WO2016176574A1 - Wide-field radar-based gesture recognition - Google Patents

Wide-field radar-based gesture recognition Download PDF

Info

Publication number
WO2016176574A1
WO2016176574A1 PCT/US2016/030115 US2016030115W WO2016176574A1 WO 2016176574 A1 WO2016176574 A1 WO 2016176574A1 US 2016030115 W US2016030115 W US 2016030115W WO 2016176574 A1 WO2016176574 A1 WO 2016176574A1
Authority
WO
WIPO (PCT)
Prior art keywords
gesture
radar
signal
field
reflection
Prior art date
Application number
PCT/US2016/030115
Other languages
French (fr)
Inventor
Ivan Poupyrev
Original Assignee
Google Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US201562155357P priority Critical
Priority to US62/155,357 priority
Application filed by Google Inc. filed Critical Google Inc.
Publication of WO2016176574A1 publication Critical patent/WO2016176574A1/en

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/017Gesture based interaction, e.g. based on a set of recognized hand gestures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/41Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
    • G01S7/415Identification of targets based on measurements of movement associated with the target
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/011Arrangements for interaction with the human body, e.g. for user immersion in virtual reality
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/0304Detection arrangements using opto-electronic means
    • G06F3/0325Detection arrangements using opto-electronic means using a plurality of light emitters or reflectors or a plurality of detectors forming a reference frame from which to derive the orientation of the object, e.g. by triangulation or on the basis of reference deformation in the picked up image
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/00335Recognising movements or behaviour, e.g. recognition of gestures, dynamic facial expressions; Lip-reading
    • G06K9/00355Recognition of hand or arm movements, e.g. recognition of deaf sign language

Abstract

This document describes techniques using, and devices embodying, wide-field radar-based gesture recognition. These techniques and devices can enable a great breadth of gestures and uses for those gestures, such as gestures to use, control, and interact with computing and non-computing devices, from software applications to refrigerators.

Description

WIDE-FIELD RADAR-BASED GESTURE RECOGNITION

Inventor

Ivan Poupyrev

RELATED APPLICATION

[oooi] This application claims priority to U. S . Provisional Patent Application Serial No. 62/155,357 filed April 30, 2015, the disclosure of which is incorporated by reference herein in its entirety.

BACKGROUND

[0002] Small-screen computing devices continue to proliferate, such as smartphones and computing bracelets, rings, and watches. Like many computing devices, these small- screen devices often use virtual keyboards to interact with users. On these small screens, however, many people find interacting through virtual keyboards to be difficult, as they often result in slow and inaccurate inputs. This frustrates users and limits the applicability of small-screen computing devices. This problem has been addressed in part through screen-based gesture recognition techniques. These screen-based gestures, however, still struggle from substantial usability issues due to the size of these screens. [0003] To address this problem, optical finger- and hand-tracking techniques have been developed, which enable gesture tracking not made on the screen. These optical techniques, however, have been large, costly, or inaccurate thereby limiting their usefulness in addressing usability issues with small-screen computing devices.

[0004] One other manner has recently been developed where gestures are tracked using radar. Current radar techniques, however, often require a large antenna array and suffer from numerous practical difficulties. These large antenna arrays use thin-beam scanning techniques to locate a large number of points in space, including points of a human action (e.g. , fingers, arm, or hand). These techniques track these points of a human action and the other points in space and then determine which points are associated with the human action and which are not. With these action points determined, the techniques track their movement and, based on these movements of the points of the action, reconstruct the action throughout the movement. With this reconstructed movement, the techniques then determine a gesture associated with those movements. This permits some rudimentary gesture recognition but is limited by the large antenna array and the computational difficulties and resource requirements inherent in using thin-beam scanning techniques.

SUMMARY

[0005] This document describes techniques and devices for wide-field radar-based gesture recognition. These techniques and devices can accurately recognize gestures that are made in three dimensions, such as non-screen or "in-the-air" gestures. These in-the-air gestures can be made from varying distances, such as from a person sitting on a couch to control a television, a person standing in a kitchen to control an oven or refrigerator, or centimeters from a computing watch's small-screen display.

[0006] This summary is provided to introduce simplified concepts concerning wide- field radar-based gesture recognition, which is further described below in the Detailed Description. This summary is not intended to identify essential features of the claimed subject matter, nor is it intended for use in determining the scope of the claimed subject matter.

BRIEF DESCRIPTION OF THE DRAWINGS

[0007] Embodiments of techniques and devices for wide-field radar-based gesture recognition are described with reference to the following drawings. The same numbers are used throughout the drawings to reference like features and components:

Fig. 1 illustrates an example environment in which wide-field radar-based gesture recognition can be implemented.

Fig. 2 illustrates the wide-field radar-based gesture-recognition system and computing device of Fig. 1 in detail.

Fig. 3 illustrates an example method for determining signal elements for a gesture.

Fig. 4 illustrates gestures made and signal elements determined based on those gestures. Fig. 5 illustrates an example method enabling wide-field radar-based gesture recognition using the signal elements determined at Fig. 3.

Fig. 6 illustrates example type-specific and type-independent gesture managers, including example type-specific hardware abstraction modules.

Fig. 7 illustrates an example of gestures made and signal elements determined using type-specific hardware abstraction modules.

Fig. 8 illustrates an example computing system embodying, or in which techniques may be implemented that enable use of, wide-field radar-based gesture recognition.

DETAILED DESCRIPTION

Overview

[0008] This document describes techniques and devices enabling wide-field radar- based gesture recognition. These techniques and devices enable a great breadth of gestures and uses for those gestures, such as gestures to use, control, and interact with various devices, from smartphones to refrigerators. The techniques and devices are capable of providing a wide radar field that can sense gestures using relatively small radar systems, even those that can be included within small devices. Furthermore, these techniques need not track and reconstruct points of a human action to determine gestures, which has various advantages described below.

[0009] This document now turns to an example environment, after which example wide-field radar-based gesture-recognition systems and radar fields, example methods, example techniques and devices for development of hardware abstraction modules, and an example computing system are described.

Example Environment

[0010] Fig. 1 is an illustration of example environment 100 in which techniques using, and an apparatus including, a wide-field radar-based gesture-recognition system 102 may be embodied. Environment 100 includes two example devices and techniques for using wide-field radar-based gesture-recognition system 102, in the first, wide-field radar- based gesture-recognition system 102-1 provides a radar field of intermediate size to interact with one of computing devices 104, desktop computer 104-1, and in the second, wide-field radar-based gesture-recognition system 102-2 provides a radar field of small size to interact with computing watch 104-2.

[ooii] Desktop computer 104-1 includes, or is associated with, wide-field radar- based gesture-recognition system 102-1. These devices work together to improve user interaction with desktop computer 104-1. Assume, for example, that desktop computer 104-1 includes a touch screen 108 through which display and user interaction can be performed. This touch screen 108 can present some challenges to users, such as needing a person to sit in a particular orientation, such as upright and forward, to be able to touch the screen. Further, the size for selecting controls through touch screen 108 can make interaction difficult and time-consuming for some users. Consider, however, wide-field radar-based gesture-recognition system 102-1, which provides radar field 106-1 enabling a user's hands to interact with desktop computer 104-1, such as with small or large, simple or complex gestures, including those with one or two hands, and in three dimensions. As is readily apparent, a large volume through which a user may make selections can be substantially easier and provide a better experience over a flat surface, such as that of touch screen 108.

[0012] Similarly, consider wide-field radar-based gesture-recognition system 102- 2, which provides radar field 106-2, which enables a user to interact with computing watch 104-2 from a near distance, enabling finger, hand, and arm gestures. By so doing, user selections can be made simpler and easier than a small screen of a small computing device, such as that of computing watch 104-2.

[0013] Wide-field radar-based gesture-recognition systems 102 can interact with applications or an operating system of computing devices 104, or remotely through a communication network by transmitting input responsive to recognizing gestures. Gestures can be mapped to various applications and devices, thereby enabling control of many devices and applications. Many complex and unique gestures can be recognized by wide-field radar-based gesture-recognition systems 102, thereby permitting precise and/or single-gesture control, even for multiple applications. Wide-field radar-based gesture- recognition systems 102, whether integrated with a computing device, having computing capabilities, or having few computing abilities, can each be used to interact with various devices and applications.

[0014] In more detail, consider Fig. 2, which illustrates wide-field radar-based gesture-recognition system 102 as part of one of computing device 104. Computing device 104 is illustrated with various non-limiting example devices, the noted desktop computer 104-1, computing watch 104-2, as well as smartphone 104-3, tablet 104-4, computing ring 104-5, computing spectacles 104-6, and microwave 104-7, though other devices may also be used, such as home automation and control systems, entertainment systems, audio systems, other home appliances, security systems, netbooks, and e-readers. Note that computing device 104 can be wearable, non- wearable but mobile, or relatively immobile (e.g., desktops and appliances).

[0015] Note also that wide-field radar-based gesture-recognition system 102 can be used with, or embedded within, many different computing devices or peripherals, such as in walls of a home to control home appliances and systems (e.g., automation control panel), in automobiles to control internal functions (e.g., volume, cruise control, or even driving of the car), or as an attachment to a laptop computer to control computing applications on the laptop.

[0016] Further, radar fields 106 can be invisible and penetrate some materials, such as textiles, thereby further expanding how the wide-field radar-based gesture-recognition system 102 can be used and embodied. While examples shown herein generally show one wide-field radar-based gesture-recognition system 102 per device, multiples can be used, thereby increasing a number and complexity of gestures, as well as accuracy and robust recognition.

[0017] Computing device 104 includes one or more computer processors 202 and computer-readable media 204, which includes memory media and storage media. Applications and/or an operating system (not shown) embodied as computer-readable instructions on computer-readable media 204 can be executed by processors 202 to provide some of the functionalities described herein. Computer-readable media 204 also includes gesture manager 206 (described below).

[0018] Computing device 104 may also include network interfaces 208 for communicating data over wired, wireless, or optical networks and display 210. By way of example and not limitation, network interface 208 may communicate data over a local- area-network (LAN), a wireless local-area-network (WLAN), a personal-area-network (PAN), a wide-area-network (WAN), an intranet, the Internet, a peer-to-peer network, point-to-point network, a mesh network, and the like.

[0019] Wide-field radar-based gesture-recognition system 102, as noted above, is configured to sense gestures. To enable this, wide-field radar-based gesture-recognition system 102 includes a radar-emitting element 212 and an antenna element 214.

[0020] Generally, radar-emitting element 212 is configured to provide wide-field radar in contrast to narrow-beam-scanning radar fields. In one embodiment, a large contiguous field is used, rather than a beam-scanning field. The reflections in that field can then be received by one or multiple antennas. This reflection signal includes many signals and signal elements, and therefore may be referred to as a reflection signal or a set of reflection signals, but in both cases multiple signal elements are included. In one case, a large radar field and large-field reflections are received at one receiver but the signal received is processed by digitally breaking up the received reflections. The broken-up signals are then analyzed separately. This can be referred to as beam stealing though no beams are actually formed in the large radar field. Other digital processing may be used, such as phase arrays in which fields of different phases are admitted, each for analysis of the reflection signals.

[0021] In another embodiment multiple fields are used but from different directions or having other differences, such as different frequencies or phases, and which can be received by one or multiple dedicated receivers (e.g., antenna elements 214).

[0022] More specifically, these fields include numerous kinds of radar fields, such as those from continuous wave and pulsed radar systems, and may exclude phased antenna arrays. Pulsed radar systems are often of shorter transmit time and higher peak power, and include both impulse and chirped radar systems. Pulsed radar systems have a range based on time of flight and a velocity based on frequency shift. Chirped radar systems have a range based on time of flight (pulse compressed) and a velocity based on frequency shift.

[0023] Continuous wave radar systems are often of relatively longer transmit time and lower peak power. These continuous wave radar systems include single tone, linear frequency modulated (FM), and stepped FM types. Single tone radar systems have a very limited range based on the phase and a velocity based on frequency shift. Linear FM radar systems have a range based on frequency shift at a velocity also based on frequency shift. Stepped FM radar systems have a range based on phase or time of flight and a velocity based on frequency shift. While these five types of radar systems are noted herein, others may also be used, such as sinusoidal modulation scheme radar systems.

[0024] Radar fields provided by these types of radar systems vary from a small size, such as zero or one or so millimeters to 1.5 meters, or an intermediate size, such as about one to about 30 meters. In the intermediate size, antenna element 214 is configured to receive and process reflections of the radar field to provide large-body gestures based on reflections from human tissue caused by body, arm, or leg movements, though smaller and more-precise gestures can be sensed as well. Example intermediate-sized radar fields include those in which a user makes gestures to control a television from a couch, change a song or volume from a stereo across a room, turn off an oven or oven timer (a near field would also be useful), turn lights on or off in a room, and so forth.

[0025] Radar-emitting element 212 can instead be configured to provide a wide radar field from little if any distance from a computing device or its display, including radar fields that are a full contiguous field in contrast to beam-scanning radar field. Examples are illustrated in Fig. 1 with radar fields 106.

[0026] Radar-emitting element 212 can be configured to provide the wide-field radars of the various types set forth above. Antenna element 214 is configured to receive reflections of, or sense interactions in, the radar field. In some cases, reflections include those from human tissue that is within the radar field, such as a hand or arm movement. Antenna element 214 can include one or many antennas or sensors, such as an array of radiation sensors, the number in the array based on a desired resolution and whether the field is a surface or volume.

[0027] The field provided by radar-emitting element 212 can be a three-dimensional (3D) volume (e.g., hemisphere, cube, volumetric fan, cone, or cylinder) to sense in-the-air gestures, though a surface field (e.g., projecting on a surface of a person) can instead be used. Antenna element 214 is configured, in some cases, to receive reflections from interactions in the radar field of two or more targets (e.g., fingers, arms, or persons) and provide a composite signal.

[0028] Example radar fields 106 are illustrated in Fig . 1 in which a user may perform complex or simple gestures with his or her arm, body, finger, fingers, hand, or hands (or a device like a stylus) that interrupts the radar field. Example gestures include the many gestures usable with current touch- sensitive displays, such as swipes, two-finger pinch, spread, rotate, tap, and so forth. Other gestures are enabled that are complex, or simple but three-dimensional, examples include the many sign-language gestures, e.g., those of American Sign Language (ASL) and other sign languages worldwide. A few examples of these are: an up-and-down fist, which in ASL means "Yes"; an open index and middle finger moving to connect to an open thumb, which means "No"; a flat hand moving up a step, which means "Advance"; a flat and angled hand moving up and down; which means "Afternoon"; clenched fingers and open thumb moving to open fingers and an open thumb, which means "taxicab"; an index finger moving up in a roughly vertical direction, which means "up"; and so forth. These are but a few of many gestures that can be sensed as well as be mapped to particular devices or applications, such as the advance gesture to skip to another song on a web-based radio application, a next song on a compact disk playing on a stereo, or a next page or image in a file or album on a computer display or digital picture frame.

[0029] Returning to Fig. 2, wide-field radar-based gesture-recognition system 102 also includes a transmitting device configured to transmit a reflection signal to a remote device, though this need not be used when wide-field radar-based gesture-recognition system 102 is integrated with computing device 104. When included, the reflection signal can be provided in a format usable by a remote computing device sufficient for the remote computing device to determine the gesture in those cases where the gesture is not determined by wide-field radar-based gesture-recognition system 102 or computing device 104.

[0030] In more detail, radar-emitting element 212 can be configured to emit microwave radiation in a 1 GHz to 300 GHz range, a 3 GHz to 100 GHz range, and narrower bands, such as 57 GHz to 63 GHz, to provide the radar field. This range affects antenna element 214's ability to receive interactions, such as to follow locations of two or more targets to a resolution of about two to about 25 millimeters. Radar-emitting element 212 can be configured, along with other entities of wide-field radar-based gesture- recognition system 102, to have a relatively fast update rate, which can aid in resolution of the interactions.

[0031] By selecting particular frequencies, wide-field radar-based gesture- recognition system 102 can operate to substantially penetrate clothing while not substantially penetrating human tissue. Thus, a person wearing gloves or a long sleeve shirt that could interfere with sensing gestures with some conventional techniques, can still be sensed with wide-field radar-based gesture-recognition system 102.

[0032] Wide-field radar-based gesture-recognition system 102 may also include one or more system processors 218 and system media 220 (e.g., one or more computer-readable storage media). System media 220 includes system manager 222 and hardware abstraction module 224. System manager 222 can perform various operations, including determining a gesture based on the reflection signal, mapping the determined gesture to a pre- configured control gesture associated with a control input for an application associated with touch screen 108, and causing transceiver 216 to transmit the control input to the remote device effective to enable control of the application (if remote). This is but one of the ways in which the above-mentioned control through wide-field radar-based gesture-recognition system 102 can be enabled. Operations of system manager 222 are provided in greater detail as part of methods 300 and 500 below. Hardware abstraction module 224 is part of an alternative embodiment described in Figs. 6 and 7 below.

[0033] These and other capabilities and configurations, as well as ways in which entities of Figs. 1 and 2 act and interact, are set forth in greater detail below. These entities may be further divided, combined, and so on. The environment 100 of Fig. 1 and the detailed illustrations of Fig. 2 illustrate some of many possible environments and devices capable of employing the described techniques.

Example Methods

[0034] Figs. 3 and 5 depict methods enabling wide-field radar-based gesture recognition. Method 300 determines signal elements that can be used to enable determination of a gesture from a later-received reflection signal having the signal elements. Method 500 determines a gesture from reflection signals based on signal elements associated with the gesture. These methods are shown as sets of blocks that specify operations performed but are not necessarily limited to the order or combinations shown for performing the operations by the respective blocks. In portions of the following discussion reference may be made to environment 100 of Fig. 1 and as detailed in Fig. 2, reference to which is made for example only. The techniques are not limited to performance by one entity or multiple entities operating on one device.

[0035] In more detail, method 300 builds, through many iterations, a database of signal elements associated with particular gestures. In effect, method 300 learns from reflected signals that a particular gesture is being performed. Method 300 may do so for each of the various different types of radar systems, though in an alternative embodiment set forth following methods 300 and 500, hardware abstraction layers for each of those radar systems can be developed to permit a hardware-independent gesture manager.

[0036] At 302 a radar field is provided. As shown in Fig. 2, system manager 222 may cause radar-emitting element 212 of wide-field radar-based gesture-recognition system 102 to provide (e.g., project or emit) one of the described radar fields noted above.

[0037] At 304, a first set of reflection signals caused by a first interaction of a first human action performing a gesture within the radar field is received. This set of reflection signals represents a first time period during which the first human action interacts with the radar field. By way of a first example, assume that a test person performs a particular gesture in the radar field. This test person can continue to perform this particular gesture or another person can perform the particular gesture, e.g. at different angles, with different hand or finger sizes, in different positions, in different orientations, and with different clothes, background, and other aspects that may affect the reflected signal. Thus, the reflection signals include signal elements other than those caused by the gesture being performed. This can intentionally be part of the learning process by providing, in some cases, one object and motion that is relatively consistent, with other objects and motions that are inconsistent. This may aid in the learning process described below.

[0038] At 306, a second set of reflection signals caused by a second interaction of a second human action performing the gesture within the radar field is received. This second set of reflection signals represents a second time period during which the first or second human action interacts with a radar field. Continuing the ongoing example, method 300 receives a second set of reflection signals, though as shown in the dashed arrow in Fig. 3, the techniques may perform operations with many different persons, iterations of the same gesture, and so forth to better understand the signal elements associated with gestures being made.

[0039] At 308, the first and second sets of reflection signals are analyzed to determine a signal element common to both sets of the reflection signals. In more detail, analyzing the multiple reflection signals determines the signal element common to both of the reflection signals. This can be performed by breaking the reflection signals into many signal elements and determining which of the signal elements correspond to both the first interaction and the second interaction for the same gesture. This is somewhat simplified, as iterations of many gestures being performed may be needed to accurately determine the signal elements that correspond to the gesture, such as 50, 100, or even hundreds of iterations.

[0040] As part of this, numerous signal elements are likely to be associated with objects and movements, or even noise, having nothing to do with the gesture itself. These numerous signal elements, to some extent, can be ignored if no correlation with the gesture is found.

[0041] In some cases, this analysis is not based on tracking points or elements of a human action, such as determining particular points and orientation of those points, reconstructing the action, then determining how the body part moves or changes in order to determine the gesture being performed.

[0042] At 310, the signal element is associated with the gesture effective to enable a later received reflection signal caused by another interaction by a different (or same) human action to be associated with the gesture. At 312, these determined signal elements are stored in association with the gesture performed.

[0043] By way of one illustration, consider Fig. 4, which shows three different gestures being performed, one at a time with multiple iterations, to determine the signal elements associated with the gesture. The gestures illustrated include a hand wave gesture 402, a fist shake gesture 404 (an American Sign Language (ASL) gesture for "Yes"), and a pinch finger gesture 406.

[0044] In this first case, hand wave gesture 402 is performed multiple times, with multiple reflection signals 408 being received by antenna element 214. Antenna element 214 passes the reflection signals to gesture manager 206, which performs the analysis described for operation 308. In the second case, fist shake gesture 404 is performed multiple times, with multiple reflection signals 410 being received by antenna element 214. Antenna element 214 then passes the reflection signals to gesture manager 206, which determines signal elements for fist shake gesture 404. Likewise, in the third case, pinch finger gesture 406 is performed multiple times within the radar field, at which point reflection signals are received by antenna element 214, which passes these to gesture manager 206. Gesture manager 206 then determines signal elements for the pinch finger gesture 406. Each of these recorded signal elements can later be used to determine gestures performed in real-life rather than as part of determining gestures themselves, though a feedback loop enabling continued improvement of the signal elements is also contemplated based on accuracies or inaccuracies of gesture recognition performed by users in their normal course of life.

[0045] Optionally, at 314, signal elements determined for the gesture can be refined based on other signal elements associated with other gestures. Consider, for example, a case where method 300 is performed for each of the three gestures shown in Fig. 4, resulting in three different determined signal elements. These different signal elements can be used to refine each other. Assume that one set of signal elements are determined for fist shake gesture 404 and a second set of signal elements are determined for pinch finger gesture 406. At 314, the first set and the second set can be analyzed and compared, and, based on this, the weight of various signal elements can be decreased or increased. Thus, if similar, the signal elements may be reduced in weight or removed. If dissimilar, increased. If unique, also increased. Further, the signal elements determined for the third gesture - hand wave gesture 402, can also be used to refine either or both the signal elements for the other gestures. [0046] Method 500 determines a gesture from reflection signals based on signal elements associated with the gesture. Thus, the single elements determined at method 300 are used to determine gestures at method 500.

[0047] At 502, a radar field is provided, such as the wide radar fields noted above. By way of example, consider Fig. 2 in which wide-field radar-based gesture recognition system 102 includes radar emitting element 212, antenna elements 214, and system manager 222. Radar emitting element 212 provides a wide radar field.

[0048] At 504, a reflection signal is received. As shown in Fig. 2, antenna element 214 receives a reflection signal based on some interaction with the provided radar field. This reflection signal is passed to system manager 222 for analysis.

[0049] At 506, signal elements from within the reflection signal are determined. This can be performed in the numerous different manners described above and below. Both type-independent and type-specific gesture managers can be used.

[0050] At 508, signal elements of the received reflection signal are compared with known signal elements for known gestures. These known signal elements are those provided by the process performed at method 300 noted above. Consider again, the examples shown in Fig. 4, in which a wave gesture 402 is illustrated. Assume, for this example, that a user is attempting to interact with a computing watch having a wide-field radar-based gesture recognition system through a wave gesture. The user performs the gesture within the radar field, which is within some number of centimeters or even a meter or two of the radar field provided by the radar system of the computing watch, and which causes a reflection signal to be received by the antenna element. This reflection signal is analyzed by system manager 222, which includes access to the signal elements known to be associated with various gestures. System manager 222 compares these and determines that the signal elements of the reflected signal and known signal elements correspond.

[0051] At 510, the gesture made is determined based on the correspondence between the signal elements and the known signal elements for the corresponding gesture. Continuing the ongoing example, system manager 222 determines that the user has performed a wave gesture.

[0052] At 512, the gesture is passed to an application or operating system. This application or operating system can be the active operating system for the entity to which it is passed, can be based on manners known in the art for passive gestures. Concluding the ongoing example, the application or operating system receives the wave gesture and responds accordingly. As part of, or prior to passing the gesture, gesture manager 206 may determine for which application or device the gesture is intended. Doing so may be based on identity-specific gestures, a current device to which the user is currently interacting, and/or based on controls through which a user may interaction with an application. Controls can be determined through inspection of the interface (e.g., visual controls), published APIs, and the like.

[0053] Optionally, at 514, feedback is provided. This feedback can be responsive to the gesture recognition failing or succeeding. Assume that the user performs the wave gesture in this example and that it was not recognized as a wave gesture. Assume also that the user indicates this or otherwise it is determined that the gesture was not properly recognize, such as the user continuing to perform the gesture until a wave gesture is recognized. System manager 222 passes this failure to gesture manager 206 or an entity associated therewith, so that set of known signal elements can be altered or improved for recognizing wave gestures. Likewise, successful gesture recognition can be provided to improve recognition by gesture manager 206.

[0054] In some cases method 300 or 500 operates on a device remote from the device being controlled. In this case the remote device includes entities of computing device 104 of Figs. 1 and 2, and passes the gesture through one or more communication manners, such as wirelessly through transceivers and/or network interfaces (e.g., network interface 208 and transceiver 216). This remote device does not require all the elements of computing device 104 - wide-field radar-based gesture-recognition system 102 may pass reflection signals sufficient for another device having gesture manager 206 to determine and use the gesture.

[0055] Operations of methods 300 and 500 can be repeated, such as by determining for multiple other applications and other controls through which the multiple other applications can be controlled. Methods 500 may then indicate various different controls to control various applications associated with either the application or the actor. In some cases, the techniques determine or assign unique and/or complex and three-dimensional controls to the different applications, thereby allowing a user to control numerous applications without having to select to switch control between them. Thus, an actor may assign a particular gesture to control one software application on computing device 104, another particular gesture to control another software application, and still another for a thermostat or stereo. This gesture can be used by multiple different persons, or may be associated with that particular actor once the identity of the actor is determined.

[0056] The preceding discussion describes methods relating to wide-field radar- based gesture recognition. Aspects of these methods may be implemented in hardware (e.g., fixed logic circuitry), firmware, software, manual processing, or any combination thereof. These techniques may be embodied on one or more of the entities shown in Figs. 1, 2, 4, 6, and 8 (computing system 800 is described in Fig. 8 below), which may be further divided, combined, and so on. Thus, these figures illustrate some of the many possible systems or apparatuses capable of employing the described techniques. The entities of these figures generally represent software, firmware, hardware, whole devices or networks, or a combination thereof.

Example Alternative Hardware Abstraction Modules

[0057] As noted in part above, gesture manager 206 can determine the signal elements for each gesture based on the radar system being used. Thus, if there are substantial differences between radar fields between those performed for method 300 and later radar fields provided by other radar systems or similar radar systems that have substantial differences in the reflected signals, the accuracy of a gesture recognition may suffer. This can be countered, however, by tailoring each set of signal elements for each gesture to the radar system being used. In an alternative embodiment, a hardware abstraction layer is built for each of the different radar systems obviating, to a large extent, the need to have different gesture managers or different signal elements for each gesture, though these hardware abstraction layers are each trained in a manner similar to methods 300.

[0058] By way of illustration, consider Fig. 6, which shows a specific type of radar- based gesture recognition system 602 and a type-specific gesture manager 604. These are illustrations of the gesture manager and various types of radar systems noted above, where the radar system is used as part of the learning process to determine the signal elements specific to that radar type. Alternatively, consider various specific types of radar-based gesture recognition systems 606-1 and 606-2, through some arbitrary number "N" of these radar systems, shown at 606-N. See also specific types of hardware abstraction modules 224 matched to the respective type of radar system, these abstraction modules shown at 608-1, 608-2, and 608-N. Type-specific gesture manager 604, as shown in the dashed-line box, is an illustration of its dependence on the type of radar system and showing the corresponding components 606-1, 608-1, and a portion of type-independent gesture manager 610. Note however, that type-independent gesture manager 610 is independent, to a large extent, of the type of radar system as will be described in Fig. 7.

[0059] Consider also Fig. 7, in which case the various gestures 402, 404, and 406, are performed multiple times and reflection signals are received, 408, 410, and 412, respectively by the specific type radar-based gesture recognition system 606- 1 (and each system through system "N"). Note that, for each of these specific types of systems, the reflection signal is shown differently at Ref. Sig. 1, Ref. Sig. 2, and Ref. Sig. N. Similarly to methods 300, signal elements are determined for the particular gestures, though in this case the abstraction modules make this determination and then provide hardware- independent reflection signals, as shown in Fig. 7. These hardware-independent reflection signals are then received by type-independent gesture manager 610, which then determines the gesture performed at methods 500.

[0060] In more detail, techniques in which type-specific hardware abstraction modules 608 can be developed are shown below. These techniques may also be used to aid in developing signal elements for type-specific gesture manager 604 as well. These techniques may therefore be used as embodiments of method 300. In some cases, hardware abstraction modules 608 can operate in single tone, stepped FM, linear FM, impulse, and chirped radar systems. As noted in part above, single tone radar architectures can be of a 60 GHz continuous wave with a single tone or stepped frequency. Stepped FM radar architectures can be of a 96 GHz continuous wave stepped frequency. Linear FM can be a 60 GHz frequency modulated continuous wave. Impulse radar architectures can be of a 60 GHz impulse. And chirped radar architectures have a chirped radar field. Note that radar architectures produce equivalent data products, with time and frequency domains being interchangeable.

Example Computing System

[0061] Fig. 8 illustrates various components of example computing system 800 that can be implemented as any type of client, server, and/or computing device as described with reference to the previous Figs. 1-7 to implement wide-field radar-based gesture recognition. [0062] Computing system 800 includes communication devices 802 that enable wired and/or wireless communication of device data 804 (e.g., received data, data that is being received, data scheduled for broadcast, data packets of the data, etc.). Device data 804 or other device content can include configuration settings of the device, media content stored on the device, and/or information associated with a user of the device (e.g., an identity of an actor performing a gesture). Media content stored on computing system 800 can include any type of audio, video, and/or image data. Computing system 800 includes one or more data inputs 806 via which any type of data, media content, and/or inputs can be received, such as human utterances, interactions with a radar field, user-selectable inputs (explicit or implicit), messages, music, television media content, recorded video content, and any other type of audio, video, and/or image data received from any content and/or data source.

[0063] Computing system 800 also includes communication interfaces 808, which can be implemented as any one or more of a serial and/or parallel interface, a wireless interface, any type of network interface, a modem, and as any other type of communication interface. Communication interfaces 808 provide a connection and/or communication links between computing system 800 and a communication network by which other electronic, computing, and communication devices communicate data with computing system 800.

[0064] Computing system 800 includes one or more processors 810 (e.g., any of microprocessors, controllers, and the like), which process various computer-executable instructions to control the operation of computing system 800 and to enable techniques for, or in which can be embodied, wide-field radar-based gesture recognition. Alternatively or in addition, computing system 800 can be implemented with any one or combination of hardware, firmware, or fixed logic circuitry that is implemented in connection with processing and control circuits which are generally identified at 812. Although not shown, computing system 800 can include a system bus or data transfer system that couples the various components within the device. A system bus can include any one or combination of different bus structures, such as a memory bus or memory controller, a peripheral bus, a universal serial bus, and/or a processor or local bus that utilizes any of a variety of bus architectures.

[0065] Computing system 800 also includes computer-readable media 814, such as one or more memory devices that enable persistent and/or non-transitory data storage (i. e., in contrast to mere signal transmission), examples of which include random access memory (RAM), non- volatile memory (e.g. , any one or more of a read-only memory (ROM), flash memory, EPROM, EEPROM, etc.), and a disk storage device. A disk storage device may be implemented as any type of magnetic or optical storage device, such as a hard disk drive, a recordable and/or rewriteable compact disc (CD), any type of a digital versatile disc (DVD), and the like. Computing system 800 can also include a mass storage media device (storage media) 816.

[0066] Computer-readable media 814 provides data storage mechanisms to store device data 804, as well as various device applications 818 and any other types of information and/or data related to operational aspects of computing system 800. For example, an operating system 820 can be maintained as a computer application with computer-readable media 814 and executed on processors 810. Device applications 818 may include a device manager, such as any form of a control application, software application, signal-processing and control module, code that is native to a particular device, a hardware abstraction layer for a particular device, and so on. Device applications 818 also include system components, engines, or managers to implement wide-field radar- based gesture recognition, such as gesture manager 206, system manager 222, and in cases where gesture manager 206 is type-independent, hardware abstraction module 224.

Conclusion

[0067] Although techniques using, and apparatuses including, wide-field radar- based gesture recognition have been described in language specific to features and/or methods, it is to be understood that the subject of the appended claims is not necessarily limited to the specific features or methods described. Rather, the specific features and methods are disclosed as example implementations of wide-field radar-based gesture recognition.

Claims

CLAIMS What is claimed is:
1. A computer-implemented method comprising :
providing, by an emitter of a radar system, a radar field;
receiving, at a receiver of the radar system, a first set of reflection signals caused by a first interaction of a first human action performing a gesture within the radar field, the first set of reflection signals representing a first time period during which the first human action interacts with the radar field;
receiving, at the receiver of the radar system, a second set of reflection signals caused by a second interaction of a second human action performing the gesture within the radar field, the second set of reflection signals representing a second time period during which the second human action interacts with the radar field;
analyzing the first and second sets of reflection signals to determine a signal element common to the first and second sets of reflection signals; and
associating the signal element with the gesture effective to enable a later received reflection signal caused by an interaction by a different human action to be associated with the gesture.
2. The computer-implemented method as described in claim 1, wherein analyzing the first and second sets of reflection signals to determine the signal element common to the first and second sets of reflection signals comprises breaking the first and second sets of reflection signals into many signal elements and determining which of the signal elements corresponds to both the first interaction of the first human action performing the gesture and the second interaction of the second human action performing the gesture.
3. The computer-implemented method as described in claim 1, wherein analyzing the first and second sets of reflection signals is not based on tracking points or elements of the first or second human action.
4. The computer-implemented method as described in claim 1, where in the radar field is a full contiguous field.
5. The computer-implemented method as described in claim 1, wherein the radar system is not a phased antenna array.
6. The computer-implemented method as described in claim 1, further comprising receiving multiple other sets of reflection signals caused by multiple other interactions of the first, second, or other human actions performing the gesture within the radar field and wherein analyzing the first and second sets of reflection signals analyzes the first set of reflection signals, the second set of reflection signals, and the multiple other sets of reflection signals.
7. The computer-implemented method as described in claim 6, wherein the radar field in which the first, second, and other sets of reflection signals is received is a same radar field provided by a same emitter of the same radar system.
8. The computer-implemented method as described in claim 1, further comprising refining the signal element associated with the gesture based on other signal elements associated with other gestures.
9. A computer-implemented method comprising:
providing a wide radar field;
receiving a reflection signal for a gesture made within the wide radar field;
determining signal elements of the reflection signal;
comparing the signal elements of the reflection signal to known signal elements associated with known gestures;
determining, based on the signal elements of the reflection signal corresponding to the known signal elements, that the gesture made in the wide radar field is one of the known gestures; and
passing the one of the known gestures to an application or operating system.
10. The method of claim 9, further comprising:
receiving a second reflection signal for a second gesture;
determining second signal elements of the second reflection signal;
comparing the second signal elements of the second reflection signal to the known signal elements associated with the known gestures;
determining, based on the second signal elements not corresponding to the known signal elements, that the second gesture was not properly recognized; and
altering the known signal elements for the gesture based on the determined second signal elements.
11. The method of claim 9, further comprising:
receiving, from a user, multiple reflection signals from multiple iterations of a unique gesture made within the wide radar field, the unique gesture not being one of the known gestures;
determining signal elements of the reflection signals, the signal elements sufficient to determine that a later-received reflection signal for a later-received gesture of the user matches the unique gesture; and
associated the determined signal elements to the unique gesture.
12. The method of claim 11, further comprising associating the unique gesture to a control of an application, the associating responsive to an assignment of the control and the application selected by the user.
13. The method of claim 9, wherein determining the signal elements of the reflection signal digitally breaks up the reflection signal and analyzes, one at a time, each of the broken-up signals.
14. The method of claim 9, wherein the wide radar field includes multiple radar fields from different directions or multiple radar fields having different frequencies or phases.
15. The method of claim 9, wherein the wide radar field is a continuous-wave radar field or a contiguous radar field.
16. The method of claim 15, wherein the continuous-wave radar field is a single tone, linear frequency modulated (FM), or stepped FM field.
17. The method of claim 9, wherein the wide radar field is a pulsed-wave radar field, an impulse radar field, or a chirped radar field.
18. An apparatus comprising:
a wide-field radar-based gesture-recognition system comprising:
a radar-emitting element configured to provide a wide radar field; and an antenna element configured to:
receive reflection signals from human tissue that is within the wide radar field; and
pass the received reflection signals; and
one or more computer-readable storage media having instructions stored thereon that, responsive to execution by the one or more computer processors, perform operations comprising:
causing the wide-field radar-based gesture-recognition system to provide a radar field with the radar-emitting element;
causing the wide-field radar-based gesture-recognition system to receive reflection signals for an interaction in the wide radar field with the antenna element; determining, based on the received reflection signals, signal elements;
comparing the signal elements of the received reflection signal to known signal elements associated with known gestures;
determining, based on the signal elements corresponding to the known signal elements, that the interaction made in the wide radar field corresponds to one of the known gestures; and
passing the one of the known gestures to an application or operating system.
19. The apparatus of claim 18, wherein the one or more computer-readable storage media is further configured to perform operations comprising:
receiving multiple reflection signals from multiple iterations of a complex gesture made within the wide radar field, the complex gesture not being one of the known gestures; determining signal elements of the multiple reflection signals, the signal elements sufficient to determine that a later-received reflection signal for a later-received gesture matches the complex gesture; and
associating the determined signal elements to the complex gesture.
20. The apparatus of claim 18, wherein the operation of determining the signal elements of the reflection signal digitally breaks up the reflection signal and analyzes, one at a time, each of the broken-up signals.
PCT/US2016/030115 2015-04-30 2016-04-29 Wide-field radar-based gesture recognition WO2016176574A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US201562155357P true 2015-04-30 2015-04-30
US62/155,357 2015-04-30

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201680020567.2A CN107430443A (en) 2015-04-30 2016-04-29 Wide-field radar-based gesture recognition
EP16725269.1A EP3289434A1 (en) 2015-04-30 2016-04-29 Wide-field radar-based gesture recognition

Publications (1)

Publication Number Publication Date
WO2016176574A1 true WO2016176574A1 (en) 2016-11-03

Family

ID=56081552

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2016/030115 WO2016176574A1 (en) 2015-04-30 2016-04-29 Wide-field radar-based gesture recognition

Country Status (4)

Country Link
US (2) US10139916B2 (en)
EP (1) EP3289434A1 (en)
CN (1) CN107430443A (en)
WO (1) WO2016176574A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017084793A1 (en) * 2015-11-20 2017-05-26 Audi Ag Motor vehicle with at least one radar unit

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9575560B2 (en) 2014-06-03 2017-02-21 Google Inc. Radar-based gesture-recognition through a wearable device
US9921660B2 (en) 2014-08-07 2018-03-20 Google Llc Radar-based gesture recognition
US9811164B2 (en) 2014-08-07 2017-11-07 Google Inc. Radar-based gesture sensing and data transmission
US9588625B2 (en) 2014-08-15 2017-03-07 Google Inc. Interactive textiles
US10268321B2 (en) 2014-08-15 2019-04-23 Google Llc Interactive textiles within hard objects
US9778749B2 (en) 2014-08-22 2017-10-03 Google Inc. Occluded gesture recognition
US9600080B2 (en) 2014-10-02 2017-03-21 Google Inc. Non-line-of-sight radar-based gesture recognition
US9983747B2 (en) 2015-03-26 2018-05-29 Google Llc Two-layer interactive textiles
US10310620B2 (en) 2015-04-30 2019-06-04 Google Llc Type-agnostic RF signal representations
EP3521853A2 (en) 2015-04-30 2019-08-07 Google LLC Rf-based micro-motion tracking for gesture tracking and recognition
US9693592B2 (en) 2015-05-27 2017-07-04 Google Inc. Attaching electronic components to interactive textiles
US10088908B1 (en) 2015-05-27 2018-10-02 Google Llc Gesture detection and interactions
US10300370B1 (en) 2015-10-06 2019-05-28 Google Llc Advanced gaming and virtual reality control using radar
US9837760B2 (en) 2015-11-04 2017-12-05 Google Inc. Connectors for connecting electronics embedded in garments to external devices
US10175781B2 (en) 2016-05-16 2019-01-08 Google Llc Interactive object with multiple electronics modules
WO2017200949A1 (en) 2016-05-16 2017-11-23 Google Llc Interactive fabric
US10218407B2 (en) * 2016-08-08 2019-02-26 Infineon Technologies Ag Radio frequency system and method for wearable device
CN108121446B (en) * 2017-12-25 2018-11-30 邱亮南 Interactive methods and systems
CN108343769A (en) * 2018-01-25 2018-07-31 隔空(上海)智能科技有限公司 Water faucet based on microwave radar gesture recognition technology, and control method thereof
US10289903B1 (en) * 2018-02-12 2019-05-14 Avodah Labs, Inc. Visual sign language translation training device and method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110181510A1 (en) * 2010-01-26 2011-07-28 Nokia Corporation Gesture Control
DE102011075725A1 (en) * 2011-05-12 2012-11-15 Robert Bosch Gmbh A method for detecting gestures
WO2014165476A1 (en) * 2013-04-01 2014-10-09 Gollakota Shyamnath Devices, systems, and methods for detecting gestures using wireless communication signals
US20140324888A1 (en) * 2011-12-09 2014-10-30 Nokia Corporation Method and Apparatus for Identifying a Gesture Based Upon Fusion of Multiple Sensor Signals

Family Cites Families (365)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3610874A (en) 1969-11-21 1971-10-05 Western Electric Co Laser welding technique
US3752017A (en) 1971-04-08 1973-08-14 Pace Inc Thermal hand tools
US3953706A (en) 1974-03-29 1976-04-27 Martin Marietta Corporation Laser bent beam controlled dwell wire stripper
US4104012A (en) 1976-10-12 1978-08-01 Ferrante Michael R Improved wire stripping apparatus
GB2070469B (en) 1980-02-29 1983-06-08 Raychem Gmbh Electrical interconnection
GB8411480D0 (en) 1984-05-04 1984-06-13 Raychem Corp Sensor array
DE3432735C2 (en) 1984-09-06 1988-05-11 Philips Patentverwaltung Gmbh, 2000 Hamburg, De
US4700044A (en) 1986-07-31 1987-10-13 Hutchinson Technology Inc. Laser soldering apparatus and method
US4838797A (en) 1987-06-19 1989-06-13 The United States Of America As Represented By The Secretary Of The Navy Underwater connect and disconnect plug and receptacle
US5016500A (en) 1990-04-10 1991-05-21 Teledyne Kinetics Battery powered temperature-controlled wire stripper
US5298715A (en) 1992-04-27 1994-03-29 International Business Machines Corporation Lasersonic soldering of fine insulated wires to heat-sensitive substrates
US20080065291A1 (en) 2002-11-04 2008-03-13 Automotive Technologies International, Inc. Gesture-Based Control of Vehicular Components
US5497546A (en) 1992-09-21 1996-03-12 Matsushita Electric Works, Ltd. Method for mounting lead terminals to circuit board
US5564571A (en) 1993-07-19 1996-10-15 Cembre S.P.A. Strip for electrical connectors
US5341979A (en) 1993-09-03 1994-08-30 Motorola, Inc. Method of bonding a semiconductor substrate to a support substrate and structure therefore
US6835898B2 (en) 1993-11-16 2004-12-28 Formfactor, Inc. Electrical contact structures formed by configuring a flexible wire to have a springable shape and overcoating the wire with at least one layer of a resilient conductive material, methods of mounting the contact structures to electronic components, and applications for employing the contact structures
US5468917A (en) 1994-03-23 1995-11-21 International Business Machines Corporation Circuitized structure including flexible circuit with elastomeric member bonded thereto
US5517251A (en) 1994-04-28 1996-05-14 The Regents Of The University Of California Acquisition of video images simultaneously with analog signals
US5724707A (en) 1996-06-17 1998-03-10 The United States Of America As Represented By The Secretary Of The Army Interlock attaching strap system
CH690686A5 (en) 1996-07-01 2000-12-15 Spoerry & Co Ag Process for the preparation of an electrically conductive yarn, electrically conductive yarn and use of the electrically conductive yarn.
CN1169491C (en) 1997-07-16 2004-10-06 泰尔茂株式会社 Ear type clinical thermometer
JP3052286B2 (en) 1997-08-28 2000-06-12 川崎重工業株式会社 Flight system and aircraft pseudo field of vision forming apparatus
US6210771B1 (en) 1997-09-24 2001-04-03 Massachusetts Institute Of Technology Electrically active textiles and articles made therefrom
WO1999028811A1 (en) 1997-12-04 1999-06-10 Northern Telecom Limited Contextual gesture interface
JP3176580B2 (en) 1998-04-09 2001-06-18 太陽誘電株式会社 Mounting method and apparatus for mounting electronic components
US6080690A (en) 1998-04-29 2000-06-27 Motorola, Inc. Textile fabric with integrated sensing device and clothing fabricated thereof
US6369804B1 (en) 1998-09-26 2002-04-09 Eleksen Limited Detector constructed from fabric having non-uniform conductivity
DE69936108T2 (en) 1998-10-20 2008-02-14 Omron Healthcare Co., Ltd. infrared thermometer
US6854985B1 (en) 1998-12-16 2005-02-15 Paricon Technologies Corporation Elastomeric interconnection device and methods for making same
US7223105B2 (en) 1999-12-16 2007-05-29 Paricon Technologies Corporation Cable connector incorporating anisotropically conductive elastomer
US6791580B1 (en) 1998-12-18 2004-09-14 Tangis Corporation Supplying notifications related to supply and consumption of user context data
US6313825B1 (en) 1998-12-28 2001-11-06 Gateway, Inc. Virtual input device
WO2001027855A2 (en) 1999-10-12 2001-04-19 The Government Of The United States Of America, As Represented By The Secretary, Department Of Health And Human Services, Centers For Disease Control And Prevention Image-synchronized multichannel biomedical data acquisition system
EP1224848A1 (en) 1999-10-18 2002-07-24 Massachusetts Institute Of Technology Flexible electronic circuitry and method of making same
US7249954B2 (en) 2002-02-26 2007-07-31 Paricon Technologies Corporation Separable electrical interconnect with anisotropic conductive elastomer for translating footprint
WO2005013427A1 (en) 2003-07-02 2005-02-10 Paricon Technologies Corporation Pin-array, separable, compliant electrical contact member
US6590519B2 (en) 1999-12-22 2003-07-08 Hot/Shot Radar Inspections, Llc Method and system for identification of subterranean objects
US6440593B2 (en) 2000-02-16 2002-08-27 The University Of Massachusetts Molded article
EA004494B1 (en) 2000-04-03 2004-04-29 Брунел Университи Wires susceptible to pressure cloth
US7698154B2 (en) 2000-07-20 2010-04-13 Marfly 1, LP Patient-controlled automated medical record, diagnosis, and treatment system and method
DE10053061A1 (en) 2000-10-26 2002-05-08 Dornier Gmbh A method for adaptive target processing in a motor vehicle radar
US7030861B1 (en) 2001-02-10 2006-04-18 Wayne Carl Westerman System and method for packing multi-touch gestures onto a hand
JP2002262438A (en) 2001-03-05 2002-09-13 Yazaki Corp Junction part for auxiliary module and auxiliary module
JP2002298940A (en) 2001-03-30 2002-10-11 Jst Mfg Co Ltd Electric contact using resin solder, electrical connector and method of connecting the same to printed circuit board
WO2002082999A1 (en) 2001-04-10 2002-10-24 Battelle Memorial Institute Image analysis system and method for discriminating movements of an individual
US20020170897A1 (en) 2001-05-21 2002-11-21 Hall Frank L. Methods for preparing ball grid array substrates via use of a laser
AU2002350237A1 (en) 2001-11-24 2003-06-10 Delphi Technologies, Inc. Improvements in wire harnesses
DE10161527A1 (en) 2001-12-14 2003-07-03 Infineon Technologies Ag Interconnection technology in textile structures
EP1456739A2 (en) 2001-12-14 2004-09-15 Infineon Technologies AG Keypad integrated into textile items comprising a capacitive readout circuit
US6929484B2 (en) 2003-01-09 2005-08-16 Roger E. Weiss Apparatus for applying a mechanically-releasable balanced compressive load to an assembly such as a compliant anisotropic conductive elastomer electrical connector
US7845022B1 (en) 2002-02-14 2010-12-07 Nike, Inc. Deposition of electronic circuits on fibers and other materials
JP2003280049A (en) 2002-03-26 2003-10-02 Tdk Corp Functional fiber and textile using the same
US7592276B2 (en) 2002-05-10 2009-09-22 Sarnoff Corporation Woven electronic textile, yarn and article
AU2003279888A1 (en) 2002-06-28 2004-01-19 North Carolina State University Fabric and yarn structures for improving signal integrity in fabric based electrical circuits
US8190239B2 (en) 2002-09-03 2012-05-29 Fujitsu Limited Individual identification device
US20090177068A1 (en) 2002-10-09 2009-07-09 Stivoric John M Method and apparatus for providing derived glucose information utilizing physiological and/or contextual parameters
US7602413B2 (en) 2002-10-18 2009-10-13 Sony Corporation Information processing system and method, information processing apparatus, image-capturing device and method, recording medium, and program
WO2004042544A1 (en) 2002-11-07 2004-05-21 Personics A/S Control system including an adaptive motion detector
GB0229316D0 (en) 2002-12-17 2003-01-22 Koninkl Philips Electronics Nv Electro-optic filament or fibre
DE10307505B4 (en) 2003-02-21 2005-03-03 Infineon Technologies Ag Textile fabric structure, surface covering structure and method for determining a distance of microelectronic elements of the textile fabric structure to at least one reference position
GB0311320D0 (en) 2003-05-19 2003-06-25 Univ Manchester Knitted transducer devices
JP2005019393A (en) 2003-06-05 2005-01-20 Sharp Corp Anisotropic conductive material, display device, manufacturing method for the device, and conductive member
JP2005051129A (en) 2003-07-30 2005-02-24 Sony Corp Electronic apparatus
WO2005022556A2 (en) 2003-09-02 2005-03-10 Integral Technologies, Inc. Very low resistance electrical interfaces to conductive loaded resin-based materials
DE10344285A1 (en) 2003-09-24 2005-05-12 Infineon Technologies Ag Processor arrangement, fabric structure, surface covering structure and method for routing electrical power supply between a plurality of adjacent locally superposed processor elements
WO2005033387A2 (en) 2003-09-30 2005-04-14 Milliken & Company Wrapped conductive yarn
US7199749B2 (en) 2003-12-12 2007-04-03 Georgia Tech Research Corporation Radar detection device employing a scanning antenna system
US7299964B2 (en) 2004-01-15 2007-11-27 Georgia Tech Research Corp. Method and apparatus to create electrical junctions for information routing in textile structures
US7460053B2 (en) 2004-01-20 2008-12-02 Bae Systems Information And Electronic Systems Integation Inc. Method and apparatus for through-the-wall motion detection using CW radar
DE102004004604B4 (en) 2004-01-29 2016-12-29 Siemens Healthcare Gmbh Method and imaging system to compensate for patient movement during shooting in medical imaging
GB0404137D0 (en) 2004-02-25 2004-03-31 Koninkl Philips Electronics Nv A fabric
GB0404419D0 (en) 2004-02-27 2004-03-31 Intelligent Textiles Ltd Electrical components and circuits constructed as textiles
US7148836B2 (en) 2004-03-05 2006-12-12 The Regents Of The University Of California Obstacle penetrating dynamic radar imaging system
EP1739224B1 (en) 2004-03-30 2016-10-19 Toray Industries, Inc. Sheetlike products and interior finishing materials
GB0408607D0 (en) 2004-04-17 2004-05-19 Koninkl Philips Electronics Nv Electrical connector
US8921473B1 (en) 2004-04-30 2014-12-30 Sydney Hyman Image making medium
US20070197878A1 (en) 2004-07-09 2007-08-23 Dror Shklarski Wearable device, system and method for monitoring physiological and/or environmental parameters
US8560972B2 (en) 2004-08-10 2013-10-15 Microsoft Corporation Surface UI for gesture-based interaction
US7942744B2 (en) 2004-08-19 2011-05-17 Igt Virtual input system
US20060061504A1 (en) 2004-09-23 2006-03-23 The Regents Of The University Of California Through wall detection and tracking system
US8646675B2 (en) 2004-11-02 2014-02-11 Hid Global Gmbh Laying apparatus, contact-making apparatus, movement system, laying and contact-making unit, production system, method for production and a transponder unit
US7531203B2 (en) 2005-01-06 2009-05-12 The Hong Kong Polytechnic University Method for the production of conductive flexible textile arrays
JP2006196802A (en) 2005-01-17 2006-07-27 Sony Corp Semiconductor device and method for manufacturing the same
DE102005003370A1 (en) 2005-01-24 2006-07-27 Juma Pcb Gmbh A process for the continuous laying of a lead wire on a circuit board and a device for carrying out the method
CN101238244B (en) 2005-01-24 2011-03-30 株式会社昭和 Process for producing crystalline titanium oxide coating film through electrolytic anodizing
JP2006234716A (en) 2005-02-28 2006-09-07 Aichi Prefecture Sheet-like sensor device
KR100687737B1 (en) 2005-03-19 2007-02-27 한국전자통신연구원 Apparatus and method for a virtual mouse based on two-hands gesture
US7544627B2 (en) 2005-05-12 2009-06-09 The Hong Kong Polytechnic University Pressure sensing fabric
EP1727408A1 (en) 2005-05-13 2006-11-29 Eidgenössische Technische Hochschule Zürich Textile with conductor pattern and method for its production
DE602006017360D1 (en) 2005-06-02 2010-11-18 Bekaert Sa Nv Electrically conductive elastic composite yarn
US7462035B2 (en) 2005-07-27 2008-12-09 Physical Optics Corporation Electrical connector configured as a fastening element
US7791700B2 (en) 2005-09-16 2010-09-07 Kent Displays Incorporated Liquid crystal display on a printed circuit board
US20070118043A1 (en) 2005-11-23 2007-05-24 Microsoft Corporation Algorithms for computing heart rate and movement speed of a user from sensor data
JP4682028B2 (en) 2005-11-28 2011-05-11 Hoya株式会社 Process for producing a conductive layer, conductive layer, and the signal transmission substrate
US7834276B2 (en) 2005-12-16 2010-11-16 Unitech Printed Circuit Board Corp. Structure for connecting a USB communication interface in a flash memory card by the height difference of a rigid flexible board
US7317416B2 (en) 2005-12-22 2008-01-08 Leonard Flom Skeletal topography imaging radar for unique individual identification
US20070161921A1 (en) 2006-01-07 2007-07-12 Rausch Jeffrey L Bio-accurate temperature measurement device and method of quantitatively normalizing a body temperature measurement to determine a physiologically significant temperature event
FI119456B (en) 2006-01-31 2008-11-14 Polar Electro Oy The connector mechanism
US7395717B2 (en) 2006-02-10 2008-07-08 Milliken & Company Flexible capacitive sensor
KR100729676B1 (en) 2006-02-17 2007-06-12 한국생산기술연구원 Process and apparatus for producing digital yarns using metal filaments for info-communications and digital yarns produced by said process
EP1835786B1 (en) 2006-02-24 2009-07-01 Sefar AG Planar heating element and process for manufacturing a planar heating element
US7860343B2 (en) 2006-04-10 2010-12-28 Nokia Corporation Constructing image panorama using frame selection
DE102006018445B4 (en) 2006-04-18 2008-04-24 Imedos Gmbh Apparatus and method for determining arteriovenous ratio values ​​by quantitative analysis of retinal vessels
GB2437997B (en) 2006-04-27 2011-07-27 Eleksen Ltd Manually operable position sensor
US7558622B2 (en) 2006-05-24 2009-07-07 Bao Tran Mesh network stroke monitoring appliance
US7691067B2 (en) 2006-06-14 2010-04-06 Advanced Brain Monitoring, Inc. Method for measuring central venous pressure or respiratory effort
GB2440568A (en) 2006-07-28 2008-02-06 Eleksen Ltd Interface apparatus connecting fabric sensor and electronic device
US8169404B1 (en) 2006-08-15 2012-05-01 Navisense Method and device for planary sensory detection
GB2443208A (en) 2006-10-27 2008-04-30 Studio 1 Ventures Ltd Textile pressure sensor
WO2008061385A2 (en) 2006-11-20 2008-05-29 Gerhard Staufert Conductive textile material
NZ551819A (en) 2006-12-04 2009-03-31 Zephyr Technology Ltd Impact detection system
US20080134102A1 (en) 2006-12-05 2008-06-05 Sony Ericsson Mobile Communications Ab Method and system for detecting movement of an object
JPWO2008069275A1 (en) 2006-12-07 2010-03-25 日本電気株式会社 WIRING BOARD AND METHOD FOR PRODUCING
US20080136775A1 (en) 2006-12-08 2008-06-12 Conant Carson V Virtual input device for computing
US8607167B2 (en) 2007-01-07 2013-12-10 Apple Inc. Portable multifunction device, method, and graphical user interface for providing maps and directions
US20080211766A1 (en) 2007-01-07 2008-09-04 Apple Inc. Multitouch data fusion
US8918153B2 (en) 2007-02-16 2014-12-23 Mespere Lifesciences Inc. Method and device for measuring parameters of cardiac function
CA2684523A1 (en) 2007-04-20 2008-10-30 Softkinetic S.A. Volume recognition method and system
CA2686958A1 (en) 2007-05-10 2008-11-20 Grigore Burdea Periodic evaluation and telerehabilitation systems and methods
KR100888864B1 (en) 2007-05-21 2009-03-17 한국과학기술원 User Input Device using BIO Radar and Tilt Sensor
US20080294012A1 (en) 2007-05-22 2008-11-27 Kurtz Andrew F Monitoring physiological conditions
US20080303800A1 (en) 2007-05-22 2008-12-11 Elwell James K Touch-based input device providing a reconfigurable user interface
US20090017910A1 (en) 2007-06-22 2009-01-15 Broadcom Corporation Position and motion tracking of an object
US8302033B2 (en) 2007-06-22 2012-10-30 Apple Inc. Touch screen device, method, and graphical user interface for providing maps, directions, and location-based information
WO2009017362A2 (en) 2007-07-31 2009-02-05 Seoul National University Industry Foundation Electrically conductive metal composite embroidery yarn and embroidered circuit using thereof
WO2009032073A1 (en) 2007-08-28 2009-03-12 Woolsthorpe, Llc Non-invasive method and system for determining physiological characteristics
US20090058820A1 (en) 2007-09-04 2009-03-05 Microsoft Corporation Flick-based in situ search from ink, text, or an empty selection region
EP2194864B1 (en) 2007-09-14 2018-08-29 Medtronic Monitoring, Inc. System and methods for wireless body fluid monitoring
US9569003B2 (en) 2010-09-30 2017-02-14 Broadcom Corporation Portable computing device including a three-dimensional touch screen
JP4858400B2 (en) 2007-10-17 2012-01-18 ソニー株式会社 Information providing system, information providing apparatus, information providing method
US9513699B2 (en) 2007-10-24 2016-12-06 Invention Science Fund I, LL Method of selecting a second content based on a user's reaction to a first content
US10235827B2 (en) 2007-11-09 2019-03-19 Ball Gaming, Inc. Interaction with 3D space in a gaming system
JP5385555B2 (en) 2007-11-14 2014-01-08 日立コンシューマエレクトロニクス株式会社 Biopsy systems, methods biopsy device and biopsy
CH704955B1 (en) 2007-12-31 2012-11-30 Nivarox Sa A method of manufacturing a metal microstructure and microstructure obtained using this prodédé.
WO2009108228A1 (en) 2008-02-25 2009-09-03 Kingsdown, Inc. Systems and methods for controlling a bedroom environment and for providing sleep data
KR100982533B1 (en) 2008-02-26 2010-09-16 한국생산기술연구원 Digital garment using digital band and fabricating method thereof
US8341762B2 (en) 2008-03-21 2013-01-01 Alfiero Balzano Safety vest assembly including a high reliability communication system
WO2009134862A2 (en) 2008-04-29 2009-11-05 University Of Miami System and method for using interactive voice-recognition to automate a patient-centered best practice approach to disease evaluation and management
US20090295712A1 (en) 2008-05-29 2009-12-03 Sony Ericsson Mobile Communications Ab Portable projector and method of operating a portable projector
KR101608100B1 (en) 2008-05-29 2016-03-31 킴벌리-클라크 월드와이드, 인크. Conductive webs containing electrical pathways and method for making same
EP2289291A1 (en) 2008-06-10 2011-03-02 Koninklijke Philips Electronics N.V. Electronic textile
WO2009155465A1 (en) 2008-06-18 2009-12-23 Oblong Industries, Inc. Gesture-based control system for vehicle interfaces
US8467991B2 (en) 2008-06-20 2013-06-18 Microsoft Corporation Data services based on gesture and location information of device
US8972902B2 (en) 2008-08-22 2015-03-03 Northrop Grumman Systems Corporation Compound gesture recognition
US20100053151A1 (en) 2008-09-02 2010-03-04 Samsung Electronics Co., Ltd In-line mediation for manipulating three-dimensional content on a display device
KR20110056420A (en) 2008-09-19 2011-05-27 코닌클리즈케 필립스 일렉트로닉스 엔.브이. Electronic textile and method for determining a functional area of an electronic textile
US9758907B2 (en) 2008-09-22 2017-09-12 Intel Corporation Method and apparatus for attaching chip to a textile
US7952512B1 (en) 2008-10-14 2011-05-31 Sprint Communications Company L.P. Mobile device enabled radar tags
US20100094141A1 (en) 2008-10-14 2010-04-15 Amal Lesly Puswella Jugular venous pressure ruler
DE102008060862B4 (en) 2008-12-09 2010-10-28 Werthschützky, Roland, Prof. Dr.-Ing.habil. A process for miniaturizable contacting insulated wires
US20120123232A1 (en) 2008-12-16 2012-05-17 Kayvan Najarian Method and apparatus for determining heart rate variability using wavelet transformation
EP2387733B1 (en) 2009-01-15 2013-09-18 Duke University Broadband cloaking metamaterial apparatus and method
US9569001B2 (en) 2009-02-03 2017-02-14 Massachusetts Institute Of Technology Wearable gestural interface
EP2394235A2 (en) 2009-02-06 2011-12-14 Oculis Labs, Inc. Video-based privacy supporting system
EP2216866A3 (en) 2009-02-06 2011-07-13 HID Global GmbH Method to strip a portion of an insulated wire
US9164168B2 (en) 2009-03-20 2015-10-20 Wright State University Systems for detecting movement of a target
TWM365363U (en) 2009-04-08 2009-09-21 Fu-Biau Hsu Illuminating textile article
US9498718B2 (en) 2009-05-01 2016-11-22 Microsoft Technology Licensing, Llc Altering a view perspective within a display environment
US8289185B2 (en) 2009-05-05 2012-10-16 Advanced Technologies Group, LLC Sports telemetry system for collecting performance metrics and data
KR101127991B1 (en) 2009-05-20 2012-03-29 주식회사 아모그린텍 Ag ply yarn, functional fabric using the same and manufacturing method thereof
US8856691B2 (en) 2009-05-29 2014-10-07 Microsoft Corporation Gesture tool
BRPI1011178A2 (en) 2009-06-03 2017-02-07 Glt Technovations Llc material for use with a touch screen capacitive
US8020290B2 (en) 2009-06-14 2011-09-20 Jayna Sheats Processes for IC fabrication
US8759713B2 (en) 2009-06-14 2014-06-24 Terepac Corporation Methods for interconnecting bonding pads between components
US8821350B2 (en) 2009-07-02 2014-09-02 Richard J. Maertz Exercise and communications system and associated methods
US20110073353A1 (en) 2009-09-29 2011-03-31 Tex-Ray Industrial Co., Ltd. Conductive fabric and method for forming the same
JP5668966B2 (en) 2009-10-15 2015-02-12 株式会社槌屋 Touch sensor device using conductive fabrics and conductive fabric
US9400548B2 (en) 2009-10-19 2016-07-26 Microsoft Technology Licensing, Llc Gesture personalization and profile roaming
US8367942B2 (en) 2009-10-27 2013-02-05 Hon Hai Precision Ind. Co., Ltd. Low profile electrical interposer of woven structure and method of making same
US9832019B2 (en) 2009-11-17 2017-11-28 Unho Choi Authentication in ubiquitous environment
CN102713794A (en) 2009-11-24 2012-10-03 奈克斯特控股公司 Methods and apparatus for gesture recognition mode control
US20110213218A1 (en) 2009-12-17 2011-09-01 Weiner Bert A Patient healthcare monitoring/maintenance system
US20110166940A1 (en) 2010-01-05 2011-07-07 Searete Llc Micro-impulse radar detection of a human demographic and delivery of targeted media content
US8232990B2 (en) 2010-01-05 2012-07-31 Apple Inc. Working with 3D objects
KR101325817B1 (en) 2010-01-14 2013-11-05 실버레이 주식회사 Electric conduction woven-stuff, manufacturing method thereof and manufacturing apparatus thereof
US9335825B2 (en) 2010-01-26 2016-05-10 Nokia Technologies Oy Gesture control
FR2955972B1 (en) 2010-02-03 2012-03-09 Commissariat Energie Atomique method of assembling at least one chip with a tissue including a device chip
US8522308B2 (en) 2010-02-11 2013-08-27 Verizon Patent And Licensing Inc. Systems and methods for providing a spatial-input-based multi-user shared display experience
CN103038728B (en) 2010-03-12 2016-01-20 纽昂斯通信有限公司 E.g. using a touch screen on the multi-mode mobile telephone text input system
US20140297006A1 (en) 2010-03-12 2014-10-02 Rajendra Padma Sadhu System and method for providing physiological feedback and rewards for engaging user and retention of customer
JP2011204019A (en) 2010-03-25 2011-10-13 Sony Corp Gesture input device, gesture input method, and program
US9477324B2 (en) 2010-03-29 2016-10-25 Hewlett-Packard Development Company, L.P. Gesture processing
US8102306B2 (en) 2010-05-13 2012-01-24 The United States Of America As Represented By The Secretary Of The Navy Active-radar-assisted passive composite imagery for aiding navigation or detecting threats
US9642536B2 (en) 2010-06-07 2017-05-09 Affectiva, Inc. Mental state analysis using heart rate collection based on video imagery
US8301232B2 (en) 2010-06-08 2012-10-30 Alivecor, Inc. Wireless, ultrasonic personal health monitoring system
US20110307842A1 (en) 2010-06-14 2011-12-15 I-Jen Chiang Electronic reading device
US20110318985A1 (en) 2010-06-23 2011-12-29 Mcdermid William James Touch Sensor Fabric
US8907929B2 (en) 2010-06-29 2014-12-09 Qualcomm Incorporated Touchless sensing and gesture recognition using continuous wave ultrasound signals
JP2012028015A (en) 2010-07-20 2012-02-09 Toshiba Corp Illumination control system and illumination control method
US9075434B2 (en) 2010-08-20 2015-07-07 Microsoft Technology Licensing, Llc Translating user motion into multiple object responses
EP2619789A2 (en) 2010-08-23 2013-07-31 Foster-Miller, INC. Pals compliant routing system
WO2012026013A1 (en) 2010-08-26 2012-03-01 京セミ株式会社 Method of manufacturing woven mesh substrate with semiconductors, device for manufacturing same, and woven mesh substrate with semiconductors
US20130161078A1 (en) 2010-09-03 2013-06-27 Hui Hong Jim Kery Li Rigid-flex circuit board and manufacturing method
US9069067B2 (en) 2010-09-17 2015-06-30 The Invention Science Fund I, Llc Control of an electronic apparatus using micro-impulse radar
WO2012038849A1 (en) 2010-09-21 2012-03-29 Koninklijke Philips Electronics N.V. Electronic textile and method of manufacturing an electronic textile
JP2013542929A (en) 2010-09-28 2013-11-28 パナセア バイオテック リミテッド New bicyclo ring compound
WO2012064847A1 (en) 2010-11-09 2012-05-18 Smule, Inc. System and method for capture and rendering of performance on synthetic string instrument
KR20140001957A (en) 2010-11-20 2014-01-07 뉘앙스 커뮤니케이션즈, 인코포레이티드 Systems and methods for using entered text to access and process contextual information
US9015007B2 (en) 2010-12-13 2015-04-21 Southwest Research Institute Sensor array processor with multichannel reconstruction from random array sampling
JP5510302B2 (en) 2010-12-15 2014-06-04 トヨタ紡織株式会社 Connecting member, its manufacturing method and a connection structure
US9104308B2 (en) 2010-12-17 2015-08-11 The Hong Kong University Of Science And Technology Multi-touch finger registration and its applications
US8475367B1 (en) 2011-01-09 2013-07-02 Fitbit, Inc. Biometric monitoring device having a body weight sensor, and methods of operating same
DE102011009577A1 (en) 2011-01-27 2012-08-02 Texas Instruments Deutschland Gmbh RFID transponder and method for connecting a semiconductor die to an antenna
US20140139616A1 (en) 2012-01-27 2014-05-22 Intouch Technologies, Inc. Enhanced Diagnostics for a Telepresence Robot
US9318884B2 (en) 2011-03-30 2016-04-19 Illinois Tool Works Inc. Induction heating wire insulation heating and removal
US9298287B2 (en) 2011-03-31 2016-03-29 Microsoft Technology Licensing, Llc Combined activation for natural user interface systems
US8681122B2 (en) 2011-04-19 2014-03-25 Cypress Semiconductor Corporation Capacitive sensing with programmable logic for touch sense arrays
US20120280900A1 (en) 2011-05-06 2012-11-08 Nokia Corporation Gesture recognition using plural sensors
IL213125D0 (en) 2011-05-24 2011-10-31 Bird Aerosystems Ltd System, device and method of protecting aircrafts against incoming missiles and threats
US8760395B2 (en) 2011-05-31 2014-06-24 Microsoft Corporation Gesture recognition techniques
US20120310665A1 (en) 2011-06-01 2012-12-06 Xerox Corporation Personalized medical record
US9069164B2 (en) 2011-07-12 2015-06-30 Google Inc. Methods and systems for a virtual input device
US8179604B1 (en) 2011-07-13 2012-05-15 Google Inc. Wearable marker for passive interaction
US8851372B2 (en) 2011-07-18 2014-10-07 Tiger T G Zhou Wearable personal digital device with changeable bendable battery and expandable display used as standalone electronic payment card
WO2013016453A2 (en) 2011-07-25 2013-01-31 Ips Group Inc. Low-power vehicle detection
US9448636B2 (en) 2012-04-18 2016-09-20 Arb Labs Inc. Identifying gestures using gesture data compressed by PCA, principal joint variable analysis, and compressed feature matrices
US8740793B2 (en) 2011-08-29 2014-06-03 General Electric Company Radar based systems and methods for monitoring a subject
US9632102B2 (en) 2011-09-25 2017-04-25 Theranos, Inc. Systems and methods for multi-purpose analysis
US20130082922A1 (en) 2011-09-29 2013-04-04 Samuel A. Miller Tactile glove for human-computer interaction
US9268406B2 (en) 2011-09-30 2016-02-23 Microsoft Technology Licensing, Llc Virtual spectator experience with a personal audio/visual apparatus
DE112012004179T5 (en) 2011-10-06 2014-09-11 Iee International Electronics & Engineering S.A. Electrically conductive textiles for occupant sensing and / or heating applications
US20130104084A1 (en) 2011-10-21 2013-04-25 Digital Artforms, Inc. Systems and methods for human-computer interaction using a two handed interface
RU2621633C2 (en) 2011-10-28 2017-06-06 Мэджик Лип, Инк. System and method for augmented and virtual reality
US10082950B2 (en) 2011-11-09 2018-09-25 Joseph T. LAPP Finger-mapped character entry systems
US8869115B2 (en) 2011-11-23 2014-10-21 General Electric Company Systems and methods for emotive software usability
US9557819B2 (en) 2011-11-23 2017-01-31 Intel Corporation Gesture input with multiple views, displays and physics
WO2013075270A1 (en) 2011-11-25 2013-05-30 Yang Chang-Ming Object, method, and system for detecting heartbeat or whether or not electrodes are in proper contact
CN104012187B (en) 2011-12-07 2015-11-25 皇家飞利浦有限公司 Having means to facilitate waste classification of electronic textile
US9766941B2 (en) 2011-12-08 2017-09-19 Microsoft Technology Licensing, Llc Measuring provisioning capacity across distributed systems
US9323379B2 (en) 2011-12-09 2016-04-26 Microchip Technology Germany Gmbh Electronic device with a user interface that has more than two degrees of freedom, the user interface comprising a touch-sensitive surface and contact-free detection means
WO2013095679A1 (en) 2011-12-23 2013-06-27 Intel Corporation Computing system utilizing coordinated two-hand command gestures
US20130169471A1 (en) 2011-12-28 2013-07-04 Hrl Laboratories, Llc Coded aperture beam analysis method and apparatus
US9141194B1 (en) 2012-01-04 2015-09-22 Google Inc. Magnetometer-based gesture sensing with a wearable device
JP5673568B2 (en) 2012-01-16 2015-02-18 トヨタ自動車株式会社 Object detecting device
US8682395B2 (en) 2012-01-27 2014-03-25 Blackberry Limited Communications device and method having non-touch based input screen
KR101849373B1 (en) 2012-01-31 2018-04-17 한국전자통신연구원 Apparatus and method for estimating skeleton structure of human body
US20130194173A1 (en) 2012-02-01 2013-08-01 Ingeonix Corporation Touch free control of electronic systems and associated methods
US20130207962A1 (en) 2012-02-10 2013-08-15 Float Hybrid Entertainment Inc. User interactive kiosk with three-dimensional display
US9125456B2 (en) 2012-03-26 2015-09-08 Chong Sun CHOW Object-containing button
JP5928069B2 (en) 2012-03-28 2016-06-01 トヨタ紡織株式会社 fabric
CN104302821B (en) 2012-03-30 2016-08-24 英威达技术有限公司 Stretching machine having a control system of a yarn woven fabric
US20130283203A1 (en) 2012-04-24 2013-10-24 Yahoo! Inc. Method and system for displaying search results
JP5721662B2 (en) 2012-04-26 2015-05-20 パナソニック インテレクチュアル プロパティ コーポレーション オブアメリカPanasonic Intellectual Property Corporation of America The input method, the input receiving program, and an input device
US20140121540A1 (en) 2012-05-09 2014-05-01 Aliphcom System and method for monitoring the health of a user
US9411042B2 (en) 2012-05-09 2016-08-09 Duke University Multi-sensor compressive imaging
US10203762B2 (en) 2014-03-11 2019-02-12 Magic Leap, Inc. Methods and systems for creating virtual and augmented reality
JP2015523132A (en) 2012-06-12 2015-08-13 コーニンクレッカ フィリップス エヌ ヴェ Vital signs measurement system by the camera
US9183310B2 (en) 2012-06-12 2015-11-10 Microsoft Technology Licensing, Llc Disambiguating intents within search engine result pages
JP2015532021A (en) 2012-06-19 2015-11-05 ナショナル ユニヴァーシティー オブ シンガポール System and method for consultation and status remote evaluation with data and voice concurrent communication path
US9042971B2 (en) 2012-06-22 2015-05-26 Fitbit, Inc. Biometric monitoring device with heart rate measurement activated by a single user-gesture
US8768438B2 (en) 2012-06-25 2014-07-01 Xerox Corporation Determining cardiac arrhythmia from a video of a subject being monitored for cardiac function
US9201815B2 (en) 2012-06-27 2015-12-01 Ubiquiti Networks, Inc. Method and apparatus for maintaining network connections between devices
FR2992784B1 (en) 2012-06-29 2015-08-07 Laselec Device for electrical Wire stripping using blue or violet laser diodes
WO2014019085A1 (en) 2012-08-01 2014-02-06 Whirlscape, Inc. One-dimensional input system and method
US9323985B2 (en) 2012-08-16 2016-04-26 Microchip Technology Incorporated Automatic gesture recognition for a sensor system
US20140049487A1 (en) 2012-08-17 2014-02-20 Qualcomm Incorporated Interactive user interface for clothing displays
US9230160B1 (en) 2012-08-27 2016-01-05 Amazon Technologies, Inc. Method, medium, and system for online ordering using sign language
US8700137B2 (en) 2012-08-30 2014-04-15 Alivecor, Inc. Cardiac performance monitoring system for use with mobile communications devices
WO2014041032A1 (en) 2012-09-11 2014-03-20 L.I.F.E. Corporation S.A. Wearable communication platform
US8945328B2 (en) 2012-09-11 2015-02-03 L.I.F.E. Corporation S.A. Methods of making garments having stretchable and conductive ink
US9817440B2 (en) 2012-09-11 2017-11-14 L.I.F.E. Corporation S.A. Garments having stretchable and conductive ink
US20140073969A1 (en) 2012-09-12 2014-03-13 Neurosky, Inc. Mobile cardiac health monitoring
US9877650B2 (en) 2012-09-20 2018-01-30 Masimo Corporation Physiological monitor with mobile computing device connectivity
US9002174B2 (en) 2012-10-01 2015-04-07 Microsoft Technology Licensing, Llc Semantic zoom for related content
US20150280102A1 (en) 2012-10-12 2015-10-01 Kansai University Piezoelectric element
CN202887794U (en) 2012-10-12 2013-04-17 上海斯麟特种设备工程有限公司 Rubber-coated cotton-yarn braided cable
WO2014072567A1 (en) 2012-11-06 2014-05-15 Nokia Corporation Method and apparatus for creating motion effect for image
US9477313B2 (en) 2012-11-20 2016-10-25 Samsung Electronics Co., Ltd. User gesture input to wearable electronic device involving outward-facing sensor of device
US20140143678A1 (en) 2012-11-20 2014-05-22 Samsung Electronics Company, Ltd. GUI Transitions on Wearable Electronic Device
GB2508626B (en) 2012-12-05 2014-10-29 R & D Core Ltd Contact sensor
FI124657B (en) 2012-12-31 2014-11-28 Suunto Oy Plug for a telemetry receiver
KR20150103723A (en) 2013-01-03 2015-09-11 메타 컴퍼니 Extramissive spatial imaging digital eye glass for virtual or augmediated vision
US20140191939A1 (en) 2013-01-09 2014-07-10 Microsoft Corporation Using nonverbal communication in determining actions
US10241639B2 (en) 2013-01-15 2019-03-26 Leap Motion, Inc. Dynamic user interactions for display control and manipulation of display objects
CA2897791A1 (en) 2013-01-25 2014-07-31 Vanderbilt Universtiy Smart mobile health monitoring system and related methods
DE102013201359A1 (en) 2013-01-29 2014-07-31 Robert Bosch Gmbh Method and apparatus for controlling a device workshop
US9146668B2 (en) 2013-01-31 2015-09-29 Hewlett-Packard Development Company, L.P. Graphical element placement on a display surface
IN2013CH00818A (en) 2013-02-25 2015-08-14 Cognizant Technology Solutions India Pvt. Ltd. System and method for real-time monitoring and management of patients from a remote location
US9203835B2 (en) 2013-03-01 2015-12-01 Paypal, Inc. Systems and methods for authenticating a user based on a biometric model associated with the user
US20160012198A1 (en) 2013-03-05 2016-01-14 Vtm, Llc Medical Telecommunications System
US20140253709A1 (en) 2013-03-06 2014-09-11 Koninklijke Philips N.V. System and method for determining vital sign information
US9519351B2 (en) * 2013-03-08 2016-12-13 Google Inc. Providing a gesture-based interface
US9913415B2 (en) 2013-03-13 2018-03-06 Federal-Mogul Powertrain Llc EMI shielding textile fabric, wrappable sleeve constructed therefrom and method of construction thereof
US20140280295A1 (en) 2013-03-14 2014-09-18 Microsoft Corporation Multi-language information retrieval and advertising
US20140281975A1 (en) 2013-03-15 2014-09-18 Glen J. Anderson System for adaptive selection and presentation of context-based media in communications
US20150268027A1 (en) 2013-03-15 2015-09-24 Medusa Scientific Llc Electric field sensing and e field visualization
US20140364711A1 (en) 2013-03-27 2014-12-11 AkibaH Health Corporation All-in-one analyte sensor in a detachable external mobile device case
GB201305812D0 (en) 2013-03-28 2013-05-15 Univ Warwick Gesture tracking and classification
GB201306475D0 (en) 2013-04-10 2013-05-22 Elliptic Laboratories As Touchless interaction devices
EP2986997A4 (en) 2013-04-18 2017-02-08 California Institute of Technology Life detecting radars
KR101373633B1 (en) 2013-04-23 2014-03-13 상명대학교서울산학협력단 Manufacturing method of metal composite yarn with enhanced yield strength, electrically conductive metal composite yarn with enhanced yield strength and embroidered circuit using thereof
WO2014190018A1 (en) 2013-05-21 2014-11-27 Stanley Innovation, Inc. A system and method for a human machine interface utilizing near-field quasi-state electrical field sensing technology
KR101999958B1 (en) 2013-05-22 2019-07-15 엘지전자 주식회사 Mobile terminal and control method thereof
US20140357369A1 (en) 2013-06-04 2014-12-04 Microsoft Corporation Group inputs via image sensor system
GB2515104B (en) 2013-06-14 2015-07-22 Suunto Oy A device and a method for assembling an electronic device and a flexible element for facilitating assembly of electronic components
WO2014204323A1 (en) 2013-06-17 2014-12-24 Stretchsense Limited Stretchable fabric sensors
US9423879B2 (en) 2013-06-28 2016-08-23 Chia Ming Chen Systems and methods for controlling device operation according to hand gestures
KR20150006195A (en) 2013-07-08 2015-01-16 엘지전자 주식회사 Wearable device and the method for controlling the same
US20150029050A1 (en) 2013-07-25 2015-01-29 Elwha Llc Wearable radar reflectors
US20150068069A1 (en) 2013-07-27 2015-03-12 Alexander Bach Tran Personally powered appliance
US9529513B2 (en) 2013-08-05 2016-12-27 Microsoft Technology Licensing, Llc Two-hand interaction with natural user interface
US8948839B1 (en) 2013-08-06 2015-02-03 L.I.F.E. Corporation S.A. Compression garments having stretchable and conductive ink
US20150042789A1 (en) 2013-08-07 2015-02-12 Blackberry Limited Determining the distance of an object to an electronic device
EP3033448A1 (en) 2013-08-16 2016-06-22 Footfalls and Heartbeats Limited Method for making electrically conductive textiles and textile sensor
WO2015038684A1 (en) 2013-09-10 2015-03-19 Polyera Corporation Attachable article with signaling, split display and messaging features
CN105431798B (en) 2013-09-12 2019-01-22 英特尔公司 Detect the gesture on the side for calculating equipment
US9383426B2 (en) 2013-09-17 2016-07-05 Farrokh Mohamadi Real-time, two dimensional (2-D) tracking of first responders with identification inside premises
US20150085060A1 (en) 2013-09-20 2015-03-26 Microsoft Corporation User experience for conferencing with a touch screen display
US9459746B2 (en) 2013-09-27 2016-10-04 Sensel, Inc. Capacitive touch sensor system and method
US9001082B1 (en) 2013-09-27 2015-04-07 Sensel, Inc. Touch sensor detector system and method
CN105980965A (en) 2013-10-10 2016-09-28 视力移动科技公司 Systems, devices, and methods for touch-free typing
US20150112158A1 (en) 2013-10-23 2015-04-23 Quanttus, Inc. Health Metrics
US10228801B2 (en) 2013-10-24 2019-03-12 University Of Maryland, Baltimore County System and method for proximity-based position, movement and gesture detection using capacitive sensor arrays
US20150177866A1 (en) 2013-12-23 2015-06-25 Microsoft Corporation Multiple Hover Point Gestures
US9547070B2 (en) 2013-12-26 2017-01-17 International Business Machines Corporation Radar integration with handheld electronic devices
US20150226004A1 (en) 2014-02-10 2015-08-13 Michael C. Thompson Technique to verify underground targets utilizing virtual reality imaging and controlled excavation
US20160349790A1 (en) 2014-02-25 2016-12-01 Medibotics Llc Wearable Computer Display Devices for the Forearm, Wrist, and/or Hand
US9594443B2 (en) 2014-02-26 2017-03-14 Lenovo (Singapore) Pte. Ltd. Wearable device authentication and operation
US9921657B2 (en) * 2014-03-28 2018-03-20 Intel Corporation Radar-based gesture recognition
US20170052618A1 (en) 2014-04-30 2017-02-23 Lg Innotek Co., Ltd. Touch device, wearable device having the same and touch recognition method
US9766715B2 (en) 2014-05-01 2017-09-19 Seiko Epson Corporation Head-mount type display device, control system, method of controlling head-mount type display device, and computer program
US20160090839A1 (en) 2014-11-26 2016-03-31 Larry G. Stolarczyk Method of protecting the health and well-being of coal mine machine operators
US20150323993A1 (en) 2014-05-12 2015-11-12 Immersion Corporation Systems and methods for providing haptic feedback for remote interactions
CN106687885A (en) 2014-05-15 2017-05-17 联邦快递公司 Wearable devices for courier processing and methods of use thereof
US9571727B2 (en) 2014-05-21 2017-02-14 Google Technology Holdings LLC Enhanced image capture
US9575560B2 (en) 2014-06-03 2017-02-21 Google Inc. Radar-based gesture-recognition through a wearable device
US9331422B2 (en) 2014-06-09 2016-05-03 Apple Inc. Electronic device with hidden connector
US10099315B2 (en) 2014-06-27 2018-10-16 Jabil Inc. System, apparatus and method for hybrid function micro welding
US10234952B2 (en) 2014-07-18 2019-03-19 Maxim Integrated Products, Inc. Wearable device for using human body as input mechanism
US9921660B2 (en) 2014-08-07 2018-03-20 Google Llc Radar-based gesture recognition
US9811164B2 (en) 2014-08-07 2017-11-07 Google Inc. Radar-based gesture sensing and data transmission
WO2016023027A1 (en) 2014-08-08 2016-02-11 Orn, Inc. Garment including integrated sensor components and feedback components
US9588625B2 (en) 2014-08-15 2017-03-07 Google Inc. Interactive textiles
US10268321B2 (en) 2014-08-15 2019-04-23 Google Llc Interactive textiles within hard objects
US9778749B2 (en) 2014-08-22 2017-10-03 Google Inc. Occluded gesture recognition
US20160054792A1 (en) 2014-08-22 2016-02-25 Google Inc. Radar-Based Biometric Recognition
US20160055201A1 (en) 2014-08-22 2016-02-25 Google Inc. Radar Recognition-Aided Searches
JP2017536607A (en) 2014-09-30 2017-12-07 アップル インコーポレイテッド Fabric sensing device present application is claims priority to 2014 September 30, U.S. Provisional Patent Application No. 62 / 058,027, filed its entirety by reference herein is herein It incorporated within.
US9600080B2 (en) 2014-10-02 2017-03-21 Google Inc. Non-line-of-sight radar-based gesture recognition
GB201417536D0 (en) 2014-10-03 2014-11-19 Microsoft Corp Adapting quantization
US20160106328A1 (en) 2014-10-16 2016-04-21 Xerox Corporation Determining arterial pulse transit time from time-series signals obtained at proximal and distal arterial sites
US9830073B2 (en) 2014-12-12 2017-11-28 Alpine Electronics, Inc. Gesture assistive zoomable selector for screen
US9552097B2 (en) 2015-01-28 2017-01-24 Qualcomm Incorporated Techniques for discerning between intended and unintended gestures on wearable touch-sensitive fabric
US20160249698A1 (en) 2015-02-27 2016-09-01 Omsignal Inc. Apparatus, systems and methods for optimizing and masking compression in a biosensing garment
US9817109B2 (en) 2015-02-27 2017-11-14 Texas Instruments Incorporated Gesture recognition using frequency modulated continuous wave (FMCW) radar with low angle resolution
US10168785B2 (en) 2015-03-03 2019-01-01 Nvidia Corporation Multi-sensor based user interface
US9983747B2 (en) 2015-03-26 2018-05-29 Google Llc Two-layer interactive textiles
US20160284436A1 (en) 2015-03-26 2016-09-29 Google Inc. Conductive Thread for Interactive Textiles
US20160283101A1 (en) 2015-03-26 2016-09-29 Google Inc. Gestures for Interactive Textiles
US10310620B2 (en) 2015-04-30 2019-06-04 Google Llc Type-agnostic RF signal representations
EP3521853A2 (en) 2015-04-30 2019-08-07 Google LLC Rf-based micro-motion tracking for gesture tracking and recognition
US9693592B2 (en) 2015-05-27 2017-07-04 Google Inc. Attaching electronic components to interactive textiles
US10088908B1 (en) 2015-05-27 2018-10-02 Google Llc Gesture detection and interactions
US20160349845A1 (en) 2015-05-28 2016-12-01 Google Inc. Gesture Detection Haptics and Virtual Tools
US9778353B2 (en) 2015-06-24 2017-10-03 Htc Corporation Handheld device, object positioning method and computer-readable recording medium
WO2017034090A1 (en) 2015-08-26 2017-03-02 주식회사 퓨처플레이 Smart interaction device
CN107066128A (en) 2015-09-15 2017-08-18 新益先创科技股份有限公司 Wearable device exhibiting capacitive sensing function
US10300370B1 (en) 2015-10-06 2019-05-28 Google Llc Advanced gaming and virtual reality control using radar
US20170097684A1 (en) 2015-10-06 2017-04-06 Google, Inc. Compressed Sensing for Gesture Tracking and Recognition with Radar
US9837760B2 (en) 2015-11-04 2017-12-05 Google Inc. Connectors for connecting electronics embedded in garments to external devices
US20170325337A1 (en) 2016-05-03 2017-11-09 Google Inc. Connecting an Electronic Component to an Interactive Textile
US10175781B2 (en) 2016-05-16 2019-01-08 Google Llc Interactive object with multiple electronics modules
WO2017200949A1 (en) 2016-05-16 2017-11-23 Google Llc Interactive fabric
US20180005766A1 (en) 2016-07-01 2018-01-04 Wisconsin Alumni Research Foundation Conductive textiles and related devices
US20180157330A1 (en) 2016-12-05 2018-06-07 Google Inc. Concurrent Detection of Absolute Distance and Relative Movement for Sensing Action Gestures

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110181510A1 (en) * 2010-01-26 2011-07-28 Nokia Corporation Gesture Control
DE102011075725A1 (en) * 2011-05-12 2012-11-15 Robert Bosch Gmbh A method for detecting gestures
US20140324888A1 (en) * 2011-12-09 2014-10-30 Nokia Corporation Method and Apparatus for Identifying a Gesture Based Upon Fusion of Multiple Sensor Signals
WO2014165476A1 (en) * 2013-04-01 2014-10-09 Gollakota Shyamnath Devices, systems, and methods for detecting gestures using wireless communication signals

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017084793A1 (en) * 2015-11-20 2017-05-26 Audi Ag Motor vehicle with at least one radar unit

Also Published As

Publication number Publication date
US20190033981A1 (en) 2019-01-31
CN107430443A (en) 2017-12-01
EP3289434A1 (en) 2018-03-07
US10139916B2 (en) 2018-11-27
US20160320852A1 (en) 2016-11-03

Similar Documents

Publication Publication Date Title
KR101791366B1 (en) Enhanced virtual touchpad and touchscreen
US7725288B2 (en) Method and system for object control
EP2630563B1 (en) Apparatus and method for user input for controlling displayed information
US20190073112A1 (en) Dynamic user interactions for display control and measuring degree of completeness of user gestures
US20120102438A1 (en) Display system and method of displaying based on device interactions
Wang et al. Device-free gesture tracking using acoustic signals
EP2682853A2 (en) Mobile device and operation method control available for using touch and drag
US8049737B2 (en) Dual pointing device and method based on 3-D motion and touch sensors
US20110181510A1 (en) Gesture Control
EP3462297A2 (en) Systems and methods for haptically-enabled conformed and multifaceted displays
US20140002355A1 (en) Interface controlling apparatus and method using force
US20160224235A1 (en) Touchless user interfaces
US8169404B1 (en) Method and device for planary sensory detection
US20110316790A1 (en) Apparatus and method for proximity based input
US9477324B2 (en) Gesture processing
US10139918B2 (en) Dynamic, free-space user interactions for machine control
US20110199342A1 (en) Apparatus and method for providing elevated, indented or texturized sensations to an object near a display device or input detection using ultrasound
US9696795B2 (en) Systems and methods of creating a realistic grab experience in virtual reality/augmented reality environments
US20110191707A1 (en) User interface using hologram and method thereof
Reetz et al. Superflick: a natural and efficient technique for long-distance object placement on digital tables
US9946336B2 (en) Systems and methods for viewport-based augmented reality haptic effects
US20110316679A1 (en) Apparatus and method for proximity based input
US20150363070A1 (en) System and method for interfacing with a device via a 3d display
CN104076986B (en) Touch control method and apparatus for a multi-point touch the terminal
US20120113018A1 (en) Apparatus and method for user input for controlling displayed information

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16725269

Country of ref document: EP

Kind code of ref document: A1

REEP

Ref document number: 2016725269

Country of ref document: EP

NENP Non-entry into the national phase in:

Ref country code: DE