WO2016169377A1 - 一种pwm控制电压的补偿方法 - Google Patents

一种pwm控制电压的补偿方法 Download PDF

Info

Publication number
WO2016169377A1
WO2016169377A1 PCT/CN2016/077025 CN2016077025W WO2016169377A1 WO 2016169377 A1 WO2016169377 A1 WO 2016169377A1 CN 2016077025 W CN2016077025 W CN 2016077025W WO 2016169377 A1 WO2016169377 A1 WO 2016169377A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
load
dalatv
pwm
duty
Prior art date
Application number
PCT/CN2016/077025
Other languages
English (en)
French (fr)
Inventor
柯忠乘
陈志杰
Original Assignee
深圳市振邦智能科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市振邦智能科技有限公司 filed Critical 深圳市振邦智能科技有限公司
Publication of WO2016169377A1 publication Critical patent/WO2016169377A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/56Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K5/01Shaping pulses

Definitions

  • the invention relates to the field of PWM control voltage, and in particular to a method for compensating a PWM control voltage.
  • PWM pulse width modulation
  • the PWM control voltage technology has basically taken shape.
  • the accuracy of the PWM control voltage is not better or simpler to achieve feedback and compensation processing to achieve better control of the voltage required, or to make the voltage more stable.
  • the PWM control voltage is generated by the PWM I/O port to achieve voltage control, but the voltage accuracy and stability error are relatively large, especially when the load is affected by environmental factors (such as temperature), the voltage is more unstable, and can be generated. Stabilizing the voltage requires more hardware circuits, or some targeted chips to do the processing, which greatly increases the cost. There are three specific defects:
  • the technical solution of the present invention is a method for compensating a PWM control voltage, comprising the following steps:
  • the I/O port P01 of the single chip generates a corresponding PWM according to the target voltage Vt, the PWM generates an initial voltage Vst, and the initial voltage Vst is loaded into the load through the circuit; wherein, when the single chip I/O port P01 outputs a low level
  • the actual working voltage Vr at both ends of the load is 12V
  • the count value Duty sent by the single chip to the PWM is 255
  • the relationship between the PWM count value Duty and the target voltage Vt satisfies the following formula:
  • the single-chip I/O port P00 performs AD analog-to-digital acquisition on the load through the circuit, and the collected AD sample value is converted in the single-chip microcomputer, and the acquired voltage Vc is obtained;
  • the single chip adjusts the initial voltage Vst in time by the change of the PWM count value Duty, so that the initial voltage Vs is closer to the target voltage Vt.
  • the I/O port P01 of the MCU has a PWM function, and the I/O port P00 has an AD analog-digital acquisition function.
  • the I/O port P01 of the MCU outputs PWM, and 12V or 0V voltage can be obtained by conversion.
  • the I/O port P01 outputs a low level, both ends of the load are 12V; otherwise, it is 0V.
  • I/O port P01 produces 30KHZ
  • the above periodic signals are voltages that are applied across the load by adjusting different duty cycles.
  • the I/O port P00 of the single chip performs AD modulus acquisition, and collects the voltage signal fed back by the load, and converts it into a voltage value according to the collected AD sample value in the software.
  • the initial voltage Vst is adjusted in time by the change of the PWM count value Duty, so that the initial voltage Vs is closer to the target voltage Vt, the control precision of the voltage is improved, the error is reduced, and the closed loop is self-feedback and adjusted; No special voltage processing chip is needed, which reduces the cost; the voltage control is not unstable due to external factors such as load heat.
  • the load is connected in series with a resistor of 20K ⁇ and a resistor R2 of 5K ⁇ to be grounded, and the I/O port P00 of the single chip is connected to the load through the resistor R1; when the actual working voltage Vr at both ends of the load reaches At 12V, the resistor R1 and the resistor R2 are divided; the actual working voltage Vr at both ends of the load satisfies the following formula:
  • the AD sample value collected by the MCU I/O port P00 is Sad, and the acquisition voltage Vc satisfies the following formula:
  • Vr 25*Sad/1023.
  • the actual working voltage Vr at both ends of the load, the collected AD sampling value Sad and the collected voltage Vc form an associated chain, and the real-time Vc value can be obtained through the actual working voltage Vr at both ends of the load, thereby obtaining the dalatV, and the single-chip microcomputer is controlled according to the latest dalatV.
  • the initial voltage Vst is adjusted in time so that the initial voltage Vst is closer to the target voltage Vt.
  • step S3 the voltage value comparison is performed after the actual working voltage Vr at both ends of the load and the target voltage Vt are both amplified by 10 times.
  • the accuracy of the acquisition voltage Vc is improved, thereby improving the accuracy of the actual operating voltage Vr control at both ends of the load.
  • the set value of the timing is 10 ms.
  • the initial voltage Vst is adjusted in time by the change of the PWM count value Duty, so that the initial voltage Vs is closer to the target voltage Vt, the control precision of the voltage is improved, the error is reduced, and the closed loop self-feedback can be formed. And adjust; no special voltage processing chip is needed, which reduces the cost; the voltage control is not unstable due to external factors such as load heat.
  • Figure 2 is a circuit diagram of another embodiment of the present invention.
  • a method for compensating a PWM control voltage includes the following steps:
  • the I/O port P01 of the single chip generates a corresponding PWM according to the target voltage Vt, the PWM generates an initial voltage Vst, and the initial voltage Vst is loaded into the load through the circuit; wherein, when the single chip I/O port P01 outputs a low level
  • the actual working voltage Vr at both ends of the load is 12V
  • the count value Duty sent by the single chip to the PWM is 255
  • the relationship between the PWM count value Duty and the target voltage Vt satisfies the following formula:
  • the single-chip I/O port P00 performs AD analog-to-digital acquisition on the load through the circuit, and the collected AD sample value is converted in the single-chip microcomputer, and the acquired voltage Vc is obtained;
  • the single chip adjusts the initial voltage Vst in time by the change of the PWM count value Duty, so that the initial voltage Vs is closer to the target voltage Vt.
  • the I/O port P01 of the MCU has a PWM function, and the I/O port P00 has an AD analog-digital acquisition function.
  • the I/O port P01 of the MCU outputs PWM, and 12V or 0V voltage can be obtained by conversion.
  • the I/O port P01 outputs a low level, both ends of the load are 12V; otherwise, it is 0V.
  • the I/O port P01 generates a periodic signal of 30KHZ or more, and by adjusting different duty ratios, the voltage applied across the load is obtained.
  • the I/O port P00 of the single chip performs AD modulus acquisition, and collects the voltage signal fed back by the load, and converts it into a voltage value according to the collected AD sample value in the software.
  • the initial voltage Vs is adjusted in time by the change of the PWM count value Duty, so that the initial voltage Vs is closer to the target voltage Vt, the control precision of the voltage is improved, and the error is reduced; the closed loop can be formed to self-feedback and adjusted; No special voltage processing chip is needed, which reduces the cost; the voltage control is not unstable due to external factors such as load heat.
  • the load is connected in series with a 20K ⁇ resistor R1 and a 5K ⁇ resistor R2 to be grounded.
  • the I/O port P00 of the single chip is connected to the load through the resistor R1; when the actual working voltage Vr of the load is When reaching 12V, the resistor R1 and the resistor R2 are divided; the actual working voltage Vr at both ends of the load satisfies the following formula:
  • the AD sample value collected by the MCU I/O port P00 is Sad, and the acquisition voltage Vc satisfies the following formula:
  • Vr 25*Sad/1023.
  • the actual working voltage Vr at both ends of the load, the collected AD sampling value Sad and the collected voltage Vc form an associated chain, and the real-time Vc value can be obtained through the actual working voltage Vr at both ends of the load, thereby obtaining the dalatV, and the single-chip microcomputer is controlled according to the latest dalatV.
  • the initial voltage Vst is adjusted in time so that the initial voltage Vst is closer to the target voltage Vt.
  • the voltage value comparison is performed after the actual working voltage Vr at both ends of the load and the target voltage Vt are both amplified by 10 times.
  • the accuracy of the acquisition voltage Vc is improved, thereby improving the accuracy of the actual operating voltage Vr control at both ends of the load.
  • the set value of the timing is 8 ms.
  • the set value of the timing is 10 ms.
  • the set value of the timing is 15 ms.
  • the initial voltage Vs is adjusted in time by the change of the PWM count value Duty, so that the initial voltage Vs is closer to the target voltage Vt, the control precision of the voltage is improved, and the error is reduced; the closed loop can be formed to self-feedback and adjusted; No special voltage processing chip is needed, which reduces the cost; the voltage control is not unstable due to external factors such as load heat.
  • Table 1 compares the actual operating voltage of the load with this method and the two schemes without PWM voltage compensation when the load is not hot:
  • Table 2 compares the actual operating voltage of the load with this method and the two schemes without PWM voltage compensation when the load is hot:
  • the accuracy of the voltage control by the voltage compensation method of this patent is higher.
  • the voltage control of this patent basically does not have the phenomenon of error expansion, which improves the control precision of the voltage.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Nonlinear Science (AREA)
  • Dc-Dc Converters (AREA)
  • Control Of Electrical Variables (AREA)

Abstract

一种PWM控制电压的补偿方法,包括如下步骤:S1、单片机I/O口P01根据目标电压Vt产生相应的PWM,PWM产生初始电压,将初始电压加载到负载上;S2、I/O口P00对负载进行AD模数采集,AD值转换后,得到采集电压Vc;S3、将采集电压Vc和目标电压Vt对比,取差值dalatV,dalatV=Vc–Vt;单片机从得到采集电压Vc后开始计时;S4、当计时到达设定值时,根据dalatV在[-5,5]范围的不同位置,单片机做不同的处理;以及S5、单片机通过PWM计数值Duty的变化适时调整初始电压,使初始电压与目标电压Vt更接近。PWM控制电压的补偿方法提高了电压的控制精度,降低了成本。

Description

一种PWM控制电压的补偿方法 技术领域
本发明涉及PWM控制电压领域,尤其涉及一种PWM控制电压的补偿方法。
背景技术
使用PWM实现电压控制技术已经遍及整个技术开发领域。无论是从小家电制冷片的电压控制,还是大家电风机转数的控制,PWM控制电压技术基本已经成形。然而对于PWM控制电压的精度并未使用较好或者更简单方法实现对其反馈和补偿处理,从而达到更好控制所需要的电压,或者是说让电压更加稳定。
目前,PWM控制电压都是单片机I/O口产生PWM来实现电压的控制,但对于电压精度和稳定误差比较大,特别是负载受到环境因素影响(如温度)使得电压更加不稳定,而能够产生稳定电压却又需要较多硬件电路,或者一些针对性的芯片做处理,大大增加了成本。具体的缺陷有下列三种:
(1)单片机I/O口产生PWM控制电压精度不够高,误差大;
(2)采用特殊芯片进行处理后的电压虽然精度高,但增加了产品研发成本;
(3)采用硬件进行电压补偿精度稍提高了,但也增加了硬件成本。
发明内容
本发明的目的是提供一种PWM控制电压的补偿方法,在不增加硬件的同时,提高PWM控制电压的精度。
本发明的技术方案是一种PWM控制电压的补偿方法,包括如下步骤:
S1、单片机的I/O口P01根据目标电压Vt产生相应的PWM,所述PWM产生初始电压Vst,该初始电压Vst通过电路加载到负载上;其中,当单片机I/O口P01输出低电平时,所述负载两端的实际工作电压Vr为12V,单片机送给所述PWM的计数值Duty为255,PWM计数值Duty与目标电压Vt的关系满足下列公式:
Duty=255*Vt/12;
当单片机I/O口P01输出高电平时,所述负载两端的实际工作电压Vr为0V;
S2、单片机I/O口P00通过电路对所述负载进行AD模数采集,采集到的AD采样值在所述单片机中转变后,得到采集电压Vc;
S3、将采集电压Vc和目标电压Vt对比,取二者的差值dalatV,dalatV=Vc–Vt;单片机从得到采集电压Vc后开始计时;
S4、当计时没有达到设定值时,继续计时,当计时到达设定值时,判断dalatV是否大于5;如果dalatV>5,则Duty=Duty-1,且重复步骤S3,当dalatV≤5时,判断dalatV是否小于-5,如果dalatV<-5,则Duty=Duty+1,如果-5≤dalatV≤5,重复步骤S3;以及
S5、所述单片机通过PWM计数值Duty的变化适时调整初始电压Vst,使初始电压Vs与目标电压Vt更接近。
单片机的I/O口P01具备PWM功能,I/O口P00具备AD模数采集功能。首先,单片机的I/O口P01输出PWM,通过转换就可以得到12V或者0V电压。当I/O口P01输出低电平时,负载两端为12V;反之为0V。I/O口P01产生30KHZ 以上周期信号,通过调整不同的占空比,得到加载在负载两端的电压。然后,单片机的I/O口P00进行AD模数采集,采集负载反馈回来的电压信号,在软件中根据采集到的AD采样值转变成电压值。这样就可以得到负载实际工作的两端电压值。这样就可以避免虽然已经给了理论上的电压值,但可能因为负载发热等外部因素导致实际工作电压值偏大或者偏小。本技术方案中,通过PWM计数值Duty的变化适时调整初始电压Vst,使初始电压Vs与目标电压Vt更接近,提高了对电压的控制精度,降低了误差;能够形成闭环进行自我反馈并调节;不需要特殊电压处理芯片,降低了成本;不会因为负载变热等外部因素造成电压控制不稳定。
进一步地,所述负载串联20KΩ的电阻R1和5KΩ的电阻R2后接地,所述单片机的I/O口P00通过所述电阻R1来连接所述负载;当所述负载两端的实际工作电压Vr达到12V时,所述电阻R1和电阻R2进行分压;负载两端的实际工作电压Vr满足下列公式:
Vr=(20+5)/5*Vc=5Vc;      (1)
单片机I/O口P00采集到的AD采样值为Sad,采集电压Vc满足下列公式:
Vc=5*Sad/1023;      (2)
通过(1)和(2)式,得到Vr与Sad的关系为:
Vr=25*Sad/1023。
负载两端的实际工作电压Vr、采集到的AD采样值Sad以及采集电压Vc之间形成关联链条,通过负载两端的实际工作电压Vr可以得到实时的Vc值,从而得到dalatV,单片机根据最新的dalatV控制PWM计数值Duty的后,适时调整初始电压Vst,使初始电压Vst与目标电压Vt更接近。
进一步地,所述步骤S3中,将负载两端的实际工作电压Vr与目标电压Vt均放大10倍之后进行电压值比较。提高了采集电压Vc的精确度,进而提高了对负载两端的实际工作电压Vr控制精度。
进一步地,所述步骤S3中,计时的设定值为10ms。
有益效果:本技术方案中,通过PWM计数值Duty的变化适时调整初始电压Vst,使初始电压Vs与目标电压Vt更接近,提高了对电压的控制精度,降低了误差;能够形成闭环进行自我反馈并调节;不需要特殊电压处理芯片,降低了成本;不会因为负载变热等外部因素造成电压控制不稳定。
附图说明
图1是本发明一种实施例的工作流程图;
图2是本发明另一种实施例的电路图。
具体实施方式
下面结合附图,对本发明的较优的实施例作进一步的详细说明:
参见图1和图2,一种PWM控制电压的补偿方法,包括如下步骤:
S1、单片机的I/O口P01根据目标电压Vt产生相应的PWM,所述PWM产生初始电压Vst,该初始电压Vst通过电路加载到负载上;其中,当单片机I/O口P01输出低电平时,所述负载两端的实际工作电压Vr为12V,单片机送给所述PWM的计数值Duty为255,PWM计数值Duty与目标电压Vt的关系满足下列公式:
Duty=255*Vt/12;
当单片机I/O口P01输出高电平时,所述负载两端的实际工作电压Vr为0V;
S2、单片机I/O口P00通过电路对所述负载进行AD模数采集,采集到的AD采样值在所述单片机中转变后,得到采集电压Vc;
S3、将采集电压Vc和目标电压Vt对比,取二者的差值dalatV,dalatV=Vc–Vt;单片机从得到采集电压Vc后开始计时;
S4、当计时没有达到设定值时,继续计时,当计时到达设定值时,判断dalatV是否大于5;如果dalatV>5,则Duty=Duty-1,且重复步骤S3,当dalatV≤5时,判断dalatV是否小于-5,如果dalatV<-5,则Duty=Duty+1,如果-5≤dalatV≤5,重复步骤S3;以及
S5、所述单片机通过PWM计数值Duty的变化适时调整初始电压Vst,使初始电压Vs与目标电压Vt更接近。
单片机的I/O口P01具备PWM功能,I/O口P00具备AD模数采集功能。首先,单片机的I/O口P01输出PWM,通过转换就可以得到12V或者0V电压。当I/O口P01输出低电平时,负载两端为12V;反之为0V。I/O口P01产生30KHZ以上周期信号,通过调整不同的占空比,得到加载在负载两端的电压。然后,单片机的I/O口P00进行AD模数采集,采集负载反馈回来的电压信号,在软件中根据采集到的AD采样值转变成电压值。这样就可以得到负载实际工作的两端电压值。这样就可以避免虽然已经给了理论上的电压值,但可能因为负载发热等外部因素导致实际工作电压值偏大或者偏小。本实施例中,通过PWM计数值Duty的变化适时调整初始电压Vst,使初始电压Vs与目标电压Vt更接近,提高了对电压的控制精度,降低了误差;能够形成闭环进行自我反馈并调节;不需要特殊电压处理芯片,降低了成本;不会因为负载变热等外部因素造成电压控制不稳定。
参见图2,所述负载串联20KΩ的电阻R1和5KΩ的电阻R2后接地,所述单片机的I/O口P00通过所述电阻R1来连接所述负载;当所述负载两端的实际工作电压Vr达到12V时,所述电阻R1和电阻R2进行分压;负载两端的实际工作电压Vr满足下列公式:
Vr=(20+5)/5*Vc=5Vc;      (1)
单片机I/O口P00采集到的AD采样值为Sad,采集电压Vc满足下列公式:
Vc=5*Sad/1023;(2)
通过(1)和(2)式,得到Vr与Sad的关系为:
Vr=25*Sad/1023。
负载两端的实际工作电压Vr、采集到的AD采样值Sad以及采集电压Vc之间形成关联链条,通过负载两端的实际工作电压Vr可以得到实时的Vc值,从而得到dalatV,单片机根据最新的dalatV控制PWM计数值Duty的后,适时调整初始电压Vst,使初始电压Vst与目标电压Vt更接近。
优选地,所述步骤S3中,将负载两端的实际工作电压Vr与目标电压Vt均放大10倍之后进行电压值比较。提高了采集电压Vc的精确度,进而提高了对负载两端的实际工作电压Vr控制精度。
优选地,所述步骤S3中,计时的设定值为8ms。
优选地,所述步骤S3中,计时的设定值为10ms。
优选地,所述步骤S3中,计时的设定值为15ms。
本实施例中,通过PWM计数值Duty的变化适时调整初始电压Vst,使初始电压Vs与目标电压Vt更接近,提高了对电压的控制精度,降低了误差;能够形成闭环进行自我反馈并调节;不需要特殊电压处理芯片,降低了成本;不会因为负载变热等外部因素造成电压控制不稳定。
表1为负载未发热时,本方法和没有进行PWM电压补偿两种方案的负载实际工作电压的对比:
Figure PCTCN2016077025-appb-000001
表1
表2为负载发热时,本方法和没有进行PWM电压补偿两种方案的负载实际工作电压的对比:
Figure PCTCN2016077025-appb-000002
表2
从上述两个表格可以看出,通过本专利的电压补偿方法控制电压的精度更高。特别当负载工作时间过长发热时候,本专利电压控制基本不会有误差扩大的现象,提高了对电压的控制精度。
以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明的保护范围。

Claims (4)

  1. 一种PWM控制电压的补偿方法,其特征在于,包括如下步骤:
    S1、单片机的I/O口P01根据目标电压Vt产生相应的PWM,所述PWM产生初始电压Vst,该初始电压Vst通过电路加载到负载上;其中,当单片机I/O口P01输出低电平时,所述负载两端的实际工作电压Vr为12V,单片机送给所述PWM的计数值Duty为255,PWM计数值Duty与目标电压Vt的关系满足下列公式:
    Duty=255*Vt/12;
    当单片机I/O口P01输出高电平时,所述负载两端的实际工作电压Vr为0V;
    S2、单片机I/O口P00通过电路对所述负载进行AD模数采集,采集到的AD采样值在所述单片机中转变后,得到采集电压Vc;
    S3、将采集电压Vc和目标电压Vt对比,取二者的差值dalatV,dalatV=Vc–Vt;单片机从得到采集电压Vc后开始计时;
    S4、当计时没有达到设定值时,继续计时,当计时到达设定值时,判断dalatV是否大于5;如果dalatV>5,则Duty=Duty-1,且重复步骤S3,当dalatV≤5时,判断dalatV是否小于-5,如果dalatV<-5,则Duty=Duty+1,如果-5≤dalatV≤5,重复步骤S3;以及
    S5、所述单片机通过PWM计数值Duty的变化适时调整初始电压Vst,使初始电压Vs与目标电压Vt更接近。
  2. 根据权利要求1所述的PWM控制电压的补偿方法,其特征在于:所述负载串联20KΩ的电阻R1和5KΩ的电阻R2后接地,所述单片机的I/O口P00通过所述电阻R1来连接所述负载;当所述负载两端的实际工作电压Vr达到12V时,所述电阻R1和电阻R2进行分压;负载两端的实际工作电压Vr满足下列公式:
    Vr=(20+5)/5*Vc=5Vc;           (1)
    单片机I/O口P00采集到的AD采样值为Sad,采集电压Vc满足下列公式:
    Vc=5*Sad/1023;(2)
    通过(1)和(2)式,得到Vr与Sad的关系为:
    Vr=25*Sad/1023。
  3. 根据权利要求1所述的PWM控制电压的补偿方法,其特征在于:所述步骤S3中,将负载两端的实际工作电压Vr与目标电压Vt均放大10倍之后进行电压值比较。
  4. 根据权利要求1所述的PWM控制电压的补偿方法,其特征在于:所述步骤S3中,计时的设定值为10ms。
PCT/CN2016/077025 2015-04-24 2016-03-22 一种pwm控制电压的补偿方法 WO2016169377A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510199341.0A CN104808736B (zh) 2015-04-24 2015-04-24 一种pwm控制电压的补偿方法
CN201510199341.0 2015-04-24

Publications (1)

Publication Number Publication Date
WO2016169377A1 true WO2016169377A1 (zh) 2016-10-27

Family

ID=53693649

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/077025 WO2016169377A1 (zh) 2015-04-24 2016-03-22 一种pwm控制电压的补偿方法

Country Status (2)

Country Link
CN (1) CN104808736B (zh)
WO (1) WO2016169377A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104808736B (zh) * 2015-04-24 2016-04-13 深圳市振邦智能科技有限公司 一种pwm控制电压的补偿方法
CN106130558A (zh) * 2016-07-04 2016-11-16 从兴技术有限公司 基于pwm及电容充放电原理的da转换电路
CN108398976B (zh) * 2018-01-30 2019-11-08 昆明理工大学 一种基于脉宽调制生成高精度电压的方法
WO2022011536A1 (zh) * 2020-07-14 2022-01-20 深圳麦克韦尔科技有限公司 电子雾化装置、电子雾化装置的控制方法及计算机设备
CN112286338B (zh) * 2020-11-09 2023-05-05 维沃移动通信有限公司 芯片的控制方法、芯片的控制装置、电子设备及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5079498A (en) * 1991-03-26 1992-01-07 Vickers Systems Limited Digital pulse-width-modulation generator for current control
US5130565A (en) * 1991-09-06 1992-07-14 Xerox Corporation Self calibrating PWM utilizing feedback loop for adjusting duty cycles of output signal
CN101388614A (zh) * 2008-10-28 2009-03-18 上海沪工电焊机制造有限公司 基于dsp芯片的弧焊逆变控制方法
CN102882495A (zh) * 2011-07-15 2013-01-16 赛普拉斯半导体公司 用于脉波宽度调制的降低电磁干扰
CN104808736A (zh) * 2015-04-24 2015-07-29 深圳市振邦智能科技有限公司 一种pwm控制电压的补偿方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2827792B2 (ja) * 1993-01-29 1998-11-25 サンケン電気株式会社 帰還制御装置及び制御方法
US7994730B2 (en) * 2009-06-04 2011-08-09 Apple Inc. Pulse width modulation (PWM) closed loop LED current driver in an embedded system
CN102207740A (zh) * 2011-03-30 2011-10-05 河海大学常州校区 隔离型多路4-20mA电流信号输出电路
CN102280991A (zh) * 2011-08-15 2011-12-14 深圳市京泉华电子有限公司 一种交流纹波信号的滤除电路及方法
CN202502427U (zh) * 2011-12-02 2012-10-24 哈尔滨智木科技有限公司 基于单片机的脉冲宽度调制恒流源
CN203084590U (zh) * 2012-12-26 2013-07-24 佛山市顺德区瑞德电子实业有限公司 一种改进结构的pwm线性调压电路

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5079498A (en) * 1991-03-26 1992-01-07 Vickers Systems Limited Digital pulse-width-modulation generator for current control
US5130565A (en) * 1991-09-06 1992-07-14 Xerox Corporation Self calibrating PWM utilizing feedback loop for adjusting duty cycles of output signal
CN101388614A (zh) * 2008-10-28 2009-03-18 上海沪工电焊机制造有限公司 基于dsp芯片的弧焊逆变控制方法
CN102882495A (zh) * 2011-07-15 2013-01-16 赛普拉斯半导体公司 用于脉波宽度调制的降低电磁干扰
CN104808736A (zh) * 2015-04-24 2015-07-29 深圳市振邦智能科技有限公司 一种pwm控制电压的补偿方法

Also Published As

Publication number Publication date
CN104808736A (zh) 2015-07-29
CN104808736B (zh) 2016-04-13

Similar Documents

Publication Publication Date Title
WO2016169377A1 (zh) 一种pwm控制电压的补偿方法
US10241537B2 (en) Digital on-chip duty cycle monitoring device
TWI431259B (zh) 提供溫度與數位碼間線性關係的方法
TWI648606B (zh) System and method for frequency compensation of an instant clock system
US7636001B2 (en) Digital DLL circuit
CN108918980B (zh) 一种电容信号测量电路及测量方法
US7518423B2 (en) Digital DLL circuit for an interface circuit in a semiconductor memory
CN104270152B (zh) 用于电荷耦合流水线模数转换器的pvt不敏感共模电荷控制装置
TWI517588B (zh) 用於自動調整振盪器之電子裝置、方法及系統
US10686433B1 (en) Circuit operating speed detecting circuit
WO2017012435A1 (zh) 一种光伏发电系统最大功率点跟踪方法
JP6426543B2 (ja) アナログ/ディジタル変換器、放射線検出器および無線受信機
TW201413273A (zh) 以兩個相互垂直的分量相加合成的電池殘電量估測系統及其估測方法
US20220326090A1 (en) Voltage And Temperature Sensor For A Serializer/Deserializer Communication Application
CN109253099A (zh) 一种基站风扇控制方法及装置
US10107842B2 (en) Low jitter pulse output for power meter
CN110907807A (zh) 芯片电路功耗测量电路及方法、芯片
US11340272B2 (en) Apparatus and method for determining a power value of a target
US9683903B2 (en) Voltage and temperature sensor for a serializer/deserializer communication application
CN104300994B (zh) 低中频接收机的i/q失配补偿电路
TWI485974B (zh) 具有校正功能之驅動晶片及其應用之馬達驅動系統
TWI719551B (zh) 量化電路運作速度變化之測量電路
CN112504501B (zh) 多段式温度检测电路及温度检测方法
TWI679399B (zh) 晶片內建曲率校正架構及其方法
CN110850159A (zh) 一种降低温度对二极管检波器影响的装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16782525

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 22.02.2018)

122 Ep: pct application non-entry in european phase

Ref document number: 16782525

Country of ref document: EP

Kind code of ref document: A1