WO2016169340A1 - 频谱协调装置和方法、无线通信系统中的装置和方法 - Google Patents

频谱协调装置和方法、无线通信系统中的装置和方法 Download PDF

Info

Publication number
WO2016169340A1
WO2016169340A1 PCT/CN2016/075455 CN2016075455W WO2016169340A1 WO 2016169340 A1 WO2016169340 A1 WO 2016169340A1 CN 2016075455 W CN2016075455 W CN 2016075455W WO 2016169340 A1 WO2016169340 A1 WO 2016169340A1
Authority
WO
WIPO (PCT)
Prior art keywords
resource
systems
spectrum
resources
allocated
Prior art date
Application number
PCT/CN2016/075455
Other languages
English (en)
French (fr)
Inventor
郭欣
孙晨
魏宇欣
陈晋辉
Original Assignee
索尼公司
郭欣
孙晨
魏宇欣
陈晋辉
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 索尼公司, 郭欣, 孙晨, 魏宇欣, 陈晋辉 filed Critical 索尼公司
Priority to US15/565,717 priority Critical patent/US10499254B2/en
Priority to EP16782488.7A priority patent/EP3288329A4/en
Priority to JP2017554803A priority patent/JP6665868B2/ja
Priority to KR1020177033164A priority patent/KR20170139078A/ko
Publication of WO2016169340A1 publication Critical patent/WO2016169340A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1215Wireless traffic scheduling for collaboration of different radio technologies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling

Definitions

  • the present disclosure relates to the field of wireless communication technologies, and more particularly to a spectrum coordination apparatus and a spectrum coordination method for efficiently coordinating use of shared wireless transmission resources by multiple systems having different resource allocation granularities, and wireless in this case Apparatus and method in a communication system.
  • multi-system resource sharing provides the possibility of increasing system capacity from the perspective of increasing available spectrum
  • multi-system coexistence results in differences in spectrum partitioning and usage methods due to differences in RAT (Radio Access Technology) of each system.
  • RAT Radio Access Technology
  • these wireless access technologies also have different priorities for the use of the spectrum.
  • an object of the present disclosure is to provide a spectrum coordination apparatus and a spectrum coordination method for efficiently coordinating use of shared wireless transmission resources by a plurality of systems having different resource allocation granularities, and a wireless communication system in this case
  • the apparatus and method consider the difference in resource division and usage manner and the difference in usage priority caused by different wireless access technologies adopted by each system, thereby improving utilization efficiency of shared wireless transmission resources, and optimizing System performance.
  • a spectrum coordination apparatus for coordinating use of a shared wireless transmission resource by a plurality of systems
  • the spectrum coordination apparatus comprising: an acquisition unit configured to acquire usage of a shared wireless transmission resource a state; and an allocating unit configured to allocate a shared wireless transmission resource to the communication device based on an effect of the resource particles to be allocated of one of the plurality of systems on available resource particles of other systems in the plurality of systems according to the state of use, wherein The resource allocation granularity of one system is finer than the resource allocation granularity of other systems.
  • the allocating unit may also allocate a shared wireless transmission resource for the communication device of one system based on resource requests from communication devices of one of the plurality of systems.
  • the allocating unit may be further configured to make the resource particles to be allocated from such a manner that the sum of the available resource particles of other systems and the number of occupied resource particles is not less than the number of reserved resource particles of other systems. Allocating resources for a system's communication devices.
  • the allocating unit may be further configured to be from the resource particles to be allocated according to the usage status of the occupied resource particles of one system of the same resource particle corresponding to the other resource of the resource to be allocated Allocate resources for a system's communication devices.
  • the allocating unit may be further configured to determine the lifespan of the resources of the communication device assigned to one system based on the lifetime of the occupied resource particles of one system.
  • the resource request may include at least one of traffic demand, geographic location information, and resource usage priority.
  • the allocating unit may be further configured to allocate resources to communication devices of one system according to resource usage habits of other systems to reduce collisions with resource usage of other systems.
  • the allocating unit may preferentially allocate resources of other systems to the communication device with low probability of occupying the system.
  • the obtaining unit may be configured to acquire a usage state by at least one of: information interaction; spectrum sensing; and a broadcast query.
  • the usage state may include an occupied resource that shares a wireless transmission resource.
  • the usage state may further include a type of communication device occupying the occupied resource.
  • the usage state may further include the number of communication devices of one system occupying the occupied resource.
  • the spectrum coordination apparatus may further include: a resource division unit configured to divide the shared wireless transmission resource based on an influence of one system on resource availability of other systems, and the allocation unit may be further configured Allocating resources to the communication device according to the division of the shared wireless transmission resources.
  • the resource partitioning unit may divide the shared wireless transmission resource in such a manner that the resource particles of one system are aligned with the resource particles of other systems.
  • the spectrum coordination apparatus may be implemented in a base station of a system, and the spectrum coordination apparatus may further include: a receiving unit configured to receive a resource request of the communication device from one system; and a notification A unit configured to notify the communication device of a system of the allocated resources.
  • the receiving unit may also receive information about resources selected by the communication device of one system for use among the allocated resources.
  • one system may be a Long Term Evolution (LTE) system, and other systems may be one or more of a Wireless Local Area Network (WI-FI) system, a broadcast television system, a radar system, and an infrared system.
  • LTE Long Term Evolution
  • WI-FI Wireless Local Area Network
  • the resource allocation granularity of the LTE system may be based on a time-frequency resource block, and the resource allocation granularity of the WI-FI system may be based on a sub-channel having a predetermined bandwidth.
  • an apparatus in a wireless communication system comprising: a requesting unit configured to transmit a resource request to a spectrum coordination apparatus; and a receiving unit configured to receive a spectrum coordination apparatus response a resource allocated for the resource request; and a selection unit configured to select a resource to be used from the allocated resources according to the quality of service requirement,
  • the spectrum coordination device is configured to coordinate the use of the shared wireless transmission resource by the plurality of systems including the wireless communication system, and the allocated resource is a spectrum coordination device based on the wireless communication system to allocate resource particles to other systems in the plurality of systems
  • the resource allocation granularity of the wireless communication system is smaller than the resource allocation granularity of other systems.
  • an electronic device comprising one or more processors, the one or more processors being configurable to: obtain a usage status of a shared wireless transmission resource; and, depending on a state of use, The effect of the resource particles to be allocated based on one of the plurality of systems on the available resource particles of other systems in the plurality of systems allocates shared wireless transmission resources to the communication device, wherein the resource allocation granularity of one system is smaller than the resource allocation of other systems. The granularity is finer.
  • an electronic device comprising one or more processors, the one or more processors being configurable to: send a resource request to a spectrum coordination device; the receiving spectrum coordination device is responsive to a resource allocated by the resource request; and selecting a resource to be used from the allocated resources according to the quality of service requirement, wherein the spectrum coordination device is used to coordinate the use of the shared wireless transmission resource by the plurality of systems, and the allocated resource is The spectrum coordination device is allocated based on the influence of the resource particles to be allocated of one of the plurality of systems on the available resource particles of other systems in the plurality of systems, wherein the resource allocation granularity of one system is smaller than the resource allocation granularity of other systems.
  • a spectrum coordination method for coordinating use of a shared wireless transmission resource by a plurality of systems, the spectrum coordination method comprising: an obtaining step of acquiring usage of a shared wireless transmission resource a state, and an allocating step of allocating a shared wireless transmission resource to the communication device based on the usage state, based on the effect of the resource particles to be allocated of one of the plurality of systems on the available resource particles of the other systems in the plurality of systems, wherein the system The resource allocation granularity is finer than the resource allocation granularity of other systems.
  • a method in a wireless communication system comprising: a requesting step of transmitting a resource request to a spectrum coordination apparatus; and a receiving step of receiving a spectrum coordination apparatus in response to a resource request And an allocated resource; and a selecting step of selecting a resource to be used from the allocated resources according to a quality of service requirement, wherein the spectrum coordination device is configured to coordinate a plurality of systems including the wireless communication system to share the wireless transmission resource Used, and the allocated resources are allocated by the spectrum coordination device based on the influence of the resource particles to be allocated of the wireless communication system on the available resource particles of other systems in the plurality of systems, wherein the resource allocation granularity of the wireless communication system is higher than other systems The resource allocation granularity is fine.
  • the use of shared wireless transmission resources by multiple systems employing different wireless access technologies can be effectively coordinated, resource utilization efficiency is improved, and system performance is optimized.
  • FIG. 1A is an explanatory diagram showing an example of spectrum allocation and usage of different wireless access technologies, according to an embodiment of the present disclosure
  • 1B is an explanatory diagram showing a comparative example of different frequency band channel division methods of the WI-FI system
  • FIG. 2 is a block diagram showing a functional configuration example of a spectrum coordination device according to an embodiment of the present disclosure
  • 3(a) to 3(c) are explanatory diagrams illustrating examples of different resource allocation states of shared wireless transmission resources, according to an embodiment of the present disclosure
  • FIG. 4 is a block diagram showing a functional configuration example of a spectrum coordination device according to another embodiment of the present disclosure.
  • FIG. 5 is a block diagram showing a functional configuration example of a spectrum coordination device according to another embodiment of the present disclosure.
  • FIG. 6 is a block diagram showing a functional configuration example of an apparatus in a wireless communication system according to an embodiment of the present disclosure
  • FIG. 7 is a block diagram showing a functional configuration example of an apparatus in a wireless communication system according to another embodiment of the present disclosure.
  • FIG. 8 is a diagram showing the work of a device in a wireless communication system according to another embodiment of the present disclosure.
  • a block diagram of the example can be configured;
  • FIG. 9 is a flowchart showing a first example of a signaling interaction flow between a spectrum coordination device and a device in a wireless communication system, according to an embodiment of the present disclosure
  • FIG. 10 is a flowchart showing a second example of a signaling interaction flow between a spectrum coordination device and a device in a wireless communication system, according to an embodiment of the present disclosure
  • FIG. 11 is a flowchart showing a third example of a flow of signaling interaction between a spectrum coordination device and a device in a wireless communication system, according to an embodiment of the present disclosure
  • FIG. 12 is a flowchart illustrating a process example of a spectrum coordination method according to an embodiment of the present disclosure
  • FIG. 13 is a flowchart illustrating a process example of a method in a wireless communication system according to an embodiment of the present disclosure
  • FIG. 14 is a block diagram showing an example structure of a personal computer as an information processing device that can be employed in an embodiment of the present disclosure
  • FIG. 15 is a block diagram showing a first example of a schematic configuration of an evolved base station (eNB) to which the technology of the present disclosure may be applied;
  • eNB evolved base station
  • 16 is a block diagram showing a second example of a schematic configuration of an eNB to which the technology of the present disclosure may be applied;
  • 17 is a block diagram showing an example of a schematic configuration of a smartphone that can apply the technology of the present disclosure.
  • multi-system coexistence needs to first consider the difference in the way the wireless access technology allocates and uses the spectrum. This will be described below by taking WI-FI and LTE coexistence as an example.
  • embodiments of the present disclosure are not limited to the case where the two systems coexist, but may be applied to scenarios in which any two or more systems employing different wireless access technologies coexist.
  • frequency bands for broadcast television and frequency bands for radar communications are released for multi-system sharing, such as frequency bands for broadcast television and frequency bands for radar communications, so the techniques of the present disclosure are also applicable to, for example, broadcast television.
  • FIG. 1A is an explanatory diagram illustrating an example of spectrum allocation and usage of different wireless access technologies, according to an embodiment of the present disclosure.
  • the IEEE 802.11b/g standard operates in the 2.4 GHz band, the frequency range is 2.400 to 2.4835 GHz, and the total bandwidth is 83.5 M, which is divided into 14 subchannels, each subchannel having a width of 22 MHz.
  • the center frequency of adjacent subchannels is separated by 5 MHz.
  • There are overlapping frequencies of adjacent subchannels for example, subchannel 1 and subchannels 2, 3, 4, and 5 have frequency overlap), and only three subchannels (1, 6, and 11) do not overlap each other in the entire frequency band, and do not interfere with each other. .
  • the IEEE 802.11ac standard operates in the 5 GHz band, where each subchannel has a width of 20 MHz and there is no overlap between adjacent subchannels, as shown in FIG. 1B.
  • the division method of the 5 GHz band can be regarded as a special case of the 2.4 GHz band.
  • the channel division method in the WI-FI system is different in different frequency bands and different countries.
  • the 2.4 GHz frequency band and the 5 GHz frequency band are used as illustrations, and the method is equally applicable to other division modes. The following is only in the 2.4 GHz frequency band.
  • the WI-FI system is described as an example of a coarse-grained communication system.
  • the basic unit of the LTE system in the air interface resource allocation is a Physical Resource Block (PRB).
  • PRB Physical Resource Block
  • One PRB includes 12 consecutive subcarriers in the frequency domain and 7 consecutive regular OFDM symbol periods in the time domain. If the subcarrier spacing is 15 kHz, one physical resource block PRB corresponds to a radio resource having a bandwidth of 180 kHz and a duration of 0.5 ms.
  • the basic unit of resource allocation (ie, resource allocation granularity) of the WI-FI system is a subchannel with a bandwidth of 22 MHz
  • the basic unit of resource allocation of the LTE system is a time-frequency resource block with a bandwidth of 180 kHz, that is, two.
  • the basic unit of resource allocation of different systems is different, which also determines the way WI-FI system and LTE system occupy wireless resources.
  • the WI-FI system allocates a basic unit for a resource by using a subchannel, and needs to occupy an entire unused 22 MHz subchannel for communication when communicating
  • the LTE system allocates a basic unit for a resource by a physical resource block, and Only one full 180 kHz PRB is required for communication during communication.
  • a wireless communication system having a smaller resource allocation granularity has better resource allocation flexibility.
  • FIG. 2 is a block diagram showing a functional configuration example of a spectrum coordination device according to an embodiment of the present disclosure.
  • the spectrum coordination apparatus 200 may include an acquisition unit 202 and an allocation unit 204.
  • the Spectrum Coordinator (hereinafter also referred to as SC) 200 can be used to coordinate the use of shared wireless transmission resources by multiple systems. Functional configuration examples of the respective units will be described in detail below.
  • the obtaining unit 202 can be configured to acquire a usage status of the shared wireless transmission resource.
  • the allocating unit 204 can be configured to allocate a shared wireless transmission resource to the communication device based on the acquired usage state, based on the impact of the resource particles to be allocated of one of the plurality of systems on the available resource particles of other systems in the plurality of systems.
  • the resource allocation granularity of one system is finer than the resource allocation granularity of other systems.
  • allocation unit 204 may also allocate shared wireless transmission resources for the communication device based on resource requests from communication devices of one of the plurality of systems.
  • one system may be an LTE system, whose resource allocation granularity is based on a time-frequency resource block (for example, the above-mentioned physical resource block PRB), the resource particle is, for example, a PRB, and other systems may be a WI-FI system, broadcast television.
  • a time-frequency resource block for example, the above-mentioned physical resource block PRB
  • the resource particle is, for example, a PRB
  • other systems may be a WI-FI system, broadcast television.
  • the resource allocation granularity is based on a subchannel having a predetermined bandwidth (eg, a subchannel having a 22 MHz bandwidth in the 2.4 GHz band described above), resource particles For example, it is a subchannel.
  • LAA devices for the shared spectrum of the WI-FI system and the LTE system, hereinafter may also be referred to simply as The LAA spectrum, and devices supporting the LAA technology in the LTE system may also be referred to simply as LAA devices.
  • LAA devices for the LAA spectrum, the WI-FI system has a higher usage priority for the spectrum resource, so the use of the LAA spectrum by the WI-FI system should be prioritized in the actual allocation of resources.
  • this is merely an example, and the technology of the present disclosure can also be applied to a scenario in which a plurality of systems in which the priority of use of spectrum resources does not differ, in which case it is still possible to have a system pair having a finer resource allocation granularity.
  • a coarser resource allocation granularity affects the resource availability of the system to allocate shared spectrum resources.
  • the obtaining unit 202 can be configured to acquire the usage status by at least one of the following: information interaction; spectrum sensing; and broadcast query. How the acquisition unit 202 acquires the usage status of the LAA spectrum by the WI-FI device and the LAA device will be specifically described below.
  • the obtaining unit 202 may be configured to acquire the usage status of the LAA spectrum by the WI-FI device by: (1) one way is that the SC 200 performs information interaction with the spectrum management database of the WI-FI (for example, two Through the backbone network (backhaul), the spectrum management database contains real-time spectrum usage status of WI-FI devices in different geographical locations, and the corresponding spectrum usage status can be queried through the geographical location information; (2) another way is The SC200 itself has a spectrum sensing function, so that the acquiring unit 202 can detect whether the LAA band is occupied by the WI-FI device through spectrum sensing.
  • the SC200 itself has a spectrum sensing function, so that the acquiring unit 202 can detect whether the LAA band is occupied by the WI-FI device through spectrum sensing.
  • the spectrum sensor provided by the SC 200 can be distributed in the target management area, so that the acquiring unit 202 can The spectrum perceptron is used to obtain the situation that the LAA spectrum around each spectrum sensor is occupied by the WI-FI device; and (3) the other way is that the SC 200 can send status information to query the broadcast, and the WI-FI device receives the query. After the information, you can feedback your LAA spectrum usage status.
  • the end user is equipped with a multi-mode chip to support different wireless technologies.
  • Information exchange in addition, with the virtualization technology (for example, a virtual function network (Virtual Functional Network, VFN)) development, but also can realize the information interaction between different wireless access technology to use common virtualization platform.
  • VFN Virtual Functional Network
  • the obtaining unit 202 can be configured to acquire the usage status of the LAA spectrum by the LAA device by: (1) one way is information interaction, that is, the LAA device informs the SC 200 of the information using the spectrum and releasing the spectrum, so that The SC 200 maintains the state of use of the LAA band by the LAA device, and can use the Uu interface signaling of the LTE to perform information interaction, for example, through a physical uplink control channel (PUCCH) and a physical downlink control channel (PDCCH); and (2)
  • PUCCH physical uplink control channel
  • PDCCH physical downlink control channel
  • the usage status obtained here may include not only Which frequency bands of the LAA spectrum are occupied may also include the type of equipment occupying these bands (ie, WI-FI devices or LAA devices). Furthermore, where the LAA spectrum is occupied by the LAA device, the usage state may also include the number of LAA devices occupying the LAA spectrum.
  • the LAA device can share the same resource blocks of the LAA spectrum. These sharing scenarios include: sharing between cellular users and D2D (device to device) users from the same cell, and cellular users and D2D users from different cells. Sharing between combinations, or sharing between various combinations of cellular users and D2D users from different operators, and the like.
  • a resource request sent by a communication device (ie, a LAA device) in LTE to the SC 200 may be defined according to its own QoS (Quality of Service) requirements, and may include traffic demand, geographic location information, and resource usage priority. at least one.
  • the LAA device may include a traffic demand in the resource request to request the SC 200 for the amount of available spectrum; the LAA device may include its geographic location information in the resource request to obtain more accurate available spectrum information; moreover, if further The screening can be performed in the available spectrum, and the LAA device can also add resource usage priority information (for example, a spectrum sequence request) to its resource request, so that the SC 200 can sort the available spectrum according to the priority level, and the available spectrum sequence Notify the LAA device.
  • resource usage priority information for example, a spectrum sequence request
  • the resource request may also be a perceptual spectrum request, in which case the SC 200 may assign a perceptual spectrum set or a perceptual spectrum sequence to, for example, the LAA device to be aware of the assigned perceptual spectrum set or perceptual spectrum sequence by the LAA device. Whether each PRB is occupied.
  • the total amount of LAA spectrum is certain. The more spectrum the LAA device occupies, the less spectrum is available for the WI-FI device. Therefore, when allocating available spectrum resources to the LAA device, the total LAA spectrum occupied by the LAA device can be limited.
  • the amount and distribution to reduce the impact on future WI-FI devices because in this application scenario, the use of the LAA spectrum by the WI-FI device and the flexibility of resource allocation in the LTE system must be prioritized.
  • the WI-FI device needs to occupy the entire complete subchannel when actually using resources, even if the LAA device occupies the same amount of spectrum, the distribution will affect the available spectrum of the WI-FI device.
  • 3(a) to 3(c) are explanatory diagrams illustrating examples of different resource allocation states of shared wireless transmission resources (ie, LAA spectrum) according to an embodiment of the present disclosure. As shown in Figures 3(a) through 3(c), assume that a gray square represents a PRB for the same three PRBs assigned to the LAA device.
  • the three PRBs are continuously arranged to occupy the LAA spectrum, occupying the spectrum of the subchannel 1 of the WI-FI device (shown by the dashed line), but the spectrum of the subchannels 2 and 3 is not occupied, so The WI-FI device is used; in Figure 3(b), the three PRBs occupy the spectrum of the subchannels 1, 2 of the WI-FI device, so only the subchannel 3 can be used by the WI-FI device; c), the three PRBs occupy the spectrum of the subchannels 1, 2, and 3 of the WI-FI device, respectively, so there is no subchannel Can be used by WI-FI devices.
  • one of the prerequisites for selecting an available spectrum for the LAA device may be to reserve available resources for the WI-FI device. Therefore, preferably, the allocating unit 204 may be further configured such that the sum of the available resource particles of other systems and the number of occupied resource particles is not less than the number of reserved resource particles of other systems, from the resource particles to be allocated The communication device allocates resources.
  • the high priority of the WI-FI system for the LAA spectrum the need to reserve available resources for the WI-FI device is mainly due to the unfair resource allocation caused by the asymmetry of the resource allocation granularity of the two systems.
  • the successful transmission of the WI-FI system requires a sub-channel with a coarser granularity.
  • the sub-channel can be vacated for redistribution; the LTE system uses a fine-grained resource block for allocation, although Each resource block is set to a maximum duration such that the resource block has a chance to be vacated for reallocation, but there may be a case where all resource blocks corresponding to one subchannel always have at least one resource block occupied by the LAA device at any one time. That is, the subchannel is always occupied by the LAA device in part or in whole, so that the entire subchannel cannot be completely vacated and can be allocated to the WI-FI device.
  • the present invention solves this problem.
  • the fine-grained use quantity is larger than the coarse-grained use quantity, such as a glass empty bottle, the coarse-grained type is jujube, and the fine-grained Millet, the same glass empty bottle can be loaded with more millet than jujube.
  • the number of available subchannels reserved for the WI-FI device is Nres; while the reservation is satisfied, the impact on the WI-FI subchannel can be changed from small to large and the performance of the LAA device is high to low.
  • the available frequency bands are sequentially assigned to the LAA device.
  • the number of available subchannels to be reserved, Nres may also be dynamically changed. For example, the average reach of a WI-FI device varies at different times of the day and at different locations, so that available resources can be reserved for the WI-FI device to ensure its access rate based on the change.
  • the LAA spectrum can be divided into the following three categories:
  • the first type the idle frequency band, if occupied by the LAA device, does not increase the impact on the WI-FI subchannel;
  • the second category the idle frequency band, if occupied by the LAA device, will increase the impact on the WI-FI subchannel;
  • the third category the frequency band already occupied by the LAA device does not increase the impact on the WI-FI subchannel but needs to support resource multiplexing between the LAA devices and requires interference control.
  • the LAA spectrum may also include the fourth category, that is, a frequency band that has been occupied by the WI-FI device but is not fully used and allows other devices to access.
  • the fourth category that is, a frequency band that has been occupied by the WI-FI device but is not fully used and allows other devices to access.
  • the first type of resources have the highest priority, which does not increase the impact on the WI-FI subchannel and there is no inter-device interference.
  • the second type of resource has the lowest priority.
  • the third category of resources has the lowest priority in terms of efficiency.
  • the resource allocation granularity of the WI-FI system is greater than the resource allocation granularity of the LTE system.
  • it also allows other systems such as broadcast television systems, radar systems, and infrared systems to be included.
  • broadcast television systems, radar systems, and infrared systems When two systems coexist, it is necessary to consider the granularity of resource allocation granularity between the two systems when there are three systems or more.
  • the resource allocation granularity needs to be sorted, and corresponding selection and allocation are performed according to the sorting.
  • a certain system may also have priority use rights for shared resources, that is, considering its resource allocation granularity, it may be preferentially used according to its priority use right for shared resources. Share resource.
  • the start and end points of the WI-FI subchannel sequentially divide the LAA spectrum into a plurality of frequency bands, which are called unit frequency bands (5 MHz), and the resources in the same unit frequency band have the same influence on the WI-FI subchannels. of. Therefore, the above three categories can be further expressed as:
  • the second category the free cell band
  • the third category is the frequency band that has been occupied by LAA users.
  • the allocating unit 204 can allocate these three types of resources to the LAA device in any combination as long as the following conditions are met:
  • the allocating unit 204 may be further configured to allocate resources to the communication device according to resource usage habits of other systems to reduce resource usage collisions with other systems.
  • the allocating unit 204 preferentially allocates resources to the communication device that have low system occupancy probability.
  • the LAA device is allocated an available spectrum sequence (ie, the available spectrum sequence is arranged according to the use priority)
  • the state in which the WI-FI device occupies the LAA spectrum and its resource usage habits may be considered.
  • the selected spectral units ie, resource particles, such as PRBs
  • resources can be selected in sequence according to the above three types of resources. Only when one type of resources does not exist, or the selection still fails to meet the requirements of the LAA device, the next category is further selected;
  • the number of WI-FI subchannels can be sorted according to the unit frequency band from small to large, and the available spectrum is allocated to the LAA device in this order;
  • the spectrum elements (such as PRBs) are ordered from as few as the number of LAA devices already present, and the available spectrum is allocated to the LAA devices in this order.
  • the frequency band with a lower probability of being occupied by the WI-FI device can be preferentially selected, thereby reducing the overhead required for resource release for the WI-FI device.
  • the allocating unit 204 may be further configured to allocate the communication device from the resource particles to be allocated according to the usage status of the occupied resource particles of one system of the same resource particle corresponding to the other resource of the resource to be allocated. Resources.
  • the subchannel 1 of the WI-FI system includes the resource to be allocated PRB1 and the occupied resource particle PRB2 of the LTE system
  • the subchannel 2 of the WI-FI system includes the resource particle PRB3 to be allocated and the LTE system.
  • Resource particle PRB4 has been occupied. Due to The WI-FI device needs to occupy the entire subchannel in actual use, and therefore, when selecting the resources to be allocated to the LAA device from the resource particles to be allocated PRB1 and PRB3 according to the influence of the allocated resources on the WI-FI available subchannels, The usage status of the occupied resource particles PRB2 and PRB4 needs to be considered.
  • PRB3 can be preferentially assigned to the LAA device at the time of allocation.
  • PRB1 the resources of the original subchannel 1 will soon be released for use by the WI-FI device, and at this time, the subchannel 1 will continue to be occupied and cannot be used by the WI-FI device, thereby comparing the PRB3. The situation increases the impact on the WI-FI subchannel in the future.
  • the allocating unit 204 can be configured to determine the age of resources allocated to the communication device based on the lifetime of the occupied resource particles of a system.
  • the definition of the use period also provides an effective control method for releasing resources for the WI-FI.
  • the LAA device can automatically release the occupied resources when the usage period expires, thereby reducing the signaling overhead.
  • the usage period may be a preset fixed value Tmax, or may be dynamically selected according to the occupancy of the LAA device.
  • some cell bands currently have some PRBs already occupied by some LAA devices, and the maximum remaining usage time of all these PRBs is If the unit frequency band is released, the number of affected WI-FI subchannels can be reduced, and the maximum available time (ie, the service life) of the remaining available PRBs in the unit frequency band currently allocated to other LAA devices can be set.
  • the LAA device will occupy the LAA spectrum for the set period of use.
  • FIG. 4 is a block diagram showing a functional configuration example of a spectrum coordination device according to another embodiment of the present disclosure.
  • the spectrum coordination apparatus 400 may include an acquisition unit 402, a resource division unit 404, and an allocation unit 406.
  • the function configuration example of the obtaining unit 402 and the allocating unit 406 and the functions of the obtaining unit 202 and the allocating unit 204 described above with reference to FIG. 2 The configuration examples can be basically the same, and the description will not be repeated here. Only a functional configuration example of the resource division unit 404 will be described in detail below.
  • the resource partitioning unit 404 can be configured to partition the shared wireless transmission resources based on the impact of one system on the resource availability of other systems, such that the allocation unit 406 can be further configured to allocate resources to the communication devices based on the division of the shared wireless transmission resources.
  • the goal of spectrum partitioning is to minimize the impact of one system on the spectrum availability of other systems.
  • the so-called availability can be described as the number of resource particles that can be allocated. Specifically, when the spectrum partitioning strategy needs to ensure that any one resource particle of one system is occupied by the equipment of the system, the number of available resource particles of other systems is maximized.
  • resource partitioning unit 404 may partition shared wireless transmission resources in a manner that aligns resource particles of one system with resource particles of other systems to reduce the impact of one system on resource availability of other systems.
  • the result of the alignment is to divide 5 MHz of the intermediate frequency point interval of the WI-FI adjacent channel into 25 consecutive PRBs of LTE. In this way, the impact of the LTE system on the resource availability of the WI-FI system can be minimized when performing subsequent resource allocation.
  • the above spectrum coordination means can be implemented in a base station of a system.
  • the spectrum coordination apparatus can be implemented in an eNB (Evolved Base Station) in the LTE system.
  • the spectrum coordination device can be implemented, for example, as a Geolocation Data base in the ETSI RRS standard that provides available TV band resources for the WI-FI system.
  • FIG. 5 is a block diagram showing a functional configuration example of a spectrum coordination device according to another embodiment of the present disclosure.
  • the spectrum coordination apparatus 500 may include an acquisition unit 502, a reception unit 504, an allocation unit 506, and a notification unit 508.
  • the functional configuration example of the acquisition unit 502 and the distribution unit 506 is substantially the same as the functional configuration example of the acquisition unit 202 and the allocation unit 204 described above with reference to FIG. 2, and a description thereof will not be repeated here.
  • the receiving unit 504 can be configured to receive a resource request from a communication device of a system. Preferably, the receiving unit 504 can also receive information about resources selected by the communication device of one system for use in the allocated resources for the spectrum coordination device 500 to update and maintain, for example, the LAA. The state of use of the device on the LAA spectrum.
  • the notification unit 508 can be configured to notify the communication device of the allocated resources (eg, an available resource set or an available resource sequence, or a perceptual spectrum set or a perceptual spectrum sequence). Moreover, preferably, the notification unit 508 can also notify the notification device of the above determined lifetime, so that the communication device can communicate using the spectrum resource selected from the allocated resources within the lifetime.
  • the allocated resources eg, an available resource set or an available resource sequence, or a perceptual spectrum set or a perceptual spectrum sequence.
  • FIG. 6 is a block diagram showing a functional configuration example of an apparatus in a wireless communication system according to an embodiment of the present disclosure.
  • the apparatus 600 may include a request unit 602, a receiving unit 604, and a selection unit 606.
  • a request unit 602 may include a request unit 602 and a receiving unit 604.
  • a functional configuration example of each unit will be described in detail.
  • Request unit 602 can be configured to send a resource request to the spectrum coordination device described above.
  • the resource request can include at least one of traffic demand, geographic location information, and resource usage priority.
  • the spectrum coordination device is for coordinating the use of shared wireless transmission resources by a plurality of systems including the wireless communication system.
  • the receiving unit 604 can be configured to receive resources allocated by the spectrum coordination device in response to the resource request.
  • the allocated resources are allocated by the spectrum coordination device based on the influence of the resource particles to be allocated of the wireless communication system on the available resource particles of other systems in the plurality of systems, and the resource allocation granularity of the wireless communication system is smaller than that of other systems. Fine granularity.
  • the wireless communication system may be an LTE system, whose resource allocation granularity is based on a time-frequency resource block (for example, the above-mentioned physical resource block PRB), and other systems may be a WI-FI system, a broadcast television system, a radar system, and an infrared system. One or more of them, and for a WI-FI system, its resource allocation granularity is based on a subchannel having a predetermined bandwidth.
  • the receiving unit 604 also receives the lifetime of the allocated resources from the spectrum coordination device described above.
  • the selection unit 606 can be configured to select a resource to use from among the allocated resources in accordance with quality of service requirements. Specifically, for example, the selection unit 606 can be configured to randomly select a resource to be used from the allocated set of spectrum resources according to QoS requirements, or can sequentially select resources to be used from the allocated spectrum sequence.
  • the apparatus 600 may be located in a user equipment in an LTE system or may also be located in a base station or other infrastructure of a small cell, which is not limited in this disclosure.
  • FIG. 7 is a block diagram showing a functional configuration example of an apparatus in a wireless communication system according to another embodiment of the present disclosure.
  • the apparatus 700 may include a requesting unit 702, a receiving unit 704, a selecting unit 706, and a notifying unit 708.
  • the functional configuration example of the requesting unit 702, the receiving unit 704, and the selecting unit 706 is substantially the same as the functional configuration example of the requesting unit 602, the receiving unit 604, and the selecting unit 606 described above with reference to FIG. 6, and the description thereof will not be repeated here. Only a functional configuration example of the notification unit 708 will be described in detail below.
  • the notification unit 708 can be configured to notify the spectrum coordination device of the information about the resource to be used selected by the selection unit 706 for the spectrum coordination device to update and maintain, for example, the LAA device's usage status for the LAA spectrum.
  • the resource request may also be a spectrum sensing request, so that the spectrum coordination device allocates a perceptual spectrum set or a perceptual spectrum sequence according to the received spectrum sensing request.
  • the spectrum coordination device allocates a perceptual spectrum set or a perceptual spectrum sequence according to the received spectrum sensing request.
  • FIG. 8 is a block diagram showing a functional configuration example of an apparatus in a wireless communication system according to an embodiment of the present disclosure.
  • the apparatus 800 may include a requesting unit 802, a receiving unit 804, a sensing unit 806, and a selecting unit 808.
  • the functional configuration example of the requesting unit 802, the receiving unit 804, and the selecting unit 808 is substantially the same as the functional configuration example of the requesting unit 602, the receiving unit 604, and the selecting unit 606 described above with reference to FIG. 6, and the description thereof will not be repeated here. . Only a functional configuration example of the sensing unit 806 will be described in detail below.
  • Perception unit 806 can be configured to perceive the allocated resources. Specifically, for the perceptual spectrum set, the sensing unit 806 can perform sensing in a random order, and for the perceptual spectrum sequence, the sensing unit 806 can sequentially perform sensing according to the sequence of the sequence and determine whether the resource can be occupied according to the actual QoS requirement of the user. For the above-mentioned first-class and second-class resources, if it is confirmed by spectrum sensing that there are no other users on it, it can be determined that it can be occupied by the LAA device; for the third-type resource, the existing knowledge of the resource can be confirmed through spectrum sensing. Whether the LAA device's interference with the requesting LAA device is within an intolerable range to determine whether the resource is occupied.
  • Selection unit 808 can be further configured to select a resource to use from among the allocated resources based on the perceived outcome and in conjunction with the QoS requirements.
  • FIGS. 9 through 11 an example of a signaling interaction flow between the spectrum coordination device and the device in the wireless communication system according to an embodiment of the present disclosure will be described with reference to FIGS. 9 through 11.
  • the interaction between the SC and the LAA device is taken as an example, but the present disclosure is not limited thereto, and the LAA device may also be a communication device in other systems than the LTE system. To replace.
  • FIG. 9 is a flow chart showing a first example of a flow of signaling interaction between a spectrum coordination device and a device in a wireless communication system in accordance with an embodiment of the present disclosure.
  • the SC may be a functional module residing within the eNB, and the signaling interaction between the SC and the LAA device may, for example, use an LTE Uu interface.
  • step (1) the SC acquires the use state of the LAA spectrum as above.
  • step (2) the LAA device sends an available resource request to the SC, which can be transmitted using the PUCCH.
  • step (3) the SC may allocate an available spectrum set or an available spectrum sequence to the LAA device according to the manner described above, and send the available resource response to the LAA device in step (4) to notify the LAA device of the allocation.
  • the available spectrum set or available spectrum sequence and the lifetime of each PRB, the response can be transmitted using the PDCCH.
  • step (5) the LAA device may select the spectrum resource to be used in the available spectrum set or sequence according to the actual QoS requirement, and report the information of the selected used spectrum resource to in step (6).
  • SC for the SC to update and maintain the state of use of the LAA spectrum by the LAA device, the report can be transmitted using the PUCCH.
  • step (7) the LAA device can communicate using the selected spectrum resource for a specified period of use.
  • FIG. 10 is a flowchart illustrating a second example of a signaling interaction flow between a spectrum coordination device and a device in a wireless communication system, according to an embodiment of the present disclosure.
  • the SC may be a functional module residing within the eNB, and the signaling interaction between the SC and the LAA device may, for example, use an LTE Uu interface.
  • the signaling interaction process shown in FIG. 10 is basically the same as the signaling interaction process shown in FIG. 9, except that in step (2), the LAA device sends a sensing spectrum request to the SC, so that in step (3) The SC allocates a perceptual spectrum set or a perceptual spectrum sequence to the LAA device, and transmits the perceptual spectrum response to the LAA device in step (4), so that the LAA device combines the QoS requirements with the perceptual spectrum set or perception in step (5) The spectrum sequence is perceptual to select the spectrum resource to use. Processing in the remaining steps and processing in the corresponding steps in FIG. Basically the same, no longer repeated here.
  • FIG. 11 is a flowchart showing a third example of a signaling interaction flow between a spectrum coordination device and a device in a wireless communication system, according to an embodiment of the present disclosure.
  • the SC is in a core network (for example, an Evolved Packet Core (EPC) or a higher layer cloud to control LAA devices under multiple eNBs, and the SC and the eNB pass through the S1 interface.
  • EPC Evolved Packet Core
  • the information is exchanged, and the eNB and the LAA device exchange information through the Uu interface.
  • step (1) the SC acquires the LAA spectrum use state.
  • step (2) the LAA device sends a spectrum sensing request to the eNB, which can be transmitted using the PUCCH.
  • step (3) the eNB integrates the spectrum sensing requests of the plurality of LAA devices, that is, the spectrum sensing request of the LAA device is sent to the SC every predetermined time, so that the spectrum allocation mode is considered to be semi-static.
  • step (4) the eNB transmits the integrated spectrum sensing request to the SC through the S1 interface.
  • step (5) the SC allocates a perceptual spectrum set or a perceptual spectrum sequence in the above manner according to the request, and transmits a perceptual spectrum response to the eNB through the S1 interface in step (6) to notify the eNB of the allocated perceptual spectrum set. Or perceive the spectrum sequence and the lifetime of each PRB.
  • step (7) the eNB further allocates a perceptual spectrum set or a perceptual spectrum sequence to each LAA device, and transmits the allocation result to each LAA device by sensing the spectrum response in step (8), and the perceptual spectrum response may use PDCCH. To transfer.
  • step (9) the LAA device senses the perceptual spectrum set in a random order, or performs sensing according to the sequence of the perceptual spectrum sequence, and selects the used spectrum according to its actual QoS requirement, and then in step (10).
  • the spectrum information that it chooses to use is reported to the eNB and can be transmitted using the PUCCH.
  • step (11) the LAA device occupies the selected spectrum resource for communication during the lifetime.
  • the eNB integrates the spectrum information reported by each LAA device in step (12), and notifies the integrated information to the SC through the S1 interface in step (13) to update and maintain the LAA device's use status of the LAA spectrum by the SC. .
  • the integration operation of the eNB in the above steps (3) and (12) is optional, and the eNB may not need to integrate the information, but directly report to the SC after receiving the information from the LAA device.
  • the frequency at which the eNB applies to the SC for sensing the spectrum may be reduced, that is, according to its system capacity and user traffic volume to the SC. Apply for a spectrum and take a long time, then allocate the spectrum in the band for its LAA device for sensing and use during that time; re-apply for the new band and time limit for the next cycle.
  • the present disclosure also provides a spectrum coordination method.
  • An example of the process of the spectrum coordination method according to an embodiment of the present disclosure will be described below with reference to FIG.
  • FIG. 12 is a flowchart illustrating a process example of a spectrum coordination method according to an embodiment of the present disclosure.
  • the spectrum coordination method 1200 may include an acquisition step S1202 and an allocation step S1204.
  • the usage status of the shared wireless transmission resource can be acquired.
  • the shared wireless transmission resource may be allocated to the communication device according to the usage state, based on the influence of the resource particles to be allocated of one system on the available resource particles of other systems in the plurality of systems, wherein one system
  • the resource allocation granularity is finer than the resource allocation granularity of other systems.
  • one system may be an LTE system, and other systems may be one or more of a WI-FI system, a broadcast television system, a radar system, and an infrared system.
  • a specific resource allocation process refer to the description of the corresponding location in the foregoing device embodiment, which is not repeated here.
  • FIG. 13 is a flowchart illustrating a process example of a method in a wireless communication system, according to an embodiment of the present disclosure.
  • the method 1300 may include a requesting step S1302, a receiving step S1304, and a selecting step S1306.
  • a resource request can be sent to the spectrum coordination device.
  • the spectrum coordination device is for coordinating the use of shared wireless transmission resources by a plurality of systems including the wireless communication system.
  • the resources allocated by the spectrum coordination device in response to the resource request may be received.
  • the allocated resources are allocated by the spectrum coordination device based on the influence of the resource particles to be allocated of the wireless communication system on the available resource particles of other systems in the plurality of systems, and the resource allocation granularity of the wireless communication system is smaller than the resource allocation granularity of other systems. fine.
  • the resource to be used can be selected from the allocated resources according to the quality of service demand.
  • an electronic device can include one or more processors, the processor can be configured to perform the spectrum coordination method and wireless communication described above in accordance with an embodiment of the present disclosure. The method in the system.
  • machine-executable instructions in the storage medium and the program product according to the embodiments of the present disclosure may also be configured to perform the method corresponding to the apparatus embodiment described above, and thus the content not described in detail herein may refer to the previous corresponding The description of the location will not be repeated here.
  • a storage medium for carrying the above-described program product including machine-executable instructions is also included in the disclosure of the present invention.
  • the storage medium includes, but is not limited to, a floppy disk, an optical disk, a magneto-optical disk, a memory card, a memory stick, and the like.
  • a central processing unit (CPU) 1401 executes various processes in accordance with a program stored in a read only memory (ROM) 1402 or a program loaded from a storage portion 1408 to a random access memory (RAM) 1403.
  • ROM read only memory
  • RAM random access memory
  • the CPU 1401, the ROM 1402, and the RAM 1403 are connected to each other via a bus 1404.
  • Input/output interface 1405 is also coupled to bus 1404.
  • the following components are connected to the input/output interface 1405: an input portion 1406 including a keyboard, a mouse, etc.; an output portion 1407 including a display such as a cathode ray tube (CRT), a liquid crystal display (LCD), etc., and a speaker, etc.; a storage portion 1408 , including a hard disk or the like; and a communication portion 1409 including a network interface card such as a LAN card, a modem, and the like.
  • the communication section 1409 performs communication processing via a network such as the Internet.
  • Driver 1410 is also coupled to input/output interface 1405 as needed.
  • a removable medium 1411 such as a magnetic disk, an optical disk, a magneto-optical disk, a semiconductor memory or the like is mounted on the drive 1410 as needed, so that a computer program read therefrom is installed into the storage portion 1408 as needed.
  • a program constituting the software is installed from a network such as the Internet or a storage medium such as the detachable medium 1411.
  • such a storage medium is not limited to the removable medium 1411 shown in FIG. 14 in which a program is stored and distributed separately from the device to provide a program to the user.
  • Examples of the detachable medium 1411 include a magnetic disk (including a floppy disk (registered trademark)), an optical disk (including a compact disk read only memory (CD-ROM) and a digital versatile disk (DVD)), and a magneto-optical disk (including a mini disk (MD) (registered trademark) )) and semiconductor memory.
  • the storage medium may be a ROM 1402, a hard disk included in the storage portion 1408, and the like, in which programs are stored, and distributed to the user together with the device containing them.
  • the eNB 1500 is a block diagram showing a first example of a schematic configuration of an eNB to which the technology of the present disclosure may be applied.
  • the eNB 1500 includes one or more antennas 1510 and base station equipment 1520.
  • the base station device 1520 and each antenna 1510 may be connected to each other via an RF cable.
  • Each of the antennas 1510 includes a single or multiple antenna elements, such as multiple antenna elements included in a multiple input multiple output (MIMO) antenna, and is used by the base station device 1520 to transmit and receive wireless signals.
  • the eNB 1500 can include multiple antennas 1510.
  • multiple antennas 1510 can be compatible with multiple frequency bands used by eNB 1500.
  • Figure 15 An example is shown in which the eNB 1500 includes multiple antennas 1510, but the eNB 1500 may also include a single antenna 1510.
  • the base station device 1520 includes a controller 1521, a memory 1522, a network interface 1523, and a wireless communication interface 1525.
  • the controller 1521 can be, for example, a CPU or a DSP, and operates various functions of higher layers of the base station device 1520. For example, controller 1521 generates data packets based on data in signals processed by wireless communication interface 1525 and communicates the generated packets via network interface 1523. The controller 1521 can bundle data from a plurality of baseband processors to generate bundled packets and deliver the generated bundled packets. The controller 1521 may have a logical function that performs control such as radio resource control, radio bearer control, mobility management, admission control, and scheduling. This control can be performed in conjunction with nearby eNBs or core network nodes.
  • the memory 1522 includes a RAM and a ROM, and stores programs executed by the controller 1521 and various types of control data such as a terminal list, transmission power data, and scheduling data.
  • Network interface 1523 is a communication interface for connecting base station device 1520 to core network 1524. Controller 1521 can communicate with a core network node or another eNB via network interface 1523. In this case, the eNB 1500 and the core network node or other eNBs may be connected to each other through a logical interface such as an S1 interface and an X2 interface. Network interface 1523 may also be a wired communication interface or a wireless communication interface for wireless backhaul lines. If network interface 1523 is a wireless communication interface, network interface 1523 can use a higher frequency band for wireless communication than the frequency band used by wireless communication interface 1525.
  • the wireless communication interface 1525 supports any cellular communication schemes, such as Long Term Evolution (LTE) and LTE-Advanced, and provides wireless connectivity to terminals located in cells of the eNB 1500 via the antenna 1510.
  • Wireless communication interface 1525 may typically include, for example, baseband (BB) processor 1526 and RF circuitry 1527.
  • the BB processor 1526 can perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and performs layers (eg, L1, Medium Access Control (MAC), Radio Link Control (RLC), and Packet Data Convergence Protocol (PDCP)) Various types of signal processing.
  • BB processor 1526 may have some or all of the logic functions described above.
  • the BB processor 1526 may be a memory that stores a communication control program, or a module that includes a processor and associated circuitry configured to execute the program.
  • the update program can cause the function of the BB processor 1526 to change.
  • the module can be a card or blade that is inserted into a slot of base station device 1520. Alternatively, the module can also be a chip mounted on a card or blade.
  • the RF circuit 1527 may include, for example, a mixer, a filter, and an amplifier, and transmits and receives a wireless signal via the antenna 1510.
  • the wireless communication interface 1525 can include a plurality of BB processors 1526.
  • multiple BB processors 1526 can be compatible with multiple frequency bands used by eNB 1500.
  • the wireless communication interface 1525 can include a plurality of RF circuits 1527.
  • multiple RF circuits 1527 can be compatible with multiple antenna elements.
  • FIG. 15 illustrates an example in which the wireless communication interface 1525 includes a plurality of BB processors 1526 and a plurality of RF circuits 1527, the wireless communication interface 1525 may also include a single BB processor 1526 or a single RF circuit 1527.
  • the eNB 1630 includes one or more antennas 1640, base station devices 1650, and RRHs 1660.
  • the RRH 1660 and each antenna 1640 may be connected to each other via an RF cable.
  • the base station device 1650 and the RRH 1660 can be connected to each other via a high speed line such as a fiber optic cable.
  • Each of the antennas 1640 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna) and is used by the RRH 1660 to transmit and receive wireless signals.
  • the eNB 1630 can include multiple antennas 1640.
  • multiple antennas 1640 can be compatible with multiple frequency bands used by eNB 1630.
  • FIG. 16 illustrates an example in which the eNB 1630 includes multiple antennas 1640, the eNB 1630 may also include a single antenna 1640.
  • the base station device 1650 includes a controller 1651, a memory 1652, a network interface 1653, a wireless communication interface 1655, and a connection interface 1657.
  • the controller 1651, the memory 1652, and the network interface 1653 are the same as the controller 1521, the memory 1522, and the network interface 1523 described with reference to FIG.
  • the wireless communication interface 1655 supports any cellular communication scheme (such as LTE and LTE-Advanced) and provides wireless communication to terminals located in sectors corresponding to the RRH 1660 via the RRH 1660 and the antenna 1640.
  • Wireless communication interface 1655 can generally include, for example, BB processor 1656.
  • the BB processor 1656 is identical to the BB processor 1526 described with reference to FIG. 15 except that the BB processor 1656 is connected to the RF circuit 1664 of the RRH 1660 via the connection interface 1657.
  • wireless communication interface 1655 can include a plurality of BB processors 1656.
  • multiple BB processors 1656 can be compatible with multiple frequency bands used by eNB 1630.
  • FIG. 16 illustrates an example in which the wireless communication interface 1655 includes a plurality of BB processors 1656, the wireless communication interface 1655 can also include a single BB processor 1656.
  • connection interface 1657 is an interface for connecting the base station device 1650 (wireless communication interface 1655) to the RRH 1660.
  • the connection interface 1657 can also be a communication module for communicating the base station device 1650 (wireless communication interface 1655) to the above-described high speed line of the RRH 1660.
  • the RRH 1660 includes a connection interface 1661 and a wireless communication interface 1663.
  • connection interface 1661 is an interface for connecting the RRH 1660 (wireless communication interface 1663) to the base station device 1650.
  • the connection interface 1661 may also be a communication module for communication in the above high speed line.
  • Wireless communication interface 1663 transmits and receives wireless signals via antenna 1640.
  • Wireless communication interface 1663 can generally include, for example, RF circuitry 1664.
  • the RF circuit 1664 can include, for example, a mixer, a filter, and an amplifier, and transmits and receives wireless signals via the antenna 1640.
  • the wireless communication interface 1663 can include a plurality of RF circuits 1664.
  • multiple RF circuits 1664 can support multiple antenna elements.
  • FIG. 16 illustrates an example in which the wireless communication interface 1663 includes a plurality of RF circuits 1664, the wireless communication interface 1663 may also include a single RF circuit 1664.
  • the acquisition unit described by using FIGS. 2, 4, and 5 and the receiving unit 504 and the notification unit 508 described using FIG. 5 may be used by the wireless communication interface 1525.
  • wireless communication interface 1655 and/or wireless communication interface 1663 is implemented.
  • At least a portion of the functionality of the spectrum coordination device can also be implemented by controller 1521 and controller 1651.
  • FIG. 17 is a block diagram showing an example of a schematic configuration of a smartphone 1700 to which the technology of the present disclosure can be applied.
  • the smart phone 1700 includes a processor 1701, a memory 1702, a storage device 1703, an external connection interface 1704, an imaging device 1706, a sensor 1707, a microphone 1708, an input device 1709, a display device 1710, a speaker 1711, a wireless communication interface 1712, and one or more An antenna switch 1715, one or more antennas 1716, a bus 1717, a battery 1718, and an auxiliary controller 1719.
  • the processor 1701 may be, for example, a CPU or a system on chip (SoC), and controls the functions of the application layer and the other layers of the smartphone 1700.
  • the memory 1702 includes a RAM and a ROM, and stores data and programs executed by the processor 1701.
  • the storage device 1703 may include a storage medium such as a semiconductor memory and a hard disk.
  • the external connection interface 1704 is an interface for connecting an external device such as a memory card and a universal serial bus (USB) device to the smart phone 1700.
  • USB universal serial bus
  • the imaging device 1706 includes an image sensor such as a charge coupled device (CCD) and a complementary metal oxide semiconductor (CMOS), and generates a captured image.
  • Sensor 1707 can include a set of sensors, such as a measurement sensor, a gyro sensor, a geomagnetic sensor, and an acceleration sensor.
  • the microphone 1708 converts the sound input to the smartphone 1700 into an audio signal.
  • the device 1709 includes, for example, a touch sensor, a keypad, a keyboard, a button, or a switch configured to detect a touch on the screen of the display device 1710, and receives an operation or information input from a user.
  • the display device 1710 includes screens such as a liquid crystal display (LCD) and an organic light emitting diode (OLED) display, and displays an output image of the smartphone 1700.
  • the speaker 1711 converts the audio signal output from the smartphone 1700 into sound.
  • the wireless communication interface 1712 supports any cellular communication scheme (such as LTE and LTE-Advanced) and performs wireless communication.
  • Wireless communication interface 1712 may typically include, for example, BB processor 1713 and RF circuitry 1714.
  • the BB processor 1713 can perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and performs various types of signal processing for wireless communication.
  • the RF circuit 1714 may include, for example, a mixer, a filter, and an amplifier, and transmits and receives a wireless signal via the antenna 1716.
  • the wireless communication interface 1712 can be a chip module on which the BB processor 1713 and the RF circuit 1714 are integrated. As shown in FIG.
  • the wireless communication interface 1712 can include a plurality of BB processors 1713 and a plurality of RF circuits 1714.
  • FIG. 17 illustrates an example in which the wireless communication interface 1712 includes a plurality of BB processors 1713 and a plurality of RF circuits 1714, the wireless communication interface 1712 may also include a single BB processor 1713 or a single RF circuit 1714.
  • wireless communication interface 1712 can support additional types of wireless communication schemes, such as short-range wireless communication schemes, near field communication schemes, and wireless local area network (LAN) schemes.
  • the wireless communication interface 1712 can include a BB processor 1713 and RF circuitry 1714 for each wireless communication scheme.
  • Each of the antenna switches 1715 switches the connection destination of the antenna 1716 between a plurality of circuits included in the wireless communication interface 1712, such as circuits for different wireless communication schemes.
  • Each of the antennas 1716 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna) and is used by the wireless communication interface 1712 to transmit and receive wireless signals.
  • smart phone 1700 can include multiple antennas 1716.
  • FIG. 17 illustrates an example in which smart phone 1700 includes multiple antennas 1716, smart phone 1700 may also include a single antenna 1716.
  • smart phone 1700 can include an antenna 1716 for each wireless communication scheme.
  • the antenna switch 1715 can be omitted from the configuration of the smartphone 1700.
  • the bus 1717 includes a processor 1701, a memory 1702, a storage device 1703, an external connection interface 1704, an imaging device 1706, a sensor 1707, a microphone 1708, an input device 1709,
  • the display device 1710, the speaker 1711, the wireless communication interface 1712, and the auxiliary controller 1719 are connected to each other.
  • Battery 1718 provides power to various blocks of smart phone 1700 shown in FIG. 17 via a feeder, which is partially shown as a dashed line in the figure.
  • the secondary controller 1719 operates the minimum required function of the smartphone 1700, for example, in a sleep mode.
  • the request unit, the receiving unit, and the notification unit described by using FIGS. 6 to 8 can be realized by the wireless communication interface 1712.
  • the wireless communication interface 1712 At least a portion of the functionality of devices 600, 700, and 800 can also be implemented by processor 1701 or auxiliary controller 1719.
  • a plurality of functions included in one unit in the above embodiment may be implemented by separate devices.
  • a plurality of functions implemented by a plurality of units in the above embodiments may be implemented by separate devices, respectively.
  • one of the above functions may be implemented by a plurality of units. Needless to say, such a configuration is included in the technical scope of the present disclosure.
  • the steps described in the flowcharts include not only processes performed in time series in the stated order, but also processes performed in parallel or individually rather than necessarily in time series. Further, even in the step of processing in time series, it is needless to say that the order can be appropriately changed.

Abstract

公开了一种频谱协调装置和方法、无线通信系统中的装置和方法,该频谱协调装置用于协调多个系统对共享无线传输资源的使用,其包括:获取单元,被配置成获取共享无线传输资源的使用状态;以及分配单元,被配置成根据使用状态,基于多个系统中的一个系统的待分配资源粒子对多个系统中的其它系统的可用资源粒子的影响为通信设备分配共享无线传输资源,其中,一个系统的资源分配粒度比其它系统的资源分配粒度细。根据本公开的实施例,可以有效地协调使用不同无线访问技术的多个系统对共享无线传输资源的使用,提高资源利用效率,优化系统性能。

Description

频谱协调装置和方法、无线通信系统中的装置和方法 技术领域
本公开涉及无线通信技术领域,更具体地,涉及一种用于有效地协调具有不同资源分配粒度的多个系统对共享无线传输资源的使用的频谱协调装置和频谱协调方法以及该情况下的无线通信系统中的装置和方法。
背景技术
随着计算机和通信技术的迅猛发展,用户设备、业务需求以及使用场景的数量都将以指数级数的速度递增,进一步激化了无线业务需求与无线频谱资源之间的矛盾。传统的排它式频谱使用被证明是一种低效的资源使用方式。随着越来越多的新频谱资源从原有业务中被释放出来,成为可供多系统共享的动态访问资源,为共享系统的扩容提供了可能。各标准组织竞相从各技术角度出发制定相应共享准则,例如,3GPP组织的LTE(Long-Term Evolution,长期演进)-LAA(License-Assisted Access,授权辅助接入)工作组以及IEEE的802.19工作组,以期实现高效的共享。
尽管多系统的资源共享从增加可用频谱的角度为系统容量的增加提供了可能,但是多系统共存由于各个系统的RAT(Radio Access Technology,无线访问技术)的不同而导致频谱划分和使用方法存在差异,同时这些无线访问技术对于频谱的使用的优先级也存在差异。目前尚未有技术对于不同RAT共享频段的使用差异进行协调以提高共享频谱对不同RAT用户的准入容量以及保证使用优先级,这将导致共享频段的低效使用,甚至破坏不同优先级的RAT对该频段的使用权限。
发明内容
在下文中给出了关于本公开的简要概述,以便提供关于本公开的某些方面的基本理解。但是,应当理解,这个概述并不是关于本公开的穷举性概述。它并不是意图用来确定本公开的关键性部分或重要部分,也不是意图用来限定本公开的范围。其目的仅仅是以简化的形式给出关于本公开的某些概念,以此作为稍后给出的更详细描述的前序。
鉴于以上问题,本公开的目的是提供一种用于有效地协调具有不同资源分配粒度的多个系统对共享无线传输资源的使用的频谱协调装置和频谱协调方法以及该情况下的无线通信系统的装置和方法,其考虑了由于各个系统所采用的不同无线访问技术所导致的资源划分和使用方式的差异性以及使用优先级的差异性,从而提高了对共享无线传输资源的利用效率,优化了系统性能。
根据本公开的一方面,提供了一种频谱协调装置,其用于协调多个系统对共享无线传输资源的使用,该频谱协调装置可包括:获取单元,被配置成获取共享无线传输资源的使用状态;以及分配单元,被配置成根据使用状态,基于多个系统中的一个系统的待分配资源粒子对多个系统中的其它系统的可用资源粒子的影响为通信设备分配共享无线传输资源,其中,一个系统的资源分配粒度比其它系统的资源分配粒度细。
根据本公开的优选实施例,分配单元还可基于来自多个系统中的一个系统的通信设备的资源请求而为一个系统的通信设备分配共享无线传输资源。
根据本公开的优选实施例,分配单元可进一步被配置成以使得其它系统的可用资源粒子与已占用资源粒子的数量之和不小于其它系统的预留资源粒子数量的方式,从待分配资源粒子中为一个系统的通信设备分配资源。
根据本公开的另一优选实施例,分配单元可进一步被配置成根据与待分配资源粒子对应于其它系统的同一资源粒子的、一个系统的已占用资源粒子的使用状况,从待分配资源粒子中为一个系统的通信设备分配资源。
根据本公开的另一优选实施例,分配单元可进一步被配置成根据一个系统的已占用资源粒子的使用期限而确定分配给一个系统的通信设备的资源的使用期限。
根据本公开的另一优选实施例,资源请求可包括业务量需求、地理位置信息和资源使用优先级中的至少一个。
根据本公开的另一优选实施例,分配单元可进一步被配置成根据其它系统的资源使用习惯而为一个系统的通信设备分配资源,以减少与其它系统的资源使用碰撞。
根据本公开的另一优选实施例,分配单元可优先为一个系统的通信设备分配其它系统占用概率低的资源。
根据本公开的另一优选实施例,获取单元可被配置成通过以下方式中的至少一种来获取使用状态:信息交互;频谱感知;以及广播查询。
根据本公开的另一优选实施例,使用状态可包括共享无线传输资源的被占用资源。
根据本公开的另一优选实施例,使用状态还可包括占用被占用资源的通信设备的类型。
根据本公开的另一优选实施例,在占用被占用资源的通信设备的类型为一个系统的通信设备的情况下,使用状态还可包括占用被占用资源的一个系统的通信设备的数量。
根据本公开的另一优选实施例,频谱协调装置还可包括:资源划分单元,被配置成基于一个系统对其它系统的资源可用性的影响对共享无线传输资源进行划分,并且分配单元可进一步被配置成根据共享无线传输资源的划分而为通信设备分配资源。
根据本公开的另一优选实施例,资源划分单元可以以一个系统的资源粒子与其它系统的资源粒子对齐的方式来划分共享无线传输资源。
根据本公开的另一优选实施例,频谱协调装置可在一个系统的基站中实现,并且该频谱协调装置还可包括:接收单元,被配置成接收来自一个系统的通信设备的资源请求;以及通知单元,被配置成将所分配的资源通知给一个系统的通信设备。
根据本公开的另一优选实施例,接收单元还可接收关于一个系统的通信设备在所分配的资源中选择使用的资源的信息。
根据本公开的另一优选实施例,一个系统可以是长期演进(LTE)系统,并且其它系统可以是无线局域网(WI-FI)系统、广播电视系统、雷达系统和红外系统中的一个或多个。
根据本公开的另一优选实施例,LTE系统的资源分配粒度可基于时频资源块,并且WI-FI系统的资源分配粒度可基于具有预定带宽的子信道。
根据本公开的另一方面,还提供了一种无线通信系统中的装置,该装置可包括:请求单元,被配置成向频谱协调装置发送资源请求;接收单元,被配置成接收频谱协调装置响应于资源请求而分配的资源;以及选择单元,被配置成根据服务质量需求而从所分配的资源中选择要使用的资源, 其中,频谱协调装置用于协调包括无线通信系统的多个系统对共享无线传输资源的使用,并且所分配的资源是频谱协调装置基于无线通信系统的待分配资源粒子对多个系统中的其它系统的可用资源粒子的影响而分配的,其中,无线通信系统的资源分配粒度比其它系统的资源分配粒度细。
根据本公开的另一方面,还提供了一种电子设备,包括一个或多个处理器,这一个或多个处理器可被配置成:获取共享无线传输资源的使用状态;以及根据使用状态,基于多个系统中的一个系统的待分配资源粒子对多个系统中的其它系统的可用资源粒子的影响为通信设备分配共享无线传输资源,其中,一个系统的资源分配粒度比其它系统的资源分配粒度更细。
根据本公开的另一方面,还提供了一种电子设备,包括一个或多个处理器,这一个或多个处理器可被配置成:向频谱协调装置发送资源请求;接收频谱协调装置响应于资源请求而分配的资源;以及根据服务质量需求而从所分配的资源中选择要使用的资源,其中,频谱协调装置用于协调多个系统对共享无线传输资源的使用,并且所分配的资源是频谱协调装置基于多个系统中的一个系统的待分配资源粒子对多个系统中的其它系统的可用资源粒子的影响而分配的,其中,一个系统的资源分配粒度比其它系统的资源分配粒度细。
根据本公开的另一方面,还提供了一种频谱协调方法,用于协调多个系统对共享无线传输资源的使用,该频谱协调方法可包括:获取步骤,用于获取共享无线传输资源的使用状态;以及分配步骤,根据使用状态,基于多个系统中的一个系统的待分配资源粒子对多个系统中的其它系统的可用资源粒子的影响为通信设备分配共享无线传输资源,其中,一个系统的资源分配粒度比其它系统的资源分配粒度细。
根据本公开的另一方面,还提供了一种无线通信系统中的方法,该方法包括:请求步骤,用于向频谱协调装置发送资源请求;接收步骤,用于接收频谱协调装置响应于资源请求而分配的资源;以及选择步骤,用于根据服务质量需求而从所分配的资源中选择要使用的资源,其中,频谱协调装置用于协调包括无线通信系统的多个系统对共享无线传输资源的使用,并且所分配的资源是频谱协调装置基于无线通信系统的待分配资源粒子对多个系统中的其它系统的可用资源粒子的影响而分配的,其中,无线通信系统的资源分配粒度比其它系统的资源分配粒度细。
根据本公开的其它方面,还提供了用于实现上述根据本公开的方法的 计算机程序代码和计算机程序产品以及其上记录有该用于实现上述根据本公开的方法的计算机程序代码的计算机可读存储介质。
根据本公开的实施例,可以有效地协调采用不同无线访问技术的多个系统对共享无线传输资源的使用,提高资源利用效率,并优化系统性能。
在下面的说明书部分中给出本公开实施例的其它方面,其中,详细说明用于充分地公开本公开实施例的优选实施例,而不对其施加限定。
附图说明
本公开可以通过参考下文中结合附图所给出的详细描述而得到更好的理解,其中在所有附图中使用了相同或相似的附图标记来表示相同或者相似的部件。所述附图连同下面的详细说明一起包含在本说明书中并形成说明书的一部分,用来进一步举例说明本公开的优选实施例和解释本公开的原理和优点。其中:
图1A是示出根据本公开的实施例的不同无线访问技术的频谱分配和使用方式的示例的说明图;
图1B是示出WI-FI系统的不同频段信道划分方法的对比示例的说明图;
图2是示出根据本公开的实施例的频谱协调装置的功能配置示例的框图;
图3(a)至图3(c)是示出根据本公开的实施例的共享无线传输资源的不同资源分配状态的示例的说明图;
图4是示出根据本公开的另一实施例的频谱协调装置的功能配置示例的框图;
图5是示出根据本公开的另一实施例的频谱协调装置的功能配置示例的框图;
图6是示出根据本公开的实施例的无线通信系统中的装置的功能配置示例的框图;
图7是示出根据本公开的另一实施例的无线通信系统中的装置的功能配置示例的框图;
图8是示出根据本公开的另一实施例的无线通信系统中的装置的功 能配置示例的框图;
图9是示出根据本公开的实施例的频谱协调装置与无线通信系统中的装置之间的信令交互流程的第一示例的流程图;
图10是示出根据本公开的实施例的频谱协调装置与无线通信系统中的装置之间的信令交互流程的第二示例的流程图;
图11是示出根据本公开的实施例的频谱协调装置与无线通信系统中的装置之间的信令交互流程的第三示例的流程图;
图12是示出根据本公开的实施例的频谱协调方法的过程示例的流程图;
图13是示出根据本公开的实施例的无线通信系统中的方法的过程示例的流程图;
图14是作为本公开的实施例中可采用的信息处理设备的个人计算机的示例结构的框图;
图15是示出可以应用本公开的技术的演进型基站(eNB)的示意性配置的第一示例的框图;
图16是示出可以应用本公开的技术的eNB的示意性配置的第二示例的框图;以及
图17是示出可以应用本公开的技术的智能电话的示意性配置的示例的框图。
具体实施方式
在下文中将结合附图对本公开的示范性实施例进行描述。为了清楚和简明起见,在说明书中并未描述实际实施方式的所有特征。然而,应该了解,在开发任何这种实际实施例的过程中必须做出很多特定于实施方式的决定,以便实现开发人员的具体目标,例如,符合与系统及业务相关的那些限制条件,并且这些限制条件可能会随着实施方式的不同而有所改变。此外,还应该了解,虽然开发工作有可能是非常复杂和费时的,但对得益于本公开内容的本领域技术人员来说,这种开发工作仅仅是例行的任务。
在此,还需要说明的一点是,为了避免因不必要的细节而模糊了本公开,在附图中仅仅示出了与根据本公开的方案密切相关的设备结构和/或 处理步骤,而省略了与本公开关系不大的其它细节。
以下将参照图1至图17详细描述本公开的实施例。
应指出,多系统共存需要首先考虑各自的无线访问技术对于频谱的分配方式和使用方式的差异。下面将以WI-FI和LTE共存为例对此进行描述。然而,应理解,本公开的实施例并不限于这两种系统共存的情况,而是可以应用于采用不同无线访问技术的任意两个或更多个系统共存的场景。例如,在美国和欧洲,越来越多的频段被释放出来用于多系统共享,例如用于广播电视的频段以及用于雷达通信的频段,因此本公开的技术也可以适用于以例如广播电视系统或者雷达系统替代以下实施例描述的WI-FI系统而与LTE系统共存的场景或者其它多个资源分配粒度不对称的系统共存场景(例如作为细粒度系统的WI-FI系统与作为粗粒度系统的广播电视系统之间共存的场景)。
首先,将参照图1A描述根据本公开的实施例的不同无线访问技术的频谱分配和使用方式的示例。图1A是示出根据本公开的实施例的不同无线访问技术的频谱分配和使用方式的示例的说明图。
如图1A所示,对于WI-FI系统,IEEE 802.11b/g标准工作在2.4GHz频段,频率范围为2.400至2.4835GHz,共83.5M带宽,划分为14个子信道,每个子信道宽度为22MHz,相邻子信道的中心频点间隔5MHz。相邻的多个子信道存在频率重叠(如子信道1与子信道2、3、4、5有频率重叠),整个频段内只有3个子信道(1、6、11)互不重叠,互不干扰。另一方面,IEEE 802.11ac标准工作在5GHz频段,该频段上每个子信道宽度为20MHz,且相邻子信道间没有重叠,如图1B所示。当把5GHz频段的相邻子信道的中心频点间隔设为与其子信道带宽相等时,5GHz频段的划分方法可以看作是2.4GHz频段的特例。需要说明的是,WI-FI系统中的信道划分方法在不同频段不同国家各有差异,这里以2.4GHz频段和5GHz频段作为示意,本方法对于其它划分方式同样适用,下面仅以2.4GHz频段的WI-FI系统作为粗粒度的通信系统为例进行说明。
此外,如图1A所示,LTE系统在空中接口资源分配基本单位是物理资源块(Physical Resource Block,PRB)。1个PRB在频域上包括12个连续子载波,在时域上包括7个连续的常规OFDM符号周期。若子载波间隔为15kHz,则1个物理资源块PRB对应的是带宽为180kHz、时长为0.5ms的无线资源。
从图1A可以看出,WI-FI系统的资源分配基本单位(即,资源分配粒度)是带宽为22MHz的子信道,LTE系统的资源分配基本单位是带宽为180kHz的时频资源块,即两个系统的资源分配基本单位是不同的,这也决定了WI-FI系统和LTE系统对无线资源占用的方式是不同的。具体地,例如,WI-FI系统以子信道为资源分配基本单位,并且在通信时需要占用整个未被使用的22MHz的子信道进行通信,而LTE系统以物理资源块为资源分配基本单位,并且在通信时只需要占用一个完整的180kHz的PRB进行通信。一般地,在多系统共存的场景下进行频谱协调时,具有较小的资源分配粒度的无线通信系统具有更好的资源分配灵活性。
接下来,将参照图2描述根据本公开的实施例的频谱协调装置的功能配置示例。图2是示出根据本公开的实施例的频谱协调装置的功能配置示例的框图。
如图2所示,根据本实施例的频谱协调装置200可包括获取单元202和分配单元204。该频谱协调装置(Spectrum Coordinator,下文中也简称为SC)200可用于协调多个系统对共享无线传输资源的使用。下面将分别详细描述各个单元的功能配置示例。
获取单元202可被配置成获取共享无线传输资源的使用状态。
分配单元204可被配置成根据所获取的使用状态,基于多个系统中的一个系统的待分配资源粒子对多个系统中的其它系统的可用资源粒子的影响为该通信设备分配共享无线传输资源,其中一个系统的资源分配粒度比其它系统的资源分配粒度细。优选地,分配单元204还可基于来自多个系统中的一个系统的通信设备的资源请求而为该通信设备分配共享无线传输资源。
优选地,作为示例,一个系统可以是LTE系统,其资源分配粒度基于时频资源块(例如,上述物理资源块PRB),资源粒子例如为PRB,并且其它系统可以是WI-FI系统、广播电视系统、雷达系统和红外系统中的一个或多个,并且对于WI-FI系统,其资源分配粒度基于具有预定带宽的子信道(例如,上述2.4GHz频段的具有22MHz带宽的子信道),资源粒子例如为子信道。应理解,尽管这里以LTE系统和WI-FI系统的共存为例来描述本公开的技术,但是本公开不限于此,显然本公开的技术可以应用其它两个或更多个系统共存的情况。
此外,对于WI-FI系统和LTE系统的共享频谱,下文中也可简称为 LAA频谱,并且LTE系统中的支持LAA技术的设备也可简称为LAA设备。另外,还应指出,在该示例中,对于LAA频谱,WI-FI系统对该频谱资源具有较高的使用优先级,因此在实际分配资源时应当优先保证WI-FI系统对LAA频谱的使用。然而,这仅是示例,并且本公开的技术也可以应用于对频谱资源的使用优先级不存在差别的多个系统共存的场景,此时仍可基于具有更精细的资源分配粒度的系统对具有较粗的资源分配粒度的系统的资源可用性的影响来分配共享频谱资源。
优选地,获取单元202可被配置成通过以下方式中的至少一种来获取使用状态:信息交互;频谱感知;以及广播查询。下面将分别具体描述获取单元202如何获取WI-FI设备和LAA设备对LAA频谱的使用状态。
具体地,获取单元202可被配置成通过以下方式来获取WI-FI设备对LAA频谱的使用状态:(1)一种方式是SC 200与WI-FI的频谱管理数据库进行信息交互(例如,两者通过主干网(backhaul)互联),该频谱管理数据库包含不同地理位置的WI-FI设备的实时频谱使用状况,通过地理位置信息可以查询到对应的频谱使用状况;(2)另一种方式是SC200本身具有频谱感知功能,从而获取单元202能够通过频谱感知来检测LAA频段是否被WI-FI设备占用,进一步地,SC 200配备的频谱感知器可以分布在目标管理区域内,从而获取单元202能够通过这些频谱感知器来获取各个频谱感知器周围的LAA频谱被WI-FI设备占用的情况;以及(3)另一种方式是SC 200可以发送状态信息查询广播,WI-FI设备在收到查询信息后,可以反馈自己的LAA频谱使用状态,例如终端用户配备了多模芯片,从而可以支持不同无线技术的信息交互,此外,随着虚拟化技术(例如,虚拟功能网络(Virtual Functional Network,VFN))的发展,也可以使用共有的虚拟化平台实现不同无线访问技术之间的信息交互。
另外,获取单元202可被配置成通过以下方式来获取LAA设备对LAA频谱的使用状态:(1)一种方式为信息交互,即,LAA设备将使用频谱和释放频谱的信息告知SC 200,以便SC 200维护LAA设备对LAA频段的使用状态,可以利用LTE的Uu接口信令例如通过物理上行控制信道(PUCCH)和物理下行控制信道(PDCCH)进行信息交互;以及(2)同样,也可以通过如上述频谱感知方法获取LAA频谱被LAA设备占用的情况。
为了更精确地实现频谱资源分配,这里所获取的使用状态不仅可包括 LAA频谱的哪些频段被占用,还可包括占用这些频段的设备的类型(即,是WI-FI设备还是LAA设备)。此外,在LAA频谱被LAA设备占用的情况下,该使用状态还可包括占用LAA频谱的LAA设备的数量。LAA设备可以共享LAA频谱的相同资源块,这些共享情形包括:来自同一小区的蜂窝用户与D2D(device to device,设备到设备)用户之间的共享,来自不同小区的蜂窝用户与D2D用户各种组合之间的共享,或者来自不同运营商的蜂窝用户与D2D用户各种组合之间的共享,等等。
LTE中的通信设备(即,LAA设备)向SC 200发送的资源请求可根据其自身的QoS(服务质量)需求而进行限定,并且可包括业务量需求、地理位置信息和资源使用优先级中的至少一个。例如,LAA设备可在资源请求中包括业务量需求以向SC 200请求可用频谱的数量;LAA设备可在资源请求中包括其地理位置信息以获得更精准的可用频谱信息;此外,如果希望进一步在可用频谱中进行筛选,LAA设备还可在其资源请求中附加资源使用优先级信息(例如,频谱序列请求),从而SC 200可根据优先级的高低而对可用频谱进行排序,并且将可用频谱序列通知给LAA设备。应指出,该资源请求也可以是感知频谱请求,在该情况下,SC 200可以为例如LAA设备分配感知频谱集合或感知频谱序列,以由LAA设备感知所分配的感知频谱集合或感知频谱序列中的各个PRB是否被占用。
LAA频谱的总量一定,LAA设备占用的频谱越多,则WI-FI设备的可用频谱就越少,因此,在为LAA设备分配可用频谱资源时,可通过限制LAA设备占用的LAA频谱的总量及分布来减小对未来WI-FI设备的影响,这是由于在该应用场景下必须优先保证WI-FI设备对LAA频谱的使用以及LTE系统中的资源分配的灵活性。此外,由于WI-FI设备在实际使用资源时需要占用整个完整的子信道,所以即使LAA设备占用的频谱数量相同,分布不同也会影响WI-FI设备的可用频谱数量。图3(a)至图3(c)是示出根据本公开的实施例的共享无线传输资源(即,LAA频谱)的不同资源分配状态的示例的说明图。如图3(a)至图3(c)所示,假设一个灰色方块代表一个PRB,对于同样的分配给LAA设备的三个PRB。在图3(a)中,三个PRB连续排列占用LAA频谱,占用了WI-FI设备的子信道1的频谱(虚线所示),但子信道2和3的频谱没有被占用,因此可以被WI-FI设备使用;在图3(b)中,3个PRB占用了WI-FI设备的子信道1,2的频谱,因此仅子信道3可以被WI-FI设备使用;而在图3(c)中,3个PRB分别占用了WI-FI设备的子信道1,2,3的频谱,因此没有子信道 可以被WI-FI设备使用。
因此,基于上述,为LAA设备选择可用频谱的前提之一可以是为WI-FI设备预留可用资源。因此,优选地,分配单元204可进一步被配置成以使得其它系统的可用资源粒子与已占用资源粒子的数量之和不小于其它系统的预留资源粒子数量的方式,从待分配资源粒子中为通信设备分配资源。
应指出,如上所述,WI-FI系统对LAA频谱的高使用优先级,需要为WI-FI设备预留可用资源主要是由于两个系统在资源分配粒度上的不对称造成的资源分配不公平:WI-FI系统成功传输需要独占粒度较粗的子信道,当达到其传输的最大占用时长,可以空出该子信道以重新分配;LTE系统采用了较细粒度的资源块进行分配,尽管对每个资源块设定了最大时长使得该资源块有机会空出来以重新分配,但是可能存在一个子信道内对应的所有资源块在任何一个时刻总存在至少一个资源块被LAA设备占用的情形,即该子信道一直被LAA设备部分或全部占用,从而导致整个子信道无法完全空出来从而能够分配给WI-FI设备。本发明解决了这个问题。可以理解,对于同一个通信频谱,在被粗粒度和细粒度的系统使用时,细粒度的使用数量大于粗粒度的使用数量,诸如一个玻璃空瓶,粗粒度的为大枣,细粒度的为小米,同一个玻璃空瓶可以装载的小米数量要大于大枣的数量。粗粒度的系统的每个资源粒子对应的细粒度系统的资源粒子的数目越多,从而更可能受其影响,因此当两个系统资源分配粒度差异越大,本发明对提高频谱利用率和保证系统间的资源分配公平性的效果越好。具体地,假设为WI-FI设备预留的可用子信道数为Nres;在满足该预留的同时,可按照对WI-FI子信道的影响从小到大以及LAA设备的性能从高到低的顺序选择可用频段分配给LAA设备。此外,预留的可用子信道数Nres也可以是动态变化的。例如,在一天中的不同时段和不同位置,WI-FI设备的平均到达量有所变化,因此可以根据该变化为WI-FI设备预留可用资源以保证其接入率。
根据对WI-FI子信道的影响以及是否被LAA设备占用,可以将LAA频谱分成以下3类:
第一类:空闲频段,如果被LAA设备占用不会增加对WI-FI子信道的影响;
第二类:空闲频段,如果被LAA设备占用会增加对WI-FI子信道的影响;以及
第三类:已被LAA设备占用的频段,不会增加对WI-FI子信道的影响但需要支持LAA设备间的资源复用并且需要进行干扰控制。
尽管在本公开的实施例中主要讨论以上三种类型的LAA频谱,但是LAA频谱还可包括第四类,即,已被WI-FI设备占用但是未被全部使用且允许其它设备接入的频段,当为LAA设备分配这类频段时不会增加对WI-FI子信道的影响,但是需要考虑LAA设备是否被授权使用该资源,以及所授权的使用该资源的原则。
从以上所划分的LAA频谱的种类可以看出,第一类资源的优先级最高,其不会增加对WI-FI子信道的影响且不存在设备间干扰。从对WI-FI子信道的影响来看,第二类资源的优先级最低。此外,从使用效率来看,第三类资源的优先级最低。在实际选择这三类资源时,需要结合实际的需求以及来自LAA设备的资源请求综合进行考虑。
可以理解的是,为了便于说明,在本公开中描述了具有LTE系统和WI-FI系统的示例场景,并且WI-FI系统的资源分配粒度大于LTE系统的资源分配粒度。然而,同时也允许其他系统诸如广播电视系统、雷达系统和红外系统中包括在其中,在有两个系统并存时需要考虑两个系统之间的资源分配粒度的精细程度,当有三个系统或者更多个系统并存时,则需要对资源分配粒度进行排序,并且根据排序进行相应的选取和分配。
此外,可以理解的是,在实施当中,某一系统也可以具有对共享资源的优先使用权,即,在考虑其资源分配粒度的同时,根据其对共享资源的优先使用权而可以优先使用该共享资源。
如图1A所示,WI-FI子信道的起点和终点依次将LAA频谱划分成若干个频段,称为单元频段(5MHz),同一个单元频段内的资源对WI-FI子信道的影响是相同的。因此,以上三类可进一步表示为:
第一类,空闲频段,且和某个已经被LAA设备占用的频段处于同一个单元频段;
第二类,空闲单元频段;以及
第三类,已被LAA用户占用的频段。
分配单元204可以将这三类资源以任意组合的方式分配给LAA设备,只要满足以下条件:
在第一类中,按照LAA设备的QoS需求,选择足够的可用频谱分配 给LAA设备;
在第二类中,由于此类资源会新增对WI-FI子信道的影响,所以需要保证选择之后剩余可用的WI-FI子信道数与已经被WI-FI占用的子信道数之和不小于Nres;以及
在第三类中,只要支持LAA设备间的资源复用,则可以选择此类资源给新的LAA设备,但需要有干扰控制。
优选地,分配单元204可进一步被配置成根据其它系统的资源使用习惯而为通信设备分配资源,以减少与其它系统的资源使用碰撞。作为优选示例,分配单元204优先为通信设备分配其它系统占用概率低的资源。
具体来说,如果为LAA设备分配可用频谱序列(即,该可用频谱序列是按照使用优先级而排列的),则可以考虑WI-FI设备占用LAA频谱的状态和其资源使用习惯(如经常占用某几个子信道或者通常不使用某几个子信道)以减少碰撞概率。基于此对上述三种类型进行进一步约束,这样选择的频谱单元(即资源粒子,如PRB)按照顺序就形成了可用频谱序列:
首先可以按照上述三类资源依次选择资源,只有当一类资源不存在,或者选择完毕仍然不能满足LAA设备的需求时才进一步选择下一类;
在第二类中,可以按照单元频段影响WI-FI子信道的个数从少到多为其排序,并按照此顺序为LAA设备分配可用频谱;以及
在第三类中,按照其上已经存在的LAA设备的个数从少到多为频谱单元(如PRB)排序,并按照此顺序为LAA设备分配可用频谱。
此外,可以优先选择被WI-FI设备占用概率较低的频段,从而可以减少为WI-FI设备进行资源释放所需的开销。
此外,应指出,可以理解,与LTE系统的待分配资源粒子处于同一个子信道内(更具体地,例如同一个单元频段内)的已占用资源粒子对资源分配也存在影响。因此,优选地,分配单元204可进一步被配置成根据与待分配资源粒子对应于其它系统的同一资源粒子的、一个系统的已占用资源粒子的使用状况,从待分配资源粒子中为通信设备分配资源。
具体地,作为示例,假设WI-FI系统的子信道1包括LTE系统的待分配资源粒子PRB1和已占用资源粒子PRB2,并且WI-FI系统的子信道2包括LTE系统的待分配资源粒子PRB3和已占用资源粒子PRB4。由于 WI-FI设备在实际使用时需要占用整个子信道,因此在根据所分配的资源对WI-FI可用子信道的影响从待分配资源粒子PRB1和PRB3中选择要分配给LAA设备的资源时,还需要考虑已占用资源粒子PRB2和PRB4的使用状况。例如,假设PRB2已被占用了较长时间并且其使用期限快要到期,而PRB4被占用的时间较短并且其剩余使用时间还较长,则在分配时可以优先选择PRB3分配给LAA设备。反之,如果选择PRB1,本来子信道1的资源很快将被释放可供WI-FI设备使用,而此时子信道1将被继续占用而无法为WI-FI设备使用,从而相比于选择PRB3的情况增加了未来对WI-FI子信道的影响。
进一步优选地,分配单元204可被配置成根据一个系统的已占用资源粒子的使用期限而确定分配给通信设备的资源的使用期限。
具体来说,例如,为了避免某部分LAA频段被LAA设备一直占用从而影响WI-FI设备使用LAA频段的优先性以及兼顾资源使用的公平性,需要为占用LAA频段的LAA设备定义使用期限。此外,使用期限的定义还提供了为WI-FI释放资源的有效控制方法,LAA设备可以在使用期限到期时自动释放占用的资源,从而减少了信令开销。该使用期限可以是某个预设的固定值Tmax,也可以根据LAA设备的占用情况动态选择。
例如,某个单元频段当前有部分PRB已被一些LAA设备占用,所有这些PRB的最大剩余使用时间为
Figure PCTCN2016075455-appb-000001
而该单元频段释放出去可以减少被影响的WI-FI子信道数,则该单位频段内的其余可用PRB当前分配给其它LAA设备的最大可用时间(即,使用期限)可以设为
Figure PCTCN2016075455-appb-000002
从而LAA设备将在设定的使用期限内占用LAA频谱。
接下来,将参照图4描述根据本公开的另一实施例的频谱协调装置的功能配置示例。图4是示出根据本公开的另一实施例的频谱协调装置的功能配置示例的框图。
如图4所示,根据该实施例的频谱协调装置400可包括获取单元402、资源划分单元404和分配单元406。其中,获取单元402和分配单元406的功能配置示例与以上参照图2描述的获取单元202和分配单元204的功 能配置示例基本上相同,在此不再重复描述。下面将仅详细描述资源划分单元404的功能配置示例。
资源划分单元404可被配置成基于一个系统对其它系统的资源可用性的影响对共享无线传输资源进行划分,从而分配单元406可进一步被配置成根据共享无线传输资源的划分而为通信设备分配资源。
频谱划分的目标是尽可能减少一个系统对其它系统的频谱可用性的影响。所谓的可用性可以描述为可分配的资源粒子的个数。具体地说,频谱划分策略需要保证一个系统的任意一个资源粒子被该系统的设备占用时,其它系统的可用资源粒子数量达到最大。
优选地,作为示例,资源划分单元404可以以使得一个系统的资源粒子与其它系统的资源粒子对齐的方式来划分共享无线传输资源,以减少一个系统对其他系统的资源可用性的影响。
如图1A所示,在WI-FI系统和LTE系统共存的场景中,对齐的结果为将WI-FI相邻信道的中间频点间隔的5MHz划分为LTE的连续25个PRB。这样,在进行后续的资源分配时,可以尽可能地减少LTE系统对WI-FI系统的资源可用性的影响。
应指出,上述频谱协调装置可在一个系统的基站中实现。具体地,频谱协调装置可在LTE系统中的eNB(演进型基站)中实现。在上述的WI-FI系统与广播电视系统共存的场景中,频谱协调装置可以例如实现为ETSI RRS标准中为WI-FI系统提供可用电视频段资源的地理位置数据库(Geolocation Data base)。接下来将参照图5描述该情况下的频谱协调装置的功能配置示例。
图5是示出根据本公开的另一实施例的频谱协调装置的功能配置示例的框图。
如图5所示,根据该实施例的频谱协调装置500可包括获取单元502、接收单元504、分配单元506和通知单元508。其中,获取单元502和分配单元506的功能配置示例与以上参照图2描述的获取单元202和分配单元204的功能配置示例基本上相同,在此不再重复其描述。接下来将仅详细描述接收单元504和通知单元508的功能配置示例。
接收单元504可被配置成接收来自一个系统的通信设备的资源请求。优选地,接收单元504还可接收关于一个系统的通信设备在所分配的资源中选择使用的资源的信息,以供频谱协调装置500更新和维护例如LAA 设备对LAA频谱的使用状态。
通知单元508可被配置成将所分配的资源(例如,可用资源集合或可用资源序列,或者感知频谱集合或感知频谱序列)通知给通信设备。此外,优选地,通知单元508还可将以上确定的使用期限通知给通知设备,从而通信设备可在该使用期限内使用从所分配的资源中选择的频谱资源进行通信。
图6是示出根据本公开的实施例的无线通信系统中的装置的功能配置示例的框图。
如图6所示,根据本实施例的装置600可包括请求单元602、接收单元604和选择单元606。接下来将详细描述各个单元的功能配置示例。
请求单元602可被配置成向上述频谱协调装置发送资源请求。如上所述,该资源请求可包括业务量需求、地理位置信息和资源使用优先级中的至少一个。该频谱协调装置用于协调包括该无线通信系统的多个系统对共享无线传输资源的使用。
接收单元604可被配置成接收频谱协调装置响应于资源请求而分配的资源。所分配的资源是频谱协调装置基于无线通信系统的待分配资源粒子对多个系统中的其它系统的可用资源粒子的影响而分配的,并且该无线通信系统的资源分配粒度比其它系统的资源分配粒度细。优选地,该无线通信系统可以是LTE系统,其资源分配粒度基于时频资源块(例如,上述物理资源块PRB),并且其它系统可以是WI-FI系统、广播电视系统、雷达系统和红外系统中的一个或多个,并且对于WI-FI系统,其资源分配粒度基于具有预定带宽的子信道。
优选地,接收单元604还接收来自上述频谱协调装置的所分配的资源的使用期限。
选择单元606可被配置成根据服务质量需求而从所分配的资源中选择要使用的资源。具体地,例如,选择单元606可被配置成根据QoS需求而从所分配的频谱资源集合中随机地选择要使用的资源,或者可从所分配的频谱序列中顺次选择要使用的资源。
应理解,装置600可位于LTE系统中的用户设备中或者也可位于小小区的基站或者其它基础设施中,本公开对此不作限制。
图7是示出根据本公开的另一实施例的无线通信系统中的装置的功能配置示例的框图。
如图7所示,根据该实施例的装置700可包括请求单元702、接收单元704、选择单元706和通知单元708。其中,请求单元702、接收单元704和选择单元706的功能配置示例与以上参照图6描述的请求单元602、接收单元604和选择单元606的功能配置示例基本上相同,在此不再重复描述。以下将仅详细描述通知单元708的功能配置示例。
通知单元708可被配置成将关于选择单元706选择的要使用的资源的信息通知给频谱协调装置,以供频谱协调装置更新和维护例如LAA设备对LAA频谱的使用状态。
应指出,上述资源请求也可以是频谱感知请求,从而频谱协调装置根据所接收的频谱感知请求而分配感知频谱集合或感知频谱序列。以下将参照图8描述该情况下的无线通信系统中的装置的功能配置示例。
图8是示出根据本公开的实施例的无线通信系统中的装置的功能配置示例的框图。
如图8所示,根据本实施例的装置800可包括请求单元802、接收单元804、感知单元806和选择单元808。其中,请求单元802、接收单元804和选择单元808的功能配置示例与以上参照图6描述的请求单元602、接收单元604和选择单元606的功能配置示例基本上相同,在此不再重复其描述。下面将仅详细描述感知单元806的功能配置示例。
感知单元806可被配置成对所分配的资源进行感知。具体地,对于感知频谱集合,感知单元806可按照随机顺序进行感知,而对于感知频谱序列,则感知单元806可按照该序列的顺序依次进行感知并根据自己的实际QoS需求确定是否可占用该资源:对于上述第一类和第二类资源,如果通过频谱感知确认其上没有其它用户,即可确定可供LAA设备占用;对于第三类资源,可以通过频谱感知确认该类资源上已有的LAA设备对发出请求的LAA设备的干扰是否在可忍受的范围内,以确定是否占用该资源。
选择单元808可进一步被配置成根据感知结果并结合QoS需求而从所分配的资源中选择要使用的资源。
应理解,尽管以上描述了根据本公开的实施例的频谱协调装置和无线通信系统中的装置的功能配置示例,但是应理解,这仅是示例而非限制,并且本领域技术人员可根据本公开的原理对以上实施例进行修改,例如可对各个实施例中的功能模块进行添加、删除和/或组合等,并且这样的修改均落入本公开的范围内。
与上述描述的装置实施例对应的,将参照图9至图11描述根据本公开的实施例的频谱协调装置与无线通信系统中的装置之间的信令交互流程的示例。应指出,在以下描述的实施例中,以SC与LAA设备之间的交互为例进行描述,但是本公开不限于此,并且LAA设备也可以由除LTE系统之外的其它系统中的通信设备来替代。
图9是示出据本公开的实施例的频谱协调装置与无线通信系统中的装置之间的信令交互流程的第一示例的流程图。
在图9的示例中,SC可以为驻留在eNB内的一个功能模块,并且SC与LAA设备之间的信令交互例如可以使用LTE Uu接口。
如图9所示,首先,在步骤(1)中,SC如上获取LAA频谱的使用状态。接下来,在步骤(2)中,LAA设备向SC发送可用资源请求,该请求可使用PUCCH来传输。在步骤(3)中,SC可根据以上描述的方式为LAA设备分配可用频谱集合或可用频谱序列,并且在步骤(4)中将可用资源响应而发送给LAA设备,以通知LAA设备所分配的可用频谱集合或可用频谱序列以及各个PRB的使用期限,该响应可以使用PDCCH来传输。接下来,在步骤(5)中,LAA设备可根据实际QoS需求而在可用频谱集合或序列中选择要使用的频谱资源,并且在步骤(6)中将所选择使用的频谱资源的信息报告给SC,以供SC更新和维护LAA设备对LAA频谱的使用状态,该报告可使用PUCCH来传输。最后,在步骤(7)中,LAA设备可使用所选择的频谱资源在所规定的使用期限内进行通信。
接下来,将参照图10描述根据本公开的实施例的频谱协调装置与无线通信系统中的装置之间的信令交互流程的第二示例。图10是示出根据本公开的实施例的频谱协调装置与无线通信系统中的装置之间的信令交互流程的第二示例的流程图。
在图10的示例中,SC可以为驻留在eNB内的一个功能模块,并且SC与LAA设备之间的信令交互例如可以使用LTE Uu接口。
图10所示的信令交互流程与图9所示的信令交互流程基本上相同,不同之处仅在于,在步骤(2)中,LAA设备向SC发送感知频谱请求,从而在步骤(3)中SC为LAA设备分配感知频谱集合或感知频谱序列,并且在步骤(4)中将感知频谱响应发送给LAA设备,从而LAA设备在步骤(5)中结合QoS需求对该感知频谱集合或感知频谱序列进行感知以选择要使用的频谱资源。其余步骤中的处理与图9中的相应步骤中的处理 基本上相同,在此不再重复。
接下来,将参照图11描述根据本公开的实施例的频谱协调装置与无线通信系统中的装置之间的信令交互流程的第三示例。图11是示出根据本公开的实施例的频谱协调装置与无线通信系统中的装置之间的信令交互流程的第三示例的流程图。
在图11的示例中,SC处在核心网(例如,核心分组网演进(Evolved Packet Core,EPC))或者更高层的云端以控制多个eNB下的LAA设备,SC与eNB之间通过S1接口交互信息,并且eNB与LAA设备之间通过Uu接口交互信息。
如图11所示,首先,在步骤(1)中,SC获取LAA频谱使用状态。接下来,在步骤(2)中,LAA设备向eNB发送频谱感知请求,可以使用PUCCH进行传输。在步骤(3)中,eNB将多个LAA设备的频谱感知请求进行整合,即,每隔预定时间才将LAA设备的频谱感知请求发送给SC,因此可以认为这种频谱分配方式是半静态的。接下来,在步骤(4)中,eNB通过S1接口将整合的频谱感知请求发送给SC。在步骤(5)中,SC根据该请求以上述方式分配感知频谱集合或感知频谱序列,并且在步骤(6)中通过S1接口向eNB发送感知频谱响应,以向eNB通知所分配的感知频谱集合或感知频谱序列以及各个PRB的使用期限。在步骤(7)中,eNB进一步将感知频谱集合或感知频谱序列分配给各个LAA设备,并且在步骤(8)中通过感知频谱响应将分配结果发送给各个LAA设备,该感知频谱响应可使用PDCCH来传输。接下来,在步骤(9)中,LAA设备对感知频谱集合按照随机顺序进行感知,或者按照感知频谱序列顺序进行感知,并根据自己的实际QoS需求选择使用的频谱,然后在步骤(10)中向eNB报告其选择使用的频谱信息,可使用PUCCH来传输。在步骤(11)中,LAA设备占用所选择的频谱资源在使用期限内进行通信。eNB在步骤(12)中将各个LAA设备报告的频谱信息进行整合,并且在步骤(13)中将整合的信息通过S1接口通知给SC,以由SC更新和维护LAA设备对LAA频谱的使用状态。
应理解,上述步骤(3)和(12)中的eNB的整合操作是可选的,eNB也可无需对这些信息进行整合,而是在接收到来自LAA设备的信息之后直接报告给SC。
此外,进一步地,考虑到S1接口信息交互时间延迟较长,eNB向SC申请感知频谱的频率可以降低,即,根据其系统容量和用户业务量向SC 申请一段频谱并占用较长的时间,然后在该时间内仅为其LAA设备分配该频段中的频谱进行感知和使用;下一个周期再重新申请新的频段和使用时限。
此外,应指出,尽管以上参照图11描述了SC为LAA设备分配感知频谱集合或序列的情况,但是参照图11描述的信令交互流程也可适用于SC为LAA设备直接分配可用频谱集合或序列的情况,在此不再重复进行描述。
应理解,尽管以上参照图9至图11描述了根据本公开的实施例的频谱协调装置与LAA设备之间的信令交互流程的示例,但是本公开不限于此,本领域技术人员也可根据本公开的原理对上述流程进行修改。
与根据本公开的实施例的装置相对应地,本公开还提供了一种频谱协调方法。以下将参照图12描述根据本公开的实施例的频谱协调方法的过程示例。图12是示出根据本公开的实施例的频谱协调方法的过程示例的流程图。
如图12所示,根据本实施例的频谱协调方法1200可包括获取步骤S1202和分配步骤S1204。
在获取步骤S1202中,可获取共享无线传输资源的使用状态。
接下来,在分配步骤S1204中,可根据使用状态,基于一个系统的待分配资源粒子对多个系统中的其它系统的可用资源粒子的影响为通信设备分配共享无线传输资源,其中,一个系统的资源分配粒度比其它系统的资源分配粒度细。优选地,一个系统可以是LTE系统,并且其它系统可以是WI-FI系统、广播电视系统、雷达系统和红外系统中的一个或多个。具体的资源分配过程可参见以上装置实施例中相应位置的描述,在此不再重复。
图13是示出根据本公开的实施例的无线通信系统中的方法的过程示例的流程图。
如图13所示,根据本实施例的方法1300可包括请求步骤S1302、接收步骤S1304和选择步骤S1306。
首先,在请求步骤S1302中,可向上述频谱协调装置发送资源请求。频谱协调装置用于协调包括无线通信系统的多个系统对共享无线传输资源的使用。
接下来,在接收步骤S1304中,可接收频谱协调装置响应于资源请求而分配的资源。所分配的资源是频谱协调装置基于无线通信系统的待分配资源粒子对多个系统中的其它系统的可用资源粒子的影响而分配的,该无线通信系统的资源分配粒度比其它系统的资源分配粒度细。
然后,在选择步骤S1306中,可根据服务质量需求而从所分配的资源中选择要使用的资源。
更详细的处理过程可参见以上装置实施例中相应位置的描述,在此不再重复描述。
应指出,尽管以上描述了根据本公开的实施例的频谱协调方法和无线通信系统中的方法的过程示例,但是这仅是示例而非限制,并且本领域技术人员可根据本公开的原理对以上实施例进行修改,例如可对各个实施例中的步骤进行添加、删除或者组合等,并且这样的修改均落入本公开的范围内。
此外,还应指出,这里的方法实施例是与上述装置实施例相对应的,因此在方法实施例中未详细描述的内容可参见装置实施例中相应位置的描述,在此不再重复描述。
此外,根据本公开的实施例,还提供了一种电子设备,该电子设备可包括一个或多个处理器,处理器可被配置成执行上述根据本公开的实施例的频谱协调方法和无线通信系统中的方法。
应理解,根据本公开的实施例的存储介质和程序产品中的机器可执行的指令还可以被配置成执行与上述装置实施例相对应的方法,因此在此未详细描述的内容可参考先前相应位置的描述,在此不再重复进行描述。
相应地,用于承载上述包括机器可执行的指令的程序产品的存储介质也包括在本发明的公开中。该存储介质包括但不限于软盘、光盘、磁光盘、存储卡、存储棒等等。
另外,还应该指出的是,上述系列处理和装置也可以通过软件和/或固件实现。在通过软件和/或固件实现的情况下,从存储介质或网络向具有专用硬件结构的计算机,例如图14所示的通用个人计算机1400安装构成该软件的程序,该计算机在安装有各种程序时,能够执行各种功能等等。
在图14中,中央处理单元(CPU)1401根据只读存储器(ROM)1402中存储的程序或从存储部分1408加载到随机存取存储器(RAM)1403的程序执行各种处理。在RAM 1403中,也根据需要存储当CPU 1401 执行各种处理等时所需的数据。
CPU 1401、ROM 1402和RAM 1403经由总线1404彼此连接。输入/输出接口1405也连接到总线1404。
下述部件连接到输入/输出接口1405:输入部分1406,包括键盘、鼠标等;输出部分1407,包括显示器,比如阴极射线管(CRT)、液晶显示器(LCD)等,和扬声器等;存储部分1408,包括硬盘等;和通信部分1409,包括网络接口卡比如LAN卡、调制解调器等。通信部分1409经由网络比如因特网执行通信处理。
根据需要,驱动器1410也连接到输入/输出接口1405。可拆卸介质1411比如磁盘、光盘、磁光盘、半导体存储器等等根据需要被安装在驱动器1410上,使得从中读出的计算机程序根据需要被安装到存储部分1408中。
在通过软件实现上述系列处理的情况下,从网络比如因特网或存储介质比如可拆卸介质1411安装构成软件的程序。
本领域的技术人员应当理解,这种存储介质不局限于图14所示的其中存储有程序、与设备相分离地分发以向用户提供程序的可拆卸介质1411。可拆卸介质1411的例子包含磁盘(包含软盘(注册商标))、光盘(包含光盘只读存储器(CD-ROM)和数字通用盘(DVD))、磁光盘(包含迷你盘(MD)(注册商标))和半导体存储器。或者,存储介质可以是ROM 1402、存储部分1408中包含的硬盘等等,其中存有程序,并且与包含它们的设备一起被分发给用户。
以下将参照图15至图17描述根据本公开的应用示例。
[关于eNB的应用示例]
(第一应用示例)
图15是示出可以应用本公开内容的技术的eNB的示意性配置的第一示例的框图。eNB 1500包括一个或多个天线1510以及基站设备1520。基站设备1520和每个天线1510可以经由RF线缆彼此连接。
天线1510中的每一个均包括单个或多个天线元件(诸如包括在多输入多输出(MIMO)天线中的多个天线元件),并且用于基站设备1520发送和接收无线信号。如图15所示,eNB 1500可以包括多个天线1510。例如,多个天线1510可以与eNB 1500使用的多个频带兼容。虽然图15 示出其中eNB 1500包括多个天线1510的示例,但是eNB 1500也可以包括单个天线1510。
基站设备1520包括控制器1521、存储器1522、网络接口1523以及无线通信接口1525。
控制器1521可以为例如CPU或DSP,并且操作基站设备1520的较高层的各种功能。例如,控制器1521根据由无线通信接口1525处理的信号中的数据来生成数据分组,并经由网络接口1523来传递所生成的分组。控制器1521可以对来自多个基带处理器的数据进行捆绑以生成捆绑分组,并传递所生成的捆绑分组。控制器1521可以具有执行如下控制的逻辑功能:该控制诸如为无线资源控制、无线承载控制、移动性管理、接纳控制和调度。该控制可以结合附近的eNB或核心网节点来执行。存储器1522包括RAM和ROM,并且存储由控制器1521执行的程序和各种类型的控制数据(诸如终端列表、传输功率数据以及调度数据)。
网络接口1523为用于将基站设备1520连接至核心网1524的通信接口。控制器1521可以经由网络接口1523而与核心网节点或另外的eNB进行通信。在此情况下,eNB 1500与核心网节点或其他eNB可以通过逻辑接口(诸如S1接口和X2接口)而彼此连接。网络接口1523还可以为有线通信接口或用于无线回程线路的无线通信接口。如果网络接口1523为无线通信接口,则与由无线通信接口1525使用的频带相比,网络接口1523可以使用较高频带用于无线通信。
无线通信接口1525支持任何蜂窝通信方案(诸如长期演进(LTE)和LTE-先进),并且经由天线1510来提供到位于eNB 1500的小区中的终端的无线连接。无线通信接口1525通常可以包括例如基带(BB)处理器1526和RF电路1527。BB处理器1526可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行层(例如L1、介质访问控制(MAC)、无线链路控制(RLC)和分组数据汇聚协议(PDCP))的各种类型的信号处理。代替控制器1521,BB处理器1526可以具有上述逻辑功能的一部分或全部。BB处理器1526可以为存储通信控制程序的存储器,或者为包括被配置为执行程序的处理器和相关电路的模块。更新程序可以使BB处理器1526的功能改变。该模块可以为插入到基站设备1520的槽中的卡或刀片。可替代地,该模块也可以为安装在卡或刀片上的芯片。同时,RF电路1527可以包括例如混频器、滤波器和放大器,并且经由天线1510来传送和接收无线信号。
如图15所示,无线通信接口1525可以包括多个BB处理器1526。例如,多个BB处理器1526可以与eNB 1500使用的多个频带兼容。如图15所示,无线通信接口1525可以包括多个RF电路1527。例如,多个RF电路1527可以与多个天线元件兼容。虽然图15示出其中无线通信接口1525包括多个BB处理器1526和多个RF电路1527的示例,但是无线通信接口1525也可以包括单个BB处理器1526或单个RF电路1527。
(第二应用示例)
图16是示出可以应用本公开内容的技术的eNB的示意性配置的第二示例的框图。eNB 1630包括一个或多个天线1640、基站设备1650和RRH1660。RRH 1660和每个天线1640可以经由RF线缆而彼此连接。基站设备1650和RRH 1660可以经由诸如光纤线缆的高速线路而彼此连接。
天线1640中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件)并且用于RRH 1660发送和接收无线信号。如图16所示,eNB 1630可以包括多个天线1640。例如,多个天线1640可以与eNB1630使用的多个频带兼容。虽然图16示出其中eNB 1630包括多个天线1640的示例,但是eNB 1630也可以包括单个天线1640。
基站设备1650包括控制器1651、存储器1652、网络接口1653、无线通信接口1655以及连接接口1657。控制器1651、存储器1652和网络接口1653与参照图15描述的控制器1521、存储器1522和网络接口1523相同。
无线通信接口1655支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且经由RRH 1660和天线1640来提供到位于与RRH 1660对应的扇区中的终端的无线通信。无线通信接口1655通常可以包括例如BB处理器1656。除了BB处理器1656经由连接接口1657连接到RRH 1660的RF电路1664之外,BB处理器1656与参照图15描述的BB处理器1526相同。如图16所示,无线通信接口1655可以包括多个BB处理器1656。例如,多个BB处理器1656可以与eNB 1630使用的多个频带兼容。虽然图16示出其中无线通信接口1655包括多个BB处理器1656的示例,但是无线通信接口1655也可以包括单个BB处理器1656。
连接接口1657为用于将基站设备1650(无线通信接口1655)连接至RRH 1660的接口。连接接口1657还可以为用于将基站设备1650(无线通信接口1655)连接至RRH 1660的上述高速线路中的通信的通信模块。
RRH 1660包括连接接口1661和无线通信接口1663。
连接接口1661为用于将RRH 1660(无线通信接口1663)连接至基站设备1650的接口。连接接口1661还可以为用于上述高速线路中的通信的通信模块。
无线通信接口1663经由天线1640来传送和接收无线信号。无线通信接口1663通常可以包括例如RF电路1664。RF电路1664可以包括例如混频器、滤波器和放大器,并且经由天线1640来传送和接收无线信号。如图16所示,无线通信接口1663可以包括多个RF电路1664。例如,多个RF电路1664可以支持多个天线元件。虽然图16示出其中无线通信接口1663包括多个RF电路1664的示例,但是无线通信接口1663也可以包括单个RF电路1664。
在图15和图16所示的eNB 1500和eNB 1630中,通过使用图2、图4和图5描述的获取单元以及使用图5所描述的接收单元504和通知单元508可以由无线通信接口1525以及无线通信接口1655和/或无线通信接口1663实现。频谱协调装置的功能的至少一部分也可以由控制器1521和控制器1651实现。
[关于用户设备的应用示例]
图17是示出可以应用本公开内容的技术的智能电话1700的示意性配置的示例的框图。智能电话1700包括处理器1701、存储器1702、存储装置1703、外部连接接口1704、摄像装置1706、传感器1707、麦克风1708、输入装置1709、显示装置1710、扬声器1711、无线通信接口1712、一个或多个天线开关1715、一个或多个天线1716、总线1717、电池1718以及辅助控制器1719。
处理器1701可以为例如CPU或片上系统(SoC),并且控制智能电话1700的应用层和另外层的功能。存储器1702包括RAM和ROM,并且存储数据和由处理器1701执行的程序。存储装置1703可以包括存储介质,诸如半导体存储器和硬盘。外部连接接口1704为用于将外部装置(诸如存储卡和通用串行总线(USB)装置)连接至智能电话1700的接口。
摄像装置1706包括图像传感器(诸如电荷耦合器件(CCD)和互补金属氧化物半导体(CMOS)),并且生成捕获图像。传感器1707可以包括一组传感器,诸如测量传感器、陀螺仪传感器、地磁传感器和加速度传感器。麦克风1708将输入到智能电话1700的声音转换为音频信号。输入 装置1709包括例如被配置为检测显示装置1710的屏幕上的触摸的触摸传感器、小键盘、键盘、按钮或开关,并且接收从用户输入的操作或信息。显示装置1710包括屏幕(诸如液晶显示器(LCD)和有机发光二极管(OLED)显示器),并且显示智能电话1700的输出图像。扬声器1711将从智能电话1700输出的音频信号转换为声音。
无线通信接口1712支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且执行无线通信。无线通信接口1712通常可以包括例如BB处理器1713和RF电路1714。BB处理器1713可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF电路1714可以包括例如混频器、滤波器和放大器,并且经由天线1716来传送和接收无线信号。无线通信接口1712可以为其上集成有BB处理器1713和RF电路1714的一个芯片模块。如图17所示,无线通信接口1712可以包括多个BB处理器1713和多个RF电路1714。虽然图17示出其中无线通信接口1712包括多个BB处理器1713和多个RF电路1714的示例,但是无线通信接口1712也可以包括单个BB处理器1713或单个RF电路1714。
此外,除了蜂窝通信方案之外,无线通信接口1712可以支持另外类型的无线通信方案,诸如短距离无线通信方案、近场通信方案和无线局域网(LAN)方案。在此情况下,无线通信接口1712可以包括针对每种无线通信方案的BB处理器1713和RF电路1714。
天线开关1715中的每一个在包括在无线通信接口1712中的多个电路(例如用于不同的无线通信方案的电路)之间切换天线1716的连接目的地。
天线1716中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件),并且用于无线通信接口1712传送和接收无线信号。如图17所示,智能电话1700可以包括多个天线1716。虽然图17示出其中智能电话1700包括多个天线1716的示例,但是智能电话1700也可以包括单个天线1716。
此外,智能电话1700可以包括针对每种无线通信方案的天线1716。在此情况下,天线开关1715可以从智能电话1700的配置中省略。
总线1717将处理器1701、存储器1702、存储装置1703、外部连接接口1704、摄像装置1706、传感器1707、麦克风1708、输入装置1709、 显示装置1710、扬声器1711、无线通信接口1712以及辅助控制器1719彼此连接。电池1718经由馈线向图17所示的智能电话1700的各个块提供电力,馈线在图中被部分地示为虚线。辅助控制器1719例如在睡眠模式下操作智能电话1700的最小必需功能。
在图17所示的智能电话1700中,通过使用图6至图8所描述的请求单元、接收单元和通知单元可以由无线通信接口1712实现。装置600、700和800的功能的至少一部分也可以由处理器1701或辅助控制器1719实现。
以上参照附图描述了本公开的优选实施例,但是本公开当然不限于以上示例。本领域技术人员可在所附权利要求的范围内得到各种变更和修改,并且应理解这些变更和修改自然将落入本公开的技术范围内。
例如,在以上实施例中包括在一个单元中的多个功能可以由分开的装置来实现。替选地,在以上实施例中由多个单元实现的多个功能可分别由分开的装置来实现。另外,以上功能之一可由多个单元来实现。无需说,这样的配置包括在本公开的技术范围内。
在该说明书中,流程图中所描述的步骤不仅包括以所述顺序按时间序列执行的处理,而且包括并行地或单独地而不是必须按时间序列执行的处理。此外,甚至在按时间序列处理的步骤中,无需说,也可以适当地改变该顺序。

Claims (29)

  1. 一种频谱协调装置,用于协调多个系统对共享无线传输资源的使用,所述频谱协调装置包括:
    获取单元,被配置成获取所述共享无线传输资源的使用状态;以及
    分配单元,被配置成根据所述使用状态,基于所述多个系统中的一个系统的待分配资源粒子对所述多个系统中的其它系统的可用资源粒子的影响为通信设备分配所述共享无线传输资源,
    其中,所述一个系统的资源分配粒度比所述其它系统的资源分配粒度细。
  2. 根据权利要求1所述的频谱协调装置,其中,所述分配单元还基于来自所述多个系统中的一个系统的通信设备的资源请求而为所述一个系统的通信设备分配所述共享无线传输资源。
  3. 根据权利要求2所述的频谱协调装置,其中,所述分配单元进一步被配置成以使得所述其它系统的可用资源粒子与已占用资源粒子的数量之和不小于所述其它系统的预留资源粒子数量的方式,从所述待分配资源粒子中为所述一个系统的通信设备分配资源。
  4. 根据权利要求2所述的频谱协调装置,其中,所述分配单元进一步被配置成根据与所述待分配资源粒子对应于所述其它系统的同一资源粒子的、所述一个系统的已占用资源粒子的使用状况,从所述待分配资源粒子中为所述一个系统的通信设备分配资源。
  5. 根据权利要求4所述的频谱协调装置,其中,所述分配单元进一步被配置成根据所述一个系统的所述已占用资源粒子的使用期限而确定分配给所述一个系统的通信设备的资源的使用期限。
  6. 根据权利要求2所述的频谱协调装置,其中,所述资源请求包括业务量需求、地理位置信息和资源使用优先级中的至少一个。
  7. 根据权利要求2所述的频谱协调装置,其中,所述分配单元进一步被配置成根据所述其它系统的资源使用习惯而为所述一个系统的通信设备分配资源,以减少与所述其它系统的资源使用碰撞。
  8. 根据权利要求7所述的频谱协调装置,其中,所述分配单元优先为所述一个系统的通信设备分配所述其它系统占用概率低的资源。
  9. 根据权利要求1所述的频谱协调装置,其中,所述获取单元被配置成通过以下方式中的至少一种来获取所述使用状态:信息交互;频谱感知;以及广播查询。
  10. 根据权利要求1所述的频谱协调装置,其中,所述使用状态包括所述共享无线传输资源的被占用资源。
  11. 根据权利要求10所述的频谱协调装置,其中,所述使用状态还包括占用所述被占用资源的通信设备的类型。
  12. 根据权利要求11所述的频谱协调装置,其中,在占用所述被占用资源的通信设备的类型为所述一个系统的通信设备的情况下,所述使用状态还包括占用所述被占用资源的所述一个系统的通信设备的数量。
  13. 根据权利要求1所述的频谱协调装置,还包括:
    资源划分单元,被配置成基于所述一个系统对所述其它系统的资源可用性的影响对所述共享无线传输资源进行划分,
    其中,所述分配单元进一步被配置成根据所述共享无线传输资源的划分而为所述通信设备分配资源。
  14. 根据权利要求13所述的频谱协调装置,其中,所述资源划分单元以使得所述一个系统的资源粒子与所述其它系统的资源粒子对齐的方式来划分所述共享无线传输资源。
  15. 根据权利要求2所述的频谱协调装置,其中,所述频谱协调装置在所述一个系统的基站中实现,并且所述频谱协调装置还包括:
    接收单元,被配置成接收来自所述一个系统的通信设备的资源请求;以及
    通知单元,被配置成将所分配的资源通知给所述一个系统的通信设备。
  16. 根据权利要求15所述的频谱协调装置,其中,所述接收单元还接收关于所述一个系统的通信设备在所分配的资源中选择使用的资源的信息。
  17. 根据权利要求1至16中任一项所述的频谱协调装置,其中,所述一个系统是长期演进LTE系统,并且所述其它系统是无线局域网WI-FI系统、广播电视系统、雷达系统和红外系统中的一个或多个。
  18. 根据权利要求17所述的频谱协调装置,其中,所述长期演进LTE系统的资源分配粒度基于时频资源块,并且所述无线局域网WI-FI系统的资源分配粒度基于具有预定带宽的子信道。
  19. 一种无线通信系统中的装置,该装置包括:
    请求单元,被配置成向频谱协调装置发送资源请求;
    接收单元,被配置成接收所述频谱协调装置响应于所述资源请求而分配的资源;以及
    选择单元,被配置成根据服务质量需求而从所分配的资源中选择要使用的资源,
    其中,所述频谱协调装置用于协调包括所述无线通信系统的多个系统对共享无线传输资源的使用,并且所分配的资源是所述频谱协调装置基于所述无线通信系统的待分配资源粒子对所述多个系统中的其它系统的可用资源粒子的影响而分配的,以及
    其中,所述无线通信系统的资源分配粒度比所述其它系统的资源分配粒度细。
  20. 根据权利要求19所述的装置,其中,所述接收单元还接收来自所述频谱协调装置的所分配的资源的使用期限。
  21. 根据权利要求19所述的装置,其中,所述资源请求包括业务量需求、地理位置信息和资源使用优先级中的至少一个。
  22. 根据权利要求19所述的装置,还包括:
    通知单元,被配置成将关于所述选择单元所选择的要使用的资源的信息通知给所述频谱协调装置。
  23. 根据权利要求19所述的装置,其中,
    所述资源请求是频谱感知请求,
    所述装置还包括:感知单元,被配置成对所分配的资源进行感知,以及
    所述选择单元进一步被配置成根据感知结果而从所分配的资源中选择要使用的资源。
  24. 根据权利要求19至23中任一项所述的装置,其中,所述无线通信系统是长期演进LTE系统,并且所述其它系统是无线局域网WI-FI系 统、广播电视系统、雷达系统和红外系统中的一个或多个。
  25. 根据权利要求24所述的装置,其中,所述长期演进LTE系统的资源分配粒度基于时频资源块,并且所述无线局域网WI-FI系统的资源分配粒度基于具有预定带宽的子信道。
  26. 一种电子设备,包括一个或多个处理器,所述一个或多个处理器被配置成:
    获取共享无线传输资源的使用状态;以及
    根据所述使用状态,基于多个系统中的一个系统的待分配资源粒子对所述多个系统中的其它系统的可用资源粒子的影响为通信设备分配所述共享无线传输资源,
    其中,所述一个系统的资源分配粒度比所述其它系统的资源分配粒度细。
  27. 一种电子设备,包括一个或多个处理器,所述一个或多个处理器被配置成:
    向频谱协调装置发送资源请求;
    接收所述频谱协调装置响应于所述资源请求而分配的资源;以及
    根据服务质量需求而从所分配的资源中选择要使用的资源,
    其中,所述频谱协调装置用于协调多个系统对共享无线传输资源的使用,并且所分配的资源是所述频谱协调装置基于所述多个系统中的一个系统的待分配资源粒子对所述多个系统中的其它系统的可用资源粒子的影响而分配的,以及
    其中,所述一个系统的资源分配粒度比所述其它系统的资源分配粒度细。
  28. 一种频谱协调方法,用于协调多个系统对共享无线传输资源的使用,所述频谱协调方法包括:
    获取步骤,用于获取所述共享无线传输资源的使用状态;以及
    分配步骤,用于根据所述使用状态,基于所述多个系统中的一个系统的待分配资源粒子对所述多个系统中的其它系统的可用资源粒子的影响为通信设备分配所述共享无线传输资源,
    其中,所述一个系统的资源分配粒度比所述其它系统的资源分配粒度 细。
  29. 一种无线通信系统中的方法,该方法包括:
    请求步骤,用于向频谱协调装置发送资源请求;
    接收步骤,用于接收所述频谱协调装置响应于所述资源请求而分配的资源;以及
    选择步骤,用于根据服务质量需求而从所分配的资源中选择要使用的资源,
    其中,所述频谱协调装置用于协调包括所述无线通信系统的多个系统对共享无线传输资源的使用,并且所分配的资源是所述频谱协调装置基于所述无线通信系统的待分配资源粒子对所述多个系统中的其它系统的可用资源粒子的影响而分配的,以及
    其中,所述无线通信系统的资源分配粒度比所述其它系统的资源分配粒度细。
PCT/CN2016/075455 2015-04-21 2016-03-03 频谱协调装置和方法、无线通信系统中的装置和方法 WO2016169340A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/565,717 US10499254B2 (en) 2015-04-21 2016-03-03 Frequency spectrum coordination device and method, and device and method in wireless communication system
EP16782488.7A EP3288329A4 (en) 2015-04-21 2016-03-03 Frequency spectrum coordination device and method, and device and method in wireless communication system
JP2017554803A JP6665868B2 (ja) 2015-04-21 2016-03-03 スペクトル協調装置と方法、無線通信システムにおける装置と方法
KR1020177033164A KR20170139078A (ko) 2015-04-21 2016-03-03 주파수 스펙트럼 조율 디바이스 및 방법과, 무선 통신 시스템에서의 디바이스 및 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510191814.2 2015-04-21
CN201510191814.2A CN106162913B (zh) 2015-04-21 2015-04-21 频谱协调装置和方法、无线通信系统中的装置和方法

Publications (1)

Publication Number Publication Date
WO2016169340A1 true WO2016169340A1 (zh) 2016-10-27

Family

ID=57143723

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/075455 WO2016169340A1 (zh) 2015-04-21 2016-03-03 频谱协调装置和方法、无线通信系统中的装置和方法

Country Status (6)

Country Link
US (1) US10499254B2 (zh)
EP (1) EP3288329A4 (zh)
JP (1) JP6665868B2 (zh)
KR (1) KR20170139078A (zh)
CN (1) CN106162913B (zh)
WO (1) WO2016169340A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019083702A1 (en) * 2017-10-23 2019-05-02 Kyocera Corporation DATA TRANSMISSION WITH MULTIPLE NUMEROLOGIES FOR MULTIPLE DEVICES HAVING CONTROL INFORMATION DEPENDENT ON A COMMON GEOGRAPHIC LOCATION

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105704724B (zh) * 2014-11-28 2021-01-15 索尼公司 用于支持认知无线电的无线通信系统的控制设备和方法
US10448366B2 (en) 2016-03-25 2019-10-15 Cable Television Laboratories, Inc. Systems and methods for LTE allocation in a shared unlicensed spectrum
US10517021B2 (en) 2016-06-30 2019-12-24 Evolve Cellular Inc. Long term evolution-primary WiFi (LTE-PW)
CN108462658B (zh) * 2016-12-12 2022-01-11 阿里巴巴集团控股有限公司 对象分配方法及装置
CN108738146B (zh) * 2017-04-24 2024-01-05 中兴通讯股份有限公司 无线资源和功率的配置方法、以及节点
MX2019014175A (es) * 2017-06-01 2020-01-27 Ericsson Telefon Ab L M Prioridad de recursos de red en una red.
CN109769300A (zh) 2017-11-10 2019-05-17 华为技术有限公司 一种通信方法、装置以及系统
US10469221B2 (en) 2017-11-10 2019-11-05 Huawei Technologies Co., Ltd. Communication method, apparatus, and system
CN108924932B (zh) * 2017-11-10 2019-11-05 华为技术有限公司 一种通信方法、装置
CN109803267B (zh) 2017-11-17 2022-12-27 华为技术有限公司 一种通讯方法、网络设备及终端设备
US10805862B2 (en) * 2018-08-03 2020-10-13 T-Mobile Usa, Inc. Sensor and self-learning based dynamic frequency assignment for wireless networks
US10820326B2 (en) * 2018-11-28 2020-10-27 Qualcomm Incorporated Resource allocation for reserved resources
EP3899580B1 (en) * 2018-12-21 2023-10-18 Telefonaktiebolaget Lm Ericsson (Publ) Coordination of wireless communication unit and radar unit in a wireless communication network
CN111356139A (zh) * 2018-12-21 2020-06-30 索尼公司 用于无线通信的电子设备和方法、计算机可读存储介质
CN110138535B (zh) * 2019-06-04 2022-01-25 西安易朴通讯技术有限公司 数据传输方法及装置
CN112153701B (zh) * 2020-09-09 2023-11-21 中国联合网络通信集团有限公司 一种带宽使用量的确定方法和装置
WO2022056812A1 (zh) * 2020-09-18 2022-03-24 华为技术有限公司 资源确定方法、装置、电子设备、存储介质以及车辆
CN113395742B (zh) * 2021-06-10 2022-04-29 中国人民解放军国防科技大学 一种接入控制方法、装置、设备及介质
WO2023177460A2 (en) * 2021-12-08 2023-09-21 A10 Systems LLC Application-based incumbent informing capability for spectrum sharing

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101365218A (zh) * 2007-08-10 2009-02-11 阿尔卡特朗讯 在公共频段中同时调度终端的方法和相应基站
CN102118758A (zh) * 2011-01-28 2011-07-06 中兴通讯股份有限公司 一种gsm系统和lte系统共享频谱的方法及其系统
US20110228752A1 (en) * 2010-03-22 2011-09-22 Shiquan Wu System and method to pack cellular systems and WiFi within a TV channel
CN102547734A (zh) * 2010-12-24 2012-07-04 中兴通讯股份有限公司 Lte系统的干扰避让方法及基站

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010031056A2 (en) * 2008-09-15 2010-03-18 The Regents Of The University Of California Methods and compositions for modulating ire1, src, and abl activity
US8493957B2 (en) * 2009-03-10 2013-07-23 Stmicroelectronics, Inc. Frame based, on-demand spectrum contention protocol vector messaging
CN102802161A (zh) * 2011-05-27 2012-11-28 国际商业机器公司 一种减少无线网络间的频谱干扰的方法及设备
US8755830B2 (en) * 2012-01-09 2014-06-17 Spectrum Bridge, Inc. System and method to facilitate time management for protected areas
US10462674B2 (en) * 2013-01-28 2019-10-29 Interdigital Patent Holdings, Inc. Methods and apparatus for spectrum coordination
CN104105141B (zh) * 2013-04-02 2020-03-17 索尼公司 无线电资源管理设备、方法以及系统
CN110719640B (zh) * 2013-07-30 2023-09-01 索尼公司 频谱管理装置
US9591536B2 (en) * 2013-10-18 2017-03-07 At&T Mobility Ii Llc Cell user occupancy indicator to enhance intelligent traffic steering
CN105101223A (zh) * 2014-05-16 2015-11-25 北京三星通信技术研究有限公司 一种在免许可频段上进行数据传输的方法和设备
US9867187B2 (en) * 2014-08-04 2018-01-09 Qualcomm Incorporated Techniques for configuring uplink channel transmissions using shared radio frequency spectrum band
CN105873069B (zh) * 2015-01-19 2021-06-08 索尼公司 资源管理装置、资源管理方法及通信系统中的装置和方法
US10397794B2 (en) * 2015-01-29 2019-08-27 Blackberry Limited Communication in unlicensed spectrum
JP6666468B2 (ja) * 2016-05-13 2020-03-13 テレフオンアクチーボラゲット エルエム エリクソン(パブル) 複数ヌメロロジを有するマルチサブキャリアシステム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101365218A (zh) * 2007-08-10 2009-02-11 阿尔卡特朗讯 在公共频段中同时调度终端的方法和相应基站
US20110228752A1 (en) * 2010-03-22 2011-09-22 Shiquan Wu System and method to pack cellular systems and WiFi within a TV channel
CN102547734A (zh) * 2010-12-24 2012-07-04 中兴通讯股份有限公司 Lte系统的干扰避让方法及基站
CN102118758A (zh) * 2011-01-28 2011-07-06 中兴通讯股份有限公司 一种gsm系统和lte系统共享频谱的方法及其系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3288329A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019083702A1 (en) * 2017-10-23 2019-05-02 Kyocera Corporation DATA TRANSMISSION WITH MULTIPLE NUMEROLOGIES FOR MULTIPLE DEVICES HAVING CONTROL INFORMATION DEPENDENT ON A COMMON GEOGRAPHIC LOCATION

Also Published As

Publication number Publication date
US20180084429A1 (en) 2018-03-22
EP3288329A1 (en) 2018-02-28
JP2018518088A (ja) 2018-07-05
CN106162913A (zh) 2016-11-23
US10499254B2 (en) 2019-12-03
CN106162913B (zh) 2020-09-22
KR20170139078A (ko) 2017-12-18
EP3288329A4 (en) 2018-11-14
JP6665868B2 (ja) 2020-03-13

Similar Documents

Publication Publication Date Title
WO2016169340A1 (zh) 频谱协调装置和方法、无线通信系统中的装置和方法
CN110351858B (zh) 网络调度ue传输与自主调度ue传输之间的资源池共享
JP6729599B2 (ja) 無線通信用の電子機器及び方法
AU2017262114B2 (en) Frequency spectrum management apparatus and method, electronic apparatus and method, and wireless communication system
US10548071B2 (en) System and method for communicating traffic over licensed or un-licensed spectrums based on quality of service (QoS) constraints of the traffic
TWI626858B (zh) 通訊設備和方法
TWI571153B (zh) 用於一無線通訊系統之基地台及裝置對裝置使用者裝置
CN110651501B (zh) 电子装置、无线通信方法和计算机可读介质
US10893524B2 (en) System and method for OFDMA resource management in WLAN
EP3005776B1 (en) Systems for managing utilization of un-licensed frequency spectrum resources for secondary systems, and a non-transitory computer-readable medium
TW201116121A (en) Multichannel dynamic frequency selection
US11310810B2 (en) Method and apparatus for performing scheduling request to support plurality of services efficiently
KR20130004941A (ko) 무선 확장 네트워크를 제공하는 방법 및 장치
CN111345081A (zh) 通信方法和通信设备
JP2018510571A (ja) 無線通信の装置と方法、基地局、ユーザー機器側の装置
WO2017121378A1 (zh) 网络管理侧和用户设备侧的装置及方法、中央管理装置
CN109155998A (zh) 用于多种无线电接入技术的资源分配的网络节点和方法
KR20200012391A (ko) 통신 시스템에서 비면허대역을 사용하는 방법 및 장치
CN111512686B (zh) 电子装置、无线通信方法和计算机可读介质
KR20110029728A (ko) 주파수 대역 설정 장치 및 방법, 액세스 포인트, 그리고, 그의 주파수 대역 설정 방법
CN113853830B (zh) 用于与辅小区-用户设备的双连接性的方法和装置
KR100999039B1 (ko) 무선 네트워크 시스템, 무선 네트워크 통신 방법 및 무선 네트워크 통신장치
CN111511023A (zh) 信号传输方法及装置
CN116368916A (zh) 用于通信的方法及装置
CN115529572A (zh) 资源选择方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16782488

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15565717

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2017554803

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177033164

Country of ref document: KR

Kind code of ref document: A