JP6217422B2 - Anisotropic conductive film and manufacturing method thereof - Google Patents

Anisotropic conductive film and manufacturing method thereof Download PDF

Info

Publication number
JP6217422B2
JP6217422B2 JP2014019864A JP2014019864A JP6217422B2 JP 6217422 B2 JP6217422 B2 JP 6217422B2 JP 2014019864 A JP2014019864 A JP 2014019864A JP 2014019864 A JP2014019864 A JP 2014019864A JP 6217422 B2 JP6217422 B2 JP 6217422B2
Authority
JP
Japan
Prior art keywords
connection layer
layer
resin layer
connection
anisotropic conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014019864A
Other languages
Japanese (ja)
Other versions
JP2015149129A (en
Inventor
恭志 阿久津
恭志 阿久津
怜司 塚尾
怜司 塚尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dexerials Corp
Original Assignee
Dexerials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dexerials Corp filed Critical Dexerials Corp
Priority to JP2014019864A priority Critical patent/JP6217422B2/en
Priority to PCT/JP2015/052910 priority patent/WO2015119090A1/en
Priority to CN201580007321.7A priority patent/CN105940563B/en
Priority to KR1020167021045A priority patent/KR102438704B1/en
Priority to US15/115,827 priority patent/US9997486B2/en
Priority to TW104103698A priority patent/TWI664644B/en
Publication of JP2015149129A publication Critical patent/JP2015149129A/en
Application granted granted Critical
Publication of JP6217422B2 publication Critical patent/JP6217422B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations

Landscapes

  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
  • Laminated Bodies (AREA)
  • Wire Bonding (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)
  • Manufacturing Of Electric Cables (AREA)

Description

本発明は、異方性導電フィルム及びその製造方法に関する。   The present invention relates to an anisotropic conductive film and a method for producing the same.

ICチップなどの電子部品の実装に異方性導電フィルムは広く使用されており、近年では、高実装密度への適用の観点から、導通信頼性や絶縁性の向上、実装導電粒子捕捉率の向上、製造コストの低減等を目的に、異方性導電接続用の導電粒子を単層で絶縁性接着層に配列させた2層構造の異方性導電フィルムが提案されている(特許文献1)。   Anisotropic conductive films are widely used for mounting electronic components such as IC chips. Recently, from the viewpoint of application to high mounting density, improvement of conduction reliability and insulation, improvement of mounting conductive particle capture rate For the purpose of reducing manufacturing costs, etc., a two-layer anisotropic conductive film in which conductive particles for anisotropic conductive connection are arranged in a single layer on an insulating adhesive layer has been proposed (Patent Document 1). .

この2層構造の異方性導電フィルムは、転写層に単層且つ細密充填で導電粒子を配列させた後、転写層を2軸延伸処理することにより、導電粒子が所定間隔で均等に配列された転写層を形成した後、その転写層上の導電粒子を熱硬化性樹脂と重合開始剤とを含有する絶縁性樹脂層に転写し、更に転写した導電粒子上に、熱硬化性樹脂を含有するが重合開始剤を含有しない別の絶縁性樹脂層をラミネートすることにより製造されている(特許文献1)。   In this anisotropic conductive film having a two-layer structure, conductive particles are arranged uniformly at predetermined intervals by biaxially stretching the transfer layer after conductive particles are arranged in a single layer and closely packed in the transfer layer. After forming a transfer layer, the conductive particles on the transfer layer are transferred to an insulating resin layer containing a thermosetting resin and a polymerization initiator, and the transferred conductive particles contain a thermosetting resin. However, it is manufactured by laminating another insulating resin layer that does not contain a polymerization initiator (Patent Document 1).

特許第4789738号明細書Japanese Patent No. 4778938

しかしながら、特許文献1の2層構造の異方性導電フィルムは、重合開始剤を含有していない絶縁性樹脂層を使用しているために、単層で所定間隔で均等に導電粒子を配列させたにもかかわらず、異方性導電接続の際の加熱により、重合開始剤を含有していない絶縁性樹脂層に比較的大きな樹脂流れが生じ易く、その流れに沿って導電粒子も流れ易くなるため、実装導電粒子捕捉率の低下、ショートの発生、絶縁性の低下等の問題が生じていた。   However, since the anisotropic conductive film having a two-layer structure in Patent Document 1 uses an insulating resin layer that does not contain a polymerization initiator, the conductive particles are evenly arranged at predetermined intervals in a single layer. Nevertheless, a relatively large resin flow is likely to occur in the insulating resin layer that does not contain the polymerization initiator due to heating during anisotropic conductive connection, and the conductive particles also easily flow along the flow. For this reason, problems such as a decrease in the mounting conductive particle capture rate, the occurrence of short circuits, and a decrease in insulation have occurred.

本発明の目的は、以上の従来の技術の問題点を解決することであり、単層で配列された導電粒子を有する多層構造の異方性導電フィルムにおいて、良好な導通信頼性、良好な絶縁性、及び良好な実装導電粒子捕捉率を実現することである。   The object of the present invention is to solve the above-mentioned problems of the prior art, in a multilayer structure anisotropic conductive film having conductive particles arranged in a single layer, good conduction reliability, good insulation. And good mounting conductive particle capture rate.

本発明者らは、光重合性樹脂層に導電粒子を単層で配列させた後に、紫外線を傾斜させて照射することにより導電粒子を固定化もしくは仮固定化し、更に固定化若しくは仮固定化された導電粒子上に、熱又は光カチオン、アニオン若しくはラジカル重合性樹脂層を積層することにより得た異方性導電フィルムが、上述の本発明の目的を達成できる構成であることを見出し、本発明を完成させるに至った。   The present inventors fixed or temporarily fixed the conductive particles by arranging the conductive particles in a single layer on the photopolymerizable resin layer and then irradiating them with an inclined ultraviolet ray, and further fixing or temporarily fixing the conductive particles. The present inventors have found that an anisotropic conductive film obtained by laminating a heat or photocation, anion, or radical polymerizable resin layer on a conductive particle has a configuration capable of achieving the above-described object of the present invention. It came to complete.

即ち、本発明は、第1接続層とその片面に形成された第2接続層とを有する異方性導電フィルムであって、
第1接続層が、光重合樹脂層であり、
第2接続層が、熱又は光カチオン、アニオン若しくはラジカル重合性樹脂層であり、
第1接続層の該片面に、異方性導電接続用の導電粒子が単層で配列されており、
第1接続層の硬化率に関し、該片面の硬化率よりも低い硬化率を有する領域が、第1接続層の厚み方向に斜行して存在している
ことを特徴とする異方性導電フィルムを提供する。
That is, the present invention is an anisotropic conductive film having a first connection layer and a second connection layer formed on one side thereof,
The first connection layer is a photopolymerization resin layer;
The second connection layer is a heat or photocation, anion or radical polymerizable resin layer;
Conductive particles for anisotropic conductive connection are arranged in a single layer on the one surface of the first connection layer,
Regarding the curing rate of the first connection layer, an anisotropic conductive film characterized in that a region having a curing rate lower than the curing rate of one side is present obliquely in the thickness direction of the first connection layer I will provide a.

なお、第2接続層は、加熱により重合反応を開始する熱重合開始剤を使用した熱重合性樹脂層であることが好ましいが、光により重合反応を開始する光重合開始剤を使用した光重合性樹脂層であってもよい。熱重合開始剤と光重合開始剤とを併用した熱・光重合性樹脂層であってもよい。ここで、第2接続層は、製造上、熱重合開始剤を使用した熱重合性樹脂層に限定される場合がある。   The second connection layer is preferably a thermopolymerizable resin layer using a thermal polymerization initiator that starts a polymerization reaction by heating, but photopolymerization using a photopolymerization initiator that starts a polymerization reaction by light. May be a conductive resin layer. A thermal / photopolymerizable resin layer in which a thermal polymerization initiator and a photopolymerization initiator are used in combination may be used. Here, the second connection layer may be limited to a thermopolymerizable resin layer using a thermal polymerization initiator in production.

本発明の異方性導電フィルムは、第1接続層の他面に、応力緩和などの接合体の反り防止を目的に、第2の接続層と略同様の構成の第3接続層を有していてもよい。即ち、第1接続層の他面に、熱又は光カチオン、アニオン若しくはラジカル重合性樹脂層からなる第3接続層を有していてもよい。   The anisotropic conductive film of the present invention has a third connection layer having substantially the same configuration as the second connection layer on the other surface of the first connection layer for the purpose of preventing warpage of the joined body such as stress relaxation. It may be. That is, you may have the 3rd connection layer which consists of a heat | fever or a photocation, an anion, or a radically polymerizable resin layer in the other surface of a 1st connection layer.

なお、第3接続層は、加熱により重合反応を開始する熱重合開始剤を使用した熱重合性樹脂層であることが好ましいが、光により重合反応を開始する光重合開始剤を使用した光重合性樹脂層であってもよい。熱重合開始剤と光重合開始剤とを併用した熱・光重合性樹脂層であってもよい。ここで、第3接続層は、製造上、熱重合開始剤を使用した熱重合性樹脂層に限定される場合がある。   The third connection layer is preferably a thermopolymerizable resin layer using a thermal polymerization initiator that initiates a polymerization reaction by heating, but photopolymerization using a photopolymerization initiator that initiates a polymerization reaction by light. May be a conductive resin layer. A thermal / photopolymerizable resin layer in which a thermal polymerization initiator and a photopolymerization initiator are used in combination may be used. Here, the third connection layer may be limited to a thermopolymerizable resin layer using a thermal polymerization initiator in production.

また、本発明は、上述の異方性導電フィルムの製造方法であって、第1接続層を一段階の光重合反応で形成する以下の工程(A)〜(C)、又は第1接続層を二段階の光ラジカル重合反応で形成する後述する工程(AA)〜(DD)を有する製造方法を提供する。   Moreover, this invention is a manufacturing method of the above-mentioned anisotropic conductive film, Comprising: The following processes (A)-(C) which form a 1st connection layer by one-step photopolymerization reaction, or a 1st connection layer The manufacturing method which has the process (AA)-(DD) mentioned later which forms is formed by two-stage photoradical polymerization reaction is provided.

(第1接続層を一段階の光重合反応で形成する場合)
工程(A)
光重合性樹脂層に導電粒子を単層で配列させる工程;
工程(B)
導電粒子が配列した光重合性樹脂層に対して紫外線を傾斜させて照射することにより光ラジカル重合反応させ、表面に導電粒子が固定化された第1接続層を形成する工程;及び
工程(C)
第1接続層の導電粒子側表面に、熱又は光カチオン若しくはアニオン重合性樹脂層、又は熱又は光ラジカル重合性樹脂層からなる第2接続層を形成する工程。
(When the first connection layer is formed by a one-step photopolymerization reaction)
Process (A)
Arranging the conductive particles in a single layer on the photopolymerizable resin layer;
Process (B)
A step of forming a first connection layer in which conductive particles are fixed on the surface by subjecting the photopolymerizable resin layer in which the conductive particles are arranged to a photo-radical polymerization reaction by irradiating with ultraviolet rays; and a step (C )
The process of forming the 2nd connection layer which consists of a heat | fever or photocationic or anion polymerizable resin layer, or a heat | fever or radical photopolymerizable resin layer in the conductive particle side surface of a 1st connection layer.

(第1接続層を二段階の光重合反応で形成する場合)
工程(AA)
光重合性樹脂層に導電粒子を単層で配列させる工程;
工程(BB)
導電粒子が配列した光重合性樹脂層に対して紫外線を傾斜させて照射することにより光ラジカル重合反応させ、表面に導電粒子が仮固定化された仮第1接続層を形成する工程;
工程(CC)
仮第1接続層の導電粒子側表面に、熱カチオン、アニオン若しくはラジカル重合性樹脂層からなる第2接続層を形成する工程;及び
工程(DD)
第2接続層と反対側から仮第1接続層に紫外線を照射することにより光重合反応させ、仮第1接続層を本硬化させて第1接続層を形成する工程。
(When the first connection layer is formed by a two-step photopolymerization reaction)
Process (AA)
Arranging the conductive particles in a single layer on the photopolymerizable resin layer;
Process (BB)
A step of forming a temporary first connection layer in which conductive particles are temporarily fixed on the surface by causing photo-radical polymerization reaction by irradiating the photopolymerizable resin layer in which the conductive particles are arranged with tilting ultraviolet rays;
Process (CC)
Forming a second connection layer comprising a thermal cation, anion, or radical polymerizable resin layer on the surface of the temporary first connection layer on the conductive particle side; and step (DD)
A step of forming a first connection layer by subjecting the temporary first connection layer to a photopolymerization reaction by irradiating ultraviolet rays from the side opposite to the second connection layer, and finally curing the temporary first connection layer.

工程(CC)で第2接続層の形成の際に使用する開始剤として熱重合開始剤に限定しているのは、異方性導電フィルムとしての製品ライフ、接続および接続構造体の安定性に悪影響が生じないようにするためである。つまり、第1接続層に紫外線を二段階に分けて照射する場合には、その工程上の制約から第2接続層は熱重合硬化性のものに限定せざるを得ない場合がある。なお、二段階照射を連続的に行う場合は、一段階と略同様の工程で形成することができるので、同等の作用効果が期待できる。   The initiator used in forming the second connection layer in the step (CC) is limited to the thermal polymerization initiator in terms of product life as an anisotropic conductive film, connection and stability of the connection structure. This is to prevent adverse effects from occurring. That is, in the case where the first connection layer is irradiated with ultraviolet rays in two stages, the second connection layer may be limited to a thermosetting curable one due to restrictions on the process. In addition, when performing two-step irradiation continuously, since it can form by the process substantially the same as one step | paragraph, the equivalent effect can be anticipated.

また、本発明は、第1接続層の他面に、第2接続層と同様の構成の第3接続層を有している異方性導電フィルムの製造方法であって、以上の工程(A)〜(C)に加えて工程(C)の後で、以下の工程(Z)を有する製造方法、または、以上の工程(AA)〜(DD)に加えて工程(DD)の後で、以下の工程(Z)を有する製造方法を提供する。   Moreover, this invention is a manufacturing method of the anisotropic conductive film which has the 3rd connection layer of the structure similar to a 2nd connection layer in the other surface of a 1st connection layer, Comprising: The above process (A ) To (C), after the step (C), the production method having the following step (Z), or after the step (DD) in addition to the above steps (AA) to (DD), The manufacturing method which has the following processes (Z) is provided.

工程(Z)
第1接続層の導電粒子側の反対面に、熱又は光カチオン、アニオン若しくはラジカル重合性樹脂層からなる第3接続層を形成する工程。
Step (Z)
The process of forming the 3rd connection layer which consists of a heat | fever or a photocation, an anion, or a radically polymerizable resin layer in the surface opposite to the electroconductive particle side of a 1st connection layer.

更に、本発明は、第1接続層の他面に、第2接続層と略同様の構成の第3接続層を有している異方性導電フィルムの製造方法であって、以上の工程(A)〜(C)に加えて、工程(A)に先だって以下の工程(a)を有する製造方法、または以上の工程(AA)〜(DD)に加えて、工程(AA)に先だって以下の工程(a)を有する製造方法を提供する。   Furthermore, this invention is a manufacturing method of the anisotropic conductive film which has the 3rd connection layer of the structure substantially the same as the 2nd connection layer on the other surface of the 1st connection layer, Comprising: A manufacturing method having the following step (a) prior to step (A) in addition to A) to (C), or the following steps prior to step (AA) in addition to the above steps (AA) to (DD) The manufacturing method which has a process (a) is provided.

工程(a)
光重合性樹脂層の片面に、熱又は光カチオン、アニオン若しくはラジカル重合性樹脂層からなる第3接続層を形成する工程。
Step (a)
A step of forming a third connection layer comprising a heat or photocation, anion or radical polymerizable resin layer on one surface of the photopolymerizable resin layer.

なお、この工程(a)を有する製造方法の工程(A)又は工程(AA)においては、光重合性樹脂層の他面に導電粒子を単層で配列させればよい。   In the step (A) or the step (AA) of the production method having the step (a), the conductive particles may be arranged in a single layer on the other surface of the photopolymerizable resin layer.

このような工程で第3接続層を設ける場合には、上述した理由から重合開始剤は熱反応によるものに限定されることが好ましい。しかしながら、第1接続層を設けた後に製品ライフや接続に悪影響を及ぼさない方法により、光重合開始剤を含む第2および第3接続層を設ければ、光重合開始剤を含んだ本発明の主旨に沿う異方性導電フィルムを作成することは、特に制限はされない。   In the case where the third connection layer is provided in such a process, it is preferable that the polymerization initiator is limited to a thermal reaction for the reasons described above. However, if the second and third connection layers containing the photopolymerization initiator are provided by a method that does not adversely affect the product life and connection after the first connection layer is provided, the photopolymerization initiator containing the photopolymerization initiator can be obtained. There is no particular limitation on the production of the anisotropic conductive film along the gist.

なお、本発明の第2接続層又は第3接続層のどちらかがタック層として機能する態様も本発明に包含される。   An embodiment in which either the second connection layer or the third connection layer of the present invention functions as a tack layer is also included in the present invention.

加えて、本発明は、上述の異方性導電フィルムで第1電子部品を第2電子部品に異方性導電接続した接続構造体を提供する。   In addition, the present invention provides a connection structure in which the first electronic component is anisotropically conductively connected to the second electronic component using the anisotropic conductive film described above.

本発明の異方性導電フィルムは、光重合樹脂層からなる第1接続層と、その片面に形成された、熱又は光カチオン、アニオン若しくはラジカル重合性樹脂層からなる第2接続層とを有しており、更に、第1接続層の第2接続層側表面には、異方性導電接続用の導電粒子が単層で配列されている。このため、導電粒子を第1接続層にしっかりと固定化できる。しかも、第1接続層の硬化率に関し、光照射を斜行させて行うので、その第2接続層側表面の硬化率よりも低い硬化率を有する領域が、第1接続層の厚み方向に斜行して存在している。この結果、異方性導電接続の際に、低い硬化率の領域及び導電粒子の流動の方向を斜行方向に揃えることができるので、初期導通特性や導通信頼性を損なうことなくショートの発生を大きく抑制することができる。   The anisotropic conductive film of the present invention has a first connection layer made of a photopolymerization resin layer and a second connection layer made of a heat or photocation, anion or radical polymerizable resin layer formed on one surface thereof. Furthermore, conductive particles for anisotropic conductive connection are arranged in a single layer on the surface of the first connection layer on the second connection layer side. For this reason, the conductive particles can be firmly fixed to the first connection layer. In addition, since the first connection layer is cured with light irradiation obliquely, a region having a cure rate lower than the cure rate on the surface of the second connection layer is inclined in the thickness direction of the first connection layer. Exist in line. As a result, in the anisotropic conductive connection, the region of low curing rate and the direction of flow of the conductive particles can be aligned in the oblique direction, so that a short-circuit can be generated without impairing the initial conduction characteristics and conduction reliability. It can be greatly suppressed.

なお、異方性導電接続が熱を利用する場合は、通常の異方性導電フィルムの接続方法と同様の方法になる。光によるものの場合は、接続ツールによる押し込みを、反応が終了するまでに行えばよい。この場合においても、接続ツール等は樹脂流動や粒子の押し込みを促進するため加熱されている場合が多い。また熱と光を併用する場合も、上記と同様に行えばよい。   In addition, when an anisotropic conductive connection utilizes heat, it becomes the method similar to the connection method of a normal anisotropic conductive film. In the case of using light, the connection tool may be pushed in until the reaction is completed. Even in this case, the connection tool or the like is often heated to promote resin flow and particle indentation. Moreover, what is necessary is just to carry out similarly to the above also when using heat and light together.

図1は、本発明の異方性導電フィルムの断面図である。FIG. 1 is a cross-sectional view of the anisotropic conductive film of the present invention. 図2は、本発明の異方性導電フィルムの製造工程(A)の説明図である。Drawing 2 is an explanatory view of the manufacturing process (A) of the anisotropic conductive film of the present invention. 図3Aは、本発明の異方性導電フィルムの製造工程(B)の説明図である。FIG. 3A is an explanatory diagram of the production process (B) of the anisotropic conductive film of the present invention. 図3Bは、本発明の異方性導電フィルムの製造工程(B)の説明図である。FIG. 3B is an explanatory diagram of the production process (B) of the anisotropic conductive film of the present invention. 図4Aは、本発明の異方性導電フィルムの製造工程(C)の説明図である。FIG. 4A is an explanatory diagram of the production process (C) of the anisotropic conductive film of the present invention. 図4Bは、本発明の異方性導電フィルムの製造工程(C)の説明図である。FIG. 4B is an explanatory diagram of the production process (C) of the anisotropic conductive film of the present invention. 図5は、本発明の異方性導電フィルムの断面図である。FIG. 5 is a cross-sectional view of the anisotropic conductive film of the present invention. 図6は、本発明の異方性導電フィルムの製造工程(AA)の説明図である。FIG. 6 is an explanatory view of the production process (AA) of the anisotropic conductive film of the present invention. 図7Aは、本発明の異方性導電フィルムの製造工程(BB)の説明図である。FIG. 7A is an explanatory diagram of the production process (BB) of the anisotropic conductive film of the present invention. 図7Bは、本発明の異方性導電フィルムの製造工程(BB)の説明図である。FIG. 7B is explanatory drawing of the manufacturing process (BB) of the anisotropic conductive film of this invention. 図8Aは、本発明の異方性導電フィルムの製造工程(CC)の説明図である。FIG. 8A is explanatory drawing of the manufacturing process (CC) of the anisotropic conductive film of this invention. 図8Bは、本発明の異方性導電フィルムの製造工程(CC)の説明図である。FIG. 8B is explanatory drawing of the manufacturing process (CC) of the anisotropic conductive film of this invention. 図9Aは、本発明の異方性導電フィルムの製造工程(DD)の説明図である。FIG. 9A is explanatory drawing of the manufacturing process (DD) of the anisotropic conductive film of this invention. 図9Bは、本発明の異方性導電フィルムの製造工程(DD)の説明図である。FIG. 9B is an explanatory diagram of the production process (DD) of the anisotropic conductive film of the present invention.

<<異方性導電フィルム>>
以下、本発明の異方性導電フィルムの好ましい一例を詳細に説明する。
<< anisotropic conductive film >>
Hereinafter, a preferable example of the anisotropic conductive film of the present invention will be described in detail.

図1に示すように、本発明の異方性導電フィルム1は、光重合性樹脂層を光重合させた光重合樹脂層からなる第1接続層2の片面に、熱又は光カチオン、アニオン若しくはラジカル重合性樹脂層からなる第2接続層3が形成された構造を有している。そして、第1接続層2の第2接続層3側の表面2aには、異方性導電接続のために導電粒子4が単層で配列、好ましくは均等に配列されている。ここで均等とは、導電粒子が平面方向に配列されている状態を意味する。この規則性は一定の間隔で設けられてもよい。   As shown in FIG. 1, the anisotropic conductive film 1 of the present invention has heat or a photocation, an anion, or the like on one side of a first connection layer 2 composed of a photopolymerized resin layer obtained by photopolymerizing a photopolymerizable resin layer. It has a structure in which a second connection layer 3 made of a radical polymerizable resin layer is formed. On the surface 2a of the first connection layer 2 on the second connection layer 3 side, the conductive particles 4 are arranged in a single layer, preferably evenly arranged for anisotropic conductive connection. Here, “equal” means a state in which the conductive particles are arranged in the plane direction. This regularity may be provided at regular intervals.

<第1接続層2>
本発明の異方性導電フィルム1を構成する第1接続層2は、光カチオン、アニオン又はラジカル重合性樹脂層等の光重合性樹脂層を光重合させた光重合樹脂層であるから、導電粒子を固定化できる。また、重合しているので、異方性導電接続時に加熱されても樹脂が流れ難くなるので、ショートの発生を大きく抑制でき、従って導通信頼性と絶縁性とを向上させ、且つ実装粒子捕捉率も向上させることができる。特に好ましい第1接続層2は、アクリレート化合物と光ラジカル重合開始剤とを含む光ラジカル重合性樹脂層を光ラジカル重合させた光ラジカル重合樹脂層である。以下、第1接続層2が光ラジカル重合樹脂層である場合について説明する。
<First connection layer 2>
Since the first connection layer 2 constituting the anisotropic conductive film 1 of the present invention is a photopolymerized resin layer obtained by photopolymerizing a photopolymerizable resin layer such as a photocation, anion or radical polymerizable resin layer, Particles can be immobilized. In addition, since it is polymerized, it becomes difficult for the resin to flow even when heated at the time of anisotropic conductive connection, so the occurrence of a short circuit can be greatly suppressed, thus improving the conduction reliability and insulation, and the mounting particle capture rate Can also be improved. The particularly preferable first connection layer 2 is a photo radical polymerization resin layer obtained by photo radical polymerization of a photo radical polymerizable resin layer containing an acrylate compound and a photo radical polymerization initiator. Hereinafter, the case where the 1st connection layer 2 is a radical photopolymerization resin layer is demonstrated.

(アクリレート化合物)
アクリレート単位となるアクリレート化合物としては、従来公知の光ラジカル重合性アクリレートを使用することができる。例えば、単官能(メタ)アクリレート(ここで、(メタ)アクリレートにはアクリレートとメタクリレートとが包含される)、二官能以上の多官能(メタ)アクリレートを使用することができる。本発明においては、接着剤を熱硬化性とするために、アクリル系モノマーの少なくとも一部に多官能(メタ)アクリレートを使用することが好ましい。
(Acrylate compound)
As the acrylate compound serving as the acrylate unit, a conventionally known photoradical polymerizable acrylate can be used. For example, monofunctional (meth) acrylate (here, (meth) acrylate includes acrylate and methacrylate), and bifunctional or more polyfunctional (meth) acrylate can be used. In the present invention, it is preferable to use a polyfunctional (meth) acrylate for at least a part of the acrylic monomer in order to make the adhesive thermosetting.

第1接続層2におけるアクリレート化合物の含有量は、少なすぎると第2接続層3との粘度差を付けにくくなる傾向があり、多すぎると硬化収縮が大きく作業性が低下する傾向があるので、好ましくは2〜70質量%、より好ましくは10〜50質量%である。   If the content of the acrylate compound in the first connection layer 2 is too small, the viscosity difference from the second connection layer 3 tends to be difficult, and if it is too large, the curing shrinkage tends to be large and workability tends to decrease. Preferably it is 2-70 mass%, More preferably, it is 10-50 mass%.

(光ラジカル重合開始剤)
光ラジカル重合開始剤としては、公知の光ラジカル重合開始剤の中から適宜選択して使用することができる。例えば、アセトフェノン系光重合開始剤、ベンジルケタール系光重合開始剤、リン系光重合開始剤等が挙げられる。
(Photo radical polymerization initiator)
As a radical photopolymerization initiator, it can be used by appropriately selecting from known radical photopolymerization initiators. Examples include acetophenone photopolymerization initiators, benzyl ketal photopolymerization initiators, and phosphorus photopolymerization initiators.

光ラジカル重合開始剤の使用量は、アクリレート化合物100質量部に対し、少なすぎると光ラジカル重合が十分に進行せず、多すぎると剛性低下の原因となるので、好ましくは0.1〜25質量部、より好ましくは0.5〜15質量部である。   If the amount of the radical photopolymerization initiator used is too small relative to 100 parts by mass of the acrylate compound, the radical photopolymerization will not proceed sufficiently, and if too large, it will cause a decrease in rigidity, so preferably 0.1 to 25 masses. Part, more preferably 0.5 to 15 parts by mass.

(導電粒子)
導電粒子としては、従来公知の異方性導電フィルムに用いられているものの中から適宜選択して使用することができる。例えばニッケル、コバルト、銀、銅、金、パラジウムなどの金属粒子、金属被覆樹脂粒子などが挙げられる。2種以上を併用することもできる。
(Conductive particles)
The conductive particles can be appropriately selected from those used in conventionally known anisotropic conductive films. For example, metal particles such as nickel, cobalt, silver, copper, gold, and palladium, metal-coated resin particles, and the like can be given. Two or more kinds can be used in combination.

導電粒子の平均粒径としては、小さすぎると配線の高さのばらつきを吸収できず抵抗が高くなる傾向があり、大きすぎてもショートの原因となる傾向があるので、好ましくは1〜10μm、より好ましくは2〜6μmである。   The average particle size of the conductive particles is too small to absorb the variation in the height of the wiring and tends to increase the resistance, and if it is too large, it tends to cause a short circuit, preferably 1 to 10 μm, More preferably, it is 2-6 micrometers.

このような導電粒子の第1接続層2中の粒子量は、少なすぎると実装導電粒子捕捉数が低下して異方性導電接続が難しくなり、多すぎるとショートすることが懸念されるので、好ましくは1平方mm当たり50〜50000個、より好ましくは200〜30000個である。   If the amount of such conductive particles in the first connection layer 2 is too small, the number of trapped conductive particles is reduced and anisotropic conductive connection becomes difficult. The number is preferably 50 to 50000 per square mm, more preferably 200 to 30000.

第1接続層2には、必要に応じて、フェノキシ樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、飽和ポリエステル樹脂、ウレタン樹脂、ブタジエン樹脂、ポリイミド樹脂、ポリアミド樹脂、ポリオレフィン樹脂などの膜形成樹脂を併用することができる。第2接続層および第3接続層にも、同様に併用してもよい。   For the first connection layer 2, a film forming resin such as a phenoxy resin, an epoxy resin, an unsaturated polyester resin, a saturated polyester resin, a urethane resin, a butadiene resin, a polyimide resin, a polyamide resin, or a polyolefin resin is used in combination as necessary. be able to. You may use together similarly to a 2nd connection layer and a 3rd connection layer.

第1接続層2の層厚は、薄すぎると実装導電粒子捕捉率が低下する傾向があり、厚すぎると導通抵抗が高くなる傾向があるので、好ましくは1.0〜6.0μm、より好ましくは2.0〜5.0μmである。   If the layer thickness of the first connection layer 2 is too thin, the mounting conductive particle trapping rate tends to decrease, and if it is too thick, the conduction resistance tends to increase, so that it is preferably 1.0 to 6.0 μm, more preferably. Is 2.0 to 5.0 μm.

第1接続層2には、更に、エポキシ化合物と熱又は光カチオン若しくはアニオン重合開始剤とを含有させることもできる。この場合、後述するように、第2接続層3もエポキシ化合物と熱又は光カチオン若しくはアニオン重合開始剤とを含有する熱又は光カチオン若しくはアニオン重合性樹脂層とすることが好ましい。これにより、層間剥離強度を向上させることができる。エポキシ化合物と熱又は光カチオン若しくはアニオン重合開始剤については、第2接続層3で説明する。   The first connection layer 2 may further contain an epoxy compound and a heat, photocation, or anionic polymerization initiator. In this case, as will be described later, the second connection layer 3 is also preferably a heat or photocation or anion polymerizable resin layer containing an epoxy compound and heat or a photocation or anion polymerization initiator. Thereby, delamination strength can be improved. The epoxy compound and the heat or photocation or anion polymerization initiator will be described in the second connection layer 3.

第1接続層2においては、図1に示すように、導電粒子4が、第2接続層3に食い込んでいる(換言すれば、導電粒子4が第1接続層2の表面に露出している)ことが好ましい。導電粒子がすべて第1接続層2に埋没していると、抵抗導通が高くなることが懸念されるからである。食い込みの程度は、小さすぎると実装導電粒子捕捉率が低下する傾向があり、大きすぎると導通抵抗が高くなる傾向があるので、好ましくは導電粒子の平均粒子径の10〜90%、より好ましくは20〜80%である。   In the first connection layer 2, as shown in FIG. 1, the conductive particles 4 bite into the second connection layer 3 (in other words, the conductive particles 4 are exposed on the surface of the first connection layer 2. Is preferred. This is because when all the conductive particles are buried in the first connection layer 2, there is a concern that the resistance conduction is increased. If the degree of biting is too small, the mounting conductive particle trapping rate tends to decrease, and if it is too large, the conduction resistance tends to increase. Therefore, it is preferably 10 to 90% of the average particle diameter of the conductive particles, more preferably. 20 to 80%.

また、第1接続層2において、光照射を斜行させて行うので、第2接続層側の第1接続層の表面の硬化率よりも低い硬化率を有する領域が、第1接続層の厚み方向に斜行して存在している。これにより、異方性導電接続の熱圧着の際に、第1接続層部分2Xが排除され易くなり、導通信頼性が向上する。ここで、硬化率はビニル基の減少比率と定義される数値であり、第1接続層部分2Xの硬化率は好ましくは40〜80%であり、第1接続層部分2Yの硬化率は好ましくは70〜100%である。   In addition, since light irradiation is performed obliquely in the first connection layer 2, the region having a curing rate lower than the curing rate of the surface of the first connection layer on the second connection layer side is the thickness of the first connection layer. It exists obliquely in the direction. As a result, the first connection layer portion 2X is easily removed during the thermocompression bonding of the anisotropic conductive connection, and the conduction reliability is improved. Here, the curing rate is a numerical value defined as a vinyl group reduction ratio, the curing rate of the first connection layer portion 2X is preferably 40 to 80%, and the curing rate of the first connection layer portion 2Y is preferably 70 to 100%.

なお、第1接続層2の形成の際の光ラジカル重合は、一段階(即ち、一回の光照射)で行ってもよいが、二段階(即ち、二回の光照射)で行ってもよい。この場合、二段階目の光照射は、第1接続層2の片面に第2接続層3が形成された後に、酸素含有雰囲気(大気中)下で第1接続層2の他面側から行うことが好ましい。これにより、ラジカル重合反応が酸素阻害され、未硬化成分の表面濃度が高まり、タック性を向上させることができるという効果を期待できる。また、硬化を二段階で行うことで重合反応も複雑化するため、樹脂や粒子の流動性の精緻な制御が可能となることも期待できる。   The radical photopolymerization at the time of forming the first connection layer 2 may be performed in one step (that is, one time of light irradiation), but may be performed in two steps (that is, two times of light irradiation). Good. In this case, the second-stage light irradiation is performed from the other surface side of the first connection layer 2 in an oxygen-containing atmosphere (in the atmosphere) after the second connection layer 3 is formed on one surface of the first connection layer 2. It is preferable. Thereby, it can be expected that the radical polymerization reaction is oxygen-inhibited, the surface concentration of the uncured component is increased, and tackiness can be improved. In addition, since the polymerization reaction is complicated by performing the curing in two stages, it can be expected that the fluidity of the resin and particles can be precisely controlled.

このような二段階の光ラジカル重合における第1接続層部分2Xの第一段階における硬化率は好ましくは10〜50%であり、第二段階における硬化率は好ましくは40〜80%であり、第1接続層部分2Yの第一段階における硬化率は好ましくは30〜90%であり、第二段階における硬化率は好ましくは70〜100%である。   The curing rate in the first stage of the first connection layer portion 2X in the two-stage photoradical polymerization is preferably 10 to 50%, and the curing ratio in the second stage is preferably 40 to 80%. The curing rate in the first stage of the one connection layer portion 2Y is preferably 30 to 90%, and the curing rate in the second stage is preferably 70 to 100%.

また、第1接続層2の形成の際の光ラジカル重合反応が二段階で行われる場合、ラジカル重合開始剤として1種類だけ使用することもできるが、ラジカル反応を開始する波長帯域が異なる2種類の光ラジカル重合開始剤を使用することがタック性向上のために好ましい。例えば、LED光源からの波長365nmの光でラジカル反応を開始するイルガキュア(IRGACURE)369(BASFジャパン(株))と、高圧水銀ランプ光源からの光でラジカル反応を開始するイルガキュア(IRGACURE)2959(BASFジャパン(株))とを併用することが好ましい。このように2種類の異なる硬化剤を使用することで樹脂の結合が複雑化するため、接続時の樹脂の熱流動の挙動をより精緻に制御することが可能になる。これは異方性導電接続の押し込み時に、粒子は厚み方向にかかる力は受け易くなるが、面方向への流動は抑制されるため本発明の効果がより発現しやすくなるからである。   Further, when the photoradical polymerization reaction at the time of forming the first connection layer 2 is performed in two stages, only one type can be used as the radical polymerization initiator, but two types with different wavelength bands for starting the radical reaction can be used. The radical photopolymerization initiator is preferably used for improving tackiness. For example, IRGACURE 369 (BASF Japan Co., Ltd.) that initiates a radical reaction with light having a wavelength of 365 nm from an LED light source, and IRGACURE 2959 (BASF) that initiates a radical reaction with light from a high-pressure mercury lamp light source. Japan) is preferably used in combination. As described above, since the bonding of the resin is complicated by using two different curing agents, it becomes possible to more precisely control the behavior of the thermal flow of the resin at the time of connection. This is because, when the anisotropic conductive connection is pushed in, the particles are easily subjected to a force in the thickness direction, but the flow in the surface direction is suppressed, so that the effect of the present invention is more easily manifested.

また、第1接続層2のレオメーターで測定した際の最低溶融粘度は、第2接続層3の最低溶融粘度よりも高いこと、具体的には[第1接続層2の最低溶融粘度(mPa・s)]/[第2接続層3の最低溶融粘度(mPa・s)]の数値が、好ましくは1〜1000、より好ましくは4〜400である。なお、それぞれの好ましい最低溶融粘度は、前者については100〜100000mPa・s、より好ましくは500〜50000mPa・sである。後者については好ましくは0.1〜10000mPa・s、より好ましくは0.5〜1000mPa・sである。   Further, the minimum melt viscosity when measured with the rheometer of the first connection layer 2 is higher than the minimum melt viscosity of the second connection layer 3, specifically, [the minimum melt viscosity of the first connection layer 2 (mPa The numerical value of s)] / [minimum melt viscosity (mPa · s) of the second connection layer 3] is preferably 1 to 1000, more preferably 4 to 400. In addition, each preferable minimum melt viscosity is 100-100000 mPa * s about the former, More preferably, it is 500-50000 mPa * s. About the latter, Preferably it is 0.1-10000 mPa * s, More preferably, it is 0.5-1000 mPa * s.

第1接続層2の形成は、光ラジカル重合性アクリレートと光ラジカル重合開始剤とを含有する光ラジカル重合性樹脂層に、フィルム転写法、金型転写法、インクジェット法、静電付着法等の手法により導電粒子を付着させ、紫外線を導電粒子側、その反対側、もしくは両側から照射することにより行うことができる。特に、紫外線を導電粒子側からのみ照射することが、第1接続層部分2Xの硬化率を相対的に低く抑制することができる点から好ましい。   The first connection layer 2 is formed on a photo radical polymerizable resin layer containing a photo radical polymerizable acrylate and a photo radical polymerization initiator by a film transfer method, a mold transfer method, an ink jet method, an electrostatic adhesion method, or the like. Conductive particles can be attached by a technique, and ultraviolet rays can be irradiated from the conductive particle side, the opposite side, or both sides. In particular, it is preferable to irradiate ultraviolet rays only from the conductive particle side from the viewpoint that the curing rate of the first connection layer portion 2X can be suppressed relatively low.

<第2接続層3>
第2接続層3は、熱又は光カチオン、アニオン若しくはラジカル重合性樹脂層、好ましくはエポキシ化合物と熱又は光カチオン若しくはアニオン重合開始剤とを含有する熱又は光カチオン若しくはアニオン重合性樹脂層、又はアクリレート化合物と熱又は光ラジカル重合開始剤とを含有する熱又は光ラジカル重合性樹脂層からなる。ここで、第2接続層3を熱重合性樹脂層から形成することは、第1接続層2を形成する際の紫外線照射により第2接続層3の重合反応が生じないため、生産の簡便性および品質安定性の上では望ましい。
<Second connection layer 3>
The second connection layer 3 is a heat or photocation, anion or radical polymerizable resin layer, preferably a heat or photocation or anion polymerizable resin layer containing an epoxy compound and a heat or photocation or anion polymerization initiator, or It consists of a heat or photo radical polymerizable resin layer containing an acrylate compound and a heat or photo radical polymerization initiator. Here, the formation of the second connection layer 3 from the thermopolymerizable resin layer means that the polymerization reaction of the second connection layer 3 does not occur due to the ultraviolet irradiation when the first connection layer 2 is formed. And desirable in terms of quality stability.

第2接続層3が、熱又は光カチオン若しくはアニオン重合性樹脂層である場合、更に、アクリレート化合物と熱又は光ラジカル重合開始剤とを含有することができる。これにより第1接続層2と層間剥離強度を向上させることができる。   When the second connection layer 3 is a heat, photocation or anion polymerizable resin layer, it can further contain an acrylate compound and a heat or photo radical polymerization initiator. Thereby, the 1st connection layer 2 and delamination strength can be improved.

(エポキシ化合物)
第2接続層3がエポキシ化合物と熱又は光カチオン若しくはアニオン重合開始剤とを含有する熱又は光カチオン若しくはアニオン重合性樹脂層である場合、エポキシ化合物としては、分子内に2つ以上のエポキシ基を有する化合物もしくは樹脂が好ましく挙げられる。これらは液状であっても、固体状であってもよい。
(Epoxy compound)
When the second connection layer 3 is a heat or photocation or anion polymerizable resin layer containing an epoxy compound and a heat or photocation or anion polymerization initiator, the epoxy compound has two or more epoxy groups in the molecule. Preferred are compounds or resins having These may be liquid or solid.

(熱カチオン重合開始剤)
熱カチオン重合開始剤としては、エポキシ化合物の熱カチオン重合開始剤として公知のものを採用することができ、例えば、熱により、カチオン重合性化合物をカチオン重合させ得る酸を発生するものであり、公知のヨードニウム塩、スルホニウム塩、ホスホニウム塩、フェロセン類等を用いることができ、温度に対して良好な潜在性を示す芳香族スルホニウム塩を好ましく使用することができる。
(Thermal cationic polymerization initiator)
As the thermal cationic polymerization initiator, those known as the thermal cationic polymerization initiator of the epoxy compound can be adopted, for example, those which generate an acid capable of cationically polymerizing the cationic polymerizable compound by heat. Iodonium salts, sulfonium salts, phosphonium salts, ferrocenes, and the like can be used, and aromatic sulfonium salts exhibiting good potential with respect to temperature can be preferably used.

熱カチオン重合開始剤の配合量は、少なすぎても硬化不良となる傾向があり、多すぎても製品ライフが低下する傾向があるので、エポキシ化合物100質量部に対し、好ましくは2〜60質量部、より好ましくは5〜40質量部である。   If the amount of the thermal cationic polymerization initiator is too small, curing tends to be poor, and if it is too much, product life tends to decrease. Therefore, it is preferably 2 to 60 masses per 100 mass parts of the epoxy compound. Part, more preferably 5 to 40 parts by weight.

(熱アニオン重合開始剤)
熱アニオン重合開始剤としては、エポキシ化合物の熱アニオン重合開始剤として公知のものを採用することができ、例えば、熱により、アニオン重合性化合物をアニオン重合させ得る塩基を発生するものであり、公知の脂肪族アミン系化合物、芳香族アミン系化合物、二級又は三級アミン系化合物、イミダゾール系化合物、ポリメルカプタン系化合物、三フッ化ホウ素−アミン錯体、ジシアンジアミド、有機酸ヒドラジッド等を用いることができ、温度に対して良好な潜在性を示すカプセル化イミダゾール系化合物を好ましく使用することができる。
(Thermal anionic polymerization initiator)
As the thermal anionic polymerization initiator, those known as the thermal anionic polymerization initiator of the epoxy compound can be employed. For example, a base capable of anionic polymerization of the anionic polymerizable compound is generated by heat, and is publicly known. Aliphatic amine compounds, aromatic amine compounds, secondary or tertiary amine compounds, imidazole compounds, polymercaptan compounds, boron trifluoride-amine complexes, dicyandiamide, organic acid hydrazides, etc. can be used. An encapsulated imidazole compound showing good potential with respect to temperature can be preferably used.

熱アニオン重合開始剤の配合量は、少なすぎても硬化不良となる傾向があり、多すぎても製品ライフが低下する傾向があるので、エポキシ化合物100質量部に対し、好ましくは2〜60質量部、より好ましくは5〜40質量部である。   If the amount of the thermal anionic polymerization initiator is too small, curing tends to be poor, and if too much, the product life tends to decrease. Part, more preferably 5 to 40 parts by weight.

(光カチオン重合開始剤及び光アニオン重合開始剤)
エポキシ化合物用の光カチオン重合開始剤又は光アニオン重合開始剤としては、公知のものを適宜使用することができる。
(Photocationic polymerization initiator and photoanionic polymerization initiator)
A well-known thing can be used suitably as a photocationic polymerization initiator or photoanion polymerization initiator for epoxy compounds.

(アクリレート化合物)
第2接続層3がアクリレート化合物と熱又は光ラジカル重合開始剤とを含有する熱又は光ラジカル重合性樹脂層である場合、アクリレート化合物としては、第1接続層2に関して説明したものの中から適宜選択して使用することができる。
(Acrylate compound)
When the second connection layer 3 is a heat or photo radical polymerizable resin layer containing an acrylate compound and a heat or photo radical polymerization initiator, the acrylate compound is appropriately selected from those described for the first connection layer 2 Can be used.

(熱ラジカル重合開始剤)
また、熱ラジカル重合開始剤としては、例えば、有機過酸化物やアゾ系化合物等が挙げられるが、気泡の原因となる窒素を発生しない有機過酸化物を好ましく使用することができる。
(Thermal radical polymerization initiator)
Further, examples of the thermal radical polymerization initiator include organic peroxides and azo compounds, but organic peroxides that do not generate nitrogen that causes bubbles can be preferably used.

熱ラジカル重合開始剤の使用量は、少なすぎると硬化不良となり、多すぎると製品ライフの低下となるので、アクリレート化合物100質量部に対し、好ましくは2〜60質量部、より好ましくは5〜40質量部である。   If the amount of the thermal radical polymerization initiator used is too small, curing will be poor, and if it is too large, the product life will be reduced. Therefore, the amount is preferably 2 to 60 parts by weight, more preferably 5 to 40 parts per 100 parts by weight of the acrylate compound. Part by mass.

(光ラジカル重合開始剤)
アクリレート化合物用の光ラジカル重合開始剤としては、公知の光ラジカル重合開始剤を使用することができる。
(Photo radical polymerization initiator)
As a radical photopolymerization initiator for the acrylate compound, a known radical photopolymerization initiator can be used.

光ラジカル重合開始剤の使用量は、少なすぎると硬化不良となり、多すぎると製品ライフの低下となるので、アクリレート化合物100質量部に対し、好ましくは2〜60質量部、より好ましくは5〜40質量部である。   If the amount of the radical photopolymerization initiator used is too small, curing will be poor, and if it is too large, the product life will be reduced. Therefore, the amount is preferably 2 to 60 parts by weight, more preferably 5 to 40 parts per 100 parts by weight of the acrylate compound. Part by mass.

(第3接続層5)
以上、図1の2層構造の異方性導電フィルムについて説明したが、図5に示すように、第1接続層2の他面に第3接続層5が形成されていてもよい。これにより、層全体の流動性をより精緻に制御することが可能となるという効果が得られる。ここで、第3接続層5としては、前述した第2接続層3と同じ構成としてもよい。即ち、第3接続層5は、第2接続層3と同様に、熱又は光カチオン、アニオン若しくはラジカル重合性樹脂層からなるものである。このような第3接続層5は、第1接続層の片面に第2接続層を形成した後に、第1接続層の他面に形成してもよく、第2接続層の形成前に、第1接続層もしくはその前駆体である光重合性樹脂層の他面(第2接続層が形成されない面)に予め第3接続層を形成しておいてもよい。
(Third connection layer 5)
The anisotropic conductive film having the two-layer structure in FIG. 1 has been described above, but the third connection layer 5 may be formed on the other surface of the first connection layer 2 as shown in FIG. Thereby, the effect that it becomes possible to control the fluidity | liquidity of the whole layer more precisely is acquired. Here, the third connection layer 5 may have the same configuration as the second connection layer 3 described above. That is, the third connection layer 5 is made of a heat or photocation, anion, or radical polymerizable resin layer, like the second connection layer 3. The third connection layer 5 may be formed on the other surface of the first connection layer after the second connection layer is formed on one surface of the first connection layer. Before the second connection layer is formed, the third connection layer 5 may be formed. The third connection layer may be formed in advance on the other surface (the surface on which the second connection layer is not formed) of one connection layer or a photopolymerizable resin layer that is a precursor thereof.

<<異方性導電フィルムの製造方法>>
本発明の異方性導電フィルムの製造方法には、一段階の光重合反応を行う製造方法と、二段階の光重合反応を行う製造方法が挙げられる。
<< Method for Manufacturing Anisotropic Conductive Film >>
Examples of the method for producing an anisotropic conductive film of the present invention include a production method for carrying out a one-stage photopolymerization reaction and a production method for carrying out a two-stage photopolymerization reaction.

<一段階の光重合反応を行う製造方法>
図1(図4B)の異方性導電フィルムを一段階で光重合させて製造する一例を説明する。この製造例は、以下の工程(A)〜(C)を有する。
<Production method for carrying out one-step photopolymerization reaction>
An example in which the anisotropic conductive film of FIG. 1 (FIG. 4B) is produced by photopolymerization in one step will be described. This production example has the following steps (A) to (C).

(工程(A))
図2に示すように、必要に応じて剥離フィルム30上に形成した、光重合性樹脂層31に、単層で導電粒子4を配列させる。導電粒子4の配列の手法としては、特に制限はなく、特許第4789738号の実施例1の無延伸ポリプロピレンフィルムに2軸延伸操作を利用する方法や、特開2010−33793号公報の金型を使用する方法等を採用することができる。なお、配列の程度としては、接続対象のサイズ、導通信頼性、絶縁性、実装導電粒子捕捉率等を考慮し、2次元的に互いに1〜100μm程度離隔して配列されることが好ましい。
(Process (A))
As shown in FIG. 2, the conductive particles 4 are arranged in a single layer on the photopolymerizable resin layer 31 formed on the release film 30 as necessary. The method for arranging the conductive particles 4 is not particularly limited, and a method using a biaxial stretching operation for the unstretched polypropylene film of Example 1 of Japanese Patent No. 4778938, or a mold disclosed in JP 2010-33793 A is used. The method used can be adopted. The degree of arrangement is preferably two-dimensionally separated from each other by about 1 to 100 μm in consideration of the size of the connection target, conduction reliability, insulation, mounting conductive particle capture rate, and the like.

(工程(B))
次に、図3Aに示すように、導電粒子4が配列した光重合性樹脂層31に対して、LED光源などを用いて、導電粒子側から紫外線(UV)を傾斜させて照射することにより光重合反応させ、表面に導電粒子4が固定化された第1接続層2を形成する。これにより、図3Bに示すように、導電粒子4と第1接続層2の最外表面との間に位置する斜行した第1接続層部分2Xの硬化率を、互いに隣接する導電粒子4間に位置する領域の第1接続層部分2Yの硬化率よりも低くすることができる。照射の際、必要に応じて紫外線をパルス状に照射してもよく、シャッターを設けて照射してもよい。このようにすることで、粒子の裏側の硬化性は確実に低くなり接合時の押し込みを容易にし、且つ導電粒子の流動方向を斜行方向に揃えることができ、複数の導電粒子が過度に連結してしまうことを防止することができ、ショートの発生を抑制することができる。
(Process (B))
Next, as shown in FIG. 3A, light is irradiated by inclining ultraviolet rays (UV) from the conductive particle side to the photopolymerizable resin layer 31 in which the conductive particles 4 are arranged using an LED light source or the like. The first connection layer 2 having the conductive particles 4 fixed on the surface is formed by a polymerization reaction. As a result, as shown in FIG. 3B, the curing rate of the skewed first connection layer portion 2X located between the conductive particles 4 and the outermost surface of the first connection layer 2 is determined between the adjacent conductive particles 4. It can be made lower than the curing rate of the first connection layer portion 2Y in the region located at. At the time of irradiation, ultraviolet rays may be irradiated in a pulse shape as necessary, or a shutter may be provided for irradiation. By doing so, the curability of the back side of the particles is surely lowered, the pushing at the time of joining is facilitated, the flow direction of the conductive particles can be aligned in the oblique direction, and a plurality of conductive particles are excessively connected. Can be prevented, and occurrence of a short circuit can be suppressed.

紫外線を傾斜させて照射するとは、光重合性樹脂層31に対し傾斜角θをもって紫外線を照射することである。この傾斜角θは0°<θ<90°好ましくは30°≦θ≦60°である。この場合、異方性導電フィルムの長手方向に直交する方向に傾斜させることが好ましい。このようにすると、導電粒子の流動の方向とバンプの長手方向(即ち、異方性導電フィルムの幅方向)とを一致させることができる。この場合、異方性導電フィルムの長手方向の光重合性樹脂層の左半分をマスクし、右半分に対し、異方性導電フィルムの右辺に向かって流動が生じるように紫外線を傾斜させて照射し、次に、右半分をマスクし、左半分に対し、異方性導電フィルムの左辺に向かって流動が生じるように紫外線を傾斜させて照射することが好ましい。   To irradiate with ultraviolet rays is to irradiate the photopolymerizable resin layer 31 with ultraviolet rays at an inclination angle θ. The inclination angle θ is 0 ° <θ <90 °, preferably 30 ° ≦ θ ≦ 60 °. In this case, it is preferable to incline in the direction orthogonal to the longitudinal direction of the anisotropic conductive film. If it does in this way, the direction of flow of conductive particles and the longitudinal direction of a bump (namely, width direction of an anisotropic conductive film) can be made to correspond. In this case, the left half of the photopolymerizable resin layer in the longitudinal direction of the anisotropic conductive film is masked, and the right half is irradiated by inclining ultraviolet rays so as to flow toward the right side of the anisotropic conductive film. Then, it is preferable that the right half is masked, and the left half is irradiated with an ultraviolet ray inclined so that a flow occurs toward the left side of the anisotropic conductive film.

(工程(C))
次に、図4Aに示すように、第1接続層2の導電粒子4側表面に、熱又は光カチオン、アニオン若しくはラジカル重合性樹脂層からなる第2接続層3を形成する。具体的な一例として、剥離フィルム40に常法により形成された第2接続層3を、第1接続層2の導電粒子4側表面に載せ、過大な熱重合が生じない程度に熱圧着する。そして剥離フィルム30と40とを取り除くことにより図4Bの異方性導電フィルムを得ることができる。
(Process (C))
Next, as shown in FIG. 4A, the second connection layer 3 made of heat, photocation, anion, or radical polymerizable resin layer is formed on the surface of the first connection layer 2 on the conductive particle 4 side. As a specific example, the second connection layer 3 formed on the release film 40 by a conventional method is placed on the surface of the first connection layer 2 on the conductive particle 4 side, and thermocompression-bonded to such an extent that excessive thermal polymerization does not occur. Then, by removing the release films 30 and 40, the anisotropic conductive film of FIG. 4B can be obtained.

なお、図5の異方性導電フィルム100は、工程(C)の後で、以下の工程(Z)を実施することにより得ることができる。   In addition, the anisotropic conductive film 100 of FIG. 5 can be obtained by implementing the following processes (Z) after a process (C).

(工程(Z))
第1接続層の導電粒子側の反対面に、好ましくは第2接続層と同様に、熱又は光カチオン、アニオン若しくはラジカル重合性樹脂層からなる第3接続層を形成する。これにより図5の異方性導電フィルムを得ることができる。
(Process (Z))
A third connection layer made of a heat, photocation, anion, or radical polymerizable resin layer is formed on the opposite surface of the first connection layer on the conductive particle side, preferably in the same manner as the second connection layer. Thereby, the anisotropic conductive film of FIG. 5 can be obtained.

また、図5の異方性導電フィルム100は、工程(Z)を行うことなく、工程(A)に先だって、以下の工程(a)を実施することでも得ることができる。   Moreover, the anisotropic conductive film 100 of FIG. 5 can also be obtained by performing the following process (a) prior to the process (A) without performing the process (Z).

(工程(a))
この工程は、光重合性樹脂層の片面に、熱又は光カチオン、アニオン若しくはラジカル重合性樹脂層からなる第3接続層を形成する工程である。この工程(a)に引き続き、工程(A)、(B)及び(C)を実施することにより図5の異方性導電フィルム100を得ることができる。但し、工程(A)において、光ラジカル重合性樹脂層の他面に導電粒子を単層で配列させる。
(Process (a))
This step is a step of forming a third connection layer made of heat, photocation, anion, or radical polymerizable resin layer on one side of the photopolymerizable resin layer. Subsequent to the step (a), the anisotropic conductive film 100 of FIG. 5 can be obtained by carrying out the steps (A), (B) and (C). However, in the step (A), the conductive particles are arranged in a single layer on the other surface of the radical photopolymerizable resin layer.

(二段階の光ラジカル重合反応を行う製造方法)
次に、図1(図4B)の異方性導電フィルムを二段階で光重合させて製造する一例を説明する。この製造例は、以下の工程(AA)〜(DD)を有する。
(Manufacturing method for carrying out two-stage photoradical polymerization reaction)
Next, an example of producing the anisotropic conductive film of FIG. 1 (FIG. 4B) by photopolymerization in two steps will be described. This production example includes the following steps (AA) to (DD).

(工程(AA))
図6に示すように、必要に応じて剥離フィルム30上に形成した、光重合性樹脂層31に、単層で導電粒子4を配列させる。導電粒子4の配列の手法としては、特に制限はなく、特許第4789738号の実施例1の無延伸ポリプロピレンフィルムに2軸延伸操作を利用する方法や、特開2010−33793号公報の金型を使用する方法等を採用することができる。なお、配列の程度としては、接続対象のサイズ、導通信頼性、絶縁性、実装導電粒子捕捉率等を考慮し、2次元的に互いに1〜100μm程度離隔して配列されることが好ましい。
(Process (AA))
As shown in FIG. 6, the conductive particles 4 are arranged in a single layer on the photopolymerizable resin layer 31 formed on the release film 30 as necessary. The method for arranging the conductive particles 4 is not particularly limited, and a method using a biaxial stretching operation for the unstretched polypropylene film of Example 1 of Japanese Patent No. 4778938, or a mold disclosed in JP 2010-33793 A is used. The method used can be adopted. The degree of arrangement is preferably two-dimensionally separated from each other by about 1 to 100 μm in consideration of the size of the connection target, conduction reliability, insulation, mounting conductive particle capture rate, and the like.

(工程(BB))
次に、図7Aに示すように、導電粒子4が配列した光重合性樹脂層31に対して、導電粒子側から紫外線(UV)を傾斜させて照射することにより光ラジカル重合反応させ、表面に導電粒子4が仮固定化された仮第1接続層20を形成する。これにより、図7Bに示すように、導電粒子4と仮第1接続層20の最外表面との間に位置する斜行した仮第1接続層部分2Xの硬化率を、互いに隣接する導電粒子4間に位置する領域の仮第1接続層部分2Yの硬化率よりも低くすることができる。
(Process (BB))
Next, as shown in FIG. 7A, the photopolymerizable resin layer 31 in which the conductive particles 4 are arranged is irradiated with a photoradical polymerization reaction by inclining ultraviolet rays (UV) from the conductive particle side, and is applied to the surface. A temporary first connection layer 20 in which the conductive particles 4 are temporarily fixed is formed. As a result, as shown in FIG. 7B, the curing rate of the skewed temporary first connection layer portion 2X located between the conductive particles 4 and the outermost surface of the temporary first connection layer 20 is determined as the conductive particles adjacent to each other. It can be made lower than the curing rate of the temporary first connection layer portion 2Y in the region located between the four.

(工程(CC))
次に、図8Aに示すように、仮第1接続層20の導電粒子4側表面に、熱カチオン、アニオン若しくはラジカル重合性樹脂層からなる第2接続層3を形成する。具体的な一例として、剥離フィルム40に常法により形成された第2接続層3を、第1接続層2の導電粒子4側表面に載せ、過大な熱重合が生じない程度に熱圧着する。そして剥離フィルム30と40とを取り除くことにより図8Bの仮異方性導電フィルム50を得ることができる。
(Process (CC))
Next, as shown in FIG. 8A, the second connection layer 3 made of a thermal cation, anion, or radical polymerizable resin layer is formed on the surface of the temporary first connection layer 20 on the conductive particle 4 side. As a specific example, the second connection layer 3 formed on the release film 40 by a conventional method is placed on the surface of the first connection layer 2 on the conductive particle 4 side, and thermocompression-bonded to such an extent that excessive thermal polymerization does not occur. Then, the temporary anisotropic conductive film 50 of FIG. 8B can be obtained by removing the release films 30 and 40.

(工程(DD))
次に、図9Aに示すように、LED光源などを用いて、第2接続層3と反対側から仮第1接続層20に紫外線を照射することにより光ラジカル重合反応させ、仮第1接続層20を本硬化させて第1接続層2を形成する。これにより、図9Bの異方性導電フィルム1を得ることができる。この工程における紫外線の照射は、仮第1接続層に対し垂直方向から行うことが好ましい。また、第1接続層部分2Xと2Yの硬化率差が消失しないように、マスクを介して照射したり、照射部位により照射光量に差を設けることが好ましい。
(Process (DD))
Next, as shown in FIG. 9A, by using an LED light source or the like, the temporary first connection layer 20 is irradiated with ultraviolet rays from the side opposite to the second connection layer 3 to cause a photoradical polymerization reaction. 20 is fully cured to form the first connection layer 2. Thereby, the anisotropic conductive film 1 of FIG. 9B can be obtained. The ultraviolet irradiation in this step is preferably performed from a direction perpendicular to the temporary first connection layer. Moreover, it is preferable to irradiate through a mask so that the curing rate difference between the first connection layer portions 2X and 2Y does not disappear, or to provide a difference in the amount of irradiation light depending on the irradiation site.

なお、2段階で光ラジカル重合させた場合、図5の異方性導電フィルム100は、工程(DD)の後で、以下の工程(Z)を実施することにより得ることができる。   In addition, when carrying out photo radical polymerization in two steps, the anisotropic conductive film 100 of FIG. 5 can be obtained by implementing the following processes (Z) after a process (DD).

(工程(Z))
第1接続層の導電粒子側の反対面に、好ましくは第2接続層と同様に、熱又は光カチオン、アニオン若しくはラジカル重合性樹脂層からなる第3接続層を形成する。これにより図5の異方性導電フィルムを得ることができる。
(Process (Z))
A third connection layer made of a heat, photocation, anion, or radical polymerizable resin layer is formed on the opposite surface of the first connection layer on the conductive particle side, preferably in the same manner as the second connection layer. Thereby, the anisotropic conductive film of FIG. 5 can be obtained.

また、図5の異方性導電フィルム100は、工程(Z)を行うことなく、工程(AA)に先だって、以下の工程(a)を実施することでも得ることができる。   Moreover, the anisotropic conductive film 100 of FIG. 5 can also be obtained by performing the following process (a) prior to the process (AA) without performing the process (Z).

(工程(a))
この工程は、光重合性樹脂層の片面に、熱又は光カチオン、アニオン若しくはラジカル重合性樹脂層からなる第3接続層を形成する工程である。この工程(a)に引き続き、工程(AA)〜(DD)を実施することにより図5の異方性導電フィルム100を得ることができる。但し、工程(AA)において、光重合性樹脂層の他面に導電粒子を単層で配列させる。この場合、第2接続層の形成の際に使用する重合開始剤としては、熱重合開始剤を適用することが好ましい。光重合開始剤の場合は、工程上、異方性導電フィルムとしての製品ライフ、接続および接続構造体の安定性に悪影響を及ぼすことが懸念される。
(Process (a))
This step is a step of forming a third connection layer made of heat, photocation, anion, or radical polymerizable resin layer on one side of the photopolymerizable resin layer. Subsequent to the step (a), the anisotropic conductive film 100 of FIG. 5 can be obtained by performing the steps (AA) to (DD). However, in the step (AA), the conductive particles are arranged in a single layer on the other surface of the photopolymerizable resin layer. In this case, it is preferable to apply a thermal polymerization initiator as a polymerization initiator used in forming the second connection layer. In the case of a photopolymerization initiator, there is a concern that the product life as an anisotropic conductive film, connection, and stability of the connection structure may be adversely affected in the process.

<<接続構造体>>
このようにして得られた異方性導電フィルムは、ICチップ、ICモジュールなどの第1電子部品と、フレキシブル基板、ガラス基板などの第2電子部品とを異方性導電接続する際に好ましく適用することができる。このようにして得られる接続構造体も本発明の一部である。なお、異方性導電フィルムの第1接続層側をフレキシブル基板等の第2電子部品側に配し、第2接続層側をICチップなどの第1電子部品側に配することが、導通信頼性を高める点から好ましい。
<< Connection structure >>
The anisotropic conductive film thus obtained is preferably applied when anisotropically conductively connecting a first electronic component such as an IC chip or IC module and a second electronic component such as a flexible substrate or a glass substrate. can do. The connection structure thus obtained is also part of the present invention. Note that the first connection layer side of the anisotropic conductive film is disposed on the second electronic component side such as a flexible substrate, and the second connection layer side is disposed on the first electronic component side such as an IC chip. It is preferable from the point of improving the property.

以下、本発明を実施例により具体的に説明する。   Hereinafter, the present invention will be specifically described by way of examples.

実施例1〜3、比較例1
特許第4789738号の実施例1(導電粒子の均等配置)の操作に準じて導電粒子の配列を行うとともに、表1に示す配合(質量部)に従って第1接続層と第2接続層とが積層された2層構造の異方性導電フィルムを作成した。
Examples 1-3, Comparative Example 1
Conductive particles are arranged according to the operation of Example 1 (equal arrangement of conductive particles) of Japanese Patent No. 4778938, and the first connection layer and the second connection layer are laminated according to the composition (parts by mass) shown in Table 1. An anisotropic conductive film having a two-layer structure was prepared.

(第1接続層)
具体的には、まず、アクリレート化合物及び光ラジカル重合開始剤等を酢酸エチル又はトルエンにて固形分が50質量%となるように混合液を調製した。この混合液を、厚さ50μmのポリエチレンテレフタレートフィルムに、乾燥厚が5μmとなるように塗布し、80℃のオーブン中で5分間乾燥することにより、第1接続層の前駆層である光ラジカル重合性樹脂層を形成した。
(First connection layer)
Specifically, first, a mixed solution of an acrylate compound, a radical photopolymerization initiator, and the like was prepared using ethyl acetate or toluene so that the solid content was 50% by mass. This mixed solution is applied to a polyethylene terephthalate film having a thickness of 50 μm so as to have a dry thickness of 5 μm, and dried in an oven at 80 ° C. for 5 minutes, whereby radical photopolymerization that is a precursor layer of the first connection layer is performed. A functional resin layer was formed.

次に、得られた光ラジカル重合性樹脂層に対し、平均粒子径4μmの導電粒子(Ni/Auメッキ樹脂粒子、AUL704、積水化学工業(株))を、互いに4μm離隔して単層で配列させた。更に、この導電粒子側から光ラジカル重合性樹脂層に対し、LED光源から波長365nm、積算光量4000mJ/cmの紫外線を、表1に記載の角度で、異方性導電フィルムの長手方向に直交する方向に照射することにより、表面に導電粒子が固定された第1接続層を形成した。比較例1では、導電粒子側から光ラジカル重合性樹脂層に対し90°の角度で紫外線を照射した。 Next, conductive particles (Ni / Au plating resin particles, AUL704, Sekisui Chemical Co., Ltd.) having an average particle diameter of 4 μm are arranged in a single layer with a separation of 4 μm from the obtained photoradical polymerizable resin layer. I let you. Further, ultraviolet rays having a wavelength of 365 nm and an integrated light amount of 4000 mJ / cm 2 from the LED light source are orthogonal to the longitudinal direction of the anisotropic conductive film from the conductive particle side to the radical photopolymerizable resin layer at the angles shown in Table 1. By irradiating in the direction, the first connection layer having conductive particles fixed on the surface was formed. In Comparative Example 1, ultraviolet rays were irradiated from the conductive particle side to the photoradical polymerizable resin layer at an angle of 90 °.

(第2接続層)
熱硬化性樹脂及び潜在性硬化剤等を酢酸エチル又はトルエンにて固形分が50質量%となるように混合液を調製した。この混合液を、厚さ50μmのポリエチレンテレフタレートフィルムに、乾燥厚が12μmとなるように塗布し、80℃のオーブン中で5分間乾燥することにより、第2接続層を形成した。
(Second connection layer)
A liquid mixture of a thermosetting resin and a latent curing agent was prepared with ethyl acetate or toluene so that the solid content was 50% by mass. This mixed solution was applied to a polyethylene terephthalate film having a thickness of 50 μm so as to have a dry thickness of 12 μm, and dried in an oven at 80 ° C. for 5 minutes to form a second connection layer.

(異方性導電フィルム)
このようにして得られた第1接続層と第2接続層とを、導電粒子が内側となるようにラミネートすることにより異方性導電フィルムを得た。
(Anisotropic conductive film)
An anisotropic conductive film was obtained by laminating the first connection layer and the second connection layer thus obtained so that the conductive particles were inside.

(接続構造サンプル体)
得られた異方性導電フィルムを用いて、0.5×1.8×20.0mmの大きさのICチップ(バンプサイズ30×85μm:バンプ高さ15μm、バンプピッチ50μm)を、0.5×50×30mmの大きさのコーニング社製のガラス配線基板(1737F)に、50℃、5MPa、1秒という条件で仮貼りし、更に、180℃、80MPa、5秒という条件で実装して接続構造サンプル体を得た。
(Connection structure sample)
Using the obtained anisotropic conductive film, an IC chip (bump size 30 × 85 μm: bump height 15 μm, bump pitch 50 μm) of 0.5 × 1.8 × 20.0 mm is 0.5 × Temporarily attached to a glass wiring board (1737F) manufactured by Corning with a size of 50 × 30 mm under conditions of 50 ° C., 5 MPa, and 1 second, and further mounted and connected under conditions of 180 ° C., 80 MPa, and 5 seconds. A structural sample body was obtained.

(試験評価)
得られた接続構造サンプル体について、以下に説明するように、「実装導電粒子捕捉効率」、「異方性導電接続時の導電粒子の方向性」、「初期導通抵抗」、「エージング後の導通抵抗」、「ショート発生率」を試験・評価した。得られた結果を表1に示す。
(Test evaluation)
About the obtained connection structure sample body, as described below, “mounting conductive particle capture efficiency”, “direction of conductive particles during anisotropic conductive connection”, “initial conduction resistance”, “conduction after aging” Resistance ”and“ Short occurrence rate ”were tested and evaluated. The obtained results are shown in Table 1.

「実装導電粒子捕捉率」
実装の際、加熱加圧前の接続構造サンプル体のバンプ上に存在する理論粒子量に対する加熱加圧後に実際に捕捉されている粒子量の割合を求めた。粒子量は、光学顕微鏡を使用してカウントした。実用上50%以上であることが望ましい。
"Mounting conductive particle capture rate"
At the time of mounting, the ratio of the amount of particles actually captured after heating and pressing to the theoretical amount of particles existing on the bumps of the connection structure sample body before heating and pressing was determined. The amount of particles was counted using an optical microscope. Practically 50% or more is desirable.

「異方性導電接続時の導電粒子の方向性」
異方性導電接続後のバンプに捕捉されている導電粒子を光学顕微鏡により観測し、LEDの傾斜により流動方向の均一性が得られるかを調べた。2個以上連結した導電粒子の群を100ユニット(計200個)カウントし、これらのうち、70%以上で方向が揃っているものを「均一」とし、それ未満のものを「ランダム」としている。
"Direction of conductive particles during anisotropic conductive connection"
The conductive particles captured by the bumps after the anisotropic conductive connection were observed with an optical microscope, and it was investigated whether the uniformity of the flow direction was obtained by the inclination of the LED. A group of two or more connected conductive particles is counted as 100 units (a total of 200 particles), and among these, those that are aligned in 70% or more are defined as “uniform”, and those that are less than that are defined as “random”. .

「初期導通抵抗」
接続構造サンプル体の導通抵抗値を、デジタルマルチメーター(アジレント・テクノロジー(株))を用いて測定した。
"Initial conduction resistance"
The conduction resistance value of the connection structure sample was measured using a digital multimeter (Agilent Technology Co., Ltd.).

「エージング後の導通抵抗」
接続構造サンプル体を85℃、85%RHの高温高湿環境下に500時間放置した後の導通抵抗をデジタルマルチメーター(アジレント・テクノロジー(株))を用いて測定した。実用上、4Ω以下であることが望ましい。
"Continuation resistance after aging"
After the connection structure sample was left in a high-temperature and high-humidity environment at 85 ° C. and 85% RH for 500 hours, the conduction resistance was measured using a digital multimeter (Agilent Technology Co., Ltd.). Practically, it is desirable that it is 4Ω or less.

「ショート発生率」
7.5μmスペースの櫛歯TEGパターンのショート発生率を求めた。実用上100ppm以下であれば、絶縁性が良好と判断できる。
"Short incidence"
The short-circuit occurrence rate of the comb tooth TEG pattern in the 7.5 μm space was determined. If it is practically 100 ppm or less, it can be judged that the insulation is good.

Figure 0006217422
Figure 0006217422

表1から、実施例1〜3の異方性導電フィルムについては、その製造時にUV照射を傾斜させて行ったため、比較例1よりも実装導電粒子捕捉率が僅かに向上するだけでなく、異方性導電接続時の導電粒子の流動の方向性を均一に揃えることができたことがわかる。この結果、比較例に比べ、ショートの発生率を大きく低減できたことがわかる。   From Table 1, the anisotropic conductive films of Examples 1 to 3 were subjected to UV irradiation at the time of production, so that the mounting conductive particle capture rate was not only slightly improved but also different from that of Comparative Example 1. It can be seen that the direction of the flow of the conductive particles during the isotropic conductive connection can be made uniform. As a result, it can be seen that the occurrence rate of the short circuit can be greatly reduced as compared with the comparative example.

本発明の異方性導電フィルムは、光ラジカル重合性樹脂層を光ラジカル重合させた第1接続層と、熱又は光カチオン若しくはアニオン重合性樹脂層、又は好ましくはアクリレート化合物と熱又は光ラジカル重合開始剤とを含有する熱又は光ラジカル重合性樹脂層とからなる第2接続層とが積層された2層構造を有しており、更に、第1接続層の第2接続層側表面には、異方性導電接続用の導電粒子が単層で配列されている。しかも、第1接続層の硬化率に関し、片面(第2接続層側表面)の硬化率よりも低い硬化率を有する領域が、第1接続層の厚み方向に斜行して存在している。このため、異方性導電接続の際、導電粒子の流動の方向を均一化することができる。よって良好な導通信頼性、絶縁性、実装導電粒子捕捉率を示す。   The anisotropic conductive film of the present invention comprises a first connection layer obtained by photoradical polymerization of a photoradically polymerizable resin layer, and a heat or photocation or anion polymerizable resin layer, or preferably an acrylate compound and heat or photoradical polymerization. It has a two-layer structure in which a second connection layer composed of a thermal or photoradical polymerizable resin layer containing an initiator is laminated, and furthermore, on the second connection layer side surface of the first connection layer, The conductive particles for anisotropic conductive connection are arranged in a single layer. And the area | region which has a hardening rate lower than the hardening rate of one side (2nd connection layer side surface) regarding the hardening rate of a 1st connection layer exists diagonally in the thickness direction of a 1st connection layer. For this reason, in the anisotropic conductive connection, the direction of flow of the conductive particles can be made uniform. Therefore, good conduction reliability, insulation, and mounting conductive particle capture rate are shown.

1、100 異方性導電フィルム
2 第1接続層
2X、2Y 第1接続層部分
3 第2接続層
4 導電粒子
5 第3接続層
30、40 剥離フィルム
20 仮第1接続層
31 光重合性樹脂層
50 仮異方性導電フィルム
DESCRIPTION OF SYMBOLS 1,100 Anisotropic conductive film 2 1st connection layer 2X, 2Y 1st connection layer part 3 2nd connection layer 4 Conductive particle 5 3rd connection layer 30, 40 Release film 20 Temporary 1st connection layer 31 Photopolymerizable resin Layer 50 Temporary anisotropic conductive film

Claims (16)

第1接続層とその片面に形成された第2接続層とを有する異方性導電フィルムであって、
第1接続層が、光重合樹脂層であり、
第2接続層が、熱又は光カチオン、アニオン若しくはラジカル重合性樹脂層であり、
第1接続層の該片面に、異方性導電接続用の導電粒子が単層で配列されており、
第1接続層の硬化率に関し、該片面の硬化率よりも低い硬化率を有する領域が、第1接続層の厚み方向に斜行して存在している
ことを特徴とする異方性導電フィルム。
An anisotropic conductive film having a first connection layer and a second connection layer formed on one side thereof,
The first connection layer is a photopolymerization resin layer;
The second connection layer is a heat or photocation, anion or radical polymerizable resin layer;
Conductive particles for anisotropic conductive connection are arranged in a single layer on the one surface of the first connection layer,
Regarding the curing rate of the first connection layer, an anisotropic conductive film characterized in that a region having a curing rate lower than the curing rate of one side is present obliquely in the thickness direction of the first connection layer .
第1接続層が、アクリレート化合物と光ラジカル重合開始剤とを含む光ラジカル重合性樹脂層を光ラジカル重合させた光ラジカル重合樹脂層である請求項1記載の異方性導電フィルム。   The anisotropic conductive film according to claim 1, wherein the first connection layer is a photo radical polymerization resin layer obtained by photo radical polymerization of a photo radical polymerizable resin layer containing an acrylate compound and a photo radical polymerization initiator. 第1接続層が、更に、エポキシ化合物と熱又は光カチオン若しくはアニオン重合開始剤とを含有している請求項2記載の異方性導電フィルム。   The anisotropic conductive film according to claim 2, wherein the first connection layer further contains an epoxy compound and a heat, photocation, or anionic polymerization initiator. 第2接続層が、エポキシ化合物と熱又は光カチオン若しくはアニオン重合開始剤とを含有する熱又は光カチオン若しくはアニオン重合性樹脂層、又はアクリレート化合物と熱又は光ラジカル重合開始剤とを含有する熱又は光ラジカル重合性樹脂層である請求項1〜3のいずれかに記載の異方性導電フィルム。   The second connection layer is a heat containing an epoxy compound and heat or a photocation or anion polymerization initiator, or a heat or photocation or anion polymerizable resin layer, or a heat containing an acrylate compound and a heat or radical polymerization initiator, or The anisotropic conductive film according to claim 1, which is a radical photopolymerizable resin layer. 第2接続層が、エポキシ化合物と熱又は光カチオン若しくはアニオン重合開始剤とを含有する熱又は光カチオン若しくはアニオン重合性樹脂層であり、更にアクリレート化合物と熱又は光ラジカル重合開始剤とを含有する請求項4記載の異方性導電フィルム。   The second connection layer is a heat or photocation or anion polymerizable resin layer containing an epoxy compound and heat or a photocation or anion polymerization initiator, and further contains an acrylate compound and a heat or photoradical polymerization initiator. The anisotropic conductive film according to claim 4. 導電粒子が、第2接続層に食い込んでいる請求項1〜5のいずれかに記載の異方性導電フィルム。   The anisotropic conductive film according to any one of claims 1 to 5, wherein the conductive particles are biting into the second connection layer. 第1接続層の最低溶融粘度が、第2接続層の最低溶融粘度よりも高い請求項1〜6のいずれかに記載の異方性導電フィルム。   The anisotropic conductive film in any one of Claims 1-6 whose minimum melt viscosity of a 1st connection layer is higher than the minimum melt viscosity of a 2nd connection layer. 請求項1記載の異方性導電フィルムの製造方法であって、以下の工程(A)〜(C):
工程(A)
光重合性樹脂層に、導電粒子を単層で配列させる工程;
工程(B)
導電粒子が配列した光重合性樹脂層に対して紫外線を傾斜させて照射することにより光重合反応させ、表面に導電粒子が固定化された第1接続層を形成する工程;及び
工程(C)
第1接続層の導電粒子側表面に、熱又は光カチオン若しくはアニオン重合性樹脂層、又は熱又は光ラジカル重合性樹脂層からなる第2接続層を形成する工程
を有する製造方法。
It is a manufacturing method of the anisotropic conductive film of Claim 1, Comprising: The following processes (A)-(C):
Process (A)
Arranging the conductive particles in a single layer on the photopolymerizable resin layer;
Process (B)
A step of causing a photopolymerization reaction by irradiating the photopolymerizable resin layer in which the conductive particles are arranged by inclining ultraviolet rays to form a first connection layer having the conductive particles fixed on the surface; and step (C)
The manufacturing method which has the process of forming the 2nd connection layer which consists of a heat | fever or photocationic or anion polymerizable resin layer, or a heat | fever or radical photopolymerizable resin layer in the conductive particle side surface of a 1st connection layer.
工程(B)の紫外線照射を、光重合性樹脂層の導電粒子が配列した側から行う請求項8記載の製造方法。   The production method according to claim 8, wherein the ultraviolet irradiation in the step (B) is performed from the side where the conductive particles of the photopolymerizable resin layer are arranged. 請求項1記載の異方性導電フィルムの製造方法であって、以下の工程(AA)〜(DD):
工程(AA)
光重合性樹脂層に導電粒子を単層で配列させる工程;
工程(BB)
導電粒子が配列した光重合性樹脂層に対して紫外線を傾斜させて照射することにより光重合反応させ、表面に導電粒子が仮固定化された仮第1接続層を形成する工程;
工程(CC)
仮第1接続層の導電粒子側表面に、熱カチオン若しくは熱アニオン重合性樹脂層、又は熱ラジカル重合性樹脂層からなる第2接続層を形成する工程;及び
工程(DD)
第2接続層と反対側から仮第1接続層に紫外線を照射することにより光重合反応させ、仮第1接続層を本硬化させて第1接続層を形成する工程
を有する製造方法。
It is a manufacturing method of the anisotropic conductive film of Claim 1, Comprising: The following processes (AA)-(DD):
Process (AA)
Arranging the conductive particles in a single layer on the photopolymerizable resin layer;
Process (BB)
A step of forming a temporary first connection layer in which conductive particles are temporarily fixed on a surface by irradiating the photopolymerizable resin layer in which the conductive particles are arranged with a tilted ultraviolet ray for photopolymerization reaction;
Process (CC)
Forming a second connection layer comprising a thermal cation or thermal anion polymerizable resin layer or a thermal radical polymerizable resin layer on the conductive particle side surface of the temporary first connection layer; and step (DD)
The manufacturing method which has a process which carries out photopolymerization reaction by irradiating a temporary 1st connection layer by irradiating an ultraviolet-ray from the opposite side to a 2nd connection layer, and main-hardens a temporary 1st connection layer, and forms a 1st connection layer.
工程(BB)の紫外線照射を、光重合性樹脂層の導電粒子が配列した側から行う請求項10記載の製造方法。   The manufacturing method of Claim 10 which performs the ultraviolet irradiation of a process (BB) from the side in which the electrically conductive particle of the photopolymerizable resin layer arranged. 請求項8記載の製造方法において、工程(C)の後で、以下の工程(Z)
工程(Z)
第1接続層の導電粒子側の反対面に、熱又は光カチオン、アニオン若しくはラジカル重合性樹脂層からなる第3接続層を形成する工程
を有する製造方法。
The manufacturing method according to claim 8, wherein after the step (C), the following step (Z):
Step (Z)
The manufacturing method which has the process of forming the 3rd connection layer which consists of a heat | fever or a photocation, an anion, or a radically polymerizable resin layer in the surface opposite to the electroconductive particle side of a 1st connection layer.
請求項8記載の製造方法において、工程(A)に先だって、以下の工程(a)
工程(a)
光重合性樹脂層の片面に、熱又は光カチオン、アニオン若しくはラジカル重合性樹脂層からなる第3接続層を形成する工程
を有し、工程(A)において、光重合性樹脂層の他面に導電粒子を単層で配列させる製造方法。
9. The manufacturing method according to claim 8, wherein prior to step (A), the following step (a):
Step (a)
A step of forming a third connection layer comprising a heat or photocationic, anionic or radically polymerizable resin layer on one side of the photopolymerizable resin layer; in step (A), on the other side of the photopolymerizable resin layer; A manufacturing method in which conductive particles are arranged in a single layer.
請求項10記載の製造方法において、工程(DD)の後で、以下の工程(Z)
工程(Z)
第1接続層の導電粒子側の反対面に、熱又は光カチオン、アニオン若しくはラジカル重合性樹脂層からなる第3接続層を形成する工程
を有する製造方法。
The manufacturing method according to claim 10, wherein after the step (DD), the following step (Z):
Step (Z)
The manufacturing method which has the process of forming the 3rd connection layer which consists of a heat | fever or a photocation, an anion, or a radically polymerizable resin layer in the surface opposite to the electroconductive particle side of a 1st connection layer.
請求項10記載の製造方法において、工程(AA)に先だって、以下の工程(a)
工程(a)
光重合性樹脂層の片面に、熱又は光カチオン、アニオン若しくはラジカル重合性樹脂層からなる第3接続層を形成する工程
を有し、工程(AA)において、光重合性樹脂層の他面に導電粒子を単層で配列させる製造方法。
The manufacturing method according to claim 10, wherein, prior to step (AA), the following step (a):
Step (a)
A step of forming a third connection layer made of heat, photocation, anion, or radical polymerizable resin layer on one side of the photopolymerizable resin layer; and in step (AA), on the other side of the photopolymerizable resin layer A manufacturing method in which conductive particles are arranged in a single layer.
請求項1〜7のいずれかに記載の異方性導電フィルムで第1電子部品を第2電子部品に異方性導電接続した接続構造体。   The connection structure which anisotropically connected the 1st electronic component to the 2nd electronic component with the anisotropic conductive film in any one of Claims 1-7.
JP2014019864A 2014-02-04 2014-02-04 Anisotropic conductive film and manufacturing method thereof Active JP6217422B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2014019864A JP6217422B2 (en) 2014-02-04 2014-02-04 Anisotropic conductive film and manufacturing method thereof
PCT/JP2015/052910 WO2015119090A1 (en) 2014-02-04 2015-02-03 Anisotropic conductive film and production method therefor
CN201580007321.7A CN105940563B (en) 2014-02-04 2015-02-03 Anisotropic conductive film and its manufacturing method
KR1020167021045A KR102438704B1 (en) 2014-02-04 2015-02-03 Anisotropic conductive film and production method therefor
US15/115,827 US9997486B2 (en) 2014-02-04 2015-02-03 Anisotropic conductive film including oblique region having lower curing ratio
TW104103698A TWI664644B (en) 2014-02-04 2015-02-04 Anisotropic conductive film and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014019864A JP6217422B2 (en) 2014-02-04 2014-02-04 Anisotropic conductive film and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2015149129A JP2015149129A (en) 2015-08-20
JP6217422B2 true JP6217422B2 (en) 2017-10-25

Family

ID=53892369

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014019864A Active JP6217422B2 (en) 2014-02-04 2014-02-04 Anisotropic conductive film and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP6217422B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001052778A (en) * 1999-08-06 2001-02-23 Hitachi Chem Co Ltd Anisotropic conductive adhesive film and its manufacture
JP4880533B2 (en) * 2007-07-03 2012-02-22 ソニーケミカル&インフォメーションデバイス株式会社 Anisotropic conductive film, method for producing the same, and joined body
JP2013058412A (en) * 2011-09-08 2013-03-28 Sekisui Chem Co Ltd Insulation material, laminate, connection structure and manufacturing method of laminate and connection structure
JP2013105636A (en) * 2011-11-14 2013-05-30 Dexerials Corp Anisotropic conductive film, connection method, and connected body

Also Published As

Publication number Publication date
JP2015149129A (en) 2015-08-20

Similar Documents

Publication Publication Date Title
KR102450569B1 (en) Anisotropic conductive film and production method therefor
JP2014043574A (en) Anisotropic conductive film and method for producing the same
US20220084975A1 (en) Anisotropic conductive film and production method of the same
WO2015119090A1 (en) Anisotropic conductive film and production method therefor
JP6269114B2 (en) Anisotropic conductive film and manufacturing method thereof
JP6428325B2 (en) Anisotropic conductive film and manufacturing method thereof
JP6409281B2 (en) Anisotropic conductive film and manufacturing method thereof
KR102439365B1 (en) Anisotropic electroconductive film and method for producing same
JP6260313B2 (en) Anisotropic conductive film and manufacturing method thereof
JP6217422B2 (en) Anisotropic conductive film and manufacturing method thereof
JP6260312B2 (en) Anisotropic conductive film and manufacturing method thereof
JP6233069B2 (en) Anisotropic conductive film and manufacturing method thereof
WO2015119098A1 (en) Anisotropic conductive film and method for producing same
JP2015147823A (en) Anisotropic conductive film and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170829

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170911

R150 Certificate of patent or registration of utility model

Ref document number: 6217422

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250