WO2016173138A1 - 一种补偿电路、驱动电路及其工作方法、显示装置 - Google Patents

一种补偿电路、驱动电路及其工作方法、显示装置 Download PDF

Info

Publication number
WO2016173138A1
WO2016173138A1 PCT/CN2015/086142 CN2015086142W WO2016173138A1 WO 2016173138 A1 WO2016173138 A1 WO 2016173138A1 CN 2015086142 W CN2015086142 W CN 2015086142W WO 2016173138 A1 WO2016173138 A1 WO 2016173138A1
Authority
WO
WIPO (PCT)
Prior art keywords
compensation
voltage
module
compensation module
input
Prior art date
Application number
PCT/CN2015/086142
Other languages
English (en)
French (fr)
Inventor
王洁琼
Original Assignee
京东方科技集团股份有限公司
北京京东方显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方显示技术有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US15/122,570 priority Critical patent/US10083670B2/en
Publication of WO2016173138A1 publication Critical patent/WO2016173138A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3696Generation of voltages supplied to electrode drivers
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/2007Display of intermediate tones
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3648Control of matrices with row and column drivers using an active matrix
    • G09G3/3655Details of drivers for counter electrodes, e.g. common electrodes for pixel capacitors or supplementary storage capacitors
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0264Details of driving circuits
    • G09G2310/0291Details of output amplifiers or buffers arranged for use in a driving circuit
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0209Crosstalk reduction, i.e. to reduce direct or indirect influences of signals directed to a certain pixel of the displayed image on other pixels of said image, inclusive of influences affecting pixels in different frames or fields or sub-images which constitute a same image, e.g. left and right images of a stereoscopic display
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0219Reducing feedthrough effects in active matrix panels, i.e. voltage changes on the scan electrode influencing the pixel voltage due to capacitive coupling
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/04Maintaining the quality of display appearance
    • G09G2320/041Temperature compensation

Definitions

  • the present invention relates to the field of display technologies, and in particular, to a compensation circuit, a driving circuit, a working method of the compensation circuit and the driving circuit, and a display device including the driving circuit.
  • the conventional display device since there is a coupling capacitance between the data line and the common electrode line, the common electrode voltage is changed, thereby degrading the quality of the display screen.
  • the prior art compensates for the common electrode.
  • the load becomes larger and larger, and the temperature of the display panel is excessively high.
  • embodiments of the present invention provide a compensation circuit, a driving circuit, a working method of the compensation circuit and the driving circuit, and a display device including the driving circuit It is used to solve the problem that the prior art compensates the common electrode, resulting in the temperature of the display panel being too high.
  • a compensation circuit includes a first compensation module and a second compensation module, and the second compensation module is provided with a first input terminal, a second input terminal, and an output terminal;
  • the first compensation module is configured to generate a compensation voltage according to a variation amount of the common electrode voltage, and output the generated compensation voltage to the second input end of the second compensation module;
  • the second compensation module is configured to superimpose the gamma voltage input by the first input terminal and the compensation voltage input by the second input terminal, and output the superimposed gamma voltage.
  • the second compensation module includes an operational amplifier, the operational amplifier is provided with a non-inverting input terminal, an inverting input terminal and an output terminal, and the first input terminal and the output terminal of the operational amplifier are sequentially connected in series There is a first resistor and a second resistor, the inverting input being coupled between the first resistor and the second resistor, the non-inverting input being coupled to the second input.
  • the resistance of the first resistor is equal to the resistance of the second resistor.
  • a capacitor is connected in series between the second input end and the non-inverting input end.
  • a driving circuit includes a first compensation module, a second compensation module, a gamma voltage module, and a source driving module, and the second compensation module is provided with a first input end and a second Input and output;
  • the first compensation module is configured to generate a compensation voltage according to a variation amount of the common electrode voltage, and output the generated compensation voltage to the second input end of the second compensation module;
  • the gamma voltage module is configured to generate a gamma voltage, and output the generated gamma voltage to a first input end of the second compensation module;
  • the second compensation module is configured to superimpose the gamma voltage and the compensation voltage
  • the source driving module is configured to receive the superimposed gamma voltage from an output end of the second compensation module, and generate a driving voltage according to the superimposed gamma voltage.
  • the second compensation module includes an operational amplifier
  • the operational amplifier is provided with a non-inverting input terminal, an inverting input terminal and an output terminal, and the first input terminal and the output terminal of the operational amplifier are sequentially connected in series a first resistor and a second resistor, the inverting input being coupled between the first resistor and the second resistor, the non-inverting input being coupled to the second input, the operational amplifier The output is connected to the source driving module.
  • the resistance of the first resistor is equal to the resistance of the second resistor.
  • a capacitor is connected in series between the second input end and the non-inverting input end.
  • a display device comprising any of the above drive circuits.
  • a method for operating a compensation circuit wherein the compensation circuit includes a first compensation module and a second compensation module, and the second compensation module is provided with a first input end and a second Input and output;
  • the working method includes:
  • the first compensation module generates a compensation voltage according to the amount of change of the common electrode voltage, and outputs the generated compensation voltage to the second input end of the second compensation module;
  • the second compensation module superimposes the gamma voltage input by the first input terminal and the compensation voltage input by the second input terminal, and outputs the superimposed gamma voltage.
  • the second compensation module includes an operational amplifier, the operational amplifier is provided with a non-inverting input, an inverting input, and an output, and the first input and the operation a first resistor and a second resistor are sequentially connected in series between the output terminals of the amplifier, the inverting input terminal is connected between the first resistor and the second resistor, and the non-inverting input terminal and the second resistor The input is connected.
  • a method of operating a driving circuit comprising a first compensation module, a second compensation module, a gamma voltage module, and a source driving module, wherein the second compensation module is configured There are a first input end, a second input end, and an output end;
  • the working method includes:
  • the first compensation module generates a compensation voltage according to the amount of change of the common electrode voltage, and outputs the generated compensation voltage to the second input end of the second compensation module;
  • the gamma voltage module generates a gamma voltage, and outputs the generated gamma voltage to a first input end of the second compensation module;
  • the second compensation module superimposes the gamma voltage and the compensation voltage
  • the source driving module receives the superimposed gamma voltage from the output end of the second compensation module, and generates a driving voltage according to the superimposed gamma voltage.
  • the second compensation module includes an operational amplifier
  • the operational amplifier is provided with a non-inverting input terminal, an inverting input terminal and an output terminal, and the first input terminal and the output terminal of the operational amplifier are sequentially connected in series a first resistor and a second resistor, the inverting input being coupled between the first resistor and the second resistor, the non-inverting input being coupled to the second input, the operational amplifier The output is connected to the source driving module.
  • the compensation circuit includes a first compensation module and a second compensation module, and the first compensation module varies according to a common electrode voltage.
  • a compensation voltage is generated, and the second compensation module superimposes the gamma voltage input to the first input terminal thereof and the compensation voltage input from the second input terminal, and outputs the superimposed gamma voltage.
  • the technical solution shifts the compensation position from the common electrode voltage to the gamma voltage, and the fluctuation of the common electrode voltage is effectively compensated and suppressed by the compensation voltage superimposed on the gamma voltage, thereby avoiding the temperature of the display panel being too high, The phenomenon that the screen is greenish and crosstalk noise is displayed.
  • FIG. 1 is a schematic structural diagram of a compensation circuit according to an embodiment of the present invention.
  • FIG. 2 is a schematic structural view of a second compensation module shown in FIG. 1 according to an embodiment of the present invention
  • FIG. 3 is a schematic structural diagram of a driving circuit according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a display device according to an embodiment of the present invention.
  • FIG. 5 is a flowchart of a method for operating a compensation circuit according to an embodiment of the present invention.
  • FIG. 6 is a flow chart of a method of operating a driving circuit according to an embodiment of the invention.
  • FIG. 1 is a schematic structural diagram of a compensation circuit according to an embodiment of the invention.
  • the compensation circuit includes a first compensation module 101 and a second compensation module 102 .
  • the second compensation module 102 is provided with a first input end, a second input end, and an output end.
  • the first compensation module 101 generates a compensation voltage according to the amount of change of the common electrode voltage.
  • the first compensation module 101 is connected to the second input end of the second compensation module 102, and outputs the generated compensation voltage to the second input end of the second compensation module 102.
  • the second compensation module 102 superimposes the gamma voltage input by the first input terminal and the compensation voltage input by the second input terminal, and outputs the superimposed gamma voltage.
  • the first compensation module 101 generates a compensation voltage according to the amount of change of the common electrode voltage, and then transmits the compensation voltage to the second compensation module 102.
  • the first input end of the second compensation module 102 receives a gamma voltage, and the second compensation module 102
  • the second input receives the compensation voltage, and the second compensation module 102 superimposes the gamma voltage and the compensation voltage, and then outputs the superimposed gamma voltage.
  • the superimposed gamma voltage is applied to the pixel electrode through the source driver.
  • the pixel electrode and the common electrode constitute a pixel capacitance, and a voltage difference between the pixel electrode and the common electrode determines a deflection angle of liquid crystal molecules in the pixel capacitance.
  • the voltage difference between the pixel electrode and the common electrode determines the display gray scale of the display panel.
  • the voltage of the common electrode is constant, and the deflection angle of the liquid crystal molecules can be controlled by controlling the voltage of the pixel electrode, thereby achieving the desired display effect.
  • the second compensation module 102 can keep the voltage difference between the pixel electrode and the common electrode unchanged as long as the corresponding compensation voltage is superimposed on the existing gamma voltage. That is to say, the compensation voltage can cancel out the variation of the common electrode voltage, so that the voltage difference between the pixel electrode and the common electrode remains unchanged, and the temperature of the display panel is too high, and the display screen is greenish. And the phenomenon of crosstalk noise.
  • FIG. 2 is a schematic structural diagram of the second compensation module 102 shown in FIG. 1 according to an embodiment of the present invention.
  • the second compensation module 102 can include an operational amplifier provided with a non-inverting input, an inverting input, and an output.
  • a first resistor R1 and a second resistor R2 are sequentially connected in series between the first input terminal (ie, the first input terminal of the second compensation module 102) and the output terminal of the operational amplifier.
  • the inverting input is coupled between the first resistor R1 and the second resistor R2.
  • the resistance of the first resistor R1 may be equal to the resistance of the second resistor R2.
  • a capacitor C may be connected in series between the second input terminal (ie, the second input end of the second compensation module 102) and the non-inverting input terminal.
  • the second compensation module 102 superimposes the gamma voltage input by the first input terminal and the compensation voltage input by the second input terminal, and outputs the superimposed gamma voltage, so that the fluctuation of the common electrode voltage is effective. Compensation and suppression to avoid excessive temperature on the display panel, greenish display, and crosstalk noise.
  • the second compensation module 102 When the capacitive coupling effect causes the common electrode voltage to generate the ripple voltage ⁇ VCOM, the second compensation module 102 superimposes the corresponding compensation voltage ⁇ VCOM_FB on the gamma voltage GAM, and then passes through the first resistor R1 and the second resistor R2.
  • the output voltage Vo is adjusted to achieve a constant voltage difference between the pixel electrode and the common electrode, thereby avoiding a phenomenon in which the temperature of the display panel is too high, the display screen is greenish, and crosstalk noise occurs.
  • the voltage of the second compensation module output voltage V o 102 of the amount of change in 2 ⁇ VCOM_FB common electrode voltage ⁇ VCOM cancel each other, thereby achieving the pixel electrode and the The pressure difference between the common electrodes remains unchanged.
  • the first resistor R1 and the second resistor R2 provided in this embodiment can compensate the common electrode voltage by providing compensation voltages of different amplification factors according to different requirements during the process of providing compensation for the common electrode voltage.
  • a capacitor is connected in series between the second input terminal and the non-inverting input terminal.
  • the variation of the common electrode voltage ⁇ VCOM due to the capacitive coupling effect is mainly an AC voltage. Therefore, the capacitor C can filter out the DC voltage in the compensation voltage ⁇ VCOM_FB and directly use the AC voltage, thereby eliminating the interference of the DC voltage, and the compensation result can be further improved. accurate.
  • the compensation circuit includes a first compensation module 101 and a second compensation module 102, and the first compensation module 101 generates a compensation voltage according to a variation amount of a common electrode voltage, and the second compensation module 102 superimposes the gamma voltage input to the first input terminal thereof and the compensation voltage input from the second input terminal, and outputs the superimposed gamma voltage.
  • the compensation position is transferred from the common electrode voltage to the gamma voltage, and the fluctuation of the common electrode voltage is effectively compensated and suppressed by the compensation voltage superimposed on the gamma voltage, thereby avoiding the temperature of the display panel being too high, and displaying The phenomenon of greenish screen and crosstalk noise.
  • FIG. 3 is a schematic structural diagram of a driving circuit according to an embodiment of the present invention.
  • the driving circuit includes a first compensation module 101 , a second compensation module 102 , a gamma voltage module 103 , and a source driving module 104 .
  • the second compensation module 102 is configured There is a first input end, a second input end, and an output end, the first input end is connected to the gamma voltage module 103, and the second input end is connected to the first compensation module 101, the second An output of the compensation module 102 is coupled to the source drive module 104.
  • the first compensation module 101 generates a compensation voltage according to the amount of change of the common electrode voltage, and outputs the generated compensation voltage to the second input end of the second compensation module 102.
  • the gamma voltage module 103 generates a gamma voltage and outputs the generated gamma voltage to the first input of the second compensation module 102.
  • the second compensation module 102 superimposes the gamma voltage and the compensation voltage, and outputs the superimposed gamma voltage from its output terminal to the source driving module 104.
  • the source driving module 104 receives the superimposed gamma voltage and generates a driving voltage according to the superimposed gamma voltage.
  • the first compensation module 101 generates a compensation voltage according to the amount of change of the common electrode voltage, and then transmits the compensation voltage to the second compensation module 102.
  • the gamma voltage module 103 generates a gamma voltage, and then transmits the gamma voltage to the second compensation module 102.
  • the first input end of the second compensation module 102 receives a gamma voltage
  • the second input end of the second compensation module 102 receives a compensation voltage
  • the second compensation module 102 compares the gamma voltage with the compensation
  • the voltages are superimposed and then the superimposed gamma voltage is transmitted to the source drive module 104.
  • the source driving module 104 receives the superimposed gamma voltage, and generates a driving voltage according to the superimposed gamma voltage.
  • the driving voltage is applied to the pixel electrode.
  • the pixel electrode and the common electrode constitute a pixel capacitance, and a voltage difference between the pixel electrode and the common electrode determines a deflection angle of liquid crystal molecules in the pixel capacitance. That is to say, the voltage difference between the pixel electrode and the common electrode determines the display gray scale of the display panel.
  • the voltage of the common electrode is constant, and the deflection angle of the liquid crystal molecules can be controlled by controlling the voltage of the pixel electrode, thereby achieving the desired display effect.
  • the second compensation module 102 can keep the voltage difference between the pixel electrode and the common electrode unchanged as long as the corresponding compensation voltage is superimposed on the existing gamma voltage. That is to say, the compensation voltage can cancel out the variation of the common electrode voltage, so that the voltage difference between the pixel electrode and the common electrode remains unchanged, and the temperature of the display panel is too high, and the display screen is greenish. And the phenomenon of crosstalk noise.
  • the second compensation module 102 can include an operational amplifier provided with a non-inverting input, an inverting input, and an output.
  • the first input ie, the first input end of the second compensation module 102
  • the output end of the operational amplifier are sequentially connected in series with a first resistor R1 and a second resistor R2.
  • the inverting input is coupled between the first resistor R1 and the second resistor R2.
  • the resistance of the first resistor R1 may be equal to the resistance of the second resistor R2.
  • a capacitor C may be connected in series between the second input terminal (ie, the second input end of the second compensation module 102) and the non-inverting input terminal.
  • the second compensation module 102 superimposes the gamma voltage input by the first input terminal and the compensation voltage input by the second input terminal, and outputs the superimposed gamma voltage, so that the fluctuation of the common electrode voltage is effective. Compensation and suppression to avoid excessive temperature on the display panel, greenish display, and crosstalk noise.
  • the driving circuit provided in this embodiment includes a compensation circuit, and the compensation circuit includes a first compensation module 101 and a second compensation module 102, and the first compensation module 101 generates a compensation voltage according to a variation amount of the common electrode voltage, where the The two compensation module 102 superimposes the gamma voltage input to the first input terminal thereof and the compensation voltage input from the second input terminal, and outputs the superimposed gamma voltage.
  • the compensation position is transferred from the common electrode voltage to the gamma voltage, and the fluctuation of the common electrode voltage is effectively compensated and suppressed by the compensation voltage superimposed on the gamma voltage, thereby avoiding the temperature of the display panel being too high, and displaying The phenomenon of greenish screen and crosstalk noise.
  • FIG. 4 is a schematic structural diagram of a display device according to an embodiment of the invention. As shown in FIG. 4, the display device includes the driving circuit provided in the foregoing embodiment. For the specific structure and function of the driving circuit, refer to the description in the foregoing embodiment, and details are not described herein again.
  • both sides of the display area are provided with an array driver on Array (GOA) 107.
  • the first compensation module 101 (not shown) generates a compensation voltage according to the amount of change of the common electrode voltage, and then transmits the compensation voltage to the second compensation module 102 through the compensation voltage line 105.
  • the gamma voltage module 103 (not shown) generates a gamma voltage, and then transmits the gamma voltage to the second compensation module 102.
  • the first input end of the second compensation module 102 receives a gamma voltage
  • the second input end of the second compensation module 102 receives a compensation voltage
  • the second compensation module 102 compares the gamma voltage with the compensation
  • the voltages are superimposed and then the superimposed gamma voltage is transmitted through data line 106 to source drive module 104.
  • the source driving module 104 receives the superimposed gamma voltage, and generates a driving voltage according to the superimposed gamma voltage.
  • the driving voltage is applied to the pixel electrode.
  • the pixel electrode and the common electrode constitute a pixel capacitance, and a voltage difference between the pixel electrode and the common electrode determines a deflection of liquid crystal molecules in the pixel capacitor angle.
  • the voltage difference between the pixel electrode and the common electrode determines the display gray scale of the display panel.
  • the voltage of the common electrode is constant, and the deflection angle of the liquid crystal molecules can be controlled by controlling the voltage of the pixel electrode, thereby achieving the desired display effect.
  • the second compensation module 102 can keep the voltage difference between the pixel electrode and the common electrode unchanged as long as the corresponding compensation voltage is superimposed on the existing gamma voltage. That is to say, the compensation voltage can cancel out the variation of the common electrode voltage, so that the voltage difference between the pixel electrode and the common electrode remains unchanged, and the temperature of the display panel is too high, and the display screen is greenish. And the phenomenon of crosstalk noise.
  • the display device provided in this embodiment includes a compensation circuit, and the compensation circuit includes a first compensation module 101 and a second compensation module 102, and the first compensation module 101 generates a compensation voltage according to a variation amount of the common electrode voltage, the first The two compensation module 102 superimposes the gamma voltage input to the first input terminal thereof and the compensation voltage input from the second input terminal, and outputs the superimposed gamma voltage.
  • the compensation position is transferred from the common electrode voltage to the gamma voltage, and the fluctuation of the common electrode voltage is effectively compensated and suppressed by the compensation voltage superimposed on the gamma voltage, thereby avoiding the temperature of the display panel being too high, and displaying The phenomenon of greenish screen and crosstalk noise.
  • FIG. 5 is a flow chart of a method for operating a compensation circuit according to an embodiment of the invention.
  • the compensation circuit includes a first compensation module and a second compensation module, and the second compensation module is provided with a first input end, a second input end, and an output end.
  • the working method includes:
  • Step 5001 The first compensation module generates a compensation voltage according to a variation amount of a common electrode voltage.
  • the first compensation module is connected to the second input end of the second compensation module, and outputs the generated compensation voltage to the second input end of the second compensation module.
  • the compensation circuit includes a first compensation module 101 and a second compensation module 102.
  • the second compensation module 102 is provided with a first input terminal, a second input terminal, and an output terminal, and the second input terminal is coupled to The first compensation module 101 is connected.
  • the first compensation module 101 generates a compensation voltage according to the amount of change of the common electrode voltage, and then transmits the compensation voltage to the second compensation module 102.
  • Step 5002 The second compensation module superimposes the gamma voltage input by the first input terminal and the compensation voltage input by the second input terminal, and outputs the superimposed gamma Pressure.
  • the first input end of the second compensation module 102 receives the gamma voltage
  • the second input end of the second compensation module 102 receives the compensation voltage
  • the second compensation module 102 sets the gamma
  • the voltage is superimposed with the compensation voltage, and then the superimposed gamma voltage is output.
  • the superimposed gamma voltage is applied to the pixel electrode through the source driver.
  • the pixel electrode and the common electrode constitute a pixel capacitance, and a voltage difference between the pixel electrode and the common electrode determines a deflection angle of liquid crystal molecules in the pixel capacitance. That is to say, the voltage difference between the pixel electrode and the common electrode determines the display gray scale of the display panel.
  • the voltage of the common electrode is constant, and the deflection angle of the liquid crystal molecules can be controlled by controlling the voltage of the pixel electrode, thereby achieving the desired display effect.
  • the capacitive coupling effect causes the common electrode voltage to fluctuate, the voltage difference between the common electrode and the pixel electrode is no longer controllable.
  • the second compensation module 102 can keep the voltage difference between the pixel electrode and the common electrode unchanged as long as the corresponding compensation voltage is superimposed on the existing gamma voltage. That is to say, the compensation voltage can cancel out the variation of the common electrode voltage, so that the voltage difference between the pixel electrode and the common electrode remains unchanged, and the temperature of the display panel is too high, and the display screen is greenish. And the phenomenon of crosstalk noise.
  • the second compensation module 102 can include an operational amplifier provided with a non-inverting input, an inverting input, and an output.
  • a first resistor R1 and a second resistor R2 are sequentially connected in series between the first input terminal (ie, the first input terminal of the second compensation module 102) and the output terminal of the operational amplifier.
  • the inverting input is coupled between the first resistor R1 and the second resistor R2.
  • the resistance of the first resistor R1 may be equal to the resistance of the second resistor R2.
  • a capacitor C may be connected in series between the second input terminal (ie, the second input end of the second compensation module 102) and the non-inverting input terminal.
  • the second compensation module 102 superimposes the gamma voltage input by the first input terminal and the compensation voltage input by the second input terminal, and outputs the superimposed gamma voltage, so that the fluctuation of the common electrode voltage is effective. Compensation and suppression to avoid excessive temperature on the display panel, greenish display, and crosstalk noise.
  • the compensation circuit includes a first compensation module 101 and a second compensation module 102, and the first compensation module 101 generates a compensation voltage according to a variation amount of the common electrode voltage, the first The second compensation module 102 superimposes the gamma voltage input to the first input terminal and the compensation voltage input from the second input terminal thereof, and outputs Superimposed gamma voltage.
  • the compensation position is transferred from the common electrode voltage to the gamma voltage, and the fluctuation of the common electrode voltage is effectively compensated and suppressed by the compensation voltage superimposed on the gamma voltage, thereby avoiding the temperature of the display panel being too high, and displaying The phenomenon of greenish screen and crosstalk noise.
  • FIG. 6 is a flow chart of a method of operating a driving circuit according to an embodiment of the invention.
  • the driving circuit includes a first compensation module, a second compensation module, a gamma voltage module, and a source driving module.
  • the second compensation module is provided with a first input end, a second input end, and an output end.
  • the working method includes:
  • Step 6001 The first compensation module generates a compensation voltage according to a variation amount of a common electrode voltage.
  • the first compensation module is connected to the second input end of the second compensation module, and outputs the generated compensation voltage to the second input end of the second compensation module.
  • Step 6002 The gamma voltage module generates a gamma voltage.
  • the gamma voltage module is coupled to the first input of the second compensation module and outputs the generated gamma voltage to the first input of the second compensation module.
  • the driving circuit includes a first compensation module 101, a second compensation module 102, a gamma voltage module 103, and a source driving module 104.
  • the second compensation module 102 is provided with a first input end, a second input end, and an output end.
  • the first input end is connected to the gamma voltage module 103
  • the second input end is connected to the first compensation module 101
  • the output end of the second compensation module 102 and the source driving module 104 are connection.
  • the first compensation module 101 generates a compensation voltage according to the amount of change of the common electrode voltage, and then transmits the compensation voltage to the second compensation module 102.
  • the gamma voltage module 103 generates a gamma voltage, and then transmits the gamma voltage to the second compensation module 102.
  • Step 6003 The second compensation module superimposes the gamma voltage and the compensation voltage.
  • the output end of the second compensation module is connected to the source driving module, and outputs the superimposed gamma voltage to the source driving module.
  • Step 6004 The source driving module receives the superimposed gamma voltage from an output end of the second compensation module, and generates a driving voltage according to the superimposed gamma voltage.
  • the first input end of the second compensation module 102 receives the gamma voltage
  • the second input end of the second compensation module 102 receives the compensation voltage
  • the second compensation module 102 sets the gamma
  • the voltage is superimposed with the compensation voltage, and then the superimposed gamma voltage is transmitted to the source driving module 104.
  • the source driving module 104 receives the overlay
  • the subsequent gamma voltage is then used to generate a driving voltage based on the superimposed gamma voltage.
  • the driving voltage is applied to the pixel electrode.
  • the pixel electrode and the common electrode constitute a pixel capacitance, and a voltage difference between the pixel electrode and the common electrode determines a deflection angle of liquid crystal molecules in the pixel capacitance.
  • the voltage difference between the pixel electrode and the common electrode determines the display gray scale of the display panel.
  • the voltage of the common electrode is constant, and the deflection angle of the liquid crystal molecules can be controlled by controlling the voltage of the pixel electrode, thereby achieving the desired display effect.
  • the second compensation module 102 can keep the voltage difference between the pixel electrode and the common electrode unchanged as long as the corresponding compensation voltage is superimposed on the existing gamma voltage. That is to say, the compensation voltage can cancel out the variation of the common electrode voltage, so that the voltage difference between the pixel electrode and the common electrode remains unchanged, and the temperature of the display panel is too high, and the display screen is greenish. And the phenomenon of crosstalk noise.
  • the second compensation module 102 can include an operational amplifier provided with a non-inverting input, an inverting input, and an output.
  • a first resistor R1 and a second resistor R2 are sequentially connected in series between the first input terminal (ie, the first input terminal of the second compensation module 102) and the output terminal of the operational amplifier.
  • the inverting input is coupled between the first resistor R1 and the second resistor R2.
  • the resistance of the first resistor R1 may be equal to the resistance of the second resistor R2.
  • a capacitor C may be connected in series between the second input terminal (ie, the second input end of the second compensation module 102) and the non-inverting input terminal.
  • the second compensation module 102 superimposes the gamma voltage input by the first input terminal and the compensation voltage input by the second input terminal, and outputs the superimposed gamma voltage, so that the fluctuation of the common electrode voltage is effective. Compensation and suppression to avoid excessive temperature on the display panel, greenish display, and crosstalk noise.
  • the driving circuit includes a compensation circuit
  • the compensation circuit includes a first compensation module 101 and a second compensation module 102
  • the first compensation module 101 is based on a common electrode voltage.
  • the variation generates a compensation voltage
  • the second compensation module 102 superimposes the gamma voltage input to the first input terminal thereof and the compensation voltage input from the second input terminal, and outputs the superimposed gamma voltage.
  • the compensation position is transferred from the common electrode voltage to the gamma voltage, and the fluctuation of the common electrode voltage is effectively compensated and suppressed by the compensation voltage superimposed on the gamma voltage, thereby avoiding the temperature of the display panel being too high, and displaying The phenomenon of greenish screen and crosstalk noise.
  • the foregoing embodiment is only exemplified by the division of the foregoing functional modules.
  • the foregoing functions may be allocated to different functional modules as needed.
  • the internal structure of the device can be divided into different functional modules to perform all or part of the functions described above.
  • the function of one module described above may be completed by multiple modules, and the functions of the above multiple modules may also be integrated into one module.
  • any reference signs placed in parentheses shall not be construed as limiting the claim.
  • the word “comprising” does not exclude the presence of the elements or the The word “a” or “an” or “an”
  • the invention may be implemented by means of hardware comprising several discrete elements, or by suitably programmed software or firmware, or by any combination thereof.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Power Engineering (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Liquid Crystal Display Device Control (AREA)

Abstract

一种补偿电路、驱动电路、所述补偿电路和驱动电路的工作方法以及包含所述驱动电路的显示装置。所述补偿电路包括第一补偿模块(101)和第二补偿模块(102),所述第一补偿模块(101)根据公共电极电压的变化量生成补偿电压,所述第二补偿模块(102)将其第一输入端输入的伽马电压与其第二输入端输入的所述补偿电压进行叠加,并输出叠加后的伽马电压。将补偿位置从公共电极电压转移到伽马电压上,通过叠加到伽马电压上的补偿电压使得公共电极电压的波动得到有效补偿和抑制,从而避免出现显示面板的温度过高、显示画面偏绿以及串扰噪声的现象。

Description

一种补偿电路、驱动电路及其工作方法、显示装置 技术领域
本发明涉及显示技术领域,尤其涉及一种补偿电路、驱动电路、所述补偿电路和驱动电路的工作方法以及包含所述驱动电路的显示装置。
背景技术
在现有的显示装置中,由于数据线与公共电极线之间存在耦合电容,因而导致公共电极电压发生变化,从而降低了显示画面的品质。为了提高显示画面的品质,现有技术对公共电极进行补偿。然而,由于显示面板的尺寸越来越大,导致负载越来越大,出现显示面板的温度过高的问题。
发明内容
为了解决或缓解上述现有技术中的至少一个缺陷或问题,本发明的实施例提供了一种补偿电路、驱动电路、所述补偿电路和驱动电路的工作方法以及包含所述驱动电路的显示装置,用于解决现有技术对公共电极进行补偿,导致显示面板的温度过高的问题。
为此,根据本发明的一个方面提供了一种补偿电路,包括第一补偿模块和第二补偿模块,所述第二补偿模块设置有第一输入端、第二输入端以及输出端;
所述第一补偿模块用于根据公共电极电压的变化量生成补偿电压,并将生成的补偿电压输出到所述第二补偿模块的第二输入端;
所述第二补偿模块用于将所述第一输入端输入的伽马电压与所述第二输入端输入的补偿电压进行叠加,并输出叠加后的伽马电压。
可选地,所述第二补偿模块包括运算放大器,所述运算放大器设置有同相输入端、反相输入端以及输出端,所述第一输入端与所述运算放大器的输出端之间依次串联有第一电阻和第二电阻,所述反相输入端连接至所述第一电阻和所述第二电阻之间,所述同相输入端与所述第二输入端连接。
可选地,所述第一电阻的阻值等于所述第二电阻的阻值。
可选地,所述第二输入端与所述同相输入端之间串联有电容。
根据本发明的另一方面提供了一种驱动电路,包括第一补偿模块、第二补偿模块、伽马电压模块以及源极驱动模块,所述第二补偿模块设置有第一输入端、第二输入端以及输出端;
所述第一补偿模块用于根据公共电极电压的变化量生成补偿电压,并将生成的补偿电压输出到所述第二补偿模块的第二输入端;
所述伽马电压模块用于生成伽马电压,并将生成的伽马电压输出到所述第二补偿模块的第一输入端;
所述第二补偿模块用于将所述伽马电压与所述补偿电压进行叠加;
所述源极驱动模块用于从所述第二补偿模块的输出端接收叠加后的伽马电压,并根据叠加后的伽马电压生成驱动电压。
可选地,所述第二补偿模块包括运算放大器,所述运算放大器设置有同相输入端、反相输入端以及输出端,所述第一输入端与所述运算放大器的输出端之间依次串联有第一电阻和第二电阻,所述反相输入端连接至所述第一电阻和所述第二电阻之间,所述同相输入端与所述第二输入端连接,所述运算放大器的输出端与所述源极驱动模块连接。
可选地,所述第一电阻的阻值等于所述第二电阻的阻值。
可选地,所述第二输入端与所述同相输入端之间串联有电容。
根据本发明的另一方面还提供了一种显示装置,包括上述任一驱动电路。
根据本发明的另一方面还提供了一种补偿电路的工作方法,其中,所述补偿电路包括第一补偿模块和第二补偿模块,所述第二补偿模块设置有第一输入端、第二输入端以及输出端;
所述工作方法包括:
所述第一补偿模块根据公共电极电压的变化量生成补偿电压,并将生成的补偿电压输出到所述第二补偿模块的第二输入端;
所述第二补偿模块将所述第一输入端输入的伽马电压与所述第二输入端输入的补偿电压进行叠加,并输出叠加后的伽马电压。
可选地,所述第二补偿模块包括运算放大器,所述运算放大器设置有同相输入端、反相输入端以及输出端,所述第一输入端与所述运 算放大器的输出端之间依次串联有第一电阻和第二电阻,所述反相输入端连接至所述第一电阻和所述第二电阻之间,所述同相输入端与所述第二输入端连接。
根据本发明的另一方面还提供了一种驱动电路的工作方法,所述驱动电路包括第一补偿模块、第二补偿模块、伽马电压模块以及源极驱动模块,所述第二补偿模块设置有第一输入端、第二输入端以及输出端;
所述工作方法包括:
所述第一补偿模块根据公共电极电压的变化量生成补偿电压,并将生成的补偿电压输出到所述第二补偿模块的第二输入端;
所述伽马电压模块生成伽马电压,并将生成的伽马电压输出到所述第二补偿模块的第一输入端;
所述第二补偿模块将所述伽马电压与所述补偿电压进行叠加;
所述源极驱动模块从所述第二补偿模块的输出端接收叠加后的伽马电压,并根据叠加后的伽马电压生成驱动电压。
可选地,所述第二补偿模块包括运算放大器,所述运算放大器设置有同相输入端、反相输入端以及输出端,所述第一输入端与所述运算放大器的输出端之间依次串联有第一电阻和第二电阻,所述反相输入端连接至所述第一电阻和所述第二电阻之间,所述同相输入端与所述第二输入端连接,所述运算放大器的输出端与所述源极驱动模块连接。
本发明实施例提供的技术方案可以实现如下有益效果中的至少一个有益效果和/或其它有益效果:
在本发明上述实施例提供的补偿电路、驱动电路及其工作方法、显示装置中,所述补偿电路包括第一补偿模块和第二补偿模块,所述第一补偿模块根据公共电极电压的变化量生成补偿电压,所述第二补偿模块将其第一输入端输入的伽马电压与其第二输入端输入的所述补偿电压进行叠加,并输出叠加后的伽马电压。所述技术方案将补偿位置从公共电极电压转移到伽马电压上,通过叠加到伽马电压上的补偿电压使得公共电极电压的波动得到有效补偿和抑制,从而避免出现显示面板的温度过高、显示画面偏绿以及串扰噪声的现象。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍。应当意识到,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为根据本发明一个实施例提供的一种补偿电路的结构示意图;
图2为根据本发明一个实施例的图1所示第二补偿模块的结构示意图;
图3为根据本发明一个实施例提供的一种驱动电路的结构示意图;
图4为根据本发明一个实施例提供的一种显示装置的结构示意图;
图5为根据本发明一个实施例提供的一种补偿电路的工作方法的流程图;
图6为根据本发明一个实施例提供的一种驱动电路的工作方法的流程图。
具体实施方式
为使本领域的普通技术人员更好地理解本发明的目的、技术方案和优点,下面结合附图对本发明实施例提供的补偿电路、驱动电路、所述补偿电路和驱动电路的工作方法以及包含所述驱动电路的显示装置进行详细描述。
图1为根据本发明一个实施例提供的一种补偿电路的结构示意图。如图1所示,所述补偿电路包括第一补偿模块101和第二补偿模块102。所述第二补偿模块102设置有第一输入端、第二输入端以及输出端。所述第一补偿模块101根据公共电极电压的变化量生成补偿电压。所述第一补偿模块101与所述第二补偿模块102的第二输入端连接,并将生成的补偿电压输出到所述第二补偿模块102的第二输入端。所述第二补偿模块102将所述第一输入端输入的伽马电压与所述第二输入端输入的补偿电压进行叠加,并输出叠加后的伽马电压。
本实施例中,所述第一补偿模块101根据公共电极电压的变化量生成补偿电压,再将补偿电压传输至所述第二补偿模块102。所述第二补偿模块102的第一输入端接收伽马电压,所述第二补偿模块102的 第二输入端接收补偿电压,所述第二补偿模块102将所述伽马电压与所述补偿电压进行叠加,然后输出叠加后的伽马电压。所述叠加后的伽马电压通过源极驱动器施加到像素电极。所述像素电极与公共电极组成像素电容,所述像素电极与所述公共电极之间的压差决定着所述像素电容内液晶分子的偏转角度。也就是说,所述像素电极与所述公共电极之间的压差决定着显示面板的显示灰阶。正常情况下,公共电极的电压是恒定的,通过控制像素电极的电压就可以实现对液晶分子的偏转角度的控制,从而达到预期的显示效果。但是当电容耦合效应导致公共电极电压产生波动时,所述公共电极和所述像素电极之间的压差不再是可控的。此时所述第二补偿模块102只要在已有的伽马电压上叠加相应的补偿电压,就能够使得所述像素电极与所述公共电极之间的压差保持不变。也就是说,补偿电压可以与公共电极电压的变化量相互抵消,从而实现所述像素电极与所述公共电极之间的压差保持不变,避免出现显示面板的温度过高、显示画面偏绿以及串扰噪声的现象。
图2为根据本发明一个实施例的图1所示第二补偿模块102的结构示意图。如图2所示,所述第二补偿模块102可以包括运算放大器,所述运算放大器设置有同相输入端、反相输入端以及输出端。所述第一输入端(即,所述第二补偿模块102的第一输入端)与所述运算放大器的输出端之间依次串联有第一电阻R1和第二电阻R2。所述反相输入端连接至所述第一电阻R1和所述第二电阻R2之间。可选地,所述第一电阻R1的阻值可以等于所述第二电阻R2的阻值。可选地,所述第二输入端(即,所述第二补偿模块102的第二输入端)与所述同相输入端之间可以串联有电容C。所述第二补偿模块102将所述第一输入端输入的伽马电压与所述第二输入端输入的补偿电压进行叠加,并输出叠加后的伽马电压,使得公共电极电压的波动得到有效补偿和抑制,从而避免出现显示面板的温度过高、显示画面偏绿以及串扰噪声的现象。
本实施例中,从所述运算放大器可以计算出:所述运算放大器的反相电压V-=(Vo-GAM)*R1/(R1+R2),所述运算放大器的同相电压V+=ΔVCOM_FB,而且V-=V+,其中ΔVCOM_FB为所述第一补偿模块101根据公共电极电压的变化量ΔVCOM生成的补偿电压,Vo为 所述运算放大器的输出电压。因此,所述运算放大器的输出电压Vo=ΔVCOM_FB*(R1+R2)/R1+GAM。当电容耦合效应导致公共电极电压产生波动电压ΔVCOM时,所述第二补偿模块102在伽马电压GAM上叠加相应的补偿电压ΔVCOM_FB,再通过所述第一电阻R1和所述第二电阻R2对所述输出电压Vo进行调节,从而实现所述像素电极与所述公共电极之间的压差保持不变,避免出现显示面板的温度过高、显示画面偏绿以及串扰噪声的现象。
可选地,所述第一电阻R1与所述第二电阻R2的电阻值相等,此时所述运算放大器的输出电压Vo=2ΔVCOM_FB+GAM,因此所述第二补偿模块102输出了2倍的补偿电压ΔVCOM_FB。当电容耦合效应导致公共电极电压产生ΔVCOM的变化量时,所述第二补偿模块102的输出电压Vo中的电压2ΔVCOM_FB与公共电极电压的变化量ΔVCOM相互抵消,从而实现所述像素电极与所述公共电极之间的压差保持不变。本实施例提供的所述第一电阻R1与所述第二电阻R2在为公共电极电压提供补偿的过程中能够根据不同的需求,提供不同放大倍数的补偿电压对所述公共电极电压进行补偿。
在一个具体实现中,所述第二输入端与所述同相输入端之间串联有电容。由于电容耦合效应而产生的公共电极电压的变化量ΔVCOM主要为交流电压,因此电容C可以过滤掉补偿电压ΔVCOM_FB中的直流电压,直接利用交流电压,从而消除直流电压的干扰,可以使补偿结果更准确。
本实施例提供的补偿电路中,所述补偿电路包括第一补偿模块101和第二补偿模块102,所述第一补偿模块101根据公共电极电压的变化量生成补偿电压,所述第二补偿模块102将其第一输入端输入的伽马电压与其第二输入端输入的补偿电压进行叠加,并输出叠加后的伽马电压。本实施例将补偿位置从公共电极电压转移到伽马电压上,通过叠加到伽马电压上的补偿电压使得公共电极电压的波动得到有效补偿和抑制,从而避免出现显示面板的温度过高、显示画面偏绿以及串扰噪声的现象。
图3为根据本发明一个实施例提供的一种驱动电路的结构示意图。如图3所示,所述驱动电路包括第一补偿模块101、第二补偿模块102、伽马电压模块103以及源极驱动模块104。所述第二补偿模块102设置 有第一输入端、第二输入端以及输出端,所述第一输入端与所述伽马电压模块103连接,所述第二输入端与所述第一补偿模块101连接,所述第二补偿模块102的输出端与所述源极驱动模块104连接。所述第一补偿模块101根据公共电极电压的变化量生成补偿电压,并将生成的补偿电压输出到所述第二补偿模块102的第二输入端。所述伽马电压模块103生成伽马电压,并将生成的伽马电压输出到所述第二补偿模块102的第一输入端。所述第二补偿模块102将所述伽马电压与所述补偿电压进行叠加,并将叠加后的伽马电压从其输出端输出到所述源极驱动模块104。所述源极驱动模块104接收叠加后的伽马电压,并根据叠加后的伽马电压生成驱动电压。
本实施例中,所述第一补偿模块101根据公共电极电压的变化量生成补偿电压,再将补偿电压传输至所述第二补偿模块102。所述伽马电压模块103生成伽马电压,再将伽马电压传输至所述第二补偿模块102。所述第二补偿模块102的第一输入端接收伽马电压,所述第二补偿模块102的第二输入端接收补偿电压,所述第二补偿模块102将所述伽马电压与所述补偿电压进行叠加,然后将叠加后的伽马电压传输至源极驱动模块104。所述源极驱动模块104接收所述叠加后的伽马电压,再根据所述叠加后的伽马电压生成驱动电压。所述驱动电压施加到像素电极上。所述像素电极与公共电极组成像素电容,所述像素电极与所述公共电极之间的压差决定着所述像素电容内液晶分子的偏转角度。也就是说,所述像素电极与所述公共电极之间的压差决定着显示面板的显示灰阶。正常情况下,公共电极的电压是恒定的,通过控制像素电极的电压就可以实现对液晶分子的偏转角度的控制,从而达到预期的显示效果。但是当电容耦合效应导致公共电极电压产生波动时,所述公共电极和所述像素电极之间的压差不再是可控的。此时所述第二补偿模块102只要在已有的伽马电压上叠加相应的补偿电压,就能够使得所述像素电极与所述公共电极之间的压差保持不变。也就是说,补偿电压可以与公共电极电压的变化量相互抵消,从而实现所述像素电极与所述公共电极之间的压差保持不变,避免出现显示面板的温度过高、显示画面偏绿以及串扰噪声的现象。
参见图2,所述第二补偿模块102可以包括运算放大器,所述运算放大器设置有同相输入端、反相输入端以及输出端。所述第一输入端 (即,所述第二补偿模块102的第一输入端)与所述运算放大器的输出端之间依次串联有第一电阻R1和第二电阻R2。所述反相输入端连接至所述第一电阻R1和所述第二电阻R2之间。可选地,所述第一电阻R1的阻值可以等于所述第二电阻R2的阻值。可选地,所述第二输入端(即,所述第二补偿模块102的第二输入端)与所述同相输入端之间可以串联有电容C。所述第二补偿模块102将所述第一输入端输入的伽马电压与所述第二输入端输入的补偿电压进行叠加,并输出叠加后的伽马电压,使得公共电极电压的波动得到有效补偿和抑制,从而避免出现显示面板的温度过高、显示画面偏绿以及串扰噪声的现象。
本实施例提供的驱动电路中包括补偿电路,所述补偿电路包括第一补偿模块101和第二补偿模块102,所述第一补偿模块101根据公共电极电压的变化量生成补偿电压,所述第二补偿模块102将其第一输入端输入的伽马电压与其第二输入端输入的补偿电压进行叠加,并输出叠加后的伽马电压。本实施例将补偿位置从公共电极电压转移到伽马电压上,通过叠加到伽马电压上的补偿电压使得公共电极电压的波动得到有效补偿和抑制,从而避免出现显示面板的温度过高、显示画面偏绿以及串扰噪声的现象。
图4为根据本发明一个实施例提供的一种显示装置的结构示意图。如图4所示,所述显示装置包括上述实施例提供的驱动电路,该驱动电路的具体结构和功能可参照上述实施例中的描述,此处不再赘述。
参见图4,显示区域的两侧设置有阵列基板行驱动电路(Gate Driver on Array,GOA)107。第一补偿模块101(图中未示出)根据公共电极电压的变化量生成补偿电压,再将补偿电压通过补偿电压线105传输至所述第二补偿模块102。所述伽马电压模块103(图中未示出)生成伽马电压,再将伽马电压传输至所述第二补偿模块102。所述第二补偿模块102的第一输入端接收伽马电压,所述第二补偿模块102的第二输入端接收补偿电压,所述第二补偿模块102将所述伽马电压与所述补偿电压进行叠加,然后将叠加后的伽马电压通过数据线106传输至源极驱动模块104。所述源极驱动模块104接收所述叠加后的伽马电压,再根据所述叠加后的伽马电压生成驱动电压。所述驱动电压施加到像素电极上。所述像素电极与公共电极组成像素电容,所述像素电极与所述公共电极之间的压差决定着所述像素电容内液晶分子的偏转 角度。也就是说,所述像素电极与所述公共电极之间的压差决定着显示面板的显示灰阶。正常情况下,公共电极的电压是恒定的,通过控制像素电极的电压就可以实现对液晶分子的偏转角度的控制,从而达到预期的显示效果。但是当电容耦合效应导致公共电极电压产生波动时,所述公共电极和所述像素电极之间的压差不再是可控的。此时所述第二补偿模块102只要在已有的伽马电压上叠加相应的补偿电压,就能够使得所述像素电极与所述公共电极之间的压差保持不变。也就是说,补偿电压可以与公共电极电压的变化量相互抵消,从而实现所述像素电极与所述公共电极之间的压差保持不变,避免出现显示面板的温度过高、显示画面偏绿以及串扰噪声的现象。
本实施例提供的显示装置中包含补偿电路,所述补偿电路包括第一补偿模块101和第二补偿模块102,所述第一补偿模块101根据公共电极电压的变化量生成补偿电压,所述第二补偿模块102将其第一输入端输入的伽马电压与其第二输入端输入的补偿电压进行叠加,并输出叠加后的伽马电压。本实施例将补偿位置从公共电极电压转移到伽马电压上,通过叠加到伽马电压上的补偿电压使得公共电极电压的波动得到有效补偿和抑制,从而避免出现显示面板的温度过高、显示画面偏绿以及串扰噪声的现象。
图5为根据本发明一个实施例提供的一种补偿电路的工作方法的流程图。其中所述补偿电路包括第一补偿模块和第二补偿模块,所述第二补偿模块设置有第一输入端、第二输入端以及输出端。
如图5所示,所述工作方法包括:
步骤5001、所述第一补偿模块根据公共电极电压的变化量生成补偿电压。所述第一补偿模块连接到所述第二补偿模块的第二输入端,并将生成的补偿电压输出到所述第二补偿模块的第二输入端。
参见图1,所述补偿电路包括第一补偿模块101和第二补偿模块102,所述第二补偿模块102设置有第一输入端、第二输入端以及输出端,所述第二输入端与所述第一补偿模块101连接。所述第一补偿模块101根据公共电极电压的变化量生成补偿电压,再将补偿电压传输至所述第二补偿模块102。
步骤5002、所述第二补偿模块将所述第一输入端输入的伽马电压与所述第二输入端输入的补偿电压进行叠加,并输出叠加后的伽马电 压。
本实施例中,所述第二补偿模块102的第一输入端接收伽马电压,所述第二补偿模块102的第二输入端接收补偿电压,所述第二补偿模块102将所述伽马电压与所述补偿电压进行叠加,然后输出叠加后的伽马电压。所述叠加后的伽马电压通过源极驱动器施加到像素电极。所述像素电极与公共电极组成像素电容,所述像素电极与所述公共电极之间的压差决定着所述像素电容内液晶分子的偏转角度。也就是说,所述像素电极与所述公共电极之间的压差决定着显示面板的显示灰阶。正常情况下,公共电极的电压是恒定的,通过控制像素电极的电压就可以实现对液晶分子的偏转角度的控制,从而达到预期的显示效果。但是当电容耦合效应导致公共电极电压产生波动时,所述公共电极和所述像素电极之间的压差不再是可控的。此时所述第二补偿模块102只要在已有的伽马电压上叠加相应的补偿电压,就能够使得所述像素电极与所述公共电极之间的压差保持不变。也就是说,补偿电压可以与公共电极电压的变化量相互抵消,从而实现所述像素电极与所述公共电极之间的压差保持不变,避免出现显示面板的温度过高、显示画面偏绿以及串扰噪声的现象。
参见图2,所述第二补偿模块102可以包括运算放大器,所述运算放大器设置有同相输入端、反相输入端以及输出端。所述第一输入端(即,所述第二补偿模块102的第一输入端)与所述运算放大器的输出端之间依次串联有第一电阻R1和第二电阻R2。所述反相输入端连接至所述第一电阻R1和所述第二电阻R2之间。可选地,所述第一电阻R1的阻值可以等于所述第二电阻R2的阻值。可选地,所述第二输入端(即,所述第二补偿模块102的第二输入端)与所述同相输入端之间可以串联有电容C。所述第二补偿模块102将所述第一输入端输入的伽马电压与所述第二输入端输入的补偿电压进行叠加,并输出叠加后的伽马电压,使得公共电极电压的波动得到有效补偿和抑制,从而避免出现显示面板的温度过高、显示画面偏绿以及串扰噪声的现象。
本实施例提供的补偿电路的工作方法中,所述补偿电路包括第一补偿模块101和第二补偿模块102,所述第一补偿模块101根据公共电极电压的变化量生成补偿电压,所述第二补偿模块102将其第一输入端输入的伽马电压与其第二输入端输入的补偿电压进行叠加,并输出 叠加后的伽马电压。本实施例将补偿位置从公共电极电压转移到伽马电压上,通过叠加到伽马电压上的补偿电压使得公共电极电压的波动得到有效补偿和抑制,从而避免出现显示面板的温度过高、显示画面偏绿以及串扰噪声的现象。
图6为根据本发明一个实施例提供的一种驱动电路的工作方法的流程图。其中所述驱动电路包括第一补偿模块、第二补偿模块、伽马电压模块以及源极驱动模块。所述第二补偿模块设置有第一输入端、第二输入端以及输出端。
如图6所示,所述工作方法包括:
步骤6001、所述第一补偿模块根据公共电极电压的变化量生成补偿电压。所述第一补偿模块连接到所述第二补偿模块的第二输入端,并将生成的补偿电压输出到所述第二补偿模块的第二输入端。
步骤6002、所述伽马电压模块生成伽马电压。所述伽马电压模块连接到所述第二补偿模块的第一输入端,并将生成的伽马电压输出到所述第二补偿模块的第一输入端。
参见图3,所述驱动电路包括第一补偿模块101、第二补偿模块102、伽马电压模块103以及源极驱动模块104。所述第二补偿模块102设置有第一输入端、第二输入端以及输出端。所述第一输入端与所述伽马电压模块103连接,所述第二输入端与所述第一补偿模块101连接,所述第二补偿模块102的输出端与所述源极驱动模块104连接。所述第一补偿模块101根据公共电极电压的变化量生成补偿电压,再将补偿电压传输至所述第二补偿模块102。所述伽马电压模块103生成伽马电压,再将伽马电压传输至所述第二补偿模块102。
步骤6003、所述第二补偿模块将所述伽马电压与所述补偿电压进行叠加。所述第二补偿模块的输出端与所述源极驱动模块连接,并将叠加后的伽马电压输出到所述源极驱动模块。
步骤6004、所述源极驱动模块从所述第二补偿模块的输出端接收叠加后的伽马电压,并根据叠加后的伽马电压生成驱动电压。
本实施例中,所述第二补偿模块102的第一输入端接收伽马电压,所述第二补偿模块102的第二输入端接收补偿电压,所述第二补偿模块102将所述伽马电压与所述补偿电压进行叠加,然后将叠加后的伽马电压传输至源极驱动模块104。所述源极驱动模块104接收所述叠加 后的伽马电压,再根据所述叠加后的伽马电压生成驱动电压。所述驱动电压施加到像素电极上。所述像素电极与公共电极组成像素电容,所述像素电极与所述公共电极之间的压差决定着所述像素电容内液晶分子的偏转角度。也就是说,所述像素电极与所述公共电极之间的压差决定着显示面板的显示灰阶。正常情况下,公共电极的电压是恒定的,通过控制像素电极的电压就可以实现对液晶分子的偏转角度的控制,从而达到预期的显示效果。但是当电容耦合效应导致公共电极电压产生波动时,所述公共电极和所述像素电极之间的压差不再是可控的。此时所述第二补偿模块102只要在已有的伽马电压上叠加相应的补偿电压,就能够使得所述像素电极与所述公共电极之间的压差保持不变。也就是说,补偿电压可以与公共电极电压的变化量相互抵消,从而实现所述像素电极与所述公共电极之间的压差保持不变,避免出现显示面板的温度过高、显示画面偏绿以及串扰噪声的现象。
参见图2,所述第二补偿模块102可以包括运算放大器,所述运算放大器设置有同相输入端、反相输入端以及输出端。所述第一输入端(即,所述第二补偿模块102的第一输入端)与所述运算放大器的输出端之间依次串联有第一电阻R1和第二电阻R2。所述反相输入端连接至所述第一电阻R1和所述第二电阻R2之间。可选地,所述第一电阻R1的阻值可以等于所述第二电阻R2的阻值。可选地,所述第二输入端(即,所述第二补偿模块102的第二输入端)与所述同相输入端之间可以串联有电容C。所述第二补偿模块102将所述第一输入端输入的伽马电压与所述第二输入端输入的补偿电压进行叠加,并输出叠加后的伽马电压,使得公共电极电压的波动得到有效补偿和抑制,从而避免出现显示面板的温度过高、显示画面偏绿以及串扰噪声的现象。
本实施例提供的驱动电路的工作方法中,所述驱动电路包括一补偿电路,所述补偿电路包括第一补偿模块101和第二补偿模块102,所述第一补偿模块101根据公共电极电压的变化量生成补偿电压,所述第二补偿模块102将其第一输入端输入的伽马电压与其第二输入端输入的补偿电压进行叠加,并输出叠加后的伽马电压。本实施例将补偿位置从公共电极电压转移到伽马电压上,通过叠加到伽马电压上的补偿电压使得公共电极电压的波动得到有效补偿和抑制,从而避免出现显示面板的温度过高、显示画面偏绿以及串扰噪声的现象。
需要说明的是:上述实施例仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要将上述功能分配给不同的功能模块完成。可以将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。另外,上述一个模块的功能可以由多个模块来完成,上述多个模块的功能也可以集成到一个模块中完成。
可以理解的是,以上实施方式仅仅是为了说明本发明的原理而采用的示例性实施方式,然而本发明并不局限于此。对于本领域内的普通技术人员而言,在不脱离本发明的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本发明的保护范围。本发明的保护范围应以所附权利要求的保护范围为准。
本申请所使用的术语“和/或”仅仅是被用来描述一种关联对象的关联关系,表示可以存在三种关系。例如,“A和/或B”可以表示如下这三种情况:单独存在A,同时存在A和B,单独存在B。另外,本文中字符“/”一般表示前后关联对象是一种“或”的关系。
本申请用了诸如“第一”、“第二”、“第三”等之类的措词。在无附加上下文时,使用这样的措词并不旨在暗示排序而实际上用于标识目的。例如短语“第一版本”和“第二版本”未必意味着第一版本恰为第一个版本或者是在第二版本之前创建的或者甚至在第二版本之前请求或者操作第一版本。实际上,这些短语用来标识不同版本。
在权利要求书中,任何置于括号中的附图标记都不应当解释为限制权利要求。术语“包括”并不排除除了权利要求中所列出的元件或步骤之外的元件或步骤的存在。元件前的词语“一”或“一个”并不排除存在多个这样的元件。本发明可以借助于包括若干分离元件的硬件来实现,也可以通过适当编程的软件或固件来实现,或者通过它们的任意组合来实现。
在列举了若干装置的设备或系统权利要求中,这些装置中的一个或多个能够在同一个硬件项目中体现。仅仅某个措施记载在相互不同的从属权利要求中这个事实并不表明这些措施的组合不能被有利地使用。

Claims (13)

  1. 一种补偿电路,包括第一补偿模块和第二补偿模块,所述第二补偿模块设置有第一输入端、第二输入端以及输出端;
    所述第一补偿模块用于根据公共电极电压的变化量生成补偿电压,并将生成的补偿电压输出到所述第二补偿模块的第二输入端;
    所述第二补偿模块用于将所述第一输入端输入的伽马电压与所述第二输入端输入的补偿电压进行叠加,并输出叠加后的伽马电压。
  2. 根据权利要求1所述的补偿电路,其中,所述第二补偿模块包括运算放大器,所述运算放大器设置有同相输入端、反相输入端以及输出端,所述第一输入端与所述运算放大器的输出端之间依次串联有第一电阻和第二电阻,所述反相输入端连接至所述第一电阻和所述第二电阻之间,所述同相输入端与所述第二输入端连接。
  3. 根据权利要求2所述的补偿电路,其中,所述第一电阻的阻值等于所述第二电阻的阻值。
  4. 根据权利要求2所述的补偿电路,其中,所述第二输入端与所述同相输入端之间串联有电容。
  5. 一种驱动电路,包括第一补偿模块、第二补偿模块、伽马电压模块以及源极驱动模块,所述第二补偿模块设置有第一输入端、第二输入端以及输出端;
    所述第一补偿模块用于根据公共电极电压的变化量生成补偿电压,并将生成的补偿电压输出到所述第二补偿模块的第二输入端;
    所述伽马电压模块用于生成伽马电压,并将生成的伽马电压输出到所述第二补偿模块的第一输入端;
    所述第二补偿模块用于将所述伽马电压与所述补偿电压进行叠加;
    所述源极驱动模块用于从所述第二补偿模块的输出端接收叠加后的伽马电压,并根据叠加后的伽马电压生成驱动电压。
  6. 根据权利要求5所述的驱动电路,其中,所述第二补偿模块包括运算放大器,所述运算放大器设置有同相输入端、反相输入端以及输出端,所述第一输入端与所述运算放大器的输出端之间依次串联有第一电阻和第二电阻,所述反相输入端连接至所述第一电阻和所述第 二电阻之间,所述同相输入端与所述第二输入端连接,所述运算放大器的输出端与所述源极驱动模块连接。
  7. 根据权利要求6所述的驱动电路,其中,所述第一电阻的阻值等于所述第二电阻的阻值。
  8. 根据权利要求6所述的驱动电路,其中,所述第二输入端与所述同相输入端之间串联有电容。
  9. 一种显示装置,包括权利要求5-8中任意一项所述的驱动电路。
  10. 一种补偿电路的工作方法,其中,所述补偿电路包括第一补偿模块和第二补偿模块,所述第二补偿模块设置有第一输入端、第二输入端以及输出端;
    所述工作方法包括:
    所述第一补偿模块根据公共电极电压的变化量生成补偿电压,并将生成的补偿电压输出到所述第二补偿模块的第二输入端;
    所述第二补偿模块将所述第一输入端输入的伽马电压与所述第二输入端输入的补偿电压进行叠加,并输出叠加后的伽马电压。
  11. 根据权利要求10所述的工作方法,其中,所述第二补偿模块包括运算放大器,所述运算放大器设置有同相输入端、反相输入端以及输出端,所述第一输入端与所述运算放大器的输出端之间依次串联有第一电阻和第二电阻,所述反相输入端连接至所述第一电阻和所述第二电阻之间,所述同相输入端与所述第二输入端连接。
  12. 一种驱动电路的工作方法,其中,所述驱动电路包括第一补偿模块、第二补偿模块、伽马电压模块以及源极驱动模块,所述第二补偿模块设置有第一输入端、第二输入端以及输出端;
    所述工作方法包括:
    所述第一补偿模块根据公共电极电压的变化量生成补偿电压,并将生成的补偿电压输出到所述第二补偿模块的第二输入端;
    所述伽马电压模块生成伽马电压,并将生成的伽马电压输出到所述第二补偿模块的第一输入端;
    所述第二补偿模块将所述伽马电压与所述补偿电压进行叠加;
    所述源极驱动模块从所述第二补偿模块的输出端接收叠加后的伽马电压,并根据叠加后的伽马电压生成驱动电压。
  13. 根据权利要求12所述的工作方法,其中,所述第二补偿模块 包括运算放大器,所述运算放大器设置有同相输入端、反相输入端以及输出端,所述第一输入端与所述运算放大器的输出端之间依次串联有第一电阻和第二电阻,所述反相输入端连接至所述第一电阻和所述第二电阻之间,所述同相输入端与所述第二输入端连接,所述运算放大器的输出端与所述源极驱动模块连接。
PCT/CN2015/086142 2015-04-28 2015-08-05 一种补偿电路、驱动电路及其工作方法、显示装置 WO2016173138A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/122,570 US10083670B2 (en) 2015-04-28 2015-08-05 Compensation circuit, drive circuit and operating methods thereof, as well as display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510208361.XA CN104795036B (zh) 2015-04-28 2015-04-28 一种补偿电路、驱动电路及其工作方法、显示装置
CN201510208361.X 2015-04-28

Publications (1)

Publication Number Publication Date
WO2016173138A1 true WO2016173138A1 (zh) 2016-11-03

Family

ID=53559798

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/086142 WO2016173138A1 (zh) 2015-04-28 2015-08-05 一种补偿电路、驱动电路及其工作方法、显示装置

Country Status (3)

Country Link
US (1) US10083670B2 (zh)
CN (1) CN104795036B (zh)
WO (1) WO2016173138A1 (zh)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104795036B (zh) 2015-04-28 2018-02-27 京东方科技集团股份有限公司 一种补偿电路、驱动电路及其工作方法、显示装置
CN105070260A (zh) * 2015-08-25 2015-11-18 深圳市华星光电技术有限公司 一种电压调节电路
CN105469740B (zh) * 2015-12-15 2018-12-11 昆山工研院新型平板显示技术中心有限公司 有源矩阵有机发光显示器及其驱动方法
CN105575356A (zh) * 2016-03-21 2016-05-11 京东方科技集团股份有限公司 像素电极电压处理电路及显示装置
CN107993628B (zh) * 2018-01-26 2020-05-12 京东方科技集团股份有限公司 公共电压补偿电路、其补偿方法、显示面板及显示装置
CN108389556B (zh) * 2018-03-06 2020-12-29 Tcl华星光电技术有限公司 Tft-lcd阵列基板结构及其goa电路温度补偿方法
TWI643175B (zh) * 2018-03-06 2018-12-01 友達光電股份有限公司 微發光二極體顯示面板和驅動方法
CN108597466A (zh) * 2018-04-25 2018-09-28 深圳市华星光电技术有限公司 补偿gamma电压改善串扰被耦合的电路及显示装置
CN108597428A (zh) * 2018-04-28 2018-09-28 惠州市华星光电技术有限公司 驱动电压调试方法及液晶显示器
CN108417173B (zh) * 2018-05-23 2019-12-24 友达光电(昆山)有限公司 一种显示装置
CN108877707A (zh) * 2018-06-11 2018-11-23 惠科股份有限公司 减小串扰的方法、电路及液晶显示装置
CN108847184B (zh) 2018-07-09 2020-03-31 京东方科技集团股份有限公司 伽马电压补偿电路及补偿方法、源极驱动器和显示面板
JP7316776B2 (ja) * 2018-10-26 2023-07-28 ラピスセミコンダクタ株式会社 半導体装置
CN111524487B (zh) * 2019-02-01 2021-07-27 上海和辉光电股份有限公司 数据驱动电路、方法以及显示面板
CN109686306B (zh) * 2019-03-05 2020-12-01 京东方科技集团股份有限公司 补偿因子获取方法及装置、驱动方法、显示设备
CN110867168B (zh) * 2019-10-15 2022-04-26 昆山龙腾光电股份有限公司 伽马电压调整电路、调整方法及显示装置
CN116153232B (zh) * 2023-04-18 2023-07-11 惠科股份有限公司 伽马电压补偿电路、补偿方法及显示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5926157A (en) * 1996-01-13 1999-07-20 Samsung Electronics Co., Ltd. Voltage drop compensating driving circuits and methods for liquid crystal displays
CN1632647A (zh) * 2004-12-30 2005-06-29 友达光电股份有限公司 液晶显示器及其显示方法
CN102183852A (zh) * 2011-05-09 2011-09-14 深圳市华星光电技术有限公司 液晶显示器
CN103065594A (zh) * 2012-12-14 2013-04-24 深圳市华星光电技术有限公司 一种数据驱动电路、液晶显示装置及一种驱动方法
CN104376829A (zh) * 2014-12-11 2015-02-25 京东方科技集团股份有限公司 显示基板驱动装置及驱动方法,显示装置
CN104795036A (zh) * 2015-04-28 2015-07-22 京东方科技集团股份有限公司 一种补偿电路、驱动电路及其工作方法、显示装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI224299B (en) * 2003-01-30 2004-11-21 Richtek Technology Corp Gamma voltage generator allowing individual adjustments and method thereof
EP2228628B1 (fr) * 2009-03-10 2011-09-28 EM Microelectronic-Marin SA Circuit électronique à capteur capacitif pour la mesure d'un paramètre physique, et procédé de mise en action du circuit électronique
US8140143B2 (en) 2009-04-16 2012-03-20 Massachusetts Institute Of Technology Washable wearable biosensor
JP5948836B2 (ja) 2011-12-09 2016-07-06 ソニー株式会社 測定装置、測定方法、プログラム及び記録媒体
CN102670183A (zh) 2012-05-10 2012-09-19 北京工业大学 一种可监测人体脉搏波的汽车方向盘辅助装置
US9135882B2 (en) * 2012-12-14 2015-09-15 Shenzhen China Star Optoelectronics Technology Co., Ltd Data driver circuit having compensation module, LCD device and driving method
CN106333667B (zh) 2013-06-03 2019-07-05 飞比特公司 可佩戴心率监视器
CN104055499B (zh) 2014-06-16 2016-06-22 朱宇东 连续监控人体生理体征的可穿戴式智能手环及方法
CN104347048B (zh) * 2014-11-21 2016-08-03 深圳市华星光电技术有限公司 液晶显示面板及其灰阶电压补偿方法
CN104460076A (zh) * 2014-12-30 2015-03-25 合肥京东方光电科技有限公司 一种电压补偿方法、装置及显示设备
CN104506193B (zh) * 2014-12-31 2017-11-03 格科微电子(上海)有限公司 模数转换电路、流水线模数转换电路及控制方法
CN104793806A (zh) 2015-05-15 2015-07-22 京东方科技集团股份有限公司 触摸感测装置以及移动设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5926157A (en) * 1996-01-13 1999-07-20 Samsung Electronics Co., Ltd. Voltage drop compensating driving circuits and methods for liquid crystal displays
CN1632647A (zh) * 2004-12-30 2005-06-29 友达光电股份有限公司 液晶显示器及其显示方法
CN102183852A (zh) * 2011-05-09 2011-09-14 深圳市华星光电技术有限公司 液晶显示器
CN103065594A (zh) * 2012-12-14 2013-04-24 深圳市华星光电技术有限公司 一种数据驱动电路、液晶显示装置及一种驱动方法
CN104376829A (zh) * 2014-12-11 2015-02-25 京东方科技集团股份有限公司 显示基板驱动装置及驱动方法,显示装置
CN104795036A (zh) * 2015-04-28 2015-07-22 京东方科技集团股份有限公司 一种补偿电路、驱动电路及其工作方法、显示装置

Also Published As

Publication number Publication date
CN104795036A (zh) 2015-07-22
US20170069284A1 (en) 2017-03-09
CN104795036B (zh) 2018-02-27
US10083670B2 (en) 2018-09-25

Similar Documents

Publication Publication Date Title
WO2016173138A1 (zh) 一种补偿电路、驱动电路及其工作方法、显示装置
TWI406247B (zh) 用於液晶顯示裝置之共用電壓補償電路與補償方法
US9905189B2 (en) Liquid crystal display and common voltage compensation driving method thereof
US11062665B2 (en) Circuit and method for common voltage feedback compensation and liquid crystal display device
TWI421851B (zh) 具共用電壓補償機制之液晶顯示裝置與共用電壓補償方法
KR101200966B1 (ko) 공통 전압 생성 회로 및 이를 포함하는 액정 표시 장치
KR101469040B1 (ko) 액정표시장치 및 이의 구동방법
KR102203767B1 (ko) 게이트 전압에 따른 공통 전압 보상 회로
TWI570680B (zh) 源極驅動器及更新伽瑪曲線的方法
WO2014089857A1 (zh) 一种数据驱动电路、液晶显示装置及一种驱动方法
TWI514364B (zh) 液晶顯示面板之液晶畫素電路及其驅動方法
WO2018126749A1 (zh) 组合像素的灰阶补偿装置、方法以及显示装置
US9865221B2 (en) Voltage regulation circuit and liquid crystal display comprising the same
US10217431B2 (en) Display apparatus and method of driving the same
CN108573684B (zh) 显示控制方法及装置、计算机可读存储介质、计算机设备
KR101332514B1 (ko) 표시장치의 감마 설정 방법
US20150206487A1 (en) Display apparatus and operation method thereof
WO2020125429A1 (zh) 公共电压集成电路及显示装置
CN110728961A (zh) 一种液晶显示器上电延时控制电路和控制方法
CN100461248C (zh) 共同电压修正电路与方法
US6798146B2 (en) Display apparatus and method of driving the same
CN109979406B (zh) 驱动电路、显示装置和电压补偿控制方法
US20190333466A1 (en) Gamma compensation circuit and display device
US7864146B2 (en) Gamma voltage output circuit having the same DC current voltage input for liquid crystal display
WO2016165164A1 (zh) 一种多电压产生装置及液晶显示器

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15122570

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15890515

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15890515

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 12/04/2018)

122 Ep: pct application non-entry in european phase

Ref document number: 15890515

Country of ref document: EP

Kind code of ref document: A1