WO2016174373A1 - Filtres assembles pour la filtration de liquides - Google Patents

Filtres assembles pour la filtration de liquides Download PDF

Info

Publication number
WO2016174373A1
WO2016174373A1 PCT/FR2016/051021 FR2016051021W WO2016174373A1 WO 2016174373 A1 WO2016174373 A1 WO 2016174373A1 FR 2016051021 W FR2016051021 W FR 2016051021W WO 2016174373 A1 WO2016174373 A1 WO 2016174373A1
Authority
WO
WIPO (PCT)
Prior art keywords
filter
elements
membrane
filter according
membrane filter
Prior art date
Application number
PCT/FR2016/051021
Other languages
English (en)
Inventor
Daniel Eckardt
Michael Faber
Malte Moeller
Ronald Neufert
Stephan REMPEL
Fabiano Rodrigues
Adrien Vincent
Original Assignee
Saint-Gobain Centre De Recherches Et D'etudes Europeen
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saint-Gobain Centre De Recherches Et D'etudes Europeen filed Critical Saint-Gobain Centre De Recherches Et D'etudes Europeen
Priority to US15/570,112 priority Critical patent/US20180304201A1/en
Priority to CN201680024651.1A priority patent/CN107530630A/zh
Priority to EP16725187.5A priority patent/EP3288669A1/fr
Publication of WO2016174373A1 publication Critical patent/WO2016174373A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/06Tubular membrane modules
    • B01D63/066Tubular membrane modules with a porous block having membrane coated passages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2422Mounting of the body within a housing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2425Honeycomb filters characterized by parameters related to the physical properties of the honeycomb structure material
    • B01D46/2429Honeycomb filters characterized by parameters related to the physical properties of the honeycomb structure material of the honeycomb walls or cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2425Honeycomb filters characterized by parameters related to the physical properties of the honeycomb structure material
    • B01D46/24491Porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2425Honeycomb filters characterized by parameters related to the physical properties of the honeycomb structure material
    • B01D46/24492Pore diameter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2455Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure of the whole honeycomb or segments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2474Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure of the walls along the length of the honeycomb
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2478Structures comprising honeycomb segments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2482Thickness, height, width, length or diameter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2486Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure characterised by the shapes or configurations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2486Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure characterised by the shapes or configurations
    • B01D46/249Quadrangular e.g. square or diamond
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/027Nanofiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/145Ultrafiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/147Microfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/18Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/06Tubular membrane modules
    • B01D63/061Manufacturing thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/06Tubular membrane modules
    • B01D63/062Tubular membrane modules with membranes on a surface of a support tube
    • B01D63/063Tubular membrane modules with membranes on a surface of a support tube on the inner surface thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/003Membrane bonding or sealing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0088Physical treatment with compounds, e.g. swelling, coating or impregnation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0006Honeycomb structures
    • C04B38/0012Honeycomb structures characterised by the material used for sealing or plugging (some of) the channels of the honeycombs
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0006Honeycomb structures
    • C04B38/0016Honeycomb structures assembled from subunits
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0006Honeycomb structures
    • C04B38/0016Honeycomb structures assembled from subunits
    • C04B38/0019Honeycomb structures assembled from subunits characterised by the material used for joining separate subunits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/04Specific sealing means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2315/00Details relating to the membrane module operation
    • B01D2315/10Cross-flow filtration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2315/00Details relating to the membrane module operation
    • B01D2315/12Feed-and-bleed systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2319/00Membrane assemblies within one housing
    • B01D2319/04Elements in parallel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2498The honeycomb filter being defined by mathematical relationships
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • B01D63/021Manufacturing thereof
    • B01D63/022Encapsulating hollow fibres
    • B01D63/023Encapsulating materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0039Inorganic membrane manufacture
    • B01D67/0051Inorganic membrane manufacture by controlled crystallisation, e,.g. hydrothermal growth
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0006Honeycomb structures
    • C04B38/0009Honeycomb structures characterised by features relating to the cell walls, e.g. wall thickness or distribution of pores in the walls
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0051Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof characterised by the pore size, pore shape or kind of porosity
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0051Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof characterised by the pore size, pore shape or kind of porosity
    • C04B38/0054Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof characterised by the pore size, pore shape or kind of porosity the pores being microsized or nanosized
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0051Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof characterised by the pore size, pore shape or kind of porosity
    • C04B38/0058Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof characterised by the pore size, pore shape or kind of porosity open porosity

Definitions

  • the invention relates to the field of filtering structures made of an inorganic material intended for the filtration of liquids, in particular membrane-coated structures in order to separate particles or molecules from a liquid, more particularly water, for example production water from oil extraction or shale gas.
  • Filters have long been known using ceramic or non-ceramic membranes to filter various fluids, especially polluted water. These filters can operate according to the principle of frontal filtration, this technique involving the passage of the fluid to be treated through a filter medium, perpendicular to its surface. This technique is limited by the accumulation of particles and the formation of a cake on the surface of the filter medium, and gives rise to a rapid drop in performance and a drop in the level of filtration.
  • tangential filtration is used, which, on the contrary, makes it possible to limit the accumulation of particles, thanks to the longitudinal circulation of the fluid on the surface of the membrane.
  • the particles remain in the flow of circulation whereas the liquid can cross the membrane under the effect of the pressure.
  • This technique provides stability of performance and filtration level. It is more particularly recommended for the filtration of fluids heavily loaded with particles and / or molecules.
  • the strengths of the tangential filtration are its ease of implementation, its reliability through the use of organic membranes and / or inorganic porosity adapted to perform said filtration, and its continuous operation.
  • Tangential filtration uses little or no adjuvant and provides two separate fluids that can be both valuable: the concentrate (also called retentate) and the filtrate (also called permeate): it is a clean process that respects the environment.
  • the pollutants can remain trapped in the structure. In such a case, no concentrate is collected at the outlet of the structure, but only a filtrate.
  • Tangential filtration techniques are particularly used for microfiltration
  • filter structures operating according to the principles of tangential filtration are known from the present technique. They comprise or consist of tubular supports made of a porous inorganic material formed of walls defining longitudinal conduits or channels parallel to the axis of said supports. The liquid to be filtered passes through the walls and then the filtrate is evacuated most often at the peripheral outer surface of the porous support.
  • the filters comprise at least one filter element consisting of a plurality of ducts separated by porous walls. Such a structure is commonly called in the honeycomb field.
  • the surface of said ducts is also usually covered with a membrane, most often in a porous inorganic material, referred to herein as membrane or membrane-separating layer, whose nature and morphology are adapted to stop molecules or particles whose size is close to or greater than the median pore diameter of said membrane when the fluid filtered is spread in the porosity of the porous support.
  • membrane or membrane-separating layer whose nature and morphology are adapted to stop molecules or particles whose size is close to or greater than the median pore diameter of said membrane when the fluid filtered is spread in the porosity of the porous support.
  • the median pore diameter of the material constituting the filter membrane is normally much smaller than that of the material constituting the walls of the conduits, the ratio generally ranging from 1/1000 to 1/10.
  • the thickness of the membranes is much thinner than that of the walls, the ratio ranging from 1/200 to 1/5.
  • the membrane is conventionally deposited on the inner surface of the channels by a process for coating a porous inorganic material with a slip followed by a consolidation heat treatment, in particular drying and optionally sintering of the ceramic membranes.
  • the patent application US2013 / 0153485 discloses a membrane filter comprising an assembly of filter elements whose ends are connected by a material forming a mounting ring ("mounting ring").
  • mounting ring a material forming a mounting ring
  • the object of the present invention is to solve the problems previously described, and proposes in particular to provide a mechanically resistant filter, assembled from a set of honeycomb ceramic filter elements, each comprising a plurality of ducts, and whose filtration efficiency is optimal, in particular by preventing the presence of bypass zones in the assembled filter, by which a part of the liquid is not filtered, while preserving as much as possible the filtration surface accessible to the liquid within said filter.
  • the present invention thus relates to a membrane filter for liquid filtration comprising:
  • each element comprising a plurality of parallel ducts separated by walls made of a porous ceramic material, in particular of which the open porosity is comprised between 15 and 60%, said ducts being open on a face of introduction of the liquid to be filtered,
  • a filtration membrane made of a ceramic material disposed on the internal surface of the walls of the ducts, optionally means for recovering the filtrate, arranged at the outlet of the ducts and / or at the periphery of the filter,
  • said filtering elements are linked together, at least on the end of the filter open on said introduction face, by means of a hardenable material, in particular a hardenable resin optionally incorporating a mineral filler, forming after hardening a sleeve in the form of a single piece sealingly securing all of said filter elements, said sleeve now between said interstitial volume,
  • a hardenable material in particular a hardenable resin optionally incorporating a mineral filler
  • said sleeve has a thickness e, measured along the longitudinal axis of the filter, of between 1 and 10%, preferably between 1.5 and 7% and very preferably between 2 and 5%, of the length of the filter, and
  • the curable material is present in the open porosity and through the entire thickness of each porous wall constituting the elements, over a minimum height h which is not zero, said height being measured parallel to the longitudinal axis of the element under consideration and from its open end to the insertion face.
  • Said minimum height h is less than 2.5> ⁇ e, preferably less than 2> ⁇ e, more preferably less than 1.5> e, and most preferably less than or equal to 1 ⁇ e.
  • the maximum height at which the curable material is present in the open porosity and through the entire thickness of the porous walls constituting the elements is less than 3> ⁇ e, preferably less than 2.5> ⁇ e and very preferably less than 2> ⁇ e.
  • the filter further comprises at least one second sleeve, preferably identical to the first sleeve.
  • Said second sleeve is disposed at the opposite end of the filter.
  • the average thickness e of the sleeve is between 2 and 5% of the average length of said elements.
  • the median pore diameter in the porous walls is between 5 and 50 microns, preferably between 10 and 40 microns.
  • the median pore diameter of the membrane is between 50 nanometers and 10 microns and is at least five times smaller than the median pore diameter of the porous walls.
  • the length of the filter is between 200 and 1500 mm.
  • the thickness of the porous walls of the ducts is between 0.3 and 1.5 mm.
  • the average thickness of the membrane is between 20 nanometers and 50 micrometers, especially between 20 nanometers and 10 micrometers, preferably between 100 nanometers and 2 micrometers.
  • the average thickness of the membrane is at least 5 times or at least 10 times its median pore diameter.
  • the ducts are of square section, round or oblong, preferably round, and preferably further whose hydraulic diameter is between 1 and 5mm.
  • the elements are of round section, the diameter of said round section being between 20 and 80 mm.
  • the elements are of hexagonal section, the distance between two opposite sides of the hexagonal section being between 20 and 80 mm.
  • the ducts of the filter elements are open at both ends.
  • the conduits of the filter elements are alternately plugged on the introduction face of the liquid to be filtered and on the opposite face.
  • the ducts of the filter elements are open on the liquid introduction face and closed on the recovery face.
  • the filtrate recovery means are arranged at the periphery of the filter.
  • the filter elements and preferably the membrane comprise and preferably consist essentially of particles of silicon nitride and / or silicon carbide.
  • the curable material is selected from epoxy resins and acrylate resins.
  • the curable material comprises a filler consisting of mineral particles whose median diameter D 5 o is between 1 and 100 microns.
  • Said filter is surrounded by a compartment in which is made an opening for said recovery of the filtrate.
  • the filter according to the invention is normally disposed in a compartment (also called housing or "housing" in the present description).
  • a compartment also called housing or "housing” in the present description.
  • said compartment thus surrounds the filter elements and the sleeve or sleeves.
  • Such a compartment allows in particular the confinement of liquids (filtrate and / or retentate) within a filtration unit.
  • said filtrate recovery means may therefore include the compartment (housing) in which said filter is inserted.
  • said means comprise in particular an opening in said compartment, as described for example in the publication US 2013/0153485) or in FIGS. 8 attached.
  • said recovery means may comprise or be constituted by an opening made in the housing surrounding the filter.
  • the invention also relates to a filtration unit comprising a filter as described previously inserted into its compartment, including the filtrate recovery means.
  • the invention also relates to a method of manufacturing a membrane filter according to one of the preceding claims, comprising the following successive steps: a. manufacturing a set of honeycomb filter elements comprising a plurality of parallel ducts separated by walls made of a porous ceramic material whose open porosity is between 15 and 60%,
  • a hardenable material preferably a resin optionally comprising a charge of mineral particles, and adjusting its viscosity such that said hardenable material penetrates the entire thickness of each porous wall of all the elements at a non-zero height h said height being measured along the longitudinal axis of the filter,
  • the ends of each of the filter elements are pre-impregnated with a resin, for example curable, which blocks the porosity of the porous ceramic material on the introduction face of the liquid to be filtered.
  • a resin for example curable
  • channels or internal ducts are understood to mean ducts that do not share a wall that is common to the external or peripheral surface of the filter element.
  • a conduit which has at least one wall common with the outer surface of the filter element is said peripheral. This wall is called outer wall.
  • the other walls are called internal walls.
  • the open porosity and the median diameter of the pores of the porous walls described in the present description are determined in known manner by mercury porosimetry.
  • the pore volume is measured by mercury intrusion at 2000 bar using an Autopore IV 9500 Micromeritics mercury porosimeter, on a sample of 1 cm 3 taken from a block of the product, the sampling region excluding the skin. typically extending up to 500 microns from the block surface.
  • the applicable standard is ISO 15901-1.2005 part 1.
  • the increase in pressure up to high pressure leads to "push" the mercury into pores of smaller and smaller size.
  • the intrusion of mercury is conventionally done in two stages. Initially, a mercury intrusion is made at low pressure up to 44 psia (about 3 bar), using air pressure to introduce mercury into the larger pores (> 4ym). In a second step, a high-pressure intrusion is carried out with oil up to the maximum pressure of 30000 psia (about 2000 bar).
  • a mercury porosimeter thus makes it possible to establish a pore size distribution by volume.
  • the median pore diameter of the walls porous corresponds to a threshold of 50% of the population in volume.
  • the porosity of the membrane, corresponding to the total pore volume in the membrane, and the median pore diameter of the membrane are advantageously determined according to the invention using a scanning electron microscope.
  • sections of a wall of the support are made in cross section so as to visualize the entire thickness of the coating over a cumulative length of at least 1.5 cm.
  • the acquisition of the images is performed on a sample of at least 50 grains, preferably at least 100 grains.
  • the area and the equivalent diameter of each of the pores are obtained from the images by conventional image analysis techniques, possibly after a binarization of the image to increase the contrast. A distribution of equivalent diameters is thus deduced, from which the median diameter of pores is extracted.
  • the porosity of the membrane is obtained by integrating the distribution curve of equivalent pore diameters.
  • this method can be used to determine a median size of the particles constituting the membrane layer.
  • the median size of the particles constituting the membrane layer is generally between 20 nanometers and 10 micrometers, preferably between 100 nanometers and 2 micrometers.
  • An example of determination of the median pore diameter or the median size of the particles constituting the membrane layer comprises the succession of the following steps, conventional in the field:
  • a series of SEM images is taken of the support with its observed membrane layer in a cross-section (that is to say throughout the thickness of a wall). For more clarity, the pictures are taken on a polished section of the material. The acquisition of the image is performed over a cumulative length of the membrane layer at least equal to 1.5 cm, in order to obtain values representative of the entire sample.
  • the images are preferably subjected to binarization techniques, well known in image processing techniques, to increase the contrast of the particle or pore contour.
  • a measurement of its area is carried out.
  • An equivalent diameter of pores or grain is determined, corresponding to the diameter of a perfect disk of the same area as that measured for said particle or for said pore (this operation may possibly be carried out using software especially dedicated Visilog® marketed by Noesis).
  • a size distribution of particles or grains or pore diameter is thus obtained according to a conventional distribution curve and a median particle size and / or a median pore diameter constituting the membrane layer are thus determined, this median size or median diameter respectively corresponding to the equivalent diameter dividing said distribution into a first population comprising only particles or pores of equivalent diameter greater than or equal to this median size and a second population comprising particles of equivalent diameter less than this median size or this median diameter.
  • the median diameter D50 of the powders of the particles, in particular silicon carbide powders, used to produce the support or the membrane is evaluated classically by a particle size distribution characterization performed with a particle size analyzer.
  • laser according to ISO 13320-1.
  • the laser granulometer may be, for example, a Partica LA-950 from the company HORIBA.
  • the median diameter of the particles respectively denotes the diameter of the particles below which 50% by mass of the population is found.
  • all the ducts have a section and a substantially constant and identical distribution over the entire length of the filter, regardless of the cross sectional plane considered.
  • thickness e of the sleeve it is understood the average thickness of said sleeve measured parallel to the longitudinal central axis of the filter.
  • the thickness of the sleeve may, however, vary locally substantially in the longitudinal direction of the filter, in particular depending on the technique of developing the sleeve, for example depending on the profile of the mold used to cast the curable material binding the filter elements together.
  • the filter element is obtained by extrusion of a paste through a die configured according to the geometry of the structure to be produced according to the invention.
  • the extrusion is followed by drying and baking to sinter the inorganic material constituting the support and to obtain the characteristics of porosity and mechanical strength required for the application.
  • it when it is a support in SiC, it can be obtained in particular according to the following manufacturing steps:
  • the mixture also comprises an organic binder of the cellulose derivative type. Water is added and kneaded to obtain a homogeneous paste whose plasticity allows extrusion, the die being configured to obtain the monoliths according to the invention.
  • the baking atmosphere is preferably nitrogenous.
  • the baking atmosphere is preferably neutral and more particularly argon. The temperature is typically maintained for at least 1 hour and preferably for at least 3 hours.
  • the obtained material has an open porosity of 15 to 60% by volume and a median pore diameter of the order of 5 to 50 microns, preferably between 10 and 40 microns.
  • the average thickness of the outer walls of an element according to the invention is between 0.5 and 2.0 mm. Such a thickness makes it possible in particular to ensure that the porous ceramic material constituting the outer wall and the hardenable resin entering into its porosity has a suitable cohesion and bonding. If necessary, the outer surface of the porous walls can also be roughened to further facilitate the attachment and penetration of the resin into the porosity of the walls.
  • the average thickness of the inner walls of the elements is generally lower than that of the outer walls and is preferably between 0.3 and 1.5 mm.
  • the length of the filter elements is in principle between 200 and 1500 mm.
  • the hydraulic diameter of the ducts is preferably between 1 and 5 mm, preferably between 1.5 and 4 mm.
  • certain conduits may or may not be plugged at the ends, in particular at the opposite end of the conduits with reference to the introduction of the liquid into the filter.
  • no duct is clogged.
  • the filter element is then coated according to the invention with a membrane (or membrane separator layer).
  • a membrane or membrane separator layer.
  • One or more so-called primary layers can be deposited before forming the filter membrane according to various techniques known to those skilled in the art: deposition techniques from suspensions or slips, chemical vapor deposition techniques (CVD) or thermal projection, for example plasma projection (plasma spraying).
  • the primer layers and the membrane are deposited by coating from slips or suspensions comprising ceramic particles.
  • a first layer is preferably deposited in contact with the substrate (primary layer), acting as a bonding layer.
  • the formulation of the primer comprises 50% by weight of grains of SiC (median diameter between 2 and 20 microns) and 50% of deionized water.
  • a second layer of finer porosity is deposited on the primer layer, and constitutes the membrane itself. The porosity of this last layer is adapted to give the filter element its final properties.
  • the formulation of the membrane preferably comprises 50% by weight of SiC grains (in particular of median diameter between 0.1 and 2 micrometers) and 50% of deionized water.
  • thickening agents in proportions typically between 0.02 and 2% of the water mass
  • binding agents typically between 0.5 and 20% of the mass of water
  • SiC powder can be added.
  • the thickening agents are preferably cellulosic derivatives
  • the binding agents preferably PVA or acrylic derivatives
  • the dispersing agents are preferably of the ammonium polymethacrylate type.
  • the thus coated member is then dried at room temperature typically for at least 30 minutes and then at 60 ° C for at least 24 hours.
  • the supports thus dried are sintered at a firing temperature typically between 1700 and 2200 ° C under a non-oxidizing atmosphere, preferably under argon, so as to obtain a membrane porosity (measured by image analysis as described above) included preferably between 10 and 40% by volume and a median equivalent diameter of pores (measured by image analysis) preferably between 50 nm and 10 micrometers, or even between 100 nm and 5 micrometers.
  • the lower end of the elements is then leveled to remove excess coating materials, much more concentrated in this part of the ceramic part, over a length of about 5 to 20 mm.
  • the filtration membranes according to the invention preferably have the following characteristics: They consist essentially of a ceramic material, preferably based on non-oxide ceramics, preferably chosen from silicon carbide, in particular sintered SiC. in liquid phase or in solid phase or recrystallized SiC, silicon nitride, in particular S1 3 N 4 , oxynitride,
  • the membrane is based on silicon carbide typically recrystallized. - They are deposited on one or more layers of a primary whose pore diameter is intermediate between that (the largest) of the walls and that of the membrane, to facilitate its deposition and homogeneity.
  • the ratio between the size the particles constituting the intermediate layer and the particles constituting the membrane layer are between 5 and 50.
  • the ratio between the mean size of the grains constituting the porous wall and that of the particles constituting the intermediate membrane layer is between 2 and 20.
  • the porosity of the membrane-separating layer is less than 70% and very preferably is between 10 and 70%.
  • the median equivalent pore diameter measured by image analysis of the membrane forming layer is between 1 nm and 5 micrometers.
  • a plurality of filter elements thus obtained are then assembled to form the filter according to the invention, so as to leave between them an interstitial void through which the filtrate introduced on an introduction face of the filter thus obtained can flow.
  • Figure 3 shows in more detail such a configuration.
  • all the elements obtained previously are deposited in a container so as to rest on one of their ends. They are also kept spaced apart by calibrated spacers.
  • a curable resin whose viscosity is adapted according to the invention is introduced into the container so as to fill the interstices between the elements and then the resin is cured, at room temperature or under the effect of heating for the case of a thermosetting resin, until a rigid sleeve in the form of a single piece surrounding and now secured to all the filter elements, as shown in Figures 1 and 5.
  • the same operation is carried out according to a second step at the other end of the filter elements, to obtain the final filter thus comprising a plurality of honeycomb ceramic filter elements arranged substantially in parallel, with a interstitial volume present between said filter elements.
  • the adaptation of the resin and in particular its viscosity during this step of forming the sleeve has appeared critical to allow the proper operation of the assembled filter thus obtained, in particular to ensure the quality of filtration of the device.
  • the viscosity of the hardenable resin injected into the container must be sufficiently low so that curable material penetrates to the core of the open porosity of the walls of the filter elements, ie through the entire thickness of all the porous walls constituting the plurality of elements, in particular through the entire thickness of the inner walls of all the filter elements used to constitute the assembled filter.
  • the presence of the resin in all the porosity of the walls ensures the best operation of the complex structure while effectively avoiding the bypass zones mentioned above (said height being measured along the longitudinal axis of the filter and from said end, see Figure 4).
  • the viscosity must not be too low, in order to avoid excessive clogging of the remaining filtration surface within ducts.
  • the experiments carried out by the applicant company have in fact shown that the use of a too fluid resin induces, by capillary action, the sealing of a sensitive portion of the porosity of the ducts and consequently a reduction of the filtration capacities. filter, or even the complete closure of the most peripheral ducts of the structure.
  • too low viscosity also induces a small thickness of the final sleeve, detrimental to the stability and overall strength of the structure.
  • the most suitable viscosity has been determined as being between 1000 and 3000 mPa.s at 25 ° C. (or more generally at the temperature at which its curing is carried out), even if its optimum value is likely to vary significantly notably. depending on the porosity of the porous walls and / or the geometry of the ducts.
  • the assembled filter thus obtained is then inserted into a housing (also called compartment or housing or casing according to the English term "housing" generally used), comprising openings for the entry of the liquid to be filtered and openings of outlet for the filtrate and optionally retentate, according to conventional configurations such as for example described in the US2013 / 0153485 application.
  • FIGS. 1 illustrate a conventional configuration of a filter comprising 19 filter unitary elements according to the invention, in a front view corresponding to the intake face of the liquid to be filtered (Figure 1A) and in longitudinal section (Figure 1B).
  • Figure 1C shows the filter of Figure 1B inserted in its housing, in operation.
  • FIG. 2 schematizes another configuration of a filter element according to the invention, before it is assembled in a filter according to the invention.
  • FIG. 3 schematizes an alternative configuration of a filter element according to the invention, before it is assembled in a filter according to the invention.
  • FIGS. 4 (4A and 4B) illustrate the phenomenon of impregnation of the resin in the porosity of the walls of a filter element during the formation of the sleeve according to the invention.
  • Figure 4B is a schematic representation, provided for clarity, illustrating the features visible in Figure 4A.
  • Figure 5 is a photograph of a filter according to the present invention.
  • FIGS. 6A and 6B schematically show a filter element extracted from the assembly with its portion of the sleeve, in an elevational view ( Figure 6A) and in a three-dimensional section ( Figure 6B).
  • FIGS. 6A and 6B are provided to illustrate the possible bypass of the membrane by the fluid to be filtered in an assembled filter according to
  • Figure 7 shows the plane of a filter according to the invention comprising 7 filter elements. In FIG. 7, the dimensions are indicated in mm.
  • FIG. 1A schematizes a front view of a filter according to the invention, from the inlet face 3 of the liquid to be filtered.
  • Figure 1B shows a schematic view of the filter along the longitudinal sectional plane AA 'shown in Figure 1A.
  • the filter 1 has a longitudinal central axis 13, perpendicular to the front face 3, and passing through its center.
  • the filter comprises a filter element assembly 2 made of a porous inorganic material, preferably non-oxide, such as recrystallized SiC.
  • Each element has, for example, a tubular shape, which may be of hexagonal section as illustrated in FIG. 1A or preferably of circular section as illustrated in FIG. 2.
  • Each element has a longitudinal central axis 12.
  • the filter is inserted into a housing or compartment (housing) a portion of the walls 5 is shown in Figure 1B.
  • Each element 2 comprises in its inner portion a set of ducts (or channels) 7 adjacent axes parallel to each other and separated from each other by walls 8 formed in the porous material.
  • the walls 8 are therefore made of a porous inorganic material passing the filtrate from the inner part of the elements to their outer surface.
  • the ducts 7 are covered on their inner surface with a membrane separating layer (also called filtration membrane or membrane), lining the inside of the ducts (not shown in Figures 1).
  • This filtration membrane comes into contact with said fluid to be filtered flowing in said channels after its introduction into the assembled structure according to the inlet face 3.
  • the filtering structure comprises internal ducts and peripheral ducts occupying the crown of the outermost channels of the filter. In a most conventional configuration illustrated in Figure 1, all the ducts have a circular section.
  • the filter elements have a hexagonal cross section.
  • the filter elements may have other forms than that shown in Figure 1.
  • the filter elements may have a circular section, in a sectional plane perpendicular to their length.
  • Figure 2 illustrates such a configuration of the filter elements.
  • half of the channels of the peripheral ring have a truncated shape, in order to maintain a sufficient thickness of the outer wall.
  • FIG. 3 illustrates another filter configuration comprising elements whose ducts are arranged in a manner similar to those of FIG. 2, the section of the ducts being this time square. According to this configuration, all the ducts have the same section.
  • the filter according to the invention comprises a plurality of conduits distributed along a plurality of rings around a central axis.
  • Conduit ring means a set of ducts whose barycentre is located on the same concentric circle of the central axis of the filter element.
  • the filter elements 2 according to FIGS. 1A and 2 and 3 are grouped in the form of an assembled filter, as illustrated by FIGS. 1B, 5 and 7.
  • Each of the elements 2 is separated from the following by a volume interstitial 6 through which flows the filtrate from the elements 2, after passing through the membrane.
  • the filter elements 2 are kept at a distance from each other to provide an interstitial volume 6 between them, in a single structure and mechanically resistant by means of two sleeves 9 and 10 arranged preferably on either side of the elements 2 and at each end of these this. Both sleeves are in contact and held in compression by the walls 5 of the filtration compartment (often called housing or casing in the field).
  • the liquid to be filtered is introduced from the introduction face 3 of the filter thus obtained, passes through the membrane lining the interior of the ducts 7, a filtrate being collected in the interstitial volumes 6 to be finally collected at the filter outlet, generally through an opening in the housing surrounding the filter (see for example US 2013/0153485).
  • FIG. 1C describes the operation of a filter 1 according to the invention as described in FIG. 1B.
  • the arrows 14 indicate the path of the liquid to be filtered in the filtration unit 20.
  • the filter 1 is disposed in its compartment whose walls 5 comprise an opening 15 for the discharge of the filtrate 16.
  • a retentate 17 is also recovered through the openings of the channels disposed opposite the introduction face for possible recycling.
  • FIGS. 8A to 8C only a filtrate 15 is collected.
  • the configurations described in Figures 8A-8C attached should not, however, be considered as limiting the scope of the present invention, in any of the aspects described.
  • the liquid to be filtered 14 is introduced at the inlet face 3 of the filter. It has a structure in which the conduits of the filter elements 2 are alternately plugged on the face of introduction of the liquid to be filtered and on the opposite side by plugs 18 preferably impervious to liquids, so as to force the liquid to pass through. the porous walls of said filter elements and the membrane covering them.
  • inlet ducts 7 of the liquid to be filtered and outlet ducts 7 'of the filtrate after passing through the porous walls provided with a filtration membrane.
  • the filter 1 is confined in the compartment surrounding it in the filtration unit and a portion of the walls 5 is shown in Figure 8A.
  • the filtrate 16 is recovered at the outlet of the unit 20 through an opening 15 made in the compartment confining the liquids in the filtration unit.
  • Another part of the filtrate 16 ', recovered from the interstitial volumes 6, is collected by an opening 15' made on the peripheral part of the compartment surrounding the filter.
  • the liquid to be filtered is introduced at the inlet face 3 of the filter. This is confined in the compartment surrounding it in the filtration unit and a part of the walls 5 is shown in Figure 8B.
  • the liquid to be filtered passes through the porous walls of said filter elements and the membrane covering them.
  • the filtrate 16 is recovered in the interstitial volumes 6 present around the filter elements and then collected at the outlet of the unit 20 via an opening 15 made in the compartment confining the liquids in the filtration unit.
  • the ducts 7 are obstructed by liquid-tight plugs to force the entire filtrate to pass through the interstitial volumes 6.
  • the sleeve itself ensures the sealing of the opposite face the liquid filter.
  • the liquid to be filtered 14 is first introduced at the inlet face 3 of the filter. This is confined in the surrounding compartment in the filtration unit and a portion of the walls 5 is shown in Figure 8C. As shown in FIG. 8C, during operation, the liquid to be filtered passes through the porous walls of said filter elements and the membrane covering them. The filtrate 16 is first recovered in the interstitial volume 6 present around the filter elements. Apertures 19 are made in the rear filter sleeve to allow filtrate 16 to be exhausted which is finally collected at the outlet of the unit 20 through an opening 15 in the liquid-confining compartment in the filtration unit.
  • FIGS. 6A and 6B illustrate the difficulties encountered in implementing such an assembled filter: when the liquid to be filtered is introduced from the introduction face 3 of the filter, part of it passes directly into the filter. the greatest porosity of the porous walls 8 of the filter element, without entering the ducts 7 and through the membrane 11.
  • Such a bypass circuit is illustrated by the arrows 100 in FIG. 6B.
  • the implementation of the present invention solves such a problem.
  • Filter elements were produced according to the techniques of the art by shaping and baking structures made of porous recrystallized silicon carbide, according to the method of production described above.
  • the hydraulic diameter D h of a channel is calculated, in a plane of any cross section P of the tubular structure, from the surface of the section of the channel S of said channel and its perimeter P, according to said section plane and by applying the following standard expression:
  • the open front area (OFA) is obtained by calculating the percentage ratio of the area covered by the sum of the cross sections of the channels on the total area of the corresponding cross-section of the porous support.
  • the median diameter dso denotes the diameter of the particles below which 50% by weight of the population of said particles).
  • the green monoliths thus obtained are dried by microwave for a time sufficient to bring the water content not chemically bound to less than 1 ⁇ 6 by mass.
  • honeycomb monoliths are then fired to a temperature of at least 2100 ° C which is maintained for 5 hours.
  • the obtained material has an open porosity of 43% and a median pore distribution diameter of about 25 microns, as measured by mercury porosimetry.
  • a membrane separating layer is then deposited on the inner wall of the channels of the support structure according to the method described below:
  • a primer of attachment of the separating layer is constituted in a first step, from a slip whose mineral formulation comprises 30% by weight of a powder of black SiC grains (SIKA DPF-C) whose diameter median D50 is about 11 microns, 20% by weight of a black SiC grain powder (SIKA FCP-07) whose median diameter D50 is about 2.5 microns, and 50% deionized water.
  • a slip whose mineral formulation comprises 30% by weight of a powder of black SiC grains (SIKA DPF-C) whose diameter median D50 is about 11 microns, 20% by weight of a black SiC grain powder (SIKA FCP-07) whose median diameter D50 is about 2.5 microns, and 50% deionized water.
  • a slurry of the material constituting the membrane filtration layer is also prepared, the formulation of which comprises 40% by weight of SiC grains (dso around 0.6 micrometer) and 60% of demineralized water.
  • the rheology of the slips was adjusted by adding organic additives at 0.5-0.7 Pa.s under a shear rate of ls -1 , measured at 22 ° C. according to the DINC33-53019 standard.
  • the slip is introduced into a tank with stirring (20 rpm). After a light vacuum de-aerating phase (typically 25 millibars) while maintaining stirring, the tank is pressurized approximately 0.7 bar in order to coat the interior of the support from its lower part until at its upper end.
  • a light vacuum de-aerating phase typically 25 millibars
  • the elements are then dried at ambient temperature for 30 minutes and then at 60 ° C. for 30 hours.
  • the thus dried supports are then fired at a temperature of 1800 ° C. under argon for 2 hours and at ambient pressure.
  • the thicknesses of the primer layers and the membrane filtration layer after sintering are substantially equal and of the order of 45 micrometers.
  • the firing temperature is a function of the characteristics required for the final porosity of the membrane, ie a median diameter of D50 pores of about 1 micrometer and a total porosity of 40%, by volume.
  • the coated carriers of Examples 7 to 8 were fired at a firing temperature of 1600 ° C under nitrogen for 2h and at ambient pressure.
  • the median pore diameter D 50 of the membrane is measured as equal to about 250 nanometers.
  • the lower part of the elements comprising an accumulation of the materials of the different layers applied, is cut over a length of 10 mm.
  • a cross section is performed on the filters thus obtained.
  • the structure of the membrane is observed under a scanning microscope.
  • the porous wall of the element, of high porosity is observed on an electron microscopy plate, the primer layer enabling the membrane layer to be finer in porosity, which ultimately lines the interior of the conduits.
  • the filter elements thus synthesized are then immersed in a silicone container so as to rest on one of their end.
  • Epoxy-based thermosetting resins are introduced into the container to form a sleeve between the elements.
  • the viscosity of the resin used is different and modulated according to Examples 1 to 6 by the chemical nature of the epoxide used, or by the addition in the initial epoxy resin, before curing, of a mineral filler in the form of a greater or lesser amount of Sic particles of different sizes.
  • Epofix TM An epoxy resin marketed by Struers under the reference Epofix TM, with a viscosity of 390 mPa ⁇ s at 25 ° C.
  • More added SiC powder has a small average diameter plus the viscosity of the mixture with the resin increases.
  • the curable material is cured at ambient temperature, according to the recommendations and conditions recommended by the supplier, until a rigid sleeve is obtained in the form of a single piece surrounding the filter element as schematically illustrated in FIG.
  • the filter elements are cut in their middle and in the longitudinal direction, that is to say in a longitudinal sectional plane passing through the central axis 12 of the element, and a visual observation of the depth and penetration profile of the resin in each conduit is performed.
  • FIG. 4B schematically illustrating the photograph shown in FIG. 4A, the penetration heights of the hardened material 4 in the porosity of the walls 8 are measured for each of the ducts 7 constituting the filter element.
  • the sleeve thicknesses obtained after impregnation and hardening are very variable according to the nature of the hardenable material and that the resin always impregnates the peripheral walls to a maximum height greater than the thickness of the final sleeve, because capillary phenomena.
  • the filtration surface of a filter element corresponds to the internal surface summed of all the internal walls, covered by the membrane and accessible to the fluid to be filtered in said element (or said filter).
  • the portion of the walls whose internal porosity is obstructed by the hardened material during manufacture of the sleeve is not considered to be a filtration surface.
  • Example 7 shows that the curable resin mixture which was suitable according to Example 6 is no longer suitable in the case of a membrane of significantly smaller pore diameter, the most central ducts of the elements not being impregnated by the curable material, which implies the presence of bypass zones of the membrane in the filter.
  • Example 8 shows that it is possible again a device with a sleeve thickness and an impregnation of all the internal walls, provided to change the load (and therefore the viscosity) of the mixture in the resin, using particles of significantly larger size.
  • the results reported in the previous table show that the viscosity of the hardenable material injected into the porosity of the walls of the elements must be adjusted: it must be sufficiently low so that hardenable material penetrates into the open porosity and through all the thickness of all the porous walls constituting the plurality of elements, in particular through the entire thickness of the innermost walls of all the filter elements used to constitute the assembled filter.
  • the presence of the resin throughout the porosity of the walls, along a non-zero height h ensures the best operation of the complex structure by effectively avoiding the bypass zones mentioned previously.
  • the viscosity must not be too low, in order to avoid too much clogging of the remaining filtration surface within the ducts and the general weakening of the assembled filter of the duct. due to a lack of thickness of the sleeves making the constituent elements of the structure integral.
  • filtration is carried out from assembled filters whose configuration is shown in FIG.
  • a turbidity measurement is performed on the filters corresponding to assemblies of 7 filter elements according to Figure 7 attached, using the filter elements and sleeve compositions respectively described in Examples 1 and 2 above.
  • two filters are synthesized and each assembled from 7 filter elements as described in the previous examples.
  • the first filter according to the invention is obtained by bonding the 7 filter elements together on both ends by sleeves 9 and 10, via the curable material as described in Example 1. According to the invention and as shown in Figure 7, the filter is obtained after curing the sleeves in the form of a single piece making integral by sealing all 7 filter elements.
  • the second comparative filter is obtained in the same way as the first, but this time using as a hardenable material the mixture of the resin and the filler described in Example 2.
  • Synthetic dirty water comprising clay, salt, oil and surfactants are used in amounts of 100ppm, 4000ppm, 300ppm and 2ppm, respectively.
  • the dirty water supplies, at a constant temperature of 25 ° C, the two filters to be evaluated under a transmembrane pressure of 0.5 bar and a circulation speed in the channels of 3 m / s.
  • the filtrate (purified water) is recovered at the periphery of the filter, via the interstices 6.
  • the turbidity of the filtrate is continuously measured by means of a BAT-Turbidy Meter series turbidimeter LAT NI series supplied by Kobold Instrumentation, after 10 cycles of filtration.
  • a lower value after turbidity test therefore corresponds to a better filtration quality of the incoming liquid, which can itself be directly related to the absence of bypass zones 100 of the filter membrane, as described in Figure 6B.
  • This turbidity expressed is 0.8 NTU for the first filter (according to the invention) and 3.5 for the comparative filter. Such a difference proves the increased filtration efficiency of the filter obtained according to the principles of the present invention.

Abstract

Filtre à membrane (1) comprenant une pluralité d'éléments filtrants (2) céramiques en nid d'abeille, chaque élément comprenant une pluralité de conduits parallèles (7) séparés par des parois (8) et ouverts sur une face d'introduction (3) du liquide à filtrer, un volume interstitiel (6) entre lesdits éléments filtrants (2), une membrane de filtration disposée sur la surface interne des parois des conduits (7), dans lequel lesdits éléments filtrants sont liés entre eux par l'intermédiaire d'un matériau durcissable (4) formant après durcissement un manchon (9) sous la forme d'une pièce unique rendant solidaire par scellement l'ensemble desdits éléments filtrants (2) séparés le volume interstitiel ( 6), ledit manchon ayant une épaisseur e comprise entre 1 et 10% de la longueur du filtre, et le matériau durcissable (4) étant présent dans la porosité ouverte et au travers de toute l'épaisseur de chaque paroi poreuse (8) constituant les éléments (2), sur une hauteur h minimale non nulle.

Description

FILTRES ASSEMBLES POUR LA FILTRATION DE LIQUIDES L' invention se rapporte au domaine des structures filtrantes en un matériau inorganique destinées à la filtration des liquides en particulier les structures revêtues d'une membrane afin de séparer des particules ou des molécules d'un liquide, plus particulièrement de l'eau, par exemple de l'eau de production issue de l'extraction pétrolière ou des gaz de schiste.
On connaît depuis longtemps des filtres utilisant des membranes céramiques ou non pour réaliser la filtration de fluides variés, notamment d'eaux polluées. Ces filtres peuvent fonctionner selon le principe de la filtration frontale, cette technique impliquant le passage du fluide à traiter à travers un média filtrant, perpendiculairement à sa surface. Cette technique est limitée par l'accumulation de particules et la formation d'un gâteau à la surface du média filtrant, et donne lieu à une chute rapide des performances ainsi qu'une baisse du niveau de filtration.
Selon une autre technique à laquelle se rapporte également la présente invention, on utilise la filtration tangentielle, qui, au contraire, permet de limiter l'accumulation de particules, grâce à la circulation longitudinale du fluide à la surface de la membrane. Les particules restent dans le flux de circulation alors que le liquide peut traverser la membrane sous l'effet de la pression. Cette technique assure une stabilité des performances et du niveau de filtration. Elle est plus particulièrement préconisée pour la filtration des fluides très chargés en particules et/ou en molécules. Les points forts de la filtration tangentielle sont donc sa facilité de mise en œuvre, sa fiabilité grâce à l'utilisation des membranes organiques et/ou inorganiques de porosité adaptées pour effectuer ladite filtration, et son fonctionnement en continu.
La filtration tangentielle fait appel à peu ou pas d'adjuvant et fournit deux fluides séparés qui peuvent être tous deux valorisables : le concentrât (également appelé retentât) et le filtrat (également appelé perméat) : il s'agit d'un procédé propre qui respecte l'environnement.
Selon une alternative notamment utile pour la purification des liquides chargés en particules solides, les polluants peuvent rester piégés dans la structure. Dans un tel cas aucun concentrât n'est recueilli en sortie de la structure, mais seulement un filtrat.
Les techniques de filtration tangentielle sont notamment utilisées pour la microfiltration,
1 ' ultrafiltration, la nanofiltration .
On connaît ainsi de la technique actuelle de nombreuses structures de filtres fonctionnant suivant les principes de la filtration tangentielle. Elles comprennent ou sont constituées à partir de supports tubulaires en un matériau inorganique poreux formés de parois délimitant des conduits ou canaux longitudinaux parallèles à l'axe desdits supports. Le liquide à filtrer passe au travers des parois puis le filtrat est évacué le plus souvent au niveau de la surface extérieure périphérique du support poreux.
Selon une configuration également utilisée, les filtres comprennent au moins un élément filtrant constitué par une pluralité de conduits séparés par des parois poreuses. Une telle structure est communément appelée dans le domaine nid d'abeille.
La surface desdits conduits est également habituellement recouverte d'une membrane, le plus souvent en un matériau inorganique poreux, appelée membrane ou couche séparatrice membranaire dans la présente description, dont la nature et la morphologie sont adaptées pour arrêter les molécules ou les particules dont la taille est proche ou supérieure au diamètre médian des pores de ladite membrane lorsque le fluide filtré se répand dans la porosité du support poreux.
En particulier, dans de tels filtres, le diamètre médian des pores du matériau constituant la membrane filtrante est normalement très inférieur à celui du matériau constituant les parois des conduits, le rapport allant en général de 1/1000 à 1/10. En outre, l'épaisseur des membranes est beaucoup plus fine que celle des parois, le rapport allant de 1/200 à 1/5.
La membrane est classiquement déposée sur la surface interne des canaux par un procédé d'enduction d'une barbotine du matériau inorganique poreux suivie d'un traitement thermique de consolidation, notamment un séchage et éventuellement d'un frittage des membranes céramiques.
La demande de brevet US2013/0153485 décrit un filtre membranaire comprenant un assemblage d'éléments de filtration dont les extrémités sont liées par un matériau formant un anneau de montage (« mounting ring ») . Aucune indication n'est cependant fournie dans cette demande en ce qui concerne la mise en œuvre d'une telle réalisation, en particulier sur les moyens à mettre en œuvre et les conditions permettant l'obtention d'un filtre fiable dans le temps, c'est-à-dire dont l'intégrité et l'étanchéité sont garanties et préservées selon une durée de vie prolongée du filtre.
En particulier, aucune indication n'est fournie dans cette publication en ce qui concerne la résistance mécanique conférée à l'ensemble par l'anneau de montage, notamment sur sa résistance à l'écrasement et à la déformation sous la pression exercée par l'enveloppe (« housing » selon le terme anglais) dans laquelle la structure filtrante sera insérée lors de sa mise en œuvre ni sur les performances de filtration d'un filtre complexe ainsi assemblé.
Il a été trouvé par la société demanderesse que le problème essentiel dans une telle structure réside en particulier dans la qualité de la filtration du liquide entrant. La société déposante a en effet pu mettre en évidence que cette qualité dépend fortement de l'absence de zones dites de contournement de la membrane (souvent appelées « by-pass » selon le terme anglais) , par lesquelles le liquide à filtrer peut cheminer dans la structure sans avoir à traverser la partie active où est effectuée la filtration. En présence de telles zones, le liquide peut traverser le filtre, sans entrer en contact avec la couche séparatrice membranaire de plus faible porosité et présente à la surface des parois poreuses de plus forte porosité.
En particulier, les essais effectués et reportés ci- après par la société déposante ont démontré qu'une partie importante du liquide dans une telle structure pouvait passer directement dans les canaux de la structure via la porosité du support, à partir de l'extrémité du filtre ouverte sur la face d' introduction du liquide à filtrer, sans avoir donc à traverser la membrane tapissant les parois internes des éléments céramiques en nid d'abeille. Une telle zone de contournement de la membrane est par exemple illustrée par les flèches 100 sur la figure 6B ci- jointe. Un tel problème est d'autant plus critique que le filtre n'est pas unitaire mais comprend une pluralité d'éléments filtrants comme illustré par les figures 1, 5,7 et 8. Comme indiqué précédemment, sans que cela soit cependant une certitude, un tel phénomène pourrait s'expliquer en raison des grandes différences de porosité, de taille de pores et d'épaisseur entre les matériaux constituant respectivement la membrane et les parois.
L'objet de la présente invention est de résoudre les problèmes précédemment exposés, et se propose en particulier de fournir un filtre résistant mécaniquement, assemblé à partir d'un ensemble d'éléments filtrants céramiques en nid d'abeille, chacun comprenant une pluralité de conduits, et dont l'efficacité de filtration est optimale, en particulier en prévenant la présence de zones de by-pass dans le filtre assemblé, par lesquels une partie du liquide n'est pas filtré, tout en préservant au maximum la surface de filtration accessible au liquide au sein ledit filtre.
Dans sa forme la plus générale, la présente invention se rapporte ainsi à un filtre à membrane pour la filtration de liquide comprenant :
- une pluralité d'éléments filtrants céramiques en nid d'abeille, de préférence disposés sensiblement parallèlement dans ledit filtre, chaque élément comprenant une pluralité de conduits parallèles séparés par des parois faites dans un matériau céramique poreux, en particulier dont la porosité ouverte est comprise entre 15 et 60%, lesdits conduits étant ouverts sur une face d' introduction du liquide à filtrer,
un volume interstitiel entre lesdits éléments filtrants ,
- une membrane de filtration constituée dans un matériau céramique disposée sur la surface interne des parois des conduits , éventuellement des moyens de récupération du filtrat, disposés en sortie des conduits et/ou en périphérie du filtre,
Selon le filtre selon l'invention :
- lesdits éléments filtrants sont liés entre eux, au moins sur l'extrémité du filtre ouverte sur ladite face d'introduction, par l'intermédiaire d'un matériau durcissable, notamment une résine durcissable incorporant éventuellement une charge minérale, formant après durcissement un manchon sous la forme d'une pièce unique rendant solidaire par scellement l'ensemble desdits éléments filtrants, ledit manchon maintenant entre lesdits éléments ledit volume interstitiel,
ledit manchon a une épaisseur e, mesurée selon l'axe longitudinal du filtre, comprise entre 1 et 10%, de préférence entre 1,5 et 7% et de manière très préférée entre 2 et 5%, de la longueur du filtre, et
le matériau durcissable est présent dans la porosité ouverte et au travers de toute l'épaisseur de chaque paroi poreuse constituant les éléments, sur une hauteur h minimale non nulle, ladite hauteur étant mesurée parallèlement à l'axe longitudinal de l'élément considéré et à partir de son extrémité ouverte sur la face d' introduction.
Selon certains modes préférés de réalisation d'un filtre selon l'invention qui peuvent bien entendu être combinés entre eux le cas échéant :
Ladite hauteur h minimale est inférieure à 2,5><e, de préférence est inférieure à 2><e, de préférence encore est inférieure à l,5><e et de manière très préférée est inférieure ou égale à lxe.
La hauteur maximale selon laquelle le matériau durcissable est présent dans la porosité ouverte et au travers de toute l'épaisseur des parois poreuses constituant les éléments est inférieure à 3><e, de préférence inférieure à 2,5><e et de manière très préférée inférieure à 2><e.
Le filtre comprend en outre au moins un second manchon, de préférence identique au premier manchon.
Ledit second manchon est disposé à l'extrémité opposée du filtre.
L'épaisseur moyenne e du manchon est comprise entre 2 et 5% de la longueur moyenne desdits éléments.
- le diamètre médian des pores dans les parois poreuses est compris entre 5 et 50 micromètres, de préférence entre 10 et 40 micromètres.
Le diamètre médian des pores de la membrane est compris entre 50 nanomètres et 10 micromètres et est au moins cinq fois inférieure au diamètre médian des pores des parois poreuses.
La longueur du filtre est comprise entre 200 et 1500 mm.
L'épaisseur des parois poreuses des conduits est comprise en 0,3 et 1,5 mm.
L'épaisseur moyenne de la membrane est comprise entre 20 nanomètres et 50 micromètres, notamment entre 20 nanomètres et 10 micromètres, de préférence est comprise entre 100 nanomètres et 2 micromètres.
- Préférentiellement l'épaisseur moyenne de la membrane est d'au moins 5 fois voire d'au moins 10 fois son diamètre médian de pores.
Les conduits sont de section carrée, ronde ou oblongue, de préférence ronde, et de préférence encore dont le diamètre hydraulique est compris entre 1 et 5mm.
Les éléments sont de section ronde, le diamètre de ladite section ronde étant compris entre 20 et 80 mm. Les éléments sont de section hexagonale, la distance entre deux côtés opposés de la section hexagonale étant comprise entre 20 et 80 mm.
Les conduits des éléments filtrants sont ouverts sur leurs deux extrémités.
Les conduits des éléments filtrants sont alternativement bouchés sur la face d' introduction du liquide à filtrer et sur la face opposée.
Les conduits des éléments filtrants sont ouverts sur la face d'introduction du liquide et fermés sur la face de récupération .
Les moyens de récupération du filtrat sont disposés en périphérie du filtre.
Les éléments filtrants et de préférence la membrane comprennent et de préférence sont constitués essentiellement de particules de nitrure de silicium et/ou de carbure de silicium.
Le matériau durcissable est choisi parmi les résines époxyde et les résines acrylate.
- Le matériau durcissable comprend une charge constituée de particules minérales dont le diamètre médian D5o est compris entre 1 et 100 micromètres.
Ledit filtre est entouré d'un compartiment dans lequel est pratiquée une ouverture permettant ladite récupération du filtrat.
En particulier, en fonctionnement, le filtre selon l'invention est normalement disposé dans un compartiment (aussi appelé logement ou « housing » dans la présente description) . Selon cette configuration classique, ledit compartiment entoure donc les éléments filtrants et le ou les manchons. Un tel compartiment permet en particulier le confinement des liquides (filtrat et/ou retentat) au sein d'une unité de filtration. Selon une réalisation préférée selon l'invention, notamment selon laquelle le filtrat est récupéré en périphérie ou en sortie du filtre, lesdits moyens de récupération du filtrat peuvent donc inclure le compartiment (housing) dans lequel ledit filtre est inséré. Selon une telle réalisation, lesdits moyens comprennent notamment une ouverture dans ledit compartiment, comme il est décrit par exemple dans la publication US 2013/0153485) ou sur les figures 8 ci- jointes.
Ainsi, selon un mode préféré de l'invention, lesdits moyens de récupération peuvent comprendre ou encore être constitués par une ouverture pratiquée dans le logement (housing) entourant le filtre.
L'invention se rapporte également à une unité de filtration comprenant un filtre tel que décrit précédemment inséré dans son compartiment, y compris les moyens de récupération du filtrat.
L' invention se rapporte également à un procédé de fabrication d'un filtre à membrane selon l'une des revendications précédentes, comprenant les étapes successives suivantes : a. fabrication d'un ensemble d'éléments filtrants en nid d'abeille comprenant une pluralité de conduits parallèles séparés par des parois faites dans un matériau céramique poreux dont la porosité ouverte est comprise entre 15 et 60%,
b. dépôt sur la surface interne des parois poreuses d'une membrane de filtration constituée dans un matériau céramique,
c. alignement des extrémités des éléments filtrants, selon une disposition sensiblement parallèle suivant leur longueur, lesdits éléments disposés en parallèle étant en outre maintenus espacés de sorte qu'un volume interstitiel est présent entre chaque élément filtrant,
d. préparation d'un matériau durcissable, de préférence une résine comprenant éventuellement une charge de particules minérales, et ajustement de sa viscosité de telle façon que ledit matériau durcissable pénètre toute l'épaisseur de chaque paroi poreuse de tous les éléments suivant une hauteur h non nulle, ladite hauteur étant mesurée selon l'axe longitudinal du filtre,
e. application dudit matériau durcissable à partir d'au moins une extrémité des éléments filtrants dans ledit volume interstitiel, sur une épaisseur comprise entre 1% et 10% de la longueur des éléments, f. durcissement du matériau durcissable en un manchon sous la forme d'une pièce unique rendant solidaire par scellement l'ensemble desdits éléments tubulaires, séparés entre eux par ledit volume interstitiel .
Selon un mode particulier du procédé de fabrication décrit précédemment, avant l'étape c, on imprègne préalablement des extrémités de chacun des éléments filtrants par une résine par exemple durcissable obstruant la porosité du matériau céramique poreux sur la face d'introduction du liquide à filtrer. On donne les définitions suivantes, au sens de la présente description :
Par canal ou conduit, on entend l'espace délimité par les parois poreuses de la structure dans lequel est introduit et circule le liquide à filtrer. Par canaux ou conduits internes, on entend au sens de l'invention les conduits qui ne partagent pas de paroi commune avec la surface externe ou périphérique de l'élément filtrant. De façon complémentaire un conduit qui présente au moins une paroi commune avec la surface externe de l'élément filtrant est dit périphérique. Cette paroi est dite paroi externe. Les autres parois sont dites parois internes.
La porosité ouverte et le diamètre médian des pores des parois poreuses décrits dans la présente description sont déterminés de manière connue par porosimétrie au mercure .
Le volume de pores est mesuré par intrusion de Mercure à 2000 bars à l'aide d'un porosimètre à mercure Autopore IV série 9500 Micromeritics , sur un échantillon de 1cm3 prélevé dans un bloc du produit, la région de prélèvement excluant la peau s' étendant typiquement jusqu'à 500 microns depuis la surface du bloc. La norme applicable est l'ISO 15901-1.2005 part 1. L'augmentation de pression jusqu'à haute pression conduit à « pousser » le mercure dans des pores de taille de plus en plus petite. L'intrusion du mercure se fait classiquement en deux étapes. Dans un premier temps, une intrusion de mercure est réalisée en basse pression jusqu'à 44 psia (environ 3 bar), en utilisant une pression d'air pour introduire le mercure dans les plus gros pores (>4ym) . Dans un deuxième temps, une intrusion à haute pression est réalisée avec de l'huile jusqu'à la pression maximale de 30000 psia (environ 2000 bar) .
En application de la loi de Washburn mentionnée dans la norme ISO 15901-1.2005 part 1, un porosimètre à mercure permet ainsi d'établir une distribution de tailles des pores en volume. Le diamètre médian de pores des parois poreuses correspond à un seuil de 50% de la population en volume .
La porosité de la membrane, correspondant au volume total des pores dans la membrane, et le diamètre médian de pores de la membrane sont avantageusement déterminés selon l'invention à l'aide d'un microscope électronique à balayage. Typiquement, on réalise des sections d'une paroi du support en coupe transversale, de manière à visualiser toute l'épaisseur du revêtement sur une longueur cumulée d'au moins 1,5 cm. L'acquisition des images est effectuée sur un échantillon d'au moins 50 grains, de préférence d'au moins 100 grains. L'aire et le diamètre équivalent de chacun des pores sont obtenus à partir des clichés par des techniques classiques d'analyse d'images, éventuellement après une binarisation de l'image visant à en augmenter le contraste. On déduit ainsi une distribution de diamètres équivalents, dont on extrait le diamètre médian de pores.
La porosité de la membrane est obtenue par intégration de la courbe de distribution de diamètres équivalents de pores.
De même on peut déterminer par cette méthode une taille médiane des particules constituant la couche membranaire .
La taille médiane des particules constituant la couche membranaire est en général comprise entre 20 nanomètres et 10 micromètres, de préférence entre 100 nanomètres et 2 micromètres .
Un exemple de détermination du diamètre médian de pores ou de la taille médiane des particules constituant la couche membranaire, à titre d'illustration, comprend la succession des étapes suivantes, classique dans le domaine :
Une série de clichés en MEB est prise du support avec sa couche membranaire observé selon une coupe transversale (c'est-à-dire dans toute l'épaisseur d'une paroi). Pour plus de netteté, les clichés sont effectués sur une section polie du matériau. L'acquisition de l'image est effectuée sur une longueur cumulée de la couche membranaire au moins égal à 1,5 cm, afin d'obtenir des valeurs représentatives de l'ensemble de l'échantillon.
Les clichés sont de préférence soumis à des techniques de binarisation, bien connues dans les techniques de traitement de l'image, pour augmenter le contraste du contour des particules ou des pores.
Pour chaque particule ou chaque pore constituant la couche membranaire, une mesure de son aire est réalisée. Un diamètre équivalent de pores ou de grain est déterminé (e) , correspondant au diamètre d'un disque parfait de même aire que celui mesuré pour ladite particule ou pour ledit pore (cette opération pouvant éventuellement être réalisée à l'aide d'un logiciel dédié notamment Visilog® commercialisé par Noesis) . Une distribution de taille de particules ou de grains ou de diamètre de pores est ainsi obtenue selon une courbe classique de répartition et une taille médiane des particules et/ou un diamètre médian de pores constituant la couche membranaire sont ainsi déterminés, cette taille médiane ou ce diamètre médian correspondant respectivement au diamètre équivalent divisant ladite distribution en une première population ne comportant que des particules ou de pores de diamètre équivalent supérieur ou égal à cette taille médiane et une deuxième population comportant que des particules de diamètre équivalent inférieur à cette taille médiane ou ce diamètre médian.
Le diamètre médian D50 des poudres des particules, en particulier des poudres de carbure de silicium Sic, utilisées pour réaliser le support ou la membrane est évalué classiquement par une caractérisation de distribution granulométrique réalisée avec un granulomètre laser conformément à la norme ISO 13320-1. Le granulomètre laser peut être, par exemple, un Partica LA-950 de la société HORIBA. Au sens de la présente description et sauf mention contraire, le diamètre médian des particules désigne respectivement le diamètre des particules au- dessous duquel se trouve 50% en masse de la population.
Au sens de la présente invention, au sein d'un élément filtrant, tous les conduits présentent une section et une répartition sensiblement constante et identique sur toute la longueur du filtre, quel que soit le plan de coupe transversal considéré.
Par épaisseur e du manchon, il est entendu l'épaisseur moyenne dudit manchon mesurée parallèlement à l'axe central longitudinal du filtre. Sans sortir du cadre de l'invention, l'épaisseur du manchon peut cependant varier localement sensiblement dans le sens longitudinal du filtre, notamment en fonction de la technique d'élaboration du manchon, par exemple en fonction du profil du moule utilisé pour couler le matériau durcissable liant les éléments filtrants entre eux.
On donne ci-après un exemple permettant la réalisation d'un élément filtrant entrant dans la structure d'un filtre selon l'invention, bien évidemment non limitative des procédés permettant d' obtenir un tel élément :
Selon une première étape, l'élément filtrant est obtenu par extrusion d'une pâte au travers d'une filière configurée selon la géométrie de la structure à réaliser selon l'invention. L'extrusion est suivie d'un séchage et d'une cuisson afin de fritter le matériau inorganique constituant le support et obtenir les caractéristiques de porosité et de résistance mécanique nécessaire à 1 ' application . Par exemple, lorsqu'il s'agit d'un support en SiC, il peut être en particulier obtenu selon les étapes de fabrication suivantes :
- malaxage d'un mélange comportant des particules de carbure de silicium de pureté supérieure à 98% de Sic et présentant une granulométrie telle que 75% en masse des particules présente un diamètre supérieur à 30 micromètres, le diamètre médian en masse de cette fraction granulométrique (mesuré par granulomètre laser) étant inférieur à 300 micromètres. Le mélange comporte aussi un liant organique du type dérivé de cellulose. On ajoute de l'eau et on malaxe jusqu'à obtenir une pâte homogène dont la plasticité permet l'extrusion, la filière étant configurée pour l'obtention des monolithes selon 1 ' invention .
- séchage des monolithes crus par micro-onde pendant un temps suffisant pour amener la teneur en eau non liée chimiquement à moins de 1 ~6 en masse .
- cuisson jusqu'à une température d'au moins 1300°C dans le cas de support filtrant à base de Sic fritté en phase liquide, de nitrure de Silicium, d' oxynitrure de Silicium, d' oxynitrure de Silicium et d'Aluminium ou même de BN et d'au moins 1900°C et inférieure à 2400°C dans le cas d'un support filtrant à base de Sic recristallisé ou fritté en phase solide. Dans le cas d'un support filtrant en nitrure ou oxynitrure l'atmosphère de cuisson est de préférence azotée. Dans le cas d'un support filtrant en SiC recristallisé l'atmosphère de cuisson est de préférence neutre et plus particulièrement d'argon. La température est maintenue typiquement pendant au moins 1 heure et de préférence pendant au moins 3 heures. Le matériau obtenu présente une porosité ouverte de 15 à 60% en volume et un diamètre médian de pores de l'ordre de 5 à 50 micromètres, de préférence entre 10 et 40 micromètres. Par exemple, l'épaisseur moyenne des parois externes d'un élément selon l'invention est comprise entre 0,5 et 2,0 mm. Une telle épaisseur permet notamment de s'assurer d'une cohésion et un accrochage adapté entre le matériau céramique poreux constituant la paroi externe et la résine durcissable entrant dans sa porosité. Au besoin, la surface extérieure des parois poreuses peut également être rendue rugueuse pour faciliter encore l'accrochage et la pénétration de la résine dans la porosité des parois. L'épaisseur moyenne des parois internes des éléments est généralement plus faible que celle des parois externes et est de préférence comprise entre 0,3 et 1,5 mm.
La longueur des éléments filtrants est en principe comprise entre 200 et 1500 mm.
Le diamètre hydraulique des conduits (aussi parfois appelés canaux dans la présente description) est de préférence compris entre 1 et 5 mm, de préférence entre 1,5 et 4 mm .
Suivant le type de filtration envisagée (tangentielle ou frontale) et/ou la configuration envisagée pour la récupération du filtrat (en sortie des canaux et/ou en périphérie du filtre) , certains conduits peuvent ou non être bouchés aux extrémités, notamment à l'extrémité opposée des conduits par référence à l'introduction du liquide dans le filtre. De préférence, dans le cas d'une filtration tangentielle, aucun conduit n'est bouché.
L'élément filtrant est ensuite revêtu selon l'invention d'une membrane (ou couche séparatrice membranaire) . Une ou plusieurs couches dite primaires peuvent être déposées avant de former la membrane filtrante selon diverses techniques connues de l'homme du métier : techniques de dépôt à partir de suspensions ou de barbotines, techniques de dépôt chimique en phase vapeur (CVD) ou de projection thermique, par exemple projection plasma (plasma spraying) .
De préférence les couches de primaire et la membrane sont déposées par enduction à partir de barbotines ou de suspensions comprenant des particules céramiques. Une première couche est préférentiellement déposée en contact avec le substrat (couche primaire), jouant le rôle de couche d'accrochage. La formulation du primaire comporte 50% en masse de grains de SiC (diamètre médian entre 2 et 20 micromètres) et 50% d'eau désionisée. Une seconde couche de porosité plus fine est déposée sur la couche de primaire, et constitue la membrane proprement dite. La porosité de cette dernière couche est adaptée pour conférer à l'élément filtrant ses propriétés finales. La formulation de la membrane comporte de préférence 50% en masse de grains de SiC (notamment de diamètre médian entre 0,1 et 2 micromètres) et 50% d'eau désionisée.
Afin de contrôler la rhéologie de ces barbotines et respecter une viscosité adéquate (typiquement comprise entre 0,01 à 1,5 Pa.s de préférence 0,1 à 0,8 Pa.s sous un gradient de cisaillement de ls-1 mesurée à 22°C selon la norme DINC33-53019) , des agents épaississants (selon des proportions typiquement entre 0,02 et 2% de la masse d'eau), des agents liants (typiquement entre 0,5 et 20% de la masse de poudre de SiC) , des agents dispersants (entre 0,01 et 1% de la masse de poudre de SiC) peuvent être ajoutés. Les agents épaississants sont de préférence des dérivés cellulosiques, les agents liants de préférence des PVA ou des dérivés d'acrylique et les agents dispersants sont de préférence du type polymétacrylate d'ammonium.
Ces opérations d' enduction permettent typiquement d'obtenir une couche de primaire d'épaisseur d'environ 30 à 50 micromètres après séchage et frittage. Lors de la deuxième étape d' enduction une couche de membrane d'épaisseur d'environ 30 à 50 micromètres est obtenue après séchage et frittage.
L'élément ainsi revêtu est ensuite séché à température ambiante typiquement pendant au moins 30 minutes puis à 60°C pendant au moins 24 heures. Les supports ainsi séchés sont frittés à une température de cuisson typiquement comprise entre 1700 et 2200°C sous atmosphère non oxydante, de préférence sous argon, de manière à obtenir une porosité de membrane (mesurée par analyse d' image tel que décrit précédemment) comprise de préférence entre 10 et 40 % en volume et un diamètre médian équivalent de pores (mesuré par analyse d'image) compris de préférence entre 50 nm et 10 micromètres, voire entre 100 nm et 5 micromètres.
L'extrémité inférieure des éléments est ensuite arasée pour éliminer l'excédent des matériaux d'enduction, beaucoup plus concentrés dans cette partie de la pièce céramique, sur une longueur d'environ 5 à 20 mm.
Les membranes de filtration selon l'invention présentent de préférence les caractéristiques suivantes : - Elles sont constituée essentiellement d'un matériau céramique, de préférence à base de céramique non oxyde, de préférence choisi parmi le carbure de Silicium SiC, en particulier le SiC fritté en phase liquide ou en phase solide ou le SiC recristallisé, le nitrure de Silicium, en particulier S13N4, l'oxynitrure de
Silicium, en particulier S12ON2, l'oxynitrure de Silicium et d'Aluminium, le nitrure de bore BN, ou une combinaison de ceux-ci. De préférence la membrane est à base de carbure de silicium typiquement recristallisé. - Elles sont déposées sur une ou plusieurs couches d'un primaire dont le diamètre de pores est intermédiaire entre celui (le plus grand) des parois et celui de la membrane, pour faciliter sa déposition et son homogénéité. De préférence le ratio entre la taille moyenne des particules constituant la couche intermédiaire et de celle des particules constituant la couche membrane est compris entre 5 et 50. De préférence le ratio entre la taille moyenne des grains constituant la paroi poreuse et de celle des particules constituant la couche intermédiaire membrane est compris entre 2 et 20.
De préférence la porosité de la couche séparatrice membranaire est inférieure à 70% et de manière très préférée est comprise entre 10 et 70%.
Le diamètre médian équivalent de pores mesuré par analyse d' image de la couche formant la membrane est compris entre 1 nm et 5 micromètres. Une pluralité des éléments filtrants ainsi obtenus sont ensuite assemblés pour former le filtre selon l'invention, de manière à laisser entre eux un vide interstitiel par lequel pourra s'écouler le filtrat introduit sur une face d' introduction du filtre ainsi obtenu. La figure 3 montre plus en détail une telle configuration .
De façon plus détaillée, l'ensemble des éléments obtenus précédemment sont déposés dans un récipient de manière à reposer sur une de leurs extrémités. Ils sont également maintenus espacés entre eux par des espaceurs calibrés. Une résine durcissable dont la viscosité est adaptée selon l'invention est introduite dans le récipient de manière à remplir les interstices entre les éléments puis la résine est durcie, à température ambiante ou sous l'effet d'un chauffage pour le cas d'une résine thermodurcissable, jusqu'à l'obtention d'un manchon rigide sous la forme d'une pièce unique entourant et maintenant solidaire l'ensemble des éléments filtrants, comme illustré sur les figures 1 et 5. De préférence, la même opération est effectuée selon une seconde étape au niveau de l'autre extrémité des éléments filtrants, pour l'obtention du filtre final comprenant ainsi une pluralité d'éléments filtrants céramiques en nid d'abeille disposés sensiblement parallèlement, avec un volume interstitiel présent entre lesdits éléments filtrants.
Selon l'invention, l'adaptation de la résine et en particulier de sa viscosité lors de cette étape de formation du manchon est apparue critique pour permettre le bon fonctionnement du filtre assemblé ainsi obtenu, en particulier pour s'assurer de la qualité de filtration du dispositif. Tout particulièrement, il a été observé selon la présente invention que la viscosité de la résine durcissable injecté dans le récipient doit être suffisamment faible pour que matériau durcissable pénètre jusqu'au cœur de la porosité ouverte des parois des éléments filtrants, c'est à dire au travers de toute l'épaisseur de toutes les parois poreuses constituant la pluralité d'éléments, en particulier au travers de toute l'épaisseur des parois internes de tous les éléments filtrants utilisés pour constituer le filtre assemblé. Comme il sera démontré par les exemples fournis dans la présente description, la présence de la résine dans toute la porosité des parois, suivant une hauteur h non nulle (cf. figure 4), assure le meilleur fonctionnement de la structure complexe en évitant efficacement les zones de by- pass mentionnées précédemment (ladite hauteur étant mesurée selon l'axe longitudinal du filtre et à partir de ladite extrémité, cf. figure 4) . Selon un autre aspect essentiel de l'invention, la viscosité ne doit cependant pas être non plus trop faible, afin d'éviter l'obstruction trop importante de la surface de filtration restante au sein des conduits. Les expériences menées par la société déposante on en effet montré que l'utilisation d'une résine trop fluide induit, par phénomène de capillarité, l'obturation d'une portion sensible de la porosité des conduits et par suite une diminution des capacités de filtration du filtre, voire même l'obturation complète des conduits les plus périphériques de la structure. En outre, une viscosité trop faible induit également une faible épaisseur du manchon final, préjudiciable à la stabilité et à la résistance mécanique générale de la structure.
Au final, la viscosité la plus adaptée a été déterminée comme comprise entre 1000 et 3000 mPa.s à 25°C (ou plus généralement à la température à laquelle est effectuée son durcissement) , même si sa valeur optimale est susceptible de varier sensiblement notamment en fonction de la porosité des parois poreuses et/ou de la géométrie des conduits. En principe, le filtre assemblé ainsi obtenu est ensuite inséré dans un logement (aussi appelé compartiment ou boitier ou carter ou enveloppe selon le terme anglais « housing » généralement employé) , comprenant des ouvertures pour l'entrée du liquide à filtrer et des ouvertures de sortie pour le filtrat et éventuellement le retentât, selon des configurations classiques telles que par exemple décrites dans la demande US2013/0153485.
Les figures associées aux exemples qui suivent sont fournies afin d'illustrer l'invention et ses avantages, sans bien entendu que les modes de réalisations ainsi décrits puissent être considérés comme limitatifs de la présente invention. Dans les figures ci-jointes :
Les figures 1 (figures 1A et 1B) illustrent une configuration classique d'un filtre comprenant 19 éléments unitaire filtrants selon l'invention, selon une vue frontale correspondant à la face d'admission du liquide à filtrer (figure 1A) et selon une coupe longitudinale (figure 1B) . La figure 1C montre le filtre de la figure 1B inséré dans son logement, en fonctionnement .
- La figure 2 schématise une autre configuration d'un élément filtrant selon l'invention, avant son assemblage dans un filtre selon l'invention.
La figure 3 schématise une configuration alternative d'un élément filtrant selon l'invention, avant son assemblage dans un filtre selon l'invention.
Les figures 4 (4A et 4B) illustrent le phénomène d' imprégnation de la résine dans la porosité des parois d'un élément filtrant lors de la formation du manchon selon l'invention. La figure 4B est une représentation schématique, fournie pour plus de clarté, illustrant les caractéristiques visibles sur la figure 4A.
La figure 5 est une photo d'un filtre conforme à la présente invention.
Les figures 6 (6A et 6B) représentent schématiquement un élément filtrant extrait de l'assemblage avec sa portion du manchon, selon une vue en élévation (figure 6A) et selon une coupe en trois dimensions (figure 6B) . Les figures 6A et 6B sont fournies afin d' illustrer les voies de contournement possible de la membrane par le fluide à filtrer dans un filtre assemblé selon
1 ' invention .
La figure 7 représente le plan d'un filtre selon l'invention comprenant 7 éléments filtrants. Sur la figure 7, les cotes sont indiquées sont en mm.
- Les figures 8 (8A à 8C) représentent schématiquement, selon d'autres configurations, une unité de filtration conforme à la présente invention.
Dans les figures 1 à 8, les mêmes numéros sont utilisés pour désigner les mêmes objets. Les figures 1A et 1B illustrent un filtre tangentiel 1 selon l'invention, tel qu'utilisable pour la filtration d'un liquide. La figure 1A schématise une vue frontale d'un filtre selon l'invention, depuis la face d'entrée 3 du liquide à filtrer. La figure 1B représente une vue schématique du filtre selon le plan de section longitudinale AA' indiqué sur la figure 1A. Le filtre 1 présente un axe central longitudinal 13, perpendiculaire à la face frontale 3, et passant par son centre. Le filtre comprend un ensemble d'élément filtrants 2 fait dans un matériau inorganique poreux, de préférence non oxyde, tel que le SiC recristallisé. Chaque élément présente par exemple une forme tubulaire, qui peut être de section hexagonale comme illustré par la figure 1A ou de préférence de section circulaire comme illustré par la figure 2. Chaque élément présente un axe central longitudinal 12. Le filtre est inséré dans un logement ou compartiment (housing) dont une portion des parois 5 est représentée sur la figure 1B. Chaque élément 2 comprend dans sa portion interne un ensemble de conduits (ou canaux) 7 adjacents, d'axes parallèles entre eux et séparés les uns des autres par des parois 8 constituées dans le matériau poreux. Les parois 8 sont donc constituées dans un matériau inorganique poreux laissant passer le filtrat depuis la partie interne des éléments vers leur surface externe. Les conduits 7 sont recouverts sur leur surface interne d'une couche séparatrice membranaire (aussi appelée membrane de filtration ou encore membrane), tapissant l'intérieur des conduits (non représentée sur les figures 1) . Cette membrane de filtration entre en contact avec ledit fluide à filtrer circulant dans lesdits canaux après son introduction dans la structure assemblée selon la face d'entrée 3. La structure filtrante comprend des conduits internes et des conduits périphériques occupant la couronne de canaux la plus externe du filtre. Selon une configuration la plus classique illustrée par la figure 1, tous les conduits ont une section de forme circulaire.
Dans la configuration selon la figure 1, les éléments filtrants présentent une section transversale hexagonale. Bien entendu, les éléments filtrants peuvent avoir d'autres formes que celle représentée sur la figure 1. En particulier, selon un mode préféré selon l'invention, les éléments filtrants présentent une section circulaire, selon un plan de coupe perpendiculaire à leur longueur. La figure 2 illustre une telle configuration des éléments filtrants. Comme il est visible sur la figure 2, la moitié des canaux de la couronne périphérique a cependant une forme tronquée, afin de conserver une épaisseur de la paroi externe suffisante. La figure 3 illustre une autre configuration de filtre comprenant des éléments dont les conduits sont disposés de façon similaire à ceux de la figure 2, la section des conduits étant cette fois carrée. Selon cette configuration, tous les conduits ont la même section.
Selon un mode possible de réalisation illustré par les figures 2 et 3, le filtre selon l'invention comprend une pluralité de conduits répartis selon plusieurs couronnes autour d'un axe central. On entend par couronne de conduits, un ensemble de conduits dont le barycentre est situé sur un même cercle concentrique de l'axe central de l'élément filtrant.
Selon l'invention, les éléments filtrants 2 selon les figures 1A et 2 et 3 sont regroupés sous la forme d'un filtre assemblé, comme illustré par les figures 1B, 5 et 7. Chacun des éléments 2 est séparé des suivants par un volume interstitiel 6 par lequel s'écoule le filtrat issu des éléments 2, après traversée de la membrane. Comme illustré par les figures 1B 5 et 7, les éléments filtrants 2 sont maintenus à distance les uns des autres pour ménager un volume interstitiel 6 entre eux, dans une structure unique et résistante mécaniquement au moyen de deux manchons 9 et 10 disposés de préférence de part et d'autre des éléments 2 et à chaque extrémité de ceux-ci. Les deux manchons sont au contact et maintenus en compression par les parois 5 du compartiment de filtration (souvent appelé housing ou casing dans le domaine) . En fonctionnement, le liquide à filtrer est introduit depuis la face d' introduction 3 du filtre ainsi obtenu, traverse la membrane tapissant l'intérieur des conduits 7, un filtrat étant recueilli dans les volumes interstitiels 6 pour être finalement recueilli en sortie de filtre, généralement par une ouverture pratiquée dans le logement entourant le filtre (voir par exemple US 2013/0153485).
A titre d'exemple, le mode de réalisation illustré par la figure 1C décrit le fonctionnement d'un filtre 1 selon l'invention tel que décrit sur la figure 1B. Sur la figure 1C, les flèches 14 indiquent le parcours du liquide à filtrer dans l'unité de filtration 20. Le filtre 1 est disposé dans son compartiment dont les parois 5 comprennent une ouverture 15 pour l'évacuation du filtrat 16. En sortie du filtre, un rétentat 17 est également récupéré par les ouvertures des canaux disposées à l'opposé de la face d'introduction pour un éventuel recyclage.
Selon d'autres réalisations de l'invention illustrées par les figures 8 (8A à 8C) , seul un filtrat 15 est recueilli. Les configurations décrites dans les figures 8A à 8C ci-jointes ne doivent cependant pas être considérées comme limitatives de la portée de la présente invention, sous aucun des aspects décrits.
Selon une configuration d'une unité de filtration incorporant un filtre selon l'invention, par exemple illustrée par la figure 8A, le liquide à filtrer 14 est introduit au niveau de la face d'entrée 3 du filtre. Celui- ci présente une structure dans laquelle les conduits des éléments filtrants 2 sont alternativement bouchés sur la face d' introduction du liquide à filtrer et sur la face opposée par des bouchons 18 de préférence imperméables aux liquides, de façon à forcer le liquide à traverser les parois poreuses desdits éléments filtrants et la membrane les recouvrant. On distingue ainsi dans cette réalisation, comme illustrée sur la figure 8A, des conduits d'entrée 7 du liquide à filtrer et des conduits de sortie 7' du filtrat après traversée des parois poreuses pourvues d'une membrane de filtration. Le filtre 1 est confiné dans le compartiment qui l'entoure dans l'unité de filtration et dont une partie des parois 5 est représenté sur la figure 8A. Le filtrat 16 est récupéré en sortie de l'unité 20 par une ouverture 15 pratiquée dans le compartiment confinant les liquides dans l'unité de filtration. Une autre partie du filtrat 16', récupérée des volumes interstitiels 6, est recueillie par une ouverture 15' pratiquée sur la partie périphérique du compartiment entourant le filtre.
Selon une autre configuration d'une unité de filtration incorporant un filtre selon l'invention, illustrée par la figure 8B, le liquide à filtrer est introduit au niveau de la face d'entrée 3 du filtre. Celui- ci est confiné dans le compartiment qui l'entoure dans l'unité de filtration et dont une partie des parois 5 est représenté sur la figure 8B.
Celui-ci présente une structure dans laquelle les conduits des éléments filtrants 2 sont ouvert sur la face d' introduction du liquide et fermés sur la face de récupération, par des bouchons 18, de façon à forcer le liquide à traverser les parois poreuses desdits éléments filtrants 2 et la membrane les recouvrant. Tel qu'illustré par la figure 8B, en fonctionnement, le liquide à filtrer traverse les parois poreuses desdits éléments filtrants et la membrane les recouvrant. Le filtrat 16 est récupéré dans les volumes interstitiels 6 présents autour des éléments filtrants puis recueilli en sortie de l'unité 20 via une ouverture 15 pratiquée dans le compartiment confinant les liquides dans l'unité de filtration. Selon une réalisation possible, les conduits 7 sont obstrués par des bouchons étanches aux liquides pour forcer l'ensemble du filtrat à passer par les volumes intersticiels 6. Selon une autre réalisation possible, le manchon lui-même assure l'étanchéité de la face opposée du filtre aux liquides.
Selon une configuration alternative d'une unité 20 de filtration incorporant un filtre selon l'invention, illustrée par la figure 8C, le liquide à filtrer 14 est d'abord introduit au niveau de la face d'entrée 3 du filtre. Celui-ci est confiné dans le compartiment qui l'entoure dans l'unité de filtration et dont une partie des parois 5 est représenté sur la figure 8C. Tel qu'illustré par la figure 8C, en fonctionnement, le liquide à filtrer traverse les parois poreuses desdits éléments filtrants et la membrane les recouvrant. Le filtrat 16 est d'abord récupéré dans le volume interstitiel 6 présent autour des éléments filtrants. Des ouvertures 19 sont faites dans le manchon 10 arrière du filtre pour laisser s'évacuer le filtrat 16 qui est finalement recueilli en sortie de l'unité 20 via une ouverture 15 pratiquée dans le compartiment confinant les liquides dans l'unité de filtration. Selon un mode alternatif, tel que représenté en partie basse de la figure 8C, un espace peut être ménagé entre compartiment 5 et manchon 10 afin de laisser s'évacuer le filtrat 16. Sur les figures 6A et 6B, on illustre les difficultés rencontrées pour la mise en œuvre d'un tel filtre assemblé : lorsque le liquide à filtrer est introduit depuis la face d'introduction 3 du filtre, une partie de celui-ci passe directement dans la plus grande porosité des parois poreuses 8 de l'élément filtrant, sans entrer dans les conduits 7 et traverser la membrane 11. Un tel circuit de contournement (« by-pass ») est illustré par les flèches 100 sur la figure 6B . La mise en œuvre de la présente invention permet de résoudre un tel problème.
Les exemples qui suivent permettent d' illustrer l'invention et ses avantages mais ne limitent en rien la portée de celle-ci.
Exemples 1 à 8 :
Des éléments filtrants, dont la coupe transversale est schématisée sur la figure 2, ont été réalisés selon les techniques de l'art par mise en forme et cuisson de structures constituées de carbure de silicium recristallisé poreux, selon le procédé d'obtention décrit précédemment.
Les caractéristiques structurales de l'élément filtrant sont regroupées dans le tableau 1 ci-après :
Exemples 1-8
Figure illustrative de l'élément filtrant 2
Nombre total de conduits 19
SA = Surface totale canal A (mm2)
(canaux non tronqués) 16, 98
SB = Surface totale canal B (mm2 )
(canaux tronqués) 9,22
Rapport de surface Rs = SA / SB 1,84
Diamètre hydraulique DhA canal A (mm) 4, 65
Diamètre hydraulique DhB canal B (mm) 3,26
Rapport Dh = DhA/ DhB 1,42
Epaisseur moyenne de la paroi externe (mm) 0,7
Surface de filtration m2 /
m de longueur de filtre 0,26
OFA % 56
Tableau 1
Le diamètre hydraulique Dh d'un canal est calculé, dans un plan de section transversal P quelconque de la structure tubulaire, à partir de la surface de la section du canal S dudit canal et de son périmètre P, selon ledit plan de section et par application de l'expression classique suivante :
Dh = 4 x S / P L'OFA (« open front area » en anglais) ou surface de front ouverte, est obtenue en calculant le rapport en pourcentage de l'aire couverte par la somme des sections transversales des canaux sur l'aire totale de la section transversale correspondante du support poreux.
Les éléments selon les exemples 1 à 6 sont obtenus selon le même protocole expérimental qui suit:
On mélange dans un malaxeur :
- 6000 g d'un mélange des deux poudres de particules de carbure de silicium de pureté supérieure à 98% dans les proportions suivantes : 75% en masse d'une première poudre de particules présentant un diamètre médian de l'ordre de 60 micromètres et 25% en masse d'une deuxième poudre de particules présentant un diamètre médian de l'ordre de 2 micromètres. (Au sens de la présente description, le diamètre médian dso désigne le diamètre des particules au- dessous duquel se trouve 50% en masse de la population desdites particules) .
600 g d'un liant organique du type dérivé de cellulose .
On ajoute de l'eau environ 20% en masse par rapport à la masse totale de Sic et d'additif organique et on malaxe jusqu'à obtenir une pâte homogène dont la plasticité permet l'extrusion d'une structure de forme tubulaire, la filière étant configurée pour l'obtention de blocs monolithes dont les canaux et les parois externes présentent une structure selon la configuration représentée sur la figure 2 ci- jointe. On synthétise ainsi des supports crus de 25 mm de diamètre et 120 cm de longueur.
Les monolithes crus ainsi obtenus sont séchés par micro-onde pendant un temps suffisant pour amener la teneur en eau non liée chimiquement à moins de 1 ~6 en masse .
Les monolithes en nid d'abeille sont ensuite cuits jusqu'à une température d'au moins 2100°C qui est maintenue pendant 5 heures. Le matériau obtenu présente une porosité ouverte de 43% et un diamètre médian de distribution de pores de l'ordre de 25 micromètres, tel que mesuré par porosimétrie mercure.
Une couche séparatrice membranaire est ensuite déposée sur la paroi interne des canaux de la structure support selon le procédé décrit ci-après:
Un primaire d' accrochage de la couche séparatrice est constitué dans un premier temps, à partir d'une barbotine dont la formulation minérale comporte 30% en masse d'une poudre de grains de SiC noir (SIKA DPF-C) dont le diamètre médian D50 est d'environ 11 micromètres, 20% en masse d'une poudre de grains de SiC noir (SIKA FCP-07) dont le diamètre médian D50 est d'environ 2,5 micromètres, et 50% d'eau désionisée .
Une barbotine du matériau constituant la couche de filtration membranaire est également préparée, dont la formulation comporte 40% en masse de grains de SiC (dso autour de 0,6 micromètre) et 60% d'eau déminéralisée.
La rhéologie des barbotines a été réglée par ajout des additifs organiques à 0,5-0,7 Pa.s sous un gradient de cisaillement de ls-1, mesurée à 22°C selon la norme DINC33-53019.
Ces deux couches sont déposées successivement selon le même procédé décrit ci-après : la barbotine est introduite dans un réservoir sous agitation (20 tour/min) . Après une phase de désaérage sous vide léger (typiquement 25 millibars) tout en conservant l'agitation, le réservoir est mis en surpression d'environ 0,7 bar afin de pouvoir enduire l'intérieur du support à partir de sa partie basse jusqu'à son extrémité supérieure.
Cette opération ne prend que quelques secondes pour un élément de 120 cm de longueur. Immédiatement après enduction de la barbotine sur la paroi interne des canaux du support, l'excès est évacué par gravité.
Les éléments sont ensuite séchés à température ambiante pendant 30 minutes puis à 60°C pendant 30h. Les supports ainsi séchés sont ensuite cuits à une température de 1800°C sous argon pendant 2h et à la pression ambiante.
Les épaisseurs des couches de primaire et de la couche de filtration membranaire après frittage sont sensiblement égale et de l'ordre de 45 micromètres. La température de cuisson est fonction des caractéristiques requises pour la porosité finale de la membrane, soit un diamètre médian de pores D50 d'environ 1 micromètre et une porosité totale de 40%, en volume.
A la différence des autres exemples, les supports revêtus des exemples 7 à 8 ont été cuits à une température de cuisson de 1600°C sous azote pendant 2h et à la pression ambiante. Le diamètre médian de pores D50 de la membrane est mesuré comme égal à environ 250 nanomètres.
La partie inférieure des éléments, comprenant une accumulation des matériaux des différentes couches appliquées, est découpée sur une longueur de 10 mm.
Une coupe transversale est réalisée sur les filtres ainsi obtenus. La structure de la membrane est observée au microscope à balayage. On observe sur un cliché de microscopie électronique la paroi poreuse de l'élément, de forte porosité, la couche de primaire permettant l'accrochage de la couche séparatrice membranaire de plus fine porosité, qui tapisse au final l'intérieur des conduits . Les éléments filtrants ainsi synthétisés sont ensuite plongés dans un récipient en silicone de manière à reposer sur une de leur extrémité.
Le même volume initial de résine est ajouté pour tous les exemples. Des résines thermodurcissables à base époxyde sont introduites dans le récipient de manière à confectionner un manchon entre les éléments. La viscosité de la résine utilisée est différente et modulée selon les exemples 1 à 6 par la nature chimique de l' époxyde utilisé, ou encore par l'ajout dans la résine époxyde initiale, avant durcissement, d'une charge minérale sous la forme d'une quantité plus ou moins importante de particules de Sic de différentes tailles.
Plus précisément, deux types de résines sont utilisées : - Une résine époxydique commercialisée par la société Ebalta sous la référence AH110/TG®, de viscosité 1950 mPa.s à 25°C,
- Une résine époxydique commercialisée par la société Struers sous la référence Epofix™, de viscosité 390 mPa .s à 25 °C .
Deux mélanges de particules différentes sont utilisés également pour modifier la viscosité des résines :
- des particules de SiC dont le diamètre moyen D50 est de 2 micromètres (vendues sous la référence FCP
07) ,
- des particules de SiC dont le diamètre moyen D50 égal à 45 micromètres (vendues sous la référence F240) .
Plus la poudre de SiC ajoutée présente un diamètre moyen petit plus la viscosité du mélange avec la résine augmente .
Les détails des conditions de préparation des résines pour chaque exemple sont donnés dans le tableau 2 qui suit.
Dans chaque cas, le matériau durcissable est durcie à température ambiante, selon les préconisations et les conditions recommandées par le fournisseur, jusqu'à l'obtention d'un manchon rigide se présentant sous la forme d'une pièce unique entourant l'élément filtrant, comme illustré schématiquement sur la figure 1.
Après durcissement des résines, les éléments filtrants sont découpés en leur milieu et selon la direction longitudinale, c'est-à-dire selon un plan de coupe longitudinal passant par l'axe central 12 de l'élément, et une observation visuelle de la profondeur et du profil de pénétration de la résine dans chaque conduit est effectué. Comme indiqué sur la figure 4B illustrant schématiquement la photographie reporté sur la figure 4A, les hauteurs de pénétration du matériau durcie 4 dans la porosité des parois 8 sont mesurées pour chacun des conduits 7 constituant l'élément filtrant.
On mesure ainsi, depuis l'extrémité de l'élément, une hauteur minimale et une hauteur maximale de pénétration du matériau durcissable au sein des parois de l'élément filtrant, comme illustré par les figures 4A et 4B. Les valeurs sont comparées à l'épaisseur e finalement obtenue pour le manchon. Les résultats sont reportés dans le tableau 2 ci-après.
Figure imgf000036_0001
Les résultats reportés dans le tableau 2 ci-dessus indiquent que l'adaptation de la viscosité du matériau durcissable initial, avant son durcissement, est critique lors de cette étape de formation du manchon, pour permettre le bon fonctionnement du filtre assemblé finalement obtenu, en particulier pour s'assurer de la qualité de filtration du dispositif et de son étanchéité.
Tout d' abord, on observe que les épaisseurs de manchon obtenues après imprégnation et durcissement sont très variables selon la nature du matériau durcissable et que la résine imprègne toujours les parois périphériques sur une hauteur maximale supérieure à l'épaisseur du manchon final, en raison des phénomènes de capillarité.
En outre, les résultats montrent que l'utilisation d'une résine dont la viscosité est trop importante (exemple 2 et 7 comparatifs) empêche l'imprégnation de toutes les parois des conduits de l'élément, dans toute leur épaisseur et en particulier celle des canaux les plus centraux des éléments constituant le filtre.
Au contraire, l'utilisation d'une résine trop fluide (exemple 3 comparatif) se traduit par la diffusion du matériau durcissable dans toute la porosité de la structure et au final à une épaisseur du manchon significativement réduite par rapport à celle attendue. Une faible épaisseur du manchon apparaît très préjudiciable à la rigidité structurale et à l'intégrité finale du filtre finalement assemblé à partir d'une pluralité d'éléments en utilisant la résine de l'exemple 3 comparatif. En outre, la valeur très élevée de l'imprégnation pour l'ensemble des conduits de l'élément, (comme l'indique la valeur de 2,8 pour le paramètre hmin/e selon l'exemple 3), se traduit également par une diminution sensible de la surface de filtration accessible au liquide à filtrer et donc des capacités de filtration globale du filtre.
Au sens de la présente invention, la surface de filtration d'un élément filtrant (ou d'un filtre) correspond à la surface interne sommée de l'ensemble des parois internes, recouvertes par la membrane et accessible au fluide à filtrer dans ledit élément (ou ledit filtre) . En particulier, n'est pas considéré comme surface de filtration la portion des parois dont la porosité interne est obstruée par le matériau durci lors de la fabrication du manchon.
Selon les exemples 4 à 6 et 8 selon l'invention, il apparaît possible d' insérer une charge minérale dans la résine organique pour en accroître les propriétés mécaniques, sans altérer la qualité de la filtration du liquide entrant et sans réduire la surface de filtration. Une telle configuration permet en outre d'assurer une bien meilleure résistance à l'écrasement du manchon lorsque le filtre ainsi assemblé est inséré dans son logement, comme expliqué précédemment.
L'exemple 7 montre que le mélange de résine durcissable qui convenait selon l'exemple 6 ne convient plus dans le cas d'une membrane de diamètre de pores significativement plus faible, les conduits les plus centraux des éléments n'étant pas imprégnés par le matériau durcissable, ce qui implique la présence de zones de contournement de la membrane dans le filtre.
L'exemple 8 montre qu'il est possible de nouveau un dispositif avec une épaisseur de manchon et une imprégnation de l'ensemble des parois internes, à condition de modifier la charge (et donc la viscosité) du mélange dans la résine, en utilisant des particules de taille significativement plus importante. En résumé, les résultats reportés dans le tableau précédent montrent que la viscosité du matériau durcissable injectée dans la porosité des parois des éléments doit être ajustée : elle doit être suffisamment faible pour que matériau durcissable pénètre dans la porosité ouverte et au travers de toute l'épaisseur de toutes les parois poreuses constituant la pluralité d'éléments, en particulier au travers de toute l'épaisseur des parois les plus internes de tous les éléments filtrants utilisés pour constituer le filtre assemblé. Comme démontré par les exemples précédents, la présence de la résine dans toute la porosité des parois, suivant une hauteur h non nulle (ladite hauteur étant mesurée selon l'axe longitudinal du filtre et à partir de ladite extrémité) assure le meilleur fonctionnement de la structure complexe en évitant efficacement les zones de by-pass mentionnées précédemment. Selon un autre aspect essentiel de l'invention, la viscosité ne doit cependant pas être trop faible, pour éviter l'obstruction d'une part trop importante de la surface de filtration restante au sein des conduits et l'affaiblissement général du filtre assemblé du fait d'un défaut d'épaisseur des manchons rendant solidaire les éléments constitutifs de la structure. Afin de comparer les performances de la filtration pour les filtres selon l'invention, on procède à une filtration à partir de filtres assemblés dont la configuration est représentée sur la figure 7.
Plus précisément, une mesure de turbidité est réalisée sur les filtres correspondant à des assemblages de 7 éléments filtrants conformément à la figure 7 ci-jointe, en utilisant les éléments filtrants et les compositions de manchon respectivement décrits dans les exemples 1 et 2 qui précédent . Plus précisément, deux filtres sont synthétisés et assemblés chacun à partir de 7 éléments filtrants tels que décrits dans les exemples précédents.
Le premier filtre selon l'invention est obtenu en liant les 7 éléments filtrants entre eux, sur les deux extrémités par des manchons 9 et 10, par l'intermédiaire du matériau durcissable telle que décrite dans l'exemple 1. Selon l'invention et tel qu'illustré par la figure 7, le filtre est obtenu après durcissement des manchons sous la forme d'une pièce unique rendant solidaire par scellement l'ensemble des 7 éléments filtrants.
Le deuxième filtre comparatif est obtenu de la même façon que le premier mais en utilisant cette fois comme matériau durcissable le mélange de la résine et de la charge décrit dans l'exemple 2.
On procède selon la méthode suivante :
On utilise de l'eau sale synthétique comprenant de l'argile, du sel, de l'huile et des tensioactifs selon respectivement des teneurs égales à lOOppm, 4000ppm, 300ppm et 2ppm.
L'eau sale alimente, à une température constante de 25°C, les deux filtres à évaluer sous une pression transmembranaire de 0,5 bars et une vitesse de circulation dans les canaux de 3 m/s. Le filtrat (l'eau purifiée) est récupéré à la périphérie du filtre, via les interstices 6.
Afin d'estimer la performance de filtration du filtre, on mesure la turbidité du filtrat en continu au moyen d'un turbidimètre de type Beam-Turbidy Meter Série LAT NI fourni par Kobold Instrumentation, au bout de 10 cycles de filtration. Une plus faible valeur après test de la turbidité correspond donc à une meilleure qualité de filtration du liquide entrant, qui peut être elle-même directement liée à l'absence de zones de contournement 100 de la membrane filtrante, telles que décrites dans la figure 6B .
Cette turbidité exprimée est de 0,8 NTU pour le premier filtre (selon l'invention) et de 3,5 pour le filtre comparatif. Une telle différence prouve l'efficacité accrue de filtration du filtre obtenu selon les principes de la présente invention.

Claims

REVENDICATIONS
1. Filtre à membrane (1) pour la filtration de liquide comprenant :
une pluralité d'éléments filtrants (2) céramiques en nid d'abeille, de préférence disposés sensiblement parallèlement dans ledit filtre, chaque élément comprenant une pluralité de conduits parallèles (7) séparés par des parois (8) faites dans un matériau céramique poreux, en particulier dont la porosité ouverte est comprise entre 15 et 60%, lesdits conduits (7) étant ouverts sur une face d'introduction (3) du liquide à filtrer,
un volume interstitiel (6) entre lesdits éléments filtrants
(2),
une membrane de filtration constituée dans un matériau céramique disposée sur la surface interne des parois des conduits ( 7 ) ,
des moyens de récupération du filtrat, disposés en sortie des conduits et/ou en périphérie du filtre,
ledit filtre étant caractérisé en ce que :
- lesdits éléments filtrants sont liés entre eux, au moins sur l'extrémité du filtre ouverte sur ladite face d'introduction
(3), par l'intermédiaire d'un matériau durcissable (4), notamment une résine durcissable incorporant éventuellement une charge minérale, formant après durcissement un manchon (9) sous la forme d'une pièce unique rendant solidaire par scellement l'ensemble desdits éléments filtrants (2), - ledit manchon (9) étant en outre configuré pour maintenir entre lesdits éléments ledit volume interstitiel (6), - ledit manchon a une épaisseur e, mesurée selon l'axe longitudinal du filtre, comprise entre 1 et 10% de la longueur du filtre, et
- le matériau durcissable
(4) est présent dans la porosité ouverte et au travers de toute l'épaisseur de chaque paroi poreuse (8) constituant les éléments (2), sur une hauteur h minimale non nulle, ladite hauteur étant mesurée parallèlement à l'axe longitudinal de l'élément considéré et à partir de son extrémité ouverte sur la face d'introduction.
Filtre à membrane selon la revendication 1, dans lequel ladite hauteur h minimale est inférieure à 2,5><e, de préférence est inférieure à 2><e, de préférence encore est inférieure à l,5xe et de manière très préférée est inférieure ou égale à lxe.
Filtre à membrane selon l'une des revendications précédentes, dans lequel la hauteur maximale selon laquelle le matériau durcissable est présent dans la porosité ouverte et au travers de toute l'épaisseur des parois poreuses (8) constituant les éléments (2) est inférieure à 3><e, de préférence inférieure à 2,
5><e et de manière très préférée inférieure à 2><e.
Filtre à membrane selon l'une des revendications précédentes, comprenant en outre au moins un second manchon, de préférence identique au premier manchon (9) .
Filtre à membrane selon l'une des revendications précédentes dans lequel ledit second manchon est disposé à l'extrémité opposée du filtre.
6. Filtre à membrane selon l'une des revendications précédentes dans lequel l'épaisseur moyenne e du manchon est comprise entre 2 et 5% de la longueur moyenne desdits éléments.
7. Filtre à membrane selon l'une des revendications précédentes, dans lequel le diamètre médian des pores dans les parois poreuses est compris entre 5 et 50 micromètres, de préférence entre 10 et 40 micromètres.
8. Filtre à membrane selon l'une des revendications précédentes, dans lequel le diamètre médian des pores de la membrane est compris entre 50 nm et 10 micromètres et est au moins cinq fois inférieure au diamètre médian des pores des parois poreuses.
9. Filtre à membrane selon l'une des revendications précédentes, dans lequel la longueur du filtre est comprise entre 200 et 1500 mm.
10. Filtre à membrane selon l'une des revendications précédentes, dans lequel l'épaisseur des parois poreuses des conduits est comprise en 0,3 et 1,5 mm.
11. Filtre à membrane selon l'une des revendications précédentes, dans lequel dans lequel l'épaisseur de la membrane est comprise entre 20 nanomètres et 50 micromètres, de préférence entre 100 nanomètres et 2 micromètres .
12. Filtre à membrane selon l'une des revendications précédentes, dans lequel les conduits sont de section carrée, ronde ou oblongue, de préférence ronde, et de préférence encore dont le diamètre hydraulique est compris entre 1 et 5mm.
13. Filtre à membrane selon l'une des revendications précédentes, dans lequel les éléments sont de section ronde, le diamètre de ladite section ronde étant compris entre 20 et 80 mm.
14. Filtre à membrane selon l'une des revendications précédentes, dans lequel les éléments sont de section hexagonale, la distance entre deux côtés opposés de la section hexagonale étant comprise entre 20 et 80 mm.
15. Filtre à membrane selon l'une des revendications précédentes, dans lequel les conduits des éléments filtrants sont ouverts sur leurs deux extrémités.
16. Filtre à membrane selon l'une des revendications 1 à 14, dans lequel les conduits des éléments filtrants sont alternativement bouchés sur la face d' introduction du liquide à filtrer et sur la face opposée.
17. Filtre à membrane selon l'une des revendications 1 à 14, dans lequel les conduits des éléments filtrants sont ouvert sur la face d' introduction du liquide et fermés sur la face de récupération.
18. Filtre à membrane selon l'une des revendications précédentes, dans lequel les moyens de récupération du filtrat sont disposés en périphérie du filtre.
19. Filtre à membrane selon l'une des revendications précédentes, dans lequel les éléments filtrants et de préférence la membrane comprennent et de préférence sont constitués essentiellement de particules de nitrure de silicium et/ou de carbure de silicium.
20. Filtre à membrane selon l'une des revendications précédentes, dans lequel le matériau durcissable est choisi parmi les résines époxyde et les résines acrylate .
21. Filtre à membrane selon l'une des revendications précédentes, dans lequel le matériau durcissable comprend une charge constituée de particules minérales dont le diamètre médian D5o est compris entre 1 et 100 micromètres .
22. Filtre à membrane selon l'une des revendications précédentes, ledit filtre étant entouré d'un compartiment dans lequel est pratiquée une ouverture permettant ladite récupération du filtrat.
23. Procédé de fabrication d'un filtre à membrane selon l'une des revendications précédentes, comprenant les étapes successives suivantes : a. fabrication d'un ensemble d'éléments filtrants en nid d'abeille comprenant une pluralité de conduits parallèles séparés par des parois faites dans un matériau céramique poreux dont la porosité ouverte est comprise entre 15 et 60%,
b. dépôt sur la surface interne des parois poreuses d'une membrane de filtration constituée dans un matériau céramique,
c. alignement des extrémités des éléments filtrants, selon une disposition sensiblement parallèle suivant leur longueur, lesdits éléments disposés en parallèle étant en outre maintenus espacés de sorte qu'un volume interstitiel est présent entre chaque élément filtrant,
d. préparation d'un matériau durcissable, de préférence une résine comprenant éventuellement une charge de particules minérales, et ajustement de sa viscosité de telle façon que ledit matériau durcissable pénètre toute l'épaisseur de chaque paroi poreuse de tous les éléments suivant une hauteur h non nulle, ladite hauteur étant mesurée selon l'axe longitudinal du filtre,
e. application dudit matériau durcissable à partir d'au moins une extrémité des éléments filtrants dans ledit volume interstitiel, sur une épaisseur comprise entre 1% et 10% de la longueur des éléments, f. durcissement dudit matériau durcissable en un manchon sous la forme d'une pièce unique rendant solidaire par scellement l'ensemble desdits éléments tubulaires, séparés entre eux par ledit volume interstitiel .
24. Procédé de fabrication d'un filtre à membrane selon la revendication précédente, comprenant en outre, avant l'étape c, une étape préliminaire d'imprégnation des extrémités de chacun des éléments filtrants par une résine durcissable obstruant la porosité du matériau céramique poreux sur la face d' introduction du liquide à filtrer.
PCT/FR2016/051021 2015-04-29 2016-04-29 Filtres assembles pour la filtration de liquides WO2016174373A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/570,112 US20180304201A1 (en) 2015-04-29 2016-04-29 Assembled filters for the filtration of liquids
CN201680024651.1A CN107530630A (zh) 2015-04-29 2016-04-29 用于过滤液体的组装好的过滤器
EP16725187.5A EP3288669A1 (fr) 2015-04-29 2016-04-29 Filtres assembles pour la filtration de liquides

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1553899A FR3035599B1 (fr) 2015-04-29 2015-04-29 Filtres assembles pour la filtration de liquides
FR1553899 2015-04-29

Publications (1)

Publication Number Publication Date
WO2016174373A1 true WO2016174373A1 (fr) 2016-11-03

Family

ID=53524840

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2016/051021 WO2016174373A1 (fr) 2015-04-29 2016-04-29 Filtres assembles pour la filtration de liquides

Country Status (5)

Country Link
US (1) US20180304201A1 (fr)
EP (1) EP3288669A1 (fr)
CN (1) CN107530630A (fr)
FR (1) FR3035599B1 (fr)
WO (1) WO2016174373A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022242049A1 (fr) * 2021-05-21 2022-11-24 上海城市水资源开发利用国家工程中心有限公司 Nouveau dispositif de filtration de lavage à contre-courant de précision en céramique en carbure de silicium léger et procédé associé

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114307665B (zh) * 2020-09-29 2023-02-14 三达膜科技(厦门)有限公司 一种大直径侧积水流道蜂窝陶瓷过滤膜的制备方法
JP7399901B2 (ja) * 2021-02-22 2023-12-18 日本碍子株式会社 ハニカムフィルタ、及びその製造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1060784A1 (fr) * 1999-06-15 2000-12-20 Sumitomo Electric Industries, Ltd. Filtre céramique poreux
US20010035374A1 (en) * 2000-04-26 2001-11-01 Ube Industries, Ltd. Hollow fiber separation membrane element, hollow fiber separation membrane module, and process for producing the same
DE69713859T2 (de) * 1996-11-08 2003-01-16 Air Prod & Chem Hohlfasermembranvorrichtung mit inerten Fäden, die willkürlich in den Zwischenräumen der Hohlfasern verteilt sind
US20040035786A1 (en) * 2002-08-21 2004-02-26 Goldsmith Robert L. Airlift membrane device and membrane bioreactor and bioreactor process containing same
US6716275B1 (en) * 2001-12-11 2004-04-06 Sandia Corporation Gas impermeable glaze for sealing a porous ceramic surface
WO2013020968A2 (fr) * 2011-08-09 2013-02-14 Shell Internationale Research Maatschappij B.V. Membrane de tamis moléculaire supporté à grande surface
US20130153485A1 (en) 2010-02-22 2013-06-20 Ksm Water Gmbh Filter membrane module, and method for its production

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8814974B2 (en) * 2007-08-24 2014-08-26 Corning Incorporated Thin-walled porous ceramic wall-flow filter

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69713859T2 (de) * 1996-11-08 2003-01-16 Air Prod & Chem Hohlfasermembranvorrichtung mit inerten Fäden, die willkürlich in den Zwischenräumen der Hohlfasern verteilt sind
EP1060784A1 (fr) * 1999-06-15 2000-12-20 Sumitomo Electric Industries, Ltd. Filtre céramique poreux
US20010035374A1 (en) * 2000-04-26 2001-11-01 Ube Industries, Ltd. Hollow fiber separation membrane element, hollow fiber separation membrane module, and process for producing the same
US6716275B1 (en) * 2001-12-11 2004-04-06 Sandia Corporation Gas impermeable glaze for sealing a porous ceramic surface
US20040035786A1 (en) * 2002-08-21 2004-02-26 Goldsmith Robert L. Airlift membrane device and membrane bioreactor and bioreactor process containing same
US20130153485A1 (en) 2010-02-22 2013-06-20 Ksm Water Gmbh Filter membrane module, and method for its production
WO2013020968A2 (fr) * 2011-08-09 2013-02-14 Shell Internationale Research Maatschappij B.V. Membrane de tamis moléculaire supporté à grande surface

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022242049A1 (fr) * 2021-05-21 2022-11-24 上海城市水资源开发利用国家工程中心有限公司 Nouveau dispositif de filtration de lavage à contre-courant de précision en céramique en carbure de silicium léger et procédé associé

Also Published As

Publication number Publication date
FR3035599B1 (fr) 2019-03-22
FR3035599A1 (fr) 2016-11-04
EP3288669A1 (fr) 2018-03-07
US20180304201A1 (en) 2018-10-25
CN107530630A (zh) 2018-01-02

Similar Documents

Publication Publication Date Title
EP3007808A1 (fr) Procede de fabrication de membranes de filtration par technique additive et membranes obtenues
EP3233252B1 (fr) Filtres comprenant des membranes en sic incorporant de l&#39;azote
WO2016174373A1 (fr) Filtres assembles pour la filtration de liquides
EP3999217A1 (fr) Filtre comprenant une couche separatrice en carbure de silicium
EP1562694B1 (fr) Membrane pour filtration tangentielle et son procede de fabrication
WO2020109715A1 (fr) Procede de fabrication par addition de matiere d&#39;un support inorganique de filtration et membrane obtenue
EP3471863B1 (fr) Filtres comprenant des couches separatrices a base de beta-sic
EP3233253B1 (fr) Filtres comprenant des membranes a base de sic appauvri en oxygene
CA2947124C (fr) Filtre tangentiel avec un element support comprenant un ensemble de canaux
CA2969061A1 (fr) Filtres a membranes composites sic-nitrure ou sic-oxynitrure
EP3389833A1 (fr) Filtre monolithique
FR3066924B1 (fr) Structure filtrante a membrane
EP3717106A1 (fr) Structure filtrante membranaire monolithique
WO2020109731A1 (fr) Dispositif de filtration dynamique avec plaque poreuse ceramique de carbure de silicium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16725187

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15570112

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE