WO2016171584A1 - Способ получения лигатуры алюминий-скандий - Google Patents
Способ получения лигатуры алюминий-скандий Download PDFInfo
- Publication number
- WO2016171584A1 WO2016171584A1 PCT/RU2016/000138 RU2016000138W WO2016171584A1 WO 2016171584 A1 WO2016171584 A1 WO 2016171584A1 RU 2016000138 W RU2016000138 W RU 2016000138W WO 2016171584 A1 WO2016171584 A1 WO 2016171584A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- scandium
- aluminum
- ligature
- oxide
- melt
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/02—Making non-ferrous alloys by melting
- C22C1/03—Making non-ferrous alloys by melting using master alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
Definitions
- the invention relates to the field of metallurgy of non-ferrous metals, and can be used to obtain ligatures of aluminum-scandium in industrial production.
- the present invention relates to the field of metallurgy of non-ferrous metals, in particular to a technology for producing aluminum scandium alloys, used to obtain and modify the final aluminum alloys.
- a known method of obtaining a master alloy of aluminum-scandium with a scandium content of 1.82-1.84 may. %, including melting and soaking in contact with liquid aluminum at 820 ° C, of a mixture of the following composition: potassium chloride, sodium and aluminum fluorides, scandium oxide; it is also possible the inclusion of aluminum in the form of granules, finely divided chips (patent RU 2124574, C22C 1/03, publ. 10.01.1999).
- the disadvantages of the method are the complexity, inefficiency in the preparation of the mixture, the low quality of the ligature, as well as clogging oxide-salt mixture of aluminum oxide, which is formed as a result of aluminothermic reaction of aluminum with scandium oxide.
- a known method of obtaining a ligature of aluminum-scandium with a scandium content of 1.5-30 may. % aluminothermic reduction of scandium fluoride, with the ratio in the charge ScF 3 : Al 1 :( 1.6–8) in three stages with a gradual increase in temperature (copyright certificate SU873692, C22Cl / 03, publ. 11/30/1983).
- the disadvantages of this method is the high (up to 1300 ° C) temperature required for the complete recovery of scandium fluoride, and the duration of the process (5-6 hours).
- the disadvantages include the production of aluminum subfluoride A1F in the final product, which dissociates upon cooling to form finely dispersed aluminum. The latter, when depressurization of the reduction chamber is oxidized with the release of a large amount of energy.
- the disadvantages of the method are the relatively high process temperature (960-1000 ° C) and the consumption of additional electricity for cathodic deposition of scandium.
- the objective of the invention is to simplify the technology, creating a method for continuously producing ligatures of aluminum-scandium with a given composition.
- the technical result is a decrease in the temperature and energy consumption of the process, as well as regeneration of the oxide-halide melt (electrolytic decomposition of the alumina formed during the reaction) and, as a result, the absence of waste in the form of spent flux.
- the method includes preparing and melting a mixture containing aluminum fluorides, sodium fluorides and aluminum, supply of scandium oxide, aluminothermic reduction of scandium from its oxide to obtain an aluminum-scandium alloy and unloading it , before the mixture is melted, potassium fluoride (KF) is added to it, while aluminothermic reduction of scandium and electrolytic decomposition of clays formed during the aluminothermic reaction are carried out the earth, while the supply of scandium oxide to the melt is carried out continuously, maintaining the concentration of scandium oxide at a level that provides the specified content of scandium in the resulting ligature, and after unloading the ligature, aluminum is loaded into the melt.
- KF potassium fluoride
- the prepared molten mixture is used in at least two ligature preparation cycles.
- the concentration of scandium oxide in the electrolyte is maintained on May 1-4. %
- the molten mixture contains 1-40 wt.% KF.
- the electrolysis of the molten mixture is carried out at a temperature of 800-850 ° C
- the essence of the proposed method is as follows. Upon contact of the oxide-halide melt containing potassium, sodium and aluminum fluorides, as well as scandium oxide in an amount of 1-4 wt.%, Aluminothermic reduction of scandium occurs, as a result of which an aluminum-scandium alloy is formed with a scandium content of 0.4–0.8 May. % In this case, a decrease in the concentration of scandium oxide and accumulation (appearance and increase in concentration) of aluminum oxide (alumina) occur in the melt.
- the total aluminothermic reaction of the process has the following form:
- the scandium content in the resulting ligature is determined by the amount of scandium oxide (SC2O3) loaded into the melt, the duration of the contact of aluminum with the melt, and the reaction rate constant (1).
- the obtained aluminum-scandium alloy is periodically unloaded, after which a portion of pure aluminum is loaded into the melt.
- scandium oxide is continuously supplied, and the aluminum oxide formed in the melt is subjected to electrolytic decomposition (electrolysis).
- the maximum current strength on the cell is determined based on the speed of unloading the ligature and the feed rate of scandium oxide into the melt.
- the minimum current strength is selected based on the area of the aluminum cathode and the cathode current density necessary to maintain the cathode current output at a high level.
- Electrolytic decomposition of aluminum oxide occurs using a carbon anode and an aluminum cathode.
- the total reaction of this process is as follows:
- the method allows to obtain a ligature of aluminum-scandium at low temperatures (800-850 ° C), while it is possible to repeatedly obtain a ligature from the same melt periodically replacing it aluminum, which leads to a simplification of technology, reducing energy costs to maintain the process temperature.
- the decrease in process temperature in the present method also leads to an increase in the degree of extraction of scandium.
- the inventive method can be implemented using the experimental setup shown in the figure.
- a melt containing 39 mass% KF, 10 mass% NaF, 51 mass% A1F 3 together with molten aluminum 1 is placed in a graphite crucible 2 of the experimental setup.
- the installation also includes heating elements 3, lining 4 and a metal casing 5.
- the melt is heated to a temperature of 800-850 ° C, then scandium oxide is continuously fed from the hopper 6 into the melt, while passing an electric current through the melt.
- the resulting scandium-aluminum 7 ligature is removed from the crucible, then molten aluminum is added and the ligature production process is continued, continuously supplying scandium oxide and passing electric current.
- the proposed method was tested in an experimental setup with a capacity of up to 10 kg, designed for a current strength of up to 100 A.
- the alloy is aluminum-scandium, containing 0.4-0.8 May. % scandium was obtained by electrolysis of a halide melt (May.%) 39KF-10NaF-51AlF 3 with the addition of May 1-4. % SC2O3.
- the molten salt with a mass of 3.3 kg and aluminum grade A99 with a mass of 6.7 kg were placed in a graphite crucible of the experimental setup and heated to a temperature of 800-850 ° C. After the mixture was melted, scandium oxide was added to the melt.
- the time to reach a close to equilibrium concentration of scandium in aluminum by the aluminothermic reaction (1) does not exceed 30 minutes. Moreover, the completeness of the aluminothermic reaction (1) is 30-60%.
- an electric current of 50-100 A was passed through the molten salt. Based on the cathodic and anodic current densities, which were 0.3-0.7 A / cm 2 and 0.4-0.5 A / cm 2, respectively, we selected the sizes of graphite anode and aluminum cathode.
- part of the aluminum-scandium ligature was removed from the crucible, and pure aluminum and scandium oxide were charged.
- the proposed method allows for the continuous production of aluminum-scandium ligatures with a scandium content of 0.4-0.8 May. % using electrolysis of an oxide-halide melt containing potassium, sodium and aluminum fluorides, as well as scandium oxide in an amount of 1-4 wt.%.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Electrolytic Production Of Metals (AREA)
Abstract
Изобретение относится к области металлургии цветных металлов, и может быть использовано для получения лигатуры алюминий-скандий в условиях промышленного производства. Способ получения лигатуры алюминий-скандий включает приготовление и расплавление смеси, содержащей фториды алюминия, фториды натрия и алюминий, подачу оксида скандия, алюмотермическое восстановление скандия из его оксида с получением лигатуры алюминий-скандий и ее выгрузку. Перед расплавлением смеси, в нее добавляют фторид калия, одновременно проводят алюмотермическое восстановление скандия и электролитическое разложение образующегося в ходе алюмотермической реакции глинозема, при этом подачу оксида скандия в расплав производят непрерывно, поддерживая концентрацию оксида скандия на уровне, обеспечивающим заданное содержание скандия в получаемой лигатуре, а после выгрузки лигатуры, в расплав загружают алюминий. Предлагаемый способ позволяет получать лигатуру алюминий-скандий при пониженных температурах (800-850 °С), упрощает технологию, способствует снижению энергозатрат.
Description
Способ получения лигатуры алюминий-скандий
Изобретение относится к области металлургии цветных металлов, и может быть использовано для получения лигатуры алюминий-скандий в условиях промышленного производства.
Известно, что добавка даже десятых долей скандия в алюминий значительно улучшает его технологические свойства: увеличивает прочность на 40 %, пластичность на 50 %, коррозионную стойкость в 10 раз, температурный интервал устойчивой работы сплавов возрастает на 100-500 °С. Алюминиевые сплавы со скандием обладают сочетанием уникальных свойств: хорошей свариваемостью, возможностью деформироваться в режиме сверхпластичности, высокими механическими свойствами и др.
С развитием новых технологий, автомобилестроения, авиастроения и аэрокосмической отрасли спрос на сплавы алюминий-скандий с каждым годом растет. В настоящее время основная проблема использования скандия в производстве деформируемых алюминиевых сплавов заключается в высокой стоимости представленных на рынке лигатур алюминий-скандий.
Предлагаемое изобретение относится к области металлургии цветных металлов, в частности к технологии получения лигатур алюминий-скандий, применяемых для получения и модифицирования конечных алюминиевых сплавов.
Известен способ получения лигатуры алюминий-скандий с содержанием скандия 1.82-1.84 мае. %, включающий расплавление и выдержку в контакте с жидким алюминием при 820 °С шихты следующего состава: хлорид калия, фториды натрия и алюминия, оксид скандия; возможно так же включение алюминия в виде гранул, мелкораздробленной стружки (патент RU 2124574, С22С 1/03, опубл. 10.01.1999).
Недостатками способа являются сложность, неэффективность в приготовлении шихты, невысокое качество лигатуры, а также зашламление
оксидно-солевой шихты оксидом алюминия, который образуется в результате алюмотермической реакции алюминия с оксидом скандия.
Известен способ получения лигатуры алюминий-скандий с содержанием скандия 1.5-30 мае. % алюмотермическим восстановлением фторида скандия, при соотношении в шихте ScF3:Al 1 :( 1.6—8) в три ступени с постепенным повышением температуры (авторское свидетельство SU873692, C22Cl/03, опубл. 30.11.1983).
Недостатками известного способа является высокая (до 1300 °С) температура, необходимая для полного восстановления фторида скандия, и длительность процесса (5-6 часов). Кроме того, к недостаткам следует отнести получение в конечном продукте субфторида алюминия A1F, который при охлаждении диссоциирует с образованием мелкодисперсного алюминия. Последний при разгерметизации восстановительной камеры окисляется с выделением большого количества энергии.
Наиболее близким к предлагаемому способу является способ получения сплавов и лигатур алюминий-скандий с содержанием скандия 0.4 мае. % (Цветные металлы, 1998, 7, с. 43-46) при электролизе криолит- глиноземного расплава (NaF-AlFs-A C ) с добавками оксида скандия.
Общими признаками известного и заявляемого способа являются ведение электролиза оксидно-галогенидного расплава, содержащего фторид натрия, фторид алюминия и оксид скандия, и алюмотермическое восстановление скандия.
Недостатками способа являются относительно высокая температура процесса (960-1000 °С) и расход дополнительной электроэнергии на катодное осаждение скандия.
Задачей изобретения является упрощение технологии, создание способа непрерывного получения лигатуры алюминий-скандий с заданным составом.
При этом техническим результатом являются снижение температуры и энергозатрат процесса, а также регенерация оксидно-галогенидного расплава (электролитическое разложение образующегося в ходе реакции глинозема) и как следствие отсутствие отходов в виде отработанного флюса.
Технический результат достигается за счет того, что в способе получения лигатуры алюминий-скандий, включающем приготовление и расплавление смеси, содержащей фториды алюминия, фториды натрия и алюминий, подачу оксида скандия, алюмотермическое восстановление скандия из его оксида с получением лигатуры алюминий-скандий и ее выгрузку, перед расплавлением смеси, в нее добавляют фторид калия (KF) , одновременно проводят алюмотермическое восстановление скандия и электролитическое разложение образующегося в ходе алюмотермической реакции глинозема, при этом подачу оксида скандия в расплав производят непрерывно, поддерживая концентрацию оксида скандия на уровне, обеспечивающим заданное содержание скандия в получаемой лигатуре, а после выгрузки лигатуры, в расплав загружают алюминий.
Дополнительными признаками, способствующими достижению заявляемого технического результата являются:
Приготовленную расплавленную смесь используют по меньшей мере в двух циклах получения лигатуры.
Концентрацию оксида скандия в электролите поддерживают 1-4 мае. %.
Расплавленная смесь содержит 1-40 мас.% KF.
Электролиз расплавленной смеси проводят при температуре 800-850 °С
Сущность предлагаемого способа заключается в следующем. При контакте оксидно-галогенидного расплава, содержащего фториды калия, натрия и алюминия, а также оксид скандия в количестве 1-4 мас.% происходит алюмотермическое восстановление скандия, в результате
которого образуется лигатура алюминий-скандий с содержанием скандия 0.4-0.8 мае. %. При этом в расплаве происходит уменьшение концентрации оксида скандия и накопление (появление и увеличение концентрации) оксида алюминия (глинозема).
Суммарная алюмотермическая реакция процесса имеет следующий вид:
О)
Содержание скандия в получаемой лигатуре определяется количеством загружаемого в расплав оксида скандия (SC2O3), длительностью контакта алюминия с расплавом и константой скорости реакции (1).
Для непрерывного получения лигатуры алюминий-скандий периодически выгружают полученную лигатуру алюминий-скандий, после этого в расплав подгружают порцию чистого алюминия. При получении лигатуры непрерывно подают оксид скандия, а образующийся в расплаве оксид алюминия подвергают электролитическому разложению (электролизу). Максимальная сила тока на электролизере определяется исходя из скорости выгрузки лигатуры и скорости подачи оксида скандия в расплав. Минимальная сила тока подбирается исходя из площади алюминиевого катода и катодной плотности тока, необходимой для поддержания катодного выхода по току на высоком уровне.
Электролитическое разложение оксида алюминия происходит с использованием углеродного анода и алюминиевого катода. Суммарная реакция этого процесса имеет следующий вид:
А1203 + 2С = 2А1 + СО + С02
(2)
Способ позволяет получать лигатуру алюминий-скандий при пониженных температурах (800-850 °С), при этом можно многократно получать лигатуру из одного и тоже расплава периодически заменяя в нем
алюминий, что ведет к упрощению технологии, снижению энергозатрат на поддержание температуры процесса. Снижение температуры процесса в заявляемом способе также приводит к увеличению степени извлечения скандия.
Заявляемый способ может быть реализован с помощью экспериментальной установки, представленной на фигуре.
Расплав содержащий 39 массовых % KF, 10 массовых % NaF, 51 массовых % A1F3 вместе с расплавленным алюминием 1 помещают в графитовый тигель 2 экспериментальной установки. В состав установки также входят нагревательные элементы 3, футеровка 4 и металлический кожух 5. Расплав нагревают до температуры 800-850 °С, затем из бункера 6 в расплав непрерывно подают оксид скандия, одновременно пропуская через расплав электрический ток. Полученную лигатуру алюминий-скандий 7 извлекают из тигля, после этого добавляют расплавленный алюминий и продолжают вести процесс получения лигатуры, непрерывно подавая оксид скандия и пропуская электрический ток.
Предлагаемый способ опробован в экспериментальной установке вместимостью до 10 кг, рассчитанной на силу тока до 100 А. Лигатуру алюминий-скандий, содержащую 0.4-0.8 мае. % скандия, получали путем электролиза галогенидного расплава (мае. %) 39KF-10NaF-51AlF3 с добавкой 1-4 мае. % SC2O3. Расплав солей массой 3.3 кг и алюминий марки А99 массой 6.7 кг помещали в графитовый тигель экспериментальной установки и нагревали до температуры 800-850 °С. После плавления смеси в расплав добавляли оксид скандия.
При концентрации оксида скандия в расплаве от 1 до 4 мае. % и без протекания электрического тока время достижения близкой к равновесной концентрации скандия в алюминии по алюмотермической реакции (1) не превышает 30 мин. При этом полнота протекания алюмотермической реакции (1) составляет 30-60 %.
Для электролитического разложения образовавшегося оксида алюминия через расплав солей пропускали электрический ток величиной 50-100 А. Исходя из величины катодной и анодной плотностей токов, которые составляли 0.3-0.7 А/см 2 и 0.4-0.5 А/ см 2 , соответственно, подбирали размеры графитового анода и алюминиевого катода. После приготовления алюминиево-скандиевой лигатуры, для организации непрерывного процесса, часть алюминиево-скандиевой лигатуры из тигля извлекали, а чистый алюминий и оксид скандия загружали.
Предлагаемый способ позволяет реализовать непрерывное получение алюминиево-скандиевой лигатуры с содержанием скандия 0.4-0.8 мае. % с применением электролиза оксидно-галогенидного расплава, содержащего фториды калия, натрия и алюминия, а также оксид скандия в количестве 1-4 мас.%.
Claims
1. Способ получения лигатуры алюминий-скандий, включающий приготовление и расплавление смеси, содержащей фториды алюминия, фториды натрия и алюминий, подачу оксида скандия, алюмотермическое восстановление скандия из его оксида с получением лигатуры алюминий-скандий и ее выгрузку, отличающийся тем, что перед расплавлением смеси, в нее добавляют фторид калия, одновременно проводят алюмотермическое восстановление скандия и электролитическое разложение образующегося в ходе алюмотермической реакции глинозема, при этом подачу оксида скандия в расплав производят непрерывно, поддерживая концентрацию оксида скандия на уровне, обеспечивающим заданное содержание скандия в получаемой лигатуре, а после выгрузки лигатуры, в расплав загружают алюминий.
2. Способ по п.1, отличающийся тем, что приготовленную
расплавленную смесь используют по меньшей мере в двух циклах получения лигатуры.
3. Способ по п.1 , отличающийся тем, что концентрацию оксида скандия в электролите поддерживают 1-4 мае. %.
4. Способ по п.1, отличающийся тем, что расплавленная смесь содержит 1-40 мас.% KF.
5. Способ по п.1 , отличающийся тем, что электролиз расплавленной смеси проводят при температуре 800-850 °С
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2015115260/02A RU2593246C1 (ru) | 2015-04-22 | 2015-04-22 | Способ получения лигатуры алюминий-скандий |
RU2015115260 | 2015-04-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016171584A1 true WO2016171584A1 (ru) | 2016-10-27 |
Family
ID=56612808
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/RU2016/000138 WO2016171584A1 (ru) | 2015-04-22 | 2016-03-14 | Способ получения лигатуры алюминий-скандий |
Country Status (2)
Country | Link |
---|---|
RU (1) | RU2593246C1 (ru) |
WO (1) | WO2016171584A1 (ru) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113957245A (zh) * | 2020-04-27 | 2022-01-21 | 佛山市南海区晶鼎泰智能科技有限公司 | 一种制备铝钪合金的铝热还原方法 |
CN114941080A (zh) * | 2022-05-25 | 2022-08-26 | 宁波江丰电子材料股份有限公司 | 一种铝钪合金的制备方法 |
US11970782B2 (en) | 2018-03-15 | 2024-04-30 | Fea Materials Llc | Method of aluminum-scandium alloy production |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11384412B2 (en) | 2018-01-16 | 2022-07-12 | Scandium International Mining Corporation | Direct scandium alloying |
US10988830B2 (en) | 2018-01-16 | 2021-04-27 | Scandium International Mining Corporation | Scandium master alloy production |
RU2680330C1 (ru) * | 2018-05-28 | 2019-02-19 | Федеральное государственное бюджетное учреждение науки Институт химии твердого тела Уральского отделения Российской академии наук | Способ получения лигатуры на основе алюминия |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4534938A (en) * | 1984-08-15 | 1985-08-13 | The United States Of America As Represented By The Secretary Of The Air Force | Method for making alloy additions to base metals having higher melting points |
RU2124574C1 (ru) * | 1997-10-16 | 1999-01-10 | Институт химии твердого тела Уральского Отделения РАН | Способ получения лигатуры скандий-алюминий (его варианты) |
WO2003042418A1 (fr) * | 2001-11-12 | 2003-05-22 | Sergei Vladimirovich Makhov | Procede de fabrication d'un alliage de fonderie alimunium-scandium et fondant destine a la fabrication d'un alliage de fonderie alimunium-scandium |
JP5445725B1 (ja) * | 2013-06-26 | 2014-03-19 | 日本軽金属株式会社 | Al−Sc合金の製造方法 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS51115213A (en) * | 1975-03-14 | 1976-10-09 | Mitsubishi Keikinzoku Kogyo Kk | Preparation of aluminum-titanium alloys for use as grain refiners |
-
2015
- 2015-04-22 RU RU2015115260/02A patent/RU2593246C1/ru active
-
2016
- 2016-03-14 WO PCT/RU2016/000138 patent/WO2016171584A1/ru active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4534938A (en) * | 1984-08-15 | 1985-08-13 | The United States Of America As Represented By The Secretary Of The Air Force | Method for making alloy additions to base metals having higher melting points |
RU2124574C1 (ru) * | 1997-10-16 | 1999-01-10 | Институт химии твердого тела Уральского Отделения РАН | Способ получения лигатуры скандий-алюминий (его варианты) |
WO2003042418A1 (fr) * | 2001-11-12 | 2003-05-22 | Sergei Vladimirovich Makhov | Procede de fabrication d'un alliage de fonderie alimunium-scandium et fondant destine a la fabrication d'un alliage de fonderie alimunium-scandium |
JP5445725B1 (ja) * | 2013-06-26 | 2014-03-19 | 日本軽金属株式会社 | Al−Sc合金の製造方法 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11970782B2 (en) | 2018-03-15 | 2024-04-30 | Fea Materials Llc | Method of aluminum-scandium alloy production |
CN113957245A (zh) * | 2020-04-27 | 2022-01-21 | 佛山市南海区晶鼎泰智能科技有限公司 | 一种制备铝钪合金的铝热还原方法 |
CN114941080A (zh) * | 2022-05-25 | 2022-08-26 | 宁波江丰电子材料股份有限公司 | 一种铝钪合金的制备方法 |
Also Published As
Publication number | Publication date |
---|---|
RU2593246C1 (ru) | 2016-08-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2593246C1 (ru) | Способ получения лигатуры алюминий-скандий | |
CA2983108C (en) | Method for producing aluminium-scandium alloy and reactor for implementing the method | |
US5024737A (en) | Process for producing a reactive metal-magnesium alloy | |
US10519556B2 (en) | Process for recycling waste carbide | |
TW201042089A (en) | Primary production of elements | |
CN111822724B (zh) | 一种铺粉式3D打印CuCr2合金的制备方法 | |
Suzdaltsev et al. | Extraction of scandium and zirconium from their oxides during the electrolysis of oxide–fluoride melts | |
JPH0633161A (ja) | 均質で純粋なインゴットに加工することのできる耐熱金属合金及び該合金の製造方法 | |
US4533442A (en) | Lithium metal/alloy recovery from multi-component molten salt | |
CA2703400A1 (en) | Production of tungsten and tungsten alloys from tungsten bearing compounds by electrochemical methods | |
WO2022092231A1 (ja) | 再生アルミニウムの製造方法、製造装置、製造システム、再生アルミニウム、及び、アルミニウム加工物 | |
Xu et al. | Current efficiency of recycling aluminum from aluminum scraps by electrolysis | |
CN102644094A (zh) | 一种熔盐电解制备Al-Mg-Tb三元合金的方法 | |
Yang et al. | Preparation of titanium powder using a combined method of aluminothermic reduction and molten salt electrolysis | |
CN113718268A (zh) | 一种回收钨废料的方法 | |
CN110565119A (zh) | 一种纯化铝合金的方法 | |
CN108866579B (zh) | 一种电解制备Al4W合金材料的方法及装置 | |
RU2599312C1 (ru) | Электролитический способ непрерывного получения алюминиевого сплава со скандием | |
CN109055792B (zh) | 一种制备Al-Ti-C中间合金的方法 | |
CN102912382B (zh) | 一种在氟氯化物熔盐体系中电解制备铝-镁合金的方法 | |
RU2629418C1 (ru) | Способ непрерывного получения алюминиевой лигатуры с 2 мас. % скандия | |
CN103132108B (zh) | 熔盐体系中电解制备耐热镁铝钕合金的方法 | |
HU177164B (en) | Method for cleaning aluminium alloys | |
US2821506A (en) | Purification of titanium and zirconium metal | |
RU2652905C1 (ru) | Способ получения алюминиево-кремниевых сплавов |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16783479 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16783479 Country of ref document: EP Kind code of ref document: A1 |