WO2019233071A1 - 适用于交直流混合分布式系统的多能协调控制系统及方法 - Google Patents

适用于交直流混合分布式系统的多能协调控制系统及方法 Download PDF

Info

Publication number
WO2019233071A1
WO2019233071A1 PCT/CN2018/120052 CN2018120052W WO2019233071A1 WO 2019233071 A1 WO2019233071 A1 WO 2019233071A1 CN 2018120052 W CN2018120052 W CN 2018120052W WO 2019233071 A1 WO2019233071 A1 WO 2019233071A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
control unit
module
control
area
Prior art date
Application number
PCT/CN2018/120052
Other languages
English (en)
French (fr)
Inventor
刘千杰
葛亮
吴家宏
张雯
吴恒
陈玉峰
Original Assignee
北京四方继保自动化股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京四方继保自动化股份有限公司 filed Critical 北京四方继保自动化股份有限公司
Publication of WO2019233071A1 publication Critical patent/WO2019233071A1/zh

Links

Images

Classifications

    • H02J3/383
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/36Arrangements for transfer of electric power between ac networks via a high-tension dc link
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/60Arrangements for transfer of electric power between AC networks or generators via a high voltage DC link [HVCD]

Definitions

  • the present disclosure relates to the field of distributed power generation technology in electric power systems, and in particular, to a multi-energy coordinated control system and method suitable for an AC / DC hybrid distributed system.
  • AC and DC hybrid distributed systems have AC and DC areas, and there are multiple forms of interaction in the two areas.
  • How to coordinate various distributed power sources, energy storage devices, and loads to achieve the basic Stable control to ensure that the system runs within the security boundary is an urgent problem.
  • the present disclosure proposes a multi-energy coordinated control system and method suitable for AC / DC hybrid distributed systems, which can perform information acquisition and control on AC / DC hybrid distributed systems to achieve More coordinated control.
  • a multi-energy coordinated control system suitable for an AC / DC hybrid distributed system.
  • the multi-energy coordinated control system includes: an acquisition control unit, a general control unit, and a communication interaction unit;
  • the acquisition control unit is connected to the overall control unit through an acquisition control bus, and the acquisition control unit is connected to the AC / DC hybrid distributed system;
  • the overall control unit controls the acquisition and control of the AC / DC hybrid distributed system through the acquisition control bus, and the overall control unit is connected to the communication interaction unit through a communication interaction bus;
  • the communication interaction unit is connected to the AC / DC hybrid distributed system, and the communication interaction unit is communicatively connected to an external device.
  • the acquisition control unit includes an AC direct mining module, a DC direct mining module, and an input / output DIO module;
  • the total control unit includes a human DSP computing module, a main CPU module, and an FPGA module;
  • the DSP computing module is connected to the AC direct mining module, the DC direct mining module and the DIO module through an acquisition control bus;
  • the main CPU module is connected with the DSP computing module, and the main CPU module includes one or more of a human-machine interaction HMI interface, a serial communication interface, and a network interface;
  • the FPGA module is connected to the DSP computing module, and the FPGA module supports the IEC61850GOOSE fast communication protocol.
  • the communication interaction unit includes: a wireless module and a fiber optic module;
  • the wireless module is connected with the main CPU module, and is communicatively connected with an external device;
  • the optical fiber module is connected to the FPGA module and the AC / DC hybrid distributed system.
  • the multi-energy coordinated control system further includes: a power module;
  • the power module is connected to the acquisition control unit and the overall control unit through an acquisition control bus, and supplies power to the acquisition control unit and the overall control unit;
  • the power module is connected to the communication interactive unit through a communication interactive bus, and supplies power to the communication interactive unit.
  • the AC / DC hybrid distributed system includes one or more power electronic transformers, an AC area controller, and a DC area controller;
  • the optical fiber module is respectively connected to the one or more power electronic transformers, an AC area controller, and a DC area controller.
  • a multi-energy coordinated control method based on the multi-energy coordinated control system includes:
  • the overall control unit controls the acquisition control unit to collect the AC / DC hybrid distributed system to obtain distributed power source information, energy storage equipment information and load information in the AC area, and distributed power source information, energy storage in the DC area Equipment information and load information;
  • the overall control unit generates stable control information of the AC area according to the distributed power source information, energy storage equipment information, and load information of the AC area obtained; according to the obtained distributed power source information and energy storage equipment of the DC area, Information and load information to generate stability control information in the DC area;
  • the general control unit sends the stability control information of the AC area and the stability control information of the DC area through the communication and interaction unit, so that the distributed power sources, energy storage devices, The load is controlled; according to the stability control information in the DC area, distributed power sources, energy storage equipment, and loads in the DC area are controlled.
  • the AC / DC hybrid distributed system includes a power electronic transformer, and the power electronic transformer is a multi-port power electronic transformer,
  • the main control unit obtains the power of one or more ports of the power electronic transformer
  • the main control unit generates AC / DC power interactive control information according to the power of one or more ports of the power electronic transformer;
  • the overall control unit controls the power of one or more ports of the power electronic transformer according to the AC / DC power interactive control information.
  • the method further includes:
  • the total control unit calculates the energy storage equipment in the first target period based on the power output active power of the first target period, the power output active power reference value, and the power output output active power reference value of the previous period of the first target period. Target value of active power for one cycle;
  • the total control unit sends the active power target value through a communication interaction unit to control the active power output or input of the energy storage device in the next period of the first target period according to the active power target value.
  • the method further includes:
  • the total control unit is based on the duration of the second target period, the predicted average output active power and predicted average active power of the second target period, the average output active power of the power source during the second period of the second target period, and the average active power of the load. And the average active power of the energy storage device to calculate the average active power of the energy storage device in the second target period, wherein the duration of the second target period is greater than the duration of the first target period;
  • the total control unit sends the average active power of the energy storage device in the second target period through the communication interaction unit, so as to control the energy storage device in the first target period according to the average active power of the energy storage device and / or the target value of the active power. Active power output or input for two target periods.
  • the power electronic transformer includes a master-slave operation mode and a peer-to-peer operation mode, and the method includes:
  • the overall control unit controls the power electronic transformer to switch between a master-slave operation mode and a peer-to-peer operation mode according to a state of the power electronic transformer.
  • the power electronic transformer includes an active filter APF, and the method includes:
  • the general control unit controls the power electronic transformer to use the APF to control the harmonics where the AC / DC hybrid distributed system is connected to the power distribution network.
  • the acquisition and control unit and communication interaction unit in the multi-energy coordinated control system are connected to the AC / DC hybrid distributed system.
  • AC / DC hybrid can be performed.
  • the distributed system performs information collection and control to achieve multi-energy coordinated control of AC / DC hybrid distributed systems.
  • FIG. 1 illustrates a schematic diagram of an AC / DC hybrid distributed system according to an embodiment of the present disclosure.
  • FIG. 2 is a schematic diagram of an AC / DC hybrid distributed system according to an embodiment of the present disclosure.
  • FIG. 3 is a schematic diagram of a multi-energy coordinated control system suitable for an AC / DC hybrid distributed system according to an embodiment of the present disclosure.
  • FIG. 4 is a schematic diagram of a control function logic of a multi-energy coordinated control system according to an embodiment of the present disclosure.
  • FIG. 5 shows a flowchart of a multi-energy coordinated control method based on the multi-energy coordinated control system according to an embodiment of the present disclosure.
  • FIG. 6 shows a flowchart of a multi-energy coordinated control method based on the multi-energy coordinated control system according to an embodiment of the present disclosure.
  • FIG. 7 shows a flowchart of a multi-energy coordinated control method based on the multi-energy coordinated control system according to an embodiment of the present disclosure.
  • FIG. 8 shows a flowchart of a multi-energy coordinated control method based on the multi-energy coordinated control system according to an embodiment of the present disclosure.
  • FIG. 9 illustrates a mode conversion diagram of a power electronic transformer according to an embodiment of the present disclosure.
  • FIG. 10 illustrates a schematic diagram of power quality management according to an embodiment of the present disclosure.
  • exemplary means “serving as an example, embodiment, or illustration.” Any embodiment described herein as “exemplary” is not necessarily to be construed as superior or better than other embodiments.
  • FIG. 1 illustrates a schematic diagram of an AC / DC hybrid distributed system according to an embodiment of the present disclosure.
  • FIG. 2 is a schematic diagram of an AC / DC hybrid distributed system according to an embodiment of the present disclosure.
  • the AC / DC hybrid distributed system may include one or more power electronic transformers.
  • the AC / DC hybrid distributed system includes two power electronic transformers: SST1 and SST2.
  • the SST1 and SST2 each have four voltage level ports.
  • SST1 and SST2 are connected in a back-to-back manner.
  • SST1 and SST2 can operate in a master-slave mode or a peer-to-peer mode.
  • the 10KVAC (10KV AC) ports of SST1 and SST2 can be connected to external power grids, such as traditional wind power grids.
  • the AC / DC hybrid distributed system can be divided into a 380V AC (380VAC) area, a ⁇ 375V DC ( ⁇ 375VDC) area, a 10KV DC area, a 10KV AC, and an SST area.
  • 380V AC 380VAC
  • ⁇ 375V DC ⁇ 375VDC
  • 10KV DC 10KV AC
  • SST SST area
  • the 380V AC area includes photovoltaic 31, energy storage equipment 33, and AC load 32, and the photovoltaic 31, energy storage equipment 33, and AC load 32 can be connected to the AC area controller 34;
  • the ⁇ 375V DC area includes photovoltaic 21, energy storage Device 23 and DC load 22, the photovoltaic 21, energy storage device 23, and DC load 22 may be connected to the DC area controller 24;
  • the 10KV DC area includes photovoltaic 11 and adjustable load 12, the photovoltaic 11 and adjustable load 12 Can be connected with DC area controller 14;
  • 10KV AC and SST areas include SST1, SST2 and 10KV AC.
  • the AC area controller 34, the DC area controller 24, the DC area controller 14, SST1 and SST2 are respectively connected to a multi-energy coordinated control system.
  • the DC area controller 24, the DC area controller 14, and the AC area controller 34 can receive the information sent by the multi-energy coordinated control system, and can perform photovoltaic and energy storage equipment in the DC area and the AC area according to the received information. Or load for control.
  • FIG. 3 is a schematic diagram of a multi-energy coordinated control system suitable for an AC / DC hybrid distributed system according to an embodiment of the present disclosure.
  • the multi-energy coordinated control system may include: an acquisition control unit 1, an overall control unit 2, and a communication interaction unit 3; wherein the acquisition control unit 1 may communicate with the overall control through an acquisition control bus 4 Unit 2 is connected, and the acquisition and control unit 1 may be connected to the AC / DC hybrid distributed system;
  • the general control unit 2 controls the acquisition of the AC / DC hybrid distributed system by the acquisition control unit 1 through the acquisition control bus 4, and the overall control unit 2 is connected to the communication interaction unit 3 through a communication interaction bus 5;
  • the communication interaction unit 3 is connected to the AC / DC hybrid distributed system, and the communication interaction unit 3 is communicatively connected to an external device.
  • the total control unit 1, the total control unit 2 and the communication interaction unit 3 in the multi-energy coordinated control system may be based on a plug and play technology, the total control unit may be a master control module, and the external device may be External monitoring equipment.
  • the acquisition and control unit and communication interaction unit in the multi-energy coordinated control system are connected to the AC / DC hybrid distributed system.
  • the AC / DC hybrid distributed system can be distributed.
  • the system performs information collection and control to achieve multi-energy coordinated control of AC / DC hybrid distributed systems.
  • the acquisition control unit 1 may include an AC direct mining module 101, a DC direct mining module 102, and an input / output DIO module 103;
  • the total control unit 2 may include a DSP operation module 201, a main CPU module 202, and an FPGA module 203;
  • the DSP computing module 201 may be connected to the AC direct mining module 102, the DC direct mining module 102, and the DIO module 103 through an acquisition control bus 4;
  • the main CPU module 202 is connected to the DSP computing module 201.
  • the main CPU module 202 may include one or more of a human-machine interaction HMI interface 2021, a serial communication interface 2022, and a network interface 2023.
  • the FPGA module 203 is connected to the DSP computing module 201, and the FPGA module 203 supports the IEC61850GOOSE fast communication protocol.
  • the AC direct mining module 101 may include AC PT and CT sensors, and may be used to collect voltage and current in the AC area of the AC / DC hybrid distributed system.
  • the DC direct mining module 102 may include a Hall sensor, which may be used to collect the voltage and current in the DC area of the AC / DC hybrid distributed system.
  • the input / output DIO (digital input / output) module 103 can detect and control the running status of equipment (such as energy storage equipment, photovoltaic, etc.) in the AC / DC hybrid distributed system.
  • the AC direct mining module 101 and the DC direct mining module 102 may be respectively configured with corresponding input / output DIO modules 103, or may be configured according to actual engineering requirements, which is not limited in this disclosure.
  • the DSP operation module 201 is mainly used to coordinate the calculation of the control system and the output of control instructions.
  • the main CPU module 202 is mainly used for information interaction, and may also include a TFFlash card, which can be used to access key historical information, such as historical operation information, historical control output instructions, event records, and so on.
  • the FPGA module 203 is used for information transmission to implement multi-energy coordinated control on the AC / DC hybrid distributed system.
  • the human-machine interaction HMI interface 2021 can be connected to the HMI liquid crystal device 7.
  • the serial communication interface 2022 can support RS232 and RS485 for connecting photovoltaics.
  • the network interface 2023 can be a standard RJ45 network interface and can support common communication protocols, such as IEC101, IEC104, Modbus, etc., and can be used to connect Ethernet photovoltaics.
  • the communication interaction unit 3 may include: a wireless module 301 and a fiber optic module 302;
  • the wireless module 301 is connected to the main CPU 202 and is communicatively connected to an external device;
  • the optical fiber module 302 is connected to the FPGA module 203 and the AC / DC hybrid distributed system.
  • the wireless module 301 may include multiple wireless module interfaces, such as a 4G wireless interface, an NB-iot interface, and a LoRa interface.
  • the wireless module interface may also be flexibly configured according to actual needs.
  • the fiber optic module 302 may include a dedicated ST or LC interface.
  • the optical fiber module 302 may further include an IRGB timing interface for realizing accurate timing of the optical fiber.
  • the external device may be a monitoring device, and the multi-energy coordinated control system may transmit a control result to the monitoring device, or may receive an instruction from the monitoring device, and perform multi-energy coordinated control according to the instruction.
  • the optical fiber module 302 may be separately connected to the one or more Power electronic transformer, AC area controller and DC area controller are connected.
  • the multi-energy coordinated control system can be applied to an AC / DC hybrid distributed system containing a power electronic transformer, and is connected to the power electronic transformer, the AC area controller and the DC area controller through an optical fiber module, so that the multi-energy coordinated control system The multi-energy coordinated control of the DC hybrid distributed system is faster.
  • the multi-energy coordinated control system further includes: a power module 6;
  • the power module 6 is connected to the acquisition control unit 1 and the general control unit 2 through the acquisition control bus 4 to supply power to the acquisition control unit 1 and the overall control unit 2;
  • the power module 6 is connected to the communication interactive unit 3 through the communication interactive bus 5 to supply power to the communication interactive unit 3.
  • the units and modules in the multi-energy coordinated control system can be integrated into one device to form a multi-energy coordinated control device.
  • FIG. 4 is a schematic diagram of a control function logic of a multi-energy coordinated control system according to an embodiment of the present disclosure.
  • the control method of the multi-energy coordinated control system may include a stable operation control method (the methods of FIGS. 5 and 6), a multi-temporal and spatial scale control method of the energy storage equipment (the methods of FIGS. 7 and 8), and a mode. Switching control method (method of FIG. 9), power quality control method (method of FIG. 10).
  • the control method of the multi-energy coordinated control system can be divided into two layers of logical structure.
  • the multi-temporal and spatial scale control, mode switching control, and power quality control of energy storage equipment are controlled at the upper layer, and the stable operation control is at the lower layer.
  • the stable operation control It is the basis of multi-temporal and spatial scale control, mode switching control, and power quality control of energy storage equipment, that is, multi-temporal and spatial scale control, mode switching control, and power quality control should all be verified by the stable operation control.
  • the embodiments of the present disclosure propose various control methods for stable AC / DC hybrid distributed system including power electronic transformers, stable operation control, multi-temporal and spatial scale control of energy storage equipment, mode switching control, and power quality control.
  • the control method is greatly different from the coordinated control method of the microgrid.
  • the multi-energy coordinated control method of the embodiment of the present disclosure stable operation in the AC / DC region and the overall efficient operation of the AC / DC hybrid distributed system are solved, which solves the AC / DC hybrid distributed system.
  • Technical difficulties in coordinated control of multiple regions of a DC hybrid distributed system improve the stability and reliability of the operation of an AC / DC hybrid distributed system containing power electronic transformers.
  • FIG. 5 shows a flowchart of a multi-energy coordinated control method based on the multi-energy coordinated control system according to an embodiment of the present disclosure. This method can be executed by a multi-energy coordinated control system as shown in FIG. 3. As shown in FIG. 5, the method may include:
  • the general control unit controls the acquisition control unit to collect the AC / DC hybrid distributed system to obtain distributed power source information, energy storage equipment information and load information in the AC area, and distributed power source information in the DC area. Information on energy storage equipment and load;
  • the overall control unit generates stable control information of the AC area according to the distributed power source information, energy storage equipment information, and load information of the AC area obtained; according to the obtained distributed power source information, storage area of the DC area, The equipment information and load information can be used to generate stability control information in the DC area.
  • the DSP module 201 in the total control unit 2 may collect the distributed power source information, energy storage equipment information, and load information of the AC area through the AC direct mining module 101.
  • the distributed power source information in the AC area may include voltage and current values in the AC area
  • the energy storage device information may include a mode of the energy storage device and the energy of the energy storage device
  • the mode of the energy storage device may be VF One of a mode, a PQ mode, and an AC droop.
  • the load information may include load power, number of loads, and the like.
  • the DSP module 201 may generate stability control information of the AC area according to the distributed power source information, energy storage equipment information, and load information of the AC area.
  • the stability control information in the AC area may include a target voltage value and / or a current value of a distributed power source in the AC area, an energy value to be released or stored by an energy storage device, a maximum total power value of a load, or One or more of the load information to be cut off.
  • the stability control information of the AC area may include the target voltage value of the distributed power source in the AC area, Energy value.
  • the DSP computing module 201 may transmit the stability control information of the AC area to the AC area controller through the FPGA 203, the communication interactive bus 5, and the optical fiber module 302 in this order.
  • the DSP module 201 in the total control unit 2 can collect the distributed power source information, energy storage equipment information, and load information in the DC area through the DC direct mining module 102.
  • the distributed power source information in the DC area may include voltage and current values in the DC area
  • the energy storage device information may include a mode of the energy storage device and the energy of the energy storage device
  • the energy storage device mode may be a constant voltage One of a mode, a constant power mode, and a DC droop.
  • the load information may include load power, number of loads, and the like.
  • the DSP module 201 may generate stability control information of the DC area according to the obtained distributed power source information, energy storage equipment information, and load information of the DC area.
  • the stability control information in the DC area may include a target voltage value and / or a current value of a distributed power source in the DC area, an energy value to be released or stored by an energy storage device, a maximum total power value of a load, or One or more of the load information to be cut off. For example, if the voltage of the distributed power source in the DC area is fluctuated, for example, the voltage is reduced, the stability control information of the DC area may include the target voltage value of the distributed power source in the DC area, Energy value or load information to be cut off.
  • the DSP computing module 201 may transmit the stability control information of the DC area to the DC area controller through the FPGA 203, the communication interactive bus 5, and the optical fiber module 302 in this order.
  • the general control unit sends the stability control information of the AC area and the stability control information of the DC area through the communication and interaction unit, so as to perform distributed control on the distributed power and energy storage in the AC area according to the stability control information of the AC area.
  • Equipment and load are controlled; according to the stability control information in the DC area, distributed power sources, energy storage equipment, and loads in the DC area are controlled.
  • the AC area controller may receive stability control information of the AC area, and control distributed power sources, energy storage equipment, and loads in the AC area, so that the voltage in the AC area can be stabilized.
  • the DC area controller can receive stability control information in the DC area, and control distributed power sources, energy storage equipment, and loads in the DC area, so that the voltage in the DC area can be stabilized.
  • the acquisition and control unit and communication interaction unit in the multi-energy coordinated control system are connected to the AC / DC hybrid distributed system.
  • the AC / DC hybrid distributed system can be distributed.
  • the system performs information collection and control, so that the AC / DC hybrid distributed system can run stably and realize multi-energy coordinated control of the AC / DC hybrid distributed system.
  • FIG. 6 shows a flowchart of a multi-energy coordinated control method based on the multi-energy coordinated control system according to an embodiment of the present disclosure.
  • the AC / DC hybrid distributed system includes a power electronic transformer, and the power electronic transformer may be a multi-port power electronic transformer.
  • the method may further include:
  • the overall control unit obtains power of one or more ports of the power electronic transformer.
  • the optical fiber module 302 in the multi-energy coordinated control system may be connected to the power electronic transformer, so that the overall control unit obtains power of one or more ports of the power electronic transformer.
  • the overall control unit generates AC / DC power interactive control information according to the power of one or more ports of the power electronic transformer.
  • the DSP operation module of the master control unit in the multi-energy coordinated control system can generate AC / DC power interactive control information according to the power of one or more ports of the power electronic transformer.
  • the multi-energy coordinated control system can determine whether the power of one or more ports of the power electronic transformer needs to be adjusted. If adjustment is required, AC / DC power interactive control information can be generated.
  • the AC / DC power interactive control information can include one or more power electronic transformers.
  • the power adjustment values of the multiple ports may also include power target values of one or more ports of the power electronic transformer.
  • the multi-energy coordinated control system can transmit AC / DC power interactive control information to the power electronic transformer through the optical fiber module 302.
  • the overall control unit controls the power of one or more ports of the power electronic transformer according to the AC / DC power interactive control information.
  • the power electronic transformer can control the power of one or more of its ports according to the received AC and DC power control information.
  • Multi-temporal and spatial scale control of energy storage equipment may include the control of the periodic active power output or input of the energy storage equipment according to a short-term smoothing formula, and the periodic active power output or
  • input control and multi-temporal-scale control of energy storage equipment please refer to FIG. 7 and FIG. 8.
  • FIG. 7 shows a flowchart of a multi-energy coordinated control method based on the multi-energy coordinated control system according to an embodiment of the present disclosure.
  • the multi-energy coordinated control method may further include:
  • the total control unit calculates the energy storage device in the first target period according to the active power output in the first target period, the reference value of the output active power in the power source, and the reference value of the output power in the previous period of the first target period. Target value of active power for the next cycle;
  • the DSP computing module may obtain the power output active power, the power output active power reference value, and the power output active power reference value of the previous period of the first target period from the historical information stored by the main CPU.
  • the active power target value of the energy storage device in the next period of the first target period can be calculated according to a short-term smoothing formula, which is shown in formula (1):
  • P w (k) represents the active power output by the k- th period of the photovoltaic power supply
  • P w_ref (k-1) represents the reference value of the active power output by the k- th period of the photovoltaic power supply (that is, the smoothed target value)
  • P w_ref (k) indicates the reference value of the active power output by the k-th period of the photovoltaic power supply (that is, the smoothed target value)
  • P b_set (k + 1) indicates that the energy storage device is in the k + 1th period (the next period of the first target period) ) Active power target value
  • T exe represents the short-term smooth execution period after discretization (ie, the duration of the first target period)
  • T smooth (SOC) represents the smoothing filter variable coefficient, and the range of T smooth (SOC) is 10-500.
  • k is the first target period
  • k-1 is the previous period of the first target period
  • k + 1 is the next period of the first target period.
  • the total control unit sends the active power target value through a communication interaction unit to control the active power output or input of the energy storage device in a next period of the first target period according to the active power target value.
  • the calculated P b_set (k + 1) may be transmitted to the main CPU module 202 through the DSP operation module 201 in the overall control unit, and stored by the main CPU module 202, and the DSP operation module 201 may transmit the calculated P b_set (k + 1).
  • b_set (k + 1) is transmitted to the energy storage device through the FPGA module 203 and the optical fiber module 302.
  • the energy storage device may control the output active power of the energy storage device in the k + 1 period according to the active target value P b_set (k + 1).
  • the output active power of the energy storage device in the k + 1 period may be P b_set (k + 1).
  • the output active power of the energy storage device in the k + 1 period may be different from P b_set (k + 1), and the deviation may be within an allowable range.
  • the multi-energy coordinated control system periodically controls the energy storage equipment of the AC / DC hybrid distributed system according to a first control period, and the first target period is any one of a plurality of first control periods.
  • the power source and the energy storage device are in the same AC area or DC area.
  • the first control period may be 2-7 seconds.
  • FIG. 8 shows a flowchart of a multi-energy coordinated control method based on the multi-energy coordinated control system according to an embodiment of the present disclosure.
  • the multi-energy coordinated control method may further include:
  • the duration of the second target period the predicted average output active power of the second target period and the average active power of the load, the average output active power of the last period of the second target period, and the average load active power. Active power, the average active power of the energy storage device in the second target period is calculated, wherein the duration of the second target period is greater than the duration of the first target period.
  • the DSP computing module 201 can obtain the average active power output power, the average active load power, and the average active power of the energy storage device from the historical information stored by the main CPU.
  • the DSP arithmetic module may also obtain the predicted average output active power and the predicted load average active power of the second target period based on the obtained average output active power and load average active power of the previous period of the second target period.
  • the multi-energy coordinated control system performs periodic control on the energy storage equipment of the AC / DC hybrid distributed system according to a second control period, and the second target period is any one of a plurality of second control periods;
  • the power supply and energy storage equipment are in the same AC or DC area.
  • the rolling economic optimization formula of the step price can be used to calculate the average active power of the energy storage equipment in the second target period.
  • the rolling economic optimization formula of the step price is shown in formula (2):
  • ⁇ T is the duration of the second period of the target;
  • P RE (n) is the average power output of the n-th active period;
  • P RE_pre (n + 1) n + 1 for the first cycle of the predicted average output power active;
  • ⁇ (t ) Represents the prediction accuracy function corresponding to P RE_pre (n + 1), the value is 1;
  • represents the photovoltaic power price;
  • P L (n) is the average active power of the load in the n-th period;
  • P L_pre (n + 1) is the Load average active power for n + 1 period prediction;
  • ⁇ (t) represents the prediction accuracy function corresponding to P L_pre (n + 1), with a value of 1;
  • ⁇ (t) is the real-time step price of the load;
  • P b (n) is The average active power of the energy storage equipment in the nth period;
  • P b_pre (n + 1) is the average active power of the energy storage equipment in the n
  • the n-th period may be the previous period of the second target period, and the n + 1th period may be the second target period.
  • the DSP operation module 201 can be solved by using particle swarm optimization algorithm to obtain the average active power of the energy storage device in the n + 1th period of the energy storage device. For example, when F is the maximum value, the storage of the n + 1th period is calculated. Energy equipment average active power.
  • the total control unit sends the average active power of the energy storage device in the second target period through the communication and interaction unit, so as to control the energy storage device based on the average active power of the energy storage device in the second target period and / or the active power target value.
  • the active power output or input of the energy device in the second target period.
  • the calculated P b_pre (n + 1) may be transmitted to the main CPU module 202 through the DSP operation module 201 in the overall control unit, and stored by the main CPU module 202.
  • the DSP operation module 201 may transmit the calculated P b_pre (n + 1) is transmitted to the energy storage device through the FPGA module 203 and the optical fiber module 302.
  • the energy storage device may control the active output of the energy storage device in the second target period according to the average active power P b_pre (n + 1) of the energy storage device. It is also possible to perform an algebraic sum operation on the average active power P b_pre (n + 1) and the target active power value P b_set (k + 1) of the energy storage device. Based on the calculation result, the active power of the energy storage device in the second target period can be controlled. Output.
  • FIG. 9 illustrates a mode conversion diagram of a power electronic transformer according to an embodiment of the present disclosure.
  • the power electronic transformer includes a master-slave operation mode and a peer-to-peer operation mode
  • the method may include: the overall control unit may State to control the power electronic transformer to switch between a master-slave operation mode and a peer-to-peer operation mode.
  • the DC port of the master SST can be in constant voltage mode, and the AC port of the master SST can be in VF mode; the DC port of the slave SST can be in constant power mode, and the AC port of the slave SST can be PQ mode.
  • all ports of the power electronic transformer in the AC / DC hybrid distributed system are one of a DC droop or an AC droop.
  • the energy storage device mode is not limited by the operation mode of the power electronic transformer.
  • the energy storage device mode can be PQ mode, AC droop, constant power mode, and A type of sag.
  • the overall control unit may control the power electronic transformer to switch between the master-slave operation mode and the peer-to-peer operation mode according to the state of the power electronic transformer. For example, when the operation of the master SST is unstable, the overall control unit may control the slave SST to switch to the droop mode first, and then control the master SST to switch to the droop mode; then the SST operates in the peer mode. Or, if the power electronic transformer is in the peer-to-peer operation mode, the power consistency of the SST port is difficult to achieve or wrong. You can first control one of the SSTs to be converted to the master SST, and then control the other SST to be converted from the SST, so that the SST Enter a more mature and stable master-slave operation mode.
  • the AC / DC hybrid distributed system may further include a power quality management mode and a system power failure mode.
  • the power quality management mode is an optional mode, which can control the AC / DC hybrid distributed system to turn on the power quality management mode, or control the AC / DC hybrid distributed system to turn off the power quality management mode.
  • the AC / DC hybrid The distributed system can switch between SST master-slave operation mode, SST peer-to-peer operation mode, and system power failure mode.
  • the AC / DC hybrid distributed system can switch between SST master-slave operation mode, SST peer-to-peer operation mode, system power failure mode, and SST master-slave operation mode, SST Conversion between peer-to-peer operation mode and power quality management mode.
  • the main control unit 2 obtains the AC / DC hybrid distributed system failure and the system is in the SST master-slave operation mode, it can control the AC / DC hybrid distributed system to switch from the SST master-slave operation mode to the system power failure mode; if the master control The device detects that the system fault is removed, and can control the AC / DC hybrid distributed system to switch from the system power failure mode to the SST master-slave operation mode, and start the AC / DC hybrid distributed system in the SST master-slave operation mode.
  • FIG. 10 illustrates a schematic diagram of power quality management according to an embodiment of the present disclosure.
  • the power electronic transformer includes an active filter APF.
  • the overall control unit may control the power electronic transformer to use the power electronic transformer.
  • APF controls the harmonics where AC / DC hybrid distributed systems are connected to the distribution network.
  • the power electronic transformer can use the function of the APF to control the harmonic output where the AC / DC hybrid distributed system is connected to the distribution network, thereby improving the power quality of the AC / DC hybrid distributed system connected to the distribution network.
  • the power electronic transformer has its own APF function, so the AC / DC hybrid distributed system does not need to set an additional active filter APF, which simplifies the system structure.

Abstract

一种适用于交直流混合分布式系统的多能协调控制系统及方法,所述多能协调控制系统包括:采集控制单元(1)、总控制单元(2)和通讯交互单元(3);其中,采集控制单元(1)通过采集控制总线(4)与总控制单元(2)连接,以及采集控制单元(1)与交直流混合分布式系统连接;总控制单元(2)通过采集控制总线(4)控制采集控制单元(1)对交直流混合分布式系统的采集,总控制单元(2)通过通讯交互总线(5)与所述通讯交互单元(3)连接;通讯交互单元(3)与交直流混合分布式系统连接,以及通讯交互单元(3)与外部设备通信连接。通过多能协调控制系统中的采集控制单元(1)和通讯交互单元(3)与交直流混合分布式系统连接,可以对交直流混合分布式系统进行信息采集和控制,实现对交直流混合分布式系统的多能协调控制。

Description

适用于交直流混合分布式系统的多能协调控制系统及方法 技术领域
本公开涉及电力系统中分布式发电技术领域,尤其涉及一种适用于交直流混合分布式系统的多能协调控制系统及方法。
背景技术
传统交流配网中交直流能量变换损耗高、配用电灵活性差、配用电环节匹配性低的问题日益凸现。采用交直流配用电技术能够减少配用电过程中交直流转化的中间环节,提高配用电的经济性、可靠性和灵活性,是国际配用电研究领域的重要发展方向。分布式可再生能源在我国负载密集区域特别是东南沿海具有巨大发展潜力。同时面向分布式可再生能源可靠消纳及直流负载经济用能的重大需求,交直流混合电网在经济性、可靠性及灵活性等方面存在明显优势。
目前,在微电网运行控制领域,存在相关控制技术和控制系统,但未见适用于交直流混合分布式系统的控制技术和控制系统。交直流混合分布式系统存在交流和直流区域,并且两种区域存在多种形式的交互,而在整个运行控制系统中,如何通过协调各种分布式电源、储能设备、负载,主要实现基本的稳定控制,保证系统运行于安全边界以内是亟待解决的问题。
发明内容
有鉴于此,本公开提出了一种适用于交直流混合分布式系统的多能协调控制系统及方法,可以对交直流混合分布式系统进行信息采集和控制,实现对交直流混合分布式系统的多能协调控制。
根据本公开的一方面,提供了一种适用于交直流混合分布式系统的多能协调控制系统,所述多能协调控制系统包括:采集控制单元、总控制单元和通讯交互单元;其中,
所述采集控制单元通过采集控制总线与所述总控制单元连接,以及所述采集控制单元与所述交直流混合分布式系统连接;
所述总控制单元通过所述采集控制总线控制所述采集控制单元对交直流混合分布式系统的采集,所述总控制单元通过通讯交互总线与所述通讯交互单元连接;
所述通讯交互单元与所述交直流混合分布式系统连接,以及所述通讯交互单元与外部设备通信连接。
在一种可能的实现方式中,所述采集控制单元包括交流直采模块、直流直采模块和开入/开出DIO模块;
总控制单元包括人DSP运算模块、主CPU模块、和FPGA模块;
所述DSP运算模块通过采集控制总线与所述交流直采模块、直流直采模块和DIO模块连 接;
所述主CPU模块与所述DSP运算模块连接,所述主CPU模块包括人机交互HMI接口、串行通信接口和网络接口中的一个或多个;
所述FPGA模块与所述DSP运算模块连接,所述FPGA模块支持IEC61850GOOSE快速通讯规约。
在一种可能的实现方式中,所述通讯交互单元包括:无线模块和光纤模块;
所述无线模块与所述主CPU模块连接、并与外部设备通信连接;
所述光纤模块与所述FPGA模块和所述交直流混合分布式系统连接。
在一种可能的实现方式中,所述多能协调控制系统,还包括:电源模块;
所述电源模块通过采集控制总线与采集控制单元和总控制单元连接,为采集控制单元和总控制单元供电;
所述电源模块通过通讯交互总线与通讯交互单元连接,为通讯交互单元供电。
在一种可能的实现方式中,所述交直流混合分布式系统包括一个或多个电力电子变压器、交流区域控制器和直流区域控制器;
所述光纤模块分别与所述一个或多个电力电子变压器、交流区域控制器和直流区域控制器连接。
根据本公开的另一方面,提供了一种基于所述多能协调控制系统的多能协调控制方法,所述方法包括:
总控制单元控制所述采集控制单元对交直流混合分布式系统进行采集,以获取交流区域的分布式电源信息、储能设备信息和负载信息,以及所述直流区域的分布式电源信息、储能设备信息和负载信息;
所述总控制单元根据获取的所述交流区域的分布式电源信息、储能设备信息和负载信息,生成交流区域的稳定控制信息;根据获取的所述直流区域的分布式电源信息、储能设备信息和负载信息,生成直流区域的稳定控制信息;
所述总控制单元通过通讯交互单元发送交流区域的稳定控制信息和直流区域的稳定控制信息,以根据所述交流区域的稳定控制信息,对所述交流区域内的分布式电源、储能设备、负载进行控制;根据所述直流区域的稳定控制信息,对所述直流区域内的分布式电源、储能设备、负载进行控制。
在一种可能的实现方式中,所述交直流混合分布式系统包括电力电子变压器,所述电力电子变压器为多端口电力电子变压器,
总控制单元获取电力电子变压器的一个或多个端口的功率;
总控制单元根据电力电子变压器的一个或多个端口的功率,生成交直流功率交互控制信息;
所述总控制单元根据所述交直流功率交互控制信息控制所述电力电子变压器的一个或多个端口的功率。
在一种可能的实现方式中,所述方法还包括:
所述总控制单元根据第一目标周期的电源输出有功功率、电源输出有功功率参考值和第一目标周期的上一周期的电源输出有功功率参考值,计算储能设备在第一目标周期的下一周期的有功功率目标值;
所述总控制单元通过通讯交互单元发送所述有功功率目标值,以根据所述有功功率目标值,控制储能设备在第一目标周期的下一周期的有功功率输出或输入。
在一种可能的实现方式中,所述方法还包括:
所述总控制单元根据第二目标周期的时长、第二目标周期的预测电源平均输出有功功率和预测负载平均有功功率、第二目标周期的上一周期的电源平均输出有功功率、负载平均有功功率和储能设备平均有功功率,计算储能设备在第二目标周期的储能设备平均有功功率,其中,所述第二目标周期的时长大于第一目标周期的时长;
所述总控制单元通过通讯交互单元发送所述第二目标周期的储能设备平均有功功率,以根据所述储能设备平均有功功率和/或所述有功功率目标值,控制储能设备在第二目标周期的有功功率输出或输入。
在一种可能的实现方式中,所述电力电子变压器包括主从运行模式和对等运行模式,所述方法包括:
所述总控制单元根据所述电力电子变压器的状态,控制所述电力电子变压器在主从运行模式与对等运行模式之间转换。
在一种可能的实现方式中,所述电力电子变压器包括有源滤波器APF,所述方法包括:
当电能质量治理模式开启时,所述总控制单元控制所述电力电子变压器利用所述APF,对交直流混合分布式系统接入配电网处的谐波进行控制。
有益效果
通过多能协调控制系统中的采集控制单元和通讯交互单元与交直流混合分布式系统连接,根据本公开的适用于交直流混合分布式系统的多能协调控制系统及方法,可以对交直流混合分布式系统进行信息采集和控制,实现对交直流混合分布式系统的多能协调控制。
根据下面参考附图对示例性实施例的详细说明,本公开的其它特征及方面将变得清楚。
附图说明
包含在说明书中并且构成说明书的一部分的附图与说明书一起示出了本公开的示例性实施例、特征和方面,并且用于解释本公开的原理。
图1示出根据本公开一实施例的交直流混合分布式系统的示意图。
图2示出根据本公开一实施例的交直流混合分布式系统的架构示意图。
图3示出根据本公开一实施例的适用于交直流混合分布式系统的多能协调控制系统的示意图。
图4示出根据本公开一实施例的多能协调控制系统的控制功能逻辑示意图。
图5示出根据本公开一实施例的基于所述多能协调控制系统的多能协调控制方法的流程图。
图6示出根据本公开一实施例的基于所述多能协调控制系统的多能协调控制方法的流程图。
图7示出根据本公开一实施例的基于所述多能协调控制系统的多能协调控制方法的流程图。
图8示出根据本公开一实施例的基于所述多能协调控制系统的多能协调控制方法的流程图。
图9示出根据本公开一实施例的电力电子变压器的模式转换示意图。
图10示出根据本公开一实施例的电能质量治理的示意图。
具体实施方式
以下将参考附图详细说明本公开的各种示例性实施例、特征和方面。附图中相同的附图标记表示功能相同或相似的元件。尽管在附图中示出了实施例的各种方面,但是除非特别指出,不必按比例绘制附图。
在这里专用的词“示例性”意为“用作例子、实施例或说明性”。这里作为“示例性”所说明的任何实施例不必解释为优于或好于其它实施例。
另外,为了更好的说明本公开,在下文的具体实施方式中给出了众多的具体细节。本领域技术人员应当理解,没有某些具体细节,本公开同样可以实施。在一些实例中,对于本领域技术人员熟知的方法、手段、元件和电路未作详细描述,以便于凸显本公开的主旨。
图1示出根据本公开一实施例的交直流混合分布式系统的示意图。图2示出根据本公开一实施例的交直流混合分布式系统的架构示意图。
在一种可能的实现方式中,所述交直流混合分布式系统可以包括一个或多个电力电子变压器。如图1所示,交直流混合分布式系统包括两个电力电子变压器:SST1和SST2。所述SST1和SST2均具有4个电压等级的端口,SST1和SST2采用背靠背方式连接,SST1和SST2可以为主从运行模式,也可以为对等运行模式。SST1和SST2的10KVAC(10KV交流)端口可以与外部电网连接,例如传统风电网连接。
如图2所示,所述交直流混合分布式系统可以被划分为380V交流(380VAC)区域、±375V直流(±375VDC)区域、10KV直流区域、10KV交流和SST区域。其中,380V交流区域包括光伏31、储能设备33和交流负载32,所述光伏31、储能设备33和交流负载32可以与交流区域控制器34连接;±375V直流区域包括光伏21、储能设备23和直流负载22,所述光伏21、储能设备23和直流负载22可以与直流区域控制器24连接;10KV直流区域包括光伏11和可调负载12,所述光伏11和可调负载12可以与直流区域控制器14连接;10KV交流和SST区域包括SST1、SST2和10KV交流。
如图2所示,交流区域控制器34、直流区域控制器24、直流区域控制器14、SST1和SST2 分别与多能协调控制系统连接。
其中,直流区域控制器24、直流区域控制器14和交流区域控制器34可以接收多能协调控制系统发送的信息,并可以根据接收到的信息对直流区域和交流区域中的光伏、储能设备或负载进行控制。
图3示出根据本公开一实施例的适用于交直流混合分布式系统的多能协调控制系统的示意图。
如图3所示,所述多能协调控制系统可以包括:采集控制单元1、总控制单元2和通讯交互单元3;其中,所述采集控制单元1可以通过采集控制总线4与所述总控制单元2连接,以及所述采集控制单元1可以与所述交直流混合分布式系统连接;
所述总控制单元2通过所述采集控制总线4控制所述采集控制单元1对交直流混合分布式系统的采集,所述总控制单元2通过通讯交互总线5与所述通讯交互单元3连接;
所述通讯交互单元3与所述交直流混合分布式系统连接,以及所述通讯交互单元3与外部设备通信连接。
其中,所述多能协调控制系统中的总控制单元1、总控制单元2和通讯交互单元3可以基于即插即用技术,所述总控制单元可以是Master控制模块,所述外部设备可以是外部监控设备。
通过多能协调控制系统中的采集控制单元和通讯交互单元与交直流混合分布式系统连接,根据本公开的适用于交直流混合分布式系统的多能协调控制系统,可以对交直流混合分布式系统进行信息采集和控制,实现对交直流混合分布式系统的多能协调控制。
如图3所示,在一种可能的实现方式中,所述采集控制单元1可以包括交流直采模块101、直流直采模块102和开入/开出DIO模块103;
总控制单元2可以包括DSP运算模块201、主CPU模块202和FPGA模块203;
所述DSP运算模块201可以通过采集控制总线4与所述交流直采模块102、直流直采模块102和DIO模块连接103;
所述主CPU模块202与所述DSP运算模块201连接,所述主CPU模块202可以包括人机交互HMI接口2021、串行通信接口2022和网络接口2023中的一个或多个;
所述FPGA模块203与所述DSP运算模块201连接,所述FPGA模块203支持IEC61850GOOSE快速通讯规约。
其中,交流直采模块101可以包括交流PT、CT传感器,可以用于采集交直流混合分布式系统的交流区域的电压和电流。直流直采模块102可以包括霍尔传感器,可以用于采集交直流混合分布式系统的直流区域的电压和电流。开入/开出DIO(digitalinput/output)模块103可以检测和控制交直流混合分布式系统中设备(例如储能设备、光伏等)的运行状态。交流直采模块101和直流直采模块102可以分别配置相应的开入/开出DIO模块103,也可以根据实际工程需要配置,本公开对此不作限定。
所述DSP运算模块201主要用于多能协调控制系统的运算以及控制指令的输出。所述主 CPU模块202主要用于信息交互,还可以包括TFFlash卡,可用于存取关键历史信息,例如历史运行信息、历史控制输出指令、事件记录等。所述FPGA模块203用于信息传输以实现对交直流混合分布式系统的多能协调控制。人机交互HMI接口2021可以与HMI液晶设备7连接。串行通讯接口2022可支持RS232和RS485,用于连接光伏。网络接口2023可以为标准RJ45网络接口,可以支持常见通讯规约,例如IEC101、IEC104、Modbus等,可以用于连接以太网光伏等。
如图3所示,在一种可能的实现方式中,所述通讯交互单元3可以包括:无线模块301和光纤模块302;
所述无线模块301与所述主CPU202连接、并与外部设备通信连接;
所述光纤模块302与所述FPGA模块203和所述交直流混合分布式系统连接。
其中,无线模块301可以包括多种无线模块接口,例如可以包括4G无线接口、NB-iot接口、LoRa接口等,还可以根据实际需求灵活配置无线模块接口。
所述光纤模块302可以包括专用ST或LC接口。所述光纤模块302还可以包括IRGB对时接口,用于实现光纤准确对时。
所述外部设备可以是监控设备,多能协调控制系统可以将向监控设备传输控制结果,也可以从监控设备接收指令,根据该指令进行多能协调控制。
在交直流混合分布式系统包括一个或多个电力电子变压器、交流区域控制器和直流区域控制器时,在一种可能的实现方式中,所述光纤模块302可以分别与所述一个或多个电力电子变压器、交流区域控制器和直流区域控制器连接。
所述多能协调控制系统可以适用于含有电力电子变压器的交直流混合分布式系统,并且通过光纤模块与电力电子变压器、交流区域控制器和直流区域控制器连接,使得多能协调控制系统对交直流混合分布式系统的多能协调控制更加迅速。
如图3所示,在一种可能的实现方式中,所述多能协调控制系统,还包括:电源模块6;
所述电源模块6通过采集控制总线4与采集控制单元1和总控制单元2连接,为采集控制单元1和总控制单元2供电;
所述电源模块6通过通讯交互总线5与通讯交互单元3连接,为通讯交互单元3供电。
需要说明的是,该多能协调控制系统中的单元和模块可以集成为一个设备,形成多能协调控制设备。
图4示出根据本公开一实施例的多能协调控制系统的控制功能逻辑示意图。如图4所示,多能协调控制系统的控制方法可以包括稳定运行控制方法(图5和图6的方法)、储能设备的多时空尺度控制方法(图7和图8的方法)、模式切换控制方法(图9的方法)、电能质量治理控制方法(图10的方法)。
其中,多能协调控制系统的控制方法可以分为两层逻辑结构,储能设备的多时空尺度控制、模式切换控制、电能质量治理的控制在上层,稳定运行控制在下层,所述稳定运行控制是储能设备的多时空尺度控制、模式切换控制、电能质量治理控制的基础,即多时空尺度控 制、模式切换控制、电能质量治理控制都应该经过所述稳定运行控制的验证。
本公开实施例针对含有电力电子变压器的交直流混合分布式系统,提出了稳定运行控制、储能设备的多时空尺度控制、模式切换控制、电能质量治理控制的多种控制方法,所述多种控制方法相对于微电网的协调控制方法存在较大差异,根据本公开实施例的多能协调控制方法,可以实现交直流区域的稳定运行,以及交直流混合分布式系统整体高效运行,解决了交直流混合分布式系统多个区域协调控制的技术难点,提高了含有电力电子变压器的交直流混合分布式系统运行的稳定性和可靠性。
图5示出根据本公开一实施例的基于所述多能协调控制系统的多能协调控制方法的流程图。该方法可以由如图3所示的多能协调控制系统执行。如图5所示,该方法可以包括:
S11,总控制单元控制所述采集控制单元对交直流混合分布式系统进行采集,以获取交流区域的分布式电源信息、储能设备信息和负载信息,以及所述直流区域的分布式电源信息、储能设备信息和负载信息;
S12,所述总控制单元根据获取的所述交流区域的分布式电源信息、储能设备信息和负载信息,生成交流区域的稳定控制信息;根据获取的所述直流区域的分布式电源信息、储能设备信息和负载信息,生成直流区域的稳定控制信息。
例如,总控制单元2中的DSP模块201可以通过交流直采模块101采集交流区域的分布式电源信息、储能设备信息和负载信息。所述交流区域的分布式电源信息可以包括交流区域的电压值和电流值,所述储能设备信息可以包括储能设备的模式和储能设备的能量,所述储能设备的模式可以是VF模式、PQ模式和交流下垂中的一种,所述负载信息可以包括负载功率、负载个数等。
所述DSP模块201可以根据获取的所述交流区域的分布式电源信息、储能设备信息和负载信息,生成交流区域的稳定控制信息。所述交流区域的稳定控制信息可以包括交流区域的分布式电源的目标电压值和/或电流的目标值、储能设备需要释放的能量值或需要存储的能量值、负载的最大总功率值或需要切断的负载信息中的一种或多种。举例来说,如果获取的交流区域的分布式电源的电压有波动,例如,电压降低,所述交流区域的稳定控制信息可以包括交流区域的分布式电源的目标电压值、储能设备需要释放的能量值。
DSP运算模块201可以将所述交流区域的稳定控制信息依次通过FPGA203、通讯交互总线5和光纤模块302传输至交流区域控制器。
总控制单元2中的DSP模块201可以通过直流直采模块102采集直流区域的分布式电源信息、储能设备信息和负载信息。所述直流区域的分布式电源信息可以包括直流区域的电压值和电流值,所述储能设备信息可以包括储能设备的模式和储能设备的能量,所述储能设备模式可以是恒压模式、恒功率模式和直流下垂中的一种,所述负载信息可以包括负载功率、负载个数等。
所述DSP模块201可以根据获取的所述直流区域的分布式电源信息、储能设备信息和负载信息,生成直流区域的稳定控制信息。所述直流区域的稳定控制信息可以包括直流区域的 分布式电源的目标电压值和/或电流的目标值、储能设备需要释放的能量值或需要存储的能量值、负载的最大总功率值或需要切断的负载信息中的一种或多种。举例来说,如果获取的直流区域的分布式电源的电压有波动,例如,电压降低,所述直流区域的稳定控制信息可以包括直流区域的分布式电源的目标电压值、储能设备需要释放的能量值或需要切断的负载信息。
DSP运算模块201可以将所述直流区域的稳定控制信息依次通过FPGA203、通讯交互总线5和光纤模块302传输至直流区域控制器。
S13,所述总控制单元通过通讯交互单元发送交流区域的稳定控制信息和直流区域的稳定控制信息,以根据所述交流区域的稳定控制信息,对所述交流区域内的分布式电源、储能设备、负载进行控制;根据所述直流区域的稳定控制信息,对所述直流区域内的分布式电源、储能设备、负载进行控制。
交流区域控制器可以接收所述交流区域的稳定控制信息,对所述交流区域内的分布式电源、储能设备、负载进行控制,使得交流区域的电压能够稳定。
直流区域控制器可以接收所述直流区域的稳定控制信息,对所述直流区域内的分布式电源、储能设备、负载进行控制,使得直流区域的电压能够稳定。
对于所述交流区域内的分布式电源、储能设备、负载的控制、所述直流区域内的分布式电源、储能设备、负载的控制的具体方式,本公开对此不作限定。
通过多能协调控制系统中的采集控制单元和通讯交互单元与交直流混合分布式系统连接,根据本公开的适用于交直流混合分布式系统的多能协调控制方法,可以对交直流混合分布式系统进行信息采集和控制,使得交直流混合分布式系统能够稳定运行,实现对交直流混合分布式系统的多能协调控制。
图6示出根据本公开一实施例的基于所述多能协调控制系统的多能协调控制方法的流程图。所述交直流混合分布式系统包括电力电子变压器,所述电力电子变压器可以为多端口电力电子变压器,如图6所示,在一种可能的实现方式中,该方法还可以包括:
S14,总控制单元获取电力电子变压器的一个或多个端口的功率。
如图3所示,多能协调控制系统中的光纤模块302可以与电力电子变压器连接,从而使总控制单元获取电力电子变压器的一个或多个端口的功率。
S15,总控制单元根据电力电子变压器的一个或多个端口的功率,生成交直流功率交互控制信息。
如图3所示,多能协调控制系统中的总控制单元的DSP运算模块可根据电力电子变压器的一个或多个端口的功率,生成交直流功率交互控制信息。
多能协调控制系统可以判断电力电子变压器的一个或多个端口的功率是否需要调整,如果需要调整,可以生成交直流功率交互控制信息,交直流功率交互控制信息种可以包括电力电子变压器的一个或多个端口的功率调整值,或者也可以包括电力电子变压器的一个或多个端口的功率目标值。
多能协调控制系统可以将交直流功率交互控制信息通过光纤模块302传输至电力电子变 压器。
S16,所述总控制单元根据所述交直流功率交互控制信息控制所述电力电子变压器的一个或多个端口的功率。
电力电子变压器可以根据接收到的交直流功率控制信息,控制其一个或多个端口的功率。
储能设备的多时空尺度控制可以包括根据短时平滑公式对储能设备的周期性有功功率输出或输入的控制,以及根据阶梯电价的滚动经济优化公式对储能设备的周期性有功功率输出或输入的控制,储能设备的多时空尺度控制的具体内容可以参见图7和图8。
图7示出根据本公开一实施例的基于所述多能协调控制系统的多能协调控制方法的流程图。在一种可能的实现方式中,所述多能协调控制方法还可以包括:
S17,所述总控制单元根据第一目标周期的电源输出有功功率、电源输出有功功率参考值和第一目标周期的上一周期的电源输出有功功率参考值,计算储能设备在第一目标周期的下一周期的有功功率目标值;
DSP运算模块可以从主CPU存储的历史信息中,获取所述第一目标周期的电源输出有功功率、电源输出有功功率参考值和第一目标周期的上一周期的电源输出有功功率参考值。
在一个示例中,可以根据短时平滑公式,计算储能设备在第一目标周期的下一周期的有功功率目标值,所述短时平滑公式如式(1)所示:
Figure PCTCN2018120052-appb-000001
其中,P w(k)表示光伏电源第k周期输出的有功功率;P w_ref(k-1)表示光伏电源第k-1周期输出的有功功率参考值(即平滑后的目标值);P w_ref(k)表示光伏电源第k周期输出的有功功率参考值(即平滑后的目标值);P b_set(k+1)表示储能设备在第k+1周期(第一目标周期的下一周期)的有功功率目标值;T exe表示离散化后的短时平滑的执行周期(即第一目标周期的时长);T smooth(SOC)表示平滑滤波可变系数,T smooth(SOC)的范围为10-500。
公式(1)中的k为所述第一目标周期,k-1为第一目标周期的上一周期,k+1为第一目标周期的下一周期。
S18,所述总控制单元通过通讯交互单元发送所述有功功率目标值,以根据所述有功功率目标值,控制储能设备在第一目标周期的下一周期的有功功率输出或输入。
可以通过总控制单元中的所述DSP运算模块201将计算的P b_set(k+1)传输至主CPU模块202,由主CPU模块202进行存储,并且所述DSP运算模块201可以将计算的P b_set(k+1)通过FPGA模块203和光纤模块302传输至所述储能设备。
储能设备可以根据有功目标值P b_set(k+1),在k+1周期控制储能设备的输出有功功率,例如,所述储能设备在k+1周期的输出有功功率可以为P b_set(k+1)。需要说明的是,储能设备在k+1周期的输出有功功率可以与P b_set(k+1)有所偏差,该偏差可以是允许范围内的。
其中,所述多能协调控制系统根据第一控制周期对交直流混合分布式系统的储能设备进 行周期性控制,所述第一目标周期为多个第一控制周期中的任意一个周期。所述电源和储能设备处于相同的交流区域或直流区域。所述第一控制周期可以为2-7秒。
图8示出根据本公开一实施例的基于所述多能协调控制系统的多能协调控制方法的流程图。如图8所示,在一种可能的实现方式中,所述多能协调控制方法还可以包括:
S19,所述总控制单元根据第二目标周期的时长、第二目标周期的预测电源平均输出有功功率和预测负载平均有功功率、第二目标周期的上一周期的电源平均输出有功功率、负载平均有功功率,计算储能设备在第二目标周期的储能设备平均有功功率,其中,所述第二目标周期的时长大于第一目标周期的时长。
DSP运算模块201可以从主CPU存储的历史信息中,获取第二目标周期的上一周期的电源平均输出有功功率、负载平均有功功率和储能设备平均有功功率。DSP运算模块还可以根据获取的第二目标周期的上一周期的电源平均输出有功、负载平均有功功率,获得第二目标周期的预测电源平均输出有功功率和预测负载平均有功功率。
其中,所述多能协调控制系统根据第二控制周期对交直流混合分布式系统的储能设备进行周期性控制,所述第二目标周期为多个第二控制周期中的任意一个周期;所述电源和储能设备处于相同的交流区域或直流区域。
在一个示例中,可以根据阶梯电价的滚动经济优化公式,储能设备在第二目标周期的平均储能设备有功功率,所述阶梯电价的滚动经济优化公式如式(2)所示:
F=(∑P RE(n)+∑β(n+1))P RE_pre(n+1)γΔT-∑(P L(n)-P b(n))λ(n)+∑(P L_pre(n+1)-Pb_pre(n+1))λ(n+1)ΔT(2)
其中,ΔT为第二目标周期的时长;P RE(n)为第n周期的电源平均输出有功功率;P RE_pre(n+1)为第n+1周期预测的电源平均输出有功;β(t)表示对应P RE_pre(n+1)的预测准确度函数,值为1;γ表示光伏电源电价;P L(n)为第n周期的负载平均有功功率;P L_pre(n+1)为第n+1周期预测的负载平均有功功率;δ(t)表示对应P L_pre(n+1)的预测准确度函数,值为1;λ(t)为负载实时阶梯电价;P b(n)为第n周期的储能设备平均有功功率;P b_pre(n+1)为第n+1周期的储能设备平均有功功率。
其中,第n周期可以为第二目标周期的上一周期,第n+1周期可以为第二目标周期。
DSP运算模块201可以采用粒子群优化算法进行求解,得出储能设备在第n+1周期的储能设备平均有功功率,例如,使F为最大值时,计算得到第n+1周期的储能设备平均有功功率。
S20,所述总控制单元通过通讯交互单元发送所述第二目标周期的储能设备平均有功功率,以根据第二目标周期的储能设备平均有功和/或所述有功功率目标值,控制储能设备在第二目标周期的有功功率输出或输入。
可以通过总控制单元中的所述DSP运算模块201将计算的P b_pre(n+1)传输至主CPU模块202,由主CPU模块202进行存储,并且所述DSP运算模块201可以将计算的P b_pre(n+1)通过FPGA模块203和光纤模块302传输至所述储能设备。
储能设备可以根据储能设备平均有功功率P b_pre(n+1),控制储能设备在第二目标周期的有 功输出。也可以对储能设备平均有功功率P b_pre(n+1)和有功功率目标值P b_set(k+1)作代数和运算,可以根据该运算结果,控制储能设备在第二目标周期的有功输出。
以上仅仅是对储能设备的多时空尺度控制的示例,本公开对此不作限定。
图9示出根据本公开一实施例的电力电子变压器的模式转换示意图。在一种可能的实现方式中,如图9所示,所述电力电子变压器包括主从运行模式和对等运行模式,所述方法可以包括:所述总控制单元可根据所述电力电子变压器的状态,控制所述电力电子变压器在主从运行模式与对等运行模式之间转换。
电力电子变压器SST处于主从运行模式时,主SST的直流端口可以是恒压模式,主SST的交流端口可以是VF模式;从SST的直流端口可以是恒功率模式,从SST的交流端口可以是PQ模式。
电力电子变压器SST处于对等运行模式时,交直流混合分布式系统中的电力电子变压的所有端口均为直流下垂或交流下垂中的一种。
需要说明的是,储能设备模式不受电力电子变压器运行模式的限制,电力电子变压器在主从运行模式与对等运行模式时,储能设备模式可以是PQ模式、交流下垂、恒功率模式和交流下垂中的一种。
总控制单元可以根据电力电子变压器的状态,控制所述电力电子变压器在主从运行模式与对等运行模式之间转换。例如,主SST运行不稳定时,总控制单元可以控制从SST首先转换为下垂模式,然后控制主SST转换为下垂模式;则SST运行于对等模式。或者,电力电子变压器处于对等运行模式下,SST端口的功率一致性很难实现或有误,可以首先控制其中一台SST转换为主SST,然后控制另一台SST转换为从SST,使得SST进入更加成熟稳定的主从运行模式。
在一种可能的实现方式中,所述交直流混合分布式系统还可以包括电能质量治理模式和系统失电模式。
其中,电能质量治理模式是可选的模式,可以控制交直流混合分布式系统开启电能质量治理模式,也可以控制交直流混合分布式系统关闭电能质量治理模式,在关闭时,所述交直流混合分布式系统可以在SST主从运行模式、SST对等运行模式、系统失电模式之间互相转换。在所述电能质量治理模式开启时,所述交直流混合分布式系统可以在SST主从运行模式、SST对等运行模式、系统失电模式之间互相转换,以及在SST主从运行模式、SST对等运行模式、电能质量治理模式之间互相转换。
举例来说,总控制单元2获取交直流混合分布式系统故障、系统处于SST主从运行模式,则可以控制交直流混合分布式系统从SST主从运行模式转换为系统失电模式;如果主控设备检测到系统故障解除,可以控制交直流混合分布式系统从系统失电模式转换为SST主从运行模式,以SST主从运行模式启动所述交直流混合分布式系统。
图10示出根据本公开一实施例的电能质量治理示意图。如图10所示,在一种可能的实现方式中,所述电力电子变压器包括有源滤波器APF,当电能质量治理模式开启时,所述总 控制单元可控制所述电力电子变压器利用所述APF,对交直流混合分布式系统接入配电网处的谐波进行控制。
电力电子变压器可以利用所述APF的功能,控制交直流混合分布式系统接入配电网处的谐波输出,从而改善交直流混合分布式系统接入配电网处的电能质量。
电力电子变压器自身具有APF功能,则交直流混合分布式系统不需要另外设置有源滤波器APF,简化系统结构。
以上已经描述了本公开的各实施例,上述说明是示例性的,并非穷尽性的,并且也不限于所披露的各实施例。在不偏离所说明的各实施例的范围和精神的情况下,对于本技术领域的普通技术人员来说许多修改和变更都是显而易见的。本文中所用术语的选择,旨在最好地解释各实施例的原理、实际应用或对市场中的技术改进,或者使本技术领域的其它普通技术人员能理解本文披露的各实施例。

Claims (10)

  1. 一种适用于交直流混合分布式系统的多能协调控制系统,其特征在于,所述多能协调控制系统包括:采集控制单元、总控制单元和通讯交互单元;其中,
    所述采集控制单元通过采集控制总线与所述总控制单元连接,以及所述采集控制单元与所述交直流混合分布式系统连接;
    所述总控制单元通过所述采集控制总线控制所述采集控制单元对交直流混合分布式系统的采集,所述总控制单元通过通讯交互总线与所述通讯交互单元连接;
    所述通讯交互单元与所述交直流混合分布式系统连接,以及所述通讯交互单元与外部设备通信连接。
  2. 根据权利要求1所述的多能协调控制系统,其特征在于,
    所述采集控制单元包括交流直采模块、直流直采模块和开入/开出DIO模块;
    总控制单元包括人DSP运算模块、主CPU模块、和FPGA模块;
    所述DSP运算模块通过采集控制总线与所述交流直采模块、直流直采模块和DIO模块连接;
    所述主CPU模块与所述DSP运算模块连接,所述主CPU模块包括人机交互HMI接口、串行通信接口和网络接口中的一个或多个;
    所述FPGA模块与所述DSP运算模块连接,所述FPGA模块支持IEC61850GOOSE快速通讯规约。
  3. 根据权利要求2所述的适用于交直流混合分布式系统的多能协调控制系统,其特征在于,
    所述通讯交互单元包括:无线模块和光纤模块;
    所述无线模块与所述主CPU模块连接、并与外部设备通信连接;
    所述光纤模块与所述FPGA模块和所述交直流混合分布式系统连接。
  4. 根据权利要求3所述的多能协调控制系统,其特征在于,所述交直流混合分布式系统包括一个或多个电力电子变压器、交流区域控制器和直流区域控制器;
    所述光纤模块分别与所述一个或多个电力电子变压器、交流区域控制器和直流区域控制器连接。
  5. 一种基于权利要求1-4任一项所述的多能协调控制系统的多能协调控制方法,其特征在于,所述方法包括:
    总控制单元控制所述采集控制单元对交直流混合分布式系统进行采集,以获取交流区域的分布式电源信息、储能设备信息和负载信息,以及所述直流区域的分布式电源信息、储能设备信息和负载信息;
    所述总控制单元根据获取的所述交流区域的分布式电源信息、储能设备信息和负载信息,生成交流区域的稳定控制信息;根据获取的所述直流区域的分布式电源信息、储能设备信息和负载信息,生成直流区域的稳定控制信息;
    所述总控制单元通过通讯交互单元发送交流区域的稳定控制信息和直流区域的稳定控制 信息,以根据所述交流区域的稳定控制信息,对所述交流区域内的分布式电源、储能设备、负载进行控制;根据所述直流区域的稳定控制信息,对所述直流区域内的分布式电源、储能设备、负载进行控制。
  6. 根据权利要求5所述的多能协调控制方法,其特征在于,所述交直流混合分布式系统包括电力电子变压器,所述电力电子变压器为多端口电力电子变压器;
    总控制单元获取电力电子变压器的一个或多个端口的功率;
    总控制单元根据电力电子变压器的一个或多个端口的功率,生成交直流功率交互控制信息;
    所述总控制单元根据所述交直流功率交互控制信息控制所述电力电子变压器的一个或多个端口的功率。
  7. 根据权利要求5所述的多能协调控制方法,其特征在于,所述方法还包括:
    所述总控制单元根据第一目标周期的电源输出有功功率、电源输出有功功率参考值和第一目标周期的上一周期的电源输出有功功率参考值,计算储能设备在第一目标周期的下一周期的有功功率目标值;
    所述总控制单元通过通讯交互单元发送所述有功功率目标值,以根据所述有功功率目标值,控制储能设备在第一目标周期的下一周期的有功功率输出或输入。
  8. 根据权利要求7所述的多能协调控制方法,其特征在于,
    所述总控制单元根据第二目标周期的时长、第二目标周期的预测电源平均输出有功功率和预测负载平均有功功率、第二目标周期的上一周期的电源平均输出有功功率、负载平均有功功率和储能设备平均有功功率,计算储能设备在第二目标周期的储能设备平均有功功率,其中,所述第二目标周期的时长大于第一目标周期的时长;
    所述总控制单元通过通讯交互单元发送所述第二目标周期的储能设备平均有功功率,以根据所述储能设备平均有功功率和/或所述有功功率目标值,控制储能设备在第二目标周期的有功功率输出或输入。
  9. 根据权利要求6所述的多能协调控制方法,其特征在于,所述电力电子变压器包括主从运行模式和对等运行模式,所述方法包括:
    所述总控制单元根据所述电力电子变压器的状态,控制所述电力电子变压器在主从运行模式与对等运行模式之间转换。
  10. 根据权利要求6所述的多能协调控制方法,其特征在于,所述电力电子变压器包括有源滤波器APF,所述方法包括:
    当电能质量治理模式开启时,所述总控制单元控制所述电力电子变压器利用所述APF,对交直流混合分布式系统接入配电网处的谐波进行控制。
PCT/CN2018/120052 2018-06-07 2018-12-10 适用于交直流混合分布式系统的多能协调控制系统及方法 WO2019233071A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810582888.2 2018-06-07
CN201810582888.2A CN108494010B (zh) 2018-06-07 2018-06-07 适用于交直流混合分布式系统的多能协调控制系统及方法

Publications (1)

Publication Number Publication Date
WO2019233071A1 true WO2019233071A1 (zh) 2019-12-12

Family

ID=63342045

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/120052 WO2019233071A1 (zh) 2018-06-07 2018-12-10 适用于交直流混合分布式系统的多能协调控制系统及方法

Country Status (2)

Country Link
CN (1) CN108494010B (zh)
WO (1) WO2019233071A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108494010B (zh) * 2018-06-07 2020-06-02 北京四方继保自动化股份有限公司 适用于交直流混合分布式系统的多能协调控制系统及方法
CN110492721B (zh) * 2019-08-23 2022-06-17 西安西电电力系统有限公司 一种多端口电力电子变压器
CN111146810B (zh) * 2020-01-20 2021-05-11 上海发电设备成套设计研究院有限责任公司 一种三相并网级联光伏逆变器及其光纤通信控制方法
CN112134359A (zh) * 2020-09-22 2020-12-25 广东电网有限责任公司 一种交直流混合场景应用系统
CN112737099B (zh) * 2020-11-30 2023-05-12 广东电网有限责任公司电力调度控制中心 边缘网关和综合能源系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203502759U (zh) * 2013-09-26 2014-03-26 北京北变微电网技术有限公司 微电网中央控制器
CN104281977A (zh) * 2013-07-10 2015-01-14 北京中电建投微电网科技有限公司 一种混合型微电网应用平台及其控制方法
CN104319816A (zh) * 2014-11-17 2015-01-28 合肥工业大学 一种光储交直流混合微电网系统及其控制方法
US20170133879A1 (en) * 2014-06-23 2017-05-11 Gridbridge, Inc. Versatile site energy router
CN107357988A (zh) * 2017-07-06 2017-11-17 国电南瑞科技股份有限公司 基于iec61850的分布式光伏集群动态建模方法
CN108494010A (zh) * 2018-06-07 2018-09-04 北京四方继保自动化股份有限公司 适用于交直流混合分布式系统的多能协调控制系统及方法
CN208272648U (zh) * 2018-06-07 2018-12-21 北京四方继保自动化股份有限公司 适用于交直流混合分布式系统的多能协调控制系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104281977A (zh) * 2013-07-10 2015-01-14 北京中电建投微电网科技有限公司 一种混合型微电网应用平台及其控制方法
CN203502759U (zh) * 2013-09-26 2014-03-26 北京北变微电网技术有限公司 微电网中央控制器
US20170133879A1 (en) * 2014-06-23 2017-05-11 Gridbridge, Inc. Versatile site energy router
CN104319816A (zh) * 2014-11-17 2015-01-28 合肥工业大学 一种光储交直流混合微电网系统及其控制方法
CN107357988A (zh) * 2017-07-06 2017-11-17 国电南瑞科技股份有限公司 基于iec61850的分布式光伏集群动态建模方法
CN108494010A (zh) * 2018-06-07 2018-09-04 北京四方继保自动化股份有限公司 适用于交直流混合分布式系统的多能协调控制系统及方法
CN208272648U (zh) * 2018-06-07 2018-12-21 北京四方继保自动化股份有限公司 适用于交直流混合分布式系统的多能协调控制系统

Also Published As

Publication number Publication date
CN108494010B (zh) 2020-06-02
CN108494010A (zh) 2018-09-04

Similar Documents

Publication Publication Date Title
WO2019233071A1 (zh) 适用于交直流混合分布式系统的多能协调控制系统及方法
WO2018049737A1 (zh) 一种基于分区负荷控制的安全校正计算方法
WO2018121732A1 (zh) 一种基于非线性状态观测器的微电网分散式电压控制方法
EP3308444B1 (en) Method and apparatus for control of intelligent loads in microgrids
CN104578187A (zh) 一种多端柔性直流输电系统级协调控制装置
AU2018101070A4 (en) Automatic voltage control method, device and system for wind farm
KR20170027829A (ko) 계층형 및 분산형 전력망 제어
CN107689642A (zh) 功率控制方法、装置、逆变器设备及电站控制器
CN107579543A (zh) 一种基于分层控制策略的孤岛微电网分布式协调控制方法
Shen et al. Gradient based centralized optimal Volt/Var control strategy for smart distribution system
CN107069812B (zh) 并网型微电网中多储能单元的分布式协同控制方法
CN105337306A (zh) 一种光储一体化发电系统
CN105305494A (zh) 一种用于光伏空调的智能供电系统及供电方法
Zhang et al. Large-signal stability analysis of islanded DC microgrids with multiple types of loads
US9917445B2 (en) Grid-tied solar photovoltaic power system with dynamic grid power stabilization
CN106026070B (zh) 基于下垂控制的直流微电网变换器解耦控制方法
CN111291958B (zh) 一种电网与工业用户用电供需互动装置及实现方法
CN108206544B (zh) 基于一致性协议的多微网协调控制方法
CN110994692B (zh) 一种基于同步相量测量装置的孤岛同步并网方法
WO2014203093A1 (en) Dynamic power distribution in photovoltaic installations
CN110957807A (zh) 分布式能源的配电网能量信息管控系统及方法
CN115912467A (zh) 分布式发电微网技术的协调控制系统及方法
CN114268116B (zh) 一种考虑通信时延的主从交流微电网的状态空间建模方法
CN108551164B (zh) 一种直流微电网电压稳定控制方法和装置
CN208272648U (zh) 适用于交直流混合分布式系统的多能协调控制系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18921975

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18921975

Country of ref document: EP

Kind code of ref document: A1