WO2016175251A1 - 発振素子及び発振装置 - Google Patents

発振素子及び発振装置 Download PDF

Info

Publication number
WO2016175251A1
WO2016175251A1 PCT/JP2016/063239 JP2016063239W WO2016175251A1 WO 2016175251 A1 WO2016175251 A1 WO 2016175251A1 JP 2016063239 W JP2016063239 W JP 2016063239W WO 2016175251 A1 WO2016175251 A1 WO 2016175251A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal layer
current
oscillation
layer
oxide film
Prior art date
Application number
PCT/JP2016/063239
Other languages
English (en)
French (fr)
Inventor
公一 芦澤
Original Assignee
株式会社Uacj
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Uacj filed Critical 株式会社Uacj
Publication of WO2016175251A1 publication Critical patent/WO2016175251A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/47Schottky barrier electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/872Schottky diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/88Tunnel-effect diodes
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B7/00Generation of oscillations using active element having a negative resistance between two of its electrodes
    • H03B7/02Generation of oscillations using active element having a negative resistance between two of its electrodes with frequency-determining element comprising lumped inductance and capacitance
    • H03B7/06Generation of oscillations using active element having a negative resistance between two of its electrodes with frequency-determining element comprising lumped inductance and capacitance active element being semiconductor device
    • H03B7/08Generation of oscillations using active element having a negative resistance between two of its electrodes with frequency-determining element comprising lumped inductance and capacitance active element being semiconductor device being a tunnel diode

Definitions

  • the present invention relates to an oscillation element and an oscillation device using a Schottky barrier diode.
  • a barrier generated at the junction of a metal and a semiconductor is called a Schottky barrier, and a diode using this Schottky barrier is a Schottky barrier diode.
  • the Schottky barrier diode exhibits a rectifying action in which a large amount of current flows from the semiconductor to the metal in the forward bias, and a small amount of current flows from the metal to the semiconductor in the reverse bias.
  • the forward bias shows a rectifying action in which a large amount of current flows from the metal to the semiconductor, and the reverse bias causes a small amount of current to flow from the semiconductor to the metal.
  • Such a Schottky barrier includes a metal and an oxide film, a hydroxide film or a mixed film formed on the surface thereof (hereinafter, these three films are collectively referred to as “metal oxide film”). It also occurs in joining. This is because the metal oxide film is an oxygen-deficient or oxygen-rich semiconductor, or a metal-rich or metal-deficient semiconductor. In general, it is said that if the metal oxide film is an oxygen-deficient type or a metal-excess type, it is an n-type semiconductor, and if it is an oxygen-excess type or a metal-deficient type, it is a p-type semiconductor.
  • the metal oxide film is an insulating film
  • a large amount of current does not flow directly through the metal oxide film, but as the film thickness is changed from thicker to thinner.
  • the thickness of the depletion layer which is an insulating layer in the film, is changed from thicker to thinner, a phenomenon in which a large amount of current flows directly in the metal oxide film, that is, a tunnel phenomenon starts to occur. Due to this tunnel phenomenon, a current based on the tunnel phenomenon flows in addition to the current based on the rectifying action described above at the junction between the metal and the metal oxide film.
  • Japanese Patent Publication Japanese Laid-Open Patent Publication No. 2004-297092 (Released on October 21, 2004)” Japanese Patent Gazette “Japanese Patent Laid-Open Publication No. 2007-48613 (published February 22, 2007)” Japanese Patent Publication “JP 2013-12755 Publication (January 17, 2013)”
  • the present inventor has found that in such a junction between a metal and a metal oxide film in which two kinds of currents flow, oscillation is observed in the current flowing through the junction, and this current oscillation is below a predetermined high current density. The expression was confirmed.
  • Patent Documents 1 to 3 there is a prior art document (see Patent Documents 1 to 3) that has been studied to investigate the current-voltage characteristic representing the current characteristic regarding the characteristic of the current flowing through the junction between the metal and the metal oxide film, There is no report that the above-described current oscillation has occurred in this document.
  • the present invention has been completed on the basis of the above knowledge by the present inventor, and an object thereof is to provide an oscillation element that oscillates with a simple element structure.
  • An oscillation element includes a metal layer, a tunnel insulating layer that is Schottky-bonded to the metal layer and causes a tunnel phenomenon, and an electrode for applying a voltage between the metal layer and the tunnel insulating layer A current flowing through the Schottky junction by applying a voltage in a direction in which the metal layer is reverse-biased with respect to the electrode to reduce a current flowing through the Schottky junction to a predetermined high current density or less. Oscillate.
  • the present invention has the effect of oscillating current with a simple element structure.
  • (A) is a figure which shows the reverse bias voltage applied to the said sample element
  • (b) is a figure which shows the electric current which flowed through the said sample element.
  • FIG. 6 is a diagram showing current-voltage characteristics of the sample element of Example 2. It is a figure which shows the electric current which flowed through the said sample element.
  • (A) is a diagram showing a circuit in which a lithium ion battery and a load resistor are connected
  • (b) is a diagram showing a circuit in which a current oscillator is added to the circuit shown in (a)
  • (c) is a current diagram.
  • (d) is a figure which shows the inverter circuit using the current oscillator shown in (c).
  • FIG. 1 is a cross-sectional view schematically showing a main structure of an oscillation element 1 according to an embodiment of the present invention.
  • the oscillation element 1 includes a first metal layer (metal layer) 2, a tunnel insulating layer 3, and a second metal layer (electrode) 4.
  • the first metal layer 2, the tunnel insulating layer 3, and the second metal layer 4 are stacked in this order.
  • the first metal layer 2 and the tunnel insulating layer 3 form a Schottky barrier at the junction. That is, the first metal layer 2 and the tunnel insulating layer 3 are in Schottky junction. Due to this Schottky junction, the oscillation element 1 exhibits the rectifying action described in the background art.
  • the tunnel insulating layer 3 and the second metal layer 4 are in ohmic junction without forming a Schottky barrier at the junction.
  • the second metal layer 4 functions as an electrode attached to the tunnel insulating layer 3.
  • the second metal layer 4 only needs to function as an electrode of the tunnel insulating layer 3.
  • the above-described second metal layer 4 is laminated with the first metal layer 2 and the tunnel insulating layer 3. It is not limited to the structure.
  • the second metal layer 4 only needs to have a structure capable of applying a voltage between the first metal layer 2 and the tunnel insulating layer 3.
  • the second metal layer 4 is generally made of a metal such as platinum. However, the second metal layer 4 only needs to be able to form an ohmic junction with the tunnel insulating layer 3. A conductive material can also be used.
  • junction between the metal layer and the insulating layer is a Schottky junction or an ohmic junction depends on the height of the barrier generated in the energy band structure between the metal layer and the insulating layer. For this reason, each material is selected so that the 1st metal layer 2 and the tunnel insulating layer 3 may carry out a Schottky junction. For the selection, for example, each work function or electron affinity that determines the height of the barrier of the energy band structure is used. The same applies to the ohmic junction between the tunnel insulating layer 3 and the second metal layer 4.
  • the tunnel insulating layer 3 causes the tunnel phenomenon described in the background art. Due to this tunnel phenomenon, a tunnel current also flows through the Schottky junction between the first metal layer 2 and the tunnel insulating layer 3. The current based on the rectifying action described above flows beyond the Schottky barrier, whereas the tunnel current passes through the Schottky barrier, that is, tunnels quantum mechanically.
  • the oscillation element 1 uses the first metal layer 2 and the second metal layer 4 as two electrodes, and outputs a current I12 when a voltage V11 is applied between the two electrodes.
  • the tunnel insulating layer 3 is a p-type semiconductor
  • the sign of the bias voltage applied between the first metal layer 2 and the second metal layer 4 is different from the case of a p-type semiconductor described below. The reverse relationship.
  • the voltage V ⁇ b> 11 is applied between the first metal layer 2 and the second metal layer 4, which are two electrodes, in the oscillation element 1.
  • the application direction of the voltage V11 includes a case where a negative voltage (hereinafter referred to as “forward bias voltage”) V11 is applied to the first metal layer 2 with respect to the second metal layer 4, and the second metal layer 4 is In some cases, a positive voltage (hereinafter referred to as “reverse bias voltage”) V11 is applied to the first metal layer 2 as a reference.
  • the forward bias voltage V11 is applied to the first metal layer 2 with the second metal layer 4 as a reference, the voltage in the direction in which the first metal layer 2 becomes forward biased with respect to the second metal layer 4 is applied. Is applied, and a reverse bias voltage is applied to the first metal layer 2 with reference to the second metal layer 4, the first metal layer 2 is reversely biased with respect to the second metal layer 4. A voltage is applied.
  • the height of the Schottky barrier is reduced with respect to carriers (electrons or holes) flowing from the tunnel insulating layer 3 side to the first metal layer 2 side.
  • the height of the Schottky barrier from the first metal layer 2 side to the tunnel insulating layer 3 side remains the same. Therefore, carriers can be easily moved only from the tunnel insulating layer 3 side to the first metal layer 2 side. That is, a large amount of rectification characteristic current (hereinafter referred to as “forward current”) flows from the tunnel insulating layer 3 side to the first metal layer 2 side.
  • the tunnel current passes through the Schottky barrier and flows from the tunnel insulating layer 3 side to the first metal layer 2 side.
  • the current I12 obtained by adding the tunnel current and the forward current flows from the tunnel insulating layer 3 side to the first metal layer 2 side.
  • each of the rectification characteristic current and the tunnel current basically flows as in the case where the forward bias voltage V11 is applied.
  • reverse bias voltage V11 raises the height of the Schottky barrier against carriers (electrons or holes) flowing from the tunnel insulating layer 3 side to the first metal layer 2 side.
  • the height of the Schottky barrier from the first metal layer 2 side to the tunnel insulating layer 3 side remains the same. Accordingly, it becomes difficult to move carriers from the tunnel insulating layer 3 side to the first metal layer 2 side. That is, a very small amount of rectification characteristic current (hereinafter referred to as “reverse current”) flows from the first metal layer 2 side to the tunnel insulating layer 3 side.
  • the tunnel current passes through the Schottky barrier and flows from the first metal layer 2 side to the tunnel insulating layer 3 side.
  • the current I12 obtained by adding the tunnel current and the reverse current flows from the first metal layer 2 side to the tunnel insulating layer 3 side.
  • the feature of the present invention is that, when the reverse bias voltage V11 is applied, the current I12 flowing from the first metal layer 2 side to the tunnel insulating layer 3 side oscillates in a predetermined high current density region.
  • the oscillation element 1 by applying the reverse bias voltage V11 and setting it to a predetermined high current density or less, output of a current I12 oscillating at a high frequency, that is, an alternating current is realized. Further, this current oscillation is realized by a simple laminated structure as described above without using a complicated circuit configuration by using a principle that has not been known so far. Furthermore, if the oscillation element 1 is used, it is expected that an extremely downsized oscillation device can be made.
  • FIG. 2 is a schematic configuration diagram of a power control unit 100 used in an electric vehicle.
  • the oscillation element 1 is built in an inverter 103 that converts a direct current into an alternating current.
  • the power control unit 100 includes a battery 101, a DC / DC converter 102, an inverter 103, a control circuit 104, a motor 105, and a TG (output shaft torque) 106.
  • the DC / DC converter 102 converts the output voltage of the battery 101 as necessary, and the inverter 103 converts a direct current into an alternating current.
  • the oscillation element 1 can take the process of converting this direct current into alternating current.
  • the motor 105 rotates using the alternating current output from the inverter 103.
  • the control circuit 104 detects the output voltage of the DC / DC converter 102 and the output voltage of the inverter 103, and controls the conversion process of the inverter 103 by detecting the speed and position of the motor 105 using the TG 106.
  • the DC / DC converter 102 is a power supply device that applies a voltage to the oscillation element 1.
  • a positive voltage that is, a reverse bias voltage
  • the motor 105 may be selected so that it can rotate according to the frequency of the alternating current output from the oscillation element 1, or the frequency of the alternating current output from the oscillation element 1 is converted to a frequency that can be used by the motor 105.
  • a conversion circuit may be provided.
  • the DC voltage can be increased by increasing the number of batteries in series.
  • the battery 101 can be directly connected to the inverter 103 in which the oscillation element 1 is built in without boosting the voltage of the battery 101 using the DC / DC converter 102. Therefore, the DC / DC converter 102 becomes unnecessary, and the number of parts of the power control unit 100 can be reduced.
  • the oscillation element 1 includes an electronic component that oscillates at a specific frequency, for example, a clock signal source in a digital circuit such as a microprocessor, other televisions, videos, electrical equipment, telephones, copiers, cameras, Use in timing circuits in a wide range of fields such as speech synthesizers and communication equipment is also expected.
  • a clock signal source in a digital circuit such as a microprocessor, other televisions, videos, electrical equipment, telephones, copiers, cameras, Use in timing circuits in a wide range of fields such as speech synthesizers and communication equipment is also expected.
  • FIG. 14 is a diagram for explaining an inverter circuit that converts a direct current of a battery into an alternating current.
  • the oscillation element 1 is used in a circuit in which the lithium ion battery 201 and the load resistor 202 shown in FIG.
  • the current flowing through the load resistor 202 is a direct current. If this direct current can be converted into an alternating current, the alternating current will flow through the load resistor 202.
  • FIG. 14B is a circuit in which a current oscillator 1A composed of two oscillation elements 1 having the same characteristics is added to the circuit shown in FIG.
  • the oscillating element 1A-1 and the oscillating element 1A-2 are directly connected at the anodes, and this connection configuration allows the positive and negative directions of the alternating current to flow. Can be used without being affected by the rectifying property of the oscillation element 1.
  • the oscillation element 1A-1 and the oscillation element 1A-2 may be directly connected to each other at the cathodes. If each of the oscillation element 1A-1 and the oscillation element 1A-2 has a structure in which a single aluminum oxide film is sandwiched between two platinum layers, the respective frequencies and phases are equal to each other. Can be realized.
  • FIG. 14 (d) shows an inverter circuit capable of boosting the DC voltage of the circuit shown in FIG. 14 (a).
  • the lithium ion battery 201 and the current oscillator 1 ⁇ / b> A are directly connected to the primary side of the transformer 203.
  • various loads can be connected to the secondary side of the transformer 203, but here the load resistance 204 is used.
  • the alternating voltage generated at both ends of the primary side can be freely boosted and lowered by the turns ratio of the primary side and the secondary side of the transformer 203.
  • the output voltage of the lithium ion battery 201 is 3.5 V
  • the battery capacity is 1 Ah
  • the maximum current amplitude (peak) of the oscillation element 1A-1 and the oscillation element 1A-2 was 1 Ah
  • a simulation was performed for a case where the toe peak) was 2200 A
  • the oscillation frequency was 2.5 kHz
  • the turns ratio of the transformer 203 was 1:10
  • the load resistance 204 was 400 ⁇ .
  • the effective value of the alternating voltage applied to the load resistor 204 was 34 V
  • the effective value of the alternating current was 0.085 A
  • the effective value of the alternating current power was 2.9 W.
  • the volume of the transformer 203 is much higher than the volume of the transformer for 50 Hz and 60 Hz which are Japanese commercial power supply frequencies.
  • the feature of the inverter circuit is that it can be made smaller.
  • FIG. 3 is a cross-sectional view showing the structure of the sample element used for the evaluation. As shown in FIG. 3, there is an aluminum oxide film 6 formed by anodic oxidation treatment on the surface of an aluminum plate (Al) 5, and a platinum plating layer 7 is laminated on the surface of the aluminum oxide film 6. Sample element 8 was produced.
  • Aluminum plate 5 (first metal layer 2): The material is 1085 (Al is 99.85%, mainly containing Fe and Si as other elements), the size is 50 mm ⁇ 50 mm, and the thickness is about 0.1 mm.
  • the sample element 8 was manufactured and evaluated in an AFM (Atomic Force Microscope) contacting mode using a scanning probe microscope, model number JSPM-5200, manufactured by JEOL.
  • the cantilever 18 with the tip of the probe 17 is made by Budgetsensors, model number Tap190E-G, the tip diameter is about 25 nm, 5 ⁇ m thick chrome plating, and the surface of the chrome plating is further plated with 10 ⁇ m thick platinum. .
  • the resonance frequency was 190 kHz. Since the tip diameter of the platinum plating layer 7 at the tip of the probe 17 in the sample element 8 is in contact with the aluminum oxide film 6 is about 25 nm, the contact area between the aluminum oxide film 6 and the platinum plating layer 7 is about 450 nm 2. Met.
  • Aluminum oxide film 6 (tunnel insulating layer 3): A voltage of +5 to +10 V is applied to the aluminum plate 5 for 1 minute in the atmosphere to the platinum plating layer 7 (second metal layer 4) at the tip of the probe 17 to anodic oxidation By the treatment, an aluminum oxide film 6 was grown on the surface of the aluminum plate 5. Since several nanometers to several tens of nanometers of water adhere to the surface of the aluminum plate 5 in the atmosphere, the aluminum oxide film 6 can be grown by this treatment. The thickness of the aluminum oxide film 6 was 10 nm or less. If the aluminum oxide film 6 is a natural oxide film, the aluminum oxide film 6 has a thickness of at least 0.5 nm.
  • Sample element 8 was evaluated as follows. The sample element 8 was evaluated in the atmosphere at room temperature.
  • FIG. 4 is a sample production apparatus and an evaluation apparatus for evaluating the sample element 8 as described above, and a schematic diagram thereof is shown. As shown in FIG. 4, the sample element 8 is arranged on a stage 16 installed on a support base 15 of the evaluation apparatus. The back surface of the aluminum plate 5 of the sample element 8 is in contact with the stage 16, and the platinum plating layer 7 at the tip of the probe 17 is in contact with the aluminum oxide film 6 disposed on the aluminum plate 5.
  • a power supply device 19 capable of applying a forward bias voltage and a reverse bias voltage to the sample element 8 and an ammeter 20 are connected in series.
  • a voltmeter 21 is connected between the cantilever 18 and the stage 16.
  • a current I12 (see FIG. 1) flowing through the sample element 8 can be measured using the ammeter 20, and a voltage V11 (see FIG. 1) applied to the sample element 8 can be measured using the voltmeter 21.
  • the internal resistance of the ammeter 20 is sufficiently low with respect to the measurement system, and the internal resistance of the voltmeter 21 is sufficiently high with respect to the measurement system.
  • FIG. 5 shows the result of evaluating the sample element 8 using the evaluation apparatus shown in FIG.
  • the horizontal axis in FIG. 5 indicates the bias voltage (V) applied to the sample element 8, and the vertical axis indicates the current (nA) flowing through the sample element 8.
  • the average current density of the current flowing through the sample element 8 when the reverse bias voltage was 0.012 V to 0.078 V was calculated.
  • the contact area between the platinum plating layer 7 and the aluminum oxide film 6 at the tip of the probe 17 was about 450 nm 2 , the contact area was set to 450 nm 2 . From FIG. 5, it can be read that when the reverse bias voltage is 0.2 V, the current flowing through the sample element 8 is 0.88 ⁇ 10 ⁇ 6 A. Therefore, the platinum plating layer 7 and the aluminum plate at the tip of the probe 17
  • the resistance of the aluminum oxide film 6 between 5 and 5 was 2.3 ⁇ 10 5 ⁇ , and the sheet resistance was 1.0 ⁇ 10 ⁇ 6 ⁇ cm 2 .
  • the current density of the current flowing through the sample element 8 was calculated to be 2.0 ⁇ 10 5 Acm ⁇ 2 .
  • the average current of the oscillating current flowing through the sample element 8 was calculated from the value read from FIG.
  • the density was 4.0 ⁇ 10 4 Acm ⁇ 2 .
  • the current density of 40 kA per square cm is extremely large, and it is expected that the current density can be applied to a power device that handles a large current.
  • the average current density of the current flowing through the sample element 8 when the reverse bias voltage is 0.012 V to 0.078 V is calculated, the average current density range is 1.2 ⁇ 10 4 Acm ⁇ 2. It was ⁇ 7.8 ⁇ 10 4 Acm ⁇ 2 .
  • FIG. 6 shows the observation results when the evaluation apparatus shown in FIG. 4 is used for evaluation
  • FIG. 7 shows the observation results after the evaluation using the evaluation apparatus shown in FIG. 4, and
  • FIG. 6A to 8A show the reverse bias voltage
  • FIG. 6B shows the current flowing through the sample element 8.
  • the horizontal axis is 50 ⁇ S per square
  • the vertical axis is 0.1 nA per square.
  • the horizontal axis is 250 ⁇ S per square, and the vertical axis is 0.1 ⁇ A per square.
  • (b) of each figure shows the electric current which flowed through the sample element 8, as mentioned above.
  • FIG. 6 it was observed that the current flowing through the sample element 8 oscillated as shown in (b) when a reverse bias voltage of 0.032 V was applied as shown in (a).
  • the oscillation frequency was about 2.5 kHz.
  • FIG. 7 it was observed that the current flowing through the sample element 8 oscillated as shown in (b) when a reverse bias voltage of 0.032 V was applied as shown in (a). .
  • the oscillation frequency was about 2.5 kHz.
  • FIG. 8 shows an observation result in a state where the platinum plating layer 7 at the tip of the probe 17 is separated from the aluminum oxide film 6, but no current flowing through the sample element 8 was observed.
  • Example 2 Following the evaluation of Example 1 described above.
  • FIG. 3 is a cross-sectional view showing the structure of the sample element used for the evaluation. As shown in FIG. 3, there is an aluminum oxide film 6 formed by anodic oxidation treatment on the surface of an aluminum plate (Al) 5, and a platinum plating layer 7 is laminated on the surface of the aluminum oxide film 6. Sample element 8 was produced.
  • Aluminum plate 5 (first metal layer 2): The material is 1085 (Al is 99.85%, mainly containing Fe and Si as other elements), the size is 50 mm ⁇ 50 mm, and the thickness is about 0.1 mm. As a pretreatment of the aluminum plate 5, the material surface was smoothed by electrolytic polishing.
  • the sample element 8 was manufactured and evaluated in an AFM (Atomic Force Microscope) contacting mode using a scanning probe microscope, model number JSPM-5200, manufactured by JEOL.
  • the cantilever 18 with the probe 17 attached to the tip was manufactured by Budgetsensors, model No. Tap190E-G, the tip diameter was about 25 nm, 5 ⁇ m thick chromium plating, and the surface of the chromium plating was further plated with 10 ⁇ m thick platinum.
  • the resonance frequency was 190 kHz.
  • the tip diameter at which the platinum plating layer 7 at the tip of the probe 17 contacts the aluminum oxide film 6 is about 25 nm, but not only the tip of the probe 17 but also the probe peripheral portion near the tip is oxidized with aluminum.
  • the film 6 grew and the contact area between the platinum plating layer 7 and the aluminum oxide film 6 increased. As a result, the contact area between the aluminum oxide film 6 and the platinum plating layer 7 became about 730 nm 2 .
  • Aluminum oxide film 6 (tunnel insulating layer 3): A voltage of +5 to +60 V is applied to the aluminum plate 5 in the atmosphere against the platinum plating layer 7 (second metal layer 4) at the tip of the probe 17 for 5 to 300 seconds. An aluminum oxide film 6 was grown on the surface of the aluminum plate 5 by anodic oxidation treatment. Since several nanometers to several tens of nanometers of water adhere to the surface of the aluminum plate 5 in the atmosphere, the aluminum oxide film 6 can be grown by this treatment. By changing the conditions of anodic oxidation, aluminum oxide, aluminum hydroxide, or a mixture thereof grows on the surface of the aluminum plate 5, and is collectively referred to as aluminum oxide here. In this embodiment, the aluminum oxide film 6 formed by anodic oxidation is a p-type semiconductor.
  • the thickness of the aluminum oxide film 6 was 100 nm or less. If the aluminum oxide film 6 is a natural oxide film, the aluminum oxide film 6 has a thickness of at least 0.5 nm.
  • the electrode area of the aluminum plate (first metal layer 2) varies depending on the thickness of the aluminum oxide film 6, but is reduced or enlarged to 0.6 to 200 times the tip area of the probe 17.
  • the aluminum oxide film 6 is an n-type semiconductor
  • the following method was used. 100 ml of an electrolytic solution of 0.5 mol / dm 3 boric acid and 0.5 mol / dm 3 sodium hydroxide (pH 8.95) was prepared, and a drop was dropped on the aluminum plate 5 in contact with the tip of the probe 17 with a dropper. It was.
  • Aluminum oxide film 6 (tunnel insulating layer 3): A voltage of +5 to +60 V is applied to the aluminum plate 5 in the atmosphere for 5 to 300 seconds to the platinum plating layer 7 at the tip of the probe 17, and the aluminum plate is subjected to anodic oxidation treatment. An aluminum oxide film 6 was grown on the surface of 5. After the aluminum oxide film was formed, the electrolyte was removed with distilled water and dried.
  • the platinum plating layer 7 becomes the first metal layer 2 of the oscillation element 1
  • the aluminum plate 5 becomes the second metal layer 4 of the oscillation element
  • the aluminum oxide film 6 formed by the anodic oxidation treatment is an n-type semiconductor. became.
  • the characteristics of the oscillation element 1 obtained here were almost the same as those of the p-type semiconductor oscillation element 1.
  • Sample element 8 was evaluated as follows. The sample element 8 was evaluated in the atmosphere at room temperature.
  • FIG. 4 is a sample production apparatus and an evaluation apparatus for evaluating the sample element 8 as described above, and a schematic diagram thereof is shown. As shown in FIG. 4, the sample element 8 is arranged on a stage 16 installed on a support base 15 of the evaluation apparatus. The back surface of the aluminum plate 5 of the sample element 8 is in contact with the stage 16, and the platinum plating layer 7 at the tip of the probe 17 is in contact with the aluminum oxide film 6 disposed on the aluminum plate 5.
  • a power supply device 19 capable of applying a forward bias voltage and a reverse bias voltage to the sample element 8 and an ammeter 20 are connected in series.
  • a voltmeter 21 is connected between the cantilever 18 and the stage 16.
  • a current I12 (see FIG. 1) flowing through the sample element 8 can be measured using the ammeter 20, and a voltage V11 (see FIG. 1) applied to the sample element 8 can be measured using the voltmeter 21.
  • the internal resistance of the ammeter 20 is sufficiently low with respect to the measurement system, and the internal resistance of the voltmeter 21 is sufficiently high with respect to the measurement system.
  • FIG. 12 shows the result of evaluating the sample element 8 using the evaluation apparatus shown in FIG.
  • the horizontal axis of FIG. 12 indicates the bias voltage (V) applied to the sample element 8, and the vertical axis indicates the current (nA) flowing through the sample element 8.
  • the average current density of the current flowing through the sample element 8 when the reverse bias voltage is about 0 V to about 0.08 V was calculated.
  • the contact area between the platinum plating layer 7 and the aluminum oxide film 6 at the tip of the probe 17 is about 730 nm 2
  • the thickness of the aluminum oxide film 6 is 50 nm
  • the electrode expansion ratio of the aluminum plate is about 25 times. Therefore, the contact area was set to 18,000 nm 2 .
  • the reverse bias voltage in which current oscillation is observed when applied, for example, when the reverse bias voltage is in the range of about 0 V to about 0.08 V, the flow into the sample element 8 is calculated from the value read from FIG.
  • the effective value of the oscillation current was almost constant 3.2 ⁇ 10 3 Acm ⁇ 2 regardless of the value of the reverse bias voltage.
  • the amplitude of the current is constant regardless of the internal resistance of the element. This is an extremely advantageous characteristic for the application of the inverter, and the current density of 3.2 kA per square cm is extremely large and large. It is expected that the present invention can be applied to power devices that handle current.
  • the basis for the effective value (3.2 ⁇ 10 3 Acm ⁇ 2 ) of the oscillating current flowing through the sample element 8 is as follows.
  • FIG. 13 shows an observation result in a state where an evaluation is performed using the evaluation apparatus shown in FIG.
  • FIG. 13 shows the current flowing through the sample element 8.
  • the horizontal axis is 250 ⁇ S per square
  • the vertical axis is 0.5 ⁇ A per square.
  • the tunnel insulating layer 3 is a p-type semiconductor
  • the holes near the junction are the first metal. It diffuses to the layer 2 side, recombines with the electrons of the first metal layer 2, and disappears. For this reason, the hole density of the tunnel insulating layer 3 is remarkably reduced in the vicinity of the junction. As a result, as shown in FIG. 9, a depletion region A in which holes are depleted is generated in the tunnel insulating layer 3. On the other hand, holes still exist in the carrier region B excluding the depletion region A. In FIG. 9, since the switch 13 is off, the forward bias voltage and the reverse bias voltage are applied between the first metal layer 2 and the second metal layer 4 of the oscillation element 1 from the power supply device 14. It is not in a state.
  • the current oscillation of the sample element 8 was stopped when the reverse bias voltage reached about 0.08V.
  • This stop is thought to be caused by the breakdown phenomenon of the Schottky junction.
  • the breakdown voltage of the Schottky junction is about 0.08 V, which is the voltage at which this breakdown phenomenon occurs.
  • the stop of the current oscillation of the sample element 8 is considered to be caused by avalanche breakdown.
  • q is the charge of the electron (1.602 ⁇ 10 ⁇ 19 C)
  • m is the mass of the electron (9.109 ⁇ 10 ⁇ 31 kg)
  • h is the Planck's constant (6.626 ⁇ 10 ⁇ 34 J ⁇ s). ).
  • R dep is a large value according to the above equation (2).
  • R car is considered to be a small value. That is, R dep >> R car (4) It is.
  • the current I12 obtained by adding the tunnel current and the forward current flows from the tunnel insulating layer 3 side to the first metal layer 2 side.
  • ⁇ Oscillation frequency> The oscillation frequency obtained by this evaluation was about 2.5 kHz. The reason for this frequency was estimated, and the oscillation frequency was calculated based on the estimation.
  • ⁇ 0 is the dielectric constant of vacuum (8.854 ⁇ 10 ⁇ 12 [F / m])
  • ⁇ r is the relative dielectric constant of the aluminum oxide film (estimated as 8.5)
  • 5.0 ⁇ 10 6 [ ⁇ m] (estimated value of the specific resistance of the aluminum oxide film produced by the anodic oxidation treatment).
  • 5.0 ⁇ 10 6 [ ⁇ m]
  • d dep is 2.5 ⁇ 10 ⁇ 9 [m]
  • the calculated value of f is as shown in the above equation (9).
  • the present invention can also be expressed as follows. That is, the oscillation element according to the present invention applies a voltage between the metal layer, the tunnel insulating layer that is Schottky-bonded to the metal layer, and causes a tunnel phenomenon, and the metal layer and the tunnel insulating layer. And applying a voltage in a direction in which the metal layer is reverse-biased with respect to the electrode to reduce a current flowing through the Schottky junction to a predetermined high current density or less, thereby reducing the Schottky junction. Oscillates the flowing current.
  • the oscillation element can be oscillated by setting the current flowing through the Schottky junction between the metal layer and the tunnel insulating layer to a predetermined high current density or less.
  • an oscillation element that oscillates with a simple element structure including a metal layer, a tunnel insulating layer, and an electrode.
  • the predetermined high current density is a current density region where the oscillation occurs, which is determined by the configuration of the oscillation element, that is, the material of each of the metal layer and the tunnel insulating layer and the thickness of the tunnel insulating layer.
  • This current density region is a region having a current density much higher than the current density of a current flowing through a general Schottky diode or the like.
  • the current density region can be specified by observing the presence or absence of oscillation while passing a current through the oscillation element and changing the current density.
  • the tunnel insulating layer is preferably an anodic oxide film formed on the metal layer by an anodic oxidation treatment, an anodic hydroxide film, or a mixed film of an anodic oxide film and an anodic hydroxide film.
  • the metal layer is an aluminum layer
  • the tunnel insulating layer is either an aluminum oxide film covering the surface of the aluminum layer, an aluminum hydroxide film, or a mixed film of an aluminum oxide film and an aluminum hydroxide film. Preferably there is.
  • the metal layer is a platinum layer
  • the electrode is an aluminum layer
  • the tunnel insulating layer is an aluminum oxide film, an aluminum hydroxide film, or an aluminum oxide film and an aluminum hydroxide film covering the surface of the aluminum layer. It is preferable that it is either a mixed film with a film.
  • the average current density range of the current region where the current flowing through the Schottky junction oscillates is preferably 7.8 ⁇ 10 4 Acm ⁇ 2 or less.
  • the thickness of the tunnel insulating layer is preferably 0.5 nm or more and 100 nm or less.
  • the frequency at which the current flowing through the Schottky junction oscillates is preferably 2 kHz or more and 3 kHz or less.
  • the oscillation device includes the oscillation element and a power supply device that applies a voltage in a direction in which the metal layer is reverse-biased with respect to the electrode.
  • an oscillation device using an oscillation element that oscillates with a simple element structure can be realized.
  • the present invention relates to an inverter that converts a direct current into an alternating current, an electronic component that oscillates at a specific frequency, for example, a clock signal source in a digital circuit such as a microprocessor, other televisions, videos, electrical equipment, telephones, and copying machines. It is also expected to be used in timing circuits in a wide range of fields such as cameras, speech synthesizers, and communication equipment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

第1金属層(2)と、第1金属層(2)とショットキー接合され、トンネル現象を発現させるトンネル絶縁層(3)と、第1金属層(2)とトンネル絶縁層(3)との間に電圧を印加するための第2金属層(4)とを備え、第2金属層(4)に対して第1金属層(2)が逆バイアスとなる方向に電圧を印加して所定の高電流密度以下とすることにより電流発振させる発振素子(1)である。

Description

発振素子及び発振装置
 本発明は、ショットキー障壁ダイオードを用いた発振素子及び発振装置に関する。
 金属と半導体との接合で生じる障壁はショットキー障壁(Schottky Barrier)と呼ばれ、このショットキー障壁を利用したダイオードがショットキー障壁ダイオードである。ショットキー障壁ダイオードは、半導体がp型の場合、順方向バイアスでは半導体から金属へ多量の電流が流れ、逆方向バイアスでは金属から半導体へ少量の電流が流れる整流作用を示し、また、半導体がn型の場合、順方向バイアスでは金属から半導体へ多量の電流が流れ、逆方向バイアスでは半導体から金属へ少量の電流が流れる整流作用を示す。
 このようなショットキー障壁は、金属とその表面に形成された酸化膜、水酸化膜またはそれらの混合膜(以下、これら3つの膜を総称して「金属酸化膜」と略記する。)との接合においても生じる。金属酸化膜は、酸素欠乏型または酸素過剰型の半導体、あるいは、金属過剰型または金属欠乏型の半導体であるからである。一般に、金属酸化膜が酸素欠乏型または金属過剰型であればn型半導体、酸素過剰型または金属欠乏型であればp型半導体になるといわれている。
 ところで、金属酸化膜は絶縁膜であるため、通常、金属酸化膜中を電流が直接大量に流れることはないが、その膜厚を厚い方から薄い方へ変えていくにしたがって、あるいは、金属酸化膜中の絶縁層である空乏層の厚さを厚い方から薄い方へ変えていくにしたがって、金属酸化膜中を電流が直接大量に流れる現象、すなわち、トンネル現象が起こり始める。このトンネル現象により、金属と金属酸化膜との接合においては、上述した整流作用に基づく電流に加え、トンネル現象に基づく電流も流れることになる。
日本国公開特許公報「特開2004-297092号公報(2004年10月21日公開)」 日本国公開特許公報「特開2007-48613号公報(2007年2月22日公開)」 日本国公開特許公報「特開2013-12755号公報(2013年1月17日公開)」
 本発明者は、このような2種の電流が流れる、金属と金属酸化膜との接合において、この接合を流れる電流に発振がみられることを見出し、この電流発振は所定の高電流密度以下において発現することを確認した。
 これまで、金属と金属酸化膜との接合を流れる電流の特性に関し、当該電流特性を表わす電流-電圧特性の検討にまで踏み込んだ先行技術文献(特許文献1~3を参照)はあるものの、いずれの文献においても上述したような電流発振が発現したとの報告はなされていない。
 本発明は、本発明者による上記の知見を基にして完成されたものであり、簡単な素子構造により電流発振する発振素子を提供することを目的とする。
 本発明に係る発振素子は、金属層と、上記金属層とショットキー接合され、トンネル現象を発現させるトンネル絶縁層と、上記金属層と上記トンネル絶縁層との間に電圧を印加するための電極とを備え、上記電極に対して上記金属層が逆バイアスとなる方向に電圧を印加して上記ショットキー接合に流れる電流を所定の高電流密度以下とすることにより、上記ショットキー接合に流れる電流を発振させる。
 本発明は、簡単な素子構造により、電流発振するという効果を奏する。
本発明の実施形態に係る発振素子の要部構造を模式的に示す断面図である。 上記発振素子を用いた、電気自動車に用いられるパワーコントロールユニットの概略構成図である。 評価に用いたサンプル素子の構造を示す断面図である。 実施例1のサンプル素子を作製し、評価する装置の模式図である。 上記サンプル素子の電流-電圧特性を示す図である。 (a)は、上記サンプル素子に印加された逆バイアス電圧を示す図、(b)は、上記サンプル素子を流れた電流を示す図である。 (a)は、上記サンプル素子に印加された逆バイアス電圧を示す図、(b)は、上記サンプル素子を流れた電流を示す図である。 (a)は、上記サンプル素子に印加された逆バイアス電圧を示す図、(b)は、上記サンプル素子を流れた電流を示す図である。 上記発振素子のトンネル絶縁層に生じる空乏領域及びキャリア領域を示す模式図である。 上記発振素子のトンネル絶縁層に生じる空乏領域及びキャリア領域を示す模式図である。 上記発振素子のトンネル絶縁層に生じる空乏領域及びキャリア領域を示す模式図である。 実施例2のサンプル素子の電流-電圧特性を示す図である。 上記サンプル素子を流れた電流を示す図である。 (a)は、リチウムイオン電池と負荷抵抗とが接続された回路を示す図、(b)は、(a)に示す回路に電流発振器が追加された回路を示す図、(c)は、電流発振器の構成を示す図、(d)は、(c)に示す電流発振器を用いたインバータ回路を示す図である。
 以下、本発明の実施の形態について、詳細に説明する。なお、同一または類似の部分には同一または類似の符号を付し、図面で同一または類似の符号が付いたものは、説明を省略する場合もある。また、本実施形態に記載されている構成の寸法、材質、形状、相対配置、加工法等はあくまで一実施形態に過ぎず、これらによってこの発明の範囲が限定解釈されるべきではない。さらに図面は模式的なものであり、寸法の比率、形状は現実のものとは異なる。
 〔発振素子1の構造〕
 図1は、本発明の一実施形態に係る発振素子1の要部構造を模式的に示す断面図である。図1に示すように、発振素子1は、第1金属層(金属層)2と、トンネル絶縁層3と、第2金属層(電極)4と、を備えている。第1金属層2、トンネル絶縁層3及び第2金属層4は、この順で、積層されている。
 第1金属層2とトンネル絶縁層3とは、その接合部にショットキー障壁を形成する。すなわち、第1金属層2とトンネル絶縁層3とはショットキー接合している。このショットキー接合により、発振素子1は、背景技術で述べた整流作用を示す。
 一方、トンネル絶縁層3と第2金属層4とは、その接合部にショットキー障壁を形成することなく、オーミック接合している。このオーミック接合により、第2金属層4は、トンネル絶縁層3に付けられた電極として機能する。第2金属層4は、トンネル絶縁層3の電極として機能すればよく、このため、発振素子1は、上述した、第2金属層4が、第1金属層2及びトンネル絶縁層3と積層される構造に限定されるものではない。要は、第2金属層4は、第1金属層2とトンネル絶縁層3との間に電圧を印加することができる構造であればよい。
 また、第2金属層4は、一般的には白金等の金属が使用されるが、トンネル絶縁層3との間でオーミック接合することができればよいのであって、カーボンのような、金属以外の導電材料を用いることもできる。
 なお、金属層と絶縁層との接合が、ショットキー接合となるか、オーミック接合となるかは、金属層と絶縁層との間におけるエネルギーバンド構造に生じる障壁の高さに依存する。このため、第1金属層2とトンネル絶縁層3とがショットキー接合するよう、各々の材料が選定されている。その選定には、例えば、エネルギーバンド構造の障壁の高さを決める各々の仕事関数や電子親和力が用いられる。トンネル絶縁層3と第2金属層4とのオーミック接合についても同様である。
 さらに、トンネル絶縁層3は、背景技術で述べたトンネル現象を起こす。このトンネル現象により、第1金属層2とトンネル絶縁層3とのショットキー接合にはトンネル電流も流れる。上述した整流作用に基づく電流は、ショットキー障壁を超えて流れるものであるのに対し、トンネル電流は、ショットキー障壁を透過する、すなわち、量子力学的にトンネリングするものである。
 このようにして、発振素子1は、第1金属層2及び第2金属層4を2つの電極とし、この2つの電極間に電圧V11が印加されることにより、電流I12を出力する。
 以下、トンネル絶縁層3がp型半導体である場合を例として説明する。トンネル絶縁層3がn型半導体である場合であれば、第1金属層2と第2金属層4との間に印加されるバイアス電圧の正負が、以下に説明するp型半導体の場合とは逆の関係となる。
 〔発振素子1の動作〕
 次に、トンネル絶縁層3がp型半導体である、発振素子1の動作について説明する。図1に示したように、発振素子1には、2つの電極である、第1金属層2と第2金属層4との間に電圧V11が印加される。電圧V11の印加方向として、第2金属層4を基準として第1金属層2に負の電圧(以下、「順バイアス電圧」と呼ぶ。)V11が印加される場合と、第2金属層4を基準として第1金属層2に正の電圧(以下、「逆バイアス電圧」と呼ぶ。)V11が印加される場合と、がある。すなわち、第2金属層4を基準として第1金属層2に順バイアス電圧V11が印加される場合であれば、第2金属層4に対して第1金属層2が順バイアスとなる方向に電圧が印加され、第2金属層4を基準として第1金属層2に逆バイアス電圧が印加される場合であれば、第2金属層4に対して第1金属層2が逆バイアスとなる方向に電圧が印加される。
 最初に、順バイアス電圧V11が印加される場合について説明する。第1金属層2と第2金属層4との間に順バイアス電圧が印加されると、上述の整流特性に基づく電流(以下、単に「整流特性電流」と呼ぶ。)及びトンネル電流の各々が流れる。
 順バイアス電圧の印加により、トンネル絶縁層3側から第1金属層2側へ流れ込むキャリア(電子または正孔)に対し、ショットキー障壁の高さが低下する。一方、第1金属層2側からトンネル絶縁層3側へのショットキー障壁の高さはそのままである。したがって、トンネル絶縁層3側から第1金属層2側へのみキャリアの移動が容易となる。すなわち、トンネル絶縁層3側から第1金属層2側へ多量の整流特性電流(以下、「順方向電流」と呼ぶ。)が流れる。
 トンネル電流は、上述したとおり、ショットキー障壁を透過し、トンネル絶縁層3側から第1金属層2側へ流れる。
 以上により、発振素子1に順バイアス電圧V11が印加される場合、トンネル電流と順方向電流とが足し合わされた電流I12が、トンネル絶縁層3側から第1金属層2側へ流れることになる。
 次に、逆バイアス電圧V11が印加される場合について説明する。逆バイアス電圧V11が印加される場合であっても、順バイアス電圧V11が印加される場合と同様、基本的には、整流特性電流及びトンネル電流の各々が流れる。
 逆バイアス電圧V11の印加により、トンネル絶縁層3側から第1金属層2側へ流れ込むキャリア(電子または正孔)に対し、ショットキー障壁の高さが上昇する。一方、第1金属層2側からトンネル絶縁層3側へのショットキー障壁の高さはそのままである。したがって、トンネル絶縁層3側から第1金属層2側へのキャリアの移動が難しくなる。すなわち、第1金属層2側からトンネル絶縁層3側へ極少量の整流特性電流(以下、「逆方向電流」と呼ぶ。)が流れる。
 トンネル電流は、上述したとおり、ショットキー障壁を透過し、第1金属層2側からトンネル絶縁層3側へ流れる。
 以上により、発振素子1に逆バイアス電圧V11が印加される場合、トンネル電流と逆方向電流とが足し合わされた電流I12が、第1金属層2側からトンネル絶縁層3側へ流れることになる。
 ここで、本発明の特徴部分は、逆バイアス電圧V11の印加時、所定の高電流密度領域において、第1金属層2側からトンネル絶縁層3側へ流れる電流I12が発振する点にある。
 発振素子1では、逆バイアス電圧V11を印加し、所定の高電流密度以下とすることにより、高周波数で発振する電流I12、すなわち、交流電流の出力が実現される。また、この電流発振は、これまで知られていなかった原理を用いることにより、複雑な回路構成を必要とすることなく上述したような単純な積層構造により実現される。さらに、発振素子1を用いれば、格段に小型化された発振装置を作り上げることができることが期待される。
 次に、発振素子1の2つの応用例について考察する。なお、下記の2つの応用例は、本発明者による研究評価により得られた知見に基づき、発振素子1の実用化を考察したものである点に留意すべきである。
 〔発振素子1の応用例〕
 (応用例1)
 発振素子1の応用例1について説明する。図2は、電気自動車に用いられるパワーコントロールユニット100の概略構成図である。発振素子1は、直流電流を交流電流に変換するインバータ103に内蔵される。
 パワーコントロールユニット100は、バッテリ101と、DC/DCコンバータ102と、インバータ103と、制御回路104と、モータ105と、TG(出力軸トルク)106と、から構成されている。バッテリ101の出力電圧を、必要に応じて、DC/DCコンバータ102が電圧変換し、インバータ103が直流電流を交流電流に変換する。この直流電流を交流電流に変換する処理を発振素子1が担うことができる。
 インバータ103から出力される交流電流を用いてモータ105が回転する。制御回路104は、DC/DCコンバータ102の出力電圧及びインバータ103の出力電圧を検出すると共に、TG106を用いてモータ105の速度・位置等を検出することにより、インバータ103の変換処理を制御する。
 ここで、DC/DCコンバータ102は、発振素子1に電圧を印加する電源装置となる。発振素子1には、DC/DCコンバータ102の出力電圧により、第2金属層4に対して第1金属層2に正の電圧、すなわち、逆バイアス電圧が印加される。この逆バイアス電圧の印加により、発振素子1に流れる電流が発振する。モータ105は、発振素子1から出力される交流電流の周波数により回転可能なものが選択されても良いし、発振素子1から出力される交流電流の周波数をモータ105が利用可能な周波数に変換する変換回路を設けても良い。
 なお、バッテリ101においてはバッテリの直列数を多くすれば直流電圧を高くすることが可能である。これにより、DC/DCコンバータ102を用いてバッテリ101の電圧を昇圧することなく、バッテリ101を発振素子1が内蔵されたインバータ103に直接接続することができる。したがって、DC/DCコンバータ102が不要となり、パワーコントロールユニット100の部品点数を削減することができる。
 上述したインバータの他、発振素子1には、固有の周波数で発振する電子部品、例えば、マイクロプロセッサなどのデジタル回路におけるクロック信号源、その他、テレビ、ビデオ、電装機器、電話機、複写機、カメラ、音声合成装置、通信機器といった幅広い分野でのタイミング回路における利用も期待される。
 (応用例2)
 発振素子1の応用例2について説明する。図14は、電池の直流電流を交流電流に変換するインバータ回路を説明するための図である。
 例えば、図14の(a)に示すリチウムイオン電池201と負荷抵抗202とが接続された回路に、発振素子1を用いる場合を考えてみる。図14の(a)に示した回路では、負荷抵抗202に流れる電流は直流電流である。この直流電流を交流電流に変換することができれば、負荷抵抗202に交流電流が流れることになる。
 図14の(b)は、図14の(a)に示した回路に、特性が同一の2つの発振素子1から構成された電流発振器1Aを追加した回路である。電流発振器1Aは、図14の(c)に示すとおり、発振素子1A-1と発振素子1A-2とがアノード同士で直接接続されており、この接続構成により、交流電流の正方向、負方向が発振素子1の整流性の影響を受けずに使用することができる。もちろん、発振素子1A-1と発振素子1A-2とはカソード同士で直接接続されてもよい。なお、発振素子1A-1と発振素子1A-2とがそれぞれ、一層のアルミニウム酸化皮膜を2つの白金層で挟んだ構造であれば、それぞれの周波数及び位相が揃うので、理想的な電流発振器1Aを実現することができる。
 ただし、図14の(b)に示した回路では、負荷抵抗202に交流電流を流すことはできるが、交流電圧の実効値は、図14の(a)に示した回路の直流電圧と同じ値である。
 次に、図14の(d)に、図14の(a)に示した回路の直流電圧を昇圧可能なインバータ回路を示す。図14の(d)に示すとおり、リチウムイオン電池201及び電流発振器1Aがトランス203の一次側に直接接続されている。一方、トランス203の二次側には様々な負荷を接続することが可能であるが、ここでは負荷抵抗204とした。トランス203の一次側と二次側の巻数比により一次側両端に発生する交流電圧を自由に昇圧、降圧することができる。
 ここで、図14の(d)に示したインバータ回路において、リチウムイオン電池201の出力電圧を3.5V、電池容量を1Ah、発振素子1A-1及び発振素子1A-2の最大電流振幅(ピークトゥピーク)を2200A、発振周波数2.5kHz、トランス203の巻数比を1:10、負荷抵抗204を400Ωとした場合についてシミュレーションを行った。シミュレーション結果によれば、負荷抵抗204にかかる交流電圧の実効値は34V、交流電流の実効値は0.085A、交流電力の実効値は2.9Wであった。
 これに対し、比較例として、図14の(a)に示した回路において、リチウムイオン電池201に4Ωの負荷抵抗202を接続した場合についてもシミュレーションを行った。シミュレーション結果によれば、負荷抵抗202にかかる直流電圧は3.5V、直流電流は0.85A、負荷抵抗202での直流電力は3.0Wであった。
 両者を比較すると、負荷抵抗202での消費電力はほぼ同じであったが、直流と交流の違いはあるものの、負荷抵抗202にかかる電圧は10倍であった。
 また、トランス203の巻数比を変化させることにより、トランス203の二次側の電圧を変化させることができる点も、図14の(d)に示したインバータ回路の特徴点である。
 さらに、発振素子1A-1及び発振素子1A-2の発振周波数が2.5kHzであるので、トランス203の容積は、日本の商用電源周波数である50Hz、60Hz用トランスの容積と比較して、格段に小さくすることができる点も、上記インバータ回路の特徴点である。
 このように、発振素子1を用いることにより、ごく簡単な回路で直流を交流に変換するインバータ回路を実現可能であると考えられる。
 以下、2つの実施例によって本発明をより詳細に説明するが、本発明は実施例に限定されるものではない。
 <実施例1>
 (サンプル素子の作製)
 評価に用いる発振素子のサンプルを作製した。図3は、評価に用いたサンプル素子の構造を示す断面図である。図3に示すように、アルミニウム板(Al)5の表面にアノード酸化処理により形成したアルミニウム酸化皮膜6があり、そして、アルミニウム酸化皮膜6の面上に、白金メッキ層7が積層された構成のサンプル素子8を作製した。
 サンプル素子8の各層についてさらに詳しく述べれば下記のとおりである。
 アルミニウム板5(第1金属層2):材質は1085(Alは99.85%、他元素として主にFe、Si含有)、サイズは50mm×50mm、厚さは0.1mm程度。
 図4に示すように、サンプル素子8は、日本電子製、走査型プローブ顕微鏡、型番JSPM-5200を用い、AFM(Atomic Force Microscope)コンタクティングモードで作製し、かつ評価を行った。プローブ17が先端についたカンチレバー18には、Budgetsensors社製、型番Tap190E-G、先端径は約25nm、5μm厚のクロムメッキとクロムメッキの表面にさらに10μm厚の白金メッキがされたものを用いた。共振周波数は190kHzであった。サンプル素子8においてプローブ17の先端にある白金メッキ層7がアルミニウム酸化皮膜6に接触する先端径は、約25nmであることから、アルミニウム酸化皮膜6と白金メッキ層7との接触面積は約450nmであった。
 アルミニウム酸化皮膜6(トンネル絶縁層3):プローブ17の先端にある白金メッキ層7(第2金属層4)に対し大気中でアルミニウム板5に+5~+10Vの電圧を1分間印加し、アノード酸化処理により、アルミニウム板5の表面にアルミニウム酸化皮膜6を成長させた。大気中ではアルミニウム板5の表面には数nm~数十nmの水が付着しているため、本処理でアルミニウム酸化皮膜6を成長させることができる。アルミニウム酸化皮膜6の厚さは10nm以下であった。なお、アルミニウム酸化皮膜6が自然酸化皮膜であれば、アルミニウム酸化皮膜6は最低0.5nmの厚さとなる。
 (サンプル素子の評価方法)
 下記のとおり、サンプル素子8を評価した。サンプル素子8の評価は、大気中、室温で行った。図4は、上述に示すようにサンプル作製装置であると共にサンプル素子8を評価する評価装置でもあり、その模式図を示す。図4に示すように、サンプル素子8は、評価装置の支持台15に設置されたステージ16上に配置される。サンプル素子8のアルミニウム板5の裏面がステージ16と接触し、アルミニウム板5上に配置されたアルミニウム酸化皮膜6に、プローブ17の先端にある白金メッキ層7が接触される。
 カンチレバー18とステージ16との間には、サンプル素子8に順バイアス電圧及び逆バイアス電圧を印加可能な電源装置19及び、電流計20が直列接続されている。一方、カンチレバー18とステージ16との間には電圧計21が接続されている。電流計20を用いてサンプル素子8を流れる電流I12(図1を参照)を測定し、電圧計21を用いてサンプル素子8に印加された電圧V11(図1を参照)を測定することができる。なお、電流計20の内部抵抗は測定系に対して十分低く、電圧計21の内部抵抗は測定系に対して十分高い。
 (評価結果)
 図4に示した評価装置を用いて、サンプル素子8を評価した結果を図5に示す。図5の横軸は、サンプル素子8に印加されるバイアス電圧(V)、その縦軸は、サンプル素子8を流れる電流(nA)を示す。
 図5に示すように、サンプル素子8に順バイアス電圧を印加した場合では(横軸のマイナス側)、サンプル素子8に流れる電流が順バイアス電圧と共にほぼ直線的に(線形的に)増加した。これに対し、サンプル素子8に逆バイアス電圧を印加した場合では(横軸のプラス側)、逆バイアス電圧が0.012V~0.078Vにある時、サンプル素子8に流れる電流に大きな発振が観察された。そして、電流の発振幅は-0.1μA~0.45μAという広範囲のものであった。なお、逆バイアス電圧が0.012V~0.078Vを除く範囲では、順バイアス電圧の印加時と同様、逆バイアス電圧と共にほぼ直線的に増加した。
 ここで、逆バイアス電圧が0.012V~0.078Vである時の、サンプル素子8に流れる電流の平均電流密度を算出した。上述したとおり、プローブ17の先端にある白金メッキ層7とアルミニウム酸化皮膜6との接触面積は約450nmであったので、接触面積を450nmとした。図5から、逆バイアス電圧が0.2Vである時、サンプル素子8に流れた電流は0.88×10-6Aであると読み取れるので、プローブ17の先端にある白金メッキ層7とアルミニウム板5との間のアルミニウム酸化皮膜6における抵抗は2.3×10Ω、面抵抗であれば1.0×10-6Ωcmとなった。これより、逆バイアス電圧が0.2Vである時、サンプル素子8に流れる電流の電流密度は2.0×10Acm-2と算出された。これに対し、電流発振が観察された逆バイアス電圧の印加時、例えば逆バイアス電圧が0.05Vである時、図5から読み取った値から算出すると、サンプル素子8に流れた発振電流の平均電流密度は4.0×10Acm-2となった。平方cm当たり40kAの電流密度は極めて大きく、大電流を取り扱うパワー素子に適用され得ると期待される。
 同様に、逆バイアス電圧が0.012V~0.078Vである時の、サンプル素子8に流れる電流の平均電流密度を算出したところ、その平均電流密度範囲は、1.2×10Acm-2~7.8×10Acm-2であった。
 (電流発振の観察)
 次に、サンプル素子8に印加された逆バイアス電圧及び、サンプル素子8を流れた発振電流を、オシロスコープ(Tektronix社製)を用いて観察した。図6は、図4に示した評価装置を用いた評価を行っている状態での観察結果、図7は、図4に示した評価装置を用いた評価の終了後の観察結果、図8は、プローブ17の先端にある白金メッキ層7をアルミニウム酸化皮膜6から離した状態での観察結果である。また、図6~図8の各図の(a)は逆バイアス電圧を示し、(b)はサンプル素子8を流れた電流を示している。各図の(a)では、横軸は1マスが50μS、縦軸は1マスが0.1nAである。また、各図の(b)では、横軸は1マスが250μS、縦軸は1マスが0.1μAである。なお、各図の(b)は、上述したとおり、サンプル素子8を流れた電流を示すものである。
 なお、各図の(a)には約20kHzの交流やピーク性の波形が測定されているが、この波形は本評価に用いた測定系もしくは測定装置に起因するノイズであり、実際にサンプル素子8へ印加したバイアス電圧値(直流)は測定された交流波形の平均値から読み取ることができる。このノイズは電流測定の結果には影響していないことを確認した。
 図6では、(a)に示すように0.032Vの逆バイアス電圧が印加された状態で、(b)に示すようにサンプル素子8を流れた電流が発振することが観察された。そして、その発振周波数は約2.5kHzであった。また、図7においても、(a)に示すように0.032Vの逆バイアス電圧が印加された状態で、(b)に示すようにサンプル素子8を流れた電流が発振することが観察された。そして、その発振周波数も約2.5kHzであった。なお、図8は、プローブ17の先端にある白金メッキ層7をアルミニウム酸化皮膜6から離した状態での観察結果であったが、サンプル素子8に流れる電流は観察されなかった。
 本発明者は、さらに研究を進めるため、上述の実施例1の評価に続き、次の実施例2の評価を行った。
 <実施例2>
 (サンプル素子の作製)
 評価に用いる発振素子のサンプルを作製した。図3は、評価に用いたサンプル素子の構造を示す断面図である。図3に示すように、アルミニウム板(Al)5の表面にアノード酸化処理により形成したアルミニウム酸化皮膜6があり、そして、アルミニウム酸化皮膜6の面上に、白金メッキ層7が積層された構成のサンプル素子8を作製した。
 サンプル素子8の各層についてさらに詳しく述べれば下記のとおりである。
 アルミニウム板5(第1金属層2):材質は1085(Alは99.85%、他元素として主にFe、Si含有)、サイズは50mm×50mm、厚さは0.1mm程度。アルミニウム板5の前処理として電解研磨による材料表面の平滑化を行った。
 図4に示すように、サンプル素子8は、日本電子製、走査型プローブ顕微鏡、型番JSPM-5200を用い、AFM(Atomic Force Microscope)コンタクティングモードで作製し、かつ評価を行った。プローブ17が先端についたカンチレバー18にはBudgetsensors社製、型番Tap190E-G、先端径は約25nm、5μm厚のクロムメッキとクロムメッキの表面にさらに10μm厚の白金メッキがされたものを用いた。共振周波数は190kHzであった。サンプル素子8においてプローブ17の先端にある白金メッキ層7がアルミニウム酸化皮膜6に接触する先端径は、約25nmであるが、プローブ17の先端部だけでなく先端に近いプローブ周縁部にもアルミニウム酸化皮膜6が成長して白金メッキ層7とアルミニウム酸化皮膜6との接触面積が増大し、その結果、アルミニウム酸化皮膜6と白金メッキ層7との接触面積は約730nmとなった。
 アルミニウム酸化皮膜6(トンネル絶縁層3):プローブ17の先端にある白金メッキ層7(第2金属層4)に対し大気中でアルミニウム板5に+5~+60Vの電圧を5~300秒間印加し、アノード酸化処理により、アルミニウム板5の表面にアルミニウム酸化皮膜6を成長させた。大気中ではアルミニウム板5の表面には数nm~数十nmの水が付着しているため、本処理でアルミニウム酸化皮膜6を成長させることができる。アノード酸化の条件を変更することにより、アルミニウム板5の表面には、アルミニウム酸化物またはアルミニウム水酸化物、あるいはこれらの混合物が成長するが、ここではアルミニウム酸化物と総称する。この実施例ではアノード酸化処理により形成したアルミニウム酸化皮膜6はp型半導体になる。
 アルミニウム酸化皮膜6の厚さは100nm以下であった。なお、アルミニウム酸化皮膜6が自然酸化皮膜であれば、アルミニウム酸化皮膜6は最低0.5nmの厚さとなる。アルミニウム板(第1金属層2)の電極面積は、アルミニウム酸化皮膜6の厚さにより異なるが、プローブ17の先端面積の0.6~200倍に縮小または拡大される。
 なお、アルミニウム酸化皮膜6をn型半導体にする場合は次のような方法で行った。0.5mol/dmのホウ酸と0.5mol/dmの水酸化ナトリウム(pH8.95)との電解液を100ml作製し、スポイトで一滴をプローブ17の先端の接触したアルミニウム板5に垂らした。
 アルミニウム酸化皮膜6(トンネル絶縁層3):プローブ17の先端にある白金メッキ層7に対し大気中でアルミニウム板5に+5~+60Vの電圧を5~300秒間印加し、アノード酸化処理により、アルミニウム板5の表面にアルミニウム酸化皮膜6を成長させた。アルミニウム酸化皮膜生成後、蒸留水で電解液を取り除き乾燥した。
 この場合には、白金メッキ層7が発振素子1の第1金属層2となり、アルミニウム板5が発振素子の第2金属層4となり、アノード酸化処理により形成したアルミニウム酸化皮膜6はn型半導体となった。ここで得られた発振素子1の特性はp型半導体の発振素子1とほぼ同等だった。
 (サンプル素子の評価方法)
 下記のとおり、サンプル素子8を評価した。サンプル素子8の評価は、大気中、室温で行った。図4は、上述に示すようにサンプル作製装置であると共にサンプル素子8を評価する評価装置でもあり、その模式図を示す。図4に示すように、サンプル素子8は、評価装置の支持台15に設置されたステージ16上に配置される。サンプル素子8のアルミニウム板5の裏面がステージ16と接触し、アルミニウム板5上に配置されたアルミニウム酸化皮膜6に、プローブ17の先端にある白金メッキ層7が接触される。
 カンチレバー18とステージ16との間には、サンプル素子8に順バイアス電圧及び逆バイアス電圧を印加可能な電源装置19及び、電流計20が直列接続されている。一方、カンチレバー18とステージ16との間には電圧計21が接続されている。電流計20を用いてサンプル素子8を流れる電流I12(図1を参照)を測定し、電圧計21を用いてサンプル素子8に印加された電圧V11(図1を参照)を測定することができる。なお、電流計20の内部抵抗は測定系に対して十分低く、電圧計21の内部抵抗は測定系に対して十分高い。
 (評価結果)
 図4に示した評価装置を用いて、サンプル素子8を評価した結果を図12に示す。図12の横軸は、サンプル素子8に印加されるバイアス電圧(V)、その縦軸は、サンプル素子8を流れる電流(nA)を示す。
 図12に示すように、サンプル素子8に順バイアス電圧を印加した場合では(横軸のマイナス側)、サンプル素子8に流れる電流が順バイアス電圧と共にほぼ直線的に(線形的に)増加した。これに対し、サンプル素子8に逆バイアス電圧を印加した場合では(横軸のプラス側)、逆バイアス電圧が約0V~約0.08Vにある時、サンプル素子8に流れる電流に大きな発振が観察された。そして、電流の発振幅は-0.8μA~1.1μAという広範囲のものであった。なお、逆バイアス電圧が約0V~約0.08Vを除く範囲では、順バイアス電圧の印加時と同様、逆バイアス電圧と共にほぼ直線的に増加した。
 ここで、逆バイアス電圧が約0V~約0.08Vである時の、サンプル素子8に流れる電流の平均電流密度を算出した。上述したとおり、プローブ17の先端にある白金メッキ層7とアルミニウム酸化皮膜6との接触面積は約730nm、アルミニウム酸化皮膜6の厚さが50nmでアルミニウム板の電極拡面率が約25倍だったので、接触面積を18,000nmとした。
 図12から、逆バイアス電圧が0.2Vである時、サンプル素子8に流れた電流は0.6×10-6Aであると読み取れるので、プローブ17の先端にある白金メッキ層7とアルミニウム板5との間のアルミニウム酸化皮膜6における抵抗は3.3×10Ω、アルミニウム板側電極の面抵抗であれば5.9×10-5Ωcmとなった。この値は発振素子1の内部抵抗ということができる。また、逆バイアス電圧が0.2Vである時、サンプル素子8に流れる電流の電流密度は3.3×10Acm-2と算出された。
 これに対し、電流発振が観察された逆バイアス電圧の印加時、例えば逆バイアス電圧が約0V~約0.08Vの範囲である時、図12から読み取った値から算出すると、サンプル素子8に流れた発振電流の実効値は逆バイアス電圧の値に関らずほぼ一定の3.2×10Acm-2となった。このバイアス電圧の範囲では電流の振幅が素子の内部抵抗にかかわらず一定であるが、これはインバータの用途に極めて優位な特性であり、かつ平方cm当たり3.2kAの電流密度は極めて大きく、大電流を取り扱うパワー素子に適用され得ると期待される。
 なお、サンプル素子8に流れた発振電流の実効値(3.2×10Acm-2)の根拠は次のとおりである。
 図12において、発振電流のピークトゥピークの振幅は1.6μA(-0.8~0.8μA)であり、その実効値は1.6/2/√2=0.567μAとなる。接触面積が18,000nmであるので、電流密度は0.567×10-6/18,000×10-14=3.2×10A/cmとなる。
 (電流発振の観察)
 次に、サンプル素子8に印加された逆バイアス電圧及び、サンプル素子8を流れた発振電流を、オシロスコープ(Tektronix社製)を用いて観察した。図13は、図4に示した評価装置を用いた評価を行っている状態での観察結果である。また、図13はサンプル素子8を流れた電流を示している。図13では、横軸は1マスが250μS、縦軸は1マスが0.5μAである。
 図13では、約0V~約0.08Vの逆バイアス電圧が印加された状態で、サンプル素子8を流れた電流が発振することが観察された。そして、その発振周波数は2kHz~3kHzであった。なお、プローブ17の先端にある白金メッキ層7をアルミニウム酸化皮膜6から離した状態では、サンプル素子8に流れる電流は観察されなかった。
 <電流発振のメカニズムの考察>
 次に、発振素子1の電流発振のメカニズムについて考察する。なお、下記のメカニズムはあくまでも仮説であり、メカニズムの全容を解明するには、今後より深い研究を行う必要がある。
 まず、電流発振のメカニズムの考察に入る前に、上述のショットキー接合の特性に関し、本発明者の知見を述べておく。
 第1金属層2とトンネル絶縁層3とが接合すると、トンネル絶縁層3(ここでは、トンネル絶縁層3はp型半導体とする。)の正孔のうち、接合近傍の正孔は第1金属層2側へ拡散し、第1金属層2の電子と再結合し、消滅する。このため、接合近傍ではトンネル絶縁層3の正孔密度が著しく減少する。その結果、図9に示すように、トンネル絶縁層3には正孔が欠乏する空乏領域Aが発生する。一方、空乏領域Aを除くキャリア領域Bには正孔は依然存在する。なお、図9では、スイッチ13はオフであることから、電源装置14から発振素子1の第1金属層2と第2金属層4との間には順バイアス電圧も逆バイアス電圧も印加はされていない状態である。
 図10に示すように、スイッチ13をオンすることにより、第1金属層2と第2金属層4との間に電源装置14から順バイアス電圧を印加すると、第1金属層2側からトンネル絶縁層3側へ電子が流れる一方、トンネル絶縁層3側から第1金属層2側へ正孔が流れ、この電子と正孔とが接合近傍で再結合することにより、発振素子1に電流が流れる。順バイアス電圧の印加により、接合近傍に、第1金属層2からは電子が、トンネル絶縁層3からは正孔が、それぞれ供給されるので、空乏領域Aは縮み、その厚みは減少またはほとんど消滅する。
 実際には上記の順バイアス電圧印加によるショットキー接合の電流に加えて、同方向に流れるトンネル電流Jが加算されて全体の電流になる。
 これに対し、図11に示すように、スイッチ13をオンすることにより、第1金属層2と第2金属層4との間に電源装置14から逆バイアス電圧を印加すると、第1金属層2の電子は電源装置14側に引っ張られる一方、トンネル絶縁層3の正孔は第2金属層4側に引っ張られる。つまり、図10に示した順バイアス電圧を印加した場合とは電子及び正孔ともに逆方向に流れる。その結果、接合近傍では電子と正孔との再結合が減少するので、発振素子1に流れる電流が減少する。また、接合近傍から正孔が掃き出されるので、空乏領域Aが広がる。この空乏領域Aは正孔欠乏により絶縁体となる。また、空乏領域Aには、正孔欠乏により、少量のドナー(負電荷)が取り残され、空乏領域Aの第2金属層4側には負電荷が蓄積する。また、第1金属層2には、電子欠乏により、正電荷が蓄積する。これにより、空乏領域Aの両側に正の電荷及び負の電荷がそれぞれ蓄積されたコンデンサーが形成される。
 上述の<実施例2>の(評価結果)で述べたとおり、サンプル素子8の電流発振は、逆バイアス電圧が約0.08Vに達した時点で停止した。この停止は、ショットキー接合の降伏現象が起こったものと考えられる。この降伏現象が起こった電圧である約0.08Vがショットキー接合の降伏電圧である。ショットキー接合の降伏現象には二種類あり、一つはアバランシェ降伏であり、もう一つはツェナー降伏である。前者は接合のキャリア密度が低い時に起こり、後者はキャリア密度が高い時に起こる。サンプル素子8の電流発振の停止は、アバランシェ降伏に起因するものと考える。
 逆バイアス電圧を印加した場合、図12の例においては約0.08V以上の逆バイアス電圧にて、トンネル電流Jのみが流れる。
 次に、本発明者により考察された電流発振のメカニズムについて説明する。
 上述したとおり、トンネル絶縁層3の厚さがおおよそ10nmよりも薄くなると、トンネル絶縁層3にトンネル電流が流れる。トンネル電流J(A)は、第1金属層2-第2金属層4間の電圧V(V)、トンネル抵抗R(Ω)、トンネル障壁幅d(m)、トンネル障壁高さφ(eV)を用いれば、次の近似式が成り立つ。
=V/R                      (1)
 ただし、
Figure JPOXMLDOC01-appb-M000001
 ここで、qは電子の電荷(1.602×10-19C)、mは電子の質量(9.109×10-31kg)、hはプランク定数(6.626×10-34J・s)である。
 図9~図11に示したとおり、発振素子1では、アルミニウム酸化皮膜6が、空乏領域A及びキャリア領域Bの2つの領域に分けられる。空乏領域Aの抵抗をRdep、キャリア領域Bの抵抗をRcarとすると、
=Rdep+Rcar                   (3)
となる。
 空乏領域Aではキャリア濃度が低くトンネル障壁φが高いため、上記(2)式によりRdepは大きい値になるが、キャリア領域Bにおいてはキャリア濃度が高くトンネル障壁φが低いため、上記(2)式によりRcarは小さい値になると考えられる。すなわち、
dep>>Rcar                     (4)
である。
 よって、上記(3)式は、
≒Rdep                       (5)
とすることができる。以下、上記(5)式に基づき、トンネル抵抗としてRdepを用いて、説明する。
 発振素子1に順バイアス電圧が印加される場合、上述したとおり、トンネル電流と順方向電流とが足し合わされた電流I12が、トンネル絶縁層3側から第1金属層2側へ流れることになる。
 一方、発振素子1に逆バイアス電圧が印加される場合、電流発振が生じた。その理由を次のように推定した。トンネル電流Jが空乏領域Aを通過する際、空乏領域Aの両端に発生する電圧をVdepとすると、
=Vdep/Rdep                   (6)
 また、空乏領域Aの幅をddepとすると、次のことがいえる。
(a)発振素子1に逆バイアス電圧が印加されると、図11に示したとおり、ddepが厚くなる。ddepが厚くなると、Vdepが増加することとなり、Rdepが増加する。
(b)Rdepが増加すると、上記(1)式から、Jが減少する。
(c)Jが減少すると、Vdepが減少する。
(d)Vdepが減少すると、ddepが薄くなり、Rdepが減少する。
(e)Rdepが減少すると、上記(1)式から、Jが増加する。
 すなわち、Vdepの増加によりJが減少し、Vdepの減少によりJが増加する、といったステップが繰り返され、電流発振が生じるものと考えられる。
 <発振周波数>
 今回の評価により得られた発振周波数は約2.5kHzであった。この周波数になった理由について推定し、その推定に基づいて発振周波数を計算した。
 発振周波数fは、時定数τ=CRの逆数で、f=1/τであると考えられる。
 空乏領域Aの容量をC、空乏領域Aの体積固有抵抗Rにおける比抵抗をρとすると、
C=εεS/ddep                   (7)
=ρddep/S                     (8)
であるので、
f=1/C/R=1/ε/ε/ρ=2.66×10[Hz] (9)
と計算でき、実測値2.5kHzとほぼ一致した。
 ここで、εは真空の誘電率(8.854×10-12[F/m])、εはアルミニウム酸化皮膜の比誘電率(8.5と推定)、ρ=5.0×10[Ωm](アノード酸化処理により生成したアルミニウム酸化皮膜の比抵抗の推定値)である。
 空乏領域Aの容量Cは、
C=εεS/ddep=5.4×10-16[F]
となる。ただし、ddepを2.5×10-9[m]、S=1.8×10-14[m]とした。
 なお、空乏領域Aにおける抵抗には二通りの考え方ができる。一つはトンネル抵抗Rdepであり、もう一つは空乏領域Aにおける体積固有抵抗Rである。
 Rdepについては、図12に示したI-V測定の直線の傾きから求めた実測値から、Rdep=3.3×10[Ω]である。これによりfを計算すると次のとおりになる。
f=1/C/Rdep=5.6×10[Hz]       (10)
 Rについては、R=ρddep/Sであるので、ρ=5.0×10[Ωm]、ddepを2.5×10-9[m]、S=1.8×10-14[m]とすると、R=6.94×1011[Ω]となる。fの計算値は上記(9)式に示したとおりである。
 RdepとRとには6桁の違いがあり、上記(9)式及び(10)式から分かるように計算されるfも6桁異なった。したがって、実際の発振周波数はRで決定されると考えられる。なぜならば、Rを用いて計算したfが実測した周波数とほぼ一致したこと、また、上記(2)式から分かるように、トンネル抵抗Rdepはトンネル障壁幅dとトンネル障壁高さφから決定されるものであり、ρの影響を受けない値だからである。
 本発明は上述した実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、実施形態に開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
 なお、本発明は、以下のようにも表現することができる。すなわち、本発明に係る発振素子は、金属層と、上記金属層とショットキー接合され、トンネル現象を発現させるトンネル絶縁層と、上記金属層と上記トンネル絶縁層との間に電圧を印加するための電極とを備え、上記電極に対して上記金属層が逆バイアスとなる方向に電圧を印加して上記ショットキー接合に流れる電流を所定の高電流密度以下とすることにより、上記ショットキー接合に流れる電流を発振させる。
 上記構成によれば、金属層とトンネル絶縁層とのショットキー接合に流れる電流を所定の高電流密度以下とすることにより、発振素子に電流発振させることができる。
 それゆえ、金属層、トンネル絶縁層及び電極からなる簡単な素子構造により、電流発振する発振素子を実現することができる。
 なお、所定の高電流密度とは、上記発振素子の構成、すなわち金属層及びトンネル絶縁層それぞれの材質や、トンネル絶縁層の厚さによって定まり、上記発振が起こる電流密度領域である。この電流密度領域は、一般的なショットキーダイオード等に流れる電流の電流密度よりも大幅に高い電流密度の領域である。上記電流密度領域は、上記発振素子に電流を流してその電流密度を変化させつつ、発振の有無を観察することによって特定することができる。
 上記トンネル絶縁層は、アノード酸化処理により上記金属層上に形成されたアノード酸化皮膜、アノード水酸化皮膜、または、アノード酸化皮膜とアノード水酸化皮膜との混合皮膜のいずれかであることが好ましい。
 上記金属層は、アルミニウム層であり、上記トンネル絶縁層は、上記アルミニウム層の表面を覆うアルミニウム酸化皮膜、アルミニウム水酸化皮膜、または、アルミニウム酸化皮膜とアルミニウム水酸化皮膜との混合膜のいずれかであることが好ましい。
 上記金属層は、白金層であり、上記電極は、アルミニウム層であり、上記トンネル絶縁層は、上記アルミニウム層の表面を覆うアルミニウム酸化皮膜、アルミニウム水酸化皮膜、または、アルミニウム酸化皮膜とアルミニウム水酸化皮膜との混合皮膜のいずれかであることが好ましい。
 上記ショットキー接合に流れる電流が発振する電流領域の平均電流密度範囲は、7.8×10Acm-2以下であることが好ましい。
 上記トンネル絶縁層の厚さは、0.5nm以上、100nm以下であることが好ましい。
 上記ショットキー接合に流れる電流が発振する周波数は、2kHz以上、3kHz以下であることが好ましい。
 本発明に係る発振装置は、上記発振素子と、上記電極に対して上記金属層が逆バイアスとなる方向に電圧を印加する電源装置とを備える。
 上記構成によれば、簡単な素子構造により電流発振する発振素子を用いた発振装置を実現することができる。
 本発明は、直流電流を交流電流に変換するインバータや、固有の周波数で発振する電子部品、例えば、マイクロプロセッサなどのデジタル回路におけるクロック信号源、その他、テレビ、ビデオ、電装機器、電話機、複写機、カメラ、音声合成装置、通信機器といった幅広い分野でのタイミング回路における利用も期待される。
 1 発振素子
 2 第1金属層
 3 トンネル絶縁層
 4 第2金属層
 5 アルミニウム板
 6 アルミニウム酸化皮膜
 7 白金メッキ層

Claims (8)

  1.  金属層と、
     上記金属層とショットキー接合され、トンネル現象を発現させるトンネル絶縁層と、
     上記金属層と上記トンネル絶縁層との間に電圧を印加するための電極と
    を備え、
     上記電極に対して上記金属層が逆バイアスとなる方向に電圧を印加して上記ショットキー接合に流れる電流を所定の高電流密度以下とすることにより、上記ショットキー接合に流れる電流を発振させることを特徴とする発振素子。
  2.  上記トンネル絶縁層は、アノード酸化処理により上記金属層上に形成されたアノード酸化皮膜、アノード水酸化皮膜、または、アノード酸化皮膜とアノード水酸化皮膜との混合皮膜のいずれかであることを特徴とする請求項1に記載の発振素子。
  3.  上記金属層は、アルミニウム層であり、
     上記トンネル絶縁層は、上記アルミニウム層の表面を覆うアルミニウム酸化皮膜、アルミニウム水酸化皮膜、または、アルミニウム酸化皮膜とアルミニウム水酸化皮膜との混合膜のいずれかであることを特徴とする請求項2に記載の発振素子。
  4.  上記金属層は、白金層であり、上記電極は、アルミニウム層であり、
     上記トンネル絶縁層は、上記アルミニウム層の表面を覆うアルミニウム酸化皮膜、アルミニウム水酸化皮膜、または、アルミニウム酸化皮膜とアルミニウム水酸化皮膜との混合皮膜のいずれかであることを特徴とする請求項2に記載の発振素子。
  5.  上記ショットキー接合に流れる電流が発振する電流領域の平均電流密度範囲は、7.8×10Acm-2以下であることを特徴とする請求項1~4のいずれか1項に記載の発振素子。
  6.  上記トンネル絶縁層の厚さは、0.5nm以上、100nm以下であることを特徴とする請求項1~5のいずれか1項に記載の発振素子。
  7.  上記ショットキー接合に流れる電流が発振する周波数は、2kHz以上、3kHz以下であることを特徴とする請求項1~6のいずれか1項に記載の発振素子。
  8.  請求項1~7のいずれか1項に記載の発振素子と、
     上記電極に対して上記金属層が逆バイアスとなる方向に電圧を印加する電源装置と
    を備えることを特徴とする発振装置。
PCT/JP2016/063239 2015-04-28 2016-04-27 発振素子及び発振装置 WO2016175251A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-092291 2015-04-28
JP2015092291A JP2018107153A (ja) 2015-04-28 2015-04-28 発振素子及び発振装置

Publications (1)

Publication Number Publication Date
WO2016175251A1 true WO2016175251A1 (ja) 2016-11-03

Family

ID=57198664

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/063239 WO2016175251A1 (ja) 2015-04-28 2016-04-27 発振素子及び発振装置

Country Status (2)

Country Link
JP (1) JP2018107153A (ja)
WO (1) WO2016175251A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018225855A1 (ja) 2017-06-09 2018-12-13 株式会社Uacj 半導体層、発振素子及び半導体層の製造方法
WO2020050181A1 (ja) 2018-09-03 2020-03-12 株式会社Uacj 半導体製造方法及び半導体製造装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5598855A (en) * 1979-01-22 1980-07-28 Matsushita Electric Ind Co Ltd Solid oscillating element and oscillating device
JPH0945976A (ja) * 1995-08-03 1997-02-14 Matsushita Electric Ind Co Ltd 非線形素子
JP2007048613A (ja) * 2005-08-10 2007-02-22 Hitachi Ltd 画像表示装置とその製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5598855A (en) * 1979-01-22 1980-07-28 Matsushita Electric Ind Co Ltd Solid oscillating element and oscillating device
JPH0945976A (ja) * 1995-08-03 1997-02-14 Matsushita Electric Ind Co Ltd 非線形素子
JP2007048613A (ja) * 2005-08-10 2007-02-22 Hitachi Ltd 画像表示装置とその製造方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018225855A1 (ja) 2017-06-09 2018-12-13 株式会社Uacj 半導体層、発振素子及び半導体層の製造方法
CN110741479A (zh) * 2017-06-09 2020-01-31 株式会社Uacj 半导体层、振荡元件以及半导体层的制造方法
KR20200014908A (ko) * 2017-06-09 2020-02-11 가부시키가이샤 유에이씨제이 반도체층, 발진 소자 및 반도체층의 제조 방법
US10930522B2 (en) 2017-06-09 2021-02-23 Uacj Corporation Semiconductor layer, oscillation element, and semiconductor layer manufacturing method
EP3637476A4 (en) * 2017-06-09 2021-03-10 UACJ Corporation SEMICONDUCTOR LAYER, OSCILLATION ELEMENT AND SEMICONDUCTOR LAYER MANUFACTURING PROCESS
KR102263151B1 (ko) * 2017-06-09 2021-06-08 가부시키가이샤 유에이씨제이 반도체층, 발진 소자 및 반도체층의 제조 방법
CN110741479B (zh) * 2017-06-09 2023-10-13 株式会社Uacj 半导体层、振荡元件以及半导体层的制造方法
WO2020050181A1 (ja) 2018-09-03 2020-03-12 株式会社Uacj 半導体製造方法及び半導体製造装置
US11410850B2 (en) 2018-09-03 2022-08-09 Uacj Corporation Aluminum oxide semiconductor manufacturing method and aluminum oxide semiconductor manufacturing device

Also Published As

Publication number Publication date
JP2018107153A (ja) 2018-07-05

Similar Documents

Publication Publication Date Title
US12027690B2 (en) Pulse plating of lithium material in electrochemical devices
Gaikwad et al. A flexible high potential printed battery for powering printed electronics
US20180019466A1 (en) Negative electrode for lithium-ion secondary battery, manufacturing method thereof, and lithium-ion secondary battery
CN103546049B (zh) 具有整流电路的电路配置结构
TWI527352B (zh) 具有電化學電容的低頻轉換器
US7345296B2 (en) Nanotube transistor and rectifying devices
CN104025329B (zh) 可反复充放电的量子电池
US20160294305A1 (en) Triboelectric energy harvester
JP2006523384A (ja) 電力特性を強化した電荷保存デバイス
EP2238611A2 (en) Edge-contacted vertical carbon nanotube transistor
CN104471694A (zh) 半导体探针、用于测试量子电池的测试装置和测试方法
WO2016175251A1 (ja) 発振素子及び発振装置
CN105845770B (zh) 一种带有高反膜和增透膜的低导通电阻GaAs光导开关
JP2010161001A (ja) 電気化学セル
CN114667675A (zh) Ac-dc转换器电路
Chang et al. A betavoltaic microcell based on Au/s-SWCNTs/Ti Schottky junction
JP7244386B2 (ja) 半導体電池、負極材、正極材及び半導体電池の製造方法
JP2005019116A (ja) 電気化学セル
Muñoz et al. Platinum deposition onto Si single crystal surfaces I. Chemical, electronic, and morphological surface processes under depletion conditions
Li et al. A betavoltaic microcell based on semiconducting single-walled carbon nanotube arrays/Si heterojunctions
Chang et al. A single-walled carbon nanotubes betavoltaic microcell
Gandhi et al. Nanowires-based high-density capacitors and thinfilm power sources in ultrathin 3D glass modules
JP6758738B1 (ja) 省エネ貼付けシートの構造
CN115810682A (zh) 光伏能源供给装置
Fujita et al. Analysis of Current, Polarization and Lithium Concentration in the Porous Electrode of a Lithium-ion Battery during High-frequency, High-current (10,000 C) Flow

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16786527

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16786527

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP