, choisis parmi Al-Sr, Al-V et Al-Zr, étant ajouté pendant l'étape de fusion de l'alliage. Le matériau d'alliage d'aluminium et son procédé de préparation permettent de résoudre les problèmes de faible conductivité thermique et faibles propriétés mécaniques de matériaux d'alliage d'aluminium connus dans l'état de la technique.
PCT/CN2016/076070 2015-10-10 2016-03-10 Matériau d'alliage d'aluminium et son procédé de préparation WO2016177095A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510655296.5A CN106566959B (zh) 2015-10-10 2015-10-10 一种铝合金材料及其制备方法
CN201510655296.5 2015-10-10

Publications (1)

Publication Number Publication Date
WO2016177095A1 true WO2016177095A1 (fr) 2016-11-10

Family

ID=57218461

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/076070 WO2016177095A1 (fr) 2015-10-10 2016-03-10 Matériau d'alliage d'aluminium et son procédé de préparation

Country Status (2)

Country Link
CN (1) CN106566959B (fr)
WO (1) WO2016177095A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108050853A (zh) * 2017-12-14 2018-05-18 沈阳市东盛金属制品有限公司 一种铸造201z5铝合金的方法和熔炼炉

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108048701A (zh) * 2018-01-10 2018-05-18 深圳市金立通信设备有限公司 一种铝合金材料、手机壳及其制作方法
CN112176234B (zh) * 2019-07-05 2022-03-18 比亚迪股份有限公司 铝合金及其制备方法、铝合金结构件和电子设备
CN113355565B (zh) * 2021-06-02 2022-04-15 山东宏和轻量化科技有限公司 一种适于挤压铸造的可耐高温焊接的铝合金及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06228692A (ja) * 1992-10-15 1994-08-16 Furukawa Alum Co Ltd アルミニウム合金フィン材およびアルミニウム合金製熱交換器の製造方法
JPH09184037A (ja) * 1995-12-27 1997-07-15 Fuji Corp:Kk ブレーキディスク用アルミニウム合金複合材
CN103540811A (zh) * 2013-10-17 2014-01-29 常熟市良益金属材料有限公司 一种铝合金

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59189055A (ja) * 1983-04-12 1984-10-26 Nissan Motor Co Ltd 気孔巣の少ないダイカスト品の製造方法
IN2014MN01031A (fr) * 2011-12-02 2015-05-01 Uacj Corp
CN102703783A (zh) * 2012-05-30 2012-10-03 江门市长利光电科技有限公司 铸造用高热传导铝合金
CN104233007A (zh) * 2014-08-27 2014-12-24 邹平齐星工业铝材有限公司 高导热率热传输翅片及其制造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06228692A (ja) * 1992-10-15 1994-08-16 Furukawa Alum Co Ltd アルミニウム合金フィン材およびアルミニウム合金製熱交換器の製造方法
JPH09184037A (ja) * 1995-12-27 1997-07-15 Fuji Corp:Kk ブレーキディスク用アルミニウム合金複合材
CN103540811A (zh) * 2013-10-17 2014-01-29 常熟市良益金属材料有限公司 一种铝合金

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108050853A (zh) * 2017-12-14 2018-05-18 沈阳市东盛金属制品有限公司 一种铸造201z5铝合金的方法和熔炼炉

Also Published As

Publication number Publication date
CN106566959A (zh) 2017-04-19
CN106566959B (zh) 2020-06-09

Similar Documents

Publication Publication Date Title
WO2017133415A1 (fr) Coulée sous pression d'alliage d'aluminium à conductivité thermique élevée et procédé pour le préparer
WO2019034837A1 (fr) Procédé de formation d'un alliage d'aluminium coulé
WO2016015488A1 (fr) Alliage d'aluminium, son procédé de préparation, et application associée
CN111411247B (zh) 一种再生变形铝合金熔体的复合处理方法
WO2016177095A1 (fr) Matériau d'alliage d'aluminium et son procédé de préparation
CN104959393A (zh) 一种高质量航空叶片用铝合金热挤压棒材的制造方法
CN111101034A (zh) 一种低稀土高性能的稀土铝合金及其制备方法
KR101545970B1 (ko) 고강도 및 고열전도도를 동시에 나타내는 다이캐스팅용 Al-Zn 합금
US20200299810A1 (en) High-strength a356 alloy and preparation method thereof
CN103290265A (zh) 一种高流动性的压铸锌合金及制备方法
WO2016074423A1 (fr) Alliage de magnésium, procédé de préparation et mode d'utilisation associés
WO2021185209A1 (fr) Alliage de magnésium ternaire de haute résistance et de haute résistance à la corrosion et procédé de préparation associé
CN101545064A (zh) 一种薄壁建筑型材用的变形铝合金
CN102002617B (zh) 汽车用铸造铝合金及其制备方法
CN106498243A (zh) 一种压铸铝合金散热器专用铝合金材料及其制备方法
WO2015135253A1 (fr) Alliage d'al-si et son procédé de fabrication
CN105779838A (zh) 一种高导热压铸镁合金及其制备工艺
CN102367525A (zh) 一种铸造铝合金的制备方法
CN107447138B (zh) 一种抗腐蚀铝合金型材及其挤压方法
EP4234737A1 (fr) Alliage d'aluminium et pièce de composant préparée à partir de celui-ci
CN103993213A (zh) 一种双特殊结构相复合增强Mg-Zn-Y合金的制备方法
CN101649405A (zh) 一种Al-Mg-Mn-Zr-Sr合金及制备方法
CN104388756A (zh) 一种镍基合金及其制备方法
JP6590814B2 (ja) 高性能耐クリープ性マグネシウム合金
CN103556006A (zh) 铝合金及其制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16789089

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16789089

Country of ref document: EP

Kind code of ref document: A1