WO2016170590A1 - Semiconductor device manufacturing method and semiconductor manufacturing device - Google Patents

Semiconductor device manufacturing method and semiconductor manufacturing device Download PDF

Info

Publication number
WO2016170590A1
WO2016170590A1 PCT/JP2015/062039 JP2015062039W WO2016170590A1 WO 2016170590 A1 WO2016170590 A1 WO 2016170590A1 JP 2015062039 W JP2015062039 W JP 2015062039W WO 2016170590 A1 WO2016170590 A1 WO 2016170590A1
Authority
WO
WIPO (PCT)
Prior art keywords
pattern
manufacturing
semiconductor device
pattern film
dot
Prior art date
Application number
PCT/JP2015/062039
Other languages
French (fr)
Japanese (ja)
Inventor
田中 博司
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2015/062039 priority Critical patent/WO2016170590A1/en
Publication of WO2016170590A1 publication Critical patent/WO2016170590A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/288Deposition of conductive or insulating materials for electrodes conducting electric current from a liquid, e.g. electrolytic deposition
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering

Definitions

  • the present invention relates to a semiconductor device manufacturing method and a semiconductor manufacturing apparatus for forming a pattern film on the surface of a base layer such as a semiconductor wafer or a semiconductor chip.
  • the conventional pattern film forming method is realized through the following six steps (a) to (f). That is, (a) film formation step, (b) resist coating step, (c) exposure step, (d) development step, (e) etching step, (f) resist removal step, steps (b) to (d).
  • the pattern film can be obtained by the etching treatment in step (e) on the etching target film formed in step (a) ⁇ ⁇ ⁇ using the resist patterned in as a mask.
  • Such a conventional method for forming a patterned film is disclosed in, for example, Patent Document 1.
  • the manufacturing method of the semiconductor device including the above steps (a) to (f) is a pattern film forming method generally performed in the manufacturing process of a semiconductor wafer.
  • the conventional process flow for forming a pattern film is intended to form a fine pattern film, it can be achieved only by preparing a set of highly accurate and expensive semiconductor manufacturing apparatuses.
  • the processing time of all the processes in the conventional pattern film forming method is the addition of the processing time for each transport unit in each process, for example, an average of about 1 hour is taken for 25 units of semiconductor wafers in each process. Assuming that the processes are performed in step (a) to (f), it will take at least 6 hours to execute all the steps (a) to (f).
  • the conventional pattern film forming method has a problem in that it requires an expensive and long-time process in terms of productivity.
  • the conventional pattern film forming method also has problems in its formation contents.
  • an etching target film is formed on the entire surface of the underlayer of the semiconductor wafer or the like, but after the curing process by heat or light, film stress is applied to the entire etching target film. Since the film stress concentrates on the edge of the pattern film during the processes (b) to (f) in steps (b) to (f), when the pattern film is made of a material having low adhesion to the underlayer, the edge of the pattern film The part may peel off, and measures such as adding an adhesion reinforcing agent are required. However, when an adhesion enhancing agent is added, it becomes difficult to remove, and it may be impossible to regenerate the base layer from which the pattern film has been removed (re-formation of the pattern film).
  • the present invention solves the above-described problems and can form a patterned film on the underlayer with good adhesion.
  • the method of manufacturing a semiconductor device and a semiconductor capable of reducing the processing time at low cost An object is to provide a manufacturing apparatus.
  • a pattern film forming material is deposited in the form of dots on the surface of the underlayer, and a completed pattern film having a fixed shape is formed by at least one dot pattern. is doing.
  • a pattern film can be formed on the underlayer with good adhesion by forming each of at least one dot-like pattern short to suppress the film stress of the pattern film. .
  • peeling of the pattern film can be suppressed even when the pattern film is formed with a material having low adhesion to the base layer.
  • FIG. 6 is a cross-sectional view schematically showing the formation content of the pattern film in the method for manufacturing the semiconductor device of the first embodiment.
  • FIG. 10 is a plan view schematically showing the formation content of a pattern film in the method for manufacturing a semiconductor device of the second embodiment.
  • FIG. 10 is a plan view schematically showing the formation content of a pattern film in the method for manufacturing a semiconductor device of the third embodiment.
  • FIG. 4 is a cross-sectional view showing the AA cross-sectional structure of FIG. 3.
  • FIG. 10 is a plan view schematically showing the formation content of a pattern film in the method for manufacturing a semiconductor device of the fourth embodiment.
  • FIG. 6 is a cross-sectional view showing a BB cross-sectional structure of FIG. 5.
  • FIG. 10 is a flowchart showing a processing procedure of a manufacturing method of a semiconductor device according to a fifth embodiment. It is a top view which shows typically the formation content of the pattern film in the manufacturing method of the semiconductor device of Embodiment 6.
  • FIG. 8B is a cross-sectional view showing the CC cross-sectional structure of the bag.
  • FIG. 25 is a plan view schematically showing the formation content of the pattern film in the method for manufacturing a semiconductor device in the seventh embodiment.
  • FIG. 10C is a cross-sectional view showing a DD cross-sectional structure of the bag.
  • FIG. 10 (d) is a cross-sectional view showing an EE cross section of the bag.
  • FIG. 20 is an explanatory diagram schematically showing a configuration of a semiconductor manufacturing apparatus in an eighth embodiment.
  • ⁇ Embodiment 1> 1 is a cross-sectional view schematically showing the formation contents of a pattern film in the method of manufacturing a semiconductor device according to the first embodiment of the present invention. As shown in the figure, dotted pattern films 20 and 21 are formed on a semiconductor wafer upper layer portion 10 serving as a base layer.
  • the semiconductor wafer upper layer portion 10 is an upper layer portion of the semiconductor wafer 1 and is composed of a combination of a conductor layer 11 and an adjacent layer 12 (other layers) that are connected to each other, and a conductor layer interface between the conductor layer 11 and the adjacent layer 12. 11x.
  • the dotted pattern film 20 is formed on the conductive layer surface 11a of the conductive layer 11, and the dotted pattern film 21 is formed on the conductive layer surface 11a and the adjacent layer surface 12a of the adjacent layer 12 so as to straddle the conductive layer interface 11x. Is done.
  • the dotted pattern films 20 and 21 are both formed in a dotted pattern.
  • the “dot pattern” in this specification means “a pattern that is formed by intermittent discharge once in a nozzle that intermittently discharges a material for forming a pattern film, or a plurality of patterns without changing the position of the nozzle. "Pattern formed by overlapping intermittent discharges", ideally, the dimensions in two directions that intersect each other (for example, the vertical direction and the horizontal direction) are equal, such as a circular shape in plan view. Meaning a pattern.
  • each of the dotted pattern films 20 and 21 Since the formation length of each of the dotted pattern films 20 and 21 is sufficiently short, both the pattern film stresses 20s and 21s reflecting the formation length are reduced.
  • the pattern film stress 20 s of the dotted pattern film 20 after the curing process is generated in the dotted pattern film 20 and concentrated on the end portion of the dotted pattern film 20.
  • the pattern film stress 20s concentrated on the end portion increases as the formation length (diameter) increases.
  • the adhesiveness with the semiconductor wafer upper layer portion 10 which is the underlayer is the same regardless of the location, if the pattern film stress 20s exceeds the adhesive strength with the conductor layer surface 11a at the end portion, the dot pattern The end portion of the film 20 is peeled off from the upper layer portion 10 of the semiconductor wafer.
  • the formation length of the dot pattern film 20 so that the pattern film stress 20s does not exceed the adhesion force.
  • the dot pattern film 20 is formed in a dot pattern, the adhesion The formation length can be made sufficiently short so as to be less than the force. The same applies to the pattern film stress 21 s of the dotted pattern film 21.
  • each of the dotted pattern films 20 and 21 is formed as a completed pattern film at a completed stage whose shape is determined. That is, each of the dotted pattern films 20 and 21 is a completed pattern film.
  • each of the dot pattern films 20 and 21 (at least one dot pattern) is formed short, and the pattern film stresses 20s and 21s of each of the dot pattern films 20 and 21 (complete pattern film) are sufficiently low.
  • the dotted pattern films 20 and 21 can be formed on the semiconductor wafer upper layer portion 10 which is the underlayer with good adhesion.
  • the peeling of the dotted pattern films 20 and 21 can be suppressed.
  • the dotted pattern film 20 is formed with good adhesion even on the conductor layer surface 11a of the conductor layer 11 where the peeling is particularly concerned in relation to the pattern film forming material. Can be formed.
  • the dotted pattern film 21 is formed on the conductor layer surface 11a and the adjacent layer surface 12a across the conductor layer interface 11x. Therefore, when the adhesion force with the adjacent layer 12 becomes higher than the adhesion force with the conductor layer 11, the dotted pattern film 21 can strengthen the suppression force against peeling more than the dotted pattern film 20.
  • the adjacent layer 12 which is another layer is made of a material having higher adhesion to the dotted pattern film 21 than the conductor layer 11, It can be expected to improve the adhesion between the semiconductor wafer upper layer portion 10 and the dotted pattern film 21.
  • each of the dotted pattern films 20 and 21 is described as a completed pattern film.
  • the completed pattern film having various functions is mostly handled by an aggregate thereof.
  • FIG. 2 is a plan view schematically showing the formation contents of the pattern film in the method of manufacturing a semiconductor device according to the second embodiment of the present invention.
  • a plurality of dot-like pattern films 22 are formed in a dispersed manner on the conductor layer surface 11a of the semiconductor wafer upper layer portion 10 serving as a base layer.
  • symbol is attached
  • an aggregate of a plurality of dotted pattern films 22 is formed as a completed pattern film.
  • the completed pattern film of the second embodiment is used when, for example, a fluid material such as solder or metal paste is enclosed in a predetermined range on the conductor layer surface 11a.
  • a fluid material such as solder or metal paste
  • an adherend layer is bonded to a base layer such as the semiconductor wafer upper layer portion 10 by soldering
  • an aggregate of a plurality of dot pattern films 22 dispersed on the base layer is formed as a completed pattern film. It means an embodiment in which after the solder is provided on the surface of the underlayer on which the completed pattern film is not formed, the underlayer and the adherend layer are adhered by the solder.
  • the dot-like pattern film 22 is formed by the viscosity of the fluid material for forming the dot-like pattern film 22, the surface tension on the conductor layer surface 11 a, and the repellency of the material.
  • the film stress of the dotted pattern film 22 after the curing process should be kept sufficiently low like the pattern film stresses 20s and 21s of the first embodiment. Can do.
  • the method of manufacturing the semiconductor device according to the second embodiment suppresses the film stress of the aggregate of the plurality of dot-like pattern films 22 as the completed pattern film to the film stress of each of the plurality of dot-like pattern films 22.
  • a completed pattern film can be formed on the conductor layer 11 (semiconductor wafer upper layer portion 10), which is a base layer, with good adhesion.
  • FIG. 3 is a plan view schematically showing the formation contents of the pattern film in the method of manufacturing a semiconductor device according to the third embodiment of the present invention.
  • XY coordinate axes are shown.
  • a plurality of dot-like pattern films 23 are arranged in the X direction (pattern forming direction) on the conductor layer surface 11a and the adjacent layer surface 12a of the semiconductor wafer upper layer portion 10 serving as an underlayer.
  • X direction pattern forming direction
  • symbol is attached
  • FIG. 4 is a cross-sectional view showing the AA cross-sectional structure of FIG.
  • the dotted pattern film linear connection body 23G which is a completed pattern film has a plurality of dot pattern films 23 (a plurality of dot patterns) connected to each other in the X direction (pattern). It is arranged in a line along the (formation direction) and formed in a line in plan view.
  • the pattern film stress 23s in the dotted pattern film linear connector 23G after the curing process occurs in the entire dotted pattern film linear connector 23G.
  • Pattern film stress 23s is concentrated at the end portions of the dotted pattern film 23 at both ends in the X direction of the body 23G. Therefore, the formation length (diameter) of each dot pattern film 23 increases, and the pattern film stress 23s concentrated at the end tends to increase as the formation length L23 of the dot pattern film linear connector 23G increases.
  • the adhesiveness with the semiconductor wafer upper layer part 10 is not location-dependent, when the pattern film stress 23s exceeds the adhesive force with the semiconductor wafer upper layer part 10, the end of the dotted pattern film linear connector 23G peels off. There is a case. Therefore, it is necessary to set the formation length L of each of the dotted pattern films 23 and the formation length L23 of the dotted pattern film linear connector 23G so that the pattern film stress 23s is sufficiently small.
  • the completed pattern film is formed by the plurality of dotted pattern film linear connectors 23G.
  • the completed pattern film of the third embodiment is similar to the second embodiment, for example, when a fluid material such as solder or metal paste is enclosed in a predetermined range on the conductor layer surface 11a and the adjacent layer surface 12a. Can be used. In this case, it is suitable for a material having higher fluidity than in the second embodiment.
  • the viscosity of the fluid material for forming the dotted pattern film 23 the surface tension on the conductor layer surface 11a and the adjacent layer surface 12a, and the repellency by the above material
  • the dot formation length (diameter) of the dot pattern film 23 and the formation length L23 of the dot pattern film linear connector 23G and the dispersion interval By optimizing the dot formation length (diameter) of the dot pattern film 23 and the formation length L23 of the dot pattern film linear connector 23G and the dispersion interval, the dot pattern film wire after the curing treatment is obtained.
  • the pattern film stress 23s of the link body 23G can be kept low so that the dotted pattern film linear link body 23G does not peel off.
  • the pattern film stress in the completed pattern film which is an aggregate of the plurality of dotted pattern film linear connectors 23G, is dotted. It becomes equal to the pattern film stress 23s of each pattern film linear connector 23G.
  • a part of the dotted pattern film 23 of the dotted pattern film linear connector 23G is formed on the conductor layer surface 11a and the adjacent layer surface 12a across the conductor layer interface 11x. Therefore, when the adhesion strength with the adjacent layer 12 becomes higher than the adhesion strength with the conductor layer 11, it can be expected that the adhesion strength of the dotted pattern film linear connector 23G to the semiconductor wafer upper layer portion 10 is increased.
  • each of the plurality of dotted pattern film linear connectors 23G to be the completed pattern film is connected in the X direction (with the plurality of dotted pattern films 23 connected to each other). It is arranged in a line along the pattern formation direction) and formed in a line in plan view.
  • the film stress of the completed pattern film is suppressed to the pattern film stress 23s that reflects the formation length L23 of the point-like pattern film linear connector 23G at a maximum, thereby improving the adhesion to the semiconductor wafer upper layer portion 10 that is the underlayer.
  • a completed pattern film can be formed.
  • FIG. 5 is a plan view schematically showing the formation contents of the pattern film in the method of manufacturing a semiconductor device according to the fourth embodiment of the present invention.
  • XY coordinate axes are shown.
  • a plurality of dot pattern films 24 (a plurality of dot patterns) are connected to each other on the conductor layer surface 11a and the adjacent layer surface 12a of the semiconductor wafer upper layer portion 10 serving as an underlayer while connecting them in the X direction ( By arranging in a line along the first pattern forming direction) and in a line along the Y direction (second pattern forming direction) perpendicular to the X direction, the surface shape in plan view A point-like pattern film planar connector 24G is formed.
  • symbol is attached
  • the cross-sectional structure in the X direction of FIG. 5 is the same as that of the third embodiment shown in FIG. That is, the dotted pattern film planar connecting body 24G is arranged in a line along the X direction while connecting a plurality of dotted pattern films 24 (dotted patterns) to each other.
  • FIG. 6 is a cross-sectional view showing the BB cross-sectional structure of FIG.
  • the dotted pattern film planar connector 24G is linear along the Y direction in addition to the X direction while connecting a plurality of dotted pattern films 24 (dot patterns) to each other. Is arranged.
  • the pattern film stress 24s in the Y direction in the central dotted pattern film planar connector 24G after the curing treatment reflects the formation length LY24 in the Y direction, and the dotted pattern film planar connector. Pattern film stress 24s is concentrated at the end portions of the dotted pattern film 24 at both ends in the Y direction of 24G.
  • the pattern film stress in the X direction in the dotted pattern film planar connection body 24G reflects the formation length LX24 in the X direction, and the dotted pattern films on both ends in the X direction of the dotted pattern film planar connection body 24G. The pattern film stress is concentrated on the end portion of 24.
  • the dotted pattern film planar connector 24G will be described on the assumption that the formation length LY24 is longer than the formation length LX24.
  • the pattern film stress in the entire central dotted pattern film surface connecting body 24G is equal to the pattern film stress 24s.
  • the dotted pattern film planar connecting body 24G is not connected between the dotted pattern films 24 and 24 in the diagonal direction in plan view.
  • the completed pattern film is formed by the plurality of dotted pattern film planar connectors 24G.
  • the completed pattern film of Embodiment 4 is made of a material having fluidity such as solder or metal paste in a predetermined range on the conductor layer surface 11a and the adjacent layer surface 12a. It can be used when enclosing. In this case, it is suitable for a material having higher fluidity than in the second embodiment.
  • the viscosity of the fluid material for forming the dotted pattern film 24 the surface tension on the conductor layer surface 11a and the adjacent layer surface 12a, and the repellency by the above material.
  • the pattern film stress in the completed pattern film which is an aggregate of the plurality of dotted pattern film planar connectors 24G, is dotted. It becomes equal to the pattern film stress 24s of each pattern film planar connector 24G.
  • a part of the dotted pattern film 24 of the dotted pattern film planar connector 24G is formed on the conductor layer surface 11a and the adjacent layer surface 12a across the conductor layer interface 11x. Therefore, when the adhesive force with the adjacent layer 12 becomes higher than the adhesive force with the conductor layer 11, it can be expected that the adhesive force of the dotted pattern film planar connector 24G to the semiconductor wafer upper layer portion 10 is increased.
  • each of the plurality of dotted pattern film planar connectors 24G to be the completed pattern film is connected to the X direction ( By arranging in a line along the first pattern forming direction) and in a line along the Y direction (second pattern forming direction) intersecting at right angles to the X direction, It is formed in a planar shape.
  • the completed pattern film can be formed on the semiconductor wafer upper layer portion 10 which is the underlayer with good adhesion.
  • the dotted pattern film planar connector 24 ⁇ / b> G is formed in a square shape in plan view.
  • the present invention is not limited to this, and the conductor is not limited to the end of the finished pattern film. You may make it form in the frame shape which has a hollow so that the perimeter of the layer surface 11a may be surrounded.
  • FIG. 7 is a flowchart showing a processing procedure of a semiconductor device manufacturing method according to the fifth embodiment of the present invention. It should be noted that the completed pattern film of the first to fourth embodiments (an assembly of the dotted pattern films 20 and 21 and the dotted pattern film 22, the dotted pattern is formed by the semiconductor device manufacturing method of the fifth embodiment. An aggregate of the patterned film linear connectors 23G and an aggregate of the dotted pattern film planar connectors 24G).
  • pattern film formation of an organic insulating film such as formation of a pattern film by thermosetting polyimide after electrode formation, formation of a pattern film by a photocurable material, or the like can be considered.
  • a surface cleaning process (surface layer cleaning process) is performed in step S1. Since the organic matter contained in the atmosphere is adsorbed on the surface (surface layer surface) of the semiconductor wafer upper layer portion 10 left in the atmosphere, in step S1, it adsorbs on the surface of the semiconductor wafer upper layer portion 10. It is necessary to remove the organic matter. For this reason, as a specific means for realizing the cleaning process, it is the simplest to irradiate ultraviolet light (UV light), and when ozone is used together, the time required for the cleaning process can be further shortened.
  • UV light ultraviolet light
  • step S2 after step S1, a material coating process for coating the pattern film forming material on the semiconductor wafer upper layer portion 10 is executed.
  • the material of the pattern film is deposited as a dot pattern on the surface of the upper layer portion 10 of the semiconductor wafer to form a temporary pattern film constituted by a dot pattern alone or a combination of dot patterns.
  • the dot pattern film 20 or the dot pattern film 21 of the first embodiment can be considered, and as a combination of the dot patterns, an assembly of a plurality of dot pattern films 22 each of which is discrete,
  • the dotted pattern film linear connection body 23G, the dotted pattern film surface connection body 24G, etc. can be considered.
  • the application process using an inkjet nozzle is currently the finest and the processing time is short.
  • a dispenser may be selected to lower.
  • step S3 the material temporary curing process of step S3 is executed.
  • the material for forming the pattern film applied in step S2 is temporarily cured as long as it can be regenerated with a chemical solution.
  • a material for forming the pattern film not only a thermosetting material containing a solvent such as polyimide, but also a photocurable material obtained by adding a photopolymerization initiator to an acrylate or methacrylate monomer or oligomer, for example.
  • the thermosetting material is temporarily cured by heating, and the photocurable material is temporarily cured by light.
  • Step S2 and step S3 may be repeated. In this case, it is possible to return to step S2 and to repeatedly execute step S2 and step S3 by return R3 after temporary material curing after execution of step S3.
  • step S3 is a completed stage in which the shape of the pattern film composed of at least one applied dot pattern is determined. That is, a completed pattern film is formed after the last step S3.
  • step S3 it is desirable to perform both an application pattern inspection process (step S4) for inspecting the quality of the application pattern and an inspection determination process (step S5) for determining the inspection result of the application pattern inspection process.
  • step S5 If a defect in the coating pattern is determined by the inspection determination process in step S5, the process of the semiconductor device manufacturing method (pattern film forming method) can be forcibly terminated, and the process can proceed to the semiconductor wafer 1 regeneration process. . On the other hand, if the inspection determination process in step S5 determines good, and if it is necessary to repeat step S2 and step S3, the process returns to step S2 by the post-inspection determination return R5 after execution of step S5. S3 can be repeatedly executed.
  • step S2 and the material temporary curing process in step S3 are repeated in a situation where the processes in steps S4 and S5 are not provided, the material pre-curing work is accumulated as the previously applied material is accumulated. Therefore, there is a high possibility that regeneration with a chemical solution becomes difficult. Therefore, attention must be paid to the number of times steps S2 and S3 are repeated.
  • the quality of the coating pattern is periodically determined by executing steps S4 and S5 at a rate of once after the execution of step S3 or once after the execution of step S3.
  • the manufacturing method of the semiconductor device according to the fifth embodiment performs steps S1 to S3 to perform a series of steps of film formation, resist coating, development, exposure, etching, and resist removal that have been conventionally performed.
  • the completed pattern film can be formed at a relatively low cost because it is not necessary to perform this process.
  • the quality of the coating pattern in the pattern film forming material is determined, and the manufacturing of the defective coating pattern is appropriately stopped.
  • the process can be shifted to the reproduction process, so that the yield of the semiconductor device can be improved.
  • the cleaning process in step S1 can be performed in a relatively short time by ultraviolet light irradiation.
  • a fine dot pattern can be formed in a relatively short time by using an ink jet nozzle in the material application process in step S2.
  • a photocuring material is used as the pattern film forming material, and the temporary curing process in step S3 can be performed in a relatively short time by light irradiation.
  • FIG. 8 is a plan view schematically showing the formation contents of the pattern film in the method of manufacturing a semiconductor device according to the sixth embodiment of the present invention.
  • XY coordinate axes are shown.
  • a plurality of dotted pattern films 25 and 26 are formed on the conductor layer surface 11a and the adjacent layer surface 12a of the semiconductor wafer upper layer portion 10 serving as the underlayer.
  • the dotted pattern film linear connector 26G which is a linear pattern film in a plan view, obtained by arranging the linear pattern) along the X direction (pattern forming direction) along the Y direction.
  • symbol is attached
  • FIG. 9 is a cross-sectional view showing the CC cross-sectional structure of FIG. 8 (b).
  • FIG. 8 and FIG. 9 a processing procedure of the semiconductor device manufacturing method of the sixth embodiment will be described.
  • step S2 material coating process
  • step S3 material temporary curing process
  • a plurality of lower layer dotted pattern films 25 are formed along the X direction without being connected to each other.
  • the plurality of lower layer dot pattern films 25 are formed in a plurality of rows and dispersed along the Y direction.
  • the film stress of the lower layer dotted pattern film 25 is separated in units of the pattern film stress 25s. Further, a part of the plurality of lower layer dot pattern films 25 is formed so as to straddle the conductor layer interface 11x.
  • a plurality of upper layer dotted pattern films 26 are formed along the X direction without being connected to each other.
  • a linear completed pattern in plan view A dotted pattern film linear connector 26G is formed as a film.
  • the plurality of dotted pattern film linear connected bodies 26G are formed in a plurality of rows and dispersed along the Y direction.
  • the plurality of upper layer dot pattern films 26 are adapted to the plurality of lower layer dot pattern films 25 already temporarily cured in the first step S3.
  • the pattern film stress 26s of each of the plurality of upper layer dot pattern films 26 is separated by the lower layer dot pattern film 25 provided between the upper layer dot pattern films 26 and 26.
  • the dotted pattern film linear connected bodies 26G adjacent in the Y direction are separated from each other, film stress does not act on each other.
  • the plurality of dotted pattern film linear connected bodies 26G manufactured by the method of manufacturing a semiconductor device according to the sixth embodiment each have a connecting structure in which the linear connected patterns are formed.
  • the temporary curing of the film 25 and the upper dot pattern film 26 is performed separately, and as shown in FIG. 9, the pattern film stress 25s and the pattern film stress 26s remain separated in dot units, As a whole, the stress concentration on the end portion of the dotted pattern film linear connected body 26G is relieved greatly.
  • a plurality of lower layer dot pattern films 25 and a plurality of upper layer dot pattern films 26 are formed in separate processes, and the lower layer dot pattern films 25 and 25 are formed as upper layer dots.
  • a method of applying a material for forming a pattern film so as to be connected by the pattern film 26 may be referred to as a “stepwise material application manufacturing method”.
  • the semiconductor device manufacturing method according to the sixth embodiment is completed by combining the plurality of lower layer dot pattern films 25 and the plurality of upper layer dot pattern films 26 after the execution of step S3 twice. While the film stress of the pattern film is suppressed to the pattern film stress 25s and the pattern film stress 26s of the lower layer dot pattern film 25 and the upper layer dot pattern film 26, respectively, a linear completed pattern film can be formed in plan view. .
  • steps S4 and S5 of the fifth embodiment are incorporated after the first and second steps S3 may be employed.
  • the manufacturing of the semiconductor device is immediately stopped.
  • the process returns to step S2 with a return R5 after inspection determination, and when the second application pattern is normal, the process proceeds to the next main curing process.
  • the main curing process is performed under a high temperature condition (example of polyimide: 300 ° C./60 minutes) exceeding the glass transition point.
  • the pattern film forming material is a photo-curing material
  • this curing process is performed by irradiating with high energy light to eliminate unreacted monomers (example of acrylic acrylate: 300 to 1000 mJ with UV: 365 nm peak metal halide lamp) / cm 2 ) or heating to release the monomer (example of acrylic acrylate: 150 ° C./60 minutes).
  • the quality of the coating pattern in the material for forming the lower layer dot pattern film 25 and the upper layer dot pattern film 26 is determined during the execution of step S4, and defective application is performed.
  • the production of the pattern can be stopped as appropriate to improve the yield of the semiconductor device.
  • FIG. 10 is a plan view schematically showing the formation contents of the pattern film in the method of manufacturing a semiconductor device according to the seventh embodiment of the present invention.
  • XY coordinate axes are shown.
  • a plurality of dotted pattern films 27 and 28 (a plurality of first and second points) are formed on the conductor layer surface 11a and the adjacent layer surface 12a of the semiconductor wafer upper layer portion 10 serving as the underlayer.
  • a plurality of dot pattern films 29 and 30 (a plurality of third and fourth dot patterns) arranged in a line along the X direction (first pattern formation direction).
  • the dotted pattern film planar connected bodies 30G which are planar pattern films in plan view, are formed in a plurality of rows dispersed along the Y direction (second pattern formation direction).
  • symbol is attached
  • FIG. 11 is a cross-sectional view showing the DD cross-sectional structure of FIG. 10 (c)
  • FIG. 12 is a cross-sectional view showing the EE cross section of FIG. 10 (d).
  • FIG. 10D, FIG. 11 and FIG. 12 is the same as that shown in FIG. 7 in the method for manufacturing the semiconductor device of the fifth embodiment, in which step S2 (material coating process) and step S3 (material temporary curing process) are performed. This is realized by repeating 4 times.
  • a plurality of lower layer dotted pattern films 27 are formed along the X direction without being connected to each other.
  • the plurality of lower layer dotted pattern films 27 are formed in a plurality of rows and dispersed along the Y direction. That is, the plurality of lower layer dot pattern films 27 are classified into a group of a plurality of lower layer dot pattern films 27 (a plurality of first dot pattern groups) along the Y direction orthogonal to the X direction.
  • the film stress of the lower layer dot pattern film 27 is the pattern film.
  • the stress is separated into 27 s units.
  • a part of the plurality of lower layer dotted pattern films 27 is formed so as to straddle the conductor layer interface 11x.
  • a plurality of upper layer dotted pattern films 28 are formed along the X direction without being connected to each other.
  • the plurality of lower layer dotted pattern films 28 are formed in a plurality of rows and dispersed along the Y direction. That is, the plurality of upper layer dot pattern films 28 correspond to the group of the plurality of lower layer dot pattern films 27 along the Y direction. Type pattern group).
  • the group of the plurality of sets of upper layer dot pattern films 28 includes an upper layer dot pattern film 28 between a pair of lower layer dot pattern films 27 and 27 adjacent to each other in the X direction among the plurality of lower layer dot pattern films 27 in each group. It is connected through.
  • the plurality of upper layer dot pattern films 28 have already been temporarily cured in the first step S3. 27, the pattern film stress 28 s of each of the plurality of upper layer dot pattern films 28 is separated by the lower layer dot pattern film 27 provided between the upper layer dot pattern films 28, 28.
  • a plurality of lower layer dotted pattern films 29 are formed along the X direction without being connected to each other by performing the third steps S2 and S3.
  • the plurality of lower layer dotted pattern films 29 are formed in a plurality of rows and dispersed along the Y direction. That is, the plurality of lower layer dot pattern films 29 are classified into a group of a plurality of lower layer dot pattern films 29 (a plurality of third dot pattern groups) along the Y direction orthogonal to the X direction.
  • the plurality of lower layer dot pattern films 29 have already been temporarily cured in the first and second steps S3, and the plurality of lower layer dot pattern films 27 and the plurality of upper layer dot pattern films 28.
  • the pattern film stress 29 s of each of the plurality of upper layer dot pattern films 29 is separated by the lower layer dot pattern film 27 provided between the lower layer dot pattern films 29 and 29.
  • a plurality of upper layer dotted pattern films 30 are formed along the X direction without being connected to each other, and a plurality of lower layers are formed.
  • a pair of lower layer dotted pattern films 29 and 29 adjacent to each other in the X direction are connected through an upper layer dotted pattern film 30 and between a plurality of sets of upper layer dotted pattern films 28.
  • a pair of upper layer dot pattern films 28, 28 adjacent to each other in the Y direction are connected via an upper layer dot pattern film 30, so that a planar dot pattern film surface connection body 30 ⁇ / b> G in plan view is obtained. Is formed as a completed pattern film.
  • the plurality of upper layer dot pattern films 30 correspond to the group of the plurality of lower layer dot pattern films 29 along the Y direction. Type pattern group).
  • the plurality of upper layer dot pattern films 30 are the plurality of lower layer dot pattern films 27, the plurality of upper layer dot pattern films 27 which have already been temporarily cured in the first to third steps S3. 28 and a plurality of lower layer dotted pattern films 29 are spread out. Then, the pattern film stress 30s of each of the plurality of upper layer dot pattern films 30 in the X direction is separated by the lower layer dot pattern film 29 provided between the upper layer dot pattern films 30 and 30, and in the Y direction, FIG. As shown in FIG. 5, the pattern film stress 30 s of each of the plurality of upper layer dot pattern films 30 is separated by the upper layer dot pattern film 28 provided between the upper layer dot pattern films 30 and 30.
  • the plurality of dotted pattern film planar connected bodies 30G manufactured by the semiconductor device manufacturing method of the seventh embodiment have a connecting structure in which the whole is connected in a planar shape.
  • the temporary curing of the pattern film 27, the upper dot pattern film 28, the lower dot pattern film 29, and the upper dot pattern film 30 is performed separately.
  • the pattern film stress 27s, the pattern film The stress 28s, the pattern film stress 29s, and the pattern film stress 30s remain separated in dot units. For this reason, the stress concentration to the end of the dotted pattern film planar connector 30G as a whole is greatly relieved.
  • a plurality of lower layer dot pattern films 27, a plurality of upper layer dot pattern films 28, and a plurality of lower layer dot patterns are obtained by performing step S3 four times.
  • a completed pattern film is formed by a combination of the film 29 and a plurality of upper-layer dot pattern films 30.
  • the seventh embodiment is similar to the sixth embodiment in that a plurality of lower layer dot pattern films 27, a plurality of upper layer dot pattern films 28, a plurality of lower layer dot pattern films 29, and a plurality of upper layer dot patterns.
  • a stepwise material coating method is used in which the pattern film 30 is formed in a separate process.
  • the lower dot pattern films 27 and 27 are connected by the upper dot pattern film 28, and the lower dot pattern films 29 and 29 are connected by the upper dot pattern film 30 and in the Y direction.
  • the lower dot pattern films 27 and 27 can be connected by the lower dot pattern film 29, and the upper dot pattern films 28 and 28 can be connected by the upper dot pattern film 30.
  • a pattern film can be formed.
  • the dotted pattern film planar connecting body 30G is formed in a square shape.
  • the present invention is not limited to this, and surrounds the entire circumference of the conductor layer surface 11a as long as the end of the completed pattern film does not peel off.
  • it may be formed in a frame shape having a hollow.
  • steps S4 and S5 of the fifth embodiment are incorporated after each of the first to fourth steps S3 may be adopted.
  • the manufacture of the semiconductor device is immediately stopped.
  • the process returns to step S2 with a return R5 after inspection determination, and if the fourth application pattern is normal, the process proceeds to the next main curing process.
  • the quality of the coating pattern in the material for forming the lower layer dot pattern films 27 and 29 and the upper layer dot pattern films 28 and 30 is determined when step S4 is executed.
  • the production of defective coating patterns can be stopped as appropriate to improve the yield of semiconductor devices.
  • FIG. 13 is an explanatory diagram schematically showing a configuration of a semiconductor manufacturing apparatus according to Embodiment 8 of the present invention.
  • the positional relationship on the plane of each component part 41-48 of the semiconductor manufacturing apparatus 4 of Embodiment 8 is shown.
  • the semiconductor manufacturing apparatus 4 of the eighth embodiment is an apparatus for realizing the semiconductor device manufacturing method of the first to seventh embodiments.
  • XYZ coordinate axes are shown.
  • the semiconductor manufacturing apparatus 4 includes a plurality of wafer cassettes 41, a transfer robot 42, an alignment unit 43, a stage 44, a surface cleaning unit 45, a material application unit 46, a material temporary curing unit 47, and an application pattern inspection.
  • the unit 48 is configured.
  • the transfer robot 42 performs a transfer process of taking out the semiconductor wafer 1 from the wafer cassette 41 and placing it on the stage 44, or holding the semiconductor wafer 1 on the stage 44 and returning it to the wafer cassette 41.
  • the stage 44 is normally disposed in the alignment unit 43, but can be moved to the surface cleaning unit 45, the material application unit 46, the material temporary curing unit 47, and the application pattern inspection unit 48 as necessary.
  • the semiconductor wafer 1 stored in the wafer cassette 41 is pulled out by the transfer robot 42, and the semiconductor wafer 1 is placed on the alignment unit 43 in the stage 44 by the transfer robot 42.
  • the alignment unit 43 drives the X, Y, Z, ⁇ axes and the like in the spherical coordinate system of the internal stage 44 by image processing to adjust the position and angle of the semiconductor wafer 1 to the coating coordinate system.
  • step S1 in the semiconductor device manufacturing method of the fifth embodiment corresponds to step S1 in the semiconductor device manufacturing method of the fifth embodiment (see FIG. 7).
  • the stage 44 is moved to the material application unit 46, and a pattern film forming material (hereinafter simply referred to as “material” in some cases) is applied to the surface of the semiconductor wafer 1 from an inkjet nozzle.
  • material hereinafter simply referred to as “material” in some cases
  • the stage 44 is moved toward the alignment unit 43 in the ⁇ Y direction at a constant speed, and the material is temporarily cured by light irradiation of the passing material temporary curing unit 47.
  • the light irradiation process by the material temporary curing portion 47 having the light irradiation function corresponds to step S3 in the method for manufacturing the semiconductor device of the fifth embodiment.
  • the stage 44 is moved to the coating pattern inspection unit 48, and it is inspected for abnormality in the coating pattern of the material by image processing.
  • the inspection process of the coating pattern inspection unit 48 having the inspection function corresponds to step S4 in the method for manufacturing the semiconductor device of the fifth embodiment.
  • the inspection determination process is subsequently performed by the coating pattern inspection unit 48.
  • This process corresponds to step S5 in the method for manufacturing the semiconductor device of the fifth embodiment.
  • an alarm of the application pattern abnormality is issued.
  • the stage 44 is moved to the alignment unit 43, the semiconductor wafer 1 on the stage 44 is stored in the original wafer cassette 41 by the transfer robot 42, and the alarm log is linked to the wafer log.
  • the main curing process is performed in another apparatus of the semiconductor manufacturing apparatus 4.
  • the coating pattern inspection step and the subsequent inspection determination step are repeated as many times as necessary. For example, in the case of the sixth embodiment, it is repeated twice, and in the case of the seventh embodiment, it is repeated four times.
  • inspection determination step is also considered.
  • the semiconductor manufacturing apparatus 4 has the surface cleaning unit 45, the material application unit 46, and the material pre-curing unit 47 in an integrated manner. It can be formed in a short time.
  • the manufacturing method of the fifth embodiment shown in FIG. 7 is executed by the semiconductor manufacturing apparatus 4 of the eighth embodiment, all can be processed at high speed.
  • Surface cleaning by the surface cleaning unit 45 is 10 seconds
  • material application by the material application unit 46 is 10 seconds
  • temporary curing processing by the material temporary curing unit 47 is 10 seconds
  • application pattern inspection processing by the application pattern inspection unit 48 is 10 seconds. You can do it. That is, considering the integration of the components 41 to 48 into one semiconductor manufacturing apparatus 4, the processing time of steps S1 to S5 of the semiconductor device manufacturing method of the fifth embodiment is shortened.
  • the semiconductor manufacturing apparatus 4 forms a defective coating pattern by integrating the coating pattern inspection unit 48 in addition to the surface cleaning unit 45, the material coating unit 46, and the material temporary curing unit 47.
  • An accurate pattern film can be formed in a relatively short time while the processed semiconductor wafer 1 is regenerated.
  • the semiconductor manufacturing apparatus 4 can reduce the size and weight of the apparatus by integrating and integrating the components 41 to 48.
  • the material application unit 46 uses an ink jet nozzle to make the material use efficiency about 90%, and the material use efficiency by the spin coater used in the conventional film forming process is significantly higher than about 30%. Can be improved. Further, since the resist coating and development processes are not required as in the prior art, the amount of raw materials can be reduced.
  • the semiconductor manufacturing apparatus 4 of the eighth embodiment can be integrated as compared with the conventional semiconductor manufacturing apparatus constituted by a plurality of apparatuses, and overall energy saving can be achieved by shortening the processing time.
  • the semiconductor manufacturing apparatus 4 of the eighth embodiment it is possible to reduce the amount of raw materials described above and to relieve the film stress at the time of forming a completed pattern film by combining a point pattern film alone or a point pattern film.
  • the yield of the semiconductor device manufactured by executing the manufacturing method of the semiconductor device according to the first to seventh embodiments can be improved.
  • the semiconductor wafer 1 is shown as an example. However, it is needless to say that the present invention can be applied to a semiconductor chip formed into chips.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

The purpose of the present invention is to provide a semiconductor device manufacturing method whereby a pattern film can be formed with excellent adhesiveness on a base layer. The present invention forms dot-shaped pattern films (20, 21) as completed pattern films by depositing a pattern film-forming material in dot shapes on a surface of a semiconductor wafer upper layer section (10), which is configured from a conductor layer (11) and an adjacent layer (12), and which has a conductor layer interface (11x) between the conductor layer (11) and the adjacent layer (12). The dot-shaped pattern film (20) is formed on a conductor layer surface (11a) of the conductor layer (11), and the dot-like pattern film (21) is formed on the conductor layer surface (11a) and an adjacent layer surface (12a) of the adjacent layer (12) such that the dot-like pattern film straddles the conductor layer interface (11x).

Description

半導体装置の製造方法及び半導体製造装置Semiconductor device manufacturing method and semiconductor manufacturing apparatus
 この発明は、半導体ウェハ、半導体チップ等の下地層の表面にパターン膜を形成する半導体装置の製造方法及び半導体製造装置に関する。 The present invention relates to a semiconductor device manufacturing method and a semiconductor manufacturing apparatus for forming a pattern film on the surface of a base layer such as a semiconductor wafer or a semiconductor chip.
 例えば、従来のパターン膜の形成方法は以下の6つの工程(a) ~(f) を経て実現される。すなわち、(a) 成膜工程、(b) レジスト塗布工程、(c) 露光工程、(d) 現像工程、(e) エッチング工程、(f) レジスト除去工程を経て、工程(b) ~(d) によりパターニングされたレジストをマスクとして工程(a) により成膜されたエッチング対象膜に対し工程(e) のエッチング処理によりパターン膜を得ることができる。このような従来のパターン膜の形成方法は例えば特許文献1に開示されている。 For example, the conventional pattern film forming method is realized through the following six steps (a) to (f). That is, (a) film formation step, (b) resist coating step, (c) exposure step, (d) development step, (e) etching step, (f) resist removal step, steps (b) to (d The pattern film can be obtained by the etching treatment in step (e) on the etching target film formed in step (a) と し て using the resist patterned in as a mask. Such a conventional method for forming a patterned film is disclosed in, for example, Patent Document 1.
 上記工程(a) ~(f) からなる半導体装置の製造方法は、半導体ウェハの製造工程で一般的に行われてきたパターン膜の形成方法である。ところが、従来のパターン膜を形成する工程フローは、微細なパターン膜を形成することを目的としていたために、高精度で高額な半導体製造装置を一式準備してはじめて成り立つものである。また、上記従来のパターン膜の形成方法における全工程の処理時間は、各工程の搬送単位毎の処理時間の足し算となるため、例えば、各工程で25枚単位の半導体ウェハを平均で概ね1時間で処理すると仮定すると、工程(a) ~(f) を全て実行するのに少なくとも6時間は掛かってしまうことになる。 The manufacturing method of the semiconductor device including the above steps (a) to (f) is a pattern film forming method generally performed in the manufacturing process of a semiconductor wafer. However, since the conventional process flow for forming a pattern film is intended to form a fine pattern film, it can be achieved only by preparing a set of highly accurate and expensive semiconductor manufacturing apparatuses. In addition, since the processing time of all the processes in the conventional pattern film forming method is the addition of the processing time for each transport unit in each process, for example, an average of about 1 hour is taken for 25 units of semiconductor wafers in each process. Assuming that the processes are performed in step (a) to (f), it will take at least 6 hours to execute all the steps (a) to (f).
特開平8-181091号公報JP-A-8-181091
 このように、高精度を要求しないパターン膜の形成においては、従来のパターン膜の形成方法は生産性の点で高額かつ長時間処理を要するという問題点を有している。 As described above, in the formation of a pattern film that does not require high accuracy, the conventional pattern film forming method has a problem in that it requires an expensive and long-time process in terms of productivity.
 一方、従来のパターン膜の形成方法は、その形成内容においても問題点がある。工程(a) の成膜工程では半導体ウェハ等の下地層の表面の全面にエッチング対象膜が形成されるが、熱や光による硬化処理後にはエッチング対象膜全体に膜ストレスが掛かっており、以降の工程(b) ~(f) の過程でパターン膜の端部に膜ストレスが集中するため、当該パターン膜が下地層との密着性が低い材質で構成された膜の場合、パターン膜の端部が剥離する場合があり、密着強化剤を添加する等の対策が必要となる。ところが、密着強化剤を添加すると除去が難しくなり、パターン膜を除去した下地層の再生(パターン膜の再形成)ができなくなる場合もある。 On the other hand, the conventional pattern film forming method also has problems in its formation contents. In the film-forming process of step (a), an etching target film is formed on the entire surface of the underlayer of the semiconductor wafer or the like, but after the curing process by heat or light, film stress is applied to the entire etching target film. Since the film stress concentrates on the edge of the pattern film during the processes (b) to (f) in steps (b) to (f), when the pattern film is made of a material having low adhesion to the underlayer, the edge of the pattern film The part may peel off, and measures such as adding an adhesion reinforcing agent are required. However, when an adhesion enhancing agent is added, it becomes difficult to remove, and it may be impossible to regenerate the base layer from which the pattern film has been removed (re-formation of the pattern film).
 本発明では、上記のような問題点を解決し、下地層に密着性良くパターン膜を形成することができ、望ましくは、低コストで処理時間の短縮化を図った半導体装置の製造方法及び半導体製造装置を提供することを目的とする。 The present invention solves the above-described problems and can form a patterned film on the underlayer with good adhesion. Preferably, the method of manufacturing a semiconductor device and a semiconductor capable of reducing the processing time at low cost An object is to provide a manufacturing apparatus.
 この発明に係る半導体装置の製造方法は、下地層の表面上に、パターン膜形成用の材料を点状に堆積し、少なくとも一つの点状パターンによって、形状が確定した完成段階のパターン膜を形成している。 In the method for manufacturing a semiconductor device according to the present invention, a pattern film forming material is deposited in the form of dots on the surface of the underlayer, and a completed pattern film having a fixed shape is formed by at least one dot pattern. is doing.
 この発明における半導体装置の製造方法は、少なくとも一つの点状パターンそれぞれの形成長を短く形成してパターン膜の膜ストレスを低く抑えることにより、下地層に密着性良くパターン膜を形成することができる。その結果、下地層との密着性が低い材料でパターン膜を形成する場合でも、パターン膜の剥離を抑制することができる。 In the method of manufacturing a semiconductor device according to the present invention, a pattern film can be formed on the underlayer with good adhesion by forming each of at least one dot-like pattern short to suppress the film stress of the pattern film. . As a result, peeling of the pattern film can be suppressed even when the pattern film is formed with a material having low adhesion to the base layer.
 この発明の目的、特徴、局面、及び利点は、以下の詳細な説明と添付図面とによって、より明白となる。 The objects, features, aspects, and advantages of the present invention will become more apparent from the following detailed description and the accompanying drawings.
実施の形態1の半導体装置の製造方法におけるパターン膜の形成内容を模式的に示す断面図である。FIG. 6 is a cross-sectional view schematically showing the formation content of the pattern film in the method for manufacturing the semiconductor device of the first embodiment. 実施の形態2の半導体装置の製造方法におけるパターン膜の形成内容を模式的に示す平面図である。FIG. 10 is a plan view schematically showing the formation content of a pattern film in the method for manufacturing a semiconductor device of the second embodiment. 実施の形態3の半導体装置の製造方法におけるパターン膜の形成内容を模式的に示す平面図である。FIG. 10 is a plan view schematically showing the formation content of a pattern film in the method for manufacturing a semiconductor device of the third embodiment. 図3のA-A断面構造を示す断面図である。FIG. 4 is a cross-sectional view showing the AA cross-sectional structure of FIG. 3. 実施の形態4の半導体装置の製造方法におけるパターン膜の形成内容を模式的に示す平面図である。FIG. 10 is a plan view schematically showing the formation content of a pattern film in the method for manufacturing a semiconductor device of the fourth embodiment. 図5のB-B断面構造を示す断面図である。FIG. 6 is a cross-sectional view showing a BB cross-sectional structure of FIG. 5. 実施の形態5の半導体装置の製造方法の処理手順を示すフローチャートである。10 is a flowchart showing a processing procedure of a manufacturing method of a semiconductor device according to a fifth embodiment. 実施の形態6の半導体装置の製造方法におけるパターン膜の形成内容を模式的に示す平面図である。It is a top view which shows typically the formation content of the pattern film in the manufacturing method of the semiconductor device of Embodiment 6. FIG. 図8(b) のC-C断面構造を示す断面図である。FIG. 8B is a cross-sectional view showing the CC cross-sectional structure of the bag. 実施の形態7の半導体装置の製造方法におけるパターン膜の形成内容を模式的に示す平面図である。FIG. 25 is a plan view schematically showing the formation content of the pattern film in the method for manufacturing a semiconductor device in the seventh embodiment. 図10(c) のD-D断面構造を示す断面図である。FIG. 10C is a cross-sectional view showing a DD cross-sectional structure of the bag. 図10(d) のE-E断面を示す断面図である。FIG. 10 (d) is a cross-sectional view showing an EE cross section of the bag. 実施の形態8における半導体製造装置の構成を模式的に示す説明図である。FIG. 20 is an explanatory diagram schematically showing a configuration of a semiconductor manufacturing apparatus in an eighth embodiment.
 <実施の形態1>
 図1は、この発明の実施の形態1の半導体装置の製造方法におけるパターン膜の形成内容を模式的に示す断面図である。同図に示すように、下地層となる半導体ウェハ上層部10上に点状パターン膜20及び21が形成されている。
<Embodiment 1>
1 is a cross-sectional view schematically showing the formation contents of a pattern film in the method of manufacturing a semiconductor device according to the first embodiment of the present invention. As shown in the figure, dotted pattern films 20 and 21 are formed on a semiconductor wafer upper layer portion 10 serving as a base layer.
 半導体ウェハ上層部10は半導体ウェハ1の上層部であり、互いに連接する導体層11及び隣接層12(他の層)の組み合わせで構成され、導体層11と隣接層12との間に導体層界面11xを有している。 The semiconductor wafer upper layer portion 10 is an upper layer portion of the semiconductor wafer 1 and is composed of a combination of a conductor layer 11 and an adjacent layer 12 (other layers) that are connected to each other, and a conductor layer interface between the conductor layer 11 and the adjacent layer 12. 11x.
 点状パターン膜20は導体層11の導体層表面11a上に形成され、点状パターン膜21は導体層界面11xを跨るように導体層表面11a上及び隣接層12の隣接層表面12a上に形成される。点状パターン膜20及び21は共に点状パターンで形成されている。なお、本明細書における「点状パターン」とは、「パターン膜形成用の材料を間欠的に吐出するノズルにおいて、1回の間欠吐出で形成されるパターン、あるいはノズルの位置を変えずに複数回の間欠吐出を重ねて形成されるパターン」を意味し、理想的には、「平面視して円状を呈する等、互いに交差する2方向(例えば、縦方向及び横方向)の寸法が等しくなるようなパターン」を意味する。 The dotted pattern film 20 is formed on the conductive layer surface 11a of the conductive layer 11, and the dotted pattern film 21 is formed on the conductive layer surface 11a and the adjacent layer surface 12a of the adjacent layer 12 so as to straddle the conductive layer interface 11x. Is done. The dotted pattern films 20 and 21 are both formed in a dotted pattern. The “dot pattern” in this specification means “a pattern that is formed by intermittent discharge once in a nozzle that intermittently discharges a material for forming a pattern film, or a plurality of patterns without changing the position of the nozzle. "Pattern formed by overlapping intermittent discharges", ideally, the dimensions in two directions that intersect each other (for example, the vertical direction and the horizontal direction) are equal, such as a circular shape in plan view. Meaning a pattern.
 点状パターン膜20及び21それぞれの形成長が十分短いため、形成長を反映するパターン膜ストレス20s及び21sは共に小さくなる。 Since the formation length of each of the dotted pattern films 20 and 21 is sufficiently short, both the pattern film stresses 20s and 21s reflecting the formation length are reduced.
 硬化処理後の点状パターン膜20のパターン膜ストレス20sは、点状パターン膜20内で発生しており、点状パターン膜20の端部に集中している。点状パターン膜20は平面視円状に形成される場合、その形成長(径)が大きくなるほど端部に集中するパターン膜ストレス20sが増加することになる。一方、下地層である半導体ウェハ上層部10との密着性は場所に依存することなく同じであるため、端部においてパターン膜ストレス20sが導体層表面11aとの密着力を上回ると、点状パターン膜20の端部が半導体ウェハ上層部10から剥離することになる。したがって、パターン膜ストレス20sが上記密着力を上回らないように、点状パターン膜20の形成長を短くする必要があるが、点状パターン膜20は点状パターンで形成されているため、上記密着力を下回るように形成長を十分短くすることができる。同様なことは、点状パターン膜21のパターン膜ストレス21sにおいても当てはまる。 The pattern film stress 20 s of the dotted pattern film 20 after the curing process is generated in the dotted pattern film 20 and concentrated on the end portion of the dotted pattern film 20. When the dotted pattern film 20 is formed in a circular shape in plan view, the pattern film stress 20s concentrated on the end portion increases as the formation length (diameter) increases. On the other hand, since the adhesiveness with the semiconductor wafer upper layer portion 10 which is the underlayer is the same regardless of the location, if the pattern film stress 20s exceeds the adhesive strength with the conductor layer surface 11a at the end portion, the dot pattern The end portion of the film 20 is peeled off from the upper layer portion 10 of the semiconductor wafer. Therefore, it is necessary to shorten the formation length of the dot pattern film 20 so that the pattern film stress 20s does not exceed the adhesion force. However, since the dot pattern film 20 is formed in a dot pattern, the adhesion The formation length can be made sufficiently short so as to be less than the force. The same applies to the pattern film stress 21 s of the dotted pattern film 21.
 実施の形態1では、点状パターン膜20及び21それぞれを形状が確定した完成段階の完成パターン膜として形成している。すなわち、点状パターン膜20及び21それぞれ単独で完成パターン膜となる。 In the first embodiment, each of the dotted pattern films 20 and 21 is formed as a completed pattern film at a completed stage whose shape is determined. That is, each of the dotted pattern films 20 and 21 is a completed pattern film.
 したがって、点状パターン膜20及び21(少なくとも一つの点状パターン)それぞれの形成長を短く形成して、点状パターン膜20及び21(完成パターン膜)それぞれのパターン膜ストレス20s及び21sを十分低く抑えることにより、下地層である半導体ウェハ上層部10に密着性良く点状パターン膜20及び21を形成することができる。その結果、半導体ウェハ上層部10との密着性が低い材料で点状パターン膜20及び21を形成する場合でも、点状パターン膜20及び21それぞれの剥離を抑制できることができる。 Accordingly, the formation length of each of the dot pattern films 20 and 21 (at least one dot pattern) is formed short, and the pattern film stresses 20s and 21s of each of the dot pattern films 20 and 21 (complete pattern film) are sufficiently low. By suppressing, the dotted pattern films 20 and 21 can be formed on the semiconductor wafer upper layer portion 10 which is the underlayer with good adhesion. As a result, even when the dotted pattern films 20 and 21 are formed of a material having low adhesion to the semiconductor wafer upper layer portion 10, the peeling of the dotted pattern films 20 and 21 can be suppressed.
 さらに、実施の形態1の半導体装置の製造方法では、パターン膜形成用の材料との関係で剥離が特に懸念される導体層11の導体層表面11a上においても密着性良く点状パターン膜20を形成することができる。 Furthermore, in the manufacturing method of the semiconductor device of the first embodiment, the dotted pattern film 20 is formed with good adhesion even on the conductor layer surface 11a of the conductor layer 11 where the peeling is particularly concerned in relation to the pattern film forming material. Can be formed.
 また、点状パターン膜21は導体層界面11xを跨って導体層表面11a及び隣接層表面12a上に形成されている。したがって、隣接層12との密着力が導体層11との密着力より高くなる場合、点状パターン膜21は点状パターン膜20より剥離に対する抑制力を強化することができる。 Moreover, the dotted pattern film 21 is formed on the conductor layer surface 11a and the adjacent layer surface 12a across the conductor layer interface 11x. Therefore, when the adhesion force with the adjacent layer 12 becomes higher than the adhesion force with the conductor layer 11, the dotted pattern film 21 can strengthen the suppression force against peeling more than the dotted pattern film 20.
 このように、実施の形態1の半導体装置の製造方法では、他の層である隣接層12が導体層11に比べ、点状パターン膜21との密着性が高い素材で構成されている場合、半導体ウェハ上層部10,点状パターン膜21間の密着性を高めることが期待できる。 As described above, in the method for manufacturing the semiconductor device according to the first embodiment, when the adjacent layer 12 which is another layer is made of a material having higher adhesion to the dotted pattern film 21 than the conductor layer 11, It can be expected to improve the adhesion between the semiconductor wafer upper layer portion 10 and the dotted pattern film 21.
 なお、実施の形態1では、点状パターン膜20及び21それぞれを完成パターン膜として述べたが、多様な機能を持つ完成パターン膜としては、それらの集合体で扱うことがほとんどである。 In the first embodiment, each of the dotted pattern films 20 and 21 is described as a completed pattern film. However, the completed pattern film having various functions is mostly handled by an aggregate thereof.
 <実施の形態2>
 図2は、この発明の実施の形態2の半導体装置の製造方法におけるパターン膜の形成内容を模式的に示す平面図である。同図に示すように、下地層となる半導体ウェハ上層部10の導体層表面11a上に複数の点状パターン膜22(複数の点状パターン)が分散して形成されている。なお、実施の形態1と同じ構造部に関しては、同一の符号を付して説明を適宜省略する。
<Embodiment 2>
FIG. 2 is a plan view schematically showing the formation contents of the pattern film in the method of manufacturing a semiconductor device according to the second embodiment of the present invention. As shown in the figure, a plurality of dot-like pattern films 22 (a plurality of dot-like patterns) are formed in a dispersed manner on the conductor layer surface 11a of the semiconductor wafer upper layer portion 10 serving as a base layer. In addition, about the same structure part as Embodiment 1, the same code | symbol is attached | subjected and description is abbreviate | omitted suitably.
 実施の形態2では、複数の点状パターン膜22の集合体を完成パターン膜として形成している。実施の形態2の完成パターン膜は、例えば、はんだや金属ペーストのような流動性が有る材料を導体層表面11a上の所定範囲に囲い込む場合に使用される。具体的には、半導体ウェハ上層部10等の下地層上に被接着層をはんだにより接着する場合、下地層上に分散させた複数の点状パターン膜22の集合体を完成パターン膜として形成後、完成パターン膜が形成されていない下地層の表面上にはんだを設けた後、はんだによって下地層と被接着層とを接着するような態様を意味する。 In the second embodiment, an aggregate of a plurality of dotted pattern films 22 is formed as a completed pattern film. The completed pattern film of the second embodiment is used when, for example, a fluid material such as solder or metal paste is enclosed in a predetermined range on the conductor layer surface 11a. Specifically, when an adherend layer is bonded to a base layer such as the semiconductor wafer upper layer portion 10 by soldering, an aggregate of a plurality of dot pattern films 22 dispersed on the base layer is formed as a completed pattern film. It means an embodiment in which after the solder is provided on the surface of the underlayer on which the completed pattern film is not formed, the underlayer and the adherend layer are adhered by the solder.
 実施の形態2の場合、点状パターン膜22の形成用の流動性の材料の粘度や導体層表面11a上での表面張力、上記材料による撥性によって、点状パターン膜22の点状の形成長(径)と分散の間隔を適正化する必要があるが、硬化処理後の点状パターン膜22の膜ストレスについては、実施の形態1のパターン膜ストレス20s及び21sと同様、十分低く抑えることができる。 In the case of the second embodiment, the dot-like pattern film 22 is formed by the viscosity of the fluid material for forming the dot-like pattern film 22, the surface tension on the conductor layer surface 11 a, and the repellency of the material. Although it is necessary to optimize the distance between the length (diameter) and the dispersion, the film stress of the dotted pattern film 22 after the curing process should be kept sufficiently low like the pattern film stresses 20s and 21s of the first embodiment. Can do.
 このように、実施の形態2の半導体装置の製造方法は、完成パターン膜である複数の点状パターン膜22の集合体の膜ストレスを、複数の点状パターン膜22それぞれの膜ストレスに抑えることにより、下地層である導体層11(半導体ウェハ上層部10)に密着性良く完成パターン膜を形成することができる。 As described above, the method of manufacturing the semiconductor device according to the second embodiment suppresses the film stress of the aggregate of the plurality of dot-like pattern films 22 as the completed pattern film to the film stress of each of the plurality of dot-like pattern films 22. Thus, a completed pattern film can be formed on the conductor layer 11 (semiconductor wafer upper layer portion 10), which is a base layer, with good adhesion.
 <実施の形態3>
 図3は、この発明の実施の形態3の半導体装置の製造方法におけるパターン膜の形成内容を模式的に示す平面図である。なお、図3において、XY座標軸を示している。同図に示すように、下地層となる半導体ウェハ上層部10の導体層表面11a及び隣接層表面12a上に複数の点状パターン膜23(複数の点状パターン)を、X方向(パターン形成方向)に沿って線状に配置して得られる平面視して線状のパターン膜である点状パターン膜線状連結体23Gを、Y方向に沿って複数列分散して形成している。なお、実施の形態1と同じ構造部に関しては、同一の符号を付して説明を適宜省略する。
<Embodiment 3>
FIG. 3 is a plan view schematically showing the formation contents of the pattern film in the method of manufacturing a semiconductor device according to the third embodiment of the present invention. In FIG. 3, XY coordinate axes are shown. As shown in the figure, a plurality of dot-like pattern films 23 (a plurality of dot-like patterns) are arranged in the X direction (pattern forming direction) on the conductor layer surface 11a and the adjacent layer surface 12a of the semiconductor wafer upper layer portion 10 serving as an underlayer. ) Are formed in a plurality of rows along the Y direction. In addition, about the same structure part as Embodiment 1, the same code | symbol is attached | subjected and description is abbreviate | omitted suitably.
 図4は図3のA-A断面構造を示す断面図である。図3及び図4に示すように、完成パターン膜である点状パターン膜線状連結体23Gは、複数の点状パターン膜23(複数の点状のパターン)を互いに連結させながらX方向(パターン形成方向)に沿って線状に配置して、平面視して線状に形成されている。 FIG. 4 is a cross-sectional view showing the AA cross-sectional structure of FIG. As shown in FIG. 3 and FIG. 4, the dotted pattern film linear connection body 23G which is a completed pattern film has a plurality of dot pattern films 23 (a plurality of dot patterns) connected to each other in the X direction (pattern). It is arranged in a line along the (formation direction) and formed in a line in plan view.
 図4に示すように、硬化処理後における点状パターン膜線状連結体23Gにおけるパターン膜ストレス23sは、点状パターン膜線状連結体23G全体で発生しており、点状パターン膜線状連結体23GのX方向両端の点状パターン膜23の端部にパターン膜ストレス23sが集中している。したがって、点状パターン膜23個々の形成長(径)が大きくなり、点状パターン膜線状連結体23Gの形成長L23が長くなるほど端部に集中するパターン膜ストレス23sは大きくなる傾向がある。一方、半導体ウェハ上層部10との密着性は場所依存性がないため、パターン膜ストレス23sが半導体ウェハ上層部10との密着力を上回ると点状パターン膜線状連結体23Gの端部が剥離する場合がある。したがって、点状パターン膜23個々の形成長、及び点状パターン膜線状連結体23Gの形成長L23は、パターン膜ストレス23sが十分に小さくなるように設定する必要がある。 As shown in FIG. 4, the pattern film stress 23s in the dotted pattern film linear connector 23G after the curing process occurs in the entire dotted pattern film linear connector 23G. Pattern film stress 23s is concentrated at the end portions of the dotted pattern film 23 at both ends in the X direction of the body 23G. Therefore, the formation length (diameter) of each dot pattern film 23 increases, and the pattern film stress 23s concentrated at the end tends to increase as the formation length L23 of the dot pattern film linear connector 23G increases. On the other hand, since the adhesiveness with the semiconductor wafer upper layer part 10 is not location-dependent, when the pattern film stress 23s exceeds the adhesive force with the semiconductor wafer upper layer part 10, the end of the dotted pattern film linear connector 23G peels off. There is a case. Therefore, it is necessary to set the formation length L of each of the dotted pattern films 23 and the formation length L23 of the dotted pattern film linear connector 23G so that the pattern film stress 23s is sufficiently small.
 このように、実施の形態3の半導体装置の製造方法は、複数の点状パターン膜線状連結体23Gによって完成パターン膜を形成している。実施の形態3の完成パターン膜は、実施の形態2と同様、例えば、はんだや金属ペーストのような流動性が有る材料を導体層表面11a及び隣接層表面12a上の所定範囲に囲い込む場合に利用することができる。この際、実施の形態2の場合よりも流動性が高い材料に適している。 As described above, in the method of manufacturing the semiconductor device according to the third embodiment, the completed pattern film is formed by the plurality of dotted pattern film linear connectors 23G. The completed pattern film of the third embodiment is similar to the second embodiment, for example, when a fluid material such as solder or metal paste is enclosed in a predetermined range on the conductor layer surface 11a and the adjacent layer surface 12a. Can be used. In this case, it is suitable for a material having higher fluidity than in the second embodiment.
 実施の形態3の場合、実施の形態2と同様、点状パターン膜23の形成用の流動性の材料の粘度や導体層表面11a及び隣接層表面12a上での表面張力、上記材料による撥性によって、点状パターン膜23の点状の形成長(径)及び点状パターン膜線状連結体23Gの形成長L23と分散の間隔を適正化することにより、硬化処理後の点状パターン膜線状連結体23Gのパターン膜ストレス23sを、点状パターン膜線状連結体23Gが剥離しないように低く抑えることができる。 In the case of the third embodiment, as in the second embodiment, the viscosity of the fluid material for forming the dotted pattern film 23, the surface tension on the conductor layer surface 11a and the adjacent layer surface 12a, and the repellency by the above material By optimizing the dot formation length (diameter) of the dot pattern film 23 and the formation length L23 of the dot pattern film linear connector 23G and the dispersion interval, the dot pattern film wire after the curing treatment is obtained. The pattern film stress 23s of the link body 23G can be kept low so that the dotted pattern film linear link body 23G does not peel off.
 なお、複数の点状パターン膜線状連結体23Gは互いに離散して形成されているため、複数の点状パターン膜線状連結体23Gの集合体である完成パターン膜におけるパターン膜ストレスは点状パターン膜線状連結体23G個々のパターン膜ストレス23sに等しくなる。 Since the plurality of dotted pattern film linear connectors 23G are discretely formed, the pattern film stress in the completed pattern film, which is an aggregate of the plurality of dotted pattern film linear connectors 23G, is dotted. It becomes equal to the pattern film stress 23s of each pattern film linear connector 23G.
 また、点状パターン膜線状連結体23Gの一部の点状パターン膜23は導体層界面11xを跨って導体層表面11a及び隣接層表面12a上に形成されている。したがって、隣接層12との密着力が導体層11との密着より高くなる場合、点状パターン膜線状連結体23Gの半導体ウェハ上層部10への密着力を高めることが期待できる。 Further, a part of the dotted pattern film 23 of the dotted pattern film linear connector 23G is formed on the conductor layer surface 11a and the adjacent layer surface 12a across the conductor layer interface 11x. Therefore, when the adhesion strength with the adjacent layer 12 becomes higher than the adhesion strength with the conductor layer 11, it can be expected that the adhesion strength of the dotted pattern film linear connector 23G to the semiconductor wafer upper layer portion 10 is increased.
 このように、実施の形態3の半導体装置の製造方法は、完成パターン膜となる複数の点状パターン膜線状連結体23Gそれぞれを、複数の点状パターン膜23を互いに連結させながらX方向(パターン形成方向)に沿って線状に配置して、平面視して線状に形成している。 As described above, in the method of manufacturing the semiconductor device according to the third embodiment, each of the plurality of dotted pattern film linear connectors 23G to be the completed pattern film is connected in the X direction (with the plurality of dotted pattern films 23 connected to each other). It is arranged in a line along the pattern formation direction) and formed in a line in plan view.
 このため、完成パターン膜の膜ストレスを最大で点状パターン膜線状連結体23Gの形成長L23を反映したパターン膜ストレス23sに抑えることにより、下地層である半導体ウェハ上層部10に密着性良く完成パターン膜を形成することができる。 For this reason, the film stress of the completed pattern film is suppressed to the pattern film stress 23s that reflects the formation length L23 of the point-like pattern film linear connector 23G at a maximum, thereby improving the adhesion to the semiconductor wafer upper layer portion 10 that is the underlayer. A completed pattern film can be formed.
 <実施の形態4>
 図5は、この発明の実施の形態4の半導体装置の製造方法におけるパターン膜の形成内容を模式的に示す平面図である。なお、図5において、XY座標軸を示している。同図に示すように、下地層となる半導体ウェハ上層部10の導体層表面11a及び隣接層表面12a上に複数の点状パターン膜24(複数の点状パターン)を互いに連結させながらX方向(第1のパターン形成方向)に沿って線状に配置し、かつ、X方向と直交するY方向(第2のパターン形成方向)に沿って線状に配置することにより、平面視して面状に点状パターン膜面状連結体24Gを形成している。なお、実施の形態1と同じ構造部に関しては、同一の符号を付して説明を適宜省略する。
<Embodiment 4>
FIG. 5 is a plan view schematically showing the formation contents of the pattern film in the method of manufacturing a semiconductor device according to the fourth embodiment of the present invention. In FIG. 5, XY coordinate axes are shown. As shown in the figure, a plurality of dot pattern films 24 (a plurality of dot patterns) are connected to each other on the conductor layer surface 11a and the adjacent layer surface 12a of the semiconductor wafer upper layer portion 10 serving as an underlayer while connecting them in the X direction ( By arranging in a line along the first pattern forming direction) and in a line along the Y direction (second pattern forming direction) perpendicular to the X direction, the surface shape in plan view A point-like pattern film planar connector 24G is formed. In addition, about the same structure part as Embodiment 1, the same code | symbol is attached | subjected and description is abbreviate | omitted suitably.
 なお、図5のX方向における断面構造は、図4で示した実施の形態3と同様となる。すなわち、点状パターン膜面状連結体24Gは、複数の点状パターン膜24(点状のパターン)を互いに連結させながらX方向に沿って線状に配置している。 Note that the cross-sectional structure in the X direction of FIG. 5 is the same as that of the third embodiment shown in FIG. That is, the dotted pattern film planar connecting body 24G is arranged in a line along the X direction while connecting a plurality of dotted pattern films 24 (dotted patterns) to each other.
 図6は図5のB-B断面構造を示す断面図である。図5及び図6に示すように、点状パターン膜面状連結体24Gは、複数の点状パターン膜24(点状のパターン)を互いに連結させながらX方向に加えY方向に沿って線状に配置している。 FIG. 6 is a cross-sectional view showing the BB cross-sectional structure of FIG. As shown in FIGS. 5 and 6, the dotted pattern film planar connector 24G is linear along the Y direction in addition to the X direction while connecting a plurality of dotted pattern films 24 (dot patterns) to each other. Is arranged.
 図6に示すように、硬化処理後における中央の点状パターン膜面状連結体24GにおけるY方向におけるパターン膜ストレス24sは、Y方向の形成長LY24を反映し、点状パターン膜面状連結体24GのY方向両端の点状パターン膜24の端部にパターン膜ストレス24sが集中している。同様にして、点状パターン膜面状連結体24GにおけるX方向におけるパターン膜ストレスは、X方向の形成長LX24を反映し、点状パターン膜面状連結体24GのX方向両端の点状パターン膜24の端部にパターン膜ストレスが集中している。 As shown in FIG. 6, the pattern film stress 24s in the Y direction in the central dotted pattern film planar connector 24G after the curing treatment reflects the formation length LY24 in the Y direction, and the dotted pattern film planar connector. Pattern film stress 24s is concentrated at the end portions of the dotted pattern film 24 at both ends in the Y direction of 24G. Similarly, the pattern film stress in the X direction in the dotted pattern film planar connection body 24G reflects the formation length LX24 in the X direction, and the dotted pattern films on both ends in the X direction of the dotted pattern film planar connection body 24G. The pattern film stress is concentrated on the end portion of 24.
 以下、説明の都合上、点状パターン膜面状連結体24Gは形成長LY24が形成長LX24より長いと仮定して説明する。この場合、中央の点状パターン膜面状連結体24G全体におけるパターン膜ストレスはパターン膜ストレス24sに等しくなる。なお、点状パターン膜面状連結体24Gは平面視対角方向において点状パターン膜24,24間は連結していない。 Hereinafter, for the convenience of explanation, the dotted pattern film planar connector 24G will be described on the assumption that the formation length LY24 is longer than the formation length LX24. In this case, the pattern film stress in the entire central dotted pattern film surface connecting body 24G is equal to the pattern film stress 24s. In addition, the dotted pattern film planar connecting body 24G is not connected between the dotted pattern films 24 and 24 in the diagonal direction in plan view.
 このように、実施の形態4の半導体装置の製造方法は、複数の点状パターン膜面状連結体24Gによって完成パターン膜を形成している。実施の形態4の完成パターン膜は、実施の形態2及び実施の形態3と同様、例えば、はんだや金属ペーストのような流動性が有る材料を導体層表面11a及び隣接層表面12a上の所定範囲に囲い込む場合に利用することができる。この際、実施の形態2の場合よりも流動性が高い材料に適している。 As described above, in the method of manufacturing the semiconductor device according to the fourth embodiment, the completed pattern film is formed by the plurality of dotted pattern film planar connectors 24G. As in Embodiments 2 and 3, the completed pattern film of Embodiment 4 is made of a material having fluidity such as solder or metal paste in a predetermined range on the conductor layer surface 11a and the adjacent layer surface 12a. It can be used when enclosing. In this case, it is suitable for a material having higher fluidity than in the second embodiment.
 実施の形態4の場合、実施の形態3と同様、点状パターン膜24の形成用の流動性の材料の粘度や導体層表面11a及び隣接層表面12a上での表面張力、上記材料による撥性によって、点状パターン膜24の点状の形成長(径)及び点状パターン膜面状連結体24Gの形成長LY24と分散の間隔を適正化することにより、硬化処理後の点状パターン膜面状連結体24Gのパターン膜ストレス24sを、点状パターン膜面状連結体24Gが剥離しないように低く抑えることができる。 In the case of the fourth embodiment, as in the third embodiment, the viscosity of the fluid material for forming the dotted pattern film 24, the surface tension on the conductor layer surface 11a and the adjacent layer surface 12a, and the repellency by the above material. By optimizing the formation length (diameter) of the dotted pattern film 24 and the formation length LY24 of the dotted pattern film surface connecting body 24G and the dispersion interval, the dotted pattern film surface after the curing treatment The pattern film stress 24s of the link body 24G can be kept low so that the dotted pattern film surface connection body 24G does not peel off.
 なお、複数の点状パターン膜面状連結体24Gは互いに離散して形成されているため、複数の点状パターン膜面状連結体24Gの集合体である完成パターン膜におけるパターン膜ストレスは点状パターン膜面状連結体24G個々のパターン膜ストレス24sに等しくなる。 In addition, since the plurality of dotted pattern film planar connectors 24G are discretely formed, the pattern film stress in the completed pattern film, which is an aggregate of the plurality of dotted pattern film planar connectors 24G, is dotted. It becomes equal to the pattern film stress 24s of each pattern film planar connector 24G.
 また、点状パターン膜面状連結体24Gの一部の点状パターン膜24は導体層界面11xを跨って導体層表面11a及び隣接層表面12a上に形成されている。したがって、隣接層12との密着力が導体層11との密着力より高くなる場合、点状パターン膜面状連結体24Gの半導体ウェハ上層部10への密着力を高めることが期待できる。 Also, a part of the dotted pattern film 24 of the dotted pattern film planar connector 24G is formed on the conductor layer surface 11a and the adjacent layer surface 12a across the conductor layer interface 11x. Therefore, when the adhesive force with the adjacent layer 12 becomes higher than the adhesive force with the conductor layer 11, it can be expected that the adhesive force of the dotted pattern film planar connector 24G to the semiconductor wafer upper layer portion 10 is increased.
 このように、実施の形態4の半導体装置の製造方法は、完成パターン膜となる複数の点状パターン膜面状連結体24Gそれぞれを、複数の点状パターン膜24を互いに連結させながらX方向(第1のパターン形成方向)に沿って線状に配置し、かつ、X方向と直角に交差するY方向(第2のパターン形成方向)に沿って線状に配置することにより、平面視して面状に形成している。 As described above, in the method of manufacturing the semiconductor device according to the fourth embodiment, each of the plurality of dotted pattern film planar connectors 24G to be the completed pattern film is connected to the X direction ( By arranging in a line along the first pattern forming direction) and in a line along the Y direction (second pattern forming direction) intersecting at right angles to the X direction, It is formed in a planar shape.
 このため、完成パターン膜の膜ストレスを最大で点状パターン膜面状連結体24GのX方向及びY方向の形成長LX24及び形成長LY24のうち長い方を反映したパターン膜ストレス24sに抑えることにより、下地層である半導体ウェハ上層部10に密着性良く完成パターン膜を形成することができる。 For this reason, by suppressing the film stress of the completed pattern film to a maximum of the pattern film stress 24s reflecting the longer one of the formation length LX24 and the formation length LY24 in the X direction and the Y direction of the dotted pattern film planar connection body 24G. The completed pattern film can be formed on the semiconductor wafer upper layer portion 10 which is the underlayer with good adhesion.
 なお、図5で示した例では、点状パターン膜面状連結体24Gを平面視して四角形状に形成したが、これに限定されず、完成パターン膜の端部が剥離しない範囲で、導体層表面11aの全周を取り囲むように中空を有する枠状に形成するようにしても良い。 In the example shown in FIG. 5, the dotted pattern film planar connector 24 </ b> G is formed in a square shape in plan view. However, the present invention is not limited to this, and the conductor is not limited to the end of the finished pattern film. You may make it form in the frame shape which has a hollow so that the perimeter of the layer surface 11a may be surrounded.
 <実施の形態5>
 図7はこの発明の実施の形態5である半導体装置の製造方法の処理手順を示すフローチャートである。なお、実施の形態5の半導体装置の製造方法によって、既に述べた実施の形態1~実施の形態4の完成パターン膜(点状パターン膜20,21、点状パターン膜22の集合体、点状パターン膜線状連結体23Gの集合体、点状パターン膜面状連結体24Gの集合体)を形成することができる。
<Embodiment 5>
FIG. 7 is a flowchart showing a processing procedure of a semiconductor device manufacturing method according to the fifth embodiment of the present invention. It should be noted that the completed pattern film of the first to fourth embodiments (an assembly of the dotted pattern films 20 and 21 and the dotted pattern film 22, the dotted pattern is formed by the semiconductor device manufacturing method of the fifth embodiment. An aggregate of the patterned film linear connectors 23G and an aggregate of the dotted pattern film planar connectors 24G).
 なお、パターン膜の具体例として、電極形成後の熱硬化性ポリイミドによるパターン膜の形成等の有機絶縁膜の形成、光硬化性の材料によるパターン膜の形成等が考えられる。 In addition, as a specific example of the pattern film, formation of an organic insulating film such as formation of a pattern film by thermosetting polyimide after electrode formation, formation of a pattern film by a photocurable material, or the like can be considered.
 図7を参照して、まず、ステップS1において表面洗浄処理(表層面洗浄処理)を行う。大気中に放置されている半導体ウェハ上層部10の表面(表層面)には大気中に含まれている有機物が吸着しているため、ステップS1において、半導体ウェハ上層部10の表面に吸着している有機物を除去する必要ある。このため、洗浄処理を実現する具体的手段としては、紫外光(UV光)を照射するのが最も簡単であり、オゾンを併用するとさらに洗浄処理に要する時間を短縮することができる。 Referring to FIG. 7, first, a surface cleaning process (surface layer cleaning process) is performed in step S1. Since the organic matter contained in the atmosphere is adsorbed on the surface (surface layer surface) of the semiconductor wafer upper layer portion 10 left in the atmosphere, in step S1, it adsorbs on the surface of the semiconductor wafer upper layer portion 10. It is necessary to remove the organic matter. For this reason, as a specific means for realizing the cleaning process, it is the simplest to irradiate ultraviolet light (UV light), and when ozone is used together, the time required for the cleaning process can be further shortened.
 ステップS1後のステップS2において、パターン膜形成用の材料を半導体ウェハ上層部10上に塗布する材料塗布処理を実行する。このステップS2において、半導体ウェハ上層部10の表面にパターン膜の材料を点状パターンとして堆積し、点状パターン単体あるいは点状パターンの組み合わせにより構成される仮パターン膜を形成する。 In step S2 after step S1, a material coating process for coating the pattern film forming material on the semiconductor wafer upper layer portion 10 is executed. In this step S2, the material of the pattern film is deposited as a dot pattern on the surface of the upper layer portion 10 of the semiconductor wafer to form a temporary pattern film constituted by a dot pattern alone or a combination of dot patterns.
 点状パターン単体としては、実施の形態1の点状パターン膜20あるいは点状パターン膜21が考えられ、点状パターンの組み合わせとしては、各々が離散した複数の点状パターン膜22の集合体、点状パターン膜線状連結体23G、点状パターン膜面状連結体24G等が考えられる。 As the simple dot pattern, the dot pattern film 20 or the dot pattern film 21 of the first embodiment can be considered, and as a combination of the dot patterns, an assembly of a plurality of dot pattern films 22 each of which is discrete, The dotted pattern film linear connection body 23G, the dotted pattern film surface connection body 24G, etc. can be considered.
 なお、点状に打ち分けて点状パターンを形成する具体的手段として、現状ではインクジェットノズルを用いた塗布処理が最も微細で処理時間も短いが、微細でなくても良い場合は、装置コストを下げるためにディスペンサを選択しても良い。 In addition, as a concrete means for forming a dot pattern by dividing into dots, the application process using an inkjet nozzle is currently the finest and the processing time is short. A dispenser may be selected to lower.
 ステップS2の実行後にステップS3の材料仮硬化処理が実行される。ステップS2で塗布したパターン膜形成用の材料が薬液で再生可能な範囲で仮硬化させる。この際、パターン膜形成用の材料としては、ポリイミドのような溶媒を含む熱硬化性の材料だけでなく、例えば、アクリレートやメタクリレートのモノマーやオリゴマーに光重合開始剤を加えた光硬化性の材料等も使用でき、熱硬化性の材料については加熱による仮硬化、光硬化性の材料については光による仮硬化を行う。 After the execution of step S2, the material temporary curing process of step S3 is executed. The material for forming the pattern film applied in step S2 is temporarily cured as long as it can be regenerated with a chemical solution. In this case, as a material for forming the pattern film, not only a thermosetting material containing a solvent such as polyimide, but also a photocurable material obtained by adding a photopolymerization initiator to an acrylate or methacrylate monomer or oligomer, for example. The thermosetting material is temporarily cured by heating, and the photocurable material is temporarily cured by light.
 ステップS2及びステップS3は繰り返し行っても良い。この場合、ステップS3の実行後の材料仮硬化後リターンR3により、ステップS2に戻り、ステップS2及びステップS3を繰り返し実行することができる。 Step S2 and step S3 may be repeated. In this case, it is possible to return to step S2 and to repeatedly execute step S2 and step S3 by return R3 after temporary material curing after execution of step S3.
 なお、最後のステップS3の仮硬化処理により、塗布された少なくとも一つの点状パターンによりなるパターン膜の形状が確定した完成段階となる。すなわち、最後のステップS3の実行後に完成パターン膜が形成される。 Note that the final curing step of step S3 is a completed stage in which the shape of the pattern film composed of at least one applied dot pattern is determined. That is, a completed pattern film is formed after the last step S3.
 さらに、ステップS3の後に、塗布パターンの良否を検査する塗布パターン検査処理(ステップS4)と、塗布パターン検査処理の検査結果の判定を行う検査判定処理(ステップS5)を併せて行うことが望ましい。 Further, after step S3, it is desirable to perform both an application pattern inspection process (step S4) for inspecting the quality of the application pattern and an inspection determination process (step S5) for determining the inspection result of the application pattern inspection process.
 ステップS5の検査判定処理によって塗布パターンの不良が判定された場合、半導体装置の製造方法(パターン膜の形成方法)の処理を強制的に終了し、半導体ウェハ1の再生処理に移行することができる。一方、ステップS5の検査判定処理によって良が判定され、さらに、ステップS2及びステップS3の繰り返しが必要な場合、ステップS5の実行後の検査判定後リターンR5により、ステップS2に戻り、ステップS2及びステップS3を繰り返し実行することができる。 If a defect in the coating pattern is determined by the inspection determination process in step S5, the process of the semiconductor device manufacturing method (pattern film forming method) can be forcibly terminated, and the process can proceed to the semiconductor wafer 1 regeneration process. . On the other hand, if the inspection determination process in step S5 determines good, and if it is necessary to repeat step S2 and step S3, the process returns to step S2 by the post-inspection determination return R5 after execution of step S5. S3 can be repeatedly executed.
 ステップS4及びS5の処理を設けない状況下で、ステップS2の材料塗布処理とステップS3の材料仮硬化処理とを繰り返す場合は、先に塗布した材料ほど材料仮硬化の作業が累積していくことになるため、薬液での再生が難しくなる可能性が高くなる。このため、ステップS2,S3の繰り返す回数に注意が必要となる。 When the material application process in step S2 and the material temporary curing process in step S3 are repeated in a situation where the processes in steps S4 and S5 are not provided, the material pre-curing work is accumulated as the previously applied material is accumulated. Therefore, there is a high possibility that regeneration with a chemical solution becomes difficult. Therefore, attention must be paid to the number of times steps S2 and S3 are repeated.
 一方、ステップS4及びS5の処理を設ける場合、ステップS3の実行後に必ず、あるいは、ステップS3を数回実行後に1回の割合でステップS4及びS5を実行して、定期的に塗布パターンの良否を判定することにより、半導体ウェハ1の再生(パターン膜の再生成)の要否を確認しながら、パターン膜形成用の材料を塗布することが可能となる。そして、塗布パターンが良好であり、再生が必要無ければ、ステップS5から検査判定後リターンR5でステップS2に戻すことができる。 On the other hand, when the processes of steps S4 and S5 are provided, the quality of the coating pattern is periodically determined by executing steps S4 and S5 at a rate of once after the execution of step S3 or once after the execution of step S3. By determining, it becomes possible to apply the material for forming the pattern film while confirming the necessity of regenerating the semiconductor wafer 1 (regeneration of the pattern film). If the coating pattern is good and regeneration is not necessary, it is possible to return from step S5 to step S2 by return R5 after inspection determination.
 このように、実施の形態5の半導体装置の製造方法は、ステップS1~S3を実行することにより、従来行われていた成膜、レジスト塗布、現像、露光及びエッチング及びレジスト除去の一連の工程を行う必要がなくなる分、比較的安価に完成パターン膜を形成することができる。 As described above, the manufacturing method of the semiconductor device according to the fifth embodiment performs steps S1 to S3 to perform a series of steps of film formation, resist coating, development, exposure, etching, and resist removal that have been conventionally performed. The completed pattern film can be formed at a relatively low cost because it is not necessary to perform this process.
 さらに、実施の形態5の半導体装置の製造方法は、ステップS4及びS5を実行することにより、パターン膜形成用の材料における塗布パターンの良否を判定して、不良な塗布パターンの製造を適宜中止して再生処理に移行することができるため、半導体装置の歩留り向上を図ることができる。 Furthermore, in the method for manufacturing the semiconductor device of the fifth embodiment, by executing steps S4 and S5, the quality of the coating pattern in the pattern film forming material is determined, and the manufacturing of the defective coating pattern is appropriately stopped. Thus, the process can be shifted to the reproduction process, so that the yield of the semiconductor device can be improved.
 さらに、実施の形態5の半導体装置の製造方法は、ステップS1の洗浄処理を紫外光照射により比較的短時間で実行することができる。 Furthermore, in the semiconductor device manufacturing method of the fifth embodiment, the cleaning process in step S1 can be performed in a relatively short time by ultraviolet light irradiation.
 加えて、実施の形態5の半導体装置の製造方法は、ステップS2の材料塗布処理において、インクジェットノズルを用いることにより微細な点状パターンを比較的短時間で形成することができる。 In addition, in the method of manufacturing the semiconductor device of the fifth embodiment, a fine dot pattern can be formed in a relatively short time by using an ink jet nozzle in the material application process in step S2.
 また、実施の形態5の半導体装置の製造方法は、パターン膜形成用の材料を光硬化性の材料を用い、ステップS3の仮硬化処理を光照射により比較的短時間で実行することができる。 Further, in the method of manufacturing the semiconductor device of the fifth embodiment, a photocuring material is used as the pattern film forming material, and the temporary curing process in step S3 can be performed in a relatively short time by light irradiation.
 <実施の形態6>
 図8は、この発明の実施の形態6の半導体装置の製造方法におけるパターン膜の形成内容を模式的に示す平面図である。なお、図8において、XY座標軸を示している。図8(b) に示すように、下地層となる半導体ウェハ上層部10の導体層表面11a及び隣接層表面12a上に複数の点状パターン膜25及び26(複数の第1及び第2の点状パターン)を、X方向(パターン形成方向)に沿って線状に配置して得られる、平面視して線状のパターン膜である点状パターン膜線状連結体26Gを、Y方向に沿って複数列分散して形成している。なお、実施の形態1と同じ構造部に関しては、同一の符号を付して説明を適宜省略する。
<Embodiment 6>
FIG. 8 is a plan view schematically showing the formation contents of the pattern film in the method of manufacturing a semiconductor device according to the sixth embodiment of the present invention. In FIG. 8, XY coordinate axes are shown. As shown in FIG. 8 (b), a plurality of dotted pattern films 25 and 26 (a plurality of first and second points) are formed on the conductor layer surface 11a and the adjacent layer surface 12a of the semiconductor wafer upper layer portion 10 serving as the underlayer. The dotted pattern film linear connector 26G, which is a linear pattern film in a plan view, obtained by arranging the linear pattern) along the X direction (pattern forming direction) along the Y direction. Are distributed in multiple rows. In addition, about the same structure part as Embodiment 1, the same code | symbol is attached | subjected and description is abbreviate | omitted suitably.
 図9は図8(b) のC-C断面構造を示す断面図である。以下、図8及び図9を参照して、実施の形態6の半導体装置の製造方法の処理手順を説明する。 FIG. 9 is a cross-sectional view showing the CC cross-sectional structure of FIG. 8 (b). Hereinafter, with reference to FIG. 8 and FIG. 9, a processing procedure of the semiconductor device manufacturing method of the sixth embodiment will be described.
 図8(b) 及び図9で示す構造は、図7で示した実施の形態5の半導体装置の製造方法において、ステップS2(材料塗布処理)及びステップS3(材料仮硬化処理)を2回繰り返すことにより実現される。 The structure shown in FIG. 8B and FIG. 9 repeats step S2 (material coating process) and step S3 (material temporary curing process) twice in the method of manufacturing the semiconductor device of the fifth embodiment shown in FIG. Is realized.
 1回目のステップS2及びS3の実行により、図8(a) に示すように、複数の下層点状パターン膜25を互いに連結させることなくX方向に沿って形成する。この際、複数の下層点状パターン膜25はY方向に沿って複数列、分散して形成される。 By performing the first steps S2 and S3, as shown in FIG. 8A, a plurality of lower layer dotted pattern films 25 are formed along the X direction without being connected to each other. At this time, the plurality of lower layer dot pattern films 25 are formed in a plurality of rows and dispersed along the Y direction.
 なお、図9に示すように、複数の下層点状パターン膜25は互いに分離して形成されているため、下層点状パターン膜25の膜ストレスは、パターン膜ストレス25s単位に分離される。また、複数の下層点状パターン膜25の一部が導体層界面11xを跨ぐように形成される。 As shown in FIG. 9, since the plurality of lower layer dotted pattern films 25 are formed separately from each other, the film stress of the lower layer dotted pattern film 25 is separated in units of the pattern film stress 25s. Further, a part of the plurality of lower layer dot pattern films 25 is formed so as to straddle the conductor layer interface 11x.
 そして、2回目のステップS2及びS3の実行により、図8(b) 及び図9に示すように、複数の上層点状パターン膜26を互いに連結させることなくX方向に沿って形成して、複数の下層点状パターン膜25のうちX方向において互いに隣り合う一対の下層点状パターン膜25,25間を上層点状パターン膜26を介して連結することにより、平面視して線状の完成パターン膜として点状パターン膜線状連結体26Gを形成する。この際、複数の点状パターン膜線状連結体26GはY方向に沿って複数列、分散して形成される。 Then, by performing the second steps S2 and S3, as shown in FIG. 8 (b) and FIG. 9, a plurality of upper layer dotted pattern films 26 are formed along the X direction without being connected to each other. By connecting the pair of lower layer dot pattern films 25, 25 adjacent to each other in the X direction in the lower layer dot pattern film 25 via the upper layer dot pattern film 26, a linear completed pattern in plan view A dotted pattern film linear connector 26G is formed as a film. At this time, the plurality of dotted pattern film linear connected bodies 26G are formed in a plurality of rows and dispersed along the Y direction.
 図9に示すように、2回目のステップS3の実行段階において、複数の上層点状パターン膜26は既に1回目のステップS3によって仮硬化している複数の下層点状パターン膜25に馴染むように広がっており、複数の上層点状パターン膜26それぞれのパターン膜ストレス26sは、上層点状パターン膜26,26間に設けられる下層点状パターン膜25により分離されている。一方で、Y方向に隣り合う点状パターン膜線状連結体26G同士は分離されているため、相互に膜ストレスが作用することもない。 As shown in FIG. 9, in the execution stage of the second step S3, the plurality of upper layer dot pattern films 26 are adapted to the plurality of lower layer dot pattern films 25 already temporarily cured in the first step S3. The pattern film stress 26s of each of the plurality of upper layer dot pattern films 26 is separated by the lower layer dot pattern film 25 provided between the upper layer dot pattern films 26 and 26. On the other hand, since the dotted pattern film linear connected bodies 26G adjacent in the Y direction are separated from each other, film stress does not act on each other.
 このように、実施の形態6の半導体装置の製造方法で製造される複数の点状パターン膜線状連結体26Gはそれぞれ線状に繋ぎ合せた連結構造を有しているが、下層点状パターン膜25及び上層点状パターン膜26の仮硬化をそれぞれ分けて行い、図9に示すように、パターン膜ストレス25sとパターン膜ストレス26sとは点状の単位で分離されたままになっており、点状パターン膜線状連結体26G全体として端部へのストレス集中が大幅に緩和されることになる。 As described above, the plurality of dotted pattern film linear connected bodies 26G manufactured by the method of manufacturing a semiconductor device according to the sixth embodiment each have a connecting structure in which the linear connected patterns are formed. The temporary curing of the film 25 and the upper dot pattern film 26 is performed separately, and as shown in FIG. 9, the pattern film stress 25s and the pattern film stress 26s remain separated in dot units, As a whole, the stress concentration on the end portion of the dotted pattern film linear connected body 26G is relieved greatly.
 以下、実施の形態6のように、複数の下層点状パターン膜25と、複数の上層点状パターン膜26とを別工程で形成して、下層点状パターン膜25,25間を上層点状パターン膜26により連結するように、パターン膜形成用の材料を塗布する方法を、「段階的材料塗布製法」と呼ぶ場合がある。 Hereinafter, as in the sixth embodiment, a plurality of lower layer dot pattern films 25 and a plurality of upper layer dot pattern films 26 are formed in separate processes, and the lower layer dot pattern films 25 and 25 are formed as upper layer dots. A method of applying a material for forming a pattern film so as to be connected by the pattern film 26 may be referred to as a “stepwise material application manufacturing method”.
 上述したように、実施の形態6の半導体装置の製造方法では、2回のステップS3の実行後において、複数の下層点状パターン膜25と複数の上層点状パターン膜26との組み合わせにより、完成パターン膜の膜ストレスを下層点状パターン膜25及び上層点状パターン膜26それぞれのパターン膜ストレス25s及びパターン膜ストレス26sに抑えつつ、平面視して線状の完成パターン膜を形成することができる。 As described above, the semiconductor device manufacturing method according to the sixth embodiment is completed by combining the plurality of lower layer dot pattern films 25 and the plurality of upper layer dot pattern films 26 after the execution of step S3 twice. While the film stress of the pattern film is suppressed to the pattern film stress 25s and the pattern film stress 26s of the lower layer dot pattern film 25 and the upper layer dot pattern film 26, respectively, a linear completed pattern film can be formed in plan view. .
 また、実施の形態5の製造方法を利用する際、1回目及び2回目のステップS3それぞれの実行後に、実施の形態5のステップS4及びS5を組み込んだ改良例を採用しても良い。この場合、ステップS4にて1回目あるいは2回目の塗布パターンの不良を判定すると、半導体装置の製造を直ちに中止する。一方、1回目塗布パターンが正常の場合、検査判定後リターンR5でステップS2に戻り、2回目塗布パターンが正常の場合、次の本硬化処理工程に移行する。 Further, when using the manufacturing method of the fifth embodiment, an improved example in which steps S4 and S5 of the fifth embodiment are incorporated after the first and second steps S3 may be employed. In this case, when it is determined in step S4 that the first or second coating pattern is defective, the manufacturing of the semiconductor device is immediately stopped. On the other hand, when the first application pattern is normal, the process returns to step S2 with a return R5 after inspection determination, and when the second application pattern is normal, the process proceeds to the next main curing process.
 以下、本硬化処理内容について説明する。パターン膜形成用の材料が熱硬化性の材料の場合、本硬化処理は、ガラス転移点を超える高温の条件(ポリイミドの例:300℃/60分)で行われる。パターン膜形成用の材料が光硬化性の材料の場合、本硬化処理は、未反応モノマーを無くすように高エネルギーの光を照射(アクリルアクリレートの例:UV:365nmピークメタルハライドランプにて300~1000mJ/cm)したり、モノマーを放出するように加熱(アクリルアクリレートの例:150℃/60分)したりする処理が考えられる。 Hereinafter, the content of the main curing process will be described. When the material for forming the pattern film is a thermosetting material, the main curing process is performed under a high temperature condition (example of polyimide: 300 ° C./60 minutes) exceeding the glass transition point. When the pattern film forming material is a photo-curing material, this curing process is performed by irradiating with high energy light to eliminate unreacted monomers (example of acrylic acrylate: 300 to 1000 mJ with UV: 365 nm peak metal halide lamp) / cm 2 ) or heating to release the monomer (example of acrylic acrylate: 150 ° C./60 minutes).
 このように、実施の形態6の改良例では、ステップS4の実行時に、下層点状パターン膜25及び上層点状パターン膜26の形成用の材料における塗布パターンの良否を判定して、不良な塗布パターンの製造を適宜中止して半導体装置の歩留り向上を図ることができる。 As described above, in the improved example of the sixth embodiment, the quality of the coating pattern in the material for forming the lower layer dot pattern film 25 and the upper layer dot pattern film 26 is determined during the execution of step S4, and defective application is performed. The production of the pattern can be stopped as appropriate to improve the yield of the semiconductor device.
 <実施の形態7>
 図10は、この発明の実施の形態7の半導体装置の製造方法におけるパターン膜の形成内容を模式的に示す平面図である。なお、図10において、XY座標軸を示している。図10(d) に示すように、下地層となる半導体ウェハ上層部10の導体層表面11a及び隣接層表面12a上に複数の点状パターン膜27及び28(複数の第1及び第2の点状パターン)及び複数の点状パターン膜29及び30(複数の第3及び第4の点状パターン)を、X方向(第1のパターン形成方向)に沿って線状に配置しつつ組み合わせることにより、平面視して面状のパターン膜である点状パターン膜面状連結体30Gを、Y方向(第2のパターン形成方向)に沿って複数列分散して形成している。なお、実施の形態1と同じ構造部に関しては、同一の符号を付して説明を適宜省略する。
<Embodiment 7>
FIG. 10 is a plan view schematically showing the formation contents of the pattern film in the method of manufacturing a semiconductor device according to the seventh embodiment of the present invention. In FIG. 10, XY coordinate axes are shown. As shown in FIG. 10 (d), a plurality of dotted pattern films 27 and 28 (a plurality of first and second points) are formed on the conductor layer surface 11a and the adjacent layer surface 12a of the semiconductor wafer upper layer portion 10 serving as the underlayer. And a plurality of dot pattern films 29 and 30 (a plurality of third and fourth dot patterns) arranged in a line along the X direction (first pattern formation direction). The dotted pattern film planar connected bodies 30G, which are planar pattern films in plan view, are formed in a plurality of rows dispersed along the Y direction (second pattern formation direction). In addition, about the same structure part as Embodiment 1, the same code | symbol is attached | subjected and description is abbreviate | omitted suitably.
 図11は図10(c) のD-D断面構造を示す断面図であり、図12は図10(d) のE-E断面を示す断面図である。以下、図10~図12を参照して、実施の形態7の半導体装置の製造方法の処理手順を説明する。 11 is a cross-sectional view showing the DD cross-sectional structure of FIG. 10 (c), and FIG. 12 is a cross-sectional view showing the EE cross section of FIG. 10 (d). A processing procedure of the semiconductor device manufacturing method according to the seventh embodiment will be described below with reference to FIGS.
 図10(d) 、図11及び図12で示す構造は、図7で示した実施の形態5の半導体装置の製造方法において、ステップS2(材料塗布処理)及びステップS3(材料仮硬化処理)を4回繰り返すことにより実現される。 The structure shown in FIG. 10D, FIG. 11 and FIG. 12 is the same as that shown in FIG. 7 in the method for manufacturing the semiconductor device of the fifth embodiment, in which step S2 (material coating process) and step S3 (material temporary curing process) are performed. This is realized by repeating 4 times.
 1回目のステップS2及びS3の実行により、図10(a) に示すように、複数の下層点状パターン膜27を互いに連結させることなくX方向に沿って形成する。この際、複数の下層点状パターン膜27はY方向に沿って複数列、分散して形成される。すなわち、複数の下層点状パターン膜27はX方向と直交するY方向に沿って複数組の下層点状パターン膜27の群(複数組の第1の点状パターン群)に分類される。 By performing the first steps S2 and S3, as shown in FIG. 10A, a plurality of lower layer dotted pattern films 27 are formed along the X direction without being connected to each other. At this time, the plurality of lower layer dotted pattern films 27 are formed in a plurality of rows and dispersed along the Y direction. That is, the plurality of lower layer dot pattern films 27 are classified into a group of a plurality of lower layer dot pattern films 27 (a plurality of first dot pattern groups) along the Y direction orthogonal to the X direction.
 なお、実施の形態6の複数の下層点状パターン膜25と同様、複数の下層点状パターン膜27は互いに分離して形成されているため、下層点状パターン膜27の膜ストレスは、パターン膜ストレス27s単位に分離される。また、複数の下層点状パターン膜27の一部が導体層界面11xを跨ぐように形成される。 Since the plurality of lower layer dot pattern films 27 are formed separately from each other like the plurality of lower layer dot pattern films 25 of the sixth embodiment, the film stress of the lower layer dot pattern film 27 is the pattern film. The stress is separated into 27 s units. In addition, a part of the plurality of lower layer dotted pattern films 27 is formed so as to straddle the conductor layer interface 11x.
 そして、2回目のステップS2及びS3の実行により、図10(b) に示すように、複数の上層点状パターン膜28を互いに連結させることなくX方向に沿って形成される。この際、複数の下層点状パターン膜28はY方向に沿って複数列、分散して形成される。すなわち、複数の上層点状パターン膜28はY方向に沿って複数組の下層点状パターン膜27の群に対応して複数組の上層点状パターン膜28の群(複数組の第2の点状パターン群)に分類される。 Then, by executing Steps S2 and S3 for the second time, as shown in FIG. 10B, a plurality of upper layer dotted pattern films 28 are formed along the X direction without being connected to each other. At this time, the plurality of lower layer dotted pattern films 28 are formed in a plurality of rows and dispersed along the Y direction. That is, the plurality of upper layer dot pattern films 28 correspond to the group of the plurality of lower layer dot pattern films 27 along the Y direction. Type pattern group).
 複数組の上層点状パターン膜28の群は、各組において複数の下層点状パターン膜27のうちX方向に互いに隣り合う一対の下層点状パターン膜27,27間を上層点状パターン膜28を介して連結している。 The group of the plurality of sets of upper layer dot pattern films 28 includes an upper layer dot pattern film 28 between a pair of lower layer dot pattern films 27 and 27 adjacent to each other in the X direction among the plurality of lower layer dot pattern films 27 in each group. It is connected through.
 実施の形態6と同様、実施の形態7における2回目のステップS3の実行段階において、複数の上層点状パターン膜28は既に1回目のステップS3によって仮硬化している複数の下層点状パターン膜27に馴染むように広がっており、複数の上層点状パターン膜28それぞれのパターン膜ストレス28sは、上層点状パターン膜28,28間に設けられる下層点状パターン膜27により分離されている。 As in the sixth embodiment, in the execution stage of the second step S3 in the seventh embodiment, the plurality of upper layer dot pattern films 28 have already been temporarily cured in the first step S3. 27, the pattern film stress 28 s of each of the plurality of upper layer dot pattern films 28 is separated by the lower layer dot pattern film 27 provided between the upper layer dot pattern films 28, 28.
 3回目のステップS2及びS3の実行により、図10(c) 及び図11に示すように、複数の下層点状パターン膜29を互いに連結させることなくX方向に沿って形成する。この際、複数の下層点状パターン膜29はY方向に沿って複数列、分散して形成される。すなわち、複数の下層点状パターン膜29はX方向と直交するY方向に沿って複数組の下層点状パターン膜29の群(複数組の第3の点状パターン群)に分類される。 As shown in FIG. 10 (c) and FIG. 11, a plurality of lower layer dotted pattern films 29 are formed along the X direction without being connected to each other by performing the third steps S2 and S3. At this time, the plurality of lower layer dotted pattern films 29 are formed in a plurality of rows and dispersed along the Y direction. That is, the plurality of lower layer dot pattern films 29 are classified into a group of a plurality of lower layer dot pattern films 29 (a plurality of third dot pattern groups) along the Y direction orthogonal to the X direction.
 そして、図11に示すように、複数組の下層点状パターン膜27間において、Y方向に互いに隣り合う一対の下層点状パターン膜27,27間を下層点状パターン膜29を介して連結する。 Then, as shown in FIG. 11, between a plurality of sets of lower layer dot pattern films 27, a pair of lower layer dot pattern films 27, 27 adjacent to each other in the Y direction are connected via a lower layer dot pattern film 29. .
 3回目のステップS3の実行段階において、複数の下層点状パターン膜29は既に1回目及び2回目のステップS3によって仮硬化された複数の下層点状パターン膜27及び複数の上層点状パターン膜28に馴染むように広がっており、複数の上層点状パターン膜29それぞれのパターン膜ストレス29sは、下層点状パターン膜29,29間に設けられた下層点状パターン膜27により分離されている。 In the execution stage of the third step S3, the plurality of lower layer dot pattern films 29 have already been temporarily cured in the first and second steps S3, and the plurality of lower layer dot pattern films 27 and the plurality of upper layer dot pattern films 28. The pattern film stress 29 s of each of the plurality of upper layer dot pattern films 29 is separated by the lower layer dot pattern film 27 provided between the lower layer dot pattern films 29 and 29.
 4回目のステップS2及びS3の実行により、図10(d) 及び図12に示すように、複数の上層点状パターン膜30を互いに連結させることなくX方向に沿って形成して、複数の下層点状パターン膜29のうちX方向において互いに隣り合う一対の下層点状パターン膜29,29間を上層点状パターン膜30を介して連結するとともに、複数組の上層点状パターン膜28の群間において、Y方向に互いに隣り合う一対の上層点状パターン膜28,28間を上層点状パターン膜30を介して連結することにより、平面視して面状の点状パターン膜面状連結体30Gを完成パターン膜として形成する。 By performing steps S2 and S3 for the fourth time, as shown in FIG. 10 (d) and FIG. 12, a plurality of upper layer dotted pattern films 30 are formed along the X direction without being connected to each other, and a plurality of lower layers are formed. Among the dotted pattern films 29, a pair of lower layer dotted pattern films 29 and 29 adjacent to each other in the X direction are connected through an upper layer dotted pattern film 30 and between a plurality of sets of upper layer dotted pattern films 28. , A pair of upper layer dot pattern films 28, 28 adjacent to each other in the Y direction are connected via an upper layer dot pattern film 30, so that a planar dot pattern film surface connection body 30 </ b> G in plan view is obtained. Is formed as a completed pattern film.
 なお、複数の上層点状パターン膜30はY方向に沿って複数組の下層点状パターン膜29の群に対応して複数組の上層点状パターン膜30の群(複数組の第4の点状パターン群)に分類される。 The plurality of upper layer dot pattern films 30 correspond to the group of the plurality of lower layer dot pattern films 29 along the Y direction. Type pattern group).
 4回目のステップS3の実行段階において、複数の上層点状パターン膜30は、既に1回目~3回目のステップS3によって仮硬化された複数の下層点状パターン膜27、複数の上層点状パターン膜28及び複数の下層点状パターン膜29に馴染むように広がっている。そして、X方向において、複数の上層点状パターン膜30それぞれのパターン膜ストレス30sは、上層点状パターン膜30,30間に設けられる下層点状パターン膜29により分離され、Y方向において、図12に示すように、複数の上層点状パターン膜30それぞれのパターン膜ストレス30sは、上層点状パターン膜30,30間に設けられる上層点状パターン膜28によって分離される。 In the execution stage of the fourth step S3, the plurality of upper layer dot pattern films 30 are the plurality of lower layer dot pattern films 27, the plurality of upper layer dot pattern films 27 which have already been temporarily cured in the first to third steps S3. 28 and a plurality of lower layer dotted pattern films 29 are spread out. Then, the pattern film stress 30s of each of the plurality of upper layer dot pattern films 30 in the X direction is separated by the lower layer dot pattern film 29 provided between the upper layer dot pattern films 30 and 30, and in the Y direction, FIG. As shown in FIG. 5, the pattern film stress 30 s of each of the plurality of upper layer dot pattern films 30 is separated by the upper layer dot pattern film 28 provided between the upper layer dot pattern films 30 and 30.
 このように、実施の形態7の半導体装置の製造方法で製造される複数の点状パターン膜面状連結体30Gは全体として面状に繋ぎ合せた連結構造を有しているが、下層点状パターン膜27、上層点状パターン膜28、下層点状パターン膜29及び上層点状パターン膜30の仮硬化をそれぞれ分けて行い、図11及び図12に示すように、パターン膜ストレス27s、パターン膜ストレス28s、パターン膜ストレス29s及びパターン膜ストレス30sは点状の単位で分離されたままになっている。このため、点状パターン膜面状連結体30G全体として端部へのストレス集中が大幅に緩和されることになる。 As described above, the plurality of dotted pattern film planar connected bodies 30G manufactured by the semiconductor device manufacturing method of the seventh embodiment have a connecting structure in which the whole is connected in a planar shape. The temporary curing of the pattern film 27, the upper dot pattern film 28, the lower dot pattern film 29, and the upper dot pattern film 30 is performed separately. As shown in FIGS. 11 and 12, the pattern film stress 27s, the pattern film The stress 28s, the pattern film stress 29s, and the pattern film stress 30s remain separated in dot units. For this reason, the stress concentration to the end of the dotted pattern film planar connector 30G as a whole is greatly relieved.
 上述したように、実施の形態7の半導体装置の製造方法では、4回のステップS3の実行により、複数の下層点状パターン膜27、複数の上層点状パターン膜28、複数の下層点状パターン膜29、及び複数の上層点状パターン膜30との組み合わせにより、完成パターン膜を形成している。 As described above, in the method of manufacturing the semiconductor device according to the seventh embodiment, a plurality of lower layer dot pattern films 27, a plurality of upper layer dot pattern films 28, and a plurality of lower layer dot patterns are obtained by performing step S3 four times. A completed pattern film is formed by a combination of the film 29 and a plurality of upper-layer dot pattern films 30.
 すなわち、実施の形態7は、実施の形態6と同様、複数の下層点状パターン膜27と、複数の上層点状パターン膜28と、複数の下層点状パターン膜29と、複数の上層点状パターン膜30とを別工程で形成する段階的材料塗布製法を採用している。その結果、X方向において、下層点状パターン膜27,27間を上層点状パターン膜28により連結し、下層点状パターン膜29,29間を上層点状パターン膜30により連結し、Y方向において、下層点状パターン膜27,27間を下層点状パターン膜29により連結し、上層点状パターン膜28,28間を上層点状パターン膜30により連結することができる。 That is, the seventh embodiment is similar to the sixth embodiment in that a plurality of lower layer dot pattern films 27, a plurality of upper layer dot pattern films 28, a plurality of lower layer dot pattern films 29, and a plurality of upper layer dot patterns. A stepwise material coating method is used in which the pattern film 30 is formed in a separate process. As a result, in the X direction, the lower dot pattern films 27 and 27 are connected by the upper dot pattern film 28, and the lower dot pattern films 29 and 29 are connected by the upper dot pattern film 30 and in the Y direction. The lower dot pattern films 27 and 27 can be connected by the lower dot pattern film 29, and the upper dot pattern films 28 and 28 can be connected by the upper dot pattern film 30.
 したがって、完成パターン膜の膜ストレスを下層点状パターン膜27,29及び上層点状パターン膜28,30それぞれのパターン膜ストレス27s,29s,28s及び30sに抑えつつ、平面視して面状の完成パターン膜を形成することができる。 Therefore, the film stress of the completed pattern film is suppressed to the pattern film stresses 27 s, 29 s, 28 s and 30 s of the lower layer dot pattern films 27 and 29 and the upper layer dot pattern films 28 and 30, respectively. A pattern film can be formed.
 なお、点状パターン膜面状連結体30G同士は互いに分離して形成されているため、相互に膜ストレスが作用することはない。 In addition, since the dotted pattern film planar connectors 30G are formed separately from each other, film stress does not act on each other.
 なお、実施の形態7では、点状パターン膜面状連結体30Gを四角形状に形成したが、この限りではなく、完成パターン膜の端部が剥離しない範囲で導体層表面11aの全周を取り囲むように中空を有する枠状に形成するようにしても良い。 In the seventh embodiment, the dotted pattern film planar connecting body 30G is formed in a square shape. However, the present invention is not limited to this, and surrounds the entire circumference of the conductor layer surface 11a as long as the end of the completed pattern film does not peel off. Thus, it may be formed in a frame shape having a hollow.
 また、実施の形態5の製造方法を利用する際、1回目~4回目のステップS3それぞれの実行後に、実施の形態5のステップS4及びS5を組み込んだ改良例を採用しても良い。この場合、ステップS4にて1回目~4回目のいずれかで塗布パターンの不良を判定すると、半導体装置の製造を直ちに中止する。一方、1回目~3回目の塗布パターンが正常の場合、検査判定後リターンR5でステップS2に戻り、4回目塗布パターンが正常の場合、次の本硬化処理工程に移行する。 Further, when using the manufacturing method of the fifth embodiment, an improved example in which steps S4 and S5 of the fifth embodiment are incorporated after each of the first to fourth steps S3 may be adopted. In this case, when a defective coating pattern is determined in any one of the first to fourth times in step S4, the manufacture of the semiconductor device is immediately stopped. On the other hand, if the first to third application patterns are normal, the process returns to step S2 with a return R5 after inspection determination, and if the fourth application pattern is normal, the process proceeds to the next main curing process.
 このように、実施の形態7の改良例では、ステップS4の実行時に、下層点状パターン膜27,29及び上層点状パターン膜28,30の形成用の材料における塗布パターンの良否を判定して、不良な塗布パターンの製造を適宜中止して半導体装置の歩留り向上を図ることができる。 As described above, in the improved example of the seventh embodiment, the quality of the coating pattern in the material for forming the lower layer dot pattern films 27 and 29 and the upper layer dot pattern films 28 and 30 is determined when step S4 is executed. The production of defective coating patterns can be stopped as appropriate to improve the yield of semiconductor devices.
 <実施の形態8>
 図13はこの発明の実施の形態8における半導体製造装置の構成を模式的に示す説明図である。同図において、実施の形態8の半導体製造装置4の各構成部41~48の平面上の位置関係を示している。実施の形態8の半導体製造装置4は実施の形態1~実施の形態7の半導体装置の製造方法を実現するための装置である。なお、図13において、XYZ座標軸を示している。
<Eighth embodiment>
FIG. 13 is an explanatory diagram schematically showing a configuration of a semiconductor manufacturing apparatus according to Embodiment 8 of the present invention. In the same figure, the positional relationship on the plane of each component part 41-48 of the semiconductor manufacturing apparatus 4 of Embodiment 8 is shown. The semiconductor manufacturing apparatus 4 of the eighth embodiment is an apparatus for realizing the semiconductor device manufacturing method of the first to seventh embodiments. In FIG. 13, XYZ coordinate axes are shown.
 同図に示すように、半導体製造装置4は内部に複数のウェハカセット41、搬送ロボット42、アライメント部43、ステージ44、表面洗浄部45、材料塗布部46、材料仮硬化部47及び塗布パターン検査部48から構成されている。 As shown in the figure, the semiconductor manufacturing apparatus 4 includes a plurality of wafer cassettes 41, a transfer robot 42, an alignment unit 43, a stage 44, a surface cleaning unit 45, a material application unit 46, a material temporary curing unit 47, and an application pattern inspection. The unit 48 is configured.
 搬送ロボット42はウェハカセット41内から半導体ウェハ1を取り出してステージ44上に載置したり、ステージ44上の半導体ウェハ1を把持してウェハカセット41内に戻したりする搬送処理を行う。 The transfer robot 42 performs a transfer process of taking out the semiconductor wafer 1 from the wafer cassette 41 and placing it on the stage 44, or holding the semiconductor wafer 1 on the stage 44 and returning it to the wafer cassette 41.
 ステージ44は通常はアライメント部43内に配置されているが、必要に応じて表面洗浄部45、材料塗布部46、材料仮硬化部47及び塗布パターン検査部48に移動させることができる。 The stage 44 is normally disposed in the alignment unit 43, but can be moved to the surface cleaning unit 45, the material application unit 46, the material temporary curing unit 47, and the application pattern inspection unit 48 as necessary.
 以下、パターン膜形成用の材料として光硬化性の材料を用いて半導体ウェハ1に完成パターン膜を塗布する場合の半導体製造装置4の構成及び動作について説明する。 Hereinafter, the configuration and operation of the semiconductor manufacturing apparatus 4 when a completed pattern film is applied to the semiconductor wafer 1 using a photocurable material as a pattern film forming material will be described.
 ウェハカセット41に収納されている半導体ウェハ1を搬送ロボット42により引き出し、搬送ロボット42によって半導体ウェハ1をステージ44内のアライメント部43上に載置する。 The semiconductor wafer 1 stored in the wafer cassette 41 is pulled out by the transfer robot 42, and the semiconductor wafer 1 is placed on the alignment unit 43 in the stage 44 by the transfer robot 42.
 アライメント部43では画像処理により内部のステージ44の球座標系におけるX、Y、Z、θ軸等を駆動して半導体ウェハ1の位置や角度を塗布の座標系に合わせる。 The alignment unit 43 drives the X, Y, Z, θ axes and the like in the spherical coordinate system of the internal stage 44 by image processing to adjust the position and angle of the semiconductor wafer 1 to the coating coordinate system.
 次に、ステージ44を表面洗浄部45に移動させ、半導体ウェハ1の表面(表層面)に紫外光(UV光)を照射して半導体ウェハ1(の半導体ウェハ上層部10)の表面に吸着している有機物を除去する。この処理が実施の形態5の半導体装置の製造方法(図7参照)におけるステップS1に相当する。 Next, the stage 44 is moved to the surface cleaning unit 45, and the surface (surface layer surface) of the semiconductor wafer 1 is irradiated with ultraviolet light (UV light) and adsorbed on the surface of the semiconductor wafer 1 (semiconductor wafer upper layer portion 10). Remove organic matter. This process corresponds to step S1 in the semiconductor device manufacturing method of the fifth embodiment (see FIG. 7).
 次に、ステージ44を材料塗布部46に移動させ、半導体ウェハ1の表面にインクジェットノズルからパターン膜形成用の材料(以下、単に「材料」と略記する場合あり)を塗布する。この処理が実施の形態5の半導体装置の製造方法におけるステップS2に相当する。 Next, the stage 44 is moved to the material application unit 46, and a pattern film forming material (hereinafter simply referred to as “material” in some cases) is applied to the surface of the semiconductor wafer 1 from an inkjet nozzle. This process corresponds to step S2 in the semiconductor device manufacturing method of the fifth embodiment.
 その後、ステージ44をアライメント部43に向けて一定速度で-Y方向に移動させながら、通過する材料仮硬化部47の光照射による材料の仮硬化処理を行う。光照射機能を有する材料仮硬化部47による光照射処理が実施の形態5の半導体装置の製造方法におけるステップS3に相当する。 Thereafter, the stage 44 is moved toward the alignment unit 43 in the −Y direction at a constant speed, and the material is temporarily cured by light irradiation of the passing material temporary curing unit 47. The light irradiation process by the material temporary curing portion 47 having the light irradiation function corresponds to step S3 in the method for manufacturing the semiconductor device of the fifth embodiment.
 次に、ステージ44を塗布パターン検査部48に移動させ、画像処理で材料の塗布パターンに異常が無いかを検査する。検査機能を有する塗布パターン検査部48の検査処理が実施の形態5の半導体装置の製造方法におけるステップS4に相当する。 Next, the stage 44 is moved to the coating pattern inspection unit 48, and it is inspected for abnormality in the coating pattern of the material by image processing. The inspection process of the coating pattern inspection unit 48 having the inspection function corresponds to step S4 in the method for manufacturing the semiconductor device of the fifth embodiment.
 その後、例えば、引き続き塗布パターン検査部48によって検査判定処理を行う。この処理が実施の形態5の半導体装置の製造方法におけるステップS5に相当する。この検査判定処理で塗布パターンの異常を検出した場合、塗布パターン異常のアラームを発報する。アラーム解除後、ステージ44をアライメント部43に移動させ、ステージ44上の半導体ウェハ1を搬送ロボット42によって元のウェハカセット41に収納し、アラームログをウェハログにリンクさせる。 Thereafter, for example, the inspection determination process is subsequently performed by the coating pattern inspection unit 48. This process corresponds to step S5 in the method for manufacturing the semiconductor device of the fifth embodiment. When an abnormality of the application pattern is detected in this inspection determination process, an alarm of the application pattern abnormality is issued. After the alarm is released, the stage 44 is moved to the alignment unit 43, the semiconductor wafer 1 on the stage 44 is stored in the original wafer cassette 41 by the transfer robot 42, and the alarm log is linked to the wafer log.
 塗布パターンの異常を検出した半導体ウェハ1については、半導体製造装置4とは別の装置で薬液による再生処理を行い、一度、半導体ウェハ1の表面から材料を除去した後、再び、パターン膜の生成処理対象の半導体ウェハ1として再処理する。 About the semiconductor wafer 1 which detected the abnormality of the coating pattern, after performing the reproduction | regeneration process by a chemical | medical solution with the apparatus different from the semiconductor manufacturing apparatus 4, once removing material from the surface of the semiconductor wafer 1, it produces | generates a pattern film again. Reprocessing as the semiconductor wafer 1 to be processed.
 搬送単位の全ての半導体ウェハ1が正常に処理された後、半導体製造装置4の別の装置にて本硬化処理を行うことになる。 After all the semiconductor wafers 1 in the transport unit have been processed normally, the main curing process is performed in another apparatus of the semiconductor manufacturing apparatus 4.
 なお、実施の形態6や実施の形態7のように、段階的材料塗布製法を用いる場合は、材料塗布部46による材料塗布ステップ、材料仮硬化部47による材料仮硬化ステップ、塗布パターン検査部48による塗布パターン検査ステップ、及びその後の検査判定ステップを必要な回数分繰り返す。例えば、実施の形態6の場合は2回繰り返し、実施の形態7の場合は4回繰り返す。なお、塗布パターン検査ステップ、及び検査判定ステップは適宜省略する態様も考えられる。 When the stepwise material coating method is used as in the sixth embodiment and the seventh embodiment, the material coating step by the material coating unit 46, the material temporary curing step by the material temporary curing unit 47, and the coating pattern inspection unit 48. The coating pattern inspection step and the subsequent inspection determination step are repeated as many times as necessary. For example, in the case of the sixth embodiment, it is repeated twice, and in the case of the seventh embodiment, it is repeated four times. In addition, the aspect which abbreviate | omits suitably a coating pattern test | inspection step and a test | inspection determination step is also considered.
 このように、実施の形態8の半導体製造装置4は、表面洗浄部45、材料塗布部46及び材料仮硬化部47を一体化して有することにより、比較的安価な構成で、パターン膜を比較的短時間で形成することができる。 As described above, the semiconductor manufacturing apparatus 4 according to the eighth embodiment has the surface cleaning unit 45, the material application unit 46, and the material pre-curing unit 47 in an integrated manner. It can be formed in a short time.
 例えば、インクジェットで光硬化性の材料を塗布する場合、図7で示した実施の形態5の製造方法を実施の形態8の半導体製造装置4で実行すると、全てが高速に処理できるため、例えば、表面洗浄部45による表層面洗浄が10秒、材料塗布部46による材料の塗布が10秒、材料仮硬化部47による仮硬化処理が10秒、塗布パターン検査部48による塗布パターン検査処理が10秒で行える。すなわち、1つの半導体製造装置4に各構成部41~48を統合することを考慮して、実施の形態5の半導体装置の製造方法の各ステップS1~S5の処理時間を短くしている。 For example, when applying a photocurable material by inkjet, if the manufacturing method of the fifth embodiment shown in FIG. 7 is executed by the semiconductor manufacturing apparatus 4 of the eighth embodiment, all can be processed at high speed. Surface cleaning by the surface cleaning unit 45 is 10 seconds, material application by the material application unit 46 is 10 seconds, temporary curing processing by the material temporary curing unit 47 is 10 seconds, and application pattern inspection processing by the application pattern inspection unit 48 is 10 seconds. You can do it. That is, considering the integration of the components 41 to 48 into one semiconductor manufacturing apparatus 4, the processing time of steps S1 to S5 of the semiconductor device manufacturing method of the fifth embodiment is shortened.
 このため、上述した処理を4回繰り返しても、1枚の半導体ウェハ1に対して160秒程度で済ますことができ、25枚の半導体ウェハ1を1.1時間程度で処理を済ますことができる。その結果、本硬化処理に1時間要すると仮定しても、完成パターン膜の製造を2.1時間程度で済ますことができ、{(a) 成膜工程、(b) レジスト塗布工程、(c) 露光工程、(d) 現像工程、(e) エッチング工程、(f) レジスト除去工程}からなる従来の半導体装置の製造方法による処理時間(6時間程度)に比べ、大幅に短縮することができる。 For this reason, even if it repeats the process mentioned above 4 times, it can complete about 160 second with respect to one semiconductor wafer 1, and can complete the process of 25 semiconductor wafers 1 in about 1.1 hours. . As a result, even if it is assumed that the main curing process takes 1 hour, the finished pattern film can be manufactured in about 2.1 hours. {(A) film formation process, (b) resist application process, (c Compared with the processing time (about 6 hours) of the conventional method of manufacturing a semiconductor device comprising (1) exposure step, (d) development step, (e) etching step, and (f) resist removal step}. .
 また、半導体装置の製造方法の上述した処理時間短縮に伴い、半導体製造装置4の償却費、動力コスト等の削減を併せて図ることができる。 Further, along with the above-described shortening of the processing time of the semiconductor device manufacturing method, it is possible to reduce the depreciation cost, power cost, etc. of the semiconductor manufacturing device 4 together.
 さらに、実施の形態8の半導体製造装置4は、表面洗浄部45、材料塗布部46及び材料仮硬化部47に加え、塗布パターン検査部48を一体化して有することにより、不良な塗布パターンが形成された半導体ウェハ1を再生処理しつつ、精度の良いパターン膜を比較的短時間で形成することができる。 Furthermore, the semiconductor manufacturing apparatus 4 according to the eighth embodiment forms a defective coating pattern by integrating the coating pattern inspection unit 48 in addition to the surface cleaning unit 45, the material coating unit 46, and the material temporary curing unit 47. An accurate pattern film can be formed in a relatively short time while the processed semiconductor wafer 1 is regenerated.
 また、半導体製造装置4は各構成部41~48を一体化して統合することにより、装置の小型化、軽量化を図ることができる。加えて、材料塗布部46がインクジェットノズルを利用することにより材料の利用効率を90%程度にして、従来の成膜工程で用いるスピンコーターによる材料の使用効率が30%程度と比較して大幅に向上することができる。さらに、従来のようにレジスト塗布、現像処理が不要となるため原材料の減量化も図ることができる。 Further, the semiconductor manufacturing apparatus 4 can reduce the size and weight of the apparatus by integrating and integrating the components 41 to 48. In addition, the material application unit 46 uses an ink jet nozzle to make the material use efficiency about 90%, and the material use efficiency by the spin coater used in the conventional film forming process is significantly higher than about 30%. Can be improved. Further, since the resist coating and development processes are not required as in the prior art, the amount of raw materials can be reduced.
 加えて、実施の形態8の半導体製造装置4は、複数台の装置で構成される従来の半導体製造装置に比べて一体化して処理時間短縮による総合的に省エネルギー化を図ることができる。 In addition, the semiconductor manufacturing apparatus 4 of the eighth embodiment can be integrated as compared with the conventional semiconductor manufacturing apparatus constituted by a plurality of apparatuses, and overall energy saving can be achieved by shortening the processing time.
 また、上述した原材料の減量化と点状パターン膜単体あるいは点状パターン膜の組み合わせにより完成パターン膜の形成時における膜ストレスの緩和とによって、実施の形態8の半導体製造装置4を用いて実施の形態1~実施の形態7の半導体装置の製造方法を実行して製造される半導体装置の歩留り向上を図ることができる。 Further, by using the semiconductor manufacturing apparatus 4 of the eighth embodiment, it is possible to reduce the amount of raw materials described above and to relieve the film stress at the time of forming a completed pattern film by combining a point pattern film alone or a point pattern film. The yield of the semiconductor device manufactured by executing the manufacturing method of the semiconductor device according to the first to seventh embodiments can be improved.
 なお、上述した実施の形態では、半導体ウェハ1を例に示したが、チップ化された半導体チップ等であっても適用可能であることは勿論である。 In the above-described embodiment, the semiconductor wafer 1 is shown as an example. However, it is needless to say that the present invention can be applied to a semiconductor chip formed into chips.
 この発明は詳細に説明されたが、上記した説明は、全ての局面において、例示であって、この発明がそれに限定されるものではない。例示されていない無数の改良例が、この発明の範囲から外れることなく想定され得るものと解される。すなわち、本発明は、その発明の範囲内において、実施の形態を適宜、変形、省略することが可能である。 Although the present invention has been described in detail, the above description is illustrative in all aspects, and the present invention is not limited thereto. It is understood that countless improvements that are not illustrated can be envisaged without departing from the scope of the present invention. That is, in the present invention, the embodiments can be appropriately modified and omitted within the scope of the invention.
 1 半導体ウェハ、4 半導体製造装置、10 半導体ウェハ上層部、11 導体層、11x 導体層界面、12 隣接層、20~24 点状パターン膜、23G,26G 点状パターン膜線状連結体、24G,30G 点状パターン膜面状連結体、25,27,29 下層点状パターン膜、26,28,30 上層点状パターン膜、41 ウェハカセット、42 搬送ロボット、43 アライメント部、44 ステージ、45 表面洗浄部、46 材料塗布部、47 材料仮硬化部、48 塗布パターン検査部。 1 semiconductor wafer, 4 semiconductor manufacturing apparatus, 10 semiconductor wafer upper layer part, 11 conductor layer, 11x conductor layer interface, 12 adjacent layers, 20-24 dot pattern film, 23G, 26G dot pattern film linear connector, 24G, 30G dotted pattern film planar connected body, 25, 27, 29 lower dotted pattern film, 26, 28, 30 upper dotted pattern film, 41 wafer cassette, 42 transfer robot, 43 alignment unit, 44 stage, 45 surface cleaning Part, 46 material application part, 47 material temporary curing part, 48 application pattern inspection part.

Claims (17)

  1.  下地層(10,11,12)の表面上に、パターン膜形成用の材料を点状に堆積し、少なくとも一つの点状パターン(20~30)によって、形状が確定した完成段階のパターン膜(20~22,23G,24G,26G,30G)を形成することを特徴する、
    半導体装置の製造方法。
    On the surface of the underlayer (10, 11, 12), a pattern film-forming material is deposited in the form of dots, and a pattern film in a completed stage whose shape is determined by at least one dot pattern (20-30) ( 20 to 22, 23G, 24G, 26G, 30G),
    A method for manufacturing a semiconductor device.
  2.  請求項1記載の半導体装置の製造方法であって、
     前記下地層は導体層(11)を含む、
    半導体装置の製造方法。
    A method of manufacturing a semiconductor device according to claim 1,
    The underlayer includes a conductor layer (11).
    A method for manufacturing a semiconductor device.
  3.  請求項1記載の半導体装置の製造方法であって、
     前記下地層は導体層と他の層(12)との組み合わせで構成され、前記導体層と前記他の層との間に界面(11x)を有し、
     前記パターン膜の少なくとも一部は前記界面を跨るように形成される、
    半導体装置の製造方法。
    A method of manufacturing a semiconductor device according to claim 1,
    The underlayer is composed of a combination of a conductor layer and another layer (12), and has an interface (11x) between the conductor layer and the other layer,
    At least a part of the pattern film is formed so as to straddle the interface.
    A method for manufacturing a semiconductor device.
  4.  請求項1記載の半導体装置の製造方法であって、
     前記少なくとも一つの点状パターンは複数の点状パターン(22)を含み、
     前記複数の点状のパターンそれぞれを分散して配置して前記パターン膜を形成することを特徴とする、
    半導体装置の製造方法。
    A method of manufacturing a semiconductor device according to claim 1,
    The at least one punctate pattern comprises a plurality of punctate patterns (22);
    The pattern film is formed by dispersing and arranging the plurality of dot-like patterns,
    A method for manufacturing a semiconductor device.
  5.  請求項1記載の半導体装置の製造方法であって、
     前記少なくとも一つの点状パターンは複数の点状パターン(23)を含み、
     前記複数の点状のパターンを互いに連結させながらパターン形成方向に沿って線状に配置して、平面視して線状の前記パターン膜(23G)を形成することを特徴とする、
    半導体装置の製造方法。
    A method of manufacturing a semiconductor device according to claim 1,
    The at least one punctate pattern comprises a plurality of punctate patterns (23);
    The plurality of dot patterns are arranged in a line along a pattern forming direction while being connected to each other, and the pattern film (23G) that is linear in a plan view is formed.
    A method for manufacturing a semiconductor device.
  6.  請求項1記載の半導体装置の製造方法であって、
     前記少なくとも一つの点状パターンは複数の点状パターン(24)を含み、
     前記複数の点状のパターンを互いに連結させながら第1のパターン形成方向に沿って線状に配置し、かつ、前記第1のパターン形成方向と交差する第2のパターン形成方向に沿って線状に配置することにより、平面視して面状に前記パターン膜(24G)を形成することを特徴とする、
    半導体装置の製造方法。
    A method of manufacturing a semiconductor device according to claim 1,
    The at least one punctate pattern comprises a plurality of punctate patterns (24);
    The plurality of dot-like patterns are arranged in a line along the first pattern formation direction while being connected to each other, and are linear along the second pattern formation direction that intersects the first pattern formation direction. The pattern film (24G) is formed in a planar shape in plan view by disposing in
    A method for manufacturing a semiconductor device.
  7.  請求項1から請求項6のうち、いずれか1項に記載の半導体装置の製造方法であって、
     (a) 前記下地層の表面を洗浄するステップと、
     (b) 前記下地層の表面上に前記パターン膜形成用の材料を塗布するステップと、
     (c) 前記パターン膜形成用の材料を仮硬化させて前記少なくとも一つの点状パターンを得るステップとを含む、
    半導体装置の製造方法。
    A method of manufacturing a semiconductor device according to any one of claims 1 to 6,
    (a) cleaning the surface of the underlayer;
    (b) applying a material for forming the pattern film on the surface of the base layer;
    (c) preliminarily curing the material for forming the pattern film to obtain the at least one dot pattern,
    A method for manufacturing a semiconductor device.
  8.  請求項7記載の半導体装置の製造方法であって、
     (d) 前記下地層の表面上に形成された前記パターン膜形成用の材料における塗布パターンの良否を検査するステップをさらに備える、
    半導体装置の製造方法。
    A method for manufacturing a semiconductor device according to claim 7, comprising:
    (d) further comprising the step of inspecting the quality of the coating pattern in the pattern film forming material formed on the surface of the foundation layer,
    A method for manufacturing a semiconductor device.
  9.  請求項8記載の半導体装置の製造方法であって、
     前記ステップ(a) は、前記下地層の表面に紫外光を照射するステップを含む、
    半導体装置の製造方法。
    A method for manufacturing a semiconductor device according to claim 8, comprising:
    The step (a) includes irradiating the surface of the underlayer with ultraviolet light,
    A method for manufacturing a semiconductor device.
  10.  請求項9記載の半導体装置の製造方法であって、
     前記ステップ(b) は、インクジェットノズルを用いて前記下地層の表面上に前記パターン膜形成用の材料を塗布するステップを含む、
    半導体装置の製造方法。
    A method for manufacturing a semiconductor device according to claim 9, comprising:
    The step (b) includes a step of applying the material for forming the pattern film on the surface of the base layer using an inkjet nozzle.
    A method for manufacturing a semiconductor device.
  11.  請求項10記載の半導体装置の製造方法であって、
     前記パターン膜形成用の材料は、光重合開始剤を含む光硬化性の材料であり、
     前記ステップ(c) は、前記下地層の表面上に塗布された前記パターン膜形成用の材料に光を照射するステップを含む、
    半導体装置の製造方法。
    A method for manufacturing a semiconductor device according to claim 10, comprising:
    The material for forming the pattern film is a photocurable material containing a photopolymerization initiator,
    The step (c) includes irradiating light to the material for forming the pattern film applied on the surface of the underlayer.
    A method for manufacturing a semiconductor device.
  12.  請求項8記載の半導体装置の製造方法であって、
     前記少なくとも一つの点状パターンは複数の第1及び第2の点状パターン(25,26)を含み、
     前記ステップ(b) 及びステップ(c) は2回繰り返し実行され、
     1回目のステップ(b)及びステップ(c) の実行により前記複数の第1の点状パターンを互いに連結させることなくパターン形成方向に沿って形成し、
     2回目のステップ(b)及びステップ(c) の実行により前記複数の第2の点状パターンを互いに連結させることなく前記パターン形成方向に沿って形成して、前記複数の第1の点状パターンのうち前記パターン形成方向において互いに隣り合う一対の第1の点状パターン間を第2の点状パターンを介して連結することにより、平面視して線状の前記パターン膜(26G)を形成することを特徴とする、
    半導体装置の製造方法。
    A method for manufacturing a semiconductor device according to claim 8, comprising:
    The at least one punctate pattern includes a plurality of first and second punctate patterns (25, 26);
    Step (b) and step (c) are repeated twice,
    The first step (b) and the step (c) are performed to form the plurality of first dot patterns along the pattern forming direction without being connected to each other.
    The plurality of second dot patterns are formed along the pattern forming direction without being connected to each other by performing the second step (b) and step (c), and the plurality of first dot patterns are formed. Of the first and second patterns adjacent to each other in the pattern forming direction through a second dot pattern to form the linear pattern film (26G) in plan view. It is characterized by
    A method for manufacturing a semiconductor device.
  13.  請求項12記載の半導体装置の製造方法であって、
     1回目及び2回目の前記ステップ(c)それぞれの実行後に前記ステップ(d)の実行が組み込まれ、
     前記ステップ(d) にて塗布パターンの不良を判定すると前記半導体装置の製造を中止することを特徴する、
    半導体装置の製造方法。
    A method of manufacturing a semiconductor device according to claim 12,
    The execution of the step (d) is incorporated after the execution of the first and second steps (c),
    Characterized in that the manufacturing of the semiconductor device is stopped when determining a coating pattern defect in the step (d),
    A method for manufacturing a semiconductor device.
  14.  請求項8記載の半導体装置の製造方法であって、
     前記少なくとも一つの点状パターンは複数の第1~第4の点状パターン(27,28,29,30)を含み、
     前記ステップ(b) 及びステップ(c) は4回繰り返し実行され、
     1回目のステップ(b)及びステップ(c) の実行により前記複数の第1の点状パターンを互いに連結させることなく第1のパターン形成方向に沿って形成し、前記複数の第1の点状パターンは前記第1のパターン形成方向と交差する第2のパターン形成方向に沿って複数組の第1の点状パターン群に分類され、
     2回目のステップ(b)及びステップ(c) の実行により前記複数の第2の点状パターンを互いに連結させることなく前記第1のパターン形成方向に沿って形成し、前記複数の第2の点状パターンは前記第2のパターン形成方向に沿って前記複数組の第1の点状パターン群に対応して複数組の第2の点状パターン群に分類され、各組において前記複数の第1の点状パターンのうち前記第1のパターン形成方向に互いに隣り合う一対の第1の点状パターン間を前記第2の点状パターンを介して連結し、
     3回目のステップ(b)及びステップ(c) の実行により前記複数の第3の点状パターンを互いに連結させることなく前記第1のパターン形成方向に沿って形成し、前記複数組の第1の点状パターン群間において、前記第2のパターン形成方向に互いに隣り合う一対の第1の点状パターン間を前記第3の点状パターンを介して連結し、
     4回目のステップ(b)及びステップ(c) の実行により前記複数の第4の点状パターンを互いに連結させることなく前記第1のパターン形成方向に沿って形成して、前記複数の第3の点状パターンのうち前記第1のパターン形成方向において互いに隣り合う一対の第3の点状パターン間を第4の点状パターンを介して連結するとともに、前記複数組の第2の点状パターン群間において、前記第2のパターン形成方向に互いに隣り合う一対の第2の点状パターン間を第4の点状パターンを介して連結することにより、平面視して面状の前記パターン膜(20G)を形成することを特徴する、
    半導体装置の製造方法。
    A method for manufacturing a semiconductor device according to claim 8, comprising:
    The at least one dot pattern includes a plurality of first to fourth dot patterns (27, 28, 29, 30),
    Steps (b) and (c) are repeated four times,
    By performing the first step (b) and step (c), the plurality of first dot patterns are formed along the first pattern forming direction without being connected to each other, and the plurality of first dot patterns are formed. The patterns are classified into a plurality of sets of first dot pattern groups along a second pattern formation direction intersecting the first pattern formation direction,
    The second step (b) and the step (c) are performed to form the plurality of second dot patterns along the first pattern forming direction without being connected to each other, The pattern is classified into a plurality of sets of second dot patterns corresponding to the plurality of sets of first dot patterns along the second pattern formation direction, and the plurality of first patterns in each set. Connecting a pair of first dot patterns adjacent to each other in the first pattern formation direction through the second dot patterns,
    By performing the third step (b) and step (c), the plurality of third dot patterns are formed along the first pattern forming direction without being connected to each other, and the plurality of sets of first patterns are formed. Between the point-like pattern groups, the pair of first point-like patterns adjacent to each other in the second pattern formation direction is connected via the third point-like pattern,
    By performing the fourth step (b) and step (c), the plurality of fourth dot patterns are formed along the first pattern formation direction without being connected to each other, and the plurality of third dots are formed. A pair of third dot patterns adjacent to each other in the first pattern formation direction among the dot patterns are connected via a fourth dot pattern, and the plurality of sets of second dot pattern groups. A pair of second dot patterns adjacent to each other in the second pattern formation direction are connected via a fourth dot pattern between the two, so that the planar pattern film (20G Characterized by forming)
    A method for manufacturing a semiconductor device.
  15.  請求項14記載の半導体装置の製造方法であって、
     1回目~4回目の前記ステップ(c)それぞれの実行後に前記ステップ(d)の実行が組み込まれ、
     前記ステップ(d) にて塗布パターンの不良を判定すると前記半導体装置の製造を中止することを特徴する、
    半導体装置の製造方法。
    A method for manufacturing a semiconductor device according to claim 14, comprising:
    The execution of step (d) is incorporated after each execution of step (c) for the first to fourth times,
    Characterized in that the manufacturing of the semiconductor device is stopped when determining a coating pattern defect in the step (d),
    A method for manufacturing a semiconductor device.
  16.  請求項11記載の半導体装置の製造方法を実現するための半導体製造装置であって、
     前記ステップ(a) を実行するための紫外光照射機能を有する表面洗浄部(45)と、
     前記ステップ(b) を実行するための前記インクジェットノズルを有する材料塗布部(46)と、
     前記ステップ(c) を実行するための光照射機能を有する材料仮硬化部(47)とを備え、
     前記表面洗浄部、前記材料塗布部及び前記材料仮硬化部を一体化して有することを特徴とする、
    半導体製造装置。
    A semiconductor manufacturing apparatus for realizing the semiconductor device manufacturing method according to claim 11,
    A surface cleaning section (45) having an ultraviolet light irradiation function for performing the step (a);
    A material applicator (46) having the inkjet nozzle for performing step (b);
    A material temporary curing part (47) having a light irradiation function for performing the step (c),
    The surface cleaning unit, the material application unit and the material temporary curing unit are integrated,
    Semiconductor manufacturing equipment.
  17.  請求項16記載の半導体製造装置であって、
     前記ステップ(d) を実行するための検査機能を有する塗布パターン検査部(48)をさらに備え、
     前記表面洗浄部、前記材料塗布部及び前記材料仮硬化部に加え、前記塗布パターン検査部を一体化して有する半導体製造装置。
    The semiconductor manufacturing apparatus according to claim 16,
    A coating pattern inspection unit (48) having an inspection function for performing the step (d);
    The semiconductor manufacturing apparatus which has the said coating pattern test | inspection part integrated in addition to the said surface washing | cleaning part, the said material application part, and the said material temporary hardening part.
PCT/JP2015/062039 2015-04-21 2015-04-21 Semiconductor device manufacturing method and semiconductor manufacturing device WO2016170590A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/062039 WO2016170590A1 (en) 2015-04-21 2015-04-21 Semiconductor device manufacturing method and semiconductor manufacturing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/062039 WO2016170590A1 (en) 2015-04-21 2015-04-21 Semiconductor device manufacturing method and semiconductor manufacturing device

Publications (1)

Publication Number Publication Date
WO2016170590A1 true WO2016170590A1 (en) 2016-10-27

Family

ID=57142943

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/062039 WO2016170590A1 (en) 2015-04-21 2015-04-21 Semiconductor device manufacturing method and semiconductor manufacturing device

Country Status (1)

Country Link
WO (1) WO2016170590A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11339642A (en) * 1994-12-16 1999-12-10 Canon Inc Manufacturing device of electronic thin film substrate
JP2003318133A (en) * 2002-04-22 2003-11-07 Seiko Epson Corp Forming method for film pattern, film pattern forming device, conductive film wiring method, mount structure of semiconductor chip, semiconductor apparatus, light emission device, electronic optical apparatus, electronic apparatus, and non-contact card medium
JP2004335849A (en) * 2003-05-09 2004-11-25 Seiko Epson Corp Forming method and forming apparatus of film pattern, conductive film wire, electrooptic apparatus, electronic apparatus, and contactless card medium
JP2007088382A (en) * 2005-09-26 2007-04-05 Ricoh Co Ltd Film pattern and method for manufacturing the same
JP2009272350A (en) * 2008-04-30 2009-11-19 Ricoh Co Ltd Pattern array sheet and method of manufacturing same, and electronic device chip ,and method of manufacturing same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11339642A (en) * 1994-12-16 1999-12-10 Canon Inc Manufacturing device of electronic thin film substrate
JP2003318133A (en) * 2002-04-22 2003-11-07 Seiko Epson Corp Forming method for film pattern, film pattern forming device, conductive film wiring method, mount structure of semiconductor chip, semiconductor apparatus, light emission device, electronic optical apparatus, electronic apparatus, and non-contact card medium
JP2004335849A (en) * 2003-05-09 2004-11-25 Seiko Epson Corp Forming method and forming apparatus of film pattern, conductive film wire, electrooptic apparatus, electronic apparatus, and contactless card medium
JP2007088382A (en) * 2005-09-26 2007-04-05 Ricoh Co Ltd Film pattern and method for manufacturing the same
JP2009272350A (en) * 2008-04-30 2009-11-19 Ricoh Co Ltd Pattern array sheet and method of manufacturing same, and electronic device chip ,and method of manufacturing same

Similar Documents

Publication Publication Date Title
TWI708540B (en) Wiring structure and manufacturing method thereof, semiconductor device, multilayer wiring structure and manufacturing method thereof, semiconductor element mounting substrate, method of forming pattern structure, imprinting mold and manufacturing method thereof, imprinting mold set, and multilayer Manufacturing method of wiring board
US5840614A (en) Method of producing a semiconductor wafer using ultraviolet sensitive tape
KR101813260B1 (en) Patternable Adhesive Composition, Semi-conductive Package Using the Same, and Method of Preparing Semi-conductive Package
WO2011089963A1 (en) Process for producing laminate of light-transmitting rigid plates and device for laminating light-transmitting rigid plates
US8642390B2 (en) Tape residue-free bump area after wafer back grinding
JP2007266191A (en) Wafer processing method
TW201415583A (en) Wafer laminated body and method for bonding and debonding between device wafer and carrier wafer
US20100096080A1 (en) Bonding apparatus, method for preventing dissolving of adhesdive agent, and bonding method
US20120181686A1 (en) Method of preparing semiconductor package and semiconductor die for semiconductor package
TW201705321A (en) Method for manufacturing semiconductor device
US9324583B2 (en) Packaging method
JP4625445B2 (en) Mold manufacturing method.
US20130301228A1 (en) Packaging structure
WO2015119090A1 (en) Anisotropic conductive film and production method therefor
WO2016170590A1 (en) Semiconductor device manufacturing method and semiconductor manufacturing device
JP7037412B2 (en) Wafer processing method
DE102004033645B4 (en) Wafer level package fabrication tool and method of arranging chips
TW201947613A (en) Anisotropic conductive film and method for producing same
JP6409281B2 (en) Anisotropic conductive film and manufacturing method thereof
JP6260312B2 (en) Anisotropic conductive film and manufacturing method thereof
WO2022118479A1 (en) Method for manufacturing semiconductor device
KR20120037748A (en) Manufacturing method of a wiring board
WO2022118480A1 (en) Method for manufacturing semiconductor device
JP2015149132A (en) Anisotropic conductive film and method for manufacturing the same
JP6217422B2 (en) Anisotropic conductive film and manufacturing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15889830

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15889830

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP