WO2016171254A1 - 2-[3-シアノ-4-(2-メチルプロポキシ)フェニル]-4-メチルチアゾール-5-カルボン酸の結晶、その製造方法、及びそれらの利用 - Google Patents
2-[3-シアノ-4-(2-メチルプロポキシ)フェニル]-4-メチルチアゾール-5-カルボン酸の結晶、その製造方法、及びそれらの利用 Download PDFInfo
- Publication number
- WO2016171254A1 WO2016171254A1 PCT/JP2016/062767 JP2016062767W WO2016171254A1 WO 2016171254 A1 WO2016171254 A1 WO 2016171254A1 JP 2016062767 W JP2016062767 W JP 2016062767W WO 2016171254 A1 WO2016171254 A1 WO 2016171254A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- crystal
- methylthiazole
- phenyl
- methylpropoxy
- carboxylic acid
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/20—Pills, tablets, discs, rods
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/41—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
- A61K31/425—Thiazoles
- A61K31/426—1,3-Thiazoles
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D277/00—Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings
- C07D277/02—Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings
- C07D277/20—Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
- C07D277/32—Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
- C07D277/56—Carbon atoms having three bonds to hetero atoms with at the most one bond to halogen
Definitions
- the present invention relates to an amorphous form of 2- [3-cyano-4- (2-methylpropoxy) phenyl] -4-methylthiazole-5-carboxylic acid without using an organic solvent.
- -4- (2-Methylpropoxy) phenyl] -4-methylthiazole-5-carboxylic acid production method 2- [3-cyano-4- (2-methylpropoxy) phenyl produced by the method ] 4-methylthiazole-5-carboxylic acid crystals, and preparations containing the crystals.
- the present invention also relates to a method for reducing the content of an amorphous form of 2- [3-cyano-4- (2-methylpropoxy) phenyl] -4-methylthiazole-5-carboxylic acid in a preparation or sample, And a preparation or sample containing crystals of 2- [3-cyano-4- (2-methylpropoxy) phenyl] -4-methylthiazole-5-carboxylic acid which is stable even under heating and humidification. Furthermore, the present invention relates to a novel crystal of 2- [3-cyano-4- (2-methylpropoxy) phenyl] -4-methylthiazole-5-carboxylic acid, a production method thereof, and a detection and quantification method thereof. Furthermore, the present invention relates to a method for detecting and quantifying an amorphous form of 2- [3-cyano-4- (2-methylpropoxy) phenyl] -4-methylthiazole-5-carboxylic acid.
- Patent Document 2 includes A crystal, B crystal and C crystal, D crystal which is a methanol solvate, and hydrate.
- G crystals also referred to as BH crystals
- amorphous materials also referred to as E crystals in Japanese Patent No. 4084309 described later.
- the above-mentioned publication specifically shows that A crystal, C crystal, and G crystal (BH crystal) are useful from the viewpoint of maintaining the crystal shape by long-term storage (Example 10 of the same publication). From the industrial superiority, crystal A is preferred (page 9, lines 3 to 5 of the same publication).
- Patent Document 3 Japanese Patent Laid-Open No. 2003-261548
- Patent Document 4 Japanese Patent Laid-Open No. 2011-20950
- Patent Document 5 International Publication.
- Patent Document 5 Japanese Patent Laid-Open No. 2011-20950
- Example 1 of Japanese Patent No. 4084309 shows that among these crystal forms, A crystal, C crystal and G crystal have the most excellent physical stability.
- Example 1 and Example 3 of the same publication it was confirmed that tablets obtained by wet granulation of febuxostat A crystal showed a uniform dissolution profile with little variation.
- an A crystal having an average particle size of 12.9 ⁇ m or more and 26.2 ⁇ m or less, an excipient selected from lactose and partially pregelatinized starch, a hydroxypropylcellulose binder, and a tablet containing a disintegrant are proposed ( Claim 1 of Patent Document 6.
- solid-state 15 N-NMR It is a substance that can be easily identified by those skilled in the art from the peak positions of 210 (sharp single peaks of 210 ppm and 282 ppm) and the nearly equivalent triplet peak (Reference Example 3 of Patent Document 6) appearing at the position of 20 ppm of solid 13 C-NMR. .
- this C crystal is usually suspended in a methanol / water mixed solution with an arbitrary crystal having a solubility or higher by using solvent-mediated transfer, and a small amount of C crystal is added thereto. It can be manufactured by adding and stirring under heating (Patent Document 2, page 7, line 39 to page 8, line 1).
- Patent Document 7 ethyl 2- (3-formyl- 4-isobutoxyphenyl) -4-methylthiazole-5-carboxylate in the presence of a lower alcohol such as methanol or ethanol.
- 2- (3-formyl- 4-isobutoxyphenyl) -4-methylthiazole-5-carboxylic acid by hydrolyzing the ester bond by reacting an ester with an alkali metal carbonate such as potassium carbonate, cesium carbonate, or sodium carbonate
- an alkali metal carbonate such as potassium carbonate, cesium carbonate, or sodium carbonate
- water of 60 ° C. or higher to the reaction product obtained by reacting sodium formate and hydroxylamine hydrochloride in formic acid, it is cooled to room temperature with good industrial reproducibility. Since a method that can obtain C crystal of febuxostat is disclosed, it is possible to produce C crystal without using C crystal seed crystal based on the description in Patent Document 7. That (see Claim 4 and Example 4 of Patent Document 7).
- Comparative Example 1 of Patent Document 6 a tablet produced by a wet granulation method using a crystal C produced by crystallization from a mixed solvent of methanol and water used in the publication is analyzed by solid 13 C-NMR. Since it showed a dull peak at a position of 20 ppm when measured, it is considered that it contains an amorphous body (E crystal). It is stated that when this preparation is stored at 40 ° C / 75% RH, part of the amorphous material (crystal E) is transferred to crystal G (Comparative Example 5 in the same publication), and it is eluted in a pH 5.5 McIlvaine buffer. It has also been reported that the rate decreased and the variation in dissolution rate slightly increased (Table 4 of the same publication).
- Non-Patent Literature 5 Crystal Growth & Design, Vol.6, No.5, pp.1214-1218, 2006 (Non-Patent Literature 6); Cryst. Eng. Comm., Vol.11, pp.949 -964, 2009 (Non-patent document 7); and “Mechanism and control of polymorphism” Mitsutaka Kitamura, IPC, 2010, Chapter 6, Chapter 8, Chapter 9 (Non-patent document 8) )).
- Non-patent Document 1 Journal of Chemical Engineering of Japan, 35, No.11, pp.1116-1122, 2002 (Non-Patent Document 1), Section 2.3.
- Non-patent Document 2 discloses a specific method of crystallization, and teaches that crystal C is a stable form and crystal A is a metastable form.
- One object of the present invention is to provide a febuxostat consisting essentially of febuxostat C crystals prepared from a mixture of febuxostat amorphous and febuxostat C crystals.
- One object of the present invention is to provide a febuxostat that is substantially free of an organic solvent and substantially comprises febuxostat C crystals.
- One object of the present invention is to provide a method for reducing the content of amorphous form of febuxostat in a preparation or sample by a simple method without using an organic solvent.
- One object of the present invention is to provide a preparation of febuxostat C crystal having excellent dissolution properties.
- One object of the present invention is to provide a preparation or sample containing febuxostat C crystals that is stable under heating and humidification.
- One object of the present invention is to provide a novel crystalline polymorph of febuxostat having no hygroscopic property, a production method thereof, a detection method and a quantification method thereof.
- One object of the present invention is to provide a method for detecting and quantifying an amorphous form of febuxostat with good sensitivity.
- the inventors of the present invention by heating a mixture containing an amorphous form of febuxostat and C crystals, from an amorphous form of febuxostat to a C of febuxostat. It has been found that crystals can be produced. Furthermore, it has been found that the preparation or sample containing febuxostat C crystal of the present invention has sufficient stability under heating and humidification.
- X crystal a novel polymorphic form of febuxostat that has no hygroscopicity
- the present invention it is possible to provide a febuxostat substantially composed of C crystal of febuxostat. Furthermore, the amorphous body of febuxostat can be transferred to C crystals by a simple method without using an organic solvent according to the present invention. This not only reduces the content of the amorphous body, but can not only prepare preparations and samples that are substantially free of amorphous bodies, but preferably preparations and samples that are substantially composed of febuxostat C crystals. In addition, the residual amount of organic solvent in the preparation or sample can be reduced, and a preparation or sample preferably having substantially no residual organic solvent in the preparation or sample can be prepared.
- the present invention can provide a stable preparation or sample of febuxostat C crystal that is substantially free of amorphous material at a temperature higher than room temperature and under humidification. Since the amorphous form of febuxostat can be transferred to C crystals by a method that does not use an organic solvent, the present invention eliminates the concern of fire, explosion, and anesthesia, and makes febuxostat C in a safe manner. Crystals can be provided. Further, according to the present invention, a novel crystal polymorph (crystal X) of febuxostat having no hygroscopicity can be produced, and its detection and quantification can be performed.
- the present invention can provide a sensitive method for detecting or quantifying an amorphous form of febuxostat.
- the C crystal of febuxostat that can be used in the present invention, a C crystal produced based on the known method of paragraph [0006] or paragraph [0007] can be used.
- it can be a miniaturized crystal of febuxostat and its fine powder.
- the miniaturized crystal of febuxostat and its finely divided product have both high stability and high dissolution property.
- the miniaturized crystals of febuxostat and the finely divided products thereof that can be used in the present invention have a high bulk density and / or tap density, and have a good particle size distribution that is distributed in a narrow range with a small particle size. Furthermore, the miniaturized crystal of febuxostat and its finely divided product that can be used in the present invention have a small angle of repose and / or excellent handling properties. According to the present invention, it is possible to provide a solid preparation excellent in stability and dissolution and having little variation in dissolution characteristics for the prevention and / or treatment of gout, hyperuricemia and chronic kidney disease.
- FIG. 3 is a powder X-ray diffraction spectrum of crystal G obtained in Example 2.
- FIG. A powder X-ray diffraction spectrum characteristic of crystal G having strong peaks at diffraction angles of 6.86 °, 8.36 °, 9.60 °, 11.76 °, and 15.94 ° was obtained (Example 6).
- 4 is a powder X-ray diffraction spectrum of unmilled methanol C crystal obtained in Example 4 (see Example 4).
- a powder X-ray diffraction spectrum characteristic of crystal C having strong peaks at diffraction angles of 6.62 °, 10.82 °, 13.36 °, 15.52 ° and 25.18 ° was obtained (Example 6).
- Example 4 is a powder X-ray diffraction spectrum of unmilled acetonitrile C crystals obtained in Example 3 (see Example 3). A powder X-ray diffraction spectrum characteristic of crystal C having strong peaks at diffraction angles of 6.62 °, 10.82 °, 13.36 °, 15.52 ° and 25.18 ° was obtained (Example 6). 4 is a powder X-ray diffraction spectrum of a jet mill pulverized product of acetonitrile C crystal obtained in Example 5.
- Example 6 A powder X-ray diffraction spectrum characteristic of crystal C having strong peaks at diffraction angles of 6.62 °, 10.82 °, 13.36 °, 15.52 ° and 25.18 ° was obtained (Example 6).
- 2 is a differential scanning calorimetry spectrum of unmilled methanol water C crystals obtained in Example 4.
- FIG. 2 is a differential scanning calorimetry spectrum of the unmilled acetonitrile C crystals obtained in Example 3.
- a differential scanning calorimetry spectrum characteristic of pure C crystals having a single peak only around about 201 ° C. to about 202 ° C. was obtained (Example 8).
- 6 is a differential scanning calorimetry spectrum of a jet mill pulverized product of acetonitrile C crystal obtained in Example 5.
- a differential scanning calorimetry spectrum characteristic of pure C crystals having a single peak only around about 201 ° C. to about 202 ° C. was obtained (Example 8).
- FIG. 4 is a diagram and data showing the particle size distribution of unmilled methanol water C crystals obtained in Example 4.
- FIG. 4 is a diagram and data showing the particle size distribution of unmilled methanol water C crystals obtained in Example 4.
- FIG. 2 is a diagram and data showing the particle size distribution of unmilled acetonitrile C crystals obtained in Example 3.
- FIG. D50 of unmilled acetonitrile C crystal was 20.483 ⁇ m, and D90 was 73.755 ⁇ m (Example 7).
- 6 is a diagram and data showing the particle size distribution of a jet mill pulverized product of acetonitrile C crystals obtained in Example 5 (pulverization pressure 3 kgf / feed pressure 4 kgf).
- the jet mill pulverized product of acetonitrile C crystal had a D50 of 3.637 ⁇ m and a D90 of 7.346 ⁇ m, and showed a sharp particle size distribution in which almost all particles fit within a particle size range of 0.4 ⁇ m to 20 ⁇ m (Example 7).
- FIG. 2 is a powder X-ray diffraction spectrum of a ball milled product of acetonitrile C crystal obtained in Example 10 (pulverized product for 60 minutes). A flattened powder X-ray diffraction spectrum characteristic of amorphous material was obtained.
- FIG. 4 is an infrared absorption spectrum of a ball milled product of acetonitrile C crystal obtained in Example 10 (pulverized product for 60 minutes).
- FIG. Infrared absorption spectra characteristic of amorphous materials having peaks near 1688 cm -1 and 2230 cm -1 were obtained.
- 4 is a differential scanning calorimetry spectrum of a ball mill pulverized product of acetonitrile C crystal obtained in Example 10 (pulverized product for 60 minutes).
- Example 16 The dissolution rate of a tablet containing a jet mill pulverized product of acetonitrile C crystal as an active ingredient was measured with respect to Mcllvaine buffer (pH 5.5), a tablet containing unmilled acetonitrile C crystal, a tablet containing commercially available A crystal, FIG. 3 is a graph comparing the dissolution rate of F tablets and F tablets with film coating peeled off.
- Tablets containing a jet mill pulverized product of acetonitrile C crystals show a faster dissolution rate than any tablets despite being C crystals, and after 60 minutes, tablets containing A crystals, F tablets (registered) It was confirmed that the tablet was an excellent tablet having an elution rate of about 95%, which was equivalent to both of the F trademark (trademark) and the film-coated release F tablet (registered trademark).
- FIG. A jet mill pulverized product of acetonitrile C crystal was confirmed to have excellent storage stability (see Example 18). It was confirmed that the amount of impurities did not increase until 6 months when the jet mill pulverized product of acetonitrile C crystal was put in a brown glass bottle and covered, or put in a polyethylene bag and the mouth was closed.
- FIG. A jet mill pulverized product of acetonitrile C crystal was confirmed to have excellent storage stability (see Example 18).
- the trial tablet produced using the jet mill pulverized product of acetonitrile C crystal has the same storage stability as the F tablet (see Example 19).
- Prototype tablets plain tablets and film-coated tablets manufactured using jet mill pulverized product of acetonitrile C crystal, and F tablets are put in brown glass bottles and covered, or put in polyethylene bags and the mouth is closed. It is the figure which confirmed that the quantity of an impurity did not increase until 3 months when it was put on condition. It was confirmed that the trial tablet produced using the jet mill pulverized product of acetonitrile C crystal has the same storage stability as the F tablet (see Example 19).
- test FC tablets MeCN crushed
- film coated tablets containing crushed acetonitrile C crystal jet mill (20 mg tablets) prepared using a crushed acetonitrile C crystal jet mill into the test solution
- the dissolution rate was almost the same as or slightly higher than the dissolution rate of F tablets (20 mg tablets), indicating good dissolution characteristics.
- 2 is an appearance photograph showing the properties of unground methanol water C crystals.
- Unmilled methanol water C crystal (see Example 22) is a fluffy fluffy bulk, and needle crystals larger than 1 mm larger than the unmilled A crystal could be visually confirmed (Example 22). reference). It can be understood at a glance that it is difficult to measure the angle of repose of unmilled methanol C crystals.
- 2 is an appearance photograph showing the properties of unmilled acetonitrile C crystals. Unmilled acetonitrile C crystals (see Example 22) tend to form slightly bulky masses, but are smaller than unmilled methanol water C crystals and denser than unmilled methanol water C crystals It was a lump.
- FIG. 3 is an external view photograph showing properties of a jet mill pulverized product of acetonitrile C crystal (see Example 22).
- a jet mill pulverized product of acetonitrile C crystals also tended to form lumps.
- a lump is visible in the photograph, but it is a fine powder that breaks lightly when it strikes with a spatula. It is the figure which averaged the jet mill ground material of the acetonitrile C crystal with the plastic spoon. It was found that the particles were easily flattened and fine particles gathered (see Example 22).
- FIG. 2 is an appearance photograph showing the properties of a ball mill pulverized product of acetonitrile C crystal (see Example 22).
- the ball milled product of acetonitrile C crystal (Fig. 26) also tended to form lumps, but no needle-like structure was seen, and it was smoothed with a plastic spoon like the jet milled product of acetonitrile C crystal. It was found that fine particles that were easily flattened and easily collapsed gathered together.
- the jet mill pulverized product of acetonitrile C crystal (Fig. 24) and the ball milled product of acetonitrile C crystal (Fig. 26) are lumps in the photograph, but they are very fragile. The movement of the flour was very similar to that of corn starch (Fig.
- Crystal C is distinguishable from Crystal A and each additive by a peak of about 1695 shift / cm-1, and Crystal A is about 1450 ⁇ shift / cm-1 and about 1330 shift / cm-1 It was confirmed that it could be distinguished from each additive. It is an image of Raman imaging of C crystal. Innumerable C crystal particles having a diameter of 10 ⁇ m or less were confirmed. It is the result of particle analysis of Raman imaging of C crystal. There are four bars in order from the origin to the 20th scale on the horizontal axis in order from the left: number of C crystals of 0-5 ⁇ m, number of C crystals of 5-10 ⁇ m, number of C crystals of 10-15 ⁇ m, 15- The numbers of 20 ⁇ m C crystals are shown.
- a powder X-ray diffraction spectrum measured by storing a mixture prepared by adding 0.5, 1, 5, and 10% by mass of an amorphous substance to C crystal at 100 ° C. for 7 days is shown.
- a differential scanning calorimetry spectrum is shown in which a mixture prepared by adding 0.005, 0.01, 0.05, 0.1, 0.5, 1, 5, 10% of an amorphous substance to C crystal at 100 ° C. is stored for 7 days and measured.
- . 3 shows a powder X-ray diffraction spectrum of a mixture of amorphous febuxostat and a trace amount of C crystals.
- 2 shows a differential scanning calorimetry spectrum of a mixture of amorphous febuxostat and a trace amount of C crystals.
- 2 shows a differential scanning calorimetry spectrum of a mixture of an amorphous form of febuxostat and a trace amount of C crystals before storage at 100 ° C. for 7 days.
- 2 shows a differential scanning calorimetry spectrum of a mixture of amorphous and C crystal of febuxostat after storage at 100 ° C. for 7 days.
- the differential scanning calorimetry spectrum of C crystal containing a trace amount of amorphous material is shown.
- a differential scanning calorimetry spectrum measured after putting C crystal containing a small amount of amorphous substance into an airtight container and storing at 60 ° C. for 1 month is shown.
- the differential scanning calorimetry spectrum measured after putting C crystal containing a small amount of amorphous substance into an open container and storing at 40 ° C./75% RH for 1 month is shown.
- the powder X-ray diffraction spectrum of X crystal is shown.
- the differential scanning calorimetry spectrum of crystal X is shown.
- the IR spectrum (infrared absorption spectrum) of crystal X is shown.
- febuxostat C crystal obtained by heating a mixture of an amorphous form of febuxostat and febuxostat C crystal to a temperature higher than room temperature.
- a febuxostat C crystal is produced from an amorphous febuxostat comprising a step of heating a mixture of febuxostat amorphous and febuxostat C crystal to a temperature higher than room temperature.
- a method for reducing the content of febuxostat amorphous substance in a preparation or sample wherein the preparation or sample containing febuxostat amorphous substance and febuxostat C crystal is removed from room temperature.
- a method is provided that includes the step of heating to an elevated temperature.
- the crystal C of febuxostat that is, 2- [3-cyano-4- (2-methylpropoxy) phenyl] -4-methylthiazole-5-carboxylic acid
- the present invention provides a preparation or sample containing febuxostat C crystal, which is stable even when the preparation or sample is heated to a temperature higher than room temperature and further humidified.
- normal temperature means 15 to 25 ° C.
- the temperature higher than normal temperature is, for example, more than 25 ° C. and 199 ° C. or less, more than 25 ° C. and 120 ° C. or less, 30 ° C. or more and 199 ° C. or less, 30 ° C. or more It can be 120 ° C or lower, 30 ° C or higher and 100 ° C or lower, 40 ° C or higher and 180 ° C or lower, 40 ° C or higher and 150 ° C or lower, 40 ° C or higher and 100 ° C or lower, 30 ° C or higher and 70 ° C or lower, 40 ° C or higher and 60 ° C or lower.
- the heating time can be ended when the mixture is substantially only C crystals in the mixture of C and amorphous of febuxostat. For example, 30 minutes to 72 hours, 1 hour to 48 hours, The heating may be performed for 10 hours to 24 hours, preferably 1 hour to 48 hours, 10 hours to 24 hours, more preferably 10 hours to 24 hours.
- the febuxostat C crystals and the amorphous content of febuxostat in formulations or samples containing C crystals can be reduced.
- the preparation or sample containing febuxostat C and C crystals of febuxostat of the present invention is heated to a temperature higher than room temperature, and further humidified, for example, 45% RH to 85%, 45% RH to 80% RH.
- the term "stability" as used herein means the following period, for example, 1 day, 3 days, 5 days, 7 days, 15 days, 1 month, 2 months, 3 months, in the state of heating and humidification.
- the C crystal of the present invention does not transform or decompose into other crystal forms for a period of 6 months and 1 year, preferably 1 month, 2 months, 3 months, 6 months and 1 year.
- heating and humidification of febuxostat C crystals and preparations or samples containing C crystals may be performed in either an open system or a closed system.
- the accelerated test that is conducted after obtaining the approval of the drug is a stability test for a period of 6 months under the condition of 40 ° C / 75% RH, and the stability for 3 years is estimated from the test result. Having these stability in drug development is extremely important because it can be done.
- the amorphous form of febuxostat used in the present invention is, for example, a febuxostat raw material containing a crystal. It can be produced by ball milling the drug. Here, in the ball mill grinding, a planetary ball mill may be used and the grinding conditions may be 400 rpm or more.
- the pulverization time is preferably 60 minutes or longer.
- an amorphous form of febuxostat can be prepared by pulverizing febuxostat C crystal using a planetary ball mill Retsch PM100 for 60 minutes at 6 balls and at a rotational speed of 400 rpm.
- febuxostat consisting essentially of an amorphous material.
- the febuxostat consisting essentially of amorphous material is 90% or more, preferably 95% or more, more preferably 99% or more, and most preferably 100% amorphous material. (Note that% is% by weight).
- the presence of an amorphous form of febuxostat and the change in its content in the sample can be measured by observing an endothermic peak at about 211 ° C. with a differential scanning calorimeter, as will be described later.
- About 211 ° C. is, for example, 208 ° C. or higher and 216 ° C. or lower, preferably 210 ° C. or higher and 212 ° C. or lower.
- a person skilled in the art can appropriately measure the differential scanning calorific value. For example, using the Rigaku Therm plus EVO series high-sensitivity differential scanning calorimeter DSC8230, measure the differential scanning calorimetry (DSC) at a heating rate of 10 ° C / min and atmospheric pressure for data collection and analysis.
- Thermo plus EVO version 1.006-6 software may be used.
- the present inventor found that in differential scanning calorimetry, the exothermic peak amount (J / g) of the exothermic peak that appears in the region of 150 ° C. or less and the amount of amorphous febuxostat are in a directly proportional relationship. As a result, the amorphous content in the febuxostat sample can be measured based on the exothermic peak amount (J / g) of the exothermic peak appearing in the region of 150 ° C. or lower.
- x represents an exothermic peak amount (J / g) of 150 ° C. or less in differential scanning calorimetry
- y represents an amorphous content (mass%).
- the constants in the formula used in the method for measuring the content of the amorphous material in the febuxostat sample can be appropriately changed depending on the measurement conditions and the quantitative method.
- a febuxostat C crystal is produced from an amorphous febuxostat by heating a mixture of amorphous febuxostat and C crystal of febuxostat to a temperature higher than room temperature.
- the febuxostat C crystal may be produced by adding and heating the febuxostat C crystal as a seed crystal to the amorphous febuxostat. In this production, this mixture can be added to a reaction vessel or a container such as a drying apparatus and then heated to a temperature higher than room temperature for 30 minutes to 72 hours.
- the heating of the mixture can be performed under normal pressure or reduced pressure, and the reduced pressure condition can be appropriately determined in consideration of the heating temperature, but can be performed under reduced pressure in the range of several mmHg to 25 mmHg.
- the mixture of the amorphous form of febuxostat and the crystalline form of febuxostat C used in the method for heating the mixture of the amorphous form of febuxostat and the crystalline form of febuxostat of the present invention is a non-fabricated form of febuxostat.
- Crystalline body and febuxostat C crystal are prepared and blended, respectively, or a part of febuxostat C crystal converted to amorphous by pulverization of febuxostat C crystal, etc. is used. be able to.
- the C crystal is pulverized by a ball mill or a mortar, depending on the conditions during the pulverization, since an amorphous material is formed over time, the mixture becomes a mixture of the C crystal and the amorphous material. Can be used.
- amorphous form of febuxostat and the mixture of C crystals of febuxostat used in the present invention are not limited to these.
- the weight of the amorphous form of febuxostat is 0.0001% or more of the weight of the crystalline form of febuxostat.
- the crystal C of febuxostat obtained by the present invention is substantially free of amorphous material.
- the febuxostat C crystal substantially free of amorphous material may be febuxostat C crystal in which an endothermic peak of about 211 ° C. is not observed by a differential scanning calorimeter, for example, amorphous in the C crystal.
- the content of the mass may be 0.001 to 0.1%, 0.001 to 0.03%, 0.001 to 0.01%.
- the febuxostat C crystal obtained by the present invention is substantially pure febuxostat C crystal. Therefore, the obtained C crystal of febuxostat consists essentially of febuxostat C crystal.
- the substantially pure febuxostat C crystal is, for example, a purity of 80% or more by weight%, 90% or more, 93% or more, 96% or more, 98% or more, 99.0% or more, 99.3% or more, It is a C crystal of febuxostat that is 99.6% or more, 99.9% or more, 99.99% or more, or 99.999% or more.
- the state consisting essentially of febuxostat C crystal is, for example, 98% or more of febuxostat by weight%, for example, 99.0% or more, 99.3% or more, 99.6% or more, 99.9% or more, It is the state that 99.99% or more, or 99.999% or more is C crystal of febuxostat.
- the C crystal of the febuxostat of the present invention contains substantially no organic solvent.
- the organic solvent is, for example, methanol, ethanol, acetonitrile, propanol or acetone.
- the fact that there is substantially no residual organic solvent means that the amount of residual organic solvent is, for example, 500 ppm or less, 400 ppm or less, 300 ppm or less, 200 ppm or less, 100 ppm or less, 50 ppm or less, 30 ppm or less, 10 ppm or less, 3 ppm or less, 1 ppm or less, 0.3 ppm or less, 0.1 ppm or less, or 0.01 ppm or less.
- a preparation (for example, a solid preparation) can be prepared using the crystal C of febuxostat obtained by the present invention as an active ingredient.
- the formulation is substantially free of amorphous material.
- the solid preparation substantially free of an amorphous form may be a solid preparation in which an endothermic peak of about 211 ° C. is not observed by a differential scanning calorimeter.
- the content of the amorphous form in the preparation is 0.0001 to 0.1 %, 0.0001-0.01%, 0.0001-0.001%.
- the formulation is a formulation comprising febuxostat consisting essentially of C crystal of febuxostat.
- the formulation is substantially free of residual organic solvent.
- the preparation used in the method of reducing the content of the amorphous form of febuxostat in the preparation provided by the present invention or the sample may be a solid preparation (for example, a tablet) as a medicine.
- a sample is a C crystal of febuxostat which may contain an amorphous form of febuxostat.
- the sample can be a drug substance.
- the preparation used in the present invention may contain an amorphous form of febuxostat and / or C crystals.
- the total content of the amorphous form of febuxostat and the crystal C of febuxostat contained in the preparation or sample used in the present invention may be arbitrary, for example, 100%, 0.01-100% of the weight of the mixture in the preparation , 0.01-99%, 0.01-98%, 0.01-95%, 0.01-90%, 0.01-80%, 0.01-50%, 0.01-30%, 0.01-10%, 0.01-5%, 0.01-3% 0.01-1%.
- the weight of the amorphous form of febuxostat contained in the preparation or sample used in the present invention is 0.0001% to 99%, 0.0001% to 10%, 0.0001% to 1% of the weight of febuxostat C crystal.
- substantially pure C crystals are obtained.
- the preparation or sample containing febuxostat C crystal provided by the present invention is heated to a temperature higher than room temperature, and even in a humidified state, febuxostat C crystal does not undergo transition to other crystals, It can exist stably.
- the preparation or sample of the present invention is substantially free of febuxostat amorphous (eg, an endothermic peak of about 211 ° C. is not observed by a differential scanning calorimeter).
- the crystal C of febuxostat is produced, for example, according to the crystallization method described in “1.3. Crystallization” of Journal of Chemical Engineering of Japan, Vol.35, No.11, pp.1116-1122, 2002. can do. Further, as described in Examples of the present specification, the seed crystal of C crystal may be added to the G crystal of febuxostat and the organic solvent (for example, acetonitrile, acetone, methanol) may be used for the production.
- the organic solvent for example, acetonitrile, acetone, methanol
- the crystal C of febuxostat has a peak at a diffraction angle of 6.6 ° (eg 6.62 °) and 12.8 ° (eg 12.80 °) in powder X-ray diffraction using CuK ⁇ radiation (radiated light) having a wavelength of 1.54 ⁇ .
- the diffraction angles are 6.6 ° (eg 6.62 °), 10.8 ° (eg 10.82 °), 13.4 ° (eg 13.36 °), 15.5 ° (eg 15.52 °) and 25.2 ° (eg 25.18 °).
- the error range of the diffraction angle is within ⁇ 0.2 ° on condition that the powder X-ray diffraction measurement device is properly configured.
- d is the distance between the crystal planes
- ⁇ is the angle formed by the crystal plane and the X-ray
- ⁇ is the wavelength of the X-ray
- n is an integer. Therefore, the wavelength ⁇ and the diffraction angle 2 ⁇ of the emitted light correspond one-to-one and can be converted uniquely from each other.
- the diffraction angle of A1 is observed when a certain wavelength of radiated light ⁇ 1 is irradiated
- the diffraction angle A2 to be observed when a wavelength ⁇ 2 of a different wavelength is irradiated can be obtained by calculation.
- the means for identifying the crystal form by the powder X-ray diffractometer is not limited to the identification of the diffraction angle by the powder X-ray diffraction measured using CuK ⁇ radiation, but using the emitted light of different wavelengths. Also good. For example, when a cyclotron or the like is used, radiation light having a wavelength of 0.75 angstrom or radiation light having a wavelength of 1.0 angstrom can be used. In that case, the crystal form can be identified by identifying the diffraction angle transformed using the Bragg equation within the error range transformed using the Bragg equation.
- febuxostat C crystal is a substance that can be easily identified by those skilled in the art from the infrared absorption spectrum of FIG. 9 of Patent Document 2 or the FT-IR spectrum of FIG. 3 of Non-Patent Document 2.
- the crystal C of febuxostat has in the infrared absorption spectrum, 1219Cm around -1, 1269Cm around -1, 1296Cm around -1, 1703 cm around -1, characteristic peaks in the vicinity of 2240 cm -1 .
- the vicinity includes, for example, an error of ⁇ 1, preferably an error of ⁇ 0.3.
- febuxostat C crystal has a single peak sharp at 210 and 282 ppm in solid 15 N-NMR, or a triplet peak approximately equivalent to about 20 ppm in solid 13 C-NMR. It is a substance that can be easily identified by those skilled in the art as the crystalline form (see Reference Example 3 of Patent Document 3).
- crystal A As disclosed in Patent Document 2, the presence of crystal A, crystal B, crystal C, crystal D, and crystal G (BH crystal) is known for febuxostat.
- crystal B either or both of the two high intensity peaks 2 ⁇ (12.80 ° and / or 7.18 °) in the powder X-ray diffraction chart shown in FIG. 2 of the same publication
- crystal B One or both of the two high intensity peaks 2 ⁇ in the powder X-ray diffraction chart shown in FIG. 3 of the publication (11.50 ° and / or 15.76 °)
- the measurement error of 2 ⁇ in the powder X-ray diffraction chart is generally about 0.2 ° or less.
- febuxostat C crystals are preferably only about 200 ° C. to about 203 ° C. (eg, 200 ° C. to 203 ° C.), more preferably about 201 ° C. to about 202 ° C. (eg, 201 ° C. to 202 ° C.) only.
- FIG. 6 is a C crystal showing a differential scanning calorimetry spectrum having a single peak (FIGS. 6 and 7).
- the febuxostat C crystal used in the present invention may be preferably a miniaturized C crystal of febuxostat (hereinafter referred to as a miniaturized C crystal or the like) or a micronized product of a miniaturized C crystal.
- the febuxostat C crystal produced in the present invention is preferably a miniaturized C crystal of febuxostat (hereinafter referred to as a miniaturized C crystal or the like) or a micronized product of a miniaturized C crystal. possible.
- the ratio of the amorphous C, crystal A, crystal B, crystal D or crystal G contained in the miniaturized crystal C of febuxostat and the finely divided product thereof is about 7% by mass or less, preferably about 5%. % Or less, more preferably about 3% or less, even more preferably about 1% or less, even more preferably about 0.1% or less, and most preferably substantially 0%.
- the miniaturized C crystal of febuxostat refers to a C crystal having a major axis length of about 200 ⁇ m or less, preferably about 100 ⁇ m or less, more preferably about 50 ⁇ m or less, more preferably about 30 ⁇ m or less, Even more preferably, it refers to a C crystal having a diameter of about 20 ⁇ m or less, most preferably about 10 ⁇ m or less.
- the particle size of the miniaturized C crystal of febuxostat is about 100 ⁇ m or less, preferably about 50 ⁇ m or less, more preferably about 20 ⁇ m or less, with a particle size (D50 or median diameter) at which the cumulative particle size distribution (volume basis) is 50%. More preferably, it is about 10 ⁇ m or less, more preferably about 5 ⁇ m or less, most preferably about 3.6 ⁇ m or less, and the particle size (D90) at which the cumulative particle size distribution (volume basis) is 90% is about 200 ⁇ m or less, preferably about It is 100 ⁇ m or less, more preferably about 50 ⁇ m or less, further preferably about 20 ⁇ m or less, and most preferably about 10 ⁇ m or less.
- Febuxostat's miniaturized C crystal has a particle size (D50 or median diameter) of about 21 ⁇ m or less and an integrated particle size distribution (volume basis) of 90% with an integrated particle size distribution (volume basis) of 50%. Any means may be adopted as long as a reduced size C crystal having a particle size (D90) of 74 ⁇ m or less is obtained, and any means may be adopted. Since it is preferably a pulverized product that does not contain an amorphous material, it is preferable to employ a means that does not make the C crystal substantially amorphous during pulverization.
- the bulk density of the miniaturized C crystal of febuxostat by the constant volume method is preferably about 0.15 g / ml or more, more preferably about 0.20 g / ml or more, and further preferably about 0.25 g / ml or more. is there.
- the tap density according to the constant volume method of the miniaturized C crystal of febuxostat of the present invention is preferably about 0.20 g / ml or more, more preferably about 0.25 g / ml or more, and further preferably about 0.30 g / ml. ml or more, and most preferably about 0.34 g / ml or more.
- a miniaturized C crystal of febuxostat As a method for obtaining such a miniaturized C crystal of febuxostat, it can be crystallized from a solvent other than methanol and a mixed solvent, but it can be crystallized from acetonitrile, acetone or a mixed solvent of acetonitrile and propanol. More desirably, febuxostat is suspended in acetonitrile or acetone and stirred at room temperature. The stirring time for crystallization is preferably about 4 hours to about 16 hours.
- the miniaturized C crystal of febuxostat of the present invention can be produced without adding a seed crystal of C crystal, but it is desirable to add a seed crystal in order to produce it reliably in a short time.
- the seed crystal of crystal C can be produced by a known method described in the background art.
- the dissolution rate of the miniaturized C crystal of febuxostat in the Japanese Pharmacopoeia second liquid can be measured, for example, according to the method described in Reference Example 2 of Patent Document 6 or Example 16 of the present specification, and is about 0.10. mg / cm 2 / min, preferably about 0.14 mg / cm 2 / min or more.
- the dissolution rate of miniaturized C crystal of febuxostat in Japanese Pharmacopoeia Second Solution is about 0.5 mg / ml / min or more, preferably about 0.6 mg / ml / min or more.
- the dissolution rate of febuxostat miniaturized C crystals in a pH 5.5 McIlvaine buffer is about 13 ⁇ g / ml / min or more, preferably about 14 ⁇ g / ml / min or more.
- the surface area per mass of the miniaturized C crystal of febuxostat is preferably increased by 5 times or more compared to the surface area per mass of the C crystal precipitated from the mixed solvent of methanol and water.
- the finely divided product of C crystal of febuxostat refers to C crystal having a major axis of about 100 ⁇ m or less, preferably about 50 ⁇ m or less, more preferably about 20 ⁇ m or less, more preferably about 10 ⁇ m or less, and even more preferably about 5 ⁇ m.
- C crystals that are most preferably about 2 ⁇ m or less are referred to.
- the finely divided product of febuxostat C is preferably about 80% or more of the whole crystal, more preferably about 90% or more, more preferably about 95% or more, and most preferably substantially 100% of the major axis. Can be obtained as a pulverized product having a length of about 20 ⁇ m or less.
- febroxostat C-crystal micronized product has a major axis of about 100 ⁇ m or less, preferably about 50 ⁇ m or less, more preferably about 30 ⁇ m or less, more preferably about 20 ⁇ m or less, still more preferably about 10 ⁇ m or less, and most preferably. Is about 5 ⁇ m or less.
- the particle size (D50) at which the cumulative particle size distribution (volume basis) of the finely divided product of C crystal of febuxostat is 50% is about 25 ⁇ m or less, preferably about 10 ⁇ m or less, more preferably about 7 ⁇ m or less, more preferably about 5 ⁇ m or less, more preferably about 4 ⁇ m or less, most preferably about 3 ⁇ m or less, and the particle size (D90) at which the cumulative particle size distribution (volume basis) is 90% is 50 ⁇ m or less, preferably about 20 ⁇ m or less, more preferably It is about 10 ⁇ m or less, more preferably about 8 ⁇ m or less, even more preferably about 7 ⁇ m or less, and most preferably about 6 ⁇ m or less.
- the bulk density of the finely divided product of febuxostat C crystal by the constant volume method is preferably about 0.20 g / ml or more, more preferably 0.30 g / ml or more, and further preferably 0.40 g / ml or more.
- the tap density of the finely divided product of febuxostat C which can be used in the present invention by the constant volume method is preferably about 0.30 g / ml or more, more preferably 0.40 g / ml or more, and further preferably 0.50 g. / ml or more, most preferably 0.60 g / ml or more.
- the particle size (D50 or median diameter) with an integrated particle size distribution (volume basis) of 50% is 4 ⁇ m or less, and / or the integrated particle size distribution ( There is no particular limitation as long as a finely divided product of C crystal having a particle size (D90) of 90 ⁇ m or less (volume basis) can be obtained, and any means may be adopted. Since it is preferable that the C crystal pulverized product is a pulverized product that does not substantially contain an amorphous material, it is preferable to adopt a means that does not make the C crystal substantially amorphous during pulverization.
- a pulverizing means for example, fluid pulverization (airflow pulverization) or wet pulverization in a solvent can be employed, and a coarse pulverization step can also be employed prior to fluid pulverization. Combinations are also possible. Also, the particle size (D50 or median diameter) at which the cumulative particle size distribution (volume basis) is 50% is 4 ⁇ m or less, and / or the particle size (D90) at which the cumulative particle size distribution (volume basis) is 90% is 8 ⁇ m or less. If a finely divided product of C is obtained, a pulverizing means is unnecessary. As the fluid pulverization, jet mill pulverization or twin impeller counter airflow dry pulverization is desirable, and jet mill pulverization is more desirable.
- Wet pulverization is a method in which crystals suspended in a poor solvent are impacted and pulverized.
- a zirconia container is filled with pulverization media such as materials, liquids, and zirconia balls. The material can be crushed by the collision of the grinding media. Since the pulverization method is excellent in that it can be finely pulverized while suppressing generation of heat because it is pulverized in a solvent, it can be used as the pulverizing means of the present invention.
- Jet mill pulverization is a pulverization method in which an object to be pulverized is placed in a high-speed air stream, sent into a sealed space, and finely pulverized by colliding each other with the air stream. Jet mill pulverization is suitable for industrial production because it can be instantly pulverized while suppressing heat generation.
- Twin impeller opposed airflow dry pulverization (Driverst pulverization) is a state in which a pair of impellers, which are gear-like structures facing each other in a sealed space, are rotated at high speed in opposite directions, and one impeller is rotated.
- a device that pulverizes by collision in a high-speed opposed air flow generated between a pair of impellers by throwing in an object to be crushed from the side of the blade, feeding it to the side of the other impeller, and collecting it after passing through the other impeller And can be finely pulverized with a sharp particle size distribution.
- These fluid pulverization is a preferable pulverization means in the present invention in that it gives a stable particle size distribution and is difficult to form an amorphous body, so that it is likely to be mixed in fine powder of C crystal. is there.
- the airflow pulverization or wet pulverization can usually be performed at room temperature.
- the pulverization pressure is, for example, 0.5 to 5 kgf, preferably 1 to 3 kgf, and the supply pressure is 1 to 6 kgf, preferably Is about 2-4 kgf.
- a tumbler type pulverizer such as a mortar or a ball mill with grinding
- a pulverizer high-speed rotation type
- an impact pulverizer high-speed rotation type
- a hammer mill based on the high-speed rotation of a hammer or a sample mill that is a kind of it
- the particle size distribution deteriorates when pulverization is performed for a long time.
- it may be amorphous and / or crystal transition may occur, which is not preferable.
- an impact pulverizer high-speed rotation type
- the dissolution rate of the finely divided product of febuxostat C crystals from the Japanese Pharmacopoeia second liquid can be measured, for example, according to the method described in Reference Example 2 of Patent Document 6 or Example 16 of the present specification, and about It is 0.10 mg / cm 2 / min, preferably about 0.14 mg / cm 2 / min or more.
- the dissolution rate of febuxostat C-crystal micronized product in the Japanese Pharmacopoeia Second Solution is about 0.5 mg / ml / min or more, preferably about 0.6 mg / ml / min or more.
- the dissolution rate of febuxostat C-crystal micronized product in a pH 5.5 McIlvaine buffer is about 13 ⁇ g / ml / min or more, preferably about 14 ⁇ g / ml / min or more.
- the surface area per mass of the miniaturized C crystal of febuxostat is preferably increased by 5 times or more compared to the surface area per mass of the C crystal precipitated from the mixed solvent of methanol and water.
- the crystal C of febuxostat is obtained as a columnar crystal
- the finely divided product of crystal C of febuxostat is a granular material that does not retain the crystal habit of the columnar crystal.
- the longest diameter including the major axis is called the major axis
- the shortest diameter including the minor axis of the end of the columnar crystal is called the minor axis.
- Finely divided products of febuxostat C crystals satisfying these conditions can be used particularly preferably in the preparation or sample provided by the present invention or used in the present invention.
- the miniaturized C crystals of febuxostat or the finely powdered product thereof as an active ingredient of the solid component thus obtained, the dissolution rate is remarkably improved over a long period of time, and the dissolution characteristics do not vary.
- a formulation eg, a solid formulation
- the preparation provided by the present invention or used in the present invention is prepared by reducing the size C crystal or the finely divided product of C crystal to 2- [3-cyano-4- (2-methylpropoxy), which is an active ingredient.
- Phenyl] -4-methylthiazole-5-carboxylic acid ie febuxostat
- Phenyl] -4-methylthiazole-5-carboxylic acid at least 30% or more, preferably 50% or more, more preferably 70% or more, still more preferably 90% or more, and still more preferably Contains 95% or more, most preferably 99% or more (weight%), so that it is stable over a long period of time, its dissolution rate is remarkably improved, and its dissolution characteristics do not vary obtain.
- febuxostat C crystals and their finely divided products can be easily observed by image analysis methods such as observation under a microscope even if they are contained in solid preparations. be able to.
- This technique can also be used to observe, for example, the appearance of pulverized C crystals contained in tablets after compression molding of the tablets, for example, measuring the length of the major axis of crystals and the average length under a fluorescence microscope. Can do.
- the fluorescence observation of febuxostat which is called TEI-6720, can be observed at an excitation wavelength of 314 nm and a fluorescence wavelength of 390 nm. It is described in.
- the size of febuxostat crystals contained in the tablets can be measured by observing at an excitation wavelength of 405 nm and a fluorescence wavelength of 420 nm to 600 nm using a confocal fluorescence microscope.
- the existence can be determined by measuring a powder X-ray diffraction spectrum, solid-state 15 N-NMR, and microscopic Raman.
- Microscopic Raman can be determined to be crystal C by measuring a peak at 1695 shift / cm ⁇ 1 using, for example, an excitation wavelength of 785 nm STline.
- one or more additives for pharmaceutical preparations generally used in the field of pharmaceutical formulation can be used.
- excipients such as lactose, anhydrous lactose, crystalline cellulose, corn starch, pregelatinized starch, partially pregelatinized starch, D-mannitol, or calcium hydrogen phosphate, carmellose sodium, carmellose calcium, low substituted hydroxypropyl Disintegrants such as cellulose, sodium croscarmellose, sodium carboxymethyl starch, or crospovidone, and binders such as hydroxypropylcellulose, hydroxypropylmethylcellulose, or polyvinylpyrrolidone can be used.
- the amount of the excipient used is, for example, about 50 to 98 parts by weight with respect to 100 parts by weight of the solid preparation, and the amount of the disintegrant used is, for example, about 1 to 25 parts by weight with respect to 100 parts by weight of the solid preparation.
- the amount of the binder used is, for example, about 0.5 to 25 parts by weight with respect to 100 parts by weight of the solid preparation, but is not limited to these amounts.
- one or more formulation additives such as binders, lubricants, coating agents, plasticizers, diluents, colorants, preservatives, preservatives, or odorants may be used. Good.
- tablets can be produced by compression molding a mixture obtained by adding an excipient and a disintegrant to a pulverized C crystal.
- tablets can be produced by directly compressing the above mixture containing miniaturized C crystals of febuxostat or finely divided products thereof, or granules for tablets by dry granulation using a slug machine or a roller compactor.
- Tablets can be coated with sugar coating or enteric coating as necessary.
- the solid preparation of the present invention may be a capsule, granule, powder or troche.
- the solid preparation provided by the present invention or used in the present invention is generally administered in a unit dose such that it is administered at a frequency of about 1 to 3 times per day so that the daily dose is 0.8 to 50 mg. It is preferably provided as a form.
- the solid preparation of the present invention can be used as a xanthine oxidase inhibitor, a uric acid lowering agent, a gout treatment agent, a hyperuricemia treatment agent, and a chronic kidney disease treatment agent, and gout, hyperuricemia, and chronic kidney disease. It can be used for prevention and / or treatment.
- crystal X a novel crystalline polymorph of febuxostat.
- Crystal X is a reddish white crystalline powder and is not hygroscopic.
- Febuxostat X crystal can be identified as a crystal having a peak at a diffraction angle of 7.7 ° (eg 7.71 °) in powder X-ray diffraction using CuK ⁇ radiation (radiated light) having a wavelength of 1.54 ⁇ , and preferably Can be identified as a crystal having a peak at at least one diffraction angle of 7.7 ° (eg 7.71 °), 12.8 ° (eg 12.82 °) and 13.7 ° (eg 13.72 °), more preferably 3.3 ° (Eg 3.33 °), 6.7 ° (eg 6.74 °), 7.7 ° (eg 7.70 °), 12.8 ° (eg 12.82 °), 13.4 ° (eg 13.40 °), 13.7 ° (eg 13.72 ).
- diffraction at 6.7 ° eg 6.74 °
- 7.7 ° eg 7.70 °
- 12.8 ° eg 12.82 °
- 13.4 ° eg 13.40 °
- 13.7 ° eg 13.72 °
- Fevre Kiso the X crystals stat in the infrared absorption spectrum, approximately 820 cm -1 (e.g., 819 ⁇ 821 cm -1), about 1281cm -1 (e.g., 1280 ⁇ 1282 cm -1), about 1423cm -1 (e.g.
- febuxostat X-crystal has a single peak at about 211 ° C. (eg, 210 ° C. to 212 ° C., preferably 211 ° C. to 212 ° C.) by differential scanning calorimetry.
- a method for detecting or quantifying X crystal of febuxostat a step of differential scanning calorimetry of a sample containing febuxostat, and an endothermic peak amount (J / g) appearing at about 211 ° C.
- a method comprising measuring. Further, when the differential scanning calorific value of the amorphous body of febuxostat is measured as described above, a peak appears at about 211 ° C. (for example, 210 ° C. to 212 ° C., preferably 211 ° C. to 212 ° C.).
- a method for detecting or quantifying an amorphous form of febuxostat a step of differential scanning calorimetry of a sample containing febuxostat, and an endothermic peak amount (J / g ) Is measured.
- the method of the present invention can detect an amorphous substance with high sensitivity, and can detect even when 0.005% amorphous substance is contained in the C crystal.
- X crystals can be prepared by heating an amorphous body to 170 ° C.
- amorphous body can be prepared by heating the amorphous body to 180 ° C. or more and 200 ° C. or less for 2 to 4 hours and allowing it to cool to room temperature in a desiccator with silica gel.
- the room temperature is 1 to 30 ° C. Therefore, according to the present invention, there is provided a method for producing febuxostat X crystal, the step of heating an amorphous body to 170 ° C. or more and 210 ° C. or less, and the obtained sample is gradually heated to room temperature under dry conditions.
- a method comprising the step of lowering to
- Example 1 Preparation of febuxostat ethyl ester Ethyl 2- [3-formyl-4- (2-methylpropoxy) phenyl] -4-methylthiazole-5-carboxylate (10.0 g, 28.8 mmol) was added to 90% formic acid ( 70 ml), hydroxylamine hydrochloride (2.41 g, 34.7 mmol) and sodium formate (3.14 g, 46.2 mmol) were added, and the mixture was heated to reflux for 4 hours. Water was added, and the precipitated crystals were collected by filtration and washed with water to give the title compound crude crystals (wet state). The crude crystals were suspended in methanol and stirred at room temperature.
- Example 2 Preparation of febuxostat G crystals Febuxostat ethyl ester (8.00 g, 23.2 mmol) obtained in Example 1 was suspended in a mixed solution of ethanol (32 ml) and tetrahydrofuran (32 ml), and then hydroxylated. A solution of potassium (1.84 g, 27.9 mmol) in water (1.84 ml) / ethanol (16 ml) was added, and the mixture was heated and stirred at 50 ° C. for 3.5 hours. Water was added and insoluble matters were filtered, and 1 mol / L hydrochloric acid was added to the filtrate.
- Example 3 Production of febuxostat C crystals using acetonitrile.
- a part of the above-mentioned crystal G is sampled and crystallized as a seed crystal of crystal C (Journal of Chemical Engineering of Japan, 35, pp.1116-1122, 2002, section 2.3. Crystallization). 19.5 mg), which was manufactured by the method and identified by the powder X-ray diffraction spectrum and infrared absorption spectrum, was added, acetonitrile (117 ml) was added, and seed crystals (19.5 mg) of C crystal were further added. After stirring overnight at room temperature, the crystals were collected by filtration and washed with acetonitrile.
- Example 4 Production of febuxostat C crystal using a mixed solvent of methanol and water. After suspending febuxostat G crystal (20.0 g) in methanol / water (1050 ml / 450 ml), add febuxostat C crystal seed (50 mg) and stirring at 50 ° C for 12 hours. . After allowing to cool to room temperature, the precipitate was filtered and dried under reduced pressure at 80 ° C. for 16 hours. The obtained powder was confirmed to be febuxostat C crystal from powder X-ray diffraction spectrum and infrared spectrum (this C crystal is referred to as “methanol water C crystal”).
- Example 5 The acetonitrile C crystal (190 g) obtained in Example 3 was pulverized with a jet mill (100 type / Paurec). Fine pulverization was achieved under the conditions of pulverization pressure of 1 kgf, supply pressure of 2 kgf, pulverization pressure of 2 kgf, supply pressure of 3 kgf, and pulverization pressure of 3 kgf and supply pressure of 4 kgf.
- the acetonitrile residual amount of the unmilled acetonitrile C crystal obtained in Example 3 and the acetonitrile residual amount in the jet mill pulverized product of acetonitrile C crystal obtained in Example 5 were measured. The measurement was performed by gas chromatography. The residual amount of acetonitrile in the unmilled acetonitrile C crystal obtained in Example 3 was 200 ppm. The residual amount of acetonitrile in the pulverized product of acetonitrile C crystal obtained in Example 5 was about 100 ppm.
- Detector Flame ionization detector
- Column 0.53mm ID, 30m long fused silica tube 6% cyanopropylphenyl-94% dimethyl silicone polymer for gas chromatography
- Column temperature 40 ° C is raised for 5 minutes, then heated to 160 ° C at 8 ° C per minute and held at 160 ° C for 5 minutes.
- Detector temperature 250 ° C
- Carrier gas Helium flow rate: Adjust the ethanol retention time to 3-4 minutes.
- FIGS. Fig. 1 shows the powder X-ray diffraction spectrum of the crystal G obtained in Example 2
- Fig. 2 shows the powder X-ray diffraction spectrum of the unmilled methanol water C crystal obtained in Example 4
- Fig. 2 shows the uncrushed acetonitrile obtained in Example 3.
- the powder X-ray diffraction spectrum of the crystal C is shown in FIG. 3, and the powder X-ray diffraction spectrum of the jet mill pulverized product of the acetonitrile C crystal obtained in Example 5 (grinding pressure 3 kgf, supply pressure 4 kgf) is shown in FIG.
- Unmilled acetonitrile C crystal Fig.
- Example 7 Measurement of differential scanning calorimetry spectrum About 2 mg of sample is filled in a sample container (aluminum, ⁇ 5 ⁇ 2.5mm, 50 ⁇ L), and Rigaku Therm plus EVO series high-sensitivity differential scanning calorimeter DSC8230 is used. Differential scanning calorimetry (DSC) was measured at a heating rate of 10 ° C./min and atmospheric pressure. Rigaku Thermo plus EVO version 1.006-6 software was used for data collection and analysis. The results of measuring the differential scanning calorimetry spectrum are shown in FIG. 5, FIG. 6, and FIG. Uncrushed methanol water C crystal obtained in Example 4 (FIG. 5), unmilled acetonitrile C crystal obtained in Example 3 (FIG.
- DSC Differential scanning calorimetry
- Example 6 jet mill pulverized in Example 5 (crushed pressure 3 kgf, supply pressure 4 kgf) Since all of the subsequent crystals of acetonitrile C (FIG. 7) showed a single peak at about 201 ° C. to about 202 ° C., no other crystal forms or amorphous substances were mixed. Similarly, the unmilled methanol water C crystal obtained in Example 4 also showed a single peak at about 201 ° C. to about 202 ° C., and no other crystal forms or amorphous substances were observed.
- Table 1 shows a summary of the differential scanning calorimetry measurement results of the acetonitrile C crystal jet mill pulverized product obtained by changing the jet mill pulverization conditions in Example 5.
- Jet mill pulverization conditions are pulverization pressure of 1 kgf, supply pressure of 2 kgf, pulverization pressure of 2 kgf, supply pressure of 3 kgf, and pulverization pressure of 3 kgf of supply pressure of 4 kgf. Even if pulverized under any condition, a single endothermic peak was observed at about 201 ° C to about 202 ° C, confirming that it was a pure C crystal containing no amorphous or other crystal forms. It was.
- Example 8 Measurement of particle size distribution About 2 mg of a sample was added to n-hexane containing 0.2% Aerosol OT and dispersed by irradiating ultrasonic waves for 30 seconds. Using this dispersion, the particle size distribution (D50 and D90) was measured with a Shimadzu laser diffraction particle size distribution analyzer SALD-2200. Shimadzu WingSALD-2200 version 1.02 software was used for data collection and analysis.
- FIG. 8 is a diagram and data showing the particle size distribution of unmilled methanol water C crystals. D50 of unmilled acetonitrile C crystal was 36.819 ⁇ m, and D90 was 133.348 ⁇ m.
- FIG. 8 is a diagram and data showing the particle size distribution of unmilled methanol water C crystals. D50 of unmilled acetonitrile C crystal was 36.819 ⁇ m, and D90 was 133.348 ⁇ m.
- FIG. 8 is a diagram and data showing the particle
- FIG. 9 is a diagram and data showing the particle size distribution of unmilled acetonitrile C crystals.
- D50 of unmilled acetonitrile C crystal was 20.483 ⁇ m, and D90 was 73.755 ⁇ m.
- FIG. 10 is a diagram and data showing the particle size distribution of a jet mill pulverized product of acetonitrile C crystals (pulverization pressure 3 kgf, supply pressure 4 kgf).
- D50 of Acetonitrile C crystal pulverized by jet mill at a pulverization pressure of 3 kgf and a supply pressure of 4 kgf was 3.637 ⁇ m and D90 was 7.346 ⁇ m.
- D50 is less than 1/5 and D90 less than 1/10 compared to unmilled acetonitrile C crystal, and more than 90% between 1 ⁇ m and 10 ⁇ m particle size It was found that the particle size distribution is more uniform than the distribution of particles.
- Table 2 shows a summary of the measurement results of the particle size distribution of the acetonitrile C crystal jet mill pulverized product obtained by changing the jet mill pulverization conditions in Example 5.
- Jet mill pulverization conditions are pulverization pressure of 1 kgf, supply pressure of 2 kgf, pulverization pressure of 2 kgf, supply pressure of 3 kgf, and pulverization pressure of 3 kgf of supply pressure of 4 kgf. Even if pulverized under any conditions, D90 was small enough to be less than 10 ⁇ m, but among these three conditions, the smallest particles were obtained when jet mill pulverization was performed under conditions of pulverization pressure 3kgf and supply pressure 4kgf. It was confirmed that a pulverized product having a diameter was obtained.
- Example 9 Grinding with a mortar The crushed acetonitrile C crystal obtained in Example 3 (5 g) was strongly ground with a porcelain mortar (diameter 13 cm) and a porcelain pestle (length 15 cm, weight 154 g). The pulverized material was sampled over time, and differential scanning calorimetry and particle size distribution were measured (Table 3). As a result of differential scanning calorimetry, when pulverized in a mortar, an endothermic peak appeared at about 210 ° C. after 10 minutes, and a transition to a crystal form other than C crystal was observed. In addition, after 30 minutes, an exothermic peak appeared at 150 ° C. or lower, so that the inclusion of amorphous material was also confirmed.
- the particle size of the acetonitrile C crystal pulverized for 30 minutes was obviously larger than the particle size of the acetonitrile C crystal pulverized for 10 minutes. Similar results were obtained when grinding with an agate mortar and agate pestle.
- Example 10 Grinding with a ball mill
- the acetonitrile C crystal unpulverized product (15 g) obtained in Example 3 was ground with a planetary ball mill (PM100 / Retsch: 125 ml container / 6 20 mm balls / rpm 400 rpm).
- the pulverized material was sampled over time, and differential scanning calorimetry and particle size distribution were measured (Table 4).
- the endothermic peak at about 210 ° C reached its maximum after 30 to 60 minutes after ball milling, and the exothermic peak that appeared at 150 ° C or lower was 60 minutes after grinding by the ball mill.
- Example 11 Crushing with a sample mill and crushing with a hammer mill A sample mill (SM-1 / Azuwan) that crushes the C crystals (15 g) obtained in Example 3 with the impact of high-speed rotation of a hammer. The pulverized material was sampled over time, and differential scanning calorimetry and particle size distribution were measured (Table 5).
- a crystal (D50 19 ⁇ m; purchased from Beijing Lianben Pharm-chemicals Tech.Co., Ltd.) using a hammer mill (DF-15, manufactured by Daitoku Yakuhin)
- the powder was pulverized instantaneously at rpm.
- the crystal A pulverized with a hammer mill (hereinafter referred to as “A hammer pulverized product of crystal A”) was used in the measurement of the specific surface area of Example 21.
- Example 12 Establishing a method for quantitative determination of amorphous material by differential scanning calorimetry
- the acetonitrile C crystal was ball milled in Example 10. And obtained by grinding for 60 minutes. Jet mill pulverized product of acetonitrile C crystal (pulverization pressure 3kgf, supply pressure 4kgf), 1, 2.5, 5, 10, 25, and 50% equivalent amount of amorphous material (C crystal was pulverized with planetary ball mill for 60 minutes The total amount was about 200 mg, and the change in behavior in differential scanning calorimetry was measured for the bag-mixed preparation.
- the amorphous mixture showed an endothermic peak around 210 ° C. when 1% or more of the amorphous body was present, and increased with an increase in the amorphous mixture ratio.
- the endothermic peak appearing at about 201 ° C. to about 202 ° C. which is characteristic of the C crystal, decreased with an increase in the amorphous mixing ratio, and disappeared when the amorphous mixing ratio reached 100%. No linearity was observed between the mixing ratio of the amorphous material and the peak intensity of the endothermic and exothermic peaks above 200 ° C.
- Example 13 Observation of crystals with a scanning electron microscope Scanning electron micrographs of the crystals obtained in Examples 3, 4 and 5 were taken using an Hitachi electron microscope (TM3000 Miniscope / HITACHI). When a scanning electron micrograph of methanol water C crystal (unground) obtained in Example 4 was taken, it was confirmed that it was a columnar crystal, the column diameter of the column was about 20 ⁇ m, and the column length exceeded 1000 ⁇ m. . Some crystals are observed as thin columnar crystals close to each other, which suggests that they are easy to tear columnar crystals.
- Example 3 When the unmilled acetonitrile C crystal obtained in Example 3 was observed with a scanning electron micrograph, it was a columnar crystal that was shorter than the methanol water C crystal and the ratio of the column length to the column diameter was small. It was confirmed that the column diameter was about 6 ⁇ m and the column length was about 20 ⁇ m.
- Example 14 Measurement of crystal size in a scanning electron micrograph Photographed in a scanning electron micrograph of unmilled acetonitrile C crystal and jet mill pulverized product of acetonitrile C crystal (grinding pressure 3 kgf, supply pressure 4 kgf) The length of the crystal is measured. Since the unmilled acetonitrile C crystal was a columnar crystal, the length of the column was measured. On the other hand, since the acetonitrile C crystal jet mill pulverized product is granular, the length of the major axis was measured. The number of crystals measured is 430 in each group. The results are shown in Table 7.
- the average value of the length of the major axis of the unmilled acetonitrile C crystal is 17.32 ⁇ m, whereas the average value of the major axis of the jet mill pulverized product of the acetonitrile C crystal is 2.96 ⁇ m. It was about 17% of the average length of the major axis.
- the length of the major axis of the methanol water C crystal that has not been pulverized the length of the number of crystals that can be statistically analyzed has not been measured, but the electron micrograph shows a columnar crystal with a length exceeding 1 mm. From many observations, it was clear that it had an average length of at least 5 times the length of the unmilled acetonitrile C crystal, and probably 10 times or more.
- Example 15 Measurement of bulk density and tap density Jet mill pulverized product of unmilled acetonitrile C crystal obtained in Example 3, methanol water C crystal obtained in Example 4, acetonitrile C crystal obtained in Example 5 (grinding pressure 3 kgf ⁇ Supply pressure 4 kgf), commercially available crystal A (D50 19 ⁇ m; purchased from Beijing Lianben Pharm-chemicals Tech. Co., Ltd.) Similarly, the bulk density and the tap density were measured by a constant volume method for each of the samples pulverized with a hammer mill (manufactured by Daitoku Pharmaceutical Co., Ltd., DF-15). Bulk density and tap density were determined by the following methods.
- the variable on the right side was measured as follows. After measuring the weight (M0) of the bulk specific gravity meter (capacity 25 ml, JIS Z 2504 / Tsutsui Rikagakuki), insert crystals from the top of the meter until it overflows into the meter. After confirming that it was filled, an excessive amount of crystals deposited on the upper part of the measuring device was scraped with a spatula to measure the total weight (MT1). Tap this measuring instrument about 30 times by hand, and put crystals again until it overflows from the top of the measuring instrument. This process was repeated several times, and after confirming that the inside of the measuring device was sufficiently filled with crystals, rubbing with a spatula, the total mass (MT2) was measured. These variables were given to the above equations to calculate the bulk density by the constant volume method and the tap density by the constant volume method (Table 8).
- the powder is cotton-like, so that a large void is formed in the container, and it is raised on the container.
- the bulk density by the constant volume method could not be measured.
- the tap density of the unmilled acetonitrile C crystals obtained in Example 3 was 3.1 times higher than the tap density of the unmilled methanol C water crystals obtained in Example 4. Further, the tap density of the unmilled acetonitrile C crystal obtained in Example 3 was 2.4 times higher than the tap density of the commercially available A crystal.
- Dissolve test solution 1 pH 1.2
- pH 5.5 Mcllvaine buffer solution pH 5.5 Mcllvaine buffer solution
- Dissolution test solution 2 pH 6.8
- 100 ml of water 100 ml was added to each, and the mixture was stirred at 500 revolutions per minute using a Magato M-41 manufactured by Yamato Science.
- a portion of the test solution was collected over time, filtered through a filter to obtain a sample solution, and the standard solution was tested by an absorbance measurement method (measurement wavelength: 317 nm).
- the test results are shown in FIG.
- the dissolution rate after 3 minutes and 5 minutes of the jet mill pulverized product of acetonitrile C crystal in the first dissolution solution (pH 1.2) was faster than that of crystal A.
- the dissolution rate of the acetonitrile C crystal jet mill pulverized product in water from 1 minute to 10 minutes later was faster than that of the unmilled acetonitrile C crystal than the A crystal.
- the dissolution rate and the dissolution amount of the jet mill pulverized product of acetonitrile C crystals in the McIlvaine buffer solution at pH 5.5 and the second dissolution test solution (pH 6.8) are higher than those of unmilled acetonitrile C crystals.
- Example 17 Dissolution rate of tablets containing crushed acetonitrile C crystal jet mill
- Example of patent 4084309 using jet mill pulverized acetonitrile C crystal obtained in Example 5 (grinding pressure 3kgf, supply pressure 4kgf) Tablets were manufactured according to the recipe of 1.
- Purchased from unground C crystal obtained in Example 3 (16-mesh sieve product) or A crystal (D50 19 ⁇ m, Beijing Lianben Pharm-chemicals Tech. Co., Ltd.) )
- the elution rate was about 20% higher than that of acetonitrile C crystal.
- tablets containing a pulverized product of acetonitrile C crystal jet mill are 5 minutes, 10 minutes, and 15 minutes after the start of stirring. Also showed a faster dissolution rate, and finally an dissolution rate of about 95%, equivalent to the tablets containing these A crystals (FIG. 15).
- Example 18 Stability test of jet mill pulverized product of acetonitrile C crystal
- the jet mill pulverized product of acetonitrile C crystal obtained in Example 5 was placed in a brown glass bottle (with a polyethylene lid on the lid) Made of polypropylene.) Or sealed in a polyethylene bag with a thickness of 0.04mm, long-term storage test (25 °C ⁇ 2 °C / 60% RH ⁇ 5%) and acceleration test (40 °C ⁇ 2 °C / 75% RH) The stability under each condition ( ⁇ 5%) was examined. The stability was measured by measuring loss on drying, purity test by HPLC, and powder X-ray diffraction.
- Loss on drying of pulverized jet mill of acetonitrile C crystal Loss on drying is literally a test of weight change due to drying. The loss on drying was measured for each case of 1 gram of acetonitrile C crystals stored for 3 months under the long-term storage test conditions and when stored for 1 month and 3 months under the accelerated test conditions. The measurement was performed by measuring the mass when dried at 105 ° C. for 2 hours using a dryer (IKEDA RIKA AUTOMATIC OVEN DEK) with a balance. As shown in Table 9, in the accelerated test and the long-term storage test up to 3 months, no problem level of loss on drying was observed.
- Purity test of jet mill pulverized product of acetonitrile C crystal The purity test by HPLC was measured when stored for 3 months and 6 months under long-term storage test conditions and when stored for 1 month, 3 months and 6 months under accelerated test conditions.
- 10 mg of a measurement sample was dissolved in 25 mL of mobile phase to obtain a sample solution. 1 mL of this sample solution was sampled, and the mobile phase was added to 200 mL to obtain a standard solution.
- a sample solution and a standard solution of 10 ⁇ L each were accurately taken and tested by liquid chromatography under the following conditions.
- the purity was calculated from the ratio of the peak area of febuxostat in the sample solution to the peak area of related substances. Even under long-term storage conditions (Fig.
- Test condition detector UV absorption photometer (measurement wavelength: 320 nm)
- Column A commercially available column in which a stainless steel tube having an inner diameter of 4.6 mm and a length of 15 cm was packed with octadecylsilylated silica gel having a particle diameter of 5 ⁇ m was used.
- Flow rate Adjust the febuxostat so that the retention time is about 5 minutes (about 1 mL / min).
- Area measurement range About 6 times the retention time of febuxostat
- X-ray powder diffraction of jet mill pulverized acetonitrile C crystal X-ray powder diffraction was carried out for each of the long-term storage test condition and the accelerated test condition for a sample in which a jet mill pulverized product of acetonitrile C crystal was sealed in a polyethylene bag and a sample in which the same sample was placed in a brown glass bottle. Samples stored for months were measured. The measurement method was the same as in Example 6. As shown in Fig.
- Example 19 Stability of a trial tablet using a jet mill pulverized product of acetonitrile C crystal Using the jet mill pulverized product of acetonitrile C crystal obtained in Example 5 (grinding pressure 3 kgf, supply pressure 4 kgf), 20 mg of febuxostat was added.
- Prepared uncoated tablets hereinafter referred to as “prototype uncoated tablets (MeCN pulverized)”
- film-coated tablets hereinafter referred to as “prototype FC tablets (MeCN crushed)”
- the uncoated tablets were produced as follows. First, 70.0 g of jet mill of acetonitrile C crystal, 263.9 g of lactose hydrate, 64.8 g of partially pregelatinized starch, and 10.5 g of hydroxypropyl cellulose were used with a stirring and mixing granulator (VG-5, manufactured by Paulec). And mixed. Next, 102 g of purified water was added to the mixed powder and kneaded. The obtained wet granules were sized using a wet dry sizing machine (QC-197s, manufactured by Pou Lec) ⁇ 4.75 mm, and then dried by ventilation at 50 ° C. to obtain granules.
- VG-5 stirring and mixing granulator
- Film-coated tablets were produced as follows. First, 70.0g of jet mill of acetonitrile C crystal, 263.9g of lactose hydrate, 64.8g of partially pregelatinized starch, and 10.5g of hydroxypropyl cellulose using a stirring and mixing granulator (VG-5, manufactured by Paulec) Mixed. Next, 102 g of purified water was added to the mixed powder and kneaded. The obtained wet granules were sized using a wet dry sizing machine (QC-197s, manufactured by Pou Lec) ⁇ 4.75 mm, and then dried by ventilation at 50 ° C. to obtain granules.
- VG-5 stirring and mixing granulator
- Hardness test of prototype tablets Long-term storage conditions (3 months, 6 months) for trial uncoated tablets (MeCN crushed) (20 mg tablets), trial FC tablets (MeCN crushed) (20 mg tablets), and F tablets (10 mg tablets, 20 mg tablets, 40 mg tablets)
- the hardness after storage under accelerated conditions (1 month, 3 months, 6 months) and severe conditions (1 month, 3 months) was measured using OKADA SEIKO PC-30 and compared with the hardness at the start of measurement ( Table 10). However, measurements were not performed under the conditions indicated as “-” in the table.
- Both the trial uncoated tablets (MeCN pulverized) and the trial FC tablets (MeCN crushed) had sufficient hardness comparable to the F tablets, and no decrease in hardness due to storage was observed.
- Dissolution of prototype tablets Long-term storage conditions (3 months, 6 months) for trial uncoated tablets (MeCN crushed) (20 mg tablets), trial FC tablets (MeCN crushed) (20 mg tablets), and F tablets (10 mg tablets, 20 mg tablets, 40 mg tablets) , After storage under accelerated conditions (1 month, 3 months, 6 months) and severe conditions (1 month, 3 months), 30 minutes at a paddle speed of 50 rpm in the second solution of the Japanese Pharmacopoeia dissolution test (pH 6.8) The dissolution rate after stirring was measured using an ultraviolet-visible spectrophotometer and compared with the dissolution rate at the start of measurement (Table 12). However, measurements were not performed under the conditions indicated as “-” in the table. Both the prototype uncoated tablet (MeCN crushed) and the prototype FC tablet (MeCN crushed) have a dissolution rate of 94% or more, just like the F tablet. I was not able to admit.
- Prototype tablet purity test Accelerated conditions (1 month, 3 months) for prototype uncoated tablets (MeCN crushed) (20 mg tablets), prototype FC tablets (MeCN crushed) (20 mg tablets), and F tablets (10 mg tablets, 20 mg tablets, 40 mg tablets) and After storage under severe conditions (1 month, 3 months), the amount of impurities was measured over time in the same manner as in the purity test of Example 18 (FIGS. 19 and 20). However, F tablets (10 mg tablets, 20 mg tablets, 40 mg tablets) were measured up to 6 months only under accelerated conditions. For extraction from tablets, 1 tablet was taken and dissolved and dispersed in an amount equivalent to 25 mL of mobile phase with respect to 10 mg of the drug substance to prepare a sample solution.
- Example 20 Dissolution test of prototype FC tablet (MeCN pulverized)
- the prototype FC tablet (MeCN crushed) (20 mg tablet) prepared in Example 19 the Japanese Pharmacopoeia dissolution test solution 1 (pH 1.2), McIlvain buffer ( A dissolution test was conducted on pH 5.0), dissolution test solution 2 (pH 6.8), and purified water, and compared with dissolution characteristics of F tablets (20 mg tablets) (FIG. 21).
- the dissolution test was performed in the same manner as in Example 17. Under any condition, the dissolution rate of the prototype FC tablet (MeCN pulverized) (20 mg tablet) prepared using jet milled acetonitrile C crystals was almost the same as the dissolution rate of F tablet (20 mg tablet). It was the same or slightly higher, showing good elution characteristics (Figure 21). From these results, by using the C crystal of the present invention, it was possible to obtain a C crystal preparation having no variation in the dissolution profile, which could not be obtained in Patent Document 6.
- Example 21 Specific surface area measurement Jet mill pulverized product of unmilled acetonitrile C crystal obtained in Example 3, methanol water C crystal obtained in Example 4, acetonitrile C crystal obtained in Example 5 (grinding pressure 3 kgf, supply pressure 4 kgf ), The specific surface area of each of the pulverized A-mill hammer mills prepared in Example 11 was measured using the BET multipoint method.
- the BET method is a method in which a gas such as nitrogen or krypton is adsorbed on a solid surface at a low temperature as a monomolecular layer, and the amount of adsorbed gas is measured to determine the surface area of the solid from the area occupied by each molecule.
- Measuring equipment and measuring conditions for specific surface area measurement by the BET multipoint method were as follows. Measuring equipment: Quadruple specific surface area / pore distribution measuring device NOVA-4200e (manufactured by Quantachrome) Use gas: Nitrogen gas refrigerant (temperature): Liquid nitrogen (77.35K) Pretreatment conditions: 110 °C, 6Hr or more Vacuum deaeration measurement Relative pressure: 0.05 ⁇ P / P0 ⁇ 0.3
- the surface area of the unmilled methanol water C crystal was only 0.172 m 2 / g, but the surface area of the unmilled acetonitrile C crystal increased to 5.757 m 2 / g, 33.5 times. The area was increasing.
- the unmilled methanol water C crystal had a problem that the dissolution rate in the second liquid for disintegration test in the Japanese Pharmacopoeia was 1/2 or less than that of the crystal A. Since it has a surface area that is 33.5 times as large as that of pulverized methanol water C crystal, it can be easily understood that it has excellent elution properties.
- the surface area increased to 9.001 m 2 / g, and the surface area increased to 1.6 times the surface area of unmilled acetonitrile C crystals.
- the surface area of the unmilled methanol water C crystal and acetonitrile C crystal jet mill pulverized products were compared, the surface area actually increased 52.3 times.
- the surface area of the jet mill pulverized product of acetonitrile C crystal is about 1.2 times the surface area of a sample obtained by pulverizing commercially available crystal A with a hammer mill, it was confirmed that the crystal surface has a large surface area. It can be easily understood that the jet mill pulverized product of acetonitrile C crystal has a surface area that is 52.3 times larger than that of unmilled methanol water C crystal, and thus has excellent elution properties.
- Example 22 Appearance of drug substance Unmilled acetonitrile C crystal obtained in Example 3, methanol water C crystal obtained in Example 4, jet mill pulverized product of acetonitrile C crystal obtained in Example 5 (grinding pressure 3 kgf, supply pressure 4 kgf), acetonitrile C crystal ball mill An attempt was made to measure the angle of repose of each of the pulverized product and uncrushed A crystal (see Examples 11 and 15), but the powder was so poor in fluidity that the angle of repose could not be measured. Therefore, instead of measuring the angle of repose, the appearance of each sample was visually observed.
- Uncrushed methanol water C crystal (Fig. 22) is a fluffy bulky fluff that is more fluffy than uncrushed A crystal, and needle-shaped crystals larger than 1 mm larger than uncrushed A crystal are visible. I was able to confirm.
- the unmilled acetonitrile C crystal ( Figure 23) tended to form a slightly bulky mass, but was smaller than the unmilled A crystal and a denser mass than the unmilled A crystal. . If you look closely around the crushed acetonitrile C crystal mass, you could see small needle-like crystals.
- the jet mill pulverized product of acetonitrile C crystal also tended to form lumps, but the structure that appeared to be a needle-like crystal was not visible, and when flattened with a plastic spoon, it flattened easily and fine particles were formed. I found that they were gathering together ( Figure 25).
- the ball milled product of acetonitrile C crystal (Fig. 26) also tended to form lumps, but no needle-like structure was seen, and it was smoothed with a plastic spoon like the jet milled product of acetonitrile C crystal. It was found that fine particles that were easily flattened and easily collapsed gathered together.
- the jet mill pulverized product of acetonitrile C crystal (Fig. 24) also tended to form lumps, but the structure that appeared to be a needle-like crystal was not visible, and when flattened with a plastic spoon, it flattened easily and fine particles were formed. I found that they were gathering together ( Figure 25).
- Example 23 Observation with Raman microscope The crystal form, morphology and size of febuxostat C crystals in the tablets were observed with a Raman microscope.
- the Raman spectrum of each component used in the manufacture of febuxostat A crystals and prototype tablets (MeCN) was confirmed using Renishaw's inVia Reflex / StreamLine.
- the crystal C was distinguishable from the crystal A and each additive by the peak at about 1695 shift / cm-1 (FIGS. 29 and 30).
- crystal A can be distinguished from crystal C and each additive by peaks at about 1450 shift / cm-1 and about 1330 shift / cm-1 (FIGS. 29 and 30).
- the Raman microscope was measured using Raman microscope inVia Reflex / StreamLine from Renishaw.
- the measurement conditions were as follows. Excitation wavelength 785nm STline Laser output 50% (45mW / line) Exposure time 0.88sec / line Grating 1200l / mm Mapping area 1000 ⁇ 1000um (1.2umstep) Acquisition spectrum 695556 (5h45m) Objective lens X50 The surface of the prototype FC tablet (MeCN pulverized) (20 mg tablet) prepared in Example 20 was cut and observed.
- Fig. 31 and Fig. 32 show Raman imaging images of C crystal and particle analysis results, respectively. From the microscopic image (FIG. 31), a large number of fine C crystal particles having a diameter of less than 10 ⁇ m were confirmed. Further, from the result of particle analysis (FIG. 32), it was confirmed that the majority of particles having a diameter of 5 ⁇ m or less (the bar adjacent to the X axis at the left end in FIG. 32) were found. When a large number of C crystal particles are dense, it can be easily assumed that the image looks like a large particle from the image alone, so most of the C crystal particles were considered to have a diameter of 5 ⁇ m or less. . It was thought that using a scanning electron microscope type microscopic Raman device (for example, “Raman complex system“ SEM-Raman ”manufactured by Renishaw), it would be possible to distinguish and observe the dense particles.
- a scanning electron microscope type microscopic Raman device for example, “Raman complex system“ SEM
- Example 24 X-ray diffraction and differential scanning calorimetry data of a mixture of C-form crystal and amorphous body
- the crystal body obtained in Example 3 was mixed with the amorphous body obtained in Example 10 in a mass ratio of 0.005 to 10 % Added mixture was prepared, and XRD (X-ray diffraction) and DSC (differential scanning calorimetry) were measured.
- XRD X-ray diffraction
- DSC differential scanning calorimetry
- Example 25 Crystallization of amorphous substance by heating storage A mixture obtained by adding 0.005 to 10% by mass of the amorphous substance obtained in Example 10 to the C-form crystal obtained in Example 3 was put in an open container. Stored at 100 ° C. for 7 days. There was no change in XRD. In DSC, the endothermic amount of the endothermic peak at about 211 ° C. decreased at any proportion of the amorphous material.
- FIG. 36 shows the XRD of the mixture
- FIG. 37 shows the DSC
- Table 15 shows the transition of the endothermic amount in the DSC.
- Example 26 Preparation of a mixture containing an amorphous form of febuxostat and a small amount of C crystal 15 g of C crystal obtained in Example 3 was placed in a 125 mL sample container, and XRD and DSC were respectively measured using a planetary ball mill Retsch PM100. As shown in FIGS. 38 and 39, a mixture containing an amorphous form of febuxostat and a trace amount of C crystals was prepared.
- Example 27 Crystallization of amorphous material by heat storage
- the mixture of the amorphous material described in Example 25 and a small amount of C crystal was put in an open container and stored at 100 ° C for 7 days.
- a diffraction peak having a diffraction angle characteristic of the C-type crystal was observed by XRD, and it was observed that the amorphous body in the mixture gradually transitioned to the C-type crystal.
- the XRD of the sample at the start and after storage is shown in FIG. 40 (at start) and FIG. 41 (after storage).
- Example 28 Crystallization of amorphous body by heating, heating / humidification Dryst C-type crystals containing a small amount of amorphous body are placed in an airtight container and placed in an open container at 60 ° C for one month. Stored at °C / 75% RH for one month. In DSC, the endothermic peak at about 211 ° C. disappeared, suggesting that it crystallized into C-type crystals. DSCs of the sample at the start and after storage are shown in FIG. 42 (at start), FIG. 43 (after storage at 60 ° C. for one month) and FIG. 44 (after storage at 40 ° C./75% RH).
- Example 29 Synthesis method and measurement data of new crystal form X (crystal X) 1 g of the amorphous material obtained in Example 10 was placed in a weighing bottle (opened) and used with Tokyo Glass Instruments Constant Temperature Dryer FO-30W After heating at 190 ° C. for 180 minutes, the mixture was allowed to cool to room temperature with a desiccator (silica gel) to prepare crystals. XRD, DSC and IR of the crystal form of the preparation were measured. As a result, it was confirmed that it was a new crystal form (crystal X) different from the existing crystal form (XRD is shown in FIG. 45, DSC is shown in FIG. 46, and IR is shown in FIG. 47).
- XRD 2 ⁇ peak values are observed at 3.33, 6.74, 7.71, 12.82, 13.40, 13.72, 16.29, 16.80, 18.21, 19.12, 20.04, 21.11, 21.79, 23.82, 24.45, 25.80, 26.58, 27.24, 28.01 and 30.49. (Fig. 45).
- IR peaks are shown in Table 16.
- the crystal X obtained by this method is a reddish white crystalline powder which is not hygroscopic and DSC showed a single peak at about 211 ° C.
- the endothermic peak at about 211 ° C. observed by measuring the differential scanning calorimetry of febuxostat amorphous is X crystal that appears as a result of the amorphous body finally transforming into X crystal during the measurement. It was shown to be an endothermic peak.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Pharmacology & Pharmacy (AREA)
- Epidemiology (AREA)
- Medicinal Chemistry (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Thiazole And Isothizaole Compounds (AREA)
- Medicinal Preparation (AREA)
Abstract
フェブキソスタットのC晶及び非晶質体の混合物を加熱することにより、フェブキソスタットのC晶を製造する。フェブキソスタットの非晶質体を含む製剤又は試料を加熱することにより、フェブキソスタットの非晶質体の含量を低下させる。フェブキソスタットのC晶を含む安定な製剤又は試料を製造する。フェブキソスタットの非晶質体を加熱することにより新規フェブキソスタットの結晶を提供する。示差走査熱量を測定し、約211℃に現れる吸熱ピーク量を測定することにより、上記フェブキソスタットの新規結晶及び非晶質体の検出及び定量を行う。
Description
本発明は、有機溶媒を用いることなく、2-[3-シアノ-4-(2-メチルプロポキシ)フェニル]-4-メチルチアゾール-5-カルボン酸の非晶質体から2-[3-シアノ-4-(2-メチルプロポキシ)フェニル]-4-メチルチアゾール-5-カルボン酸の結晶を製造する方法、当該方法により製造された2-[3-シアノ-4-(2-メチルプロポキシ)フェニル]-4-メチルチアゾール-5-カルボン酸の結晶、及び当該結晶を含む製剤に関する。また、本発明は、製剤又は試料中の2-[3-シアノ-4-(2-メチルプロポキシ)フェニル]-4-メチルチアゾール-5-カルボン酸の非晶質体の含量を低下させる方法、及び加熱、加湿下においても安定な2-[3-シアノ-4-(2-メチルプロポキシ)フェニル]-4-メチルチアゾール-5-カルボン酸の結晶を含む製剤又は試料に関する。さらに、本発明は、2-[3-シアノ-4-(2-メチルプロポキシ)フェニル]-4-メチルチアゾール-5-カルボン酸の新規な結晶、その製造方法、及びその検出、定量方法に関する。さらにまた、本発明は、2-[3-シアノ-4-(2-メチルプロポキシ)フェニル]-4-メチルチアゾール-5-カルボン酸の非晶質体の検出、定量方法に関する。
下記式で示される2-[3-シアノ-4-(2-メチルプロポキシ)フェニル]-4-メチルチアゾール-5-カルボン酸(一般名:フェブキソスタット:febuxostat、国際公開WO92/9279(特許文献1))は非プリン型のキサンチンオキシダーゼ阻害薬であり、日本国においては、帝人ファーマ株式会社から「フェブリク(登録商標)錠」の商品名で2011年より痛風及び高尿酸血症の治療薬として錠剤の形態で製造及び販売されて臨床使用されている(以下、2-[3-シアノ-4-(2-メチルプロポキシ)フェニル]-4-メチルチアゾール-5-カルボン酸を「フェブキソスタット」という。以下、フェブリク(登録商標)錠を「F錠」ともいう)。
フェブキソスタットに関しては結晶多形の存在が知られており、特許第3547707号公報(特許文献2)にはA晶、B晶およびC晶、メタノール和物であるD晶、水和物であるG晶(BH晶ともいう)として特定される5種類の結晶物質、並びに非晶質体(後述の特許第4084309号公報においてはE晶ともいう)が開示されている。それらのうち、長期保存による晶形維持の観点からA晶、C晶、及びG晶(BH晶)が有用であることが上記刊行物に具体的に示されており(同公報の実施例10)、工業的優位性からはA晶が好ましいとされている(同公報の第9頁3~5行)。この理由から、A晶についてはいくつかの選択的製造方法が報告されている(特開2003-261548号公報(特許文献3)、特開2011-20950号公報(特許文献4)、及び国際公開WO2007/148787(特許文献5))。
フェブキソスタットの製剤化に関しては、特許第4084309号公報(特許文献6)の参考例1に、これらの結晶形の中で、A晶、C晶及びG晶が最も物理的安定性に優れることが記載されており、また、同公報の実施例1及び実施例3において、フェブキソスタットのA晶を湿式造粒して得られる錠剤は、ばらつきが少なく均一な溶出プロファイルを示すことを確認して、平均粒子径が12.9μm以上26.2μm以下のA晶、乳糖及び部分アルファー化デンプンから選ばれる賦形剤、結合剤であるヒドロキシプロピルセルロース、及び崩壊剤を含有する錠剤を提案している(特許文献6の請求項1)。一方で、同公報の比較例1及び比較例6において、フェブキソスタットのC晶を同様に湿式造粒して得られる錠剤は、溶出が遅いうえにばらつきが大きく不均一な溶出プロファイルを示すことが記載されている(特許文献6の第3頁1~4行を参照)。
なお、同公報において錠剤の製造に用いているA晶は、衝撃式粉砕機であるサンプルミル又はインパクトミルを用いた粉砕物である (特許文献6の表7の粒子2及び3、並びに表3)。
なお、同公報において錠剤の製造に用いているA晶は、衝撃式粉砕機であるサンプルミル又はインパクトミルを用いた粉砕物である (特許文献6の表7の粒子2及び3、並びに表3)。
一方、C晶(本明細書では特許文献1の開示に合わせてこの結晶を「C晶」と呼ぶが、「C形結晶」などと呼ばれる場合もある)については、長期保存による晶形維持の観点から有用であることが具体的に示されており(特許文献2の実施例10)、さらに同公報の図1のI領域での通常の操作範囲では安定な結晶であり、通常の保管条件(75%相対湿度、25℃など)では長期に保持され、かつ化学的にも安定であると説明されている(同公報第8頁41~43行)。このC晶は特許文献2に示された図4の粉末X線回折図及び同公報に開示された2θのピーク位置(6.62°、10.82°、13.36°、15.52°、16.74°、17.40°、18.00°、18.70°、20.16°、20.62°、21.90°、23.50°、24.78°、25.18°、34.08°、36.72°、及び38.04°)、同公報の図15の赤外吸収スペクトル、固体15N-NMRのピーク位置(210ppm及び282ppmの鋭いシングルピーク)及び固体13C-NMRの20ppmの位置に現れるほぼ等価なトリプレットピーク(特許文献6の参考例3)から当業者が容易に特定可能な物質である。
このC晶は、特許文献2の一般的説明によれば、溶媒媒介転移を用いて、通常はメタノール/水の混合溶液に溶解度以上の任意の結晶を懸濁させ、これに少量のC晶を添加して加熱攪拌することにより製造できるとされている(特許文献2第7頁39行~第8頁1行)。
さらに、国際公開WO2012/131590(特許文献7)においては、メタノール又はエタノールなどの低級アルコール存在下に、2-(3-ホルミル- 4-イソブトキシフェニル)-4-メチルチアゾール-5-カルボン酸エチルエステルに炭酸カリウム、炭酸セシウム、炭酸ナトリウムなどの炭酸アルカリ金属を作用させることによりエステル結合を加水分解して2-(3-ホルミル- 4-イソブトキシフェニル)-4-メチルチアゾール-5-カルボン酸を製造し、続いてギ酸の中で、ギ酸ナトリウム及びヒドロキシルアミン塩酸塩を作用させて得た反応生成物に60℃以上の水を加えた後に室温まで冷却することにより、工業的に再現性良くフェブキソスタットのC晶を得ることのできる方法を開示しているので、特許文献7の記載に基づけば、C晶の種晶を用いずにC晶を作製することが可能である(特許文献7のClaim 4及びExample 4を参照)。
また、各結晶形の日本薬局方の崩壊試験用の第2液への溶解速度を比較するとE晶(つまり非晶質体)>A晶>B晶>D晶>G晶>C晶の順であり、溶解速度の点でC晶が最も劣ること、及びC晶の溶解速度(0.0694 mg/cm2/min)はA晶(0.1434 mg/cm2/min)の1/2以下であることが報告されている(特許文献6の参考例2)。
特許文献6の比較例1によれば、同公報で用いているメタノールと水の混合溶媒中から晶出して作製したC晶を用いて湿式造粒法によって製造した錠剤を固体13C-NMRで測定すると20ppmの位置に鈍いピークを示したことから非晶質体(E晶)を含有しているとの考察がなされている。この製剤を40℃/75%RHで保管すると非晶質体(E晶)の一部がG晶に転移すると述べられるとともに(同公報の比較例5)、pH5.5の McIlvaine緩衝液に対する溶出率が低下し、溶出率のばらつきが若干上昇したことも報告されている(同公報の表4)。このように、特許文献6で用いているメタノールと水の混合溶媒中から晶出させて作製したC晶を用いて錠剤を製造した場合には、非晶質体化及び非晶質体化を介した結晶形の転移が懸念され、特許文献6の発明の詳細な説明には物理的安定性試験で最も安定と考えられる結晶形を用いても、薬物の溶出プロファイルにばらつきのない製剤を得ることができないとの記載がある。以上のことから、現在まで製品化に耐えうるC晶の製剤については報告されていない。
なお、フェブキソスタットの結晶多形及び多形の相互転移などについては北村らによる一連の詳細な報告がある(Journal of Chemical Engineering of Japan, Vol.35, No.11, pp.1116-1122, 2002(非特許文献1); Journal of Crystal Growth, Vol.236, pp.676-686, 2002(非特許文献2); Journal of Crystal Growth, Vol.257, pp.177-184, 2003(非特許文献3); Crystal Growth & Design, Vol.4, No.6, pp.1153-1159, 2004(非特許文献4); Pure Appl. Chem., Vol.77, No.3, pp.581-591, 2005(非特許文献5); Crystal Growth & Design, Vol.6, No.5, pp.1214-1218, 2006(非特許文献6); Cryst. Eng. Comm., Vol.11, pp.949-964, 2009(非特許文献7);及び「多形現象のメカニズムと多形制御」北村光孝,株式会社アイピーシー,2010年,第6章,第8章,第9章(非特許文献8))。C晶についてはJournal of Chemical Engineering of Japan, 35, No.11, pp.1116-1122, 2002(非特許文献1)の「2.3. Crystallization」の項やJournal of Crystal Growth, Vol.236, pp.676-686, 2002(非特許文献2)に結晶化の具体的方法が開示されており、C晶が安定形であり、A晶が準安定形であるとの教示もある。
ただし、これらの文献に記載されたフェブキソスタットのC晶は、非特許文献8の第9章に記載されているもの以外は、すべて、メタノールと水の混合溶媒から晶出させたか、他の結晶形から転移させて得られたものである。
よって、これまでにフェブキソスタットの非晶質体からフェブキソスタットのC晶を調製したとの報告はない。
また、有効成分としてフェブキソスタットのC晶を含む、安定で溶出にばらつきのない製剤についての報告はない。
また、実質的に残留有機溶媒がないフェブキソスタットのC晶を調製したとの報告もない。
さらに、これでに、A晶、B晶、C晶、D晶及びG晶以外の結晶は単離されていない。さらにまた、非晶質体の定量方法についてもこれまでに報告はない。
なお、一般に、非晶質体は結晶に比べて不安定であり、他の結晶形への転移も生じやすいことから、一般に非晶質体より結晶の方が製剤化に好ましいと考えられている。
また、有効成分としてフェブキソスタットのC晶を含む、安定で溶出にばらつきのない製剤についての報告はない。
また、実質的に残留有機溶媒がないフェブキソスタットのC晶を調製したとの報告もない。
さらに、これでに、A晶、B晶、C晶、D晶及びG晶以外の結晶は単離されていない。さらにまた、非晶質体の定量方法についてもこれまでに報告はない。
なお、一般に、非晶質体は結晶に比べて不安定であり、他の結晶形への転移も生じやすいことから、一般に非晶質体より結晶の方が製剤化に好ましいと考えられている。
Journal of Chemical Engineering of Japan, Vol.35, No.11, pp.1116-1122, 2002
Journal of Crystal Growth, Vol.236, pp.676-686, 2002
Journal of Crystal Growth, Vol.257, pp.177-184, 2003
Crystal Growth & Design, Vol.4, No.6, pp.1153-1159, 2004
Pure Appl. Chem., Vol.77, No.3, pp.581-591, 2005
Crystal Growth & Design, Vol.6, No.5, pp.1214-1218, 2006
Cryst. Eng. Comm., Vol.11, pp.949-964, 2009
多形現象のメカニズムと多形制御」北村光孝,株式会社アイピーシー,2010年,第6章,第8章及び第9章
本発明の一つの課題は、フェブキソスタットの非晶質体及びフェブキソスタットのC晶の混合物から調製した、実質的にフェブキソスタットのC晶からなるフェブキソスタットを提供することである。
本発明の一つの課題は、有機溶媒を実質的に含まず、且つ実質的にフェブキソスタットのC晶からなるフェブキソスタットを提供することである。
本発明の一つの課題は、有機溶媒を用いることなく簡便な方法で、製剤又は試料中のフェブキソスタットの非晶質体の含量を低下させる方法を提供することである。
本発明の一つの課題は、溶出性の優れたフェブキソスタットのC晶の製剤を提供することである。
本発明の一つの課題は、加熱、加湿下において安定なフェブキソスタットC晶を含む製剤又は試料を提供することである。
本発明の一つの課題は、吸湿性のないフェブキソスタットの新規結晶多形、その製造方法、その検出、定量方法を提供することである。
本発明の一つの課題は、感度の良い、フェブキソスタットの非晶質体の検出、定量方法を提供することである。
本発明の一つの課題は、有機溶媒を実質的に含まず、且つ実質的にフェブキソスタットのC晶からなるフェブキソスタットを提供することである。
本発明の一つの課題は、有機溶媒を用いることなく簡便な方法で、製剤又は試料中のフェブキソスタットの非晶質体の含量を低下させる方法を提供することである。
本発明の一つの課題は、溶出性の優れたフェブキソスタットのC晶の製剤を提供することである。
本発明の一つの課題は、加熱、加湿下において安定なフェブキソスタットC晶を含む製剤又は試料を提供することである。
本発明の一つの課題は、吸湿性のないフェブキソスタットの新規結晶多形、その製造方法、その検出、定量方法を提供することである。
本発明の一つの課題は、感度の良い、フェブキソスタットの非晶質体の検出、定量方法を提供することである。
本発明者らは、試行錯誤を重ねて鋭意検討した結果、フェブキソスタットの非晶質体とC晶を含む混合物を加熱することによって、フェブキソスタットの非晶質体からフェブキソスタットのC晶を製造できることを見出した。
さらに、本発明のフェブキソスタットのC晶を含む製剤または試料が加熱、加湿下において十分な安定性を有することを見出した。
また、フェブキソスタットの非晶質体を約200℃に加熱し、徐々に温度を下げることにより、吸湿性のないフェブキソスタットの新規結晶多形(以下、X晶と呼ぶが、「X形結晶」などと呼ばれる場合もある)を製造できることを見出した。
そして、フェブキソスタットの非晶質体の示差走査熱量測定で観察される約211℃の吸熱ピークが、X晶の示差走査熱量測定で観察される吸熱ピークと同じであることから、フェブキソスタットの非晶質体が最終的にX晶に転移すること、この転移を利用して、示差走査熱量測定で観察される約211℃の吸熱ピークを指標にフェブキソスタットの非晶質体の検出、定量ができることを見出した。
さらに、本発明のフェブキソスタットのC晶を含む製剤または試料が加熱、加湿下において十分な安定性を有することを見出した。
また、フェブキソスタットの非晶質体を約200℃に加熱し、徐々に温度を下げることにより、吸湿性のないフェブキソスタットの新規結晶多形(以下、X晶と呼ぶが、「X形結晶」などと呼ばれる場合もある)を製造できることを見出した。
そして、フェブキソスタットの非晶質体の示差走査熱量測定で観察される約211℃の吸熱ピークが、X晶の示差走査熱量測定で観察される吸熱ピークと同じであることから、フェブキソスタットの非晶質体が最終的にX晶に転移すること、この転移を利用して、示差走査熱量測定で観察される約211℃の吸熱ピークを指標にフェブキソスタットの非晶質体の検出、定量ができることを見出した。
本発明により、実質的にフェブキソスタットのC晶からなるフェブキソスタットを提供することができる。さらに、本発明により有機溶媒を用いない簡便な方法で、フェブキソスタットの非晶質体をC晶に転移させることができる。これにより、非晶質体の含量を低下させて、実質的に非晶質体を含まない製剤や試料、好ましくは、実質的にフェブキソスタットのC晶からなる製剤や試料を調製できるだけでなく、それに加え、製剤や試料中の有機溶媒残留量を低下させ、好ましくは製剤や試料中の有機溶媒残留量が実質的にない製剤や試料を調製することができる。また、本発明により常温より高い温度及び加湿下で、実質的に非晶質体を含まないフェブキソスタットC晶の安定な製剤や試料を提供することができる。
有機溶媒を用いない方法で、フェブキソスタットの非晶質体をC晶に転移させることができるので、本発明により、火災、爆発、麻酔の懸念がなく、安全な方法でフェブキソスタットのC晶を提供することができる。
さらに、本発明により、吸湿性のないフェブキソスタットの新規結晶多形(X晶)を製造でき、その検出、定量ができる。
またさらに、本発明により、感度の良い、フェブキソスタットの非晶質体の検出又は定量方法が提供できる。
なお、本発明で使用され得るフェブキソスタットのC晶は、段落[0006]又は段落[0007]の公知の方法に基づき製造されたC晶を用いることができる。さらにフェブキソスタットの小型化結晶及びその微粉化物であり得る。フェブキソスタットの小型化結晶及びその微粉化物は、高い安定性と高い溶出性を兼ね備える。また、本発明で使用され得るフェブキソスタットの小型化結晶及びその微粉化物は、高い嵩密度及び/またはタップ密度を有し、小さい粒子サイズで狭い範囲に分布する良好な粒度分布を有する。さらにまた、本発明で使用され得るフェブキソスタットの小型化結晶及びその微粉化物は、小さな安息角及び/又は優れたハンドリング性を有する。
本発明により、痛風、高尿酸血症、慢性腎臓病の予防及び又は治療のための、安定性及び溶出性に優れ、かつ溶出特性のばらつきが少ない固形製剤を提供することができる。
有機溶媒を用いない方法で、フェブキソスタットの非晶質体をC晶に転移させることができるので、本発明により、火災、爆発、麻酔の懸念がなく、安全な方法でフェブキソスタットのC晶を提供することができる。
さらに、本発明により、吸湿性のないフェブキソスタットの新規結晶多形(X晶)を製造でき、その検出、定量ができる。
またさらに、本発明により、感度の良い、フェブキソスタットの非晶質体の検出又は定量方法が提供できる。
なお、本発明で使用され得るフェブキソスタットのC晶は、段落[0006]又は段落[0007]の公知の方法に基づき製造されたC晶を用いることができる。さらにフェブキソスタットの小型化結晶及びその微粉化物であり得る。フェブキソスタットの小型化結晶及びその微粉化物は、高い安定性と高い溶出性を兼ね備える。また、本発明で使用され得るフェブキソスタットの小型化結晶及びその微粉化物は、高い嵩密度及び/またはタップ密度を有し、小さい粒子サイズで狭い範囲に分布する良好な粒度分布を有する。さらにまた、本発明で使用され得るフェブキソスタットの小型化結晶及びその微粉化物は、小さな安息角及び/又は優れたハンドリング性を有する。
本発明により、痛風、高尿酸血症、慢性腎臓病の予防及び又は治療のための、安定性及び溶出性に優れ、かつ溶出特性のばらつきが少ない固形製剤を提供することができる。
本発明により、フェブキソスタットの非晶質体及びフェブキソスタットのC晶の混合物を常温より高い温度に加熱して得られる、フェブキソスタットのC晶が提供される。
本発明により、フェブキソスタットの非晶質体及びフェブキソスタットのC晶の混合物を常温より高い温度に加熱する工程を含む、フェブキソスタットの非晶質体からフェブキソスタットのC晶を製造する方法が提供される。
本発明により、製剤又は試料中のフェブキソスタットの非晶質体の含量を低下させる方法であって、フェブキソスタットの非晶質体及びフェブキソスタットのC晶を含む製剤又は試料を常温より高い温度に加熱する工程を含む方法が提供される。
本発明により、実質的に有機溶媒を含まないフェブキソスタット(つまり、2-[3-シアノ-4-(2-メチルプロポキシ)フェニル]-4-メチルチアゾール-5-カルボン酸)のC晶が提供される。
本発明により、フェブキソスタットのC晶を含む製剤又は試料であって、製剤又は試料を常温より高い温度に加熱し、さらに加湿した状態であっても安定である製剤及び試料が提供される。
本発明により、フェブキソスタットの非晶質体及びフェブキソスタットのC晶の混合物を常温より高い温度に加熱する工程を含む、フェブキソスタットの非晶質体からフェブキソスタットのC晶を製造する方法が提供される。
本発明により、製剤又は試料中のフェブキソスタットの非晶質体の含量を低下させる方法であって、フェブキソスタットの非晶質体及びフェブキソスタットのC晶を含む製剤又は試料を常温より高い温度に加熱する工程を含む方法が提供される。
本発明により、実質的に有機溶媒を含まないフェブキソスタット(つまり、2-[3-シアノ-4-(2-メチルプロポキシ)フェニル]-4-メチルチアゾール-5-カルボン酸)のC晶が提供される。
本発明により、フェブキソスタットのC晶を含む製剤又は試料であって、製剤又は試料を常温より高い温度に加熱し、さらに加湿した状態であっても安定である製剤及び試料が提供される。
本明細書において、常温とは15~25℃を言い、常温より高い温度とは、例えば、25℃を超え199℃以下、25℃を超え120℃以下、30℃以上199℃以下、30℃以上120℃以下、30℃以上100℃以下、40℃以上180℃以下、40℃以上150℃以下、40℃以上100℃以下、30℃以上70℃以下、40℃以上60℃以下であり得る。好ましくは、40℃以上100℃以下である。
加熱時間は、フェブキソスタットのC晶と非晶質体の混合物中、実質的にC晶のみとなった段階で終了することができるが、例えば30分間~72時間、1時間~48時間、10時間~24時間加熱すればよく、好ましくは1時間~48時間、10時間~24時間、より好ましくは10時間~24時間加熱すればよい。
一つの実施態様では、フェブキソスタットのC晶及びC晶を含有する製剤又は試料中のフェブキソスタットの非晶質体の含量を低下させることができる。その結果、本発明のフェブキソスタットのC晶及びC晶を含有する製剤又は試料は、常温より高い温度に加熱し、さらに加湿、例えば45%RH以上85%以下、45%RH以上80%RH以下、50%RH以上80%RH以下、55%RH以上80%RH以下、60%RH以上80%RH以下、60%RH以上75%RH以下、65%RH以上75%RH以下の湿度に加湿した状態でも安定に存在することができる。ここでいう安定性とは、前記の加熱、加湿の状態において、次の期間、例えば、1日、3日、5日、7日、15日、1か月、2か月、3か月、6か月及び1年間、好ましくは、1か月、2か月、3か月、6か月及び1年の期間、本発明のC晶が他の結晶形に転移、あるいは分解しないことをいう。また、フェブキソスタットのC晶及びC晶を含有する製剤又は試料の加熱及び加湿は、開放系又は密閉系のどちらで行われてもよい。
なお、医薬品の承認を得る上実施される加速試験とは、通常40℃/75%RHの条件で6か月の期間の安定性試験であって、当該試験結果から3年間の安定性が推測できることから、医薬品の開発においてこれらの安定性を有することは極めて重要である。
加熱時間は、フェブキソスタットのC晶と非晶質体の混合物中、実質的にC晶のみとなった段階で終了することができるが、例えば30分間~72時間、1時間~48時間、10時間~24時間加熱すればよく、好ましくは1時間~48時間、10時間~24時間、より好ましくは10時間~24時間加熱すればよい。
一つの実施態様では、フェブキソスタットのC晶及びC晶を含有する製剤又は試料中のフェブキソスタットの非晶質体の含量を低下させることができる。その結果、本発明のフェブキソスタットのC晶及びC晶を含有する製剤又は試料は、常温より高い温度に加熱し、さらに加湿、例えば45%RH以上85%以下、45%RH以上80%RH以下、50%RH以上80%RH以下、55%RH以上80%RH以下、60%RH以上80%RH以下、60%RH以上75%RH以下、65%RH以上75%RH以下の湿度に加湿した状態でも安定に存在することができる。ここでいう安定性とは、前記の加熱、加湿の状態において、次の期間、例えば、1日、3日、5日、7日、15日、1か月、2か月、3か月、6か月及び1年間、好ましくは、1か月、2か月、3か月、6か月及び1年の期間、本発明のC晶が他の結晶形に転移、あるいは分解しないことをいう。また、フェブキソスタットのC晶及びC晶を含有する製剤又は試料の加熱及び加湿は、開放系又は密閉系のどちらで行われてもよい。
なお、医薬品の承認を得る上実施される加速試験とは、通常40℃/75%RHの条件で6か月の期間の安定性試験であって、当該試験結果から3年間の安定性が推測できることから、医薬品の開発においてこれらの安定性を有することは極めて重要である。
本発明に使用する フェブキソスタットの非晶質体(本明細書では特許文献2の開示に合わせてこの結晶を「非晶質体」と呼ぶ)は、例えば、結晶を含有するフェブキソスタット原薬をボールミル粉砕することによって製造することができる。ここで、ボールミル粉砕は、遊星ボールミルを用いて、粉砕条件を400rpm以上としてもよい。また、粉砕時間は60分以上行うことが好ましい。例えば、フェブキソスタットC晶を遊星ボールミルRetsch PM100を用い、ボール数6、回転数400rpmで60分間粉砕することによりフェブキソスタットの非晶質体を調製できる。また、メタノール和物であり、メタノール溶媒又はメタノール/水混合溶媒から再結晶することで得られた湿潤品を、低温で減圧乾燥することで得られるD晶を、80℃、2mmHgにて4時間減圧乾燥してフェブキソスタットの非晶質体を調製することもできる。これらの方法により、実質的に非晶質体のみからなるフェブキソスタットが提供される。実質的に非晶質体にみからなるフェブキソスタットは、90%以上、好ましくは95%以上、より好ましくは99%以上、最も好ましくは100%非晶質体のみからなるフェブキソスタットである(なお、%は重量%である)。
フェブキソスタットの非晶質体の存在及び試料中のその含量の変化は、後述するように、示差走査熱量計により約211℃の吸熱ピークを観察することにより測定できる。約211℃とは、例えば、208℃以上216℃以下、好ましくは210℃以上212℃以下である。示差走査熱量は、当業者が適宜測定できる。例えば、リガク(Rigaku)Therm plus EVOシリーズ高感度示差走査熱量計DSC8230を用いて、加熱速度10℃/分、大気圧下で示差走査熱量(DSC)を測定し、データ収集及び分析のためにRigaku Thermo plus EVO version 1.006-6ソフトウェアを用いてもよい。
また、本発明者は、示差走査熱量測定において、150℃以下の領域に現れる発熱ピークの発熱ピーク量(J/g)と非晶質体のフェブキソスタットの量とが正比例の関係にあることを見出したことから、150℃以下の領域に現れる発熱ピークの発熱ピーク量(J/g)に基づいて、フェブキソスタット試料中の非晶質体の含有率を測定することができる。
フェブキソスタット試料中の非晶質体の含有率を測定する方法は、例えば、次の工程によって提供される。
(1)フェブキソスタット試料を示差走査熱量測定する工程、
(2)150℃以下の領域に現れる発熱ピークの発熱ピーク量(J/g)を定量する工程、
(3)次式:y = 6.0675x のxに前記工程(2)で得られた値を代入してフェブキソスタット試料中の非晶質体の含有率yを算出する工程、
ただし、ここで、式中、xは示差走査熱量測定における150℃以下の発熱ピーク量(J/g)を表し、yは非晶質体の含有率(質量%)を表す。
上記フェブキソスタット試料中の非晶質体の含有率を測定する方法で用いられる式における定数は、測定条件及び定量方法によって適宜変更して用いることができる。
(1)フェブキソスタット試料を示差走査熱量測定する工程、
(2)150℃以下の領域に現れる発熱ピークの発熱ピーク量(J/g)を定量する工程、
(3)次式:y = 6.0675x のxに前記工程(2)で得られた値を代入してフェブキソスタット試料中の非晶質体の含有率yを算出する工程、
ただし、ここで、式中、xは示差走査熱量測定における150℃以下の発熱ピーク量(J/g)を表し、yは非晶質体の含有率(質量%)を表す。
上記フェブキソスタット試料中の非晶質体の含有率を測定する方法で用いられる式における定数は、測定条件及び定量方法によって適宜変更して用いることができる。
本発明により、フェブキソスタットの非晶質体及びフェブキソスタットのC晶の混合物を室温より高い温度に加熱することで、フェブキソスタットの非晶質体からフェブキソスタットのC晶を製造することができる。フェブキソスタットの非晶質体に種晶としてフェブキソスタットのC晶を添加し加熱することでフェブキソスタットのC晶を製造してもよい。
本製造においては、この混合物を反応容器あるいは乾燥機器等の容器に加えた後、30分間~72時間、常温より高い温度に加熱することにより行うことができる。
また、混合物への加熱は常圧下又は減圧下行うことができ、減圧条件は加熱温度を考慮して適宜決めることができるが、数mmHg~25mmHgの範囲の減圧下で行うことができる。
本発明のフェブキソスタットの非晶質体及びフェブキソスタットのC晶の混合物を加熱する方法において用いるフェブキソスタットの非晶質体及びフェブキソスタットのC晶の混合物は、フェブキソスタットの非晶質体及びフェブキソスタットのC晶をそれぞれ調製し配合するか、あるいはフェブキソスタットのC晶の粉砕等によりフェブキソスタットのC晶の一部が非晶質体に変換したもの等を用いることができる。例えば、ボールミルあるいは乳鉢によりC晶を粉砕した場合には、粉砕時の条件によるが、継時的に非晶質体が生成するためC晶と非晶質体の混合物となることから、本発明において使用することができる。また、フェブキソスタットのC晶をジェットミルで粉砕した場合は非晶質体の発生は抑制されるが、長時間粉砕をかけた場合など条件によっては非晶質体が発生することがありうるので、ジェットミル粉砕物も使用することができる。ただし、本発明に用いるフェブキソスタットの非晶質体及びフェブキソスタットのC晶の混合物については、これらに限定されるものではない。
本発明において使用する、フェブキソスタットの非晶質体とフェブキソスタットのC晶の混合物中の、フェブキソスタットの非晶質体の重量は、フェブキソスタットのC晶の重量の0.0001%以上99%以下、0.0001%以上10%以下、0.0001%以上1%以下、0.0001%以上0.1%以下、0.0001%以上0.01%以下、0.0001%以上0.001%以下、0.001%以上99%以下、0.001%以上10%以下、0.001%以上1%以下、0.001%以上0.1%以下、0.001%以上0.01%以下、0.01%以上99%以下、0.01%以上10%以下、0.01%以上1%以下、0.01%以上0.1%以下、0.1%以上99%以下、0.1%以上10%以下、又は0.1%以上1%以下であり得る。
本発明により得られたフェブキソスタットのC晶は実質的に非晶質体を含まない。実質的に非晶質体を含まないフェブキソスタットのC晶は、示差走査熱量計により約211℃の吸熱ピークが観察されないフェブキソスタットのC晶であり得、例えば、C晶中の非晶質体の含量は、0.001~0.1%、0.001~0.03%、0.001~0.01%であり得る。
本発明により得られたフェブキソスタットのC晶は実質的に純粋なフェブキソスタットC晶である。よって、得られたフェブキソスタットのC晶は、実質的にフェブキソスタットC晶のみからなる。実質的に純粋なフェブキソスタットのC晶とは、例えば、純度が、重量%で80%以上、90%以上、93%以上、96%以上、98%以上、99.0%以上、99.3%以上、99.6%以上、99.9%以上、99.99%以上、又は99.999%以上であるフェブキソスタットのC晶である。また、実質的にフェブキソスタットのC晶のみからなるという状態とは、例えば、重量%でフェブキソスタットの98%以上、例えば、99.0%以上、99.3%以上、99.6%以上、99.9%以上、99.99%以上、又は99.999%以上がフェブキソスタットのC晶であるという状態である。
また、本発明のフェブキソスタットのC晶は実質的に有機溶媒を含まない。有機溶媒は、例えば、メタノール、エタノール、アセトニトリル、プロパノール又はアセトン等である。実質的に残留有機溶媒がないとは、残留有機溶媒の量が、例えば、500ppm以下、400ppm以下、300ppm以下 200ppm以下、100ppm以下、50ppm以下、30ppm以下、10ppm以下、3ppm以下、1ppm以下、0.3ppm以下、0.1ppm以下又は0.01ppm以下である。
本製造においては、この混合物を反応容器あるいは乾燥機器等の容器に加えた後、30分間~72時間、常温より高い温度に加熱することにより行うことができる。
また、混合物への加熱は常圧下又は減圧下行うことができ、減圧条件は加熱温度を考慮して適宜決めることができるが、数mmHg~25mmHgの範囲の減圧下で行うことができる。
本発明のフェブキソスタットの非晶質体及びフェブキソスタットのC晶の混合物を加熱する方法において用いるフェブキソスタットの非晶質体及びフェブキソスタットのC晶の混合物は、フェブキソスタットの非晶質体及びフェブキソスタットのC晶をそれぞれ調製し配合するか、あるいはフェブキソスタットのC晶の粉砕等によりフェブキソスタットのC晶の一部が非晶質体に変換したもの等を用いることができる。例えば、ボールミルあるいは乳鉢によりC晶を粉砕した場合には、粉砕時の条件によるが、継時的に非晶質体が生成するためC晶と非晶質体の混合物となることから、本発明において使用することができる。また、フェブキソスタットのC晶をジェットミルで粉砕した場合は非晶質体の発生は抑制されるが、長時間粉砕をかけた場合など条件によっては非晶質体が発生することがありうるので、ジェットミル粉砕物も使用することができる。ただし、本発明に用いるフェブキソスタットの非晶質体及びフェブキソスタットのC晶の混合物については、これらに限定されるものではない。
本発明において使用する、フェブキソスタットの非晶質体とフェブキソスタットのC晶の混合物中の、フェブキソスタットの非晶質体の重量は、フェブキソスタットのC晶の重量の0.0001%以上99%以下、0.0001%以上10%以下、0.0001%以上1%以下、0.0001%以上0.1%以下、0.0001%以上0.01%以下、0.0001%以上0.001%以下、0.001%以上99%以下、0.001%以上10%以下、0.001%以上1%以下、0.001%以上0.1%以下、0.001%以上0.01%以下、0.01%以上99%以下、0.01%以上10%以下、0.01%以上1%以下、0.01%以上0.1%以下、0.1%以上99%以下、0.1%以上10%以下、又は0.1%以上1%以下であり得る。
本発明により得られたフェブキソスタットのC晶は実質的に非晶質体を含まない。実質的に非晶質体を含まないフェブキソスタットのC晶は、示差走査熱量計により約211℃の吸熱ピークが観察されないフェブキソスタットのC晶であり得、例えば、C晶中の非晶質体の含量は、0.001~0.1%、0.001~0.03%、0.001~0.01%であり得る。
本発明により得られたフェブキソスタットのC晶は実質的に純粋なフェブキソスタットC晶である。よって、得られたフェブキソスタットのC晶は、実質的にフェブキソスタットC晶のみからなる。実質的に純粋なフェブキソスタットのC晶とは、例えば、純度が、重量%で80%以上、90%以上、93%以上、96%以上、98%以上、99.0%以上、99.3%以上、99.6%以上、99.9%以上、99.99%以上、又は99.999%以上であるフェブキソスタットのC晶である。また、実質的にフェブキソスタットのC晶のみからなるという状態とは、例えば、重量%でフェブキソスタットの98%以上、例えば、99.0%以上、99.3%以上、99.6%以上、99.9%以上、99.99%以上、又は99.999%以上がフェブキソスタットのC晶であるという状態である。
また、本発明のフェブキソスタットのC晶は実質的に有機溶媒を含まない。有機溶媒は、例えば、メタノール、エタノール、アセトニトリル、プロパノール又はアセトン等である。実質的に残留有機溶媒がないとは、残留有機溶媒の量が、例えば、500ppm以下、400ppm以下、300ppm以下 200ppm以下、100ppm以下、50ppm以下、30ppm以下、10ppm以下、3ppm以下、1ppm以下、0.3ppm以下、0.1ppm以下又は0.01ppm以下である。
本発明により得られたフェブキソスタットのC晶を有効成分として製剤(例えば、固形製剤)を調製することができる。好ましくは、製剤は、実質的に非晶質体を含まない。実質的に非晶質体を含まない固形製剤は、示差走査熱量計により約211℃の吸熱ピークが観察されない固形製剤であり得、例えば、製剤中の非晶質体の含量は、0.0001~0.1%、0.0001~0.01%、0.0001~0.001%であり得る。好ましくは、製剤は、実質的にフェブキソスタットのC晶からなるフェブキソスタットを含む製剤である。好ましくは、製剤は、実質的に残留有機溶媒がない。
本発明が提供する製剤又は試料中のフェブキソスタットの非晶質体の含量を低下する方法において使用する製剤は、医薬としての固形製剤(例えば、錠剤)であり得る。試料とは、フェブキソスタットの非晶質体を含んでもよいフェブキソスタットのC晶である。試料は、医薬品原薬であり得る。本発明で使用する製剤は、フェブキソスタットの非晶質体及び/又はC晶を含むことができる。
本発明で使用する製剤又は試料に含まれるフェブキソスタットの非晶質体とフェブキソスタットのC晶の含量の合計は任意でよく、例えば、製剤中の混合物重量の100%、0.01~100%、0.01~99%、0.01~98%、0.01~95%、0.01~90%、0.01~80%、0.01~50%、0.01~30%、0.01~10%、0.01~5%、0.01~3%、0.01~1%であり得る。本発明で使用する製剤又は試料に含まれるフェブキソスタットの非晶質体の重量は、フェブキソスタットのC晶の重量の0.0001%以上99%以下、0.0001%以上10%以下、0.0001%以上1%以下、0.0001%以上0.1%以下、0.0001%以上0.01%以下、0.0001%以上0.001%以下、0.001%以上99%以下、0.001%以上10%以下、0.001%以上1%以下、0.001%以上0.1%以下、0.001%以上0.01%以下、0.01%以上99%以下、0.01%以上10%以下、0.01%以上1%以下、0.01%以上0.1%以下、0.1%以上99%以下、0.1%以上10%以下、又は0.1%以上1%以下であり得る。本発明の方法で非晶質体の含量を低下させた結果、実質的に純粋なC晶が得られる。
本発明が提供するフェブキソスタットのC晶を含む製剤又は試料は、常温より高い温度に加熱し、さらに加湿した状態においても、フェブキソスタットのC晶は他の結晶への転移を伴わず、安定に存在しうる。本発明の製剤又は試料は、フェブキソスタットの非晶質体が実質的に存在しない(例えば、示差走査熱量計により約211℃の吸熱ピークが観察されない)。
フェブキソスタットのC晶は、例えばJournal of Chemical Engineering of Japan, Vol.35, No.11, pp.1116-1122, 2002の「1.3. Crystallization」の項に記載された結晶化方法に準じて製造することができる。また、本明細書実施例に記載のようにフェブキソスタットのG晶にC晶の種晶を加え、有機溶媒(例えば、アセトニトリル、アセトン、メタノール)を用いて製造してもよい。
得られた結晶がC晶であることは、特許文献2に示された図4の粉末X線回折図から当業者が容易に同定可能である。同定のためには、必要に応じて同公報に開示された2θのピーク位置(Cuを線源とする1.54オングストロームの波長のCuKα放射線を用いた場合の回折角で6.62°、10.82°、13.36°、15.52°、16.74°、17.40°、18.00°、18.70°、20.16°、20.62°、21.90°、23.50°、24.78°、25.18°、34.08°、36.72°、及び38.04°のうちのいずれか1つ又は2つ以上、好ましくは6つ以上、また、好ましくは同公報の図4に示される高強度のピークとして13.36°及び/又は15.52°のピーク位置)、及び同公報の図9の赤外吸収スペクトルを参照することもできる。
フェブキソスタットのC晶は、1.54オングストロームの波長のCuKα放射線(放射光)を用いた粉末X線回折において、6.6°(例えば6.62°)の回折角にピークを有し12.8°(例えば12.80°)の回折角にピークを有さない結晶として特定され、より好ましくは6.6°(例えば6.62°)、13.4°(例えば13.36°)及び15.5°(例えば15.52°)の回折角にピークを有する結晶として特定され、さらにこのましくは、6.6°(例えば6.62°)、10.8°(例えば10.82°)、13.4°(例えば13.36°)、15.5°(例えば15.52°)及び25.2°(例えば25.18°)の回折角にピークを有する結晶として特定され、もっとも好ましくは6.6°(例えば6.62°)、10.8°(例えば10.82°)、13.4°(例えば13.36°)、15.5°(例えば15.52°)、16.7°(例えば16.74°)、17.4°(例えば17.40°)、18.0°(例えば18.00°)、18.7°(例えば18.70°)、20.2°(例えば20.16°)、20.6°(例えば20.62°)、21.9°(例えば21.90°)、23.5°(例えば23.50°)、24.8°(例えば24.78°)、25.2°(例えば25.18°)、34.1°(例えば34.08°)、36.7°(例えば36.72°)、及び38.0°(例えば38.04°)の回折角から選択される6個以上(例えば、6、7、8、9、10、11、12、13、14、15、16、17個)の回析角にピークを有する結晶として特定される。
この場合の回折角の誤差範囲は、粉末X線回折測定装置が適正に構成されていることを条件として、±0.2°以内である。
また、回折角2θは照射する放射光の波長λによって変わるが、放射光の波長λと回折角2θの間には、ブラッグの式(nλ=2dsin(θ))の関係が成立する。なお、ここで、d は結晶面の間隔、θ は結晶面とX線が成す角度、λ はX線の波長、n は整数である。従って、放射光の波長λと回折角2θは一対一に対応し、相互に一意に変換可能である。すなわち、ある放射光の波長λ1を照射したときにA1の回折角が観察されるのであれば、異なる波長の波長λ2を照射したときに観察されるべき回折角A2を計算で求めることができる。
また、回折角2θは照射する放射光の波長λによって変わるが、放射光の波長λと回折角2θの間には、ブラッグの式(nλ=2dsin(θ))の関係が成立する。なお、ここで、d は結晶面の間隔、θ は結晶面とX線が成す角度、λ はX線の波長、n は整数である。従って、放射光の波長λと回折角2θは一対一に対応し、相互に一意に変換可能である。すなわち、ある放射光の波長λ1を照射したときにA1の回折角が観察されるのであれば、異なる波長の波長λ2を照射したときに観察されるべき回折角A2を計算で求めることができる。
従って、本発明において、粉末X線回折測定装置よって結晶形を同定する手段は、CuKα放射線を用いて測定した粉末X線回折による回折角の同定に限定されず、異なる波長の放射光を用いても良い。例えば、サイクロトロン等を用いた場合には、波長0.75オングストロームの放射光や波長1.0オングストロームの放射光を用いることもできる。その場合、ブラッグの式を用いて変換された回折角を、ブラッグの式を用いて変換された誤差範囲内に同定することによって、結晶形を同定することができる。
あるいは、フェブキソスタットのC晶は、特許文献2の図9の赤外吸収スペクトル、あるいは、非特許文献2のFig.3のFT-IRスペクトルから当業者が容易に特定可能な物質である。具体的には、フェブキソスタットのC晶は、赤外吸収スペクトルにおいて、1219cm-1付近、1269cm-1付近、1296cm-1付近、1703cm-1付近、2240cm-1付近に特徴的なピークを有する。付近とは例えば±1の誤差、好ましくは±0.3の誤差を包含する。
また、あるいは、フェブキソスタットのC晶は、固体15N-NMRにおいて、210ppm及び282ppmに鋭いシングルピークを有する結晶形として、または、固体13C-NMRにおいて、約20ppmにほぼ等価なトリプレットピークを有する結晶形として当業者が容易に特定可能な物質である(特許文献3の参考例3を参照)。
また、あるいは、フェブキソスタットのC晶は、固体15N-NMRにおいて、210ppm及び282ppmに鋭いシングルピークを有する結晶形として、または、固体13C-NMRにおいて、約20ppmにほぼ等価なトリプレットピークを有する結晶形として当業者が容易に特定可能な物質である(特許文献3の参考例3を参照)。
特許文献2に開示されるように、フェブキソスタットについては、A晶、B晶、C晶、D晶、及びG晶(BH晶)の存在が知られている。同公報におけるこれらの結晶について開示の全てを参照により本明細書の開示として含める。一般的には、A晶については同公報の図2に示される粉末X線回折チャートにおける2本の高強度ピークの2θのいずれか又は両方(12.80°及び/又は7.18°)、B晶については同公報の図3に示される粉末X線回折チャートにおける2本の高強度ピークの2θのいずれか又は両方(11.50°及び/又は15.76°)、D晶については同公報の図5に示される粉末X線回折チャートにおける4本の高強度ピークの2θのいずれか1つ又は2つ以上(8.32°、9.68°、12.92°及び17.34°) 、G晶については同公報の図6に示される粉末X線回折チャートにおける5本の高強度ピークの2θのいずれか1つ又は2つ以上(6.86°、8.36°、9.60°、11.76°及び/又は15.94°)をそれぞれ特徴的ピークとして利用することができる。一般的には、A晶、B晶、D晶、及びG晶についての上記の高強度ピークのいずれの位置にもピークが検出されず、13.36°及び/又は15.52°の位置に高強度のピークが検出される場合にはC晶として同定することができる。なお、粉末X線回折チャートにおける2θの測定誤差は一般的には0.2°以下程度である。
さらに、フェブキソスタットのC晶は、好ましくは約200℃~約203℃(例えば、200℃~203℃)、より好ましくは約201℃~約202℃(例えば、201℃~202℃)にのみ単一のピークを有する示差走査熱量測定スペクトルを示すC晶である(図6及び図7)。
本発明で使用されるフェブキソスタットC晶は、好ましくは、フェブキソスタットの小型化されたC晶(以下、小型化C晶などと称す)又は小型化されたC晶の微粉化物であり得る。また、本発明で製造されるフェブキソスタットC晶は、好ましくは、フェブキソスタットの小型化されたC晶(以下、小型化C晶などと称す)又は小型化されたC晶の微粉化物であり得る。
一般的には、フェブキソスタットの小型化C晶、及びその微粉化物に含まれる非晶質体、A晶、B晶、D晶又はG晶の割合は約7質量%以下、好ましくは約5質量%以下、より好ましくは約3質量%以下、さらに好ましくは約1%以下、さらにより好ましくは約0.1%以下、もっとも好ましくは実質的に0%である。なお、フェブキソスタットの小型化C晶、及びその微粉化物に他の結晶形(A晶、B晶、D晶、及びG晶)が混入していないことは、例えば、C晶粉砕物の粉末X線回折チャートにおいてA晶、B晶、D晶、及びG晶の高強度ピークがいずれも検出されないことにより確認することができる。
フェブキソスタットの小型化C晶とは、長軸の長さが約200 μm以下であるC晶を言い、好ましくは約 100 μm以下、より好ましくは約50 μm以下、さらに好ましくは約30μm以下、さらにより好ましくは約 20 μm以下、もっとも好ましくは約10 μm以下であるC晶を言う。
フェブキソスタットの小型化C晶の粒度は、積算粒度分布(体積基準)が50%となる粒径(D50またはメディアン径)が約100μm以下、好ましくは約50μm以下、より好ましくは約20μm以下、さらに好ましくは約10μm以下、よりさらに好ましくは約5μm以下、もっとも好ましくは約3.6μm以下であり、積算粒度分布(体積基準)が90%となる粒径(D90)が約200μm以下、好ましくは約100μm以下、より好ましくは約50μm以下、さらに好ましくは約20μm以下、もっとも好ましくは約10μm以下である。
フェブキソスタットの小型化C晶は、積算粒度分布(体積基準)が50%となる粒径(D50またはメディアン径)が約21μm以下、及び/又は、積算粒度分布(体積基準)が90%となる粒径(D90)が74μm以下の小型化C晶が得られるのであれば特に限定されず、いかなる手段を採用しても良いが、上記のとおり、粉砕後のC晶粉砕物が実質的に非晶質体を含まない粉砕物であることが好ましいことから、粉砕に際してC晶を実質的に非晶質体化しない手段を採用することが好ましい。
フェブキソスタットの小型化C晶の定容量法による嵩密度は、好ましくは約0.15g/ml以上であり、より好ましくは約0.20 g/ml以上であり、さらに好ましくは約0.25 g/ml以上である。本発明のフェブキソスタットの小型化C晶の定容量法によるタップ密度は、好ましくは約0.20g/ml以上であり、より好ましくは約0.25 g/ml以上であり、さらに好ましくは約0.30 g/ml以上であり、最も好ましくは約0.34 g/ml以上である。
このようなフェブキソスタットの小型化C晶を得るための方法としては、メタノールと混合溶媒以外の溶媒から晶出させることができるが、アセトニトリル、アセトンまたはアセトニトリルとプロパノール等との混合溶媒から晶出させることが望ましく、フェブキソスタットをアセトニトリル又はアセトン中に懸濁して室温で撹拌することがより望ましい。晶出させるための撹拌時間としては約4時間~約16時間が望ましい。本発明の、フェブキソスタットの小型化C晶は、C晶の種晶を加えなくても製造できるが、短時間で確実に製造するためには種晶を加えることが望ましい。C晶の種晶は背景技術で述べた公知の方法により製造することができる。
フェブキソスタットの小型化C晶の日本薬局方第2液に対する溶解速度は、例えば、特許文献6の参考例2、又は本明細書の例16に記載した方法に従って測定することができ、約0.10 mg/cm2/min、好ましくは約0.14 mg/cm2/min以上である。あるいは、フェブキソスタットの小型化C晶の日本薬局方第2液に対する溶解速度は、約0.5mg/ml/min以上、好ましくは、約0.6 mg/ml/min以上である。または、フェブキソスタットの小型化C晶のpH5.5のMcIlvaine緩衝液に対する溶解速度は、約13μg/ml/min以上、好ましくは、約14μg/ml/min以上である。また、フェブキソスタットの小型化C晶の質量当たりの表面積がメタノールと水の混合溶媒から析出したC晶の質量当たりの表面積に比べて、5倍以上増加していることが好ましい。
フェブキソスタットのC晶の微粉化物とは、長径が約100μm以下のC晶を言い、好ましくは約 50 μm以下、より好ましくは約20μm以下、さらに好ましくは約10μm以下、よりさらに好ましくは約 5μm以下、もっとも好ましくは約2μm以下であるC晶を言う。
フェブキソスタットのC晶の微粉化物は、好ましくは結晶全体の約80%以上、さらに好ましくは約90%以上、さらに好ましくは約95%以上、もっとも好ましくは実質的に100%の結晶において長軸の長さが約20μm以下となるような粉砕物として得ることができる。
また、フェブキソスタットのC晶微粉化物は、その長径が約 100μm以下、好ましくは約50 μm以下、より好ましくは約30μm以下、さらに好ましくは約20μm以下、よりさらに好ましくは約10μm以下、もっとも好ましくは約5μm以下である。
フェブキソスタットのC晶の微粉化物の積算粒度分布(体積基準)が50%となる粒径(D50)は、約25μm以下、好ましくは約10μm以下、より好ましくは約7μm以下、さらに好ましくは約5μm以下、よりさらに好ましくは約4μm以下、もっとも好ましくは約3μm以下であり、積算粒度分布(体積基準)が90%となる粒径(D90)が50μm以下、好ましくは約20μm以下、より好ましくは約10μm以下、さらに好ましくは約8μm以下、よりさらに好ましくは約7μm以下、もっとも好ましくは約6μm以下である。
フェブキソスタットのC晶の微粉化物の定容量法による嵩密度は、好ましくは約0.20g/ml以上であり、より好ましくは0.30 g/ml以上であり、さらに好ましくは0.40 g/ml以上である。本発明で使用できるフェブキソスタットのC晶の微粉化物の定容量法によるタップ密度は、好ましくは約0.30g/ml以上であり、より好ましくは0.40 g/ml以上であり、さらに好ましくは0.50 g/ml以上であり、最も好ましくは0.60 g/ml以上である。
フェブキソスタットのC晶の微粉化物を得るための粉砕手段としては、積算粒度分布(体積基準)が50%となる粒径(D50またはメディアン径)が4μm以下、及び/又は、積算粒度分布(体積基準)が90%となる粒径(D90)が8μm以下のC晶の微粉化物が得られるのであれば特に限定されず、いかなる手段を採用しても良いが、上記のとおり、粉砕後のC晶粉砕物が実質的に非晶質体を含まない粉砕物であることが好ましいことから、粉砕に際してC晶を実質的に非晶質体化しない手段を採用することが好ましい。
このような粉砕手段としては、例えば、流体式粉砕(気流式粉砕) または溶媒中における湿式粉砕を採用することができ、流体式粉砕に先立って粗粉砕工程を採用することもでき、乾式粉砕と組み合わせることも可能である。また、積算粒度分布(体積基準)が50%となる粒径(D50またはメディアン径)が4μm以下、及び/又は、積算粒度分布(体積基準)が90%となる粒径(D90)が8μm以下のC晶の微粉化物が得られるのであれば、粉砕手段は不要である。流体式粉砕としては、ジェットミル粉砕またはツインインペラ対向気流乾式粉砕が望ましく、ジェットミル粉砕がより望ましい。
湿式粉砕とは、貧溶媒中に懸濁した結晶に衝撃を加えて粉砕する方法であり、例えば、湿式ボールミル(ビーズミル)では、ジルコニア製容器に材料、液体、ジルコニアボール等の粉砕メディアを入れて、粉砕メディアの衝突によって材料の粉砕を行うことができる。溶媒中で粉砕することから、熱の発生を抑えつつ微粉砕可能である点で優れている粉砕方法であるので、本発明の粉砕手段として用いることができる。
ジェットミル粉砕とは、粉砕したい物を高速気流に乗せて密閉空間に送り込み、気流ごと互いに衝突させることにより微粉砕する粉砕方法である。ジェットミル粉砕は、発熱を抑えつつ瞬時に微粉化できるので、工業生産に適している。ツインインペラ対向気流乾式粉砕(ドライバースト粉砕)とは、密閉された空間内において、近接して向かい合う歯車状の構造物である一対のインペラを互いに逆方向に高速回転させた状態で、一方のインペラの側から粉砕したい物を投入して他方のインペラの側へ送り込み、他方のインペラを通過した後に回収することにより、一対のインペラの間で発生する高速な対向気流中での衝突によって粉砕する装置であり、シャープな粒度分布で微粉砕することができる。これらの流体式粉砕(気流式粉砕)は、安定した粒度分布を与えること、及び非晶質体が生成しにくいためC晶の微粉末中に混入しいくい点で本発明において好ましい粉砕手段である。
気流式粉砕又は湿式粉砕は、通常は室温下で行うことができ、ジェットミルを用いる場合には粉砕圧力を例えば0.5~5 kgf、好ましくは1~3 kgf、供給圧力を1~6 kgf、好ましくは2~4 kgf程度で行えばよい。
粉砕手段として、例えば摩砕を伴う乳鉢やボールミルなどのタンブラー式粉砕機(媒体式)を用いることもできるが、微粉化に限界があり、長時間操作すると粒度分布が悪化し、非晶質体が混入する場合がある。また、ハンマーの高速回転を基本原理とするハンマーミルなどの衝撃式粉砕機(高速回転式)や、その一種であるサンプルミルを使用することもできるが、粉砕を長時間行うと粒度分布が悪化し、非晶質体化及び/又は結晶転移が生じる場合があるので、好ましくなく、衝撃式粉砕機(高速回転式)を用いる場合には短時間に粉砕を完了することが望ましい。
フェブキソスタットのC晶の微粉化物の日本薬局方第2液に対する溶出速度は、例えば、特許文献6の参考例2、又は本明細書の例16に記載した方法に従って測定することができ、約0.10 mg/cm2/min、好ましくは約0.14 mg/cm2/min以上である。あるいは、フェブキソスタットのC晶の微粉化物の日本薬局方第2液に対する溶解速度は、約0.5mg/ml/min以上、好ましくは、約0.6 mg/ml/min以上である。または、フェブキソスタットのC晶の微粉化物のpH5.5のMcIlvaine緩衝液に対する溶解速度は、約13μg/ml/min以上、好ましくは、約14μg/ml/min以上である。また、フェブキソスタットの小型化C晶の質量当たりの表面積がメタノールと水の混合溶媒から析出したC晶の質量当たりの表面積に比べて、5倍以上増加していることが好ましい。
なお、本発明においては、フェブキソスタットのC晶は柱状晶として得られ、フェブキソスタットのC晶の微粉化物は柱状晶の晶癖をとどめない粒状物であることから、以下、柱状晶の長軸も含めて最も長い径を長径と呼び、柱状晶の端部の短径も含めて最も短い径を短径と呼ぶ。
これらの条件を満足するフェブキソスタットのC晶の微粉化物を本発明が提供する、又は本発明で使用する製剤又は試料において特に好ましく使用することができる。
このようにして得たフェブキソスタットの小型化C晶又はその微粉化物を固形成分の有効成分として用いることにより、長期にわたり安定で、かつ溶出速度が顕著に改善し、溶出特性にばらつきを生じない製剤(例えば、固形製剤)を提供することができる。
このようにして得たフェブキソスタットの小型化C晶又はその微粉化物を固形成分の有効成分として用いることにより、長期にわたり安定で、かつ溶出速度が顕著に改善し、溶出特性にばらつきを生じない製剤(例えば、固形製剤)を提供することができる。
本発明が提供する又は本発明で使用する製剤(例えば、固形製剤)は、小型化C晶又はC晶の微粉化物を、有効成分である2-[3-シアノ-4-(2-メチルプロポキシ)フェニル]-4-メチルチアゾール-5-カルボン酸(すなわちフェブキソスタット)の総量の少なくとも30%以上、好ましくは50%以上、より好ましくは70%以上、さらに好ましくは90%以上、よりさらに好ましくは95%以上、もっとも好ましくは好ましくは99%以上の含有量(重量%)で含有することにより、長期にわたり安定で、かつ溶出速度が顕著に改善し、溶出特性にばらつきを生じない製剤であり得る。
好ましい態様によれば、本発明により、G晶を原料としてアセトニトリルから晶出させて製造したフェブキソスタットの小型化C晶又はその微粉化物を含有する固形製剤;示差走査熱量測定で好ましくは約200℃~約203℃、より好ましくは約201℃~約202℃に単一の吸熱ピークを有するフェブキソスタットの小型化C晶又はその微粉化物を含有する固形製剤;及び、錠剤の形態である固形製剤が提供され、使用される。
フェブキソスタットの小型化C晶、及びその微粉化物は、例え、固形製剤中に含まれていたとしても顕微鏡下で観察する手法などの画像解析法により、その形状及び大きさを容易に観測することができる。この手法は例えば錠剤を圧縮成型した後の錠剤中に含まれるC晶粉砕物の様子を観察するために用いることもでき、例えば蛍光顕微鏡下において結晶の長軸の長さや平均長を測定することができる。具体的には、非特許文献9の中ではTEI-6720と呼ばれているフェブキソスタットの蛍光観察については、励起波長314nm、蛍光波長390nmで蛍光観察できることが同文献の1849頁右欄最下行に記載されている。 また、共焦点蛍光顕微鏡を用いて、励起波長405nm、蛍光波長420nm~600nmで観察することにより錠剤中に含まれるフェブキソスタットの結晶の大きさを測定することができ、その結晶がC晶であることは、粉末X線回折スペクトル、固体15N-NMR、顕微ラマンを測定することによって決定することができる。顕微ラマンは、例えば、励起波長785nmSTlineを用い、1695 shift/cm-1のピークを測定することによりその結晶がC晶であると決定することができる。
本発明が提供する又は本発明で使用する製剤(例えば、固形製剤)において、一般的に医薬の製剤化において当業界で汎用される製剤用添加物を1種又は2種以上使用することができる。例えば、乳糖、無水乳糖、結晶セルロース、トウモロコシデンプン、アルファー化デンプン、部分アルファー化デンプン、D-マンニトール、又はリン酸水素カルシウムなどの賦形剤、カルメロースナトリウム、カルメロースカルシウム、低置換度ヒドロキシプロピルセルロース、クロスカルメロースナトリウム、カルボキシメチルスターチナトリウム、又はクロスポビドンなどの崩壊剤、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース、またはポリビニルピロリドンなどの結合剤を用いることができる。賦形剤の使用量は、例えば固形製剤100重量部に対して50~98重量部程度であり、崩壊剤の使用量は、例えば固形製剤100重量部に対して1~25重量部程度であり、結合剤の使用量は、例えば固形製剤100重量部に対して0.5~25重量部程度であるが、これらの量に限定されることはない。必要に応じて、結合剤、滑沢剤、コーティング剤、可塑剤、希釈剤、着色剤、保存剤、防腐剤、又は嬌臭剤等の製剤用添加物を1種又は2種以上用いてもよい。
本発明が提供する、又は本発明で使用する固形製剤の形態は特に限定されないが、錠剤の形態が好ましい。錠剤は、一般的にはC晶粉砕物に賦形剤及び崩壊剤を添加した混合物を圧縮成形することにより製造することができる。例えば、フェブキソスタットの小型化C晶又はその微粉化物を含む上記混合物を直接打錠することにより錠剤を製造することができ、あるいはスラッグマシンやローラーコンパクターなどを用いた乾式造粒により錠剤用顆粒を製造した後にて圧縮成型する方法、又は水やエタノールを用い、必要に応じて結合剤の溶液を用いて湿式造粒により錠剤用顆粒を製造した後に圧縮成型する方法などを採用してもよい。錠剤には必要に応じて糖衣や腸溶コーティングなどのコーティングを施すこともできる。本発明の固形製剤は、カプセル剤、顆粒剤、散剤又はトローチ剤であってもよい。
本発明が提供する、又は本発明で使用する固形製剤は、一般的には一日量として0.8~50 mgとなるように一日あたり1~3回程度の頻度で投与されるように単位投与形態として提供されることが好ましい。本発明の固形製剤は、キサンチンオキシターゼ阻害剤、尿酸低下剤、痛風治療剤、高尿酸血症治療剤、及び慢性腎疾患治療剤として用いることができ、痛風、高尿酸血症、及び慢性腎疾患の予防及び/又は治療に使用することができる。
本発明により、フェブキソスタットの新規結晶多形であるX晶が提供される。X晶は、帯赤白色の結晶性の粉末で、吸湿性はない。
フェブキソスタットのX晶は、1.54オングストロームの波長のCuKα放射線(放射光)を用いた粉末X線回折において、7.7°(例えば7.71°)の回析角にピークを有する結晶として特定され得、好ましくは、7.7°(例えば7.71°)、12.8°(例えば、12.82°)及び13.7°(例えば13.72°)のうち少なくとも1つの回析角にピークを有する結晶として特定され得、より好ましくは、3.3°(例えば、3.33°)、6.7°(例えば、6.74°)、7.7°(例えば、7.70°)、12.8°(例えば、12.82°)、13.4°(例えば、13.40°)、13.7°(例えば、13.72°)、16.3°(例えば、16.29°)、16.8°(例えば、16.80°)、18.2°(例えば、18.21°)、19.1°(例えば、19.12°)、20.0°(例えば、20.04°)、21.1°(例えば、21.11°)、21.8°(例えば、21.79°)、23.8°(例えば、23.82°)、24. 5°(例えば、24.50°)、25.8°(例えば、25.80°)、26.6°(例えば、26.58°)、27.2°(例えば、27.24°)、28.0°(例えば、28.01°)及び30.5°(例えば、30.49°)の回折角から選択される5個以上(例えば、6、7、8、9、10、11、12、13、14、15、16、17、18、19又は20個)の回析角にピークを有する結晶として特定され得る。好ましくは、6.7°(例えば、6.74°)、7.7°(例えば、7.70°)、12.8°(例えば、12.82°)、13.4°(例えば、13.40°)及び13.7°(例えば、13.72°)の回析角にピークを有する結晶として特定され得る。
フェブキソスタットのX晶は、赤外吸収スペクトルにおいて、約820cm-1(例えば、819~821 cm-1)、約1281cm-1(例えば、1280~1282 cm-1)、約1423cm-1(例えば、1422~1424cm-1)、約1518cm-1(例えば、1517~1519cm-1)及び約2542cm-1(例えば、2541~2543cm-1)のピークを有する。
さらに、フェブキソスタットのX晶は、示差走査熱量測定で約211℃(例えば、210℃~212℃、好ましくは、211℃~212℃)に単一のピークを有する。
よって、本発明により、フェブキソスタットのX晶の検出又は定量方法であって、フェブキソスタットを含む試料を示差走査熱量測定する工程、及び約211℃に現れる吸熱ピーク量(J/g)を測定する工程、を含む方法が提供される。
また、上記のようにフェブキソスタットの非晶質体の示差走査熱量を測定すると、約211℃(例えば、210℃~212℃、好ましくは、211℃~212℃)にピークが出現する。この現象は、フェブキソスタットの非晶質体が最終的にX晶に転移し、、X晶の吸熱ピークが観察されていると考えられる。
よって、本発明により、フェブキソスタットの非晶質体の検出又は定量方法であって、フェブキソスタットを含む試料を示差走査熱量測定する工程、及び約211℃に現れる吸熱ピーク量(J/g)を測定する工程、を含む方法が提供される。実施例に記載のように、本発明の方法は、感度良く非晶質体を検出でき、C晶に0.005%の非晶質体が含まれていても検出することができる。
X晶は、非晶質体を170℃以上(例えば、170℃以上210℃以下、180℃以上200℃以下)に加熱し、乾燥条件下で徐々に室温まで温度を下げることにより調製できる。例えば、非晶質体を2~4時間、180℃以上200℃以下に加熱し、シリカゲルのあるデシケーター内で室温まで放冷することにより調製できる。本明細書において、室温は、1~30℃である。
よって、本発明により、フェブキソスタットのX晶の製造方法であって、非晶質体を170℃以上210℃以下に加熱する工程、及び得られた試料を乾燥条件下で徐々に温度を室温まで下げる工程を含む方法を提供する。
フェブキソスタットのX晶は、1.54オングストロームの波長のCuKα放射線(放射光)を用いた粉末X線回折において、7.7°(例えば7.71°)の回析角にピークを有する結晶として特定され得、好ましくは、7.7°(例えば7.71°)、12.8°(例えば、12.82°)及び13.7°(例えば13.72°)のうち少なくとも1つの回析角にピークを有する結晶として特定され得、より好ましくは、3.3°(例えば、3.33°)、6.7°(例えば、6.74°)、7.7°(例えば、7.70°)、12.8°(例えば、12.82°)、13.4°(例えば、13.40°)、13.7°(例えば、13.72°)、16.3°(例えば、16.29°)、16.8°(例えば、16.80°)、18.2°(例えば、18.21°)、19.1°(例えば、19.12°)、20.0°(例えば、20.04°)、21.1°(例えば、21.11°)、21.8°(例えば、21.79°)、23.8°(例えば、23.82°)、24. 5°(例えば、24.50°)、25.8°(例えば、25.80°)、26.6°(例えば、26.58°)、27.2°(例えば、27.24°)、28.0°(例えば、28.01°)及び30.5°(例えば、30.49°)の回折角から選択される5個以上(例えば、6、7、8、9、10、11、12、13、14、15、16、17、18、19又は20個)の回析角にピークを有する結晶として特定され得る。好ましくは、6.7°(例えば、6.74°)、7.7°(例えば、7.70°)、12.8°(例えば、12.82°)、13.4°(例えば、13.40°)及び13.7°(例えば、13.72°)の回析角にピークを有する結晶として特定され得る。
フェブキソスタットのX晶は、赤外吸収スペクトルにおいて、約820cm-1(例えば、819~821 cm-1)、約1281cm-1(例えば、1280~1282 cm-1)、約1423cm-1(例えば、1422~1424cm-1)、約1518cm-1(例えば、1517~1519cm-1)及び約2542cm-1(例えば、2541~2543cm-1)のピークを有する。
さらに、フェブキソスタットのX晶は、示差走査熱量測定で約211℃(例えば、210℃~212℃、好ましくは、211℃~212℃)に単一のピークを有する。
よって、本発明により、フェブキソスタットのX晶の検出又は定量方法であって、フェブキソスタットを含む試料を示差走査熱量測定する工程、及び約211℃に現れる吸熱ピーク量(J/g)を測定する工程、を含む方法が提供される。
また、上記のようにフェブキソスタットの非晶質体の示差走査熱量を測定すると、約211℃(例えば、210℃~212℃、好ましくは、211℃~212℃)にピークが出現する。この現象は、フェブキソスタットの非晶質体が最終的にX晶に転移し、、X晶の吸熱ピークが観察されていると考えられる。
よって、本発明により、フェブキソスタットの非晶質体の検出又は定量方法であって、フェブキソスタットを含む試料を示差走査熱量測定する工程、及び約211℃に現れる吸熱ピーク量(J/g)を測定する工程、を含む方法が提供される。実施例に記載のように、本発明の方法は、感度良く非晶質体を検出でき、C晶に0.005%の非晶質体が含まれていても検出することができる。
X晶は、非晶質体を170℃以上(例えば、170℃以上210℃以下、180℃以上200℃以下)に加熱し、乾燥条件下で徐々に室温まで温度を下げることにより調製できる。例えば、非晶質体を2~4時間、180℃以上200℃以下に加熱し、シリカゲルのあるデシケーター内で室温まで放冷することにより調製できる。本明細書において、室温は、1~30℃である。
よって、本発明により、フェブキソスタットのX晶の製造方法であって、非晶質体を170℃以上210℃以下に加熱する工程、及び得られた試料を乾燥条件下で徐々に温度を室温まで下げる工程を含む方法を提供する。
以下、本発明を実施例によりさらに具体的に説明するが、本発明の範囲は下記の実施例に限定されることはない。
例1:フェブキソスタットエチルエステルの製造
2-[3-ホルミル-4-(2-メチルプロポキシ)フェニル]-4-メチルチアゾール-5-カルボン酸エチル(10.0 g, 28.8 mmol)を90%ギ酸(70 ml)に懸濁後、塩酸ヒドロキシルアミン(2.41 g, 34.7 mmol)及びギ酸ナトリウム(3.14 g, 46.2 mmol)を加え、4時間加熱還流した。水を加え、析出した結晶をろ取後、水で洗浄し、表題化合物の粗結晶(ウェット状態)を得た。この粗結晶をメタノールに懸濁させ、室温で撹拌後、結晶をろ取し、メタノールで洗浄した。更に得られた結晶をジクロロメタンに溶出し、不溶物をろ過後、メタノールを加え撹拌した。析出した結晶をろ取し、メタノールで洗浄後、室温で減圧乾燥して表題化合物(8.31 g, 収率83.9%)を白色結晶性粉末として得た。
2-[3-ホルミル-4-(2-メチルプロポキシ)フェニル]-4-メチルチアゾール-5-カルボン酸エチル(10.0 g, 28.8 mmol)を90%ギ酸(70 ml)に懸濁後、塩酸ヒドロキシルアミン(2.41 g, 34.7 mmol)及びギ酸ナトリウム(3.14 g, 46.2 mmol)を加え、4時間加熱還流した。水を加え、析出した結晶をろ取後、水で洗浄し、表題化合物の粗結晶(ウェット状態)を得た。この粗結晶をメタノールに懸濁させ、室温で撹拌後、結晶をろ取し、メタノールで洗浄した。更に得られた結晶をジクロロメタンに溶出し、不溶物をろ過後、メタノールを加え撹拌した。析出した結晶をろ取し、メタノールで洗浄後、室温で減圧乾燥して表題化合物(8.31 g, 収率83.9%)を白色結晶性粉末として得た。
下記の高速液体クロマトグラフィー (HPLC)条件における原料化合物及び表題化合物の保持時間はそれぞれ約9.7 min、約13 minであった。
検出器:紫外線吸光光度計(測定波長:320 nm)
カラム:L-column ODS 4.6×250 mm
移動相:50 mM KH2PO4/アセトニトリル=1/3
流量:1 ml/min
カラム温度:40℃
検出器:紫外線吸光光度計(測定波長:320 nm)
カラム:L-column ODS 4.6×250 mm
移動相:50 mM KH2PO4/アセトニトリル=1/3
流量:1 ml/min
カラム温度:40℃
例2:フェブキソスタットのG晶の製造
例1で得たフェブキソスタットエチルエステル(8.00 g, 23.2 mmol)をエタノール(32 ml)及びテトラヒドロフラン(32 ml)の混合溶液に懸濁後、水酸化カリウム(1.84 g, 27.9 mmol)の水(1.84 ml)/エタノール(16 ml)溶液を加え、50 ℃で3.5時間加熱撹拌した。水を加え、不溶物をろ過後、ろ液に1 mol/L塩酸を加えた。析出した結晶をろ取し、水で洗浄後、40℃で一晩減圧乾燥した。表題化合物の湿結晶7.90 g(理論収量7.77g)を得た。粉末X線回折スペクトルを測定して、この結晶がG晶であることを確認した(図1)。
例1で得たフェブキソスタットエチルエステル(8.00 g, 23.2 mmol)をエタノール(32 ml)及びテトラヒドロフラン(32 ml)の混合溶液に懸濁後、水酸化カリウム(1.84 g, 27.9 mmol)の水(1.84 ml)/エタノール(16 ml)溶液を加え、50 ℃で3.5時間加熱撹拌した。水を加え、不溶物をろ過後、ろ液に1 mol/L塩酸を加えた。析出した結晶をろ取し、水で洗浄後、40℃で一晩減圧乾燥した。表題化合物の湿結晶7.90 g(理論収量7.77g)を得た。粉末X線回折スペクトルを測定して、この結晶がG晶であることを確認した(図1)。
例3:アセトニトリルを用いた、フェブキソスタットのC晶の製造。
上述のG晶の一部を採取して、これにC晶の種晶(Journal of Chemical Engineering of Japan, 35, pp.1116-1122, 2002の「2.3. Crystallization」の項に記載された結晶化方法により製造して粉末X線回折スペクトル及び赤外吸収スペクトルにより同定したもの、19.5 mg)を添加し、アセトニトリル(117 ml)を加え、更にC晶の種晶(19.5 mg)を追加した。室温で一晩撹拌後、結晶をろ取し、アセトニトリルで洗浄した。得られた結晶を一晩風乾後、80℃で48時間減圧乾燥して表題化合物のC晶(6.69 g, 収率91%)を白色結晶性粉末として得た(このC晶を「アセトニトリルC晶」と呼ぶ)。
得られた白色結晶性粉末に含まれる不純物は上記例1のHPLC条件のピーク面積比において個々の不純物の最大で0.1以下、総量で0.5%以下であり、白色結晶性粉末のピーク面積比は99.8%であった。
上述のG晶の一部を採取して、これにC晶の種晶(Journal of Chemical Engineering of Japan, 35, pp.1116-1122, 2002の「2.3. Crystallization」の項に記載された結晶化方法により製造して粉末X線回折スペクトル及び赤外吸収スペクトルにより同定したもの、19.5 mg)を添加し、アセトニトリル(117 ml)を加え、更にC晶の種晶(19.5 mg)を追加した。室温で一晩撹拌後、結晶をろ取し、アセトニトリルで洗浄した。得られた結晶を一晩風乾後、80℃で48時間減圧乾燥して表題化合物のC晶(6.69 g, 収率91%)を白色結晶性粉末として得た(このC晶を「アセトニトリルC晶」と呼ぶ)。
得られた白色結晶性粉末に含まれる不純物は上記例1のHPLC条件のピーク面積比において個々の不純物の最大で0.1以下、総量で0.5%以下であり、白色結晶性粉末のピーク面積比は99.8%であった。
例4:メタノールと水の混合溶媒を用いた、フェブキソスタットのC晶の製造。
フェブキソスタットのG晶(20.0 g)をメタノール/水(1050 ml / 450 ml)に懸濁後、フェブキソスタットのC晶の種晶(50 mg)を加え、50℃で12時間加熱撹拌した。室温まで放冷後、析出物を濾過し、80℃で16時間減圧乾燥した。得られた粉末は粉末X線回折スペクトル、赤外分光スペクトルよりフェブキソスタットのC晶であることを確認した(このC晶を「メタノール水C晶」と呼ぶ)。
フェブキソスタットのG晶(20.0 g)をメタノール/水(1050 ml / 450 ml)に懸濁後、フェブキソスタットのC晶の種晶(50 mg)を加え、50℃で12時間加熱撹拌した。室温まで放冷後、析出物を濾過し、80℃で16時間減圧乾燥した。得られた粉末は粉末X線回折スペクトル、赤外分光スペクトルよりフェブキソスタットのC晶であることを確認した(このC晶を「メタノール水C晶」と呼ぶ)。
例5
例3で得たアセトニトリルC晶(190 g)をジェットミル(100型/パウレック社製)で粉砕した。粉砕圧力1kgf・供給圧力2kgf、粉砕圧力2kgf・供給圧力3kgf及び粉砕圧力3kgf・供給圧力4kgfのいずれの条件でも良好に微粉化された。
例3で得たアセトニトリルC晶(190 g)をジェットミル(100型/パウレック社製)で粉砕した。粉砕圧力1kgf・供給圧力2kgf、粉砕圧力2kgf・供給圧力3kgf及び粉砕圧力3kgf・供給圧力4kgfのいずれの条件でも良好に微粉化された。
例3で得た未粉砕のアセトニトリルC晶のアセトニトリル残留量及び例5で得たアセトニトリルC晶のジェットミル粉砕物中のアセトニトリル残留量を測定した。測定は、ガスクロマトグラフィにより行った。
例3で得た未粉砕のアセトニトリルC晶のアセトニトリル残留量は200ppmであった。また、例5で得たアセトニトリルC晶のジェットミル粉砕物中のアセトニトリル残留量はいずれも約100 ppmであった。なお、1998年に厚生省から通知された「医薬品の残留溶媒ガイドラインについて」におけるアセトニトリル残留量の許容濃度は410ppmであるので、いずれの場合においても、許容濃度以下の値を示したが、特にジェットミル粉砕物は許容濃度の4分の1の濃度であるので、許容限度を超えるリスクがかなり低くなる点で、大きなメリットがある。
例3で得た未粉砕のアセトニトリルC晶のアセトニトリル残留量は200ppmであった。また、例5で得たアセトニトリルC晶のジェットミル粉砕物中のアセトニトリル残留量はいずれも約100 ppmであった。なお、1998年に厚生省から通知された「医薬品の残留溶媒ガイドラインについて」におけるアセトニトリル残留量の許容濃度は410ppmであるので、いずれの場合においても、許容濃度以下の値を示したが、特にジェットミル粉砕物は許容濃度の4分の1の濃度であるので、許容限度を超えるリスクがかなり低くなる点で、大きなメリットがある。
ヘッドスペース装置の操作条件
バイアル内平衡温度:80℃
バイアル内平衡時間:10分
注入ライン温度:150℃
キャリヤーガス:ヘリウム
加圧時間:2分
試料注入量:0.5mL
バイアル内平衡温度:80℃
バイアル内平衡時間:10分
注入ライン温度:150℃
キャリヤーガス:ヘリウム
加圧時間:2分
試料注入量:0.5mL
ガスクロマトグラフィーの操作条件
検出器:水素炎イオン化検出器
カラム:内径0.53mm、長さ30mのフューズドシリカ管の内面にガスクロマトグラフ用6%シアノプロピルフェニル-94%ジメチルシリコーンポリマーを厚さ3.0μmで被覆した市販のカラムを用いた。
カラム温度:40℃を5分間、その後、毎分8℃で160℃まで昇温し、160℃で5分間保持する。
検出器温度:250℃
キャリヤーガス:ヘリウム
流量:エタノールの保持時間が3~4分になるように調整する。
検出器:水素炎イオン化検出器
カラム:内径0.53mm、長さ30mのフューズドシリカ管の内面にガスクロマトグラフ用6%シアノプロピルフェニル-94%ジメチルシリコーンポリマーを厚さ3.0μmで被覆した市販のカラムを用いた。
カラム温度:40℃を5分間、その後、毎分8℃で160℃まで昇温し、160℃で5分間保持する。
検出器温度:250℃
キャリヤーガス:ヘリウム
流量:エタノールの保持時間が3~4分になるように調整する。
測定機器
SHIMADZU社製ガスクロマトグラフ装置:GC-4000
TELEDYNE-TEKMAR社製ヘッドスペースオートサンプラー:HT-3
SHIMADZU社製ガスクロマトグラフ装置:GC-4000
TELEDYNE-TEKMAR社製ヘッドスペースオートサンプラー:HT-3
例6:粉末X線回折スペクトルの測定
試料約100 mgを標準的試料ホルダーに緩く詰め込み、スライドガラスで平滑にし、ブルカーエイエックスエス(Bruker AXS)卓上型X線回折装置D2 PHASER(CuKα放射線)を用いて回折パターンを測定した。回折パターンを管電圧=30kV、管電流=10mA、ロックドカップル走査(locked-couple scan)、スリット0.6mm、スキャッター0.5mm、2θ範囲=4から40°、ステップサイズ=0.02°、及びステップ時間=0.5秒として収集した。DIFFRAC.SUITE version2 2.2.59.0及びDUFFRAC.EVA version 2.1の各ソフトウェアをデータ収集及び分析のために用いた。
粉末X線回折スペクトルを測定した結果を図1~4に示す。例2で得たG晶の粉末X線回折スペクトルを図1に、例4で得た未粉砕のメタノール水C晶の粉末X線回折スペクトルを図2に、例3で得た未粉砕のアセトニトリルC晶の粉末X線回折スペクトルを図3に、例5で得たアセトニトリルC晶のジェットミル粉砕物(粉砕圧力3kgf、供給圧力4kgf)の粉末X線回折スペクトルを図4に夫々示す。未粉砕のアセトニトリルC晶(図3)及びアセトニトリルC晶のジェットミル粉砕物(図4)は、いずれも、6.62°、13.36°、15.52°の回折角にピークを有するC晶に特徴的な粉末X線回折スペクトルを示し、他の結晶形や非晶質体の混入は認められなかった。なお、例4で得た未粉砕のメタノール水C晶についても、同様に、6.62°、13.36°、15.52°の回折角にピークを有するC晶の粉末X線回折スペクトルを示し、他の結晶形の混入は認められなかった。
試料約100 mgを標準的試料ホルダーに緩く詰め込み、スライドガラスで平滑にし、ブルカーエイエックスエス(Bruker AXS)卓上型X線回折装置D2 PHASER(CuKα放射線)を用いて回折パターンを測定した。回折パターンを管電圧=30kV、管電流=10mA、ロックドカップル走査(locked-couple scan)、スリット0.6mm、スキャッター0.5mm、2θ範囲=4から40°、ステップサイズ=0.02°、及びステップ時間=0.5秒として収集した。DIFFRAC.SUITE version2 2.2.59.0及びDUFFRAC.EVA version 2.1の各ソフトウェアをデータ収集及び分析のために用いた。
粉末X線回折スペクトルを測定した結果を図1~4に示す。例2で得たG晶の粉末X線回折スペクトルを図1に、例4で得た未粉砕のメタノール水C晶の粉末X線回折スペクトルを図2に、例3で得た未粉砕のアセトニトリルC晶の粉末X線回折スペクトルを図3に、例5で得たアセトニトリルC晶のジェットミル粉砕物(粉砕圧力3kgf、供給圧力4kgf)の粉末X線回折スペクトルを図4に夫々示す。未粉砕のアセトニトリルC晶(図3)及びアセトニトリルC晶のジェットミル粉砕物(図4)は、いずれも、6.62°、13.36°、15.52°の回折角にピークを有するC晶に特徴的な粉末X線回折スペクトルを示し、他の結晶形や非晶質体の混入は認められなかった。なお、例4で得た未粉砕のメタノール水C晶についても、同様に、6.62°、13.36°、15.52°の回折角にピークを有するC晶の粉末X線回折スペクトルを示し、他の結晶形の混入は認められなかった。
例7:示差走査熱量スペクトルの測定
試料約2 mgを試料容器(アルミニウム製、φ5×2.5mm、50μL)に充てんし、リガク(Rigaku)Therm plus EVOシリーズ高感度示差走査熱量計DSC8230を用いて、加熱速度10℃/分、大気圧下で示差走査熱量(DSC)を測定した。Rigaku Thermo plus EVO version 1.006-6ソフトウェアをデータ収集及び分析のために用いた。
示差走査熱量スペクトルを測定した結果を図5、図6及び図7に示す。例4で得た未粉砕のメタノール水C晶(図5)、例3で得た未粉砕のアセトニトリルC晶(図6)、例5で得たジェットミル粉砕(粉砕圧力3kgf、供給圧力4kgf)後のアセトニトリルC晶(図7)のいずれも、約201℃~約202℃に単一ピークを示したことから、他の結晶形や非晶質体の混入は認められなかった。例4で得た未粉砕のメタノール水C晶についても同様に、約201℃~約202℃に単一ピークを示し、他の結晶形や非晶質体の混入は認められなかった。
試料約2 mgを試料容器(アルミニウム製、φ5×2.5mm、50μL)に充てんし、リガク(Rigaku)Therm plus EVOシリーズ高感度示差走査熱量計DSC8230を用いて、加熱速度10℃/分、大気圧下で示差走査熱量(DSC)を測定した。Rigaku Thermo plus EVO version 1.006-6ソフトウェアをデータ収集及び分析のために用いた。
示差走査熱量スペクトルを測定した結果を図5、図6及び図7に示す。例4で得た未粉砕のメタノール水C晶(図5)、例3で得た未粉砕のアセトニトリルC晶(図6)、例5で得たジェットミル粉砕(粉砕圧力3kgf、供給圧力4kgf)後のアセトニトリルC晶(図7)のいずれも、約201℃~約202℃に単一ピークを示したことから、他の結晶形や非晶質体の混入は認められなかった。例4で得た未粉砕のメタノール水C晶についても同様に、約201℃~約202℃に単一ピークを示し、他の結晶形や非晶質体の混入は認められなかった。
同様に、例5においてジェットミル粉砕の条件を変えて得られたアセトニトリルC晶のジェットミル粉砕物の示差走査熱量の測定結果のまとめを表1に示す。ジェットミル粉砕条件は、粉砕圧力1kgf・供給圧力2kgf、粉砕圧力2kgf・供給圧力3kgf及び粉砕圧力3kgf・供給圧力4kgfの3条件である。いずれの条件で粉砕しても、約201℃~約202℃に単一の吸熱ピークを示したことから、非晶質体や他の結晶形を含まない純粋なC晶であることが確認できた。
例8:粒度分布の測定
試料約2 mgを0.2% Aerosol OTを含むn-ヘキサンに添加し、30秒間超音波を照射して分散した。この分散液を用いて、島津(Shimadzu)レーザ回折式粒子径分布測定装置SALD‐2200により粒度分布(D50及びD90)を測定した。Shimadzu WingSALD-2200 version 1.02ソフトウェアをデータ収集及び分析のために用いた。
図8は、未粉砕のメタノール水C晶の粒度分布を示す図およびデータである。未粉砕のアセトニトリルC晶のD50は36.819μm、D90は133.348μmであった。
図9は、未粉砕のアセトニトリルC晶の粒度分布を示す図およびデータである。未粉砕のアセトニトリルC晶のD50は20.483μm、D90は73.755μmであった。
図10は、アセトニトリルC晶のジェットミル粉砕物(粉砕圧力3kgf・供給圧力4kgf)の粒度分布を示す図およびデータである。粉砕圧力3kgf・供給圧力4kgfでジェットミル粉砕したアセトニトリルC晶のD50は3.637μm、D90は7.346μmであった。これらの結果から、未粉砕のアセトニトリルC晶に比べて5分の1以下のD50、及び、10分の1以下のD90を示すこと、並びに、1μm~10μmの粒子径の間に90%以上の粒子が分布するより均一な粒度分布を示すことがわかった。
試料約2 mgを0.2% Aerosol OTを含むn-ヘキサンに添加し、30秒間超音波を照射して分散した。この分散液を用いて、島津(Shimadzu)レーザ回折式粒子径分布測定装置SALD‐2200により粒度分布(D50及びD90)を測定した。Shimadzu WingSALD-2200 version 1.02ソフトウェアをデータ収集及び分析のために用いた。
図8は、未粉砕のメタノール水C晶の粒度分布を示す図およびデータである。未粉砕のアセトニトリルC晶のD50は36.819μm、D90は133.348μmであった。
図9は、未粉砕のアセトニトリルC晶の粒度分布を示す図およびデータである。未粉砕のアセトニトリルC晶のD50は20.483μm、D90は73.755μmであった。
図10は、アセトニトリルC晶のジェットミル粉砕物(粉砕圧力3kgf・供給圧力4kgf)の粒度分布を示す図およびデータである。粉砕圧力3kgf・供給圧力4kgfでジェットミル粉砕したアセトニトリルC晶のD50は3.637μm、D90は7.346μmであった。これらの結果から、未粉砕のアセトニトリルC晶に比べて5分の1以下のD50、及び、10分の1以下のD90を示すこと、並びに、1μm~10μmの粒子径の間に90%以上の粒子が分布するより均一な粒度分布を示すことがわかった。
同様に、例5においてジェットミル粉砕の条件を変えて得られたアセトニトリルC晶のジェットミル粉砕物の粒度分布の測定結果のまとめを表2に示す。ジェットミル粉砕条件は、粉砕圧力1kgf・供給圧力2kgf、粉砕圧力2kgf・供給圧力3kgf及び粉砕圧力3kgf・供給圧力4kgfの3条件である。いずれの条件で粉砕しても、D90が10μm未満である十分に小さい粒度を示したが、これら3条件の中では、粉砕圧力3kgf・供給圧力4kgfの条件でジェットミル粉砕した場合に最も小さい粒子径の粉砕物が得られることが確認できた。
例9:乳鉢による粉砕
例3で得られたアセトニトリルC晶の未粉砕物(5 g)を磁製乳鉢(直径13 cm)、磁製乳棒(長さ15 cm、重量154 g)で強く粉砕し、経時的に粉砕物のサンプリングを行い、示差走査熱量測定および粒度分布を測定した(表3)。
示差走査熱量測定の結果、乳鉢で粉砕すると、10分後には約210℃に吸熱ピークが現れることから、C晶以外の結晶形への転移が認められた。また、30分後には、150℃以下に発熱ピークが現れたことから、非晶質体の混入も確認された。さらに、30分間にわたって乳鉢粉砕したアセトニトリルC晶の粒度は、10分間にわたって乳鉢粉砕したアセトニトリルC晶の粒度に比べて、明らかに粒子径が増大していた。メノウ乳鉢およびメノウ乳棒によって粉砕を行っても同様の結果が得られた。
例3で得られたアセトニトリルC晶の未粉砕物(5 g)を磁製乳鉢(直径13 cm)、磁製乳棒(長さ15 cm、重量154 g)で強く粉砕し、経時的に粉砕物のサンプリングを行い、示差走査熱量測定および粒度分布を測定した(表3)。
示差走査熱量測定の結果、乳鉢で粉砕すると、10分後には約210℃に吸熱ピークが現れることから、C晶以外の結晶形への転移が認められた。また、30分後には、150℃以下に発熱ピークが現れたことから、非晶質体の混入も確認された。さらに、30分間にわたって乳鉢粉砕したアセトニトリルC晶の粒度は、10分間にわたって乳鉢粉砕したアセトニトリルC晶の粒度に比べて、明らかに粒子径が増大していた。メノウ乳鉢およびメノウ乳棒によって粉砕を行っても同様の結果が得られた。
例10:ボールミルによる粉砕
例3で得られたアセトニトリルC晶の未粉砕物(15 g)を遊星ボールミル(PM100/Retsch社製 :125 ml容器/20 mmボール6個/回転数400 rpm)で粉砕し、経時的に粉砕物のサンプリングを行い、示差走査熱量測定および粒度分布を測定した(表4)。
示差走査熱量測定の結果、ボールミル粉砕すると約210℃の吸熱ピークは30分後~60分後で最大になったこと、及び、150℃以下に現れる発熱ピークは60分間の間、ボールミルによる粉砕時間に依存して増え続けたこと、及び、60分後にはC晶に特徴的な約201℃~約202℃付近に現れる吸熱ピークが消失することから、ボールミル粉砕によって、C晶が消失して非晶質体化したことが確認できた。さらに、粒度分布もボールミルによる粉砕時間に依存して増大し続けたことがわかった。なお、60分間ボールミルで粉砕したアセトニトリルC晶を「アセトニトリルC晶のボールミル粉砕物」ということにする。
例3で得られたアセトニトリルC晶の未粉砕物(15 g)を遊星ボールミル(PM100/Retsch社製 :125 ml容器/20 mmボール6個/回転数400 rpm)で粉砕し、経時的に粉砕物のサンプリングを行い、示差走査熱量測定および粒度分布を測定した(表4)。
示差走査熱量測定の結果、ボールミル粉砕すると約210℃の吸熱ピークは30分後~60分後で最大になったこと、及び、150℃以下に現れる発熱ピークは60分間の間、ボールミルによる粉砕時間に依存して増え続けたこと、及び、60分後にはC晶に特徴的な約201℃~約202℃付近に現れる吸熱ピークが消失することから、ボールミル粉砕によって、C晶が消失して非晶質体化したことが確認できた。さらに、粒度分布もボールミルによる粉砕時間に依存して増大し続けたことがわかった。なお、60分間ボールミルで粉砕したアセトニトリルC晶を「アセトニトリルC晶のボールミル粉砕物」ということにする。
また、アセトニトリルC晶を60分間ボールミル粉砕した後の粉砕物の粉末X線回折スペクトル(図11)、赤外分光スペクトル(図12)、示差走査熱量測定スペクトル(図13)を示す。
アセトニトリルC晶のボールミル粉砕物の示差走査熱量測定スペクトル(表4、図13)では、C晶に特徴的な約201℃~約203℃の吸熱ピークが消失しているとともに、84.5℃付近に発熱ピークがあることから、C晶が消失していること及び非晶質が生じていることがわかった。また、粉末X線回折スペクトル(図11)は明らかに平坦化した非晶質体に特徴的なスペクトルを示していた。これらの結果から、アセトニトリルC晶を60分間ボールミル粉砕した粉砕物の粉末は、実質的に非晶質体のみからなると考えられた。
アセトニトリルC晶のボールミル粉砕物の示差走査熱量測定スペクトル(表4、図13)では、C晶に特徴的な約201℃~約203℃の吸熱ピークが消失しているとともに、84.5℃付近に発熱ピークがあることから、C晶が消失していること及び非晶質が生じていることがわかった。また、粉末X線回折スペクトル(図11)は明らかに平坦化した非晶質体に特徴的なスペクトルを示していた。これらの結果から、アセトニトリルC晶を60分間ボールミル粉砕した粉砕物の粉末は、実質的に非晶質体のみからなると考えられた。
アセトニトリルC晶のボールミル粉砕物の赤外分光スペクトル(図12)は、非晶質体に特徴的な位置にピークが現れていた(特許3547707号の図16を参照)。さらに、示差走査熱量測定スペクトル(図13)では、未粉砕のアセトニトリルC晶では約201℃~約202℃にのみ単一の吸熱ピークを有していたのに対して、ボールミル粉砕によって約201℃~約202℃の吸熱ピークが消失するとともに、アセトニトリルC晶のボールミル粉砕物では、約210℃に強い吸熱ピークが現れるとともに、150℃以下の位置、具体的には、図13の約84.6℃近辺の位置に発熱ピークが現れていた。
例11:サンプルミルによる粉砕、および、ハンマーミルによる粉砕
例3で得られたC晶(15 g)を、ハンマーの高速回転による衝撃で粉砕を行うサンプルミル(SM-1/アズワン社製)で粉砕し、経時的に粉砕物のサンプリングを行い、示差走査熱量測定および粒度分布を測定した(表5)。
示差走査熱量測定の結果、サンプルミル粉砕によって150℃以下の発熱ピークは生じなかったものの、アセトニトリルC晶が有さない約210℃の吸熱ピークは粉砕時間に依存して増大し続け240分後には-44.106 J/gに達したことから、サンプルミル粉砕によって、他の結晶形への転移が進行したことがわかった。さらに、粒度分布も、未粉砕のアセトニトリルC晶のD50(20.483μm)及びD90(73.755μm)に比べて細かくはなったものの、サンプルミル粉砕を240分間行った後の粒度分布は、D50で11.281μm、D90で29.768μmに過ぎず、D50が60分後、120分後、240分後でほぼ同じであったことから、サンプルミル粉砕による微粉化の程度には限界があることがわかった。
例3で得られたC晶(15 g)を、ハンマーの高速回転による衝撃で粉砕を行うサンプルミル(SM-1/アズワン社製)で粉砕し、経時的に粉砕物のサンプリングを行い、示差走査熱量測定および粒度分布を測定した(表5)。
示差走査熱量測定の結果、サンプルミル粉砕によって150℃以下の発熱ピークは生じなかったものの、アセトニトリルC晶が有さない約210℃の吸熱ピークは粉砕時間に依存して増大し続け240分後には-44.106 J/gに達したことから、サンプルミル粉砕によって、他の結晶形への転移が進行したことがわかった。さらに、粒度分布も、未粉砕のアセトニトリルC晶のD50(20.483μm)及びD90(73.755μm)に比べて細かくはなったものの、サンプルミル粉砕を240分間行った後の粒度分布は、D50で11.281μm、D90で29.768μmに過ぎず、D50が60分後、120分後、240分後でほぼ同じであったことから、サンプルミル粉砕による微粉化の程度には限界があることがわかった。
市販のA晶(D50 19μm;北京連本医薬化学技術有限公司/Beijing Lianben Pharm-chemicals Tech.Co., Ltd.から購入したもの)をハンマーミル(大徳薬機製、DF-15)を用いて12000 rpmの回転数で瞬時に粉砕した。ハンマーミルで粉砕したA晶(以下、「A晶のハンマーミル粉砕物」という。)は、例21の比表面積の測定に用いた。
例12:示差走査熱量測定による非晶質体の定量法の確立
非晶質体の定量法の確立のためのフェブキソスタットの非晶質体の標品として、例10でアセトニトリルC晶をボールミルで60分間粉砕して得られたものを用いた。
アセトニトリルC晶のジェットミル粉砕物(粉砕圧力3kgf・供給圧力4kgf)に、1、2.5、5、10、25、及び50%相当量の非晶質体(C晶を遊星ボールミルで60分間粉砕して調製したもの)を添加して総量約200 mgとし、袋混合した調製物について示差走査熱量測定における挙動変化を測定した。
非晶質体の定量法の確立のためのフェブキソスタットの非晶質体の標品として、例10でアセトニトリルC晶をボールミルで60分間粉砕して得られたものを用いた。
アセトニトリルC晶のジェットミル粉砕物(粉砕圧力3kgf・供給圧力4kgf)に、1、2.5、5、10、25、及び50%相当量の非晶質体(C晶を遊星ボールミルで60分間粉砕して調製したもの)を添加して総量約200 mgとし、袋混合した調製物について示差走査熱量測定における挙動変化を測定した。
非晶質体の混合物は1%以上の非晶質体が存在すると210℃付近に吸熱ピークを示し、非晶質体混合割合の増加とともに増大した。一方、C晶に特徴的な約201℃~約202℃に現れる吸熱ピークは、非晶質体混合割合の増加とともに減少し、非晶質体混合割合が100%になると消失した。非晶質体の混合割合と200℃以上の吸熱及び発熱ピークのピーク強度との間に線形性は認められなかった。一方、150℃以下の再結晶化に伴う発熱ピーク量(J/g)は非晶質体の含有割合に応じて直線的に増加することが確認され、非晶質体の含有割合の定量が可能であった。C晶及び非晶質体の混合物の示差走査熱量測定結果のまとめを表6に示す。約150℃以下に現れる発熱ピークの発熱ピーク量(J/g)をx、非晶質体の割合をyとしたときの直線回帰式は、[y = 6.0675x]であり、相関係数(r)は0.995であった。
例13:走査電子顕微鏡による結晶の観察
日立製の電子顕微鏡(TM3000 Miniscope/HITACHI)を用いて例3、例4、例5で得た各結晶の走査電子顕微鏡写真を撮影した。
例4で得たメタノール水C晶(未粉砕)の走査電子顕微鏡写真を撮影したところ、柱状晶であり、柱の柱径は約20μm前後、柱の長さは1000μmを超えることが確認できた。一部の結晶は、より細い柱状晶が寄り添っているように観察されることから、裂けやすい柱状晶であることが窺える。
日立製の電子顕微鏡(TM3000 Miniscope/HITACHI)を用いて例3、例4、例5で得た各結晶の走査電子顕微鏡写真を撮影した。
例4で得たメタノール水C晶(未粉砕)の走査電子顕微鏡写真を撮影したところ、柱状晶であり、柱の柱径は約20μm前後、柱の長さは1000μmを超えることが確認できた。一部の結晶は、より細い柱状晶が寄り添っているように観察されることから、裂けやすい柱状晶であることが窺える。
例3で得た未粉砕のアセトニトリルC晶を走査電子顕微鏡写真で観察したところ、メタノール水C晶よりも短く、かつ、柱の柱径に対する柱の長さの比が小さい柱状晶であり、柱の柱径が6μm前後、柱の長さが20μm前後であることが確認できた。
例5で得たアセトニトリルC晶のジェットミル粉砕物を走査電子顕微鏡写真で観察したところ、さらに小さく粉砕されており、もはや、柱状晶の形状を維持しておらず、多少は短径と長径の長さの差はあっても、概ね1.5μm~6.5μmの径を有する粒状であることが確認できた。
例14:走査電子顕微鏡写真に写った結晶の大きさの測定
未粉砕のアセトニトリルC晶、アセトニトリルC晶のジェットミル粉砕物(粉砕圧力3kgf・供給圧力4kgf)の夫々について、走査電子顕微鏡写真に写っている結晶の長さを測定した。未粉砕のアセトニトリルC晶は柱状晶であるので、柱の長さを測定した。一方、アセトニトリルC晶のジェットミル粉砕物は粒状であるので、長径の長さを測定した。測定した結晶の数は、各群430個である。その結果を表7に示す。未粉砕のアセトニトリルC晶の長径の長さの平均値は17.32μmであるのに対して、アセトニトリルC晶のジェットミル粉砕物の長径の平均値は2.96μmであり、未粉砕のアセトニトリルC晶の長径の長さの平均値の約17%の長さになっていた。なお、粉砕していないメタノール水C晶の長径の長さについては、統計解析可能な個数の結晶の長さを測定してはいないものの、電子顕微鏡写真には1mmを超える長さの柱状晶が多数観察されることから、少なくとも、未粉砕のアセトニトリルC晶の長さの5倍以上、おそらくは10倍以上の平均長を有することは明らかと考えられた。
未粉砕のアセトニトリルC晶、アセトニトリルC晶のジェットミル粉砕物(粉砕圧力3kgf・供給圧力4kgf)の夫々について、走査電子顕微鏡写真に写っている結晶の長さを測定した。未粉砕のアセトニトリルC晶は柱状晶であるので、柱の長さを測定した。一方、アセトニトリルC晶のジェットミル粉砕物は粒状であるので、長径の長さを測定した。測定した結晶の数は、各群430個である。その結果を表7に示す。未粉砕のアセトニトリルC晶の長径の長さの平均値は17.32μmであるのに対して、アセトニトリルC晶のジェットミル粉砕物の長径の平均値は2.96μmであり、未粉砕のアセトニトリルC晶の長径の長さの平均値の約17%の長さになっていた。なお、粉砕していないメタノール水C晶の長径の長さについては、統計解析可能な個数の結晶の長さを測定してはいないものの、電子顕微鏡写真には1mmを超える長さの柱状晶が多数観察されることから、少なくとも、未粉砕のアセトニトリルC晶の長さの5倍以上、おそらくは10倍以上の平均長を有することは明らかと考えられた。
例15:かさ密度及びタップ密度の測定
例3で得た未粉砕のアセトニトリルC晶、例4で得たメタノール水C晶、例5で得たアセトニトリルC晶のジェットミル粉砕物(粉砕圧力3kgf・供給圧力4kgf)、市販のA晶(D50 19μm;北京連本医薬化学技術有限公司/Beijing Lianben Pharm-chemicals Tech.Co., Ltd.から購入したもの)、前記の市販のA晶を例11と同様にハンマーミル(大徳薬機製、DF-15)で粉砕した試料の夫々について、定容量法によって、かさ密度及びタップ密度を測定した。かさ密度及びタップ密度は以下の方法で求めた。
例3で得た未粉砕のアセトニトリルC晶、例4で得たメタノール水C晶、例5で得たアセトニトリルC晶のジェットミル粉砕物(粉砕圧力3kgf・供給圧力4kgf)、市販のA晶(D50 19μm;北京連本医薬化学技術有限公司/Beijing Lianben Pharm-chemicals Tech.Co., Ltd.から購入したもの)、前記の市販のA晶を例11と同様にハンマーミル(大徳薬機製、DF-15)で粉砕した試料の夫々について、定容量法によって、かさ密度及びタップ密度を測定した。かさ密度及びタップ密度は以下の方法で求めた。
<定容量法による嵩密度の測定法>
定容量法による嵩密度は、次式により計算した。
定容量法による嵩密度(g/ml)=(MT1-M0)/V
ここで、式の右辺の変数は、次のとおりである。
MT1: タップ前の粉体と測定用容器の合計質量(g)
M0: 測定用容器の質量(g)
V: 測定用容器の容量(ml)
定容量法による嵩密度は、次式により計算した。
定容量法による嵩密度(g/ml)=(MT1-M0)/V
ここで、式の右辺の変数は、次のとおりである。
MT1: タップ前の粉体と測定用容器の合計質量(g)
M0: 測定用容器の質量(g)
V: 測定用容器の容量(ml)
<定容量法によるタップ密度の測定法>
定容量法によるタップ密度は、次式により計算した。
定容量法によるタップ密度(g/ml)=(MT2-M0)/V
ここで、式の右辺の変数は、次のとおりである。
MT2: タップ後の粉体と測定用容器の合計質量(g)
M0: 測定用容器の質量(g)
V: 測定用容器の容量(ml)
定容量法によるタップ密度は、次式により計算した。
定容量法によるタップ密度(g/ml)=(MT2-M0)/V
ここで、式の右辺の変数は、次のとおりである。
MT2: タップ後の粉体と測定用容器の合計質量(g)
M0: 測定用容器の質量(g)
V: 測定用容器の容量(ml)
右辺の変数は、次のように測定した。
かさ比重測定器(容量25 ml、JIS Z 2504/筒井理化学器械)の重量(M0)を測定後、測定器の上部から、測定器内にあふれるまで結晶を入れ、測定器内が結晶で十分に満たされたのを確認後、測定器上部に堆積した過剰量の結晶をスパーテルで擦りきり、全体の重量(MT1)を量った。
この測定器を手で30回程度タッピングし、再び測定器上部からあふれるまで結晶を入れる。この工程を数回繰り返し、測定器内が結晶で十分に満たされたのを確認後、スパーテルで擦りきり、全体の質量(MT2)を量った。
これらの変数を上記の式に与えて定容量法による嵩密度及び定容量法によるタップ密度を算出した(表8)。
かさ比重測定器(容量25 ml、JIS Z 2504/筒井理化学器械)の重量(M0)を測定後、測定器の上部から、測定器内にあふれるまで結晶を入れ、測定器内が結晶で十分に満たされたのを確認後、測定器上部に堆積した過剰量の結晶をスパーテルで擦りきり、全体の重量(MT1)を量った。
この測定器を手で30回程度タッピングし、再び測定器上部からあふれるまで結晶を入れる。この工程を数回繰り返し、測定器内が結晶で十分に満たされたのを確認後、スパーテルで擦りきり、全体の質量(MT2)を量った。
これらの変数を上記の式に与えて定容量法による嵩密度及び定容量法によるタップ密度を算出した(表8)。
例4で得た未粉砕のメタノール水C晶及び市販のA晶については、粉体が綿状であるために、容器内に大きな空隙ができてしまうとともに、容器の上に盛り上げってしまうため、定容量法による嵩密度は測定できなかった。
例3で得た未粉砕のアセトニトリルC晶のタップ密度は、例4で得た未粉砕のメタノール水C晶のタップ密度と比べて3.1倍高かった。また、例3で得た未粉砕のアセトニトリルC晶のタップ密度は、市販のA晶のタップ密度と比べて2.4倍高かった。
例3で得た未粉砕のアセトニトリルC晶のタップ密度は、例4で得た未粉砕のメタノール水C晶のタップ密度と比べて3.1倍高かった。また、例3で得た未粉砕のアセトニトリルC晶のタップ密度は、市販のA晶のタップ密度と比べて2.4倍高かった。
例16:アセトニトリルC晶のジェットミル粉砕物の溶解速度
例5で得たアセトニトリルC晶のジェットミル粉砕物(粉砕圧力3kgf・供給圧力4kgf)の溶解速度を例3で得た未粉砕のアセトニトリルC晶及び市販のA晶(D50=19μm;Beijing Lianben Pharm-chemicals Tech.Co., Ltd. /北京連本医薬化学技術有限公司より購入)と比較した。なお、例3で得た未粉砕のアセトニトリルC晶は、目開き16メッシュの篩過品を用いた。試料100mg及びマグネット撹拌子(スターラーバー)を200 mlのコニカルビーカーに入れ、溶出試験第1液(pH1.2)、pH5.5 のMcllvaine緩衝液、溶出試験第2液(pH6.8)、及び水をそれぞれ100 mlを加え、ヤマト科学(Yamato)製マグミキサーM-41を用い、毎分500回転で撹拌した。経時的に試験液の一部を採取し、フィルターでろ過して試料溶液とし、標準溶液に対して吸光度測定法(測定波長317nm)により試験した。
例5で得たアセトニトリルC晶のジェットミル粉砕物(粉砕圧力3kgf・供給圧力4kgf)の溶解速度を例3で得た未粉砕のアセトニトリルC晶及び市販のA晶(D50=19μm;Beijing Lianben Pharm-chemicals Tech.Co., Ltd. /北京連本医薬化学技術有限公司より購入)と比較した。なお、例3で得た未粉砕のアセトニトリルC晶は、目開き16メッシュの篩過品を用いた。試料100mg及びマグネット撹拌子(スターラーバー)を200 mlのコニカルビーカーに入れ、溶出試験第1液(pH1.2)、pH5.5 のMcllvaine緩衝液、溶出試験第2液(pH6.8)、及び水をそれぞれ100 mlを加え、ヤマト科学(Yamato)製マグミキサーM-41を用い、毎分500回転で撹拌した。経時的に試験液の一部を採取し、フィルターでろ過して試料溶液とし、標準溶液に対して吸光度測定法(測定波長317nm)により試験した。
試験結果を図14に示す。溶出試験第1液(pH1.2) に対する、アセトニトリルC晶のジェットミル粉砕物の3分後及び5分後の溶解速度は、A晶よりも速かった。また、水に対する、アセトニトリルC晶のジェットミル粉砕物の1分後~10分後の溶解速度は、A晶よりも未粉砕のアセトニトリルC晶よりも速かった。さらに、pH5.5 のMcIlvaine緩衝液及び溶出試験第2液(pH6.8)に対する、アセトニトリルC晶のジェットミル粉砕物の溶解速度および溶解量は、未粉砕のアセトニトリルC晶と比較して高値を示し、市販のA晶と同等であった。
これらの結果から、溶出試験第1液(pH1.2)、pH5.5 のMcIlvaine緩衝液、溶出試験第2液(pH6.8)、及び水のいずれに対しても、アセトニトリルC晶のジェットミル粉砕物は、市販のA晶と同等か市販のA晶以上の溶解速度を示す優れた原薬であることがわかった。
これらの結果から、溶出試験第1液(pH1.2)、pH5.5 のMcIlvaine緩衝液、溶出試験第2液(pH6.8)、及び水のいずれに対しても、アセトニトリルC晶のジェットミル粉砕物は、市販のA晶と同等か市販のA晶以上の溶解速度を示す優れた原薬であることがわかった。
例17:アセトニトリルC晶のジェットミル粉砕物を含む錠剤の溶出速度
例5で得たアセトニトリルC晶のジェットミル粉砕物 (粉砕圧力3kgf・供給圧力4kgf)を用いて特許4084309号明細書の実施例1の処方に従って錠剤を製造した。例3で得た未粉砕C晶(目開き16メッシュの篩過品)又はA晶(D50=19μm,Beijing Lianben Pharm-chemicals Tech.Co., Ltd./北京連本医薬化学技術有限公司より購入)を用いて同様に錠剤を製造して溶出プロファイルを比較した。各結晶50.0 g、乳糖水和物(SuperTab 11SD、DFE Pharma 製) 183.8 g、部分アルファー化デンプン(PC-10、旭化成ケミカルズ製) 37.5 g、ヒドロキシプロピルセルロース(HPC-SL、日本曹達製) 7.5 g、クロスカルメロースナトリウム(ND-200、旭化成ケミカルズ製) 31.3 gを乳鉢を使用して混合した。精製水93 gを混合末に加えて練合した。得られた湿潤顆粒を8号メッシュで整粒した後、50℃で通風乾燥させ、顆粒を得た。得られた顆粒を22号メッシュで整粒した後、篩過顆粒290 gにステアリン酸マグネシウム(太平化学産業製) 9.4 gをポリ袋にて混合し、打錠用顆粒を得た。この打錠用顆粒をロータリー式打錠機(VELA5、菊水製作所製、打錠圧2500kgf/cm2)で打錠し7 mm径の錠剤を得た。
例5で得たアセトニトリルC晶のジェットミル粉砕物 (粉砕圧力3kgf・供給圧力4kgf)を用いて特許4084309号明細書の実施例1の処方に従って錠剤を製造した。例3で得た未粉砕C晶(目開き16メッシュの篩過品)又はA晶(D50=19μm,Beijing Lianben Pharm-chemicals Tech.Co., Ltd./北京連本医薬化学技術有限公司より購入)を用いて同様に錠剤を製造して溶出プロファイルを比較した。各結晶50.0 g、乳糖水和物(SuperTab 11SD、DFE Pharma 製) 183.8 g、部分アルファー化デンプン(PC-10、旭化成ケミカルズ製) 37.5 g、ヒドロキシプロピルセルロース(HPC-SL、日本曹達製) 7.5 g、クロスカルメロースナトリウム(ND-200、旭化成ケミカルズ製) 31.3 gを乳鉢を使用して混合した。精製水93 gを混合末に加えて練合した。得られた湿潤顆粒を8号メッシュで整粒した後、50℃で通風乾燥させ、顆粒を得た。得られた顆粒を22号メッシュで整粒した後、篩過顆粒290 gにステアリン酸マグネシウム(太平化学産業製) 9.4 gをポリ袋にて混合し、打錠用顆粒を得た。この打錠用顆粒をロータリー式打錠機(VELA5、菊水製作所製、打錠圧2500kgf/cm2)で打錠し7 mm径の錠剤を得た。
試験液としてpH5.5のMcIlvaine緩衝液900mlを用い、パドル法により毎分60回転で富山産業(Toyama)恒温水槽式溶出試験器NTR-6200Aを用いて撹拌した。5分間、10分間、15分間、30分間、45分間、60分間の各時間攪拌後に試験液をフィルターでろ過して試料溶液とし、標準溶液に対して吸光度測定法(測定波長317nm)によりフェブキソスタットの濃度を測定した。例5で得られたアセトニトリルC晶のジェットミル粉砕物を含む錠剤は、全ての撹拌時間において、未粉砕のアセトニトリルC晶を含む錠剤よりも早い溶出を示し、60分攪拌後には、未粉砕のアセトニトリルC晶と比較して約20%高い溶出率を示した。また、アセトニトリルC晶のジェットミル粉砕物を含む錠剤は、撹拌開始から5分後、10分後及び15分後の時点において、A晶を含む錠剤、F錠、フィルムコーティング剥離したF錠のいずれと比較しても、より速い溶出速度を示し、最終的にこれらのA晶を含有する錠剤と同等の約95%の溶出率を示した(図15)。
例18:アセトニトリルC晶のジェットミル粉砕物の安定性試験
例5で得たアセトニトリルC晶のジェットミル粉砕物(粉砕圧力3kgf、供給圧力4kgf)を褐色ガラス瓶(蓋はポリエチレンの中蓋が付いたポリプロピレン製。)または厚さ0.04mmのポリエチレン袋に入れて密封し、長期保存試験(25℃±2℃/60%RH±5%)、および、加速試験(40℃±2℃/75%RH±5%)の各条件下での安定性を検討した。 安定性の測定は、乾燥減量、HPLCによる純度試験および粉末X線回折を測定することにより行った。
例5で得たアセトニトリルC晶のジェットミル粉砕物(粉砕圧力3kgf、供給圧力4kgf)を褐色ガラス瓶(蓋はポリエチレンの中蓋が付いたポリプロピレン製。)または厚さ0.04mmのポリエチレン袋に入れて密封し、長期保存試験(25℃±2℃/60%RH±5%)、および、加速試験(40℃±2℃/75%RH±5%)の各条件下での安定性を検討した。 安定性の測定は、乾燥減量、HPLCによる純度試験および粉末X線回折を測定することにより行った。
アセトニトリルC晶のジェットミル粉砕物の乾燥減量:
乾燥減量とは、文字通り、乾燥による重量変化の試験である。乾燥減量の測定は、アセトニトリルC晶1グラムを長期保存試験条件で3ヶ月保存した場合と、加速試験条件で1ヶ月および3ヶ月保存した場合の夫々について、その乾燥減量測定した。測定は、乾燥機(IKEDA RIKA AUTOMATIC OVEN DEK)を用いて105℃で2時間乾燥させたときの質量を天秤にて測定することにより行った。
表9に示すように、3ヶ月までの加速試験と長期保存試験において、問題となるレベルの乾燥減量は観察されなかった。
乾燥減量とは、文字通り、乾燥による重量変化の試験である。乾燥減量の測定は、アセトニトリルC晶1グラムを長期保存試験条件で3ヶ月保存した場合と、加速試験条件で1ヶ月および3ヶ月保存した場合の夫々について、その乾燥減量測定した。測定は、乾燥機(IKEDA RIKA AUTOMATIC OVEN DEK)を用いて105℃で2時間乾燥させたときの質量を天秤にて測定することにより行った。
表9に示すように、3ヶ月までの加速試験と長期保存試験において、問題となるレベルの乾燥減量は観察されなかった。
アセトニトリルC晶のジェットミル粉砕物の純度試験:
HPLCによる純度試験は、長期保存試験条件で3ヶ月および6ヶ月保存した場合と、加速試験条件で1ヶ月、3ヶ月および6ヶ月保存した場合について測定した。
まず、測定試料10mgを移動相25mLに溶かし、試料溶液とした。この試料溶液を1mL分取し、移動相を加えて200mLとし、標準溶液とした。試料溶液及び標準溶液、10μLずつを正確とり、次の条件で液体クロマトグラフィーにより試験を行った。試料溶液中のフェブキソスタットのピーク面積と、類縁物質のピーク面積の比により純度を算出した。長期保存条件下においても(図16)、加速条件下においても(図17)、6ヶ月の保存期間中、不純物の総量はフェブキソスタットの約0.05%で一定しており、不純物の総量の変化は見られなかった。同様に、個々の不純物の中で最もピーク面積の大きな不純物(保持時間2.6min)は、長期保存条件下においても、加速条件下においても、6ヶ月の保存期間中、約0.035%で一定しており、最も多く含まれる不純物の量に変化は見られなかった。このように、長期保存条件および加速条件の夫々において、アセトニトリルC晶のジェットミル粉砕物中に不純物の増加は認められなかった。
HPLCによる純度試験は、長期保存試験条件で3ヶ月および6ヶ月保存した場合と、加速試験条件で1ヶ月、3ヶ月および6ヶ月保存した場合について測定した。
まず、測定試料10mgを移動相25mLに溶かし、試料溶液とした。この試料溶液を1mL分取し、移動相を加えて200mLとし、標準溶液とした。試料溶液及び標準溶液、10μLずつを正確とり、次の条件で液体クロマトグラフィーにより試験を行った。試料溶液中のフェブキソスタットのピーク面積と、類縁物質のピーク面積の比により純度を算出した。長期保存条件下においても(図16)、加速条件下においても(図17)、6ヶ月の保存期間中、不純物の総量はフェブキソスタットの約0.05%で一定しており、不純物の総量の変化は見られなかった。同様に、個々の不純物の中で最もピーク面積の大きな不純物(保持時間2.6min)は、長期保存条件下においても、加速条件下においても、6ヶ月の保存期間中、約0.035%で一定しており、最も多く含まれる不純物の量に変化は見られなかった。このように、長期保存条件および加速条件の夫々において、アセトニトリルC晶のジェットミル粉砕物中に不純物の増加は認められなかった。
試験条件
検出器:紫外吸光光度計(測定波長:320nm)
カラム:内径4.6mm、長さ15cmのステンレス管に粒子径5μmのオクタデシルシリル化シリカゲルが充填された市販のカラムを用いた。
カラム温度:40℃
移動相:アセトニトリル/pH2.0の0.1mol/Lリン酸二水素カリウム液を2倍に希釈した液=13/7
流量:フェブキソスタットの保持時間が約5分になるように調整する(約1mL/min)。
面積測定範囲:フェブキソスタットの保持時間の約6倍の範囲
検出器:紫外吸光光度計(測定波長:320nm)
カラム:内径4.6mm、長さ15cmのステンレス管に粒子径5μmのオクタデシルシリル化シリカゲルが充填された市販のカラムを用いた。
カラム温度:40℃
移動相:アセトニトリル/pH2.0の0.1mol/Lリン酸二水素カリウム液を2倍に希釈した液=13/7
流量:フェブキソスタットの保持時間が約5分になるように調整する(約1mL/min)。
面積測定範囲:フェブキソスタットの保持時間の約6倍の範囲
測定機器
SHIMADZU 高速液体クロマトグラフ装置
ポンプ :LC-20AD
オートサンプラー :SIL-20ACHT
UV検出器 :SPD-M20A
カラムオーブン :CTO-20AC
デガッサ :DGU-20A3R
SHIMADZU 高速液体クロマトグラフ装置
ポンプ :LC-20AD
オートサンプラー :SIL-20ACHT
UV検出器 :SPD-M20A
カラムオーブン :CTO-20AC
デガッサ :DGU-20A3R
アセトニトリルC晶のジェットミル粉砕物の粉末X線回折:
粉末X線回折は、アセトニトリルC晶のジェットミル粉砕物をポリエチレン袋中に密封した試料、および、同じ試料を褐色ガラス瓶に入れた試料の夫々について、長期保存試験条件と加速試験条件の夫々について3ヶ月保存したサンプルを測定した。測定方法は、例6と同様であった。
図18に示すように、ポリエチレン袋中に密封して加速条件下で3ヶ月保存した場合、褐色ガラス瓶に入れて加速条件下で3ヶ月保存した場合、ポリエチレン袋中に密封して長期保存下で3ヶ月保存した場合、褐色ガラス瓶に入れて長期保存条件下で3ヶ月保存した場合、のいずれも、粉末X線回折チャートにおけるピークの位置及び強度に変化はないことから、保存期間中に結晶形に変化はなかったことが確認できた。
粉末X線回折は、アセトニトリルC晶のジェットミル粉砕物をポリエチレン袋中に密封した試料、および、同じ試料を褐色ガラス瓶に入れた試料の夫々について、長期保存試験条件と加速試験条件の夫々について3ヶ月保存したサンプルを測定した。測定方法は、例6と同様であった。
図18に示すように、ポリエチレン袋中に密封して加速条件下で3ヶ月保存した場合、褐色ガラス瓶に入れて加速条件下で3ヶ月保存した場合、ポリエチレン袋中に密封して長期保存下で3ヶ月保存した場合、褐色ガラス瓶に入れて長期保存条件下で3ヶ月保存した場合、のいずれも、粉末X線回折チャートにおけるピークの位置及び強度に変化はないことから、保存期間中に結晶形に変化はなかったことが確認できた。
例19:アセトニトリルC晶のジェットミル粉砕物を用いた試作錠の安定性
例5で得たアセトニトリルC晶のジェットミル粉砕物(粉砕圧力3kgf、供給圧力4kgf)を用いて20mgのフェブキソスタットを含有する素錠(以下、「試作素錠(MeCN粉砕)」という。)とフィルムコーティング錠(以下、「試作FC錠(MeCN粉砕)」という。)を作製し、夫々について、加速試験(40℃±2℃/75%RH±5%)、および、苛酷試験(60℃±2℃/湿度コントロールなし)の各条件下での安定性を検討した。測定項目としては、硬度、重量、溶出性及び純度を測定した。なお、比較のため、FC錠(フィルムコーティング錠)である市販のF錠(10mg錠:ロット番号5051及び5049、20mg錠:ロット番号6062及び6056、40mg錠:ロット番号8016)についても同じ測定を行った。
例5で得たアセトニトリルC晶のジェットミル粉砕物(粉砕圧力3kgf、供給圧力4kgf)を用いて20mgのフェブキソスタットを含有する素錠(以下、「試作素錠(MeCN粉砕)」という。)とフィルムコーティング錠(以下、「試作FC錠(MeCN粉砕)」という。)を作製し、夫々について、加速試験(40℃±2℃/75%RH±5%)、および、苛酷試験(60℃±2℃/湿度コントロールなし)の各条件下での安定性を検討した。測定項目としては、硬度、重量、溶出性及び純度を測定した。なお、比較のため、FC錠(フィルムコーティング錠)である市販のF錠(10mg錠:ロット番号5051及び5049、20mg錠:ロット番号6062及び6056、40mg錠:ロット番号8016)についても同じ測定を行った。
素錠の作製は、以下のように行った。まず、アセトニトリルC晶のジェットミル粉砕物70.0g、乳糖水和物263.9g、部分アルファー化デンプン64.8g、ヒドロキシプロピルセルロース10.5g、を撹拌混合造粒装置(VG-5、パウレック製)を使用して混合した。次に、精製水102gを混合末に加えて練合した。得られた湿潤顆粒を湿式乾式整粒機(QC-197s、パウレック製)φ4.75mmを使用して整粒した後、50℃で通風乾燥させ、顆粒を得た。得られた顆粒を湿式乾式整粒機(QC-197s、パウレック製)φ1.1mmで整粒した後、篩過顆粒185gにクロスカルメロースナトリウム11.9gをポリ袋にて混合した後、ステアリン酸マグネシウム1gをポリ袋にて混合し、打錠用顆粒を得た。この打錠用顆粒をロータリー式打錠機(VELA5、菊水製作所製、打錠圧2500kgf/cm2)で打錠し7mm径の素錠(重量125mg)を得た。
フィルムコーティング錠の作製は、以下のように行った。まず、アセトニトリルC晶のジェットミル粉砕物70.0g、乳糖水和物263.9g、部分アルファー化デンプン64.8g、ヒドロキシプロピルセルロース10.5gを撹拌混合造粒装置(VG-5、パウレック製)を使用して混合した。次に、精製水102gを混合末に加えて練合した。得られた湿潤顆粒を湿式乾式整粒機(QC-197s、パウレック製)φ4.75mmを使用して整粒した後、50℃で通風乾燥させ、顆粒を得た。得られた顆粒を湿式乾式整粒機(QC-197s、パウレック製)φ1.1mmで整粒した後、篩過顆粒185gにクロスカルメロースナトリウム11.9gをポリ袋にて混合した後、ステアリン酸マグネシウム1gをポリ袋にて混合し、打錠用顆粒を得た。この打錠用顆粒をロータリー式打錠機(VELA5、菊水製作所製、打錠圧2500kgf/cm2)で打錠し7mm径の素錠(重量125mg)を得た。次に、ヒプロメロース25.2g、2.8gのマクロゴール6000を精製水289.6gに溶解し、コーティング液を作製した。得られた素錠に、調製したコーティング液を自動コーティング装置を用いて、給気70℃にて7mg/錠の被覆を行い、フィルムコート錠を得た。
試作錠の硬度試験:
試作素錠(MeCN粉砕)(20mg錠)、試作FC錠(MeCN粉砕)(20mg錠)、F錠(10mg錠、20mg錠、40mg錠)の夫々について、長期保存条件(3ヶ月、6ヶ月)、加速条件(1ヶ月、3ヶ月、6ヶ月)及び苛酷条件(1ヶ月、3ヶ月)で保存した後の硬度をOKADA SEIKO PC-30を用いて測定し、測定開始時の硬度と比較した(表10)。ただし、表中、「-」と表示されている条件での測定は行っていない。試作素錠(MeCN粉砕)も、試作FC錠(MeCN粉砕)も、F錠に対して遜色ない十分な硬度を有し、保存による硬度の低下は見られなかった。
試作素錠(MeCN粉砕)(20mg錠)、試作FC錠(MeCN粉砕)(20mg錠)、F錠(10mg錠、20mg錠、40mg錠)の夫々について、長期保存条件(3ヶ月、6ヶ月)、加速条件(1ヶ月、3ヶ月、6ヶ月)及び苛酷条件(1ヶ月、3ヶ月)で保存した後の硬度をOKADA SEIKO PC-30を用いて測定し、測定開始時の硬度と比較した(表10)。ただし、表中、「-」と表示されている条件での測定は行っていない。試作素錠(MeCN粉砕)も、試作FC錠(MeCN粉砕)も、F錠に対して遜色ない十分な硬度を有し、保存による硬度の低下は見られなかった。
試作錠の重量変化:
試作素錠(MeCN粉砕)(20mg錠)、試作FC錠(MeCN粉砕)(20mg錠)、F錠(10mg錠、20mg錠、40mg錠)の夫々について、長期保存条件(3ヶ月、6ヶ月)、加速条件(1ヶ月、3ヶ月、6ヶ月)及び苛酷条件(1ヶ月、3ヶ月)で保存した後の重量の変化を測定し、測定開始時の重量と比較した(表11)。ただし、表中、「-」と表示されている条件での測定は行っていない。試作素錠(MeCN粉砕)も、試作FC錠(MeCN粉砕)も、F錠と同様に、重量の変化は3%未満であり、保存期間中を通じて問題となるレベルの重量変化は認められなかった。
試作素錠(MeCN粉砕)(20mg錠)、試作FC錠(MeCN粉砕)(20mg錠)、F錠(10mg錠、20mg錠、40mg錠)の夫々について、長期保存条件(3ヶ月、6ヶ月)、加速条件(1ヶ月、3ヶ月、6ヶ月)及び苛酷条件(1ヶ月、3ヶ月)で保存した後の重量の変化を測定し、測定開始時の重量と比較した(表11)。ただし、表中、「-」と表示されている条件での測定は行っていない。試作素錠(MeCN粉砕)も、試作FC錠(MeCN粉砕)も、F錠と同様に、重量の変化は3%未満であり、保存期間中を通じて問題となるレベルの重量変化は認められなかった。
試作錠の溶出性:
試作素錠(MeCN粉砕)(20mg錠)、試作FC錠(MeCN粉砕)(20mg錠)、F錠(10mg錠、20mg錠、40mg錠)の夫々について、長期保存条件(3ヶ月、6ヶ月)、加速条件(1ヶ月、3ヶ月、6ヶ月)及び苛酷条件(1ヶ月、3ヶ月)で保存した後に、日本薬局方の溶出試験第2液(pH6.8)中でパドル速度50rpmで30分間撹拌した後の溶出率を、紫外可視分光光度計を用いて測定し、測定開始時の溶出率と比較した(表12)。ただし、表中、「-」と表示されている条件での測定は行っていない。試作素錠(MeCN粉砕)も、試作FC錠(MeCN粉砕)も、F錠と同様に、94%以上の溶出率が保たれており、保存期間中を通じて問題となるレベルの溶出率の変化は認められなかった。
試作素錠(MeCN粉砕)(20mg錠)、試作FC錠(MeCN粉砕)(20mg錠)、F錠(10mg錠、20mg錠、40mg錠)の夫々について、長期保存条件(3ヶ月、6ヶ月)、加速条件(1ヶ月、3ヶ月、6ヶ月)及び苛酷条件(1ヶ月、3ヶ月)で保存した後に、日本薬局方の溶出試験第2液(pH6.8)中でパドル速度50rpmで30分間撹拌した後の溶出率を、紫外可視分光光度計を用いて測定し、測定開始時の溶出率と比較した(表12)。ただし、表中、「-」と表示されている条件での測定は行っていない。試作素錠(MeCN粉砕)も、試作FC錠(MeCN粉砕)も、F錠と同様に、94%以上の溶出率が保たれており、保存期間中を通じて問題となるレベルの溶出率の変化は認められなかった。
試作錠の純度試験:
試作素錠(MeCN粉砕)(20mg錠)、試作FC錠(MeCN粉砕)(20mg錠)、F錠(10mg錠、20mg錠、40mg錠)の夫々について、加速条件(1ヶ月、3ヶ月)及び苛酷条件(1ヶ月、3ヶ月)で保存した後に、例18の純度試験と同様の方法で不純物の量を経時的に測定した(図19、図20)。ただし、F錠(10mg錠、20mg錠、40mg錠)については、加速条件下でのみ6ヶ月まで測定した。なお、錠剤からの抽出は、1錠を取り原薬10mgに対して移動相25mL相当量に溶解分散し、試料溶液とした。この試料溶液を1mL分取し、移動相を加えて200mLとし、標準溶液とした.加速条件下においても(図19)、苛酷条件下においても(図20)、試作素錠(MeCN粉砕)、試作FC錠(MeCN粉砕)ともに、F錠と同様に、3ヶ月の保存期間中、不純物の総量はフェブキソスタットの総量の0.1%以下であり、不純物の総量の変化は見られなかった。同様に、個々の不純物の中で最もピーク面積の大きな不純物(保持時間2.6min)は、加速条件下においても、苛酷条件下においても、3ヶ月の保存期間中、0.040%未満の水準で一定しており、最も多く含まれる不純物の量に変化は見られなかった。このように、加速条件および苛酷条件の夫々において、試作素錠(MeCN粉砕)(20mg錠)及び試作FC錠(MeCN粉砕)(20mg錠)に含まれる不純物の増加は認められなかった。
試作素錠(MeCN粉砕)(20mg錠)、試作FC錠(MeCN粉砕)(20mg錠)、F錠(10mg錠、20mg錠、40mg錠)の夫々について、加速条件(1ヶ月、3ヶ月)及び苛酷条件(1ヶ月、3ヶ月)で保存した後に、例18の純度試験と同様の方法で不純物の量を経時的に測定した(図19、図20)。ただし、F錠(10mg錠、20mg錠、40mg錠)については、加速条件下でのみ6ヶ月まで測定した。なお、錠剤からの抽出は、1錠を取り原薬10mgに対して移動相25mL相当量に溶解分散し、試料溶液とした。この試料溶液を1mL分取し、移動相を加えて200mLとし、標準溶液とした.加速条件下においても(図19)、苛酷条件下においても(図20)、試作素錠(MeCN粉砕)、試作FC錠(MeCN粉砕)ともに、F錠と同様に、3ヶ月の保存期間中、不純物の総量はフェブキソスタットの総量の0.1%以下であり、不純物の総量の変化は見られなかった。同様に、個々の不純物の中で最もピーク面積の大きな不純物(保持時間2.6min)は、加速条件下においても、苛酷条件下においても、3ヶ月の保存期間中、0.040%未満の水準で一定しており、最も多く含まれる不純物の量に変化は見られなかった。このように、加速条件および苛酷条件の夫々において、試作素錠(MeCN粉砕)(20mg錠)及び試作FC錠(MeCN粉砕)(20mg錠)に含まれる不純物の増加は認められなかった。
例20:試作FC錠(MeCN粉砕)の溶出試験
例19で作製した試作FC錠(MeCN粉砕)(20mg錠)について、日本薬局方の溶出試験第1液(pH1.2)、McIlvain緩衝液(pH5.0)、溶出試験第2液(pH6.8)、精製水に対する溶出試験を行って、F錠(20mg錠)の溶出特性と対比した(図21)。なお、溶出試験方法は例17と同様の方法で行った。
いずれの条件においても、アセトニトリルC晶のジェットミル粉砕物を用いて作製した試作FC錠(MeCN粉砕)(20mg錠)の試験液への溶出率は、F錠(20mg錠)の溶出率とほぼ同じか若干上回っており、良好な溶出特性を示した(図21)。
これらの結果から、本発明のC晶を用いることにより、特許文献6において得ることができなかった、溶出プロファイルにばらつきのないC晶の製剤を得ることができた。
例19で作製した試作FC錠(MeCN粉砕)(20mg錠)について、日本薬局方の溶出試験第1液(pH1.2)、McIlvain緩衝液(pH5.0)、溶出試験第2液(pH6.8)、精製水に対する溶出試験を行って、F錠(20mg錠)の溶出特性と対比した(図21)。なお、溶出試験方法は例17と同様の方法で行った。
いずれの条件においても、アセトニトリルC晶のジェットミル粉砕物を用いて作製した試作FC錠(MeCN粉砕)(20mg錠)の試験液への溶出率は、F錠(20mg錠)の溶出率とほぼ同じか若干上回っており、良好な溶出特性を示した(図21)。
これらの結果から、本発明のC晶を用いることにより、特許文献6において得ることができなかった、溶出プロファイルにばらつきのないC晶の製剤を得ることができた。
例21:比表面積の測定
例3で得た未粉砕のアセトニトリルC晶、例4で得たメタノール水C晶、例5で得たアセトニトリルC晶のジェットミル粉砕物(粉砕圧力3kgf・供給圧力4kgf)、例11で調製したA晶のハンマーミル粉砕物の夫々について、BET多点法を用いて比表面積を測定した。BET法は、低温において窒素やクリプトンなどの気体を固体の表面に単分子層で吸着させ、その吸着気体量を測定して夫々の分子の占める面積から固体の表面積を求める方法である。
例3で得た未粉砕のアセトニトリルC晶、例4で得たメタノール水C晶、例5で得たアセトニトリルC晶のジェットミル粉砕物(粉砕圧力3kgf・供給圧力4kgf)、例11で調製したA晶のハンマーミル粉砕物の夫々について、BET多点法を用いて比表面積を測定した。BET法は、低温において窒素やクリプトンなどの気体を固体の表面に単分子層で吸着させ、その吸着気体量を測定して夫々の分子の占める面積から固体の表面積を求める方法である。
BET多点法による比表面積測定の測定機器及び測定条件は次のとおりであった。
測定機器: 4連式比表面積・細孔分布測定装置 NOVA-4200e型(Quantachrome社製)
使用ガス: 窒素ガス
冷媒(温度): 液体窒素(77.35K)
前処理条件: 110℃、6Hr以上真空脱気
測定相対圧力: 0.05<P/P0<0.3
測定機器: 4連式比表面積・細孔分布測定装置 NOVA-4200e型(Quantachrome社製)
使用ガス: 窒素ガス
冷媒(温度): 液体窒素(77.35K)
前処理条件: 110℃、6Hr以上真空脱気
測定相対圧力: 0.05<P/P0<0.3
表13に示すように、未粉砕のメタノール水C晶の表面積は0.172 m2/gに過ぎなかったものが、未粉砕のアセトニトリルC晶の表面積は5.757 m2/gに増加し、33.5倍に面積が増加していた。未粉砕のメタノール水C晶は、日本薬局方への崩壊試験用第2液への溶解速度がA晶の1/2以下であることが問題であったが、未粉砕のアセトニトリルC晶は未粉砕のメタノール水C晶の33.5倍も大きな表面積を有するので、溶出性に優れることが容易に理解できる。
そして、さらにこれをジェットミル粉砕することにより、表面積は9.001 m2/gに増加し、未粉砕のアセトニトリルC晶の表面積の1.6倍に表面積が増加した。未粉砕のメタノール水C晶とアセトニトリルC晶のジェットミル粉砕物の表面積を対比すると、表面積は実に52.3倍に表面積が増加していた。アセトニトリルC晶のジェットミル粉砕物の表面積は、市販のA晶をハンマーミルで粉砕した試料の表面積の約1.2倍あることからわかるように、大きな表面積を有することが確認できた。アセトニトリルC晶のジェットミル粉砕物は未粉砕のメタノール水C晶の52.3倍も大きな表面積を有するので、とても溶出性に優れることが容易に理解できる。
そして、さらにこれをジェットミル粉砕することにより、表面積は9.001 m2/gに増加し、未粉砕のアセトニトリルC晶の表面積の1.6倍に表面積が増加した。未粉砕のメタノール水C晶とアセトニトリルC晶のジェットミル粉砕物の表面積を対比すると、表面積は実に52.3倍に表面積が増加していた。アセトニトリルC晶のジェットミル粉砕物の表面積は、市販のA晶をハンマーミルで粉砕した試料の表面積の約1.2倍あることからわかるように、大きな表面積を有することが確認できた。アセトニトリルC晶のジェットミル粉砕物は未粉砕のメタノール水C晶の52.3倍も大きな表面積を有するので、とても溶出性に優れることが容易に理解できる。
例22:原薬の外観
例3で得た未粉砕のアセトニトリルC晶、例4で得たメタノール水C晶、例5で得たアセトニトリルC晶のジェットミル粉砕物(粉砕圧力3kgf・供給圧力4kgf)、アセトニトリルC晶のボールミル粉砕物、未粉砕のA晶(例11および例15を参照)の夫々について、安息角の測定を試みたが、安息角が測定できないほどに流動性の悪い粉体であった。
そこで、安息角を測定する代わりに、各試料を肉眼視したときの外観を撮影した。
例3で得た未粉砕のアセトニトリルC晶、例4で得たメタノール水C晶、例5で得たアセトニトリルC晶のジェットミル粉砕物(粉砕圧力3kgf・供給圧力4kgf)、アセトニトリルC晶のボールミル粉砕物、未粉砕のA晶(例11および例15を参照)の夫々について、安息角の測定を試みたが、安息角が測定できないほどに流動性の悪い粉体であった。
そこで、安息角を測定する代わりに、各試料を肉眼視したときの外観を撮影した。
未粉砕のメタノール水C晶(図22)は、未粉砕のA晶よりもさらにふわふわした綿毛状の嵩高い塊であり、未粉砕のA晶よりも大きな1mmを超えるサイズの針状晶が目視で確認できた。
未粉砕のアセトニトリルC晶(図23)は、ややや嵩高い塊を形成する傾向があるが、未粉砕のA晶よりも小さく、かつ、未粉砕のA晶よりも密度の高い塊であった。未粉砕のアセトニトリルC晶の塊の周囲を良く目を凝らして見ると、小さな針状晶らしきものが確認できた。
未粉砕のアセトニトリルC晶(図23)は、ややや嵩高い塊を形成する傾向があるが、未粉砕のA晶よりも小さく、かつ、未粉砕のA晶よりも密度の高い塊であった。未粉砕のアセトニトリルC晶の塊の周囲を良く目を凝らして見ると、小さな針状晶らしきものが確認できた。
アセトニトリルC晶のジェットミル粉砕物(図24)も、塊を形成する傾向があったが、針状晶らしき構造は見えず、プラスチックスプーンで均すと、容易に平らになり、きめ細かな微粒子が寄り集まっていることがわかった(図25)。
アセトニトリルC晶のボールミル粉砕物(図26)も、塊を形成する傾向があったが、針状晶らしき構造は見えず、アセトニトリルC晶のジェットミル粉砕物と同様にプラスチックスプーンで均すと、容易に平らになり、崩れやすいきめ細かな微粒子が寄り集まっていることがわかった。
アセトニトリルC晶のジェットミル粉砕物(図24)とアセトニトリルC晶のボールミル粉砕物(図26)は、写真では塊を形成してはいるが、とても崩れやすい塊であり、スパーテルで掬い取った際の粉の動きはコーンスターチ(図27)や片栗粉(図28)の粉の動きにとてもよく似ていた。アセトニトリルC晶のジェットミル粉砕物は、優れたハンドリング性を有することが確認できた。
アセトニトリルC晶のボールミル粉砕物(図26)も、塊を形成する傾向があったが、針状晶らしき構造は見えず、アセトニトリルC晶のジェットミル粉砕物と同様にプラスチックスプーンで均すと、容易に平らになり、崩れやすいきめ細かな微粒子が寄り集まっていることがわかった。
アセトニトリルC晶のジェットミル粉砕物(図24)とアセトニトリルC晶のボールミル粉砕物(図26)は、写真では塊を形成してはいるが、とても崩れやすい塊であり、スパーテルで掬い取った際の粉の動きはコーンスターチ(図27)や片栗粉(図28)の粉の動きにとてもよく似ていた。アセトニトリルC晶のジェットミル粉砕物は、優れたハンドリング性を有することが確認できた。
例23:ラマン顕微鏡による観察
錠剤中のフェブキソスタットのC晶の結晶形、形態及び大きさをラマン顕微鏡を用いて観察した。
事前に、Renishaw社のinVia Reflex/StreamLineを用いて、フェブキソスタットのA晶及び試作錠(MeCN)の製造に用いた各成分のラマンスペクトルを確認した。その結果、C晶は約1695 shift/cm-1のピークによって、A晶及び各添加剤と区別できることがわかった(図29及び図30)。また、A晶は、約1450 shift/cm-1、約1330 shift/cm-1のピークによって、C晶及び各添加剤と区別できることがわかった(図29及び図30)。
ラマン顕微鏡はRenishaw社の顕微レーザーラマン分光装置inVia Reflex/StreamLineを用い、ラマンイメージングを測定した。
測定条件は、下記のとおりであった。
励起波長 785nm STline
レーザー出力 50%(45mW/line)
露光時間 0.88sec/line
グレーティング 1200l/mm
マッピングエリア 1000×1000um(1.2umstep)
取得スペクトル 695556(5h45m)
対物レンズ X50
例20で作製した試作FC錠(MeCN粉砕)(20mg錠)の表面を切削し観察した。
錠剤中のフェブキソスタットのC晶の結晶形、形態及び大きさをラマン顕微鏡を用いて観察した。
事前に、Renishaw社のinVia Reflex/StreamLineを用いて、フェブキソスタットのA晶及び試作錠(MeCN)の製造に用いた各成分のラマンスペクトルを確認した。その結果、C晶は約1695 shift/cm-1のピークによって、A晶及び各添加剤と区別できることがわかった(図29及び図30)。また、A晶は、約1450 shift/cm-1、約1330 shift/cm-1のピークによって、C晶及び各添加剤と区別できることがわかった(図29及び図30)。
ラマン顕微鏡はRenishaw社の顕微レーザーラマン分光装置inVia Reflex/StreamLineを用い、ラマンイメージングを測定した。
測定条件は、下記のとおりであった。
励起波長 785nm STline
レーザー出力 50%(45mW/line)
露光時間 0.88sec/line
グレーティング 1200l/mm
マッピングエリア 1000×1000um(1.2umstep)
取得スペクトル 695556(5h45m)
対物レンズ X50
例20で作製した試作FC錠(MeCN粉砕)(20mg錠)の表面を切削し観察した。
C晶のラマンイメージングの画像及び粒子解析の結果を夫々図31と図32に示す。顕微鏡画像(図31)から、少なくとも直径10μm未満のC晶の微細な粒子が多数確認できた。また、粒子解析の結果(図32)から、直径5μm以下の粒子(図32の左端のX軸の隣の棒)が大多数であることが確認できた。C晶の粒子が多数密集している場合には、画像だけでは、大きな粒子のように見えてしまうことは容易に想定できるので、ほとんどのC晶の粒子は直径5μm以下であると考えられた。走査型電子顕微鏡型の顕微ラマン装置(例えばRenishaw社の「ラマン複合システム SEM ラマン」)を用いれば、密集している粒子を峻別して観察確認可能であろうと考えられた。
例24:C形結晶と非晶質体の混合物のX線回折及び示差走査熱量測定データ
例3で得られたC晶に、例10で得られた非晶質体を質量比で0.005~10%添加した混合物を調製し、XRD(X線回析)及びDSC(示差走査熱量)を測定した。XRDでは非晶質の割合の増加に基づく変化はほとんどなかった。一方、DSCにおいては、非晶質体の割合の増加に伴い、約201℃の吸熱ピークの吸熱量は低下し、約211℃の吸熱ピークの吸熱量は増加したが、その変化量はいずれも非晶質体の割合とは非直線的な変化であった。
混合物の機器データとしてXRDを図33、DSCを図34、又DSCにおける吸熱ピークの推移を図35及び表14に示した。
この結果、示差走査熱量を測定し、約211℃の吸熱ピークの吸熱量を測定することにより、C晶との混合物中の非晶質体の検出、定量が可能であることが示された。
例3で得られたC晶に、例10で得られた非晶質体を質量比で0.005~10%添加した混合物を調製し、XRD(X線回析)及びDSC(示差走査熱量)を測定した。XRDでは非晶質の割合の増加に基づく変化はほとんどなかった。一方、DSCにおいては、非晶質体の割合の増加に伴い、約201℃の吸熱ピークの吸熱量は低下し、約211℃の吸熱ピークの吸熱量は増加したが、その変化量はいずれも非晶質体の割合とは非直線的な変化であった。
混合物の機器データとしてXRDを図33、DSCを図34、又DSCにおける吸熱ピークの推移を図35及び表14に示した。
この結果、示差走査熱量を測定し、約211℃の吸熱ピークの吸熱量を測定することにより、C晶との混合物中の非晶質体の検出、定量が可能であることが示された。
例25:加熱保管による非晶質体の結晶化
例3で得られたC形結晶に例10で得られた非晶質体を質量比で0.005~10%添加した混合物を開放容器に入れ、100℃で7日間保管した。XRDの変化はなかった。DSCにおいては、非晶質体のいずれの割合においても、約211℃の吸熱ピークの吸熱量は低下した。
混合物のXRDを図36、DSCを図37、又DSCにおける吸熱量の推移を表15に示した。
例3で得られたC形結晶に例10で得られた非晶質体を質量比で0.005~10%添加した混合物を開放容器に入れ、100℃で7日間保管した。XRDの変化はなかった。DSCにおいては、非晶質体のいずれの割合においても、約211℃の吸熱ピークの吸熱量は低下した。
混合物のXRDを図36、DSCを図37、又DSCにおける吸熱量の推移を表15に示した。
例26:フェブキソスタットの非晶質体と微量のC晶を含む混合物の調製
例3で得られたC晶15gを125mLの試料容器に入れ、遊星ボールミルRetsch PM100を用い、XRD及びDSCがそれぞれ図38、図39になるようにフェブキソスタットの非晶質体と微量のC晶を含む混合物を調製した。
例3で得られたC晶15gを125mLの試料容器に入れ、遊星ボールミルRetsch PM100を用い、XRD及びDSCがそれぞれ図38、図39になるようにフェブキソスタットの非晶質体と微量のC晶を含む混合物を調製した。
例27:加熱保管による非晶質体の結晶化
例25に記載した非晶質体と微量のC晶の混合物を開放容器に入れ、100℃で7日間保管した。その結果、XRDでC形結晶に特徴的な回折角を有する回折ピークが観測され、混合物中の非晶質体が徐々にC形結晶へと転移していることが観察された。
開始時及び保管後の試料のXRDを図40(開始時)及び図41(保管後)に示した。
例25に記載した非晶質体と微量のC晶の混合物を開放容器に入れ、100℃で7日間保管した。その結果、XRDでC形結晶に特徴的な回折角を有する回折ピークが観測され、混合物中の非晶質体が徐々にC形結晶へと転移していることが観察された。
開始時及び保管後の試料のXRDを図40(開始時)及び図41(保管後)に示した。
例28:加熱、加熱・加湿による非晶質体の結晶化
微量の非晶質体を含むドライバースト粉砕したC型結晶を気密容器に入れ,60℃で一か月間、開放容器に入れ、40℃/75%RHで一か月間保管した。DSCにおいて、いずれも約211℃の吸熱ピークは消失し、C形結晶へと結晶化したことが示唆された。
開始時及び保管後の試料について、DSCを図42(開始時)、図43(60℃、1か月保管後)及び図44(40℃/75%RH保管後)に示した。
微量の非晶質体を含むドライバースト粉砕したC型結晶を気密容器に入れ,60℃で一か月間、開放容器に入れ、40℃/75%RHで一か月間保管した。DSCにおいて、いずれも約211℃の吸熱ピークは消失し、C形結晶へと結晶化したことが示唆された。
開始時及び保管後の試料について、DSCを図42(開始時)、図43(60℃、1か月保管後)及び図44(40℃/75%RH保管後)に示した。
例29:新規結晶形X形(X晶)の合成方法と測定データ
例10で得られた非晶質体1gを秤量瓶(開栓)に入れ、東京硝子器械定温乾燥器FO-30Wを用い、190℃で180分間加熱後、デシケーター(シリカゲル)で室温まで放冷し、結晶を調製した。同調製物の結晶形のXRD、DSC及びIRを測定した。その結果、既存の結晶形とは異なる新規結晶形(X晶)であることを確認した(XRDを図45、DSCを図46、IRを図47に示す)。XRDの2θ値のピークは、3.33、6.74、7.71、12.82、13.40、13.72、16.29、16.80、18.21、19.12、20.04、21.11、21.79、23.82、24.45、25.80、26.58、27.24、28.01及び30.49に認められた(図45)。IRのピークを表16に示す。
本法で得られたX晶は、帯赤白色の結晶性の粉末で、吸湿性はなく、DSCは約211℃に単一のピークを示した。
また、フェブキソスタットの非晶質体の示差走査熱量を測定して観察される約211℃の吸熱ピークは、測定中に非晶質体が最終的にX晶に転移した結果出現するX晶の吸熱ピークであることが示された。
例10で得られた非晶質体1gを秤量瓶(開栓)に入れ、東京硝子器械定温乾燥器FO-30Wを用い、190℃で180分間加熱後、デシケーター(シリカゲル)で室温まで放冷し、結晶を調製した。同調製物の結晶形のXRD、DSC及びIRを測定した。その結果、既存の結晶形とは異なる新規結晶形(X晶)であることを確認した(XRDを図45、DSCを図46、IRを図47に示す)。XRDの2θ値のピークは、3.33、6.74、7.71、12.82、13.40、13.72、16.29、16.80、18.21、19.12、20.04、21.11、21.79、23.82、24.45、25.80、26.58、27.24、28.01及び30.49に認められた(図45)。IRのピークを表16に示す。
また、フェブキソスタットの非晶質体の示差走査熱量を測定して観察される約211℃の吸熱ピークは、測定中に非晶質体が最終的にX晶に転移した結果出現するX晶の吸熱ピークであることが示された。
Claims (75)
- 2-[3-シアノ-4-(2-メチルプロポキシ)フェニル]-4-メチルチアゾール-5-カルボン酸のC晶及び2-[3-シアノ-4-(2-メチルプロポキシ)フェニル]-4-メチルチアゾール-5-カルボン酸の非晶質体を含む混合物を常温より高い温度に加熱して得られる2-[3-シアノ-4-(2-メチルプロポキシ)フェニル]-4-メチルチアゾール-5-カルボン酸のC晶。
- C晶の純度が80%以上である、請求項1に記載のC晶。
- 2-[3-シアノ-4-(2-メチルプロポキシ)フェニル]-4-メチルチアゾール-5-カルボン酸のC晶及び2-[3-シアノ-4-(2-メチルプロポキシ)フェニル]-4-メチルチアゾール-5-カルボン酸の非晶質体を含む混合物を常温より高い温度に加熱して得られ、混合物中の2-[3-シアノ-4-(2-メチルプロポキシ)フェニル]-4-メチルチアゾール-5-カルボン酸の非晶質体の重量が、2-[3-シアノ-4-(2-メチルプロポキシ)フェニル]-4-メチルチアゾール-5-カルボン酸のC晶の重量の0.001%以上99%以下である、請求項1又は請求項2に記載のC晶。
- 2-[3-シアノ-4-(2-メチルプロポキシ)フェニル]-4-メチルチアゾール-5-カルボン酸のC晶及び2-[3-シアノ-4-(2-メチルプロポキシ)フェニル]-4-メチルチアゾール-5-カルボン酸の非晶質体を含む混合物を常温より高い温度に加熱して得られ、混合物中の2-[3-シアノ-4-(2-メチルプロポキシ)フェニル]-4-メチルチアゾール-5-カルボン酸の非晶質体の重量が、2-[3-シアノ-4-(2-メチルプロポキシ)フェニル]-4-メチルチアゾール-5-カルボン酸のC晶の重量の0.001%以上10%以下である、請求項1~3のいずれか1項に記載のC晶。
- 2-[3-シアノ-4-(2-メチルプロポキシ)フェニル]-4-メチルチアゾール-5-カルボン酸のC晶及び2-[3-シアノ-4-(2-メチルプロポキシ)フェニル]-4-メチルチアゾール-5-カルボン酸の非晶質体を含む混合物を常温より高い温度に加熱して得られ、混合物中の2-[3-シアノ-4-(2-メチルプロポキシ)フェニル]-4-メチルチアゾール-5-カルボン酸の非晶質体の重量が、2-[3-シアノ-4-(2-メチルプロポキシ)フェニル]-4-メチルチアゾール-5-カルボン酸のC晶の重量の0.001%以上1%以下である、請求項1~4のいずれか1項に記載のC晶。
- 2-[3-シアノ-4-(2-メチルプロポキシ)フェニル]-4-メチルチアゾール-5-カルボン酸のC晶及び2-[3-シアノ-4-(2-メチルプロポキシ)フェニル]-4-メチルチアゾール-5-カルボン酸の非晶質体を含む混合物を常温より高い温度に加熱して得られ、混合物中の2-[3-シアノ-4-(2-メチルプロポキシ)フェニル]-4-メチルチアゾール-5-カルボン酸の非晶質体の重量が、2-[3-シアノ-4-(2-メチルプロポキシ)フェニル]-4-メチルチアゾール-5-カルボン酸のC晶の重量の0.001%以上0.1%以下である、請求項1~5のいずれか1項に記載のC晶。
- 2-[3-シアノ-4-(2-メチルプロポキシ)フェニル]-4-メチルチアゾール-5-カルボン酸のC晶が、長径の長さが実質的に約200μm以下の結晶のみからなる2-[3-シアノ-4-(2-メチルプロポキシ)フェニル]-4-メチルチアゾール-5-カルボン酸の小型化C晶である、請求項1~6のいずれか1項に記載のC晶。
- 2-[3-シアノ-4-(2-メチルプロポキシ)フェニル]-4-メチルチアゾール-5-カルボン酸のC晶が、長径の長さが実質的に約100μm以下の結晶のみからなる2-[3-シアノ-4-(2-メチルプロポキシ)フェニル]-4-メチルチアゾール-5-カルボン酸のC晶の微粉化物である、請求項1~7のいずれか1項に記載のC晶。
- C晶の微粉化物のD50が約25μm以下である、請求項8に記載のC晶。
- C晶の微粉化物のD90が約50μm以下である、請求項8又は請求項9に記載のC晶。
- 残留有機溶媒が実質的にない、請求項1~10いずれか1項に記載のC晶。
- C晶の微粉化物の嵩密度が約0.20g/ml以上で請求項8~11のいずれか1項に記載のC晶。
- C晶の微粉化物のタップ密度が約0.30g/ml以上である、請求項8~12のいずれか1項に記載のC晶。
- C晶の微粉化物の日本薬局方第2液に対する溶解速度が約0.5mg/ml/min以上であるか、又は、pH5.5のMcIlvaine緩衝液に対する溶解速度が約13μg/ml/min以上である、請求項8~13のいずれか1項に記載のC晶。
- 流体式粉砕又は湿式粉砕により得られたC晶の微粉化物である、請求項8~14のいずれか1項に記載のC晶。
- 流体式粉砕がジェットミル粉砕又はドライバースト粉砕である、請求項15に記載のC晶。
- C晶の微粉化物が有機溶媒から晶出させたC晶を微粉化したものである、請求項8~16のいずれか1項に記載のC晶。
- 加熱及び加湿した状態で安定である、請求項1~17のいずれか1項に記載のC晶。
- 常温より高い温度及び45%RH以上80%RH以下に加湿した状態で安定である、請求項1~18のいずれか1項に記載のC晶。
- 1日から1年間加熱する、請求項18~19のいずれか1項に記載のC晶。
- 常温より高い温度が25℃を超え199℃以下である、請求項1~20のいずれか1項に記載のC晶。
- 加熱が開放系又は密閉系で行われる、請求項1~21のいずれか1項に記載のC晶。
- 請求項1~22のいずれかに記載のC晶を有効成分として含む、固形製剤。
- 錠剤の形態である、請求項23に記載の固形製剤。
- 痛風治療剤又は高尿酸血症治療剤である、請求項23又は請求項24に記載の固形製剤。
- 2-[3-シアノ-4-(2-メチルプロポキシ)フェニル]-4-メチルチアゾール-5-カルボン酸の非晶質体から2-[3-シアノ-4-(2-メチルプロポキシ)フェニル]-4-メチルチアゾール-5-カルボン酸のC晶を製造する方法であって、
2-[3-シアノ-4-(2-メチルプロポキシ)フェニル]-4-メチルチアゾール-5-カルボン酸のC晶及び2-[3-シアノ-4-(2-メチルプロポキシ)フェニル]-4-メチルチアゾール-5-カルボン酸の非晶質体を含む混合物を常温より高い温度に加熱する工程を含む方法。 - 製造されたC晶の純度が80%以上である、請求項26に記載のC晶の製造方法。
- 混合物中の2-[3-シアノ-4-(2-メチルプロポキシ)フェニル]-4-メチルチアゾール-5-カルボン酸の非晶質体の重量が、2-[3-シアノ-4-(2-メチルプロポキシ)フェニル]-4-メチルチアゾール-5-カルボン酸のC晶の重量の0.001%以上99%以下である、請求項26又は請求項27に記載のC晶の製造方法。
- 混合物中の2-[3-シアノ-4-(2-メチルプロポキシ)フェニル]-4-メチルチアゾール-5-カルボン酸の非晶質体の重量が、2-[3-シアノ-4-(2-メチルプロポキシ)フェニル]-4-メチルチアゾール-5-カルボン酸のC晶の重量の0.001%以上10%以下である、請求項26~28のいずれか1項に記載のC晶の製造方法。
- 混合物中の2-[3-シアノ-4-(2-メチルプロポキシ)フェニル]-4-メチルチアゾール-5-カルボン酸の非晶質体の重量が、2-[3-シアノ-4-(2-メチルプロポキシ)フェニル]-4-メチルチアゾール-5-カルボン酸のC晶の重量の0.001%以上1%以下である、請求項26~29のいずれか1項に記載のC晶の製造方法。
- 混合物中の2-[3-シアノ-4-(2-メチルプロポキシ)フェニル]-4-メチルチアゾール-5-カルボン酸の非晶質体の重量が、2-[3-シアノ-4-(2-メチルプロポキシ)フェニル]-4-メチルチアゾール-5-カルボン酸のC晶の重量の0.001%以上0.1%以下である、請求項26~30のいずれか1項に記載のC晶の製造方法。
- 2-[3-シアノ-4-(2-メチルプロポキシ)フェニル]-4-メチルチアゾール-5-カルボン酸のC晶が、長径の長さが実質的に約200μm以下の結晶のみからなる2-[3-シアノ-4-(2-メチルプロポキシ)フェニル]-4-メチルチアゾール-5-カルボン酸の小型化C晶である、請求項26~31のいずれか1項に記載のC晶の製造方法。
- 2-[3-シアノ-4-(2-メチルプロポキシ)フェニル]-4-メチルチアゾール-5-カルボン酸のC晶が、長径の長さが実質的に約100μm以下の結晶のみからなる2-[3-シアノ-4-(2-メチルプロポキシ)フェニル]-4-メチルチアゾール-5-カルボン酸のC晶の微粉化物である、請求項26~32のいずれか1項に記載のC晶の製造方法。
- C晶の微粉化物のD50が約25μm以下である、請求項33に記載のC晶の製造方法。
- C晶の微粉化物のD90が約50μm以下である、請求項33又は請求項34に記載のC晶の製造方法。
- 製造されたC晶に残留溶媒が実質的にないC晶を製造する、請求項26~35に記載のC晶の製造方法。
- C晶の微粉化物の嵩密度が約0.20g/ml以上で請求項33~35のいずれか1項に記載のC晶の製造方法。
- C晶の微粉化物のタップ密度が約0.30g/ml以上である、請求項33~37のいずれか1項に記載のC晶の製造方法。
- C晶の微粉化物の日本薬局方第2液に対する溶解速度が約0.5mg/ml/min以上であるか、又は、pH5.5のMcIlvaine緩衝液に対する溶解速度が約13μg/ml/min以上である、請求項33~38のいずれか1項に記載のC晶の製造方法。
- 流体式粉砕又は湿式粉砕により得られたC晶の微粉化物である、請求項33~39のいずれか1項に記載のC晶の製造方法。
- 流体式粉砕がジェットミル粉砕又はドライバースト粉砕である、請求項40に記載のC晶の製造方法。
- C晶の微粉化物が有機溶媒から晶出させたC晶を微粉化したものである、請求項33~41のいずれか1項に記載のC晶の製造方法。
- 常温より高い温度が25℃を超え199℃以下である、請求項26~42のいずれか1項に記載のC晶の製造方法。
- 加熱が開放系又は密閉系で行われる、請求項26~43のいずれか1項に記載のC晶の製造方法。
- 請求項26~44のいずれかに記載の方法で製造されたC晶を有効成分として含む、固形製剤。
- 錠剤の形態である、請求項45に記載の固形製剤。
- 痛風治療剤又は高尿酸血症治療剤である、請求項45又は請求項46に記載の固形製剤。
- 2-[3-シアノ-4-(2-メチルプロポキシ)フェニル]-4-メチルチアゾール-5-カルボン酸のC晶及び2-[3-シアノ-4-(2-メチルプロポキシ)フェニル]-4-メチルチアゾール-5-カルボン酸の非晶質体を含む製剤又は試料中の2-[3-シアノ-4-(2-メチルプロポキシ)フェニル]-4-メチルチアゾール-5-カルボン酸の非晶質体の含量を低下させる方法であって、製剤又は試料を常温より高い温度に加熱する工程を含む方法。
- 加熱後の製剤又は試料のC晶の純度が80%以上である、請求項48に記載の方法。
- 加熱前の製剤又は試料中の2-[3-シアノ-4-(2-メチルプロポキシ)フェニル]-4-メチルチアゾール-5-カルボン酸の非晶質体の重量が、2-[3-シアノ-4-(2-メチルプロポキシ)フェニル]-4-メチルチアゾール-5-カルボン酸のC晶の重量の0.001%以上99%以下である、請求項48又は49に記載の方法。
- 加熱前の製剤又は試料中の2-[3-シアノ-4-(2-メチルプロポキシ)フェニル]-4-メチルチアゾール-5-カルボン酸の非晶質体の重量が、2-[3-シアノ-4-(2-メチルプロポキシ)フェニル]-4-メチルチアゾール-5-カルボン酸のC晶の重量の0.001%以上10%以下である、請求項48~50のいずれか1項に記載の方法。
- 加熱前の製剤又は試料中の2-[3-シアノ-4-(2-メチルプロポキシ)フェニル]-4-メチルチアゾール-5-カルボン酸の非晶質体の重量が、2-[3-シアノ-4-(2-メチルプロポキシ)フェニル]-4-メチルチアゾール-5-カルボン酸のC晶の重量の0.001%以上1%以下である、請求項48~51のいずれか1項に記載の方法。
- 加熱前の製剤又は試料中の2-[3-シアノ-4-(2-メチルプロポキシ)フェニル]-4-メチルチアゾール-5-カルボン酸の非晶質体の重量が、2-[3-シアノ-4-(2-メチルプロポキシ)フェニル]-4-メチルチアゾール-5-カルボン酸のC晶の重量の0.001%以上0.1%以下である、請求項48~52のいずれか1項に記載の方法。
- 製剤又は試料中の2-[3-シアノ-4-(2-メチルプロポキシ)フェニル]-4-メチルチアゾール-5-カルボン酸のC晶が、長径の長さが実質的に約200μm以下の結晶のみからなる2-[3-シアノ-4-(2-メチルプロポキシ)フェニル]-4-メチルチアゾール-5-カルボン酸の小型化C晶である、請求項48~53のいずれか1項に記載の方法。
- 製剤又は試料中の2-[3-シアノ-4-(2-メチルプロポキシ)フェニル]-4-メチルチアゾール-5-カルボン酸のC晶が、長径の長さが実質的に約100μm以下の結晶のみからなる2-[3-シアノ-4-(2-メチルプロポキシ)フェニル]-4-メチルチアゾール-5-カルボン酸のC晶の微粉化物である、請求項48~54のいずれか1項に記載の方法。
- C晶の微粉化物のD50が約25μm以下である、請求項55に記載の方法。
- C晶の微粉化物のD90が約50μm以下である、請求項55又は請求項56に記載の方法。
- 加熱後の製剤又は試料に残留溶媒が実質的にない、請求項48~57に記載の方法。
- C晶の微粉化物の嵩密度が約0.20g/ml以上で請求項55~58のいずれか1項に記載の方法。
- C晶の微粉化物のタップ密度が約0.30g/ml以上である、請求項55~59のいずれか1項に記載の方法。
- C晶の微粉化物の日本薬局方第2液に対する溶解速度が約0.5mg/ml/min以上であるか、又は、pH5.5のMcIlvaine緩衝液に対する溶解速度が約13μg/ml/min以上である、請求項55~60のいずれか1項に記載の方法。
- 流体式粉砕又は湿式粉砕により得られたC晶の微粉化物である、請求項55~61のいずれか1項に記載の方法。
- 流体式粉砕がジェットミル粉砕又はドライバースト粉砕である、請求項62に記載のC晶の製造方法。
- C晶の微粉化物が有機溶媒から晶出させたC晶を微粉化したものである、請求項55~63のいずれか1項に記載のC晶の製造方法。
- 常温より高い温度が25℃を超え199℃以下である、請求項48~64のいずれか1項に記載のC晶の製造方法。
- 加熱が開放系又は密閉系で行われる、請求項48~65のいずれか1項に記載のC晶の製造方法。
- 3.3°、6.7°、7.7°、12.8°、13.4°、13.7°、16.3°、16.8°、18.2°、19.1°、20.0°、21.1°、21.8°、23.8°、24. 5°、25.8°、26.6°、27.2°、28.0°及び30.5°の回折角から選択される5個以上の回析角にピークを有する、2-[3-シアノ-4-(2-メチルプロポキシ)フェニル]-4-メチルチアゾール-5-カルボン酸の結晶。
- 6.7°、7.7°、12.8°、13.4°及び13.7°の回析角にピークを有する、2-[3-シアノ-4-(2-メチルプロポキシ)フェニル]-4-メチルチアゾール-5-カルボン酸の結晶。
- 3.3°、6.7°、7.7°、12.8°、13.4°、13.7°、16.3°、16.8°、18.2°、19.1°、20.0°、21.1°、21.8°、23.8°、24. 5°、25.8°、26.6°、27.2°、28.0°及び30.5°の回折角にピークを有する、2-[3-シアノ-4-(2-メチルプロポキシ)フェニル]-4-メチルチアゾール-5-カルボン酸の結晶。
- 約211℃に単一の示差走査熱量の吸熱ピークを有する、2-[3-シアノ-4-(2-メチルプロポキシ)フェニル]-4-メチルチアゾール-5-カルボン酸の結晶。
- 約820cm-1、約1281cm-1、約1423cm-1、約1518cm-1及び約2542cm-1の赤外吸収スペクトルのピークを有する、2-[3-シアノ-4-(2-メチルプロポキシ)フェニル]-4-メチルチアゾール-5-カルボン酸の結晶。
- 請求項67~71のいずれかに記載の結晶の製造方法であって、2-[3-シアノ-4-(2-メチルプロポキシ)フェニル]-4-メチルチアゾール-5-カルボン酸の非晶質体を170℃以上で加熱する工程、及び得られた試料を乾燥条件下で徐々に温度を室温まで下げる工程を含む方法。
- 請求項67~72のいずれかに記載の結晶の製造方法であって、非晶質体を170℃以上210℃以下に加熱する工程、及び得られた試料を乾燥条件下で徐々に温度を室温まで下げる工程を含む方法。
- 2-[3-シアノ-4-(2-メチルプロポキシ)フェニル]-4-メチルチアゾール-5-カルボン酸の非晶質体を検出又は定量する方法であって、
2-[3-シアノ-4-(2-メチルプロポキシ)フェニル]-4-メチルチアゾール-5-カルボン酸試料を示差走査熱量測定する工程;及び
約211℃に現れる吸熱ピーク量(J/g)を測定する工程
を含む方法。 - 請求項67~71のいずれかに記載の2-[3-シアノ-4-(2-メチルプロポキシ)フェニル]-4-メチルチアゾール-5-カルボン酸の結晶を検出又は定量する方法であって、
2-[3-シアノ-4-(2-メチルプロポキシ)フェニル]-4-メチルチアゾール-5-カルボン酸試料を示差走査熱量測定する工程;及び
約211℃に現れる吸熱ピーク量(J/g)を測定する工程
を含む方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017514210A JP7164926B2 (ja) | 2015-04-22 | 2016-04-22 | 2-[3-シアノ-4-(2-メチルプロポキシ)フェニル]-4-メチルチアゾール-5-カルボン酸の結晶、その製造方法、及びそれらの利用 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015-087976 | 2015-04-22 | ||
JP2015087976 | 2015-04-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016171254A1 true WO2016171254A1 (ja) | 2016-10-27 |
Family
ID=57143967
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/062767 WO2016171254A1 (ja) | 2015-04-22 | 2016-04-22 | 2-[3-シアノ-4-(2-メチルプロポキシ)フェニル]-4-メチルチアゾール-5-カルボン酸の結晶、その製造方法、及びそれらの利用 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7164926B2 (ja) |
WO (1) | WO2016171254A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019142814A (ja) * | 2018-02-21 | 2019-08-29 | 大原薬品工業株式会社 | フェブキソスタット含有錠剤の製造方法 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1053576A (ja) * | 1996-06-07 | 1998-02-24 | Eisai Co Ltd | 塩酸ドネペジルの多形結晶およびその製造法 |
WO1999065885A1 (en) * | 1998-06-19 | 1999-12-23 | Teijin Limited | Polymorphic modifications of 2-(3-cyano-4-isobutyloxyphenyl)-4-methyl-5-thiazole-carboxylic acid and processes for the preparation thereof |
WO2003082279A1 (fr) * | 2002-03-28 | 2003-10-09 | Teijin Limited | Preparation solide contenant une forme monocristalline |
JP2005511780A (ja) * | 1999-11-24 | 2005-04-28 | テバ ファーマシューティカル インダストリーズ リミティド | 塩酸セルトラリンの新規の多形体及び該多形体を含有する組成物、並びに、塩酸セルトラリン多形体及び非晶質形の製造方法 |
WO2006101082A1 (ja) * | 2005-03-21 | 2006-09-28 | Eisai R & D Management Co., Ltd. | ピリミジン化合物の結晶、非晶質および製造方法 |
CN101412700A (zh) * | 2007-10-19 | 2009-04-22 | 上海医药工业研究院 | 非布司他的晶型及其制备方法 |
CN101684107A (zh) * | 2008-09-26 | 2010-03-31 | 上海优拓医药科技有限公司 | 非布索坦的新晶型及其制备方法 |
JP2012529537A (ja) * | 2009-06-10 | 2012-11-22 | テバ ファーマシューティカル インダストリーズ リミティド | フェブキソスタットの結晶形 |
WO2015063561A1 (ja) * | 2013-10-22 | 2015-05-07 | 日本ケミファ株式会社 | 2—[3—シアノ—4—(2—メチルプロポキシ)フェニル]—4—メチルチアゾ一ル—5—力ルボン酸の小型化結晶、その微粉化物及びこれらを含有する固形製剤 |
-
2016
- 2016-04-22 WO PCT/JP2016/062767 patent/WO2016171254A1/ja active Application Filing
- 2016-04-22 JP JP2017514210A patent/JP7164926B2/ja active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1053576A (ja) * | 1996-06-07 | 1998-02-24 | Eisai Co Ltd | 塩酸ドネペジルの多形結晶およびその製造法 |
WO1999065885A1 (en) * | 1998-06-19 | 1999-12-23 | Teijin Limited | Polymorphic modifications of 2-(3-cyano-4-isobutyloxyphenyl)-4-methyl-5-thiazole-carboxylic acid and processes for the preparation thereof |
JP2005511780A (ja) * | 1999-11-24 | 2005-04-28 | テバ ファーマシューティカル インダストリーズ リミティド | 塩酸セルトラリンの新規の多形体及び該多形体を含有する組成物、並びに、塩酸セルトラリン多形体及び非晶質形の製造方法 |
WO2003082279A1 (fr) * | 2002-03-28 | 2003-10-09 | Teijin Limited | Preparation solide contenant une forme monocristalline |
WO2006101082A1 (ja) * | 2005-03-21 | 2006-09-28 | Eisai R & D Management Co., Ltd. | ピリミジン化合物の結晶、非晶質および製造方法 |
CN101412700A (zh) * | 2007-10-19 | 2009-04-22 | 上海医药工业研究院 | 非布司他的晶型及其制备方法 |
CN101684107A (zh) * | 2008-09-26 | 2010-03-31 | 上海优拓医药科技有限公司 | 非布索坦的新晶型及其制备方法 |
JP2012529537A (ja) * | 2009-06-10 | 2012-11-22 | テバ ファーマシューティカル インダストリーズ リミティド | フェブキソスタットの結晶形 |
WO2015063561A1 (ja) * | 2013-10-22 | 2015-05-07 | 日本ケミファ株式会社 | 2—[3—シアノ—4—(2—メチルプロポキシ)フェニル]—4—メチルチアゾ一ル—5—力ルボン酸の小型化結晶、その微粉化物及びこれらを含有する固形製剤 |
Non-Patent Citations (1)
Title |
---|
YUICHI TOZUKA ET AL.: "Evaluation of Molecular State of Medicines by Differential Scanning Calorimetry", NETSU SOKUTEI, vol. 31, no. 2, 2004, pages 69 - 73, XP055323415, ISSN: 1884-1899 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019142814A (ja) * | 2018-02-21 | 2019-08-29 | 大原薬品工業株式会社 | フェブキソスタット含有錠剤の製造方法 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2016171254A1 (ja) | 2018-03-22 |
JP7164926B2 (ja) | 2022-11-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3524234B1 (en) | Solid state forms of sofosbuvir | |
CA3074529C (en) | Co-crystal of roxadustat with l-proline and uses thereof | |
US20220267334A1 (en) | Crystalline forms of an orally available, selective kit and pdgfr kinase inhibitor | |
JP7285615B2 (ja) | 不純物の生成を抑制した医薬組成物 | |
JP6408642B2 (ja) | 2−[3−シアノ−4−(2−メチルプロポキシ)フェニル]−4−メチルチアゾール−5−カルボン酸の小型化結晶、その微粉化物及びこれらを含有する固形製剤 | |
WO2016171254A1 (ja) | 2-[3-シアノ-4-(2-メチルプロポキシ)フェニル]-4-メチルチアゾール-5-カルボン酸の結晶、その製造方法、及びそれらの利用 | |
US20240287066A1 (en) | Crystalline Form of Sotorasib | |
EP4056182A1 (en) | Crystal form of aprocitentan, preparation method therefor and use thereof | |
EP3887356B1 (en) | Multi-component crystals of an orally available hif prolyl hydroxylase inhibitor | |
US9670184B2 (en) | Amorphous allisartan isoproxil, preparation method therefor, and pharmaceutical composition containing amorphous allisartan isoproxil | |
US9150571B2 (en) | Crystalline forms of fused amino pyridines as HSP90 inhibitors | |
EP4227305A1 (en) | Crystalline form of sotorasib | |
WO2023161458A1 (en) | Crystalline form of darolutamide | |
CA2910665C (en) | Oral solid preparation comprising aripiprazole and method for producing oral solid preparation comprising aripiprazole | |
EP4041396A1 (en) | Polymorph of lorlatinib | |
CN114644595A (zh) | 阿普昔腾坦的无定型态、其药物组合物和用途 | |
WO2019025600A1 (en) | SOFOSBUVIR HYDRATE | |
Rehder | Solid-state transformations induced by pharmaceutical processes during manufacturing |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16783275 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017514210 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16783275 Country of ref document: EP Kind code of ref document: A1 |