WO2016169292A1 - 多台同步电机并网运行控制方法及装置 - Google Patents

多台同步电机并网运行控制方法及装置 Download PDF

Info

Publication number
WO2016169292A1
WO2016169292A1 PCT/CN2015/098953 CN2015098953W WO2016169292A1 WO 2016169292 A1 WO2016169292 A1 WO 2016169292A1 CN 2015098953 W CN2015098953 W CN 2015098953W WO 2016169292 A1 WO2016169292 A1 WO 2016169292A1
Authority
WO
WIPO (PCT)
Prior art keywords
grid
motor
synchronous
synchronous motor
motor controller
Prior art date
Application number
PCT/CN2015/098953
Other languages
English (en)
French (fr)
Inventor
刘益卯
吴正斌
杨帅
胡坚耀
Original Assignee
深圳先进技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳先进技术研究院 filed Critical 深圳先进技术研究院
Publication of WO2016169292A1 publication Critical patent/WO2016169292A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers

Definitions

  • the invention relates to an application field belonging to a motor and a control technology, in particular to a method and a device for controlling the grid-connected operation of a plurality of synchronous motors.
  • a controller In modern industrial production and people's daily life, a controller is generally used to control the operation of a permanent magnet synchronous motor. However, the price of the controller is generally 2 to 4 times that of the permanent magnet synchronous motor. If a controller is used to control the operation of a permanent magnet synchronous motor, the cost will be greatly increased.
  • the invention provides a method and a device for controlling the grid-connected operation of a plurality of synchronous motors, so as to realize the grid-connected operation of a plurality of synchronous motors in the same place, and reduce the operation control cost of the synchronous motor.
  • the present invention provides a method for controlling the grid-connected operation of a plurality of synchronous motors, and the method for controlling the grid-connected operation of the plurality of synchronous motors includes:
  • connecting the synchronous motor to the motor controller comprises: connecting a contactor between the synchronous motor and the motor controller.
  • the current vector of the motor controller is adjusted according to the input signal and the output signal, so that the synchronous motor meets a grid connection condition, including:
  • the current vector is adjusted such that a difference between the input voltage vector of the motor controller and the output voltage vector satisfies a set value.
  • the set value is zero.
  • controlling the synchronous motor to operate in parallel comprising:
  • the input signal and the output signal of the motor controller are collected, and the input signal and the output signal of the motor controller are collected by a DSP module of the motor controller.
  • the method for controlling the grid-connected operation of the plurality of synchronous motors further includes: converting the identifiers of the synchronous motors into electronic identifiers.
  • the method for controlling the grid-connected operation of the plurality of synchronous motors further comprises: automatically acquiring parameters of the synchronous motors into the motor controllers by self-learning.
  • the method for controlling the grid-connected operation of the plurality of synchronous motors further includes:
  • a contactor between the synchronous motor and the motor controller is turned on, and a contactor between the grid side and the synchronous motor is disconnected after a predetermined time.
  • the present invention provides a plurality of synchronous motor grid-connected operation control devices, and the plurality of synchronous motor grid-connected operation control devices include:
  • An identifier obtaining unit configured to receive a startup request of the synchronous motor, and extract an electronic identifier of the synchronous motor from the startup application;
  • a running control unit configured to send a running instruction to the motor controller according to the electronic identifier, and connect the synchronous motor and the motor controller;
  • a grid-connecting adjustment unit configured to collect an input signal and an output signal of the motor controller, and adjust a current vector of the motor controller according to the input signal and the output signal, so that the synchronous motor meets a grid-connecting condition
  • the grid-connected control unit is configured to control the synchronous motor to be connected to the grid.
  • the operation control unit comprises:
  • a first on module for connecting a contactor between the synchronous motor and the motor controller.
  • the grid connection adjustment unit comprises:
  • a parameter calculation module configured to calculate a real-time operating parameter of the motor controller according to the input signal and the output signal
  • a vector operation module configured to perform a vector operation on the real-time running parameter to generate a current vector
  • the vector adjustment module is configured to adjust the current vector such that a difference between the input voltage vector of the motor controller and the output voltage vector satisfies a set value.
  • the set value is zero.
  • the grid-connected control unit includes:
  • a second switch-on module configured to send a signal to the contactor between the grid side and the synchronous motor to enable the grid power supply to be powered simultaneously with the motor controller;
  • a disconnecting module configured to disconnect the synchronous motor from the motor controller.
  • the grid-connecting adjustment unit further includes:
  • the signal acquisition module is configured to acquire an input signal and an output signal of the motor controller by using a DSP module of the motor controller.
  • the plurality of synchronous motor grid-connected operation control devices further includes:
  • An identification conversion unit for converting the identification of each synchronous motor into an electronic identification.
  • the plurality of synchronous motor grid-connected operation control devices further includes:
  • the parameter acquisition unit is configured to automatically collect the parameters of each synchronous motor into each motor controller by means of self-learning.
  • the plurality of synchronous motor grid-connected operation control devices further includes:
  • An application receiving unit configured to receive an off-grid application of the synchronous motor
  • a voltage adjustment unit configured to control the motor controller to adjust a self-output voltage rate according to the off-grid application, so that the output voltage is equal to a self-input voltage
  • An off-grid control unit is configured to turn on a contactor between the synchronous motor and the motor controller, and disconnect a contactor between the grid side and the synchronous motor after a predetermined time.
  • the invention realizes the grid-connected operation of a plurality of synchronous motors in the same place, reduces the operation control cost of the synchronous motor, and lays a foundation for widely using permanent magnet synchronous motors in industrial production to promote energy saving of industrial production.
  • FIG. 1 is a flow chart of a method for controlling parallel operation of multiple synchronous motors in an embodiment of the present application
  • FIG. 2 is a flow chart of the method of S103 of Figure 1;
  • FIG. 3 is a flow chart of a method for controlling the synchronous operation of the synchronous motor in the embodiment of the present application
  • FIG. 4 is a schematic diagram of control of a plurality of synchronous motors connected to the grid in the embodiment of the present application;
  • FIG. 5 is a flow chart of a grid connection operation of a permanent magnet synchronous motor according to an embodiment of the present application
  • FIG. 6 is a schematic diagram of the acquisition and operation control of the grid-connected signal of the permanent magnet synchronous motor according to the embodiment of the present application;
  • FIG. 8 is a flow chart of an off-grid operation of a permanent magnet synchronous motor according to an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a plurality of synchronous motor grid-connected operation control devices according to an embodiment of the present application.
  • FIG. 10 is a schematic structural view of a first embodiment of a plurality of synchronous motor grid-connected operation control devices according to an embodiment of the present application;
  • FIG. 11 is a schematic structural diagram of a second embodiment of a synchronous operation of a plurality of synchronous motors in an embodiment of the present application;
  • FIG. 12 is a schematic structural diagram of a third embodiment of a synchronous operation of a plurality of synchronous motors in the embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of a plurality of synchronous motor grid-connected operation control devices according to another embodiment of the present application.
  • the embodiment of the present invention provides a method for controlling the grid-connected operation of multiple synchronous motors, as shown in FIG. 1 .
  • Multiple synchronous motor grid-connected operation control methods include:
  • S101 Receive a startup application of the synchronous motor, and extract an electronic identifier of the synchronous motor from the startup application;
  • S102 issuing a running instruction to the motor controller according to the electronic identifier, and connecting the synchronous motor and the motor controller;
  • S103 collecting an input signal and an output signal of the motor controller, and adjusting a current vector of the motor controller according to the input signal and the output signal, so that the synchronous motor meets a grid connection condition;
  • the execution body of the parallel operation control method of multiple synchronous motors shown in FIG. 1 is an operation management center (control computer). It can be seen from the flow shown in FIG. 1 that the operation management center controls to one motor according to the start request of the synchronous motor. And issuing a running command and connecting the synchronous motor and the motor controller, and then collecting an input signal and an output signal of the motor controller, adjusting a current vector of the motor controller according to the input signal and the output signal, when the synchronous motor meets the grid connection condition When the synchronous motor is controlled to be connected to the grid.
  • the operation management center controls to one motor according to the start request of the synchronous motor. And issuing a running command and connecting the synchronous motor and the motor controller, and then collecting an input signal and an output signal of the motor controller, adjusting a current vector of the motor controller according to the input signal and the output signal, when the synchronous motor meets the grid connection condition When the synchronous motor is controlled to be connected to the grid.
  • the operation management center controls all synchronous motor operations through one or more motor controllers under its jurisdiction.
  • the operation management center needs to know which synchronous motor is to initiate the application.
  • the present invention adds an electronic identification to the synchronous motor.
  • the parameters of each synchronous motor can be automatically collected into each motor controller by self-learning to support the starting and grid-connecting operation of the synchronous motor.
  • S201 Acquire an input signal and an output signal of the motor controller by using a DSP (Digital Signal Processing) module of the motor controller.
  • the input signal and the output signal are AC signals, wherein the input signal is a signal on the grid side, and the output signal is a signal on the motor side.
  • S202 Calculate real-time operating parameters of the motor controller according to the input signal and the output signal.
  • the above real-time operation may include frequency, phase, voltage, and the like.
  • S203 Perform a vector operation on the real-time running parameter to generate a current vector.
  • S204 Adjust the current vector such that a difference between an input voltage vector of the motor controller and an output voltage vector satisfies a set value.
  • the set value may be, for example, 0, and when the difference is equal to the set value, the synchronous motor M1 satisfies the grid connection condition.
  • controlling the synchronous motor to be connected to the grid includes the following steps:
  • S301 Send a signal to the contactor between the grid side and the synchronous motor to enable the grid power supply to be powered simultaneously with the motor controller. Specifically, after the synchronous motor meets the above-mentioned grid-connected condition, the motor controller feeds back a signal to the operation management center to inform that the synchronous motor has met the grid-connected condition. Based on the feedback signal, the operation management center sends an ON signal to the contactor between the synchronous motor and the grid side to control the contactor to close. At this time, the synchronous motor is simultaneously connected to the motor controller and the grid side, and the grid power supply and the motor controller can simultaneously supply power.
  • the synchronous motor After the grid power supply and the motor controller are powered simultaneously for a predetermined time (generally several tens of seconds), the synchronous motor will run smoothly, and the operation management center will disconnect the synchronous motor from the motor controller, and the synchronous motor will be connected to the grid.
  • a predetermined time generally several tens of seconds
  • the synchronous motor in a synchronous manner, and the synchronous motor can be a permanent magnet synchronous motor.
  • the present invention is not limited thereto.
  • Figure 4 is a control schematic diagram of the operation of multiple synchronous motors connected to the grid
  • Figure 5 is a flow chart of the operation of the permanent magnet synchronous motor.
  • the identification (number) of the five permanent magnet synchronous motors is M1.
  • M2, M3, M4 and M5 in order to facilitate identification, the identification of the above five permanent magnet synchronous motors needs to be converted into an electronic identification (or electronic identification code).
  • the controller bus-1 and the controller-2 are provided with a CAN bus transceiver, and the operation management center is respectively connected to the CAN bus transceivers of the controller-1 and the controller-2 through the CAN bus.
  • each permanent magnet synchronous motor is connected to different data acquisition modules (PG1 to PG5 in the figure), and each CAN has integrated CAN bus transceiver.
  • the operation management center sends and receives CAN bus via PG1 to PG5 through CAN bus.
  • the devices are connected separately. Since the CAN bus transceiver is integrated in the PG, an address, ie an electronic identification, can be set for each synchronous motor.
  • the operator needs to input the electronic identification code in the operation management center, and the operation management center will automatically notify the motor controller-1 or motor controller-2 to start running. , that is, a running command is issued to the motor controller-1 or the motor controller-2.
  • the operation management center informs the motor controller, it is necessary to select an idle motor controller. For example, when the motor controller-1 is running, the motor controller-2 is notified to start running. If all the motor controllers are idle, they can be randomly selected. One of the motor controllers issued a run command.
  • the operator wants to start the permanent magnet synchronous motor No. M1.
  • the motor controller-1 starts to work, and the permanent magnet synchronous motor needs to be connected.
  • M1 and motor controller-1 that is, control to connect the contactor KM11 between the permanent magnet synchronous motor M1 and the motor controller-1, at this time, the motor controller-1 controls the permanent magnet synchronous motor M1 to start acceleration, accelerate to a predetermined The synchronous speed corresponding to the frequency (for example, 50 Hz).
  • the permanent magnet synchronous motor M1 accelerates to the synchronous speed corresponding to the predetermined frequency, it first needs to acquire the input signal (the grid side U, V, W) and the output signal (the motor side) of the motor controller-1 through the DSP module of the motor controller-1. Then, according to the input signal and the output signal, calculate the real-time operating parameters of the frequency, phase, voltage, etc. of the motor controller-1, and perform a vector operation on the real-time operating parameters to generate a current vector; finally, by adjusting the current vector, The difference between the input voltage vector of the motor controller-1 and the output voltage vector is made equal to zero.
  • the feedback signal that satisfies the grid-connected condition will be sent from the controller-1 through the CAN line to the operation management center, and the operation management center will send a signal to the KM13, and the KM13 contactor will be closed.
  • KM11 and KM13 are connected at the same time, that is, controller-1 is powered simultaneously with the grid power supply, and after a period of time (about several tens of seconds), when the M1 motor reaches stable operation, the operation management center sends a disconnection signal to the KM11, and the contactor The KM11 is disconnected. At this point, the M1 motor is connected to the grid.
  • the management center After the synchronous motor (partial or all synchronous motor) starts the grid operation, the management center will collect the synchronous motor running data, such as current, voltage, power, power factor, motor internal temperature, etc. in real time through the CAN system, and perform real-time detection on the detected data. Analysis and storage, such as alarming when the data is abnormal or stopping the synchronous motor operation.
  • the synchronous motor running data such as current, voltage, power, power factor, motor internal temperature, etc.
  • the synchronous motor running on the grid can be selected to operate off-grid at any time.
  • the off-grid operation method includes:
  • S702 Control, according to the off-grid application, the motor controller to adjust its own output voltage, so that the output voltage is equal to its own input voltage;
  • S703 Turn on the contactor between the synchronous motor and the motor controller, and disconnect the contactor between the grid side and the synchronous motor after a predetermined time.
  • the management center manages the permanent magnet synchronous motor controller through the CAN system, realizes grid-connected operation and off-grid operation of multiple motors, and collects motor operation data in real time, such as current, voltage, power, power factor, and motor interior. Temperature, etc., real-time analysis and storage of the detected data, such as alarming or stopping the motor when the data is abnormal.
  • the operating efficiency of the three-phase asynchronous motor changes significantly with the load change.
  • the rated working point efficiency is generally around 90%, which is the highest point.
  • the motor load is 20-30% (light load)
  • its efficiency is only About 50%
  • permanent magnet synchronous motors, whether light or heavy have an efficiency of 90%.
  • the motor controller adopts the vector control algorithm to control the voltage, frequency and phase of the grid-connected motor so that it is connected to the grid when the voltage, frequency and phase of the grid are consistent.
  • the operation management center manages multiple motor controllers to realize the grid-connected operation of multiple permanent magnet synchronous motors in the same place, reducing the operation control cost of the permanent magnet synchronous motor, and widely used permanent magnet synchronization in industrial production. Motors have laid the foundation for promoting energy conservation in industrial production.
  • the embodiment of the present application further provides a plurality of synchronous motor grid-connected operation control devices, as described in the following embodiments. Since the principle of solving the problem by the grid-connected operation control device of the plurality of synchronous motors is similar to the grid-connected operation control method of the plurality of synchronous motors, the implementation of the grid-connected operation control device of the plurality of synchronous motors can be referred to the grid-connected operation control of the plurality of synchronous motors. The implementation of the method, the repetition will not be repeated.
  • the grid-connected operation control device for the plurality of synchronous motors includes: an identifier acquisition unit 901, an operation control unit 902, a grid-connecting adjustment unit 903, and a network control unit 904, wherein
  • the identifier obtaining unit 901 is configured to receive a startup request of the synchronous motor, and extract an electronic identifier of the synchronous motor from the startup application;
  • the operation control unit 902 is configured to issue a running instruction to a motor controller according to the electronic identifier, and connect the synchronous motor and the motor controller;
  • the grid adjustment unit 903 is configured to collect an input signal and an output signal of the motor controller, and adjust a current vector of the motor controller according to the input signal and the output signal, so that the synchronous motor meets a grid connection condition;
  • the grid-connected control unit 904 is configured to control the synchronous motor to operate in parallel.
  • FIG. 10 is a schematic structural diagram of a specific embodiment of a plurality of synchronous motor grid-connected operation control devices in the embodiment of the present application; as shown in FIG. 10, the operation control unit 902 in FIG. 9 includes: an instruction sending module 1001 and a first connection. Module 1002.
  • the command sending module 1001 is configured to issue a running command to a motor controller according to the electronic identifier, and the first closing module 1002 is configured to turn on a contactor between the synchronous motor and the motor controller.
  • FIG. 11 is a schematic structural diagram of a specific embodiment of a plurality of synchronous motor grid-connected operation control devices in the embodiment of the present application; as shown in FIG. 11, the grid-connecting adjustment unit 903 in FIG. 9 includes: a signal acquisition module 1101, and a parameter calculation module. 1102. A vector operation module 1103 and a vector adjustment module 1104.
  • the signal acquisition module 1101 is configured to collect an input signal and an output signal of the motor controller by using a DSP module of the motor controller;
  • the parameter calculation module 1102 is configured to calculate real-time operating parameters of the motor controller according to the input signal and the output signal;
  • the vector operation module 1103 is configured to perform a vector operation on the real-time running parameter to generate a current vector
  • the vector adjustment module 1104 is configured to adjust the current vector such that a difference between the input voltage vector of the motor controller and the output voltage vector satisfies a set value.
  • FIG. 12 is a schematic structural diagram of a specific embodiment of a plurality of synchronous motor grid-connected operation control devices in the embodiment of the present application; as shown in FIG. 12, the grid-connected control unit 904 in FIG. 9 includes: a second switch-on module 1201 and a break Module 1202 is opened.
  • the second switch-on module 1201 is configured to send a signal to the contactor between the grid side and the synchronous motor to enable the grid power supply to be powered simultaneously with the motor controller;
  • the disconnect module 1202 is configured to disconnect the synchronous motor from the motor controller.
  • the plurality of synchronous motor grid-connected operation control devices further includes: an identifier conversion unit 1301 and a parameter acquisition unit 1302.
  • the identifier conversion unit 1301 is configured to convert the identifiers of the synchronous motors into electronic identifiers
  • the parameter collection unit 1302 is configured to automatically collect the parameters of the synchronous motors into the motor controllers by self-learning.
  • the operation management center manages multiple motor controllers, realizes the grid-connected operation of multiple permanent magnet synchronous motors in the same place, reduces the operation control cost of the permanent magnet synchronous motor, and widely uses the permanent magnet synchronous motor in industrial production. It has laid the foundation for promoting energy conservation in industrial production.
  • embodiments of the present invention can be provided as a method, system, or computer program product.
  • the present invention may employ an entirely hardware embodiment, an entirely software embodiment, or a combination of software and hardware aspects.
  • the invention can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) including computer usable program code.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)
  • Control Of Multiple Motors (AREA)

Abstract

一种多台同步电机并网运行控制方法及装置,该控制方法包括:接收同步电机的启动申请,并从启动申请中提取同步电机的电子标识(S101);根据电子标识向一台电机控制器发出运行指令,并连接同步电机与电机控制器(S102);采集电机控制器的输入信号及输出信号,根据输入信号及输出信号调整电机控制器的电流矢量,使得同步电机满足并网条件(S103);控制同步电机并网运行(S104)。该控制方法实现了同一地方多台同步电机的并网运行,降低了同步电机的运行控制成本,为在工业生产中广泛使用永磁同步电机,促进工业生产的节能,奠定了基础。

Description

多台同步电机并网运行控制方法及装置 技术领域
本发明涉及属于电机与控制技术的应用领域,特别是关于多台同步电机并网运行控制方法及装置。
背景技术
在现代工业化生产与人们的日常生活中,一般采用一台控制器控制一台永磁同步电机运行。但是控制器价格一般是永磁同步电机价格的2~4倍,如果采用一台控制器控制一台永磁同步电机运行,将会极大的增加成本。
如何降低控制器的成本已成为亟待解决的问题。
发明内容
本发明提供一种多台同步电机并网运行控制方法及装置,以实现同一地方多台同步电机的并网运行,降低同步电机的运行控制成本。
为了实现上述目的,本发明提供了一种多台同步电机并网运行控制方法,所述多台同步电机并网运行控制方法包括:
接收同步电机的启动申请,并从所述启动申请中提取所述同步电机的电子标识;
根据所述电子标识向一台电机控制器发出运行指令,并连接所述同步电机与所述电机控制器;
采集所述电机控制器的输入信号及输出信号,根据所述输入信号及输出信号调整所述电机控制器的电流矢量,使得所述同步电机满足并网条件;
控制所述同步电机并网运行。
一实施例中,连接所述同步电机与所述电机控制器,包括:将所述同步电机与所述电机控制器之间的接触器接通。
一实施例中,根据所述输入信号及输出信号调整所述电机控制器的电流矢量,使得所述同步电机满足并网条件,包括:
根据所述输入信号及输出信号计算所述电机控制器的实时运行参数;
对所述实时运行参数进行矢量运算,生成电流矢量;
调整所述电流矢量,使所述电机控制器的输入电压矢量与输出电压矢量的差值满足设定值。
一实施例中,所述设定值为零。
一实施例中,控制所述同步电机并网运行,包括:
向电网侧与所述同步电机之间的接触器发出接通信号,使电网电源与所述电机控制器同时供电;
当所述同步电机平稳运行后,断开所述同步电机与所述电机控制器的连接。
一实施例中,采集所述电机控制器的输入信号及输出信号,包括:通过所述电机控制器的DSP模块采集所述电机控制器的输入信号及输出信号。
一实施例中,所述多台同步电机并网运行控制方法还包括:将各同步电机的标识转换为电子标识。
一实施例中,所述多台同步电机并网运行控制方法还包括:通过自学习的方式,将各同步电机的参数自动采集到各电机控制器中。
一实施例中,所述的多台同步电机并网运行控制方法还包括:
接收所述同步电机的离网申请;
根据所述离网申请控制所述电机控制器调整自身输出电压,使所述输出电压与自身输入电压相等;
接通所述同步电机与所述电机控制器之间的接触器,并在预定时间后断开电网侧与所述同步电机之间的接触器。
为了实现上述目的,本发明提供了一种多台同步电机并网运行控制装置,所述多台同步电机并网运行控制装置包括:
标识获取单元,用于接收同步电机的启动申请,并从所述启动申请中提取所述同步电机的电子标识;
运行控制单元,用于根据所述电子标识向所述电机控制器发出运行指令,并连接所述同步电机与所述电机控制器;
并网调整单元,用于采集所述电机控制器的输入信号及输出信号,根据所述输入信号及输出信号调整所述电机控制器的电流矢量,使得所述同步电机满足并网条件;
并网控制单元,用于控制所述同步电机并网运行。
一实施例中,所述运行控制单元包括:
第一接通模块,用于将所述同步电机与所述电机控制器之间的接触器接通。
一实施例中,所述并网调整单元包括:
参数计算模块,用于根据所述输入信号及输出信号计算所述电机控制器的实时运行参数;
矢量运算模块,用于对所述实时运行参数进行矢量运算,生成电流矢量;
矢量调整模块,用于调整所述电流矢量,使所述电机控制器的输入电压矢量与输出电压矢量的差值满足设定值。
一实施例中,所述设定值为零。
一实施例中,所述并网控制单元包括:
第二接通模块,用于向电网侧与所述同步电机之间的接触器发出接通信号,使电网电源与所述电机控制器同时供电;
断开模块,用于断开所述同步电机与所述电机控制器的连接。
一实施例中,所述并网调整单元还包括:
信号采集模块,用于通过所述电机控制器的DSP模块采集所述电机控制器的输入信号及输出信号。
一实施例中,所述多台同步电机并网运行控制装置还包括:
标识转换单元,用于将各同步电机的标识转换为电子标识。
一实施例中,所述多台同步电机并网运行控制装置还包括:
参数采集单元,用于通过自学习的方式,将各同步电机的参数自动采集到各电机控制器中。
一实施例中,所述的多台同步电机并网运行控制装置还包括:
申请接收单元,用于接收所述同步电机的离网申请;
电压调整单元,用于根据所述离网申请控制所述电机控制器调整自身输出电压率,使所述输出电压与自身输入电压相等;
离网控制单元,用于接通所述同步电机与所述电机控制器之间的接触器,并在预定时间后断开电网侧与所述同步电机之间的接触器。
通过本发明,实现了同一地方多台同步电机的并网运行,降低了同步电机的运行控制成本,为在工业生产中广泛使用永磁同步电机,促进工业生产的节能,奠定了基础。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例中多台同步电机并网运行控制方法流程图;
图2图1的S103的方法流程图;
图3为本申请实施例中控制该同步电机并网运行的方法流程图;
图4为本申请实施例中多台同步电机并网运行的控制原理图;
图5为本申请实施例中永磁同步电机并网运行流程图;
图6为本申请实施例中永磁同步电机并网信号采集与运算控制的原理图;
图7为本申请实施例中离网运行方法流程图;
图8为本申请实施例中永磁同步电机离网运行流程图;
图9为本申请一实施例中多台同步电机并网运行控制装置的结构示意图;
图10是本申请实施例中多台同步电机并网运行控制装置的具体实施例一的结构示意图;
图11是本申请实施例中多台同步电机并网运行控制装置的具体实施例二的结构示意图;
图12是本申请实施例中多台同步电机并网运行控制装置的具体实施例三的结构示意图;
图13为本申请另一实施例中多台同步电机并网运行控制装置的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
为了解决现有技术中一台电机控制器只能控制一台同步电机造成的成本较高的问题,本发明实施例提供一种多台同步电机并网运行控制方法,如图1所示,该多台同步电机并网运行控制方法包括:
S101:接收同步电机的启动申请,并从所述启动申请中提取所述同步电机的电子标识;
S102:根据所述电子标识向所述电机控制器发出运行指令,并连接所述同步电机与所述电机控制器;
S103:采集所述电机控制器的输入信号及输出信号,根据所述输入信号及输出信号调整所述电机控制器的电流矢量,使得所述同步电机满足并网条件;
S104:控制所述同步电机并网运行。
图1所示的多台同步电机并网运行控制方法的执行主体为运行管理中心(控制计算机),通过图1所示的流程可知,运行管理中心根据同步电机的启动申请,向一台电机控制器发出运行指令并连接所述同步电机与所述电机控制器,然后采集电机控制器的输入信号及输出信号,根据输入信号及输出信号调整电机控制器的电流矢量,当同步电机满足并网条件时,控制同步电机并网运行。
本发明实施例中,运行管理中心通过其管辖的一台或者多台电机控制器控制所有同步电机运行。当接收到某台同步电机的启动申请时,运行管理中心需要知道是哪台同步电机提出启动申请,为此,本发明在同步电机上增加了电子标识。
在同步电机运行前,可以通过自学习的方式,将各同步电机的参数自动采集到各电机控制器中,以支持同步电机的起动与并网运行。
如图2所示,S103具体实施时,包括如下步骤:
S201:通过电机控制器的DSP(Digital Signal Processing)模块采集所述电机控制器的输入信号及输出信号。输入信号及输出信号均为交流信号,其中,输入信号为电网侧的信号,输出信号为电机侧的信号。
S202:根据所述输入信号及输出信号计算所述电机控制器的实时运行参数。上述实时运行可以包括频率、相位、电压等。
S203:对所述实时运行参数进行矢量运算,生成电流矢量;
S204:调整所述电流矢量,使所述电机控制器的输入电压矢量与输出电压矢量的差值满足设定值。该设定值例如可以为0,该当差值等于该设定值时,同步电机M1满足并网条件。
通过图2所示的流程,可以准确的判断同步电机是否满足并网条件,对待并网的同步电机的电压、频率、相位进行控制,使之同电网的电压、频率、相位一致时实施并网。
当同步电机满足上述并网条件之后,运行管理中心就可以控制该同步电机并网运行,如图3所示,控制该同步电机并网运行包括如下步骤:
S301:向电网侧与所述同步电机之间的接触器发出接通信号,使电网电源与所述电机控制器同时供电。具体地,当同步电机满足上述并网条件之后,电机控制器向运行管理中心反馈信号,告知其同步电机已满足并网条件。运行管理中心将根据该反馈信号,向同步电机与电网侧之间的接触器发送接通信号,控制该接触器合上。此时,同步电机与电机控制器及电网侧同时接通,电网电源与所述电机控制器可以同时进行供电。
S302:当所述同步电机平稳运行后,断开所述同步电机与所述电机控制器的连接。
电网电源与电机控制器同时供电一预定时间(一般为几十秒)后,同步电机将平稳运行,运行管理中心将断开同步电机与电机控制器的连接,该同步电机将进行并网运行。
下述结合图4至图6,具体的说明同步电机如何同步运行,同步电机可以为永磁同步电机,本发明不以此为限。
图4为多台同步电机并网运行的控制原理图,图5为永磁同步电机并网运行流程图。如图4及图5所示,假设有5台同步电机通过两台电机控制器(控制器-1及控制器-2)进行控制,5台永磁同步电机的标识(编号)分别为M1、M2、M3、M4及M5,为了便于识别,需要将上述5台永磁同步电机的标识转换为电子标识(或称为电子识别码)。
需要说明的是,图2中,控制器-1及控制器-2中设有CAN总线收发器,运行管理中心通过CAN总线与控制器-1及控制器-2的CAN总线收发器分别连接。另外,每台永磁同步电机均连接不同的数据采集模块(图中的PG1至PG5),每个PG中集成了了CAN总线收发器,运行管理中心通过CAN总线与PG1至PG5的CAN总线收发器分别连接。由于PG中集成了了CAN总线收发器,因此可以为每台同步电机设置一个地址,即电子标识。
要对5台永磁同步电机某一台永磁同步电机进行起动申请,操作者需要在运行管理中心输入电子识别代码,运行管理中心会自动通知电机控制器-1或电机控制器-2开始运行,即向电机控制器-1或电机控制器-2发出运行指令。运行管理中心通知电机控制器时,需要选择空闲的电机控制器,例如电机控制器-1正在运行中,就通知电机控制器-2开始运行,如果所有的电机控制器都空闲,可以随机选择向其中的一台电机控制器发出运行指令。
如图5及图6所示,假设操作者要启动编号为M1的永磁同步电机,运行管理中心接收M1电机的起动申请后,假设通知电机控制器-1开始工作,需要连接永磁同步电机 M1与电机控制器-1,即控制将永磁同步电机M1与电机控制器-1之间的接触器KM11接通,这时电机控制器-1控制永磁同步电机M1起动加速,加速到预定频率(例如50Hz)对应的同步转速。
永磁同步电机M1加速到预定频率对应的同步转速后,首先需要通过电机控制器-1的DSP模块采集电机控制器-1的输入信号(电网侧U、V、W)及输出信号(电机侧);然后根据上述输入信号及输出信号,计算电机控制器-1的频率,相位、电压等实时运行参数,并对实时运行参数进行矢量运算,生成电流矢量;最后,通过调整所述电流矢量,使电机控制器-1的输入电压矢量与输出电压矢量的差值等于零。
满足了并网条件的反馈信号将从控制器-1通过CAN线到运行管理中心,运行管理中心对KM13发出接通信号,KM13接触器合上。这时KM11和KM13同时接通,即控制器-1与电网电源同时供电,保持一段时间(约几十秒)后,M1电机达到运行平稳时,运行管理中心对KM11发出断开信号,接触器KM11断开,至此,M1电机并网运行。
同步电机(部分或全部同步电机)起动并网运行后,管理中心会通过CAN系统,实时收集同步电机运行数据,如电流、电压、功率,功率因数、电机内部温度等,对检测的数据进行实时分析与存储,如数据异常时进行报警或停止同步电机运行。
并网运行的同步电机,可以在任意时间选择离网运行,如图7所示,离网运行方法包括:
S701:接收同步电机的离网申请;
S702:根据所述离网申请控制所述电机控制器调整自身输出电压,使所述输出电压与自身输入电压相等;
S703:接通所述同步电机与所述电机控制器之间的接触器,并在预定时间后断开电网侧与所述同步电机之间的接触器。
具体地,结合图8所示的永磁同步电机离网运行流程及图6所示,某一台同步电机需要离网运行时,向通过运行管理中心申请,管理中心识别了后,就会通知电机控制器-1或电机控制器-2工作。如要同步电机M1离网,电机控制器-1就会工作,自动其调整输出的电压与频率,检测其电压与输入电压的大小相位一样,这时接触器KM11接通,KM13也在接通状况,KM13保持约几十秒后,在管理运行中心的控制下,自动断开,电机M1实现离网运行。离网运行后,可对M1电机实施调速运行。
通过本发明,管理中心会通过CAN系统,管理永磁同步电机控制器,实现多台电机的并网运行与离网运行,实时收集电机运行数据,如电流、电压、功率,功率因数、电机内部温度等,对检测的数据进行实时分析与存储,如数据异常时进行报警或停止电机运行。
三相异步电机的运行效率随负载变化而发生明显变化,额定工作点的效率一般在90%左右,是最高点,当电机负载在20~30%时(轻载时),其效率就只的50%左右了,而永磁同步电机不管是轻载还是重载,其效率都在90%。
利用一台或少数几台电机控制器管理几台、几十台、甚到几百台永磁同步电机在同一个地方并网运行,可以实现同时并网或逐序并网。
电机控制器采用矢量控制的算法,对并网电机的电压、频率、相位进行控制,使之同电网的电压、频率、相位一致时,实施并网。
由以上描述可知,通过运行管理中心管理多台电机控制器,实现同一地方多台永磁同步电机的并网运行,降低永磁同步电机的运行控制成本,为在工业生产中广泛使用永磁同步电机,促进工业生产的节能,奠定了基础。
基于与图1所示的多台同步电机并网运行控制方法相同的发明构思,本申请实施例还提供了一种多台同步电机并网运行控制装置,如下面实施例所述。由于该多台同步电机并网运行控制装置解决问题的原理与多台同步电机并网运行控制方法相似,因此该多台同步电机并网运行控制装置的实施可以参见多台同步电机并网运行控制方法的实施,重复之处不再赘述。
图9为本发明实施例中多台同步电机并网运行控制装置的结构示意图,该多台同步电机并网运行控制装置包括:标识获取单元901,运行控制单元902,并网调整单元903及并网控制单元904,其中,
标识获取单元901用于接收同步电机的启动申请,并从所述启动申请中提取所述同步电机的电子标识;
运行控制单元902用于根据所述电子标识向一台电机控制器发出运行指令,并连接所述同步电机与所述电机控制器;
并网调整单元903用于采集所述电机控制器的输入信号及输出信号,根据所述输入信号及输出信号调整所述电机控制器的电流矢量,使得所述同步电机满足并网条件;
并网控制单元904用于控制所述同步电机并网运行。
图10是本申请实施例中多台同步电机并网运行控制装置的具体实施例的结构示意图;如图10所示,图9中的运行控制单元902包括:指令发送模块1001及第一接通模块1002。
指令发送模块1001用于根据所述电子标识向一台电机控制器发出运行指令,第一接通模块1002用于将所述同步电机与所述电机控制器之间的接触器接通。
图11是本申请实施例中多台同步电机并网运行控制装置的具体实施例的结构示意图;如图11所示,图9中的并网调整单元903包括:信号采集模块1101,参数计算模块1102,矢量运算模块1103及矢量调整模块1104。
信号采集模块1101,用于通过所述电机控制器的DSP模块采集所述电机控制器的输入信号及输出信号;
参数计算模块1102用于根据所述输入信号及输出信号计算所述电机控制器的实时运行参数;
矢量运算模块1103用于对所述实时运行参数进行矢量运算,生成电流矢量;
矢量调整模块1104用于调整所述电流矢量,使所述电机控制器的输入电压矢量与输出电压矢量的差值满足设定值。
图12是本申请实施例中多台同步电机并网运行控制装置的具体实施例的结构示意图;如图12所示,图9中的并网控制单元904包括:第二接通模块1201及断开模块1202。
第二接通模块1201用于向电网侧与所述同步电机之间的接触器发出接通信号,使电网电源与所述电机控制器同时供电;
断开模块1202用于断开所述同步电机与所述电机控制器的连接。
一实施例中,如图13所示,多台同步电机并网运行控制装置还包括:标识转换单元1301及参数采集单元1302。标识转换单元1301用于将各同步电机的标识转换为电子标识,参数采集单元1302用于通过自学习的方式,将各同步电机的参数自动采集到各电机控制器中。
通过本发明,运行管理中心管理多台电机控制器,实现同一地方多台永磁同步电机的并网运行,降低永磁同步电机的运行控制成本,为在工业生产中广泛使用永磁同步电机,促进工业生产的节能,奠定了基础。
本领域内的技术人员应明白,本发明的实施例可提供为方法、系统、或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面 的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
本发明中应用了具体实施例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。

Claims (18)

  1. 一种多台同步电机并网运行控制方法,其特征在于,所述多台同步电机并网运行控制方法包括:
    接收同步电机的启动申请,并从所述启动申请中提取所述同步电机的电子标识;
    根据所述电子标识向一台电机控制器发出运行指令,并连接所述同步电机与所述电机控制器;
    采集所述电机控制器的输入信号及输出信号,根据所述输入信号及输出信号调整所述电机控制器的电流矢量,使得所述同步电机满足并网条件;
    控制所述同步电机并网运行。
  2. 根据权利要求1所述的多台同步电机并网运行控制方法,其特征在于,连接所述同步电机与所述电机控制器,包括:将所述同步电机与所述电机控制器之间的接触器接通。
  3. 根据权利要求1所述的多台同步电机并网运行控制方法,其特征在于,根据所述输入信号及输出信号调整所述电机控制器的电流矢量,使得所述同步电机满足并网条件,包括:
    根据所述输入信号及输出信号计算所述电机控制器的实时运行参数;
    对所述实时运行参数进行矢量运算,生成电流矢量;
    调整所述电流矢量,使所述电机控制器的输入电压矢量与输出电压矢量的差值满足设定值。
  4. 根据权利要求3所述的多台同步电机并网运行控制方法,其特征在于,所述设定值为零。
  5. 根据权利要求1所述的多台同步电机并网运行控制方法,其特征在于,控制所述同步电机并网运行,包括:
    向电网侧与所述同步电机之间的接触器发出接通信号,使电网电源与所述电机控制器同时供电;
    当所述同步电机平稳运行后,断开所述同步电机与所述电机控制器的连接。
  6. 根据权利要求1所述的多台同步电机并网运行控制方法,其特征在于,采集所述电机控制器的输入信号及输出信号,包括:通过所述电机控制器的DSP模块采集所述电机控制器的输入信号及输出信号。
  7. 根据权利要求1-6中任一项所述的多台同步电机并网运行控制方法,其特征在于,所述多台同步电机并网运行控制方法还包括:将各同步电机的标识转换为电子标识。
  8. 根据权利要求1-6中任一项所述的多台同步电机并网运行控制方法,其特征在于,所述多台同步电机并网运行控制方法还包括:通过自学习的方式,将各同步电机的参数自动采集到各电机控制器中。
  9. 根据权利要求1所述的多台同步电机并网运行控制方法,其特征在于,所述的多台同步电机并网运行控制方法还包括:
    接收所述同步电机的离网申请;
    根据所述离网申请控制所述电机控制器调整自身输出电压,使所述输出电压与自身输入电压相等;
    接通所述同步电机与所述电机控制器之间的接触器,并在预定时间后断开电网侧与所述同步电机之间的接触器。
  10. 一种多台同步电机并网运行控制装置,其特征在于,所述多台同步电机并网运行控制装置包括:
    标识获取单元,用于接收同步电机的启动申请,并从所述启动申请中提取所述同步电机的电子标识;
    运行控制单元,用于根据所述电子标识向一台电机控制器发出运行指令,并连接所述同步电机与所述电机控制器;
    并网调整单元,用于采集所述电机控制器的输入信号及输出信号,根据所述输入信号及输出信号调整所述电机控制器的电流矢量,使得所述同步电机满足并网条件;
    并网控制单元,用于控制所述同步电机并网运行。
  11. 根据权利要求10所述的多台同步电机并网运行控制装置,其特征在于,所述运行控制单元包括:
    第一接通模块,用于将所述同步电机与所述电机控制器之间的接触器接通。
  12. 根据权利要求10所述的多台同步电机并网运行控制装置,其特征在于,所述并网调整单元包括:
    参数计算模块,用于根据所述输入信号及输出信号计算所述电机控制器的实时运行参数;
    矢量运算模块,用于对所述实时运行参数进行矢量运算,生成电流矢量;
    矢量调整模块,用于调整所述电流矢量,使所述电机控制器的输入电压矢量与输出电压矢量的差值满足设定值。
  13. 根据权利要求12所述的多台同步电机并网运行控制装置,其特征在于,所述设定值为零。
  14. 根据权利要求10所述的多台同步电机并网运行控制装置,其特征在于,所述并网控制单元包括:
    第二接通模块,用于向电网侧与所述同步电机之间的接触器发出接通信号,使电网电源与所述电机控制器同时供电;
    断开模块,用于断开所述同步电机与所述电机控制器的连接。
  15. 根据权利要求10所述的多台同步电机并网运行控制装置,其特征在于,所述并网调整单元还包括:
    信号采集模块,用于通过所述电机控制器的DSP模块采集所述电机控制器的输入信号及输出信号。
  16. 根据权利要求10-15中任一项所述的多台同步电机并网运行控制装置,其特征在于,所述多台同步电机并网运行控制装置还包括:
    标识转换单元,用于将各同步电机的标识转换为电子标识。
  17. 根据权利要求10-15中任一项所述的多台同步电机并网运行控制装置,其特征在于,所述多台同步电机并网运行控制装置还包括:
    参数采集单元,用于通过自学习的方式,将各同步电机的参数自动采集到各电机控制器中。
  18. 根据权利要求10所述的多台同步电机并网运行控制装置,其特征在于,所述的多台同步电机并网运行控制装置还包括:
    申请接收单元,用于接收所述同步电机的离网申请;
    电压调整单元,用于根据所述离网申请控制所述电机控制器调整自身输出电压率,使所述输出电压与自身输入电压相等;
    离网控制单元,用于接通所述同步电机与所述电机控制器之间的接触器,并在预定时间后断开电网侧与所述同步电机之间的接触器。
PCT/CN2015/098953 2015-04-24 2015-12-25 多台同步电机并网运行控制方法及装置 WO2016169292A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510201083.5A CN104779643B (zh) 2015-04-24 2015-04-24 多台同步电机并网运行控制方法及装置
CN201510201083.5 2015-04-24

Publications (1)

Publication Number Publication Date
WO2016169292A1 true WO2016169292A1 (zh) 2016-10-27

Family

ID=53620949

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/098953 WO2016169292A1 (zh) 2015-04-24 2015-12-25 多台同步电机并网运行控制方法及装置

Country Status (2)

Country Link
CN (1) CN104779643B (zh)
WO (1) WO2016169292A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104779643B (zh) * 2015-04-24 2017-01-04 深圳先进技术研究院 多台同步电机并网运行控制方法及装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2755307Y (zh) * 2004-12-20 2006-02-01 内蒙古方维电器制造有限责任公司 大功率风能直驱永磁发电全逆变并网风力发电系统
CN201656498U (zh) * 2010-04-21 2010-11-24 陕西科技大学 一种无刷同步风力发电机组全功率并网装置
CN102368620A (zh) * 2011-10-28 2012-03-07 浙江大学 风光储流新能源孤网稳定运行集成控制系统及方法
CN202535089U (zh) * 2012-04-25 2012-11-14 安徽华力环保科技有限公司 同步发电机组并网系统
CN202564969U (zh) * 2012-04-28 2012-11-28 东南大学 变速恒频双转子永磁风力发电机并网控制系统
CN104779643A (zh) * 2015-04-24 2015-07-15 深圳先进技术研究院 多台同步电机并网运行控制方法及装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000116195A (ja) * 1998-09-30 2000-04-21 Shinko Electric Co Ltd 需要家電力設備
DE10251443A1 (de) * 2001-11-15 2003-09-18 Murata Machinery Ltd Textilmaschinen-Antriebsvorrichtung
US7679215B2 (en) * 2004-12-17 2010-03-16 General Electric Company Wind farm power ramp rate control system and method
CN202050253U (zh) * 2011-04-26 2011-11-23 广东康菱动力科技有限公司 多台大马力高速全自动一体化并联及与市电并网系统
CN102938565B (zh) * 2012-09-28 2014-12-10 上海交通大学 基于大规模并联系统的分布式通讯系统及其控制方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2755307Y (zh) * 2004-12-20 2006-02-01 内蒙古方维电器制造有限责任公司 大功率风能直驱永磁发电全逆变并网风力发电系统
CN201656498U (zh) * 2010-04-21 2010-11-24 陕西科技大学 一种无刷同步风力发电机组全功率并网装置
CN102368620A (zh) * 2011-10-28 2012-03-07 浙江大学 风光储流新能源孤网稳定运行集成控制系统及方法
CN202535089U (zh) * 2012-04-25 2012-11-14 安徽华力环保科技有限公司 同步发电机组并网系统
CN202564969U (zh) * 2012-04-28 2012-11-28 东南大学 变速恒频双转子永磁风力发电机并网控制系统
CN104779643A (zh) * 2015-04-24 2015-07-15 深圳先进技术研究院 多台同步电机并网运行控制方法及装置

Also Published As

Publication number Publication date
CN104779643A (zh) 2015-07-15
CN104779643B (zh) 2017-01-04

Similar Documents

Publication Publication Date Title
JP5583507B2 (ja) スマートグリッドの監視制御方法及び装置
JP6398016B2 (ja) 複数のグリッド・タイ電力変換器の単独運転
CN102891500B (zh) 一种带隔离变压器的三相两电平逆变器并联控制方法
CN104579101B (zh) 高压变频器变频切换至工频的控制系统以及控制方法
CN104065104B (zh) 一种基于三相独立调节的微电网快速并网方法
CN108768233A (zh) 离散域复矢量建模的永磁同步电机无差拍控制系统及方法
CN104578187A (zh) 一种多端柔性直流输电系统级协调控制装置
CN103986403A (zh) 变频调速系统及方法
CN103580055A (zh) 变速恒频双馈风力发电机组开放式并网实验系统及方法
CN103701155A (zh) 一种光伏并网逆变器有功调度控制方法
CN104052356A (zh) 基于无刷双馈电机的变速恒频发电控制装置及发电方法
WO2019233071A1 (zh) 适用于交直流混合分布式系统的多能协调控制系统及方法
CN203504195U (zh) 钻机平台的无人职守全数字电站系统
CN106458040A (zh) 用于切换机动车的电驱动器的逆变器的方法和相应地可切换的逆变器
WO2016169292A1 (zh) 多台同步电机并网运行控制方法及装置
CN104481879A (zh) 一种空压机节能控制器
CN203504201U (zh) 一种能无缝切换供电的两次并网发电车控制系统
CN105604370A (zh) 带制动器监测的立体车库变频调速控制系统
CN105048512A (zh) 永磁同步电机并网运行控制方法、系统及准同步控制器
CN113114081B (zh) 变频与工频无缝切换控制方法、控制器、系统及存储介质
CN112448417A (zh) 一种新能源和火电捆绑直流外送系统的协控方法和系统
CN203205888U (zh) 一种中小型水轮发电机组双机热备份的控制系统
CN211820026U (zh) 一种基于物联网无霍尔风机或水泵控制系统
CN104600735A (zh) 一种基于柔性直流输电控制系统的环流抑制方法
CN202937432U (zh) 一种工变频空气压缩机节能控制及远程无线管理系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15889772

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 12/04/2018)

122 Ep: pct application non-entry in european phase

Ref document number: 15889772

Country of ref document: EP

Kind code of ref document: A1