WO2016167337A1 - Device for molding optical product, and method for manufacturing optical product - Google Patents

Device for molding optical product, and method for manufacturing optical product Download PDF

Info

Publication number
WO2016167337A1
WO2016167337A1 PCT/JP2016/062078 JP2016062078W WO2016167337A1 WO 2016167337 A1 WO2016167337 A1 WO 2016167337A1 JP 2016062078 W JP2016062078 W JP 2016062078W WO 2016167337 A1 WO2016167337 A1 WO 2016167337A1
Authority
WO
WIPO (PCT)
Prior art keywords
slide core
mold
actuator
contact
pressure
Prior art date
Application number
PCT/JP2016/062078
Other languages
French (fr)
Japanese (ja)
Inventor
田村義文
高木信
谷川裕海
澤登大介
高橋洋昭
荒樋悟郎
佐藤望
阿部良幸
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2017512591A priority Critical patent/JPWO2016167337A1/en
Publication of WO2016167337A1 publication Critical patent/WO2016167337A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/26Moulds
    • B29C45/33Moulds having transversely, e.g. radially, movable mould parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/46Means for plasticising or homogenising the moulding material or forcing it into the mould
    • B29C45/56Means for plasticising or homogenising the moulding material or forcing it into the mould using mould parts movable during or after injection, e.g. injection-compression moulding
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors

Definitions

  • the present invention relates to an optical product molding apparatus and manufacturing method that enable high-precision molding, and more particularly to an optical product molding apparatus and manufacturing method including a mold having a slide core movable in a mold.
  • Patent Document 1 a resin mold with a nesting and drive mechanism that can apply compressive force to the resin from the inside of the mold part for forming the reflecting mirror surface with the injected resin A mold is disclosed (Patent Document 1).
  • Patent Document 2 a method for manufacturing a polygon mirror having a chamfered portion at a ridge line position or the like is disclosed (Patent Document 2).
  • the fluidity of the ridge line portion can be improved by providing a chamfered portion and reducing the pressure immediately before the resin filling is completed, or stress is concentrated on the chamfered end to improve the surface accuracy.
  • a resin molding mold having a structure in which a split core for each reflecting mirror surface is provided between the upper and lower molds by improving the two divisions of the upper and lower molds of the conventional mold is disclosed (Patent Document 3).
  • the resin on the mirror surface portion can be compressed with an equal amount of compression by the slide core, so that variations in internal distortion of the polygon mirror can be prevented.
  • Patent Documents 1 and 3 are molds of a type in which a slide core or a nest is brought into contact with each other between upper and lower molds to press the resin from the lateral direction, but optical transfer formed on the slide core or the like by pressurization.
  • the surface is deformed such as warping or bending, and the optical surface of the optical product is deteriorated due to the deformation of the optical transfer surface.
  • the pressure is insufficient, the resin enters the gaps such as the slide core, and burrs are formed, which causes poor appearance.
  • burrs Due to the occurrence of such burrs, there is also a problem that quality variations are likely to occur for each molding shot. In fact, if an attempt is made to improve the transferability of the optical surface by increasing the resin fluidity, the resin enters the gap between the slide cores of about 5 ⁇ m, and burrs are generated. Thus, in a molding apparatus using a slide core, it is not easy to prevent the formation of burrs in the gap around the slide core while preventing deterioration of the optical surface of the optical product. It can be said that burrs tend to be formed near the optical surface.
  • the mold of Patent Document 2 is not related to a mold in which a plurality of slide cores are brought into contact with each other to form an optical transfer surface, and it is not easy to form an optical surface such as a polygon mirror with high accuracy.
  • an optical product such as a polygon mirror has a reflective surface perpendicular to the rotation axis or an overhanging reflective surface, the reflective surface may not be formed.
  • the displacement amount detection sensor detects the gap or opening amount of the parting surface between the fixed side and the movable side mold due to the pressure of the injection resin, and by power such as hydraulic pressure, An apparatus having a mechanism for controlling the mold deformation amount to be zero or relatively zero is disclosed (Patent Document 4).
  • Patent Document 5 the mold of the mold A device having a mechanism for reducing displacement in the opening direction and extending deformation of the cavity is disclosed (Patent Document 5).
  • Patent Document 6 Compression molding metal that can detect the resin pressure in the cavity, displacement of the core and movable mold, etc. with a pressure sensor or displacement sensor, etc., and can control the compression of resin in the independent cavity in units of cores using piezoelectric elements A mold is disclosed (Patent Document 6).
  • a mechanism having a mechanism capable of stopping the slide core at a position other than the normal position when the position of the slide core driven by the cylinder is detected by a sensor and abnormality of the insert part in the mold is detected is disclosed. (Patent Document 7).
  • Patent Documents 4 to 6 are not related to a mold that abuts a plurality of slide cores to form an optical transfer surface, but are directly applied to a mold that abuts slide cores. However, it does not solve the problems related to the slide core, that is, it does not prevent the formation of burrs in the gap around the slide core while preventing the optical transfer surface from deteriorating.
  • Patent Document 7 the molding method disclosed in Patent Document 7 is applied to a mold of a type in which slide cores are brought into contact with each other.
  • the slide core is only stopped at a position other than the normal position when an abnormality is detected. That is, in Patent Document 7, when molding is performed while preventing the optical transfer surface formed on the slide core or the like from being deformed and deteriorated by pressurization, the pressurization is insufficient and the gap between the slide core and the like is reduced. There is no disclosure of a technique for preventing burrs from being formed by the resin entering.
  • JP-A-3-181913 Japanese Patent Laid-Open No. 10-186116 JP-A-3-42222 Japanese Patent Laid-Open No. 4-27516 JP-A-4-004117 JP 2003-094499 A Japanese Patent Laid-Open No. 10-296736
  • the present invention relates to an optical product molding apparatus and a manufacturing method capable of preventing a resin from entering a gap of a slide core or the like and forming burrs while preventing the optical surface of the optical product from being deteriorated due to deformation of the optical transfer surface. It aims to provide a method.
  • an optical product molding apparatus measures a contact pressure of a contact surface between a molding die including a slide core having an optical transfer surface and another member due to movement of the slide core.
  • the control unit adjusts the position of the slide core by the mold pressure applying unit based on the output of the contact pressure sensor, so that the contact pressure becomes excessive due to the abutment of the slide core. Deformation of the optical transfer surface can be prevented, and deterioration of the optical surface of the optical product can be prevented. Furthermore, since the contact of the contact surface of the slide core is ensured, it is possible to prevent a gap from being formed on the contact surface, and it is possible to prevent a resin from entering the gap and forming a burr.
  • an optical product molding method includes a molding die including a slide core having an optical transfer surface, and a contact pressure sensor that measures a contact pressure of a contact surface with another member due to movement of the slide core.
  • An optical product molding method using a molding apparatus including a mold pressure application unit that adjusts the position of the slide core, and after the mold is closed, the slide core is formed by the mold pressure application unit based on the output of the contact pressure sensor. The contact pressure of the contact surface of the slide core is adjusted by adjusting the position of.
  • the contact pressure of the contact surface of the slide core is adjusted by adjusting the position of the slide core by the mold pressure applying unit based on the output of the contact pressure sensor. It is possible to prevent the contact surface pressure from becoming excessive and the optical transfer surface from being deformed by the contact, and to prevent the optical transfer surface of the optical product from being deteriorated. Furthermore, since the contact of the contact surface of the slide core is ensured, it is possible to prevent a gap from being formed on the contact surface, and it is possible to prevent a resin from entering the gap and forming a burr.
  • 9A and 9B are enlarged perspective views for explaining the operation of the molding apparatus shown in FIG. 1 and the like. It is an expanded sectional view explaining operation
  • FIG. 1 is a conceptual diagram for explaining a main part of an optical product molding apparatus. 1 includes a portion corresponding to the AA cross section of the molding die shown in FIG. 2 described later.
  • the optical product molding apparatus 100 includes a molding die 40, a die associated mechanism 50, and a control device 30.
  • the molding die 40 includes a first die 41 and a second die 42.
  • the first mold 41 on the movable side of the molding die 40 can be reciprocated in the AB direction which is the opening / closing direction by a mechanism which will be described later.
  • a mold for molding an optical product OP which will be described later, by moving the first mold 41 in the direction A (upper side of the drawing) and clamping the first mold 41 and the second mold 42 as shown in the figure.
  • a cavity CV which is a space, is formed.
  • FIG. 2 and 3 are an end view and a perspective view for explaining the structures of the movable first mold 41 and the die-associated mechanism 50.
  • FIG. 2 and 3 are an end view and a perspective view for explaining the structures of the movable first mold 41 and the die-associated mechanism 50.
  • the first mold 41 includes a mold structure 61 that is an assembly of a plurality of members arranged on the end surface side in the + Z direction, that is, the second mold 42 side, and the ⁇ Z direction. And a receiving plate 62 disposed on the back side of the.
  • the mold structure 61 includes a fixed core 71 disposed in the center, four slide cores 72 that are opposed to each other with the fixed core 71 interposed therebetween, and four supports that respectively support the slide core 72 from behind. 73 and four sets of guide members 74 for guiding the slide core 72 or the support 73 to move forward and backward.
  • the fixed core 71 is fixed on the receiving plate 62.
  • the fixed core 71 has a top surface 71a and a side surface 71b as transfer surfaces, but these surfaces 71a and 71b are not optical transfer surfaces.
  • the four slide cores 72 are also referred to as slide blocks, and are provided at four equal intervals around the fixed core 71 along the XY plane (specifically, the support surface 62a of the receiving plate 62).
  • the cavity CV can be formed so as to be sandwiched between the plurality of slide cores 72, and the degree of freedom of the shape of the optical product OP can be increased.
  • Each slide core 72 can move forward and backward toward a central axis CX passing through the center of the fixed core 71.
  • the pair of slide cores 72 corresponding to the + X and + Y directions and the ⁇ X and ⁇ Y directions in FIG. 2 move along the CD direction and approach or separate from each other.
  • each slide core 72 has a quadrangular prism-shaped outer shape, and an inner side surface 72a on the tip side is an optical transfer surface.
  • the lower surface 72c (see FIG. 1) of each slide core 72 is a smooth surface so that it can be slid by being supported by a support surface 71d provided in the fixed core 71 and perpendicular to the opening and closing direction.
  • the side surface 72d and the upper surface 72e of each slide core 72 are also smooth surfaces.
  • Each slide core 72 has a pair of contact surfaces 72p adjacent to the inner surface 72a.
  • contact surfaces 72p extend perpendicular to the support surface 62a, which is the surface of the receiving plate 62, and are orthogonal to the XY plane.
  • the contact surface 72p can close the side surface of the cavity CV when the adjacent slide cores 72 come into contact with each other, and is a portion that prevents a gap from being formed between the four slide cores 72. ing. In this case, for one of the adjacent slide cores 72, the other is another member to be abutted.
  • the support body 73 is a block-shaped member, is connected to the outer surface on the base side of the slide core 72, and moves in the CD direction or the EF direction together with the slide core 72.
  • the lower surface 73c of the support 73 is a smooth surface so as to be supported by the support surface 62a of the receiving plate 62 and to be slidable.
  • a step 73d that fits smoothly with the guide member 74 is formed.
  • the pair of guide members 74 arranged so as to sandwich the support member 73 from the side thereof is a set, and is fitted with a step 73d of the support member 73 to guide the movement of each support member 73.
  • the guide member 74 is fixed to the receiving plate 62 by a member (not shown).
  • the second mold 42 is a fixed mold and includes a mold portion 161 disposed on the end surface side thereof, that is, the first mold 41 side, and a receiving plate 162 disposed on the back surface side.
  • the mold part 161 includes a fixed core 81 disposed in the center.
  • the fixed core 81 is fixed on the receiving plate 162.
  • the fixed core 81 has a top surface 81a and a side surface 81b as transfer surfaces, but neither of these surfaces 81a and 81b is an optical transfer surface.
  • a sprue port 81i is formed in the top surface 81a of the fixed core 81, and the sprue port 81i communicates with a sprue 42j for supplying molten resin from the outside to the inside.
  • the slide core 72 has a peripheral surface extending in the CD direction surrounded by the fixed core 71 and the mold part 161, thereby restricting movement in the CD direction while allowing movement in the CD direction. It becomes a state.
  • the die attachment mechanism 50 includes a first actuator 52 that supports the slide core 72 from the outside and adjusts the position, a second actuator 53 that supports the slide core 72 from the outside and applies a pressing force, and the slide core 72.
  • a contact pressure sensor 54 that measures the contact pressure of the contact surface 72p due to movement such as forward movement.
  • the 1st and 2nd actuators 52 and 53 comprise the mold pressure provision part 59 for adjusting the contact pressure of the contact surface 72p of the slide core 72.
  • the first actuator 52 and the second actuator 53 are provided on each of the four slide cores 72.
  • the contact pressure sensor 54 is provided between the adjacent slide cores 72.
  • the first actuator 52 is a telescopic device, and is sandwiched between the fixed core 71 and the support 73. More specifically, the first actuator 52 is made of a piezoelectric element, one end is fixed to the inner portion 73 f of the support 73, and the other end is in contact with the outer edge portion 71 f of the fixed core 71.
  • the first actuator 52 adjusts the contact pressure on the contact surface 72p of the slide core 72 by expansion and contraction. As a result, the contact pressure of the contact surface 72p can be made appropriate while adjusting the position by appropriately moving the slide core 72 forward and backward by the first actuator 52.
  • the contact pressure can be adjusted while ensuring the degree of freedom of the arrangement and shape of the slide core 72.
  • the first actuator 52 is driven by a position adjustment drive circuit 33 a provided in the mold pressure control unit 33 to expand and contract.
  • the movable support 73 moves in the CD direction along the cross section of FIG. 1, and the slide core 72 supported by the support 73 also moves in the CD direction along the cross section of FIG. Moving.
  • the moving direction of the slide core 72 is guided by the fixed core 71 and the like, and is along the support surface 62 a of the receiving plate 62.
  • the second actuator 53 is a pressure applying mechanism using hydraulic pressure or pneumatic pressure, and can support the support 73 from behind and press it forward.
  • the second actuator 53 includes the pressure application mechanism, it is possible to easily generate a pressing force against the resin pressure.
  • the second actuator 53 includes a main body portion 53a and a rod 53b.
  • the main body portion 53 a is fixed to the receiving plate 62.
  • the main body portion 53a is driven by a pressing force driving circuit 33b provided in the mold pressure control unit 33 to expand and contract the rod 53b. Thereby, it is possible to prevent the slide core 72 from excessively moving backward toward the rear side or the second actuator 53 side. In other words, when the cavity CV is filled with resin, the slide core 72 receives a pressure to move backward due to the resin pressure.
  • the second actuator 53 supports the slide core 72 from the rear so that the gap between the contact surfaces 72p does not widen.
  • the contact pressure sensor 54 includes a strain gauge, a piezoelectric element, and the like, and is attached to be embedded in one of the contact surfaces 72p between a pair of adjacent slide cores 72.
  • the contact pressure sensor 54 is driven by a sensor drive circuit 33c provided in the mold pressure control unit 33 and detects the contact pressure on the contact surface 72p.
  • the detection output of the contact pressure sensor 54 becomes zero, and the contact surface 72p comes into contact and the compression stress acts strongly.
  • the detection output of the contact pressure sensor 54 increases as the detection pressure increases, and the detection output indicates the degree of contact pressure.
  • the contact pressure detected by the contact pressure sensor 54 is zero or less, it is determined that the gap between the contact surfaces 72p is widened. On the other hand, when the contact pressure detected by the contact pressure sensor 54 is greater than zero, a gap is not formed between the contact surfaces 72p and the contact state is ensured, but the contact pressure becomes excessive and the optical transfer surface of the slide core 72 is increased. It is necessary to prevent deformation of the inner side surface 72a.
  • the contact pressure sensor 54 is used for monitoring so that the contact pressure becomes a target value within a range that does not cause deformation of the inner side surface 72 a that is the optical transfer surface of the slide core 72.
  • FIG. 4 shows the result of simulation of the contact pressure between the contact surfaces 72p and the deformation of the inner surface 72a of the slide core 72.
  • the optical product OP produced by the molding apparatus 100 shown in FIG. 1 and the like is specifically a polygon mirror, has a quadrangular prism appearance, and the outer side surfaces of the four wall portions WP are , Each function as a mirror MR.
  • the four mirrors MR are evenly arranged around the optical axis OA.
  • a partition wall PA that partitions the optical product OP up and down is formed inside the wall WP, and functions as a part for supporting the optical product OP when the optical product OP is assembled to the apparatus.
  • the outer shape of the optical product OP corresponds to the inner surface shape of the cavity CV that is a space sandwiched between the first mold 41 and the second mold 42 shown in FIG.
  • the illustrated optical product OP is merely an example, and optical products having various shapes can be manufactured by the molding apparatus 100 illustrated in FIG. 1 and the like.
  • the number of mirrors can be 6 or 8 according to the required specifications.
  • a polygon mirror having a two-stage configuration along the optical axis may be used.
  • the outer shape is a drum shape or a pincushion shape in which the diameter is larger at both ends along the optical axis at the center and the mirrors adjacent in the optical axis direction face each other.
  • the optical product OP is not limited to a polygon mirror, but may be a prism or other optical element.
  • the molding apparatus 100 includes an injection molding machine 10 that is a main body part that performs injection molding to produce an optical product OP, and a control device 30 that comprehensively controls the operation of each part of the molding apparatus 100.
  • the injection molding machine 10 is a horizontal molding machine and includes a fixed platen 11, a movable platen 12, an opening / closing drive device 15, and an injection device 16 in addition to the molding die 40 described above.
  • the injection molding machine 10 is also provided with a mold temperature controller 91 and the like.
  • the injection molding machine 10 clamps both molds 41 and 42 by sandwiching a first mold 41 and a second mold 42 constituting the molding mold 40 between the fixed platen 11 and the movable platen 12. This enables molding.
  • the fixed platen 11 fixed on the support frame 14 detachably supports the second mold 42.
  • the fixed platen 11 is formed with an opening 11b through which a nozzle 21 described later is passed.
  • the opening 11b communicates with the sprue 42j in FIG.
  • the movable platen 12 is supported by a linear guide 15a so as to be movable back and forth with respect to the fixed platen 11.
  • the movable platen 12 detachably supports the first mold 41.
  • the opening / closing drive device 15 is supported by the mold clamping board 13, and includes a linear guide 15a, a power transmission unit 15d, and a board actuator 15e.
  • the power transmission unit 15 d expands and contracts by receiving a driving force from the panel actuator 15 e that operates under the control of the control device 30. Thereby, the fixed platen 11 and the movable platen 12 can be brought close to or away from each other, and the first mold 41 and the second mold 42 can be clamped or opened.
  • the injection device 16 includes a feed unit 16a, a raw material storage unit 16b, a drive unit 16c, and the like.
  • the injection device 16 operates at an appropriate timing under the control of the control device 30 and is a molten resin in which the temperature and the filling pressure are controlled from the resin injection nozzle 21 provided at the tip of the feed portion 16a. Can be injected at a desired timing, and holding pressure for maintaining the injection pressure of the molten resin can be performed after the resin injection.
  • a mold temperature controller 91 attached to the injection molding machine 10 circulates a temperature-controlled heat medium in both molds 41 and 42. Thereby, the temperature of both metal mold
  • the control device 30 includes an opening / closing control unit 31, an injection device control unit 32, a mold pressure control unit 33, and a storage unit 34.
  • the open / close control unit 31 enables the molds 41 and 42 to be closed, clamped, opened, and the like by operating the panel actuator 15e.
  • the injection device control unit 32 causes the molten resin to be injected at a desired pressure into the cavity CV formed between the molds 41 and 42 by appropriately operating the feed unit 16a, the drive unit 16c, and the like.
  • the mold pressure control unit 33 operates the mold associated mechanism unit 50 including the first actuator 52, the second actuator 53, and the contact pressure sensor 54 after the mold clamping.
  • the mold pressure control unit 33 uses the detection output of the contact pressure sensor 54 to determine whether or not the contact pressure of the contact surface 72p of the adjacent slide core 72 is within an appropriate setting range. .
  • the mold pressure control unit 33 adjusts the position of the slide core 72 by operating the first actuator 52 when the contact pressure of the contact surface 72p deviates relatively small from an appropriate setting range. Specifically, the first actuator 52 is operated to properly maintain the contact state between the slide cores 72 so that the inner side surface 72a that is an optical transfer surface is not excessively deformed.
  • the mold pressure control unit 33 operates the second actuator 53 to operate the slide core when the contact pressure of the contact surface 72p is relatively far from the appropriate setting range, particularly when the contact pressure is significantly below the lower limit of the appropriate setting range. Increase the pressing force to 72.
  • the second actuator 53 is operated so that the gap between the contact surfaces 72p of the slide core 72 is not excessive, and the resin is prevented from entering the gap and forming burrs.
  • the mold pressure control unit 33 gives the pressing force to the slide core 72 by the second actuator 53 with a correction amount coarser than the pressure adjustment range executed by the first actuator 52 according to the output of the contact pressure sensor 54. To do. As a result, the contact pressure is finely adjusted by the first actuator 52 while the contact actuator is roughly adjusted by the second actuator 53.
  • the four slide cores 72 are linked to each other, and the die-associated mechanism unit 50 associated therewith is also linked to operate.
  • the contact pressure of the contact surface 72p is set to an appropriate setting range so as not to be biased toward the specific slide core 72.
  • the first actuator 52 or the The driving amount or feedback amount of the second actuator 53 is calculated. In the following description of the operation, such a drive amount or feedback amount is distributed, but the description thereof is omitted.
  • the driving amounts or feedback amounts of the first and second actuators 52 and 53 are calculated from these average values.
  • the drive amounts of the first and second actuators 52 and 53 may be calculated so that all the measured values from the two or more contact pressure sensors 54 fall within the appropriate range of contact pressure.
  • control device 30 operates the opening / closing drive device 15 to advance the movable platen 12 to start mold closing and mold clamping (step S11). Note that both molds 41 and 42 are heated in advance by a mold temperature controller 91 to a temperature suitable for molding.
  • the control device 30 operates the mold pressure control unit 33 to start feedback control regarding the abutting state between the slide cores 72 (step S12). Specifically, the mold pressure control unit 33 sets the first actuator 52 and the second actuator 53 to an initial operation state, and initializes the arrangement of the slide core 72. Further, the mold pressure control unit 33 reads the target value of the contact pressure of the contact surface 72p from the storage unit 34, and takes in the detection output of the contact pressure of the contact surface 72p by the contact pressure sensor 54. Thereby, the position of the slide core 72 can be feedback-controlled by the first actuator 52 so that the contact pressure detected by the contact pressure sensor 54 becomes the target value. By this feedback control, it is possible to prevent the optical transfer surface of the slide core 72 from being deformed such as warping or bending.
  • the mold pressure control unit 33 determines whether or not the contact pressure detected by the contact pressure sensor 54 is within the set range, that is, the detected value m of the contact pressure is the target value N0 (Step S1). S13) When the detected value m of the contact pressure is larger than the target value N0 or smaller than the target value N0, the first actuator 52 is operated (step S14), and the slide core 72 is moved forward or backward.
  • the target value N0 is not limited to one numerical value (for example, a predetermined value of zero or more), but can be a numerical range having a predetermined width.
  • the target value N0 is, for example, a range from a predetermined lower limit value equal to or greater than zero to a predetermined upper limit value so that the detected value m of the contact pressure is within a range in which the optical transfer surface of the slide core 72 is not deformed. It can be.
  • step S13 when it is determined that the detected value m of the contact pressure is smaller than the target value N0, the mold pressure control unit 33 calculates the driving amount of the first actuator 52 so as to compensate for this, and the first actuator 52 is caused to perform an operation corresponding to the drive amount. That is, the mold pressure control unit 33 reduces the size of the first actuator 52 corresponding to the driving amount, or reduces the biasing force applied by the first actuator 52 only corresponding to the driving amount. By such an operation of the first actuator 52, the slide core 72 supported on the support body 73 from the rear advances or the like as much as the driving amount of the first actuator 52.
  • the second actuator 53 is supplementarily substituted for the first actuator 52. It is also possible to perform an operation to ensure that the contact pressure approaches the target value N0.
  • the mold pressure control unit 33 calculates the drive amount of the first actuator 52 so as to compensate for this, The first actuator 52 is caused to perform an operation corresponding to the drive amount. That is, the mold pressure control unit 33 increases the size of the first actuator 52 corresponding to the driving amount, or increases the biasing force applied by the first actuator 52 only corresponding to the driving amount. Due to the operation of the first actuator 52, the slide core 72 supported by the support 73 from the rear is retracted by an amount corresponding to the driving amount of the first actuator 52.
  • the contact surfaces 72p are in close contact with each other between the slide cores 72, and the contact pressure between the contact surfaces 72p is not less than the predetermined lower limit value of the target value N0 and not more than the predetermined upper limit value.
  • the contact surfaces 72p of the adjacent slide cores 72 are initially slightly separated from each other to form the gap GA, as shown in FIG.
  • the contact surfaces 72p are in close contact with each other so that there is almost no gap GA.
  • a certain limit can be provided for the adjustment width or the pressure adjustment width. That is, the amount of feedback to the first actuator 52 can be limited, and the size or urging force of the first actuator 52 can be increased or decreased with the upper limit adjustment width or pressure adjustment width as a unit.
  • the mold pressure control unit 33 confirms completion of mold clamping of both the molds 41 and 42, If the mold clamping has not been completed, the process waits until the mold clamping is completed (step S16). When the mold clamping is completed, the first mold 41 and the second mold 42 are clamped with a necessary pressure.
  • control device 30 operates the injection device 16 to inject the molten resin into the cavity CV between the clamped first mold 41 and the second mold 42 at a necessary pressure. To start filling the resin (step S22).
  • the mold pressure control unit 33 determines whether the contact pressure detected by the contact pressure sensor 54 is within the set range, that is, the detected value m of the contact pressure is larger or smaller than the reference value N. In addition, it is determined whether or not the target value N + ⁇ has been reached (step S23).
  • the reference value N is a threshold value for switching the actuators 52 and 53 as will be described later, and is a predetermined value serving as a reference for switching determination.
  • the target value N + ⁇ is a contact pressure allowed between the slide cores 72 and can be a single numerical value of zero or more. Further, the target value N + ⁇ can be a numerical range having a predetermined width.
  • the target value N + ⁇ can be set to a range from a predetermined lower limit value of zero or more to a predetermined upper limit value.
  • the target value N + ⁇ is set so that the detected value m of the contact pressure is within a range in which the optical transfer surface of the slide core 72 is not deformed.
  • This target value N + ⁇ can be matched with the target value N0 in step S13 described above, but does not have to be matched with the target value N0.
  • the reference value N for switching the actuator can be set to a value that is significantly smaller than the contact pressure allowed between the slide cores 72, for example. Specifically, for example, an operation of setting the actuator switching reference value N to zero Pa and the feedback control target value N + ⁇ by the first actuator 52 to 10 to several tens of kPa is possible.
  • the first actuator 52 for position adjustment is operated (step S24). Specifically, when the detected value m of the contact pressure is greater than or equal to the reference value N (N ⁇ m in step S23), the mold pressure control unit 33 operates the first actuator 52 to move the slide core 72 forward and backward.
  • the mold pressure control unit 33 compensates for this.
  • the first actuator 52 is caused to perform an operation corresponding to the drive amount. That is, the mold pressure control unit 33 increases the size of the first actuator 52 corresponding to the driving amount, or increases the biasing force applied by the first actuator 52 only corresponding to the driving amount.
  • the slide core 72 supported on the support body 73 from the back moves backward by the amount corresponding to the driving amount of the first actuator 52. Thereby, it is possible to prevent the contact pressure from exceeding the upper limit of the target. If the detected value exceeds the capability of the first actuator 52, the second actuator 53 may be operated to make an auxiliary adjustment.
  • the mold pressure control unit 33 compensates for this. And the first actuator 52 is caused to perform an operation corresponding to the drive amount. That is, the mold pressure control unit 33 reduces the size of the first actuator 52 corresponding to the driving amount, or reduces the biasing force applied by the first actuator 52 only corresponding to the driving amount. By such an operation of the first actuator 52, the slide core 72 supported on the support 73 from the rear advances by the amount corresponding to the drive amount of the first actuator 52. This prevents the contact pressure from falling below the lower limit of the target.
  • a certain limit can be provided for the adjustment width or the pressure adjustment width. That is, the amount of feedback to the first actuator 52 can be limited, and the size or urging force of the first actuator 52 can be reduced in units of the upper limit adjustment width or pressure adjustment width.
  • the pressing second actuator 53 is operated (step S25). That the detected value m of the contact pressure is smaller than the reference value N means that the slide core 72 is moved backward by being pushed by the injection pressure of the molten resin.
  • the mold pressure control unit 33 operates the second actuator 53 to advance the slide core 72.
  • the mold pressure control unit 33 calculates the driving amount of the second actuator 53 so as to reliably compensate for this, and the second actuator 53 An operation corresponding to the driving amount is performed. That is, the mold pressure control unit 33 increases the pressing force applied from the second actuator 53 to the support 73 or the slide core 72 for an appropriate time corresponding to the driving amount.
  • the second actuator 53 By the operation of the second actuator 53, a pressing force for moving the slide core 72 forward can be applied for a considerable time. Thereby, about the slide core 72 adjacent, the contact state between the contact surfaces 72p is securable.
  • a certain limit can be set to the correction width or the correction amount. That is, the feedback amount for the second actuator 53 can be limited, and the upper limit of the pressing force of the second actuator 53 can be reduced or the correction amount can be decreased as a unit.
  • the mold The pressure control unit 33 confirms whether or not the resin filling is substantially completed (step S26). If the resin filling is not substantially completed (N in step S26), the process returns to step S23, and steps S23 to S25 are repeated until the resin filling is substantially completed, so that the detection value m of the contact pressure is the target.
  • the first or second actuator 52, 53 is operated so as to be maintained at the value N + ⁇ or to return to the target value N + ⁇ .
  • the slide core 72 receives the resin pressure P ⁇ b> 1 in the direction of being pushed back by the molten resin MM injected in the final stage of resin injection, but the first actuator 52 and the second actuator 53.
  • the pressing force P2 By applying the pressing force P2 to push back to the slide core 72, the slide core 72 can be prevented from moving backward. Since the resin pressure P1 reaches, for example, 50 to 100 Mpa, the pressing pressure P2 also has a value balanced with this.
  • step S32 the control device 30 operates the injection device 16 as appropriate to maintain the resin pressure in the cavity CV between the molds 41 and 42, thereby improving the resin filling property.
  • step S24 after the start of resin filling or resin injection, and the description thereof is omitted.
  • the technique of operating the second actuator 53 for pressing in step S35 to make the detected value m larger than the reference value N is resin filling or resin This is the same as step S25 after the start of injection, and a description thereof will be omitted.
  • the pressing force applied to the slide core 72 by the second actuator 53 is reduced to the predetermined value. increase.
  • the position of the slide core 72 is feedback-controlled by the first actuator 52 so that the contact pressure on the contact surface 72p of the slide core 72 becomes a target value within a range in which the optical transfer surface of the slide core 72 is not deformed.
  • step S42 the control device 30 operates the mold temperature controller 91 as appropriate to cool and solidify the resin in the cavity CV between the molds 41 and 42.
  • the mold pressure control unit 33 determines whether or not the contact pressure detected by the contact pressure sensor 54 is within the set range, that is, the detected value m of the contact pressure is the target value N + ⁇ (step S43). ). If the detected value m does not match the target value N + ⁇ , the mold pressure control unit 33 operates the first actuator 52 for position adjustment to match the detected value m of the contact pressure with the target value N + ⁇ (step S44). . Note that the method for operating the first actuator 52 for position adjustment in step S44 is the same as step S14 before the start of resin filling or resin injection, and a description thereof will be omitted.
  • the feedback control by the first actuator 52 during cooling can prevent the optical transfer surface of the slide core 72 from being deformed such as warping or bending during cooling.
  • step S46 When the cooling cycle is completed (Y in step S46), the control device 30 starts mold opening (step S51). And the control apparatus 30 complete
  • the mold pressure control unit 33 adjusts the position of the slide core 72 by the first actuator 52 based on the output of the contact pressure sensor 54 after the mold is closed. It is possible to prevent the inner surface 72a, which is the optical transfer surface, from being deformed due to excessive contact pressure due to the abutment of the core 72, and to prevent the mirror MR, which is the optical surface of the optical product OP, from being deteriorated. Furthermore, since the contact of the contact surface 72p of the slide core 72 is ensured, it is possible to prevent the gap GA from being formed on the contact surface 72p, and to prevent the resin from entering the gap GA and forming burrs. .
  • the mold pressure control unit 33 adjusts the position of the slide core 72 by the first actuator 52 based on the output of the contact pressure sensor 54 after the mold is closed, and the slide core 72 is pushed back by the resin pressure. In this case, the pressing force applied to the slide core 72 by the second actuator 53 is increased. As described above, after the resin is injected, when the slide core 72 is pushed back by the resin pressure, the mold pressure control unit 33 increases the pressing force applied to the slide core 72 by the second actuator 53. Even if the internal resin pressure increases, it is possible to reliably prevent the gap GA from being formed on the contact surface 72p of the slide core 72.
  • the first actuator 52 and the second actuator 53 can have functions and roles according to the scene, and the slide The contact pressure at the contact surface 72p of the core 72 can be controlled more precisely.
  • FIG. 11 is a diagram for explaining a modified molding apparatus 100.
  • a nest 78 is arranged as another member between the four slide cores 72.
  • the insert 78 is supported by the fixed core 71, for example.
  • the contact pressure sensor 54 by assembling the contact pressure sensor 54 to the slide core 72 and the insert 78, the contact pressure at the contact surface 72p can be monitored, and the inner side surface 72a, which is an optical transfer surface, can be prevented from being deformed. It is possible to prevent a gap that causes burrs from being formed between the side surface 72a and the insert 78.
  • the number of slide cores 72 is not limited to 4, and can be 2, 3,... According to the shape of the optical product.

Abstract

Provided is a device for molding an optical product, whereby it is possible to prevent burring from forming while preventing deformation of an optical transfer face. A molding device 100 is provided with a molding die 40 including a slide core 72, a contact pressure sensor 54 for measuring contact pressure on a working face 72p of the slide core 72, a mold pressure imparting part 59 for adjusting the position of the slide core 72, and a mold pressure control part 33. After mold closure, the mold pressure control part 33 adjusts the position of the slide core 72 through use of a first actuator 52 on the basis of the output of the contact pressure sensor 54, and it is therefore possible to prevent an inside face 72a which is an optical transfer face from being deformed by excessive contact pressure resulting from abutting of the slide core 72, and to prevent degradation of a mirror MR which is the optical face of an optical product OP. Furthermore, because contact with the working face 72p of the slide core 72 is ensured, it is possible to prevent burring from being formed by intrusion of resin into a gap GA at the working face 72p.

Description

光学製品の成形装置及び製造方法Optical product molding apparatus and manufacturing method
 本発明は、高精度の成形を可能にする光学製品の成形装置及び製造方法に関し、特に型内で移動可能なスライドコアを有する金型を備える光学製品の成形装置及び製造方法に関する。 The present invention relates to an optical product molding apparatus and manufacturing method that enable high-precision molding, and more particularly to an optical product molding apparatus and manufacturing method including a mold having a slide core movable in a mold.
 ポリゴンミラー等の光学転写面の面精度を向上させる装置として、射出した樹脂によって反射鏡面を形成するための金型部分の内側から樹脂に圧縮力を付加できる入れ子や駆動機構を設けた樹脂成形金型が開示されている(特許文献1)。 As a device to improve the surface accuracy of optical transfer surfaces such as polygon mirrors, a resin mold with a nesting and drive mechanism that can apply compressive force to the resin from the inside of the mold part for forming the reflecting mirror surface with the injected resin A mold is disclosed (Patent Document 1).
 また、稜線位置等に面取り部を設けたポリゴンミラーの製造方法が開示されている(特許文献2)。この製法では、面取り部を設けて樹脂の充填完了直前に降圧することで、稜線部の流動性を向上させることができ、或いは面取り末端に応力を集中させて、面精度の向上を狙っている。 Further, a method for manufacturing a polygon mirror having a chamfered portion at a ridge line position or the like is disclosed (Patent Document 2). In this manufacturing method, the fluidity of the ridge line portion can be improved by providing a chamfered portion and reducing the pressure immediately before the resin filling is completed, or stress is concentrated on the chamfered end to improve the surface accuracy. .
 従来金型の上下型の2分割を改良して、上下型間に反射鏡面ごとのスライドコアを設けた構造の樹脂成形金型が開示されている(特許文献3)。この金型では、スライドコアにより鏡面部の樹脂を等しい圧縮量で圧縮できるため、ポリゴンミラーの内部歪のバラツキを防止することができる。 A resin molding mold having a structure in which a split core for each reflecting mirror surface is provided between the upper and lower molds by improving the two divisions of the upper and lower molds of the conventional mold is disclosed (Patent Document 3). In this mold, the resin on the mirror surface portion can be compressed with an equal amount of compression by the slide core, so that variations in internal distortion of the polygon mirror can be prevented.
 上記特許文献1、3の金型は、上下型間においてスライドコア又は入れ子同士を突き合わせて横方向から樹脂を加圧するタイプの金型であるが、加圧によってスライドコア等に形成された光学転写面に反りや湾曲等の変形が生じ、かかる光学転写面の変形によって光学製品の光学面に劣化が生じる。逆に、加圧が不十分であると、スライドコア等の隙間に樹脂が入り込んでバリが形成され、外観不良の原因となる。 The molds of Patent Documents 1 and 3 are molds of a type in which a slide core or a nest is brought into contact with each other between upper and lower molds to press the resin from the lateral direction, but optical transfer formed on the slide core or the like by pressurization. The surface is deformed such as warping or bending, and the optical surface of the optical product is deteriorated due to the deformation of the optical transfer surface. On the other hand, if the pressure is insufficient, the resin enters the gaps such as the slide core, and burrs are formed, which causes poor appearance.
 この点についてより詳細に説明すると、スライドコアを用いる場合、光学成形品の光学面に反りが生じないように、スライドコアを強く突き合わせないで隙間を確保することが望ましいとも言える。しかしながら、高精度を要求される光学製品、特に小型の光学製品では、樹脂の流動性及び充填圧力を高めて高転写性を実現する必要がある。高転写性を実現する手法として、ヒートサイクル法、ガスアシスト成形法、断熱成形法、射出条件の工夫等があるが、樹脂の流動性及び充填圧力を高くすることにより、通常の成形では入り込まないようなスライドコア間の隙間に樹脂が入り込み、バリの発生により外観不良となる場合が生じている。このようなバリの発生により、成形ショット毎の品質バラツキが起こりやすくなるという問題もある。実際、樹脂流動性を高めて光学面の転写性を向上させようとすると、5μm程度のスライドコア間の隙間に樹脂が入りバリが発生する。このように、スライドコアを用いるタイプの成形装置において、光学製品の光学面の劣化を防止しつつスライドコア周辺の隙間におけるバリの形成を防止することは容易でなく、特にスライドコアを用いる場合、バリが光学面に近い場所に形成される傾向が強まると言える。 Describing this point in more detail, when using a slide core, it can be said that it is desirable to ensure a gap without strongly abutting the slide core so that the optical surface of the optical molded product is not warped. However, in optical products that require high accuracy, particularly small optical products, it is necessary to increase the fluidity and filling pressure of the resin to achieve high transferability. Techniques to achieve high transferability include heat cycle method, gas assist molding method, adiabatic molding method, ingenuity of injection conditions, etc., but it does not enter in normal molding by increasing the fluidity and filling pressure of resin In some cases, resin enters the gaps between the slide cores, resulting in poor appearance due to the generation of burrs. Due to the occurrence of such burrs, there is also a problem that quality variations are likely to occur for each molding shot. In fact, if an attempt is made to improve the transferability of the optical surface by increasing the resin fluidity, the resin enters the gap between the slide cores of about 5 μm, and burrs are generated. Thus, in a molding apparatus using a slide core, it is not easy to prevent the formation of burrs in the gap around the slide core while preventing deterioration of the optical surface of the optical product. It can be said that burrs tend to be formed near the optical surface.
 一方、上記特許文献2の金型は、複数のスライドコア同士を突き合わせて光学転写面を形成するタイプの金型に関するものではなく、ポリゴンミラー等の光学面を高精度で形成することは容易でない。特に、ポリゴンミラー等の光学製品が回転軸に垂直な反射面やオーバーハングした反射面を有する場合、反射面の成形が不可能になる場合もある。 On the other hand, the mold of Patent Document 2 is not related to a mold in which a plurality of slide cores are brought into contact with each other to form an optical transfer surface, and it is not easy to form an optical surface such as a polygon mirror with high accuracy. . In particular, when an optical product such as a polygon mirror has a reflective surface perpendicular to the rotation axis or an overhanging reflective surface, the reflective surface may not be formed.
 一方、センサー及びアクチュエーターを用いた樹脂成形方法として、射出樹脂の圧力による固定側及び可動側金型間のパーティング面の隙間又は開き量を変位量検出センサーで検出し、油圧等の動力により、金型変形量をゼロもしくは相対的にゼロにするように制御する機構を有するものが開示されている(特許文献4)。 On the other hand, as a resin molding method using a sensor and an actuator, the displacement amount detection sensor detects the gap or opening amount of the parting surface between the fixed side and the movable side mold due to the pressure of the injection resin, and by power such as hydraulic pressure, An apparatus having a mechanism for controlling the mold deformation amount to be zero or relatively zero is disclosed (Patent Document 4).
 また、射出樹脂の圧力による固定側及び可動側金型間に発生する変形を変位量検出センサーで検出して、射出成形機の樹脂の射出速度又は射出圧力を制御することで、金型の型開き方向の変位延いてはキャビティの変形を低減させる機構を有するものが開示されている(特許文献5)。 In addition, by detecting the deformation that occurs between the fixed and movable molds due to the pressure of the injection resin with the displacement detection sensor and controlling the injection speed or injection pressure of the resin in the injection molding machine, the mold of the mold A device having a mechanism for reducing displacement in the opening direction and extending deformation of the cavity is disclosed (Patent Document 5).
 キャビティ内の樹脂圧、コア及び可動型の変位等を圧力センサー又は変位センサー等で検出し、ピエゾ素子を用いてコア単位で独立したキャビティ内の樹脂を圧縮制御することが可能な圧縮成形用金型が開示されている(特許文献6)。 Compression molding metal that can detect the resin pressure in the cavity, displacement of the core and movable mold, etc. with a pressure sensor or displacement sensor, etc., and can control the compression of resin in the independent cavity in units of cores using piezoelectric elements A mold is disclosed (Patent Document 6).
 シリンダー駆動によるスライドコアの位置をセンサーで検出し、金型内のインサート部品の異常を検知した場合には、スライドコアを正規の位置以外で停止することができる機構を有するものが開示されている(特許文献7)。 A mechanism having a mechanism capable of stopping the slide core at a position other than the normal position when the position of the slide core driven by the cylinder is detected by a sensor and abnormality of the insert part in the mold is detected is disclosed. (Patent Document 7).
 上記特許文献4~6の成形方法等は、複数のスライドコア同士を突き合わせて光学転写面を形成するタイプの金型に関するものではなく、スライドコア同士を突き合わせるタイプの金型にそのまま適用しても、スライドコアに関連する課題を解決すること、すなわち光学転写面の劣化を防止しつつスライドコア周辺の隙間におけるバリの形成を防止することにはならない。 The molding methods described in Patent Documents 4 to 6 are not related to a mold that abuts a plurality of slide cores to form an optical transfer surface, but are directly applied to a mold that abuts slide cores. However, it does not solve the problems related to the slide core, that is, it does not prevent the formation of burrs in the gap around the slide core while preventing the optical transfer surface from deteriorating.
 一方、上記特許文献7の成形方法は、スライドコア同士を突き合わせるタイプの金型に適用されるが、異常検知時にスライドコアを正規位置以外で停止させるだけである。つまり、特許文献7は、スライドコア等に形成された光学転写面が加圧によって変形し劣化することを防止しつつ成形を行う際に、加圧が不十分となってスライドコア等の隙間に樹脂が入り込んでバリが形成されることを防止する手法について、開示していない。 On the other hand, the molding method disclosed in Patent Document 7 is applied to a mold of a type in which slide cores are brought into contact with each other. However, the slide core is only stopped at a position other than the normal position when an abnormality is detected. That is, in Patent Document 7, when molding is performed while preventing the optical transfer surface formed on the slide core or the like from being deformed and deteriorated by pressurization, the pressurization is insufficient and the gap between the slide core and the like is reduced. There is no disclosure of a technique for preventing burrs from being formed by the resin entering.
特開平3-181913号公報JP-A-3-181913 特開平10-186116号公報Japanese Patent Laid-Open No. 10-186116 特開平3-42222号公報JP-A-3-42222 特開平4-27516号公報Japanese Patent Laid-Open No. 4-27516 特開平4-004117号公報JP-A-4-004117 特開2003-094499号公報JP 2003-094499 A 特開平10-296736号公報Japanese Patent Laid-Open No. 10-296736
 本発明は、光学転写面の変形によって光学製品の光学面に劣化が生じることを防止しつつスライドコア等の隙間に樹脂が入り込んでバリが形成されることを防止できる光学製品の成形装置及び製造方法を提供することを目的とする。 The present invention relates to an optical product molding apparatus and a manufacturing method capable of preventing a resin from entering a gap of a slide core or the like and forming burrs while preventing the optical surface of the optical product from being deteriorated due to deformation of the optical transfer surface. It aims to provide a method.
 上記目的を達成するため、本発明に係る光学製品の成形装置は、光学転写面を有するスライドコアを含む成形金型と、スライドコアの移動による他の部材との当たり面の接触圧を計測する接触圧センサーと、スライドコアの位置を調整する型圧付与部と、型閉め後において、接触圧センサーの出力に基づいて、型圧付与部によってスライドコアの位置を調整する制御部とを備える。 In order to achieve the above object, an optical product molding apparatus according to the present invention measures a contact pressure of a contact surface between a molding die including a slide core having an optical transfer surface and another member due to movement of the slide core. A contact pressure sensor, a mold pressure application unit that adjusts the position of the slide core, and a control unit that adjusts the position of the slide core by the mold pressure application unit based on the output of the contact pressure sensor after the mold is closed.
 上記成形装置では、型閉め後において、制御部が、接触圧センサーの出力に基づいて、型圧付与部によってスライドコアの位置を調整するので、スライドコアの突き当てによって接触圧が過度となって光学転写面が変形することを防止でき、光学製品の光学面に劣化が生じることを防止できる。さらに、スライドコアの当たり面の接触が確保されるので、この当たり面において隙間が形成されることを防止でき、かかる隙間に樹脂が入り込んでバリが形成されることを防止できる。 In the molding apparatus, after the mold is closed, the control unit adjusts the position of the slide core by the mold pressure applying unit based on the output of the contact pressure sensor, so that the contact pressure becomes excessive due to the abutment of the slide core. Deformation of the optical transfer surface can be prevented, and deterioration of the optical surface of the optical product can be prevented. Furthermore, since the contact of the contact surface of the slide core is ensured, it is possible to prevent a gap from being formed on the contact surface, and it is possible to prevent a resin from entering the gap and forming a burr.
 上記目的を達成するため、光学製品の成形方法は、光学転写面を有するスライドコアを含む成形金型と、スライドコアの移動による他の部材との当たり面の接触圧を計測する接触圧センサーと、スライドコアの位置を調整する型圧付与部とを備える成形装置を用いた、光学製品の成形方法であって、型閉め後において、接触圧センサーの出力に基づいて型圧付与部によってスライドコアの位置を調整することにより、スライドコアの当たり面の接触圧を調整する。 In order to achieve the above object, an optical product molding method includes a molding die including a slide core having an optical transfer surface, and a contact pressure sensor that measures a contact pressure of a contact surface with another member due to movement of the slide core. An optical product molding method using a molding apparatus including a mold pressure application unit that adjusts the position of the slide core, and after the mold is closed, the slide core is formed by the mold pressure application unit based on the output of the contact pressure sensor. The contact pressure of the contact surface of the slide core is adjusted by adjusting the position of.
 上記成形方法では、型閉め後において、接触圧センサーの出力に基づいて型圧付与部によってスライドコアの位置を調整することにより、スライドコアの当たり面の接触圧を調整するので、スライドコアの突き当てによって接触圧が過度となって光学転写面が変形することを防止でき、光学製品の光学転写面に劣化が生じることを防止できる。さらに、スライドコアの当たり面の接触が確保されるので、この当たり面において隙間が形成されることを防止でき、かかる隙間に樹脂が入り込んでバリが形成されることを防止できる。 In the above molding method, after the mold is closed, the contact pressure of the contact surface of the slide core is adjusted by adjusting the position of the slide core by the mold pressure applying unit based on the output of the contact pressure sensor. It is possible to prevent the contact surface pressure from becoming excessive and the optical transfer surface from being deformed by the contact, and to prevent the optical transfer surface of the optical product from being deteriorated. Furthermore, since the contact of the contact surface of the slide core is ensured, it is possible to prevent a gap from being formed on the contact surface, and it is possible to prevent a resin from entering the gap and forming a burr.
本発明の一実施形態に係る光学製品の成形装置を説明する概念図である。It is a conceptual diagram explaining the shaping | molding apparatus of the optical product which concerns on one Embodiment of this invention. 図1の成形装置を構成する可動型の構造を説明する端面図である。It is an end view explaining the structure of the movable type | mold which comprises the shaping | molding apparatus of FIG. 可動型の構造を説明する斜視図である。It is a perspective view explaining a movable structure. 当たり面間の接触圧の光学転写面への影響を説明するチャートである。It is a chart explaining the influence on the optical transfer surface of the contact pressure between contact surfaces. 図1の成形装置によって成形される光学製品の一例を説明する斜視図である。It is a perspective view explaining an example of the optical product shape | molded by the shaping | molding apparatus of FIG. 図1等に示された成形型を組み込んだ成形装置の全体構造を説明する概念図である。It is a conceptual diagram explaining the whole structure of the shaping | molding apparatus incorporating the shaping | molding die shown by FIG. 図1等に示された成形装置の動作を説明するフローチャートである。It is a flowchart explaining operation | movement of the shaping | molding apparatus shown by FIG. 図1等に示された成形装置の動作を説明するフローチャートである。It is a flowchart explaining operation | movement of the shaping | molding apparatus shown by FIG. 図9A及び9Bは、図1等に示された成形装置の動作を説明する拡大斜視図である。9A and 9B are enlarged perspective views for explaining the operation of the molding apparatus shown in FIG. 1 and the like. 図1等に示された成形装置の動作を説明する拡大断面図である。It is an expanded sectional view explaining operation | movement of the shaping | molding apparatus shown by FIG. 変形例の型構造を説明する端面図である。It is an end view explaining the type | mold structure of a modification.
 以下、本発明に係る光学製品の成形装置及びその製造方法の実施形態について、図面を参照しつつ説明する。 Hereinafter, embodiments of an optical product molding apparatus and a manufacturing method thereof according to the present invention will be described with reference to the drawings.
 図1は、光学製品の成形装置の要部を説明する概念図である。なお、図1は、後述する図2に示す成形金型のAA断面に対応する部分を含むものとなっている。 FIG. 1 is a conceptual diagram for explaining a main part of an optical product molding apparatus. 1 includes a portion corresponding to the AA cross section of the molding die shown in FIG. 2 described later.
 光学製品の成形装置100は、成形金型40と、型付随機構部50と、制御装置30とを備える。 The optical product molding apparatus 100 includes a molding die 40, a die associated mechanism 50, and a control device 30.
 成形金型40は、第1金型41と第2金型42とを備える。成形金型40のうち可動側の第1金型41は、後述する機構によって、開閉方向であるAB方向に往復移動可能になっている。図示のように第1金型41をA方向(図面上側)に移動させて第1金型41と第2金型42とを型締めすることにより、後述する光学製品OPを成形するための型空間であるキャビティCVが形成される。 The molding die 40 includes a first die 41 and a second die 42. The first mold 41 on the movable side of the molding die 40 can be reciprocated in the AB direction which is the opening / closing direction by a mechanism which will be described later. A mold for molding an optical product OP, which will be described later, by moving the first mold 41 in the direction A (upper side of the drawing) and clamping the first mold 41 and the second mold 42 as shown in the figure. A cavity CV, which is a space, is formed.
 図2及び図3は、可動側の第1金型41及び型付随機構部50の構造を説明する端面図及び斜視図である。 2 and 3 are an end view and a perspective view for explaining the structures of the movable first mold 41 and the die-associated mechanism 50. FIG.
 図1~図3に示すように、第1金型41は、その+Z方向の端面側すなわち第2金型42側に配置される複数部材の集合体である金型構造61と、-Z方向の裏面側に配置される受板62とを備える。このうち、金型構造61は、中央に配置される固定コア71と、固定コア71を挟んで対向し進退移動する4つのスライドコア72と、スライドコア72をそれぞれ背後から支持する4つの支持体73と、スライドコア72又は支持体73の進退移動を案内する4組のガイド部材74とを備える。 As shown in FIGS. 1 to 3, the first mold 41 includes a mold structure 61 that is an assembly of a plurality of members arranged on the end surface side in the + Z direction, that is, the second mold 42 side, and the −Z direction. And a receiving plate 62 disposed on the back side of the. Among these, the mold structure 61 includes a fixed core 71 disposed in the center, four slide cores 72 that are opposed to each other with the fixed core 71 interposed therebetween, and four supports that respectively support the slide core 72 from behind. 73 and four sets of guide members 74 for guiding the slide core 72 or the support 73 to move forward and backward.
 固定コア71は、受板62上に固定されている。固定コア71は、転写面として頂面71a及び側面71bを有するが、これらの面71a,71bは、いずれも光学転写面ではない。 The fixed core 71 is fixed on the receiving plate 62. The fixed core 71 has a top surface 71a and a side surface 71b as transfer surfaces, but these surfaces 71a and 71b are not optical transfer surfaces.
 4つのスライドコア72は、スライドブロックとも呼ばれ、XY面(具体的には、受板62の支持面62a)に沿って固定コア71のまわりに4等配に設けられている。このように、複数のスライドコア72を配置することにより、複数のスライドコア72によって挟むようにしてキャビティCVを形成することができ、光学製品OPの形状の自由度を高めることができる。各スライドコア72は、固定コア71の中央を通る中心軸CXに向かって進退移動可能になっている。具体的には、図2の+X及び+Y方向と-X及び-Y方向とに対応する一対のスライドコア72は、CD方向に沿って移動し互いに近接し又は離間する。+X及び-Y方向と-X及び+Y方向とに対応する一対のスライドコア72は、EF方向に沿って移動し互いに近接し又は離間する。各スライドコア72は、図示の例では、四角柱状の外形を有し、その先端側の内側面72aは、光学転写面となっている。各スライドコア72の下面72c(図1参照)は、固定コア71に設けた開閉方向に垂直な支持面71dに支持されて摺動可能となるように、平滑面となっている。各スライドコア72の側面72d及び上面72eも、平滑面となっている。各スライドコア72は、内側面72aに隣接して一対の当たり面72pを有する。これらの当たり面72pは、受板62の表面である支持面62aに垂直に延びており、XY面と直交する。当たり面72pは、隣接するスライドコア72同士が接触することで、キャビティCVの側面を閉じたものとすることができ、4つのスライドコア72間に隙間が形成されることを防止する部分となっている。この場合、隣接するスライドコア72の一方にとって、他方は突き当ての対象である他の部材となっている。 The four slide cores 72 are also referred to as slide blocks, and are provided at four equal intervals around the fixed core 71 along the XY plane (specifically, the support surface 62a of the receiving plate 62). Thus, by arranging the plurality of slide cores 72, the cavity CV can be formed so as to be sandwiched between the plurality of slide cores 72, and the degree of freedom of the shape of the optical product OP can be increased. Each slide core 72 can move forward and backward toward a central axis CX passing through the center of the fixed core 71. Specifically, the pair of slide cores 72 corresponding to the + X and + Y directions and the −X and −Y directions in FIG. 2 move along the CD direction and approach or separate from each other. The pair of slide cores 72 corresponding to the + X and −Y directions and the −X and + Y directions move along the EF direction and approach or separate from each other. In the illustrated example, each slide core 72 has a quadrangular prism-shaped outer shape, and an inner side surface 72a on the tip side is an optical transfer surface. The lower surface 72c (see FIG. 1) of each slide core 72 is a smooth surface so that it can be slid by being supported by a support surface 71d provided in the fixed core 71 and perpendicular to the opening and closing direction. The side surface 72d and the upper surface 72e of each slide core 72 are also smooth surfaces. Each slide core 72 has a pair of contact surfaces 72p adjacent to the inner surface 72a. These contact surfaces 72p extend perpendicular to the support surface 62a, which is the surface of the receiving plate 62, and are orthogonal to the XY plane. The contact surface 72p can close the side surface of the cavity CV when the adjacent slide cores 72 come into contact with each other, and is a portion that prevents a gap from being formed between the four slide cores 72. ing. In this case, for one of the adjacent slide cores 72, the other is another member to be abutted.
 支持体73は、ブロック状の部材であり、スライドコア72の根元側である外側面に連結され、スライドコア72とともにCD方向又はEF方向に移動する。支持体73の下面73cは、受板62の支持面62aに支持されて摺動可能となるように、平滑面となっている。支持体73の側面には、ガイド部材74と滑らかに嵌合する段差73dが形成されている。 The support body 73 is a block-shaped member, is connected to the outer surface on the base side of the slide core 72, and moves in the CD direction or the EF direction together with the slide core 72. The lower surface 73c of the support 73 is a smooth surface so as to be supported by the support surface 62a of the receiving plate 62 and to be slidable. On the side surface of the support 73, a step 73d that fits smoothly with the guide member 74 is formed.
 ガイド部材74は、支持体73をその側方から挟むように配置された一対が一組となって、支持体73の段差73dと嵌合して各支持体73の移動を案内する。ガイド部材74は、不図示の部材によって受板62に固定されている。 The pair of guide members 74 arranged so as to sandwich the support member 73 from the side thereof is a set, and is fitted with a step 73d of the support member 73 to guide the movement of each support member 73. The guide member 74 is fixed to the receiving plate 62 by a member (not shown).
 第2金型42は、固定金型であり、その端面側すなわち第1金型41側に配置される金型部分161と、裏面側に配置される受板162を備える。このうち、金型部分161は、中央に配置される固定コア81を備える。 The second mold 42 is a fixed mold and includes a mold portion 161 disposed on the end surface side thereof, that is, the first mold 41 side, and a receiving plate 162 disposed on the back surface side. Among these, the mold part 161 includes a fixed core 81 disposed in the center.
 固定コア81は、受板162上に固定されている。固定コア81は、転写面として頂面81a及び側面81bを有するが、これらの面81a,81bは、いずれも光学転写面ではない。なお、固定コア81の頂面81aには、スプルー口81iが形成されており、このスプルー口81iは、外部からの溶融樹脂を内部に供給するためのスプルー42jと連通している。 The fixed core 81 is fixed on the receiving plate 162. The fixed core 81 has a top surface 81a and a side surface 81b as transfer surfaces, but neither of these surfaces 81a and 81b is an optical transfer surface. A sprue port 81i is formed in the top surface 81a of the fixed core 81, and the sprue port 81i communicates with a sprue 42j for supplying molten resin from the outside to the inside.
 第2金型42をA方向に移動させて金型41,42の型締めを行った場合、第1金型41の固定コア71と、第2金型42の金型部分161とが、不図示の箇所で当接し、固定コア71と金型部分161との間隔が規定値に調整される。この際、スライドコア72の上面72e等と金型部分161の一部とが近接して配置される。これにより、スライドコア72は、そのCD方向に延びる周囲面が固定コア71と金型部分161とに囲まれて、これらによってCD方向の移動が許可されつつCD方向に垂直な移動が制限された状態となる。 When the second mold 42 is moved in the A direction and the molds 41 and 42 are clamped, the fixed core 71 of the first mold 41 and the mold part 161 of the second mold 42 are not connected. Abutting at the illustrated location, the distance between the fixed core 71 and the mold portion 161 is adjusted to a specified value. At this time, the upper surface 72e of the slide core 72 and the like and a part of the mold part 161 are arranged close to each other. As a result, the slide core 72 has a peripheral surface extending in the CD direction surrounded by the fixed core 71 and the mold part 161, thereby restricting movement in the CD direction while allowing movement in the CD direction. It becomes a state.
 図1等に示す型付随機構部50は、4つのスライドコア72に亘って設けられている。型付随機構部50は、スライドコア72を外側から支持して位置を調整する第1アクチュエーター52と、スライドコア72を外側から支持して押圧力を付与する第2アクチュエーター53と、スライドコア72の前進等の移動による当たり面72pの接触圧を計測する接触圧センサー54とを備える。これらのうち、第1及び第2アクチュエーター52,53は、スライドコア72の当たり面72pの接触圧を調整するための型圧付与部59を構成する。第1アクチュエーター52と第2アクチュエーター53とは、4つのスライドコア72のそれぞれに設けられている。一方、接触圧センサー54は、隣接するスライドコア72間に設けられている。 1 is attached to the four slide cores 72. As shown in FIG. The die attachment mechanism 50 includes a first actuator 52 that supports the slide core 72 from the outside and adjusts the position, a second actuator 53 that supports the slide core 72 from the outside and applies a pressing force, and the slide core 72. A contact pressure sensor 54 that measures the contact pressure of the contact surface 72p due to movement such as forward movement. Among these, the 1st and 2nd actuators 52 and 53 comprise the mold pressure provision part 59 for adjusting the contact pressure of the contact surface 72p of the slide core 72. FIG. The first actuator 52 and the second actuator 53 are provided on each of the four slide cores 72. On the other hand, the contact pressure sensor 54 is provided between the adjacent slide cores 72.
 第1アクチュエーター52は、伸縮自在の装置であり、固定コア71と支持体73との間に挟持される。より具体的には、第1アクチュエーター52は、圧電素子からなり、一端が支持体73の内側部分73fに固定され、他端が固定コア71の外縁部71fに当接している。第1アクチュエーター52は、伸縮によってスライドコア72の当たり面72pにおける接触圧を調整する。これにより、第1アクチュエーター52によってスライドコア72を適宜進退させて位置調整を実施しつつ、当たり面72pの接触圧が適正になるようにもできる。また、第1アクチュエーター52が圧電素子を含み、圧電素子が小型かつ薄型であることから、スライドコア72の配置や形状の自由度を確保しつつ接触圧を調整することができる。第1アクチュエーター52は、型圧制御部33に設けた位置調整駆動回路33aに駆動されて伸縮動作する。第1アクチュエーター52が伸縮すると、可動側の支持体73が図1の断面に沿ったCD方向に移動し、この支持体73に支持されたスライドコア72も図1の断面に沿ったCD方向に移動する。スライドコア72の移動方向は、固定コア71等によって案内されており、受板62の支持面62aに沿ったものとなる。 The first actuator 52 is a telescopic device, and is sandwiched between the fixed core 71 and the support 73. More specifically, the first actuator 52 is made of a piezoelectric element, one end is fixed to the inner portion 73 f of the support 73, and the other end is in contact with the outer edge portion 71 f of the fixed core 71. The first actuator 52 adjusts the contact pressure on the contact surface 72p of the slide core 72 by expansion and contraction. As a result, the contact pressure of the contact surface 72p can be made appropriate while adjusting the position by appropriately moving the slide core 72 forward and backward by the first actuator 52. In addition, since the first actuator 52 includes a piezoelectric element, and the piezoelectric element is small and thin, the contact pressure can be adjusted while ensuring the degree of freedom of the arrangement and shape of the slide core 72. The first actuator 52 is driven by a position adjustment drive circuit 33 a provided in the mold pressure control unit 33 to expand and contract. When the first actuator 52 expands and contracts, the movable support 73 moves in the CD direction along the cross section of FIG. 1, and the slide core 72 supported by the support 73 also moves in the CD direction along the cross section of FIG. Moving. The moving direction of the slide core 72 is guided by the fixed core 71 and the like, and is along the support surface 62 a of the receiving plate 62.
 第2アクチュエーター53は、油圧又は空圧を利用した圧力付加機構であり、支持体73を背後から支持して前方に押圧することができる。第2アクチュエーター53が当該圧力付加機構を含むことにより、樹脂圧に抗する押圧力を簡易に発生させることができる。第2アクチュエーター53は、本体部分53aとロッド53bとを備える。本体部分53aは、受板62に固定されている。本体部分53aは、型圧制御部33に設けた押圧力駆動回路33bに駆動されてロッド53bを伸縮させる。これにより、スライドコア72が後方の外側又は第2アクチュエーター53側に過度に後退することを阻止できる。つまり、キャビティCVに樹脂が充填された場合、樹脂圧によってスライドコア72は後退する圧力を受けるが、これによって、隣接するスライドコア72同士の当たり面72p間に大きな隙間が形成されると、ここに樹脂が侵入して光学製品OPの光学面周辺にバリが形成されてしまう可能性がある。そのため、第2アクチュエーター53は、スライドコア72を後方から支えて当たり面72p間の隙間が広がらないようにしている。 The second actuator 53 is a pressure applying mechanism using hydraulic pressure or pneumatic pressure, and can support the support 73 from behind and press it forward. When the second actuator 53 includes the pressure application mechanism, it is possible to easily generate a pressing force against the resin pressure. The second actuator 53 includes a main body portion 53a and a rod 53b. The main body portion 53 a is fixed to the receiving plate 62. The main body portion 53a is driven by a pressing force driving circuit 33b provided in the mold pressure control unit 33 to expand and contract the rod 53b. Thereby, it is possible to prevent the slide core 72 from excessively moving backward toward the rear side or the second actuator 53 side. In other words, when the cavity CV is filled with resin, the slide core 72 receives a pressure to move backward due to the resin pressure. When a large gap is formed between the contact surfaces 72p of the adjacent slide cores 72, There is a possibility that the resin may enter and burr may be formed around the optical surface of the optical product OP. Therefore, the second actuator 53 supports the slide core 72 from the rear so that the gap between the contact surfaces 72p does not widen.
 接触圧センサー54は、歪みゲージ、圧電素子等からなり、一対の隣接するスライドコア72間の当たり面72pの一方に埋め込むように取り付けられている。接触圧センサー54は、型圧制御部33に設けたセンサー駆動回路33cに駆動されて当たり面72pにおける接触圧を検出する。一方のスライドコア72の当たり面72pが他方のスライドコア72の当たり面72pに接触していない状態では、接触圧センサー54の検出出力がゼロとなり、当たり面72pが接触して圧縮応力が強く作用するほど接触圧センサー54の検出出力が増加して、検出出力が接触圧の程度を示す。接触圧センサー54が検出した接触圧がゼロ以下である場合、当たり面72p間の隙間が広がっていると判断される。一方、接触圧センサー54が検出した接触圧がゼロより大きい場合、当たり面72p間に隙間が形成されず接触状態が確保されているが、接触圧が過度となってスライドコア72の光学転写面である内側面72aに変形を生じさせることを防止する必要がある。接触圧センサー54は、接触圧がスライドコア72の光学転写面である内側面72aに変形を生じさせない範囲内の目標値となるように監視するために利用される。 The contact pressure sensor 54 includes a strain gauge, a piezoelectric element, and the like, and is attached to be embedded in one of the contact surfaces 72p between a pair of adjacent slide cores 72. The contact pressure sensor 54 is driven by a sensor drive circuit 33c provided in the mold pressure control unit 33 and detects the contact pressure on the contact surface 72p. In a state where the contact surface 72p of one slide core 72 is not in contact with the contact surface 72p of the other slide core 72, the detection output of the contact pressure sensor 54 becomes zero, and the contact surface 72p comes into contact and the compression stress acts strongly. The detection output of the contact pressure sensor 54 increases as the detection pressure increases, and the detection output indicates the degree of contact pressure. When the contact pressure detected by the contact pressure sensor 54 is zero or less, it is determined that the gap between the contact surfaces 72p is widened. On the other hand, when the contact pressure detected by the contact pressure sensor 54 is greater than zero, a gap is not formed between the contact surfaces 72p and the contact state is ensured, but the contact pressure becomes excessive and the optical transfer surface of the slide core 72 is increased. It is necessary to prevent deformation of the inner side surface 72a. The contact pressure sensor 54 is used for monitoring so that the contact pressure becomes a target value within a range that does not cause deformation of the inner side surface 72 a that is the optical transfer surface of the slide core 72.
 図4は、当たり面72p間の接触圧と、スライドコア72の内側面72aの変形とについてシミュレーションを行った結果を示す。チャートからも明らかなように、当たり面72p間の接触圧の増加に応じて光学転写面の変形が無視できない程度に増加し、当たり面72p間の接触圧の制御が重要であることが分かる。 FIG. 4 shows the result of simulation of the contact pressure between the contact surfaces 72p and the deformation of the inner surface 72a of the slide core 72. As is apparent from the chart, it can be seen that the deformation of the optical transfer surface increases to a degree that cannot be ignored according to the increase in the contact pressure between the contact surfaces 72p, and it is understood that the control of the contact pressure between the contact surfaces 72p is important.
 図5に示すように、図1等に示す成形装置100によって作製される光学製品OPは、具体的にはポリゴンミラーであり、四角柱状の外観を有し、4つの壁部WPの外側面は、それぞれミラーMRとして機能する。4つのミラーMRは、光軸OAのまわりに均等に配置されている。壁部WPの内側には、光学製品OPを上下に仕切る隔壁PAが形成され、光学製品OPを装置に組み付ける際に光学製品OPを支持するための部分として機能する。光学製品OPの外形は、図1等に示す第1金型41と第2金型42とに挟まれた空間であるキャビティCVの内面形状に対応するものとなっている。 As shown in FIG. 5, the optical product OP produced by the molding apparatus 100 shown in FIG. 1 and the like is specifically a polygon mirror, has a quadrangular prism appearance, and the outer side surfaces of the four wall portions WP are , Each function as a mirror MR. The four mirrors MR are evenly arranged around the optical axis OA. A partition wall PA that partitions the optical product OP up and down is formed inside the wall WP, and functions as a part for supporting the optical product OP when the optical product OP is assembled to the apparatus. The outer shape of the optical product OP corresponds to the inner surface shape of the cavity CV that is a space sandwiched between the first mold 41 and the second mold 42 shown in FIG.
 なお、図示の光学製品OPは、単なる一例であり、図1等に示す成形装置100によって様々な形状の光学製品を製造することができる。例えば光学製品がポリゴンミラーであっても、ミラーの数は、要求される仕様に応じて、6面、8面等とすることができる。また、光軸に沿って2段構成のポリゴンミラーとすることもできる。2段構成のポリゴンミラーの場合、中央でくびれ光軸に沿った両端で径が大きくなって光軸方向に隣接するミラーが向き合うような鼓型又は糸巻き型状の外形となる場合もある。さらに、光学製品OPは、ポリゴンミラーに限らず、プリズムその他の光学素子であってもよい。 Note that the illustrated optical product OP is merely an example, and optical products having various shapes can be manufactured by the molding apparatus 100 illustrated in FIG. 1 and the like. For example, even if the optical product is a polygon mirror, the number of mirrors can be 6 or 8 according to the required specifications. Further, a polygon mirror having a two-stage configuration along the optical axis may be used. In the case of a polygon mirror having a two-stage configuration, there is a case where the outer shape is a drum shape or a pincushion shape in which the diameter is larger at both ends along the optical axis at the center and the mirrors adjacent in the optical axis direction face each other. Furthermore, the optical product OP is not limited to a polygon mirror, but may be a prism or other optical element.
 図6を参照して、図1に示す成形装置100の全体構造について説明する。成形装置100は、射出成形を行って光学製品OPを作製する本体部分である射出成形機10と、成形装置100を構成する各部の動作を統括的に制御する制御装置30とを備える。 Referring to FIG. 6, the overall structure of the molding apparatus 100 shown in FIG. 1 will be described. The molding apparatus 100 includes an injection molding machine 10 that is a main body part that performs injection molding to produce an optical product OP, and a control device 30 that comprehensively controls the operation of each part of the molding apparatus 100.
 射出成形機10は、横型の成形機であり、既に説明した成形金型40の他に、固定盤11と、可動盤12と、開閉駆動装置15と、射出装置16とを備える。射出成形機10には、これに付随して金型温度調節機91等も設けられている。射出成形機10は、固定盤11と可動盤12との間に成形金型40を構成する第1金型41と第2金型42とを挟持して両金型41,42を型締めすることにより成形を可能にする。 The injection molding machine 10 is a horizontal molding machine and includes a fixed platen 11, a movable platen 12, an opening / closing drive device 15, and an injection device 16 in addition to the molding die 40 described above. The injection molding machine 10 is also provided with a mold temperature controller 91 and the like. The injection molding machine 10 clamps both molds 41 and 42 by sandwiching a first mold 41 and a second mold 42 constituting the molding mold 40 between the fixed platen 11 and the movable platen 12. This enables molding.
 支持フレーム14上に固定された固定盤11は、第2金型42を着脱可能に支持している。固定盤11には、後述するノズル21を通す開口11bが形成されている。この開口11bは、図1のスプルー42jに連通している。 The fixed platen 11 fixed on the support frame 14 detachably supports the second mold 42. The fixed platen 11 is formed with an opening 11b through which a nozzle 21 described later is passed. The opening 11b communicates with the sprue 42j in FIG.
 可動盤12は、リニアガイド15aによって固定盤11に対して進退移動可能に支持されている。可動盤12は、第1金型41を着脱可能に支持している。 The movable platen 12 is supported by a linear guide 15a so as to be movable back and forth with respect to the fixed platen 11. The movable platen 12 detachably supports the first mold 41.
 開閉駆動装置15は、型締め盤13に支持されており、リニアガイド15aと、動力伝達部15dと、盤用アクチュエーター15eとを備える。動力伝達部15dは、制御装置30の制御下で動作する盤用アクチュエーター15eからの駆動力を受けて伸縮する。これにより、固定盤11と可動盤12とを互いに近接又は離間させることができ、第1金型41と第2金型42との型締め又は型開きを行うことができる。 The opening / closing drive device 15 is supported by the mold clamping board 13, and includes a linear guide 15a, a power transmission unit 15d, and a board actuator 15e. The power transmission unit 15 d expands and contracts by receiving a driving force from the panel actuator 15 e that operates under the control of the control device 30. Thereby, the fixed platen 11 and the movable platen 12 can be brought close to or away from each other, and the first mold 41 and the second mold 42 can be clamped or opened.
 射出装置16は、フィード部16a、原料貯留部16b、駆動部16c等を備える。射出装置16は、制御装置30の制御下で適当なタイミングで動作するものであり、フィード部16aの先端に設けられた樹脂射出用のノズル21から温度及び充填圧力が制御された状態の溶融樹脂を所望のタイミングで射出することができるとともに、樹脂射出後に溶融樹脂の射出圧を維持する保圧を行うことができる。 The injection device 16 includes a feed unit 16a, a raw material storage unit 16b, a drive unit 16c, and the like. The injection device 16 operates at an appropriate timing under the control of the control device 30 and is a molten resin in which the temperature and the filling pressure are controlled from the resin injection nozzle 21 provided at the tip of the feed portion 16a. Can be injected at a desired timing, and holding pressure for maintaining the injection pressure of the molten resin can be performed after the resin injection.
 射出成形機10に付随して設けられた金型温度調節機91は、両金型41,42中に温度制御された熱媒体を循環させる。これにより、成形時に両金型41,42の温度を適切な温度に保つことができる。 A mold temperature controller 91 attached to the injection molding machine 10 circulates a temperature-controlled heat medium in both molds 41 and 42. Thereby, the temperature of both metal mold | dies 41 and 42 can be kept at an appropriate temperature at the time of shaping | molding.
 制御装置30は、開閉制御部31と、射出装置制御部32と、型圧制御部33と、記憶部34とを備える。開閉制御部31は、盤用アクチュエーター15eを動作させることによって両金型41,42の型閉じ、型締め、型開き等を可能にする。射出装置制御部32は、フィード部16a、駆動部16c等を適宜動作させることによって両金型41,42間に形成されたキャビティCV中に所望の圧力で溶融樹脂を射出させる。型圧制御部33は、型締め以後に、第1アクチュエーター52、第2アクチュエーター53、及び接触圧センサー54を含む型付随機構部50を動作させる。具体的には、型圧制御部33は、接触圧センサー54の検出出力を利用して、隣接するスライドコア72の当たり面72pの接触圧が適正な設定範囲内であるか否かを判断する。型圧制御部33は、当たり面72pの接触圧が適正な設定範囲から比較的小さく外れる場合、第1アクチュエーター52を動作させて、スライドコア72の位置を調整する。具体的には、第1アクチュエーター52を動作させて、スライドコア72同士の当たり状態を適正に維持し、光学転写面である内側面72aの変形が過度にならないようにする。一方、型圧制御部33は、当たり面72pの接触圧が適正な設定範囲から比較的大きく外れる場合、特に適正な設定範囲の下限を大きく下回る場合、第2アクチュエーター53を動作させて、スライドコア72への押圧力を増加させる。具体的には、第2アクチュエーター53を動作させて、スライドコア72の当たり面72p間の隙間が過度にならないようにし、かかる隙間に樹脂が入り込んでバリが形成されることを防止する。 The control device 30 includes an opening / closing control unit 31, an injection device control unit 32, a mold pressure control unit 33, and a storage unit 34. The open / close control unit 31 enables the molds 41 and 42 to be closed, clamped, opened, and the like by operating the panel actuator 15e. The injection device control unit 32 causes the molten resin to be injected at a desired pressure into the cavity CV formed between the molds 41 and 42 by appropriately operating the feed unit 16a, the drive unit 16c, and the like. The mold pressure control unit 33 operates the mold associated mechanism unit 50 including the first actuator 52, the second actuator 53, and the contact pressure sensor 54 after the mold clamping. Specifically, the mold pressure control unit 33 uses the detection output of the contact pressure sensor 54 to determine whether or not the contact pressure of the contact surface 72p of the adjacent slide core 72 is within an appropriate setting range. . The mold pressure control unit 33 adjusts the position of the slide core 72 by operating the first actuator 52 when the contact pressure of the contact surface 72p deviates relatively small from an appropriate setting range. Specifically, the first actuator 52 is operated to properly maintain the contact state between the slide cores 72 so that the inner side surface 72a that is an optical transfer surface is not excessively deformed. On the other hand, the mold pressure control unit 33 operates the second actuator 53 to operate the slide core when the contact pressure of the contact surface 72p is relatively far from the appropriate setting range, particularly when the contact pressure is significantly below the lower limit of the appropriate setting range. Increase the pressing force to 72. Specifically, the second actuator 53 is operated so that the gap between the contact surfaces 72p of the slide core 72 is not excessive, and the resin is prevented from entering the gap and forming burrs.
 以上において、型圧制御部33は、第2アクチュエーター53によって、接触圧センサー54の出力に応じて第1アクチュエーター52によって実行される圧調整幅よりも粗い修正量でスライドコア72に押圧力を付与する。これにより、第2アクチュエーター53によって接触圧の粗調整を行いつつ、第1アクチュエーター52によって接触圧の微調整が行われる。 In the above, the mold pressure control unit 33 gives the pressing force to the slide core 72 by the second actuator 53 with a correction amount coarser than the pressure adjustment range executed by the first actuator 52 according to the output of the contact pressure sensor 54. To do. As a result, the contact pressure is finely adjusted by the first actuator 52 while the contact actuator is roughly adjusted by the second actuator 53.
 詳細な説明は省略するが、4つのスライドコア72は相互にリンクして動作しており、これらに付随する型付随機構部50も相互にリンクして動作する。つまり、特定のスライドコア72に偏って動作させないようにして、当たり面72pの接触圧が適正な設定範囲となるようにする。例えば、隣接する一対のスライドコア72間の接触圧センサー54の測定値から接触圧を適正範囲に戻すべきと判断された場合、これら一対のスライドコア72に配分するように、第1アクチュエーター52又は第2アクチュエーター53の駆動量又はフィードバック量が計算される。以下の動作説明では、このような駆動量又はフィードバック量の配分を行っているが、その説明を省略している。また、同一のスライドコア72について2つ以上の接触圧センサー54からの測定値が得られる場合、これらの平均値から第1及び第2アクチュエーター52,53の駆動量又はフィードバック量が計算される。ただし、2つ以上の接触圧センサー54からの測定値が全て接触圧の適正範囲となるように、第1及び第2アクチュエーター52,53の駆動量等を算出してもよい。 Although detailed description is omitted, the four slide cores 72 are linked to each other, and the die-associated mechanism unit 50 associated therewith is also linked to operate. In other words, the contact pressure of the contact surface 72p is set to an appropriate setting range so as not to be biased toward the specific slide core 72. For example, when it is determined from the measurement value of the contact pressure sensor 54 between a pair of adjacent slide cores 72 that the contact pressure should be returned to an appropriate range, the first actuator 52 or the The driving amount or feedback amount of the second actuator 53 is calculated. In the following description of the operation, such a drive amount or feedback amount is distributed, but the description thereof is omitted. Further, when measurement values from two or more contact pressure sensors 54 are obtained for the same slide core 72, the driving amounts or feedback amounts of the first and second actuators 52 and 53 are calculated from these average values. However, the drive amounts of the first and second actuators 52 and 53 may be calculated so that all the measured values from the two or more contact pressure sensors 54 fall within the appropriate range of contact pressure.
 以下、図7及び図8を参照して、図1、図6等に示す成形装置100を用いた光学製品OPの製造方法について説明する。 Hereinafter, a method of manufacturing the optical product OP using the molding apparatus 100 shown in FIGS. 1 and 6 will be described with reference to FIGS.
 まず、制御装置30は、開閉駆動装置15を動作させ、可動盤12を前進させて型閉じ及び型締めを開始させる(ステップS11)。なお、予め金型温度調節機91により、両金型41,42を成形に適する温度まで加熱している。 First, the control device 30 operates the opening / closing drive device 15 to advance the movable platen 12 to start mold closing and mold clamping (step S11). Note that both molds 41 and 42 are heated in advance by a mold temperature controller 91 to a temperature suitable for molding.
 続いて、制御装置30は、型圧制御部33を動作させ、スライドコア72同士の突き当て状態に関するフィードバック制御を開始する(ステップS12)。具体的には、型圧制御部33は、第1アクチュエーター52や第2アクチュエーター53を初期設定の動作状態にし、スライドコア72の配置を初期化する。また、型圧制御部33は、当たり面72pの接触圧の目標値を記憶部34から読み出すとともに、接触圧センサー54による当たり面72pの接触圧の検出出力を取り込む。これにより、接触圧センサー54によって検出された接触圧が目標値となるように、第1アクチュエーター52によってスライドコア72の位置をフィードバック制御することができる。このフィードバック制御により、スライドコア72の光学転写面に反りや湾曲等の変形が生じることを防止できる。 Subsequently, the control device 30 operates the mold pressure control unit 33 to start feedback control regarding the abutting state between the slide cores 72 (step S12). Specifically, the mold pressure control unit 33 sets the first actuator 52 and the second actuator 53 to an initial operation state, and initializes the arrangement of the slide core 72. Further, the mold pressure control unit 33 reads the target value of the contact pressure of the contact surface 72p from the storage unit 34, and takes in the detection output of the contact pressure of the contact surface 72p by the contact pressure sensor 54. Thereby, the position of the slide core 72 can be feedback-controlled by the first actuator 52 so that the contact pressure detected by the contact pressure sensor 54 becomes the target value. By this feedback control, it is possible to prevent the optical transfer surface of the slide core 72 from being deformed such as warping or bending.
 フィードバック制御の開始後は、型圧制御部33は、接触圧センサー54によって検出された接触圧が設定範囲内すなわち接触圧の検出値mが目標値N0となっているか否かを判断し(ステップS13)、接触圧の検出値mが目標値N0よりも大きい又は目標値N0よりも小さい場合、第1アクチュエーター52を動作させて(ステップS14)、スライドコア72を前進又は後退させる。ここで、目標値N0は、1つの数値(例えばゼロ以上の所定値)に限らず、所定の幅を持った数値範囲とできる。具体的には、接触圧の検出値mがスライドコア72の光学転写面に変形を生じさせない範囲内となるように、目標値N0は、例えばゼロ以上の所定下限値から所定上限値までの範囲とすることができる。 After the feedback control is started, the mold pressure control unit 33 determines whether or not the contact pressure detected by the contact pressure sensor 54 is within the set range, that is, the detected value m of the contact pressure is the target value N0 (Step S1). S13) When the detected value m of the contact pressure is larger than the target value N0 or smaller than the target value N0, the first actuator 52 is operated (step S14), and the slide core 72 is moved forward or backward. Here, the target value N0 is not limited to one numerical value (for example, a predetermined value of zero or more), but can be a numerical range having a predetermined width. Specifically, the target value N0 is, for example, a range from a predetermined lower limit value equal to or greater than zero to a predetermined upper limit value so that the detected value m of the contact pressure is within a range in which the optical transfer surface of the slide core 72 is not deformed. It can be.
 ステップS13において、接触圧の検出値mが目標値N0より小さいと判断された場合、型圧制御部33は、これを補償するように第1アクチュエーター52の駆動量を算出するとともに、第1アクチュエーター52に駆動量に対応する動作を行わせる。つまり、型圧制御部33は、第1アクチュエーター52の寸法を駆動量に対応するだけ減少させ、或いは第1アクチュエーター52によって付与される付勢力を駆動量に対応するだけ減少させる。第1アクチュエーター52のこのような動作により、支持体73に後方から支持されたスライドコア72は、第1アクチュエーター52の駆動量に相当するだけ前進等する。なお、接触圧の検出値mが目標値N0よりも所定以上に過度に小さくなった場合(具体的にはゼロ以下の場合)に、第1アクチュエーター52に代えて第2アクチュエーター53を補助的に動作させ、接触圧を目標値N0に確実に近づける動作を行わせることもできる。 In step S13, when it is determined that the detected value m of the contact pressure is smaller than the target value N0, the mold pressure control unit 33 calculates the driving amount of the first actuator 52 so as to compensate for this, and the first actuator 52 is caused to perform an operation corresponding to the drive amount. That is, the mold pressure control unit 33 reduces the size of the first actuator 52 corresponding to the driving amount, or reduces the biasing force applied by the first actuator 52 only corresponding to the driving amount. By such an operation of the first actuator 52, the slide core 72 supported on the support body 73 from the rear advances or the like as much as the driving amount of the first actuator 52. Note that when the detected value m of the contact pressure is excessively smaller than the target value N0 (specifically, when it is less than or equal to zero), the second actuator 53 is supplementarily substituted for the first actuator 52. It is also possible to perform an operation to ensure that the contact pressure approaches the target value N0.
 逆に、ステップS13において、接触圧の検出値mが目標値N0より大きいと判断された場合、型圧制御部33は、これを補償するように第1アクチュエーター52の駆動量を算出するとともに、第1アクチュエーター52に駆動量に対応する動作を行わせる。つまり、型圧制御部33は、第1アクチュエーター52の寸法を駆動量に対応するだけ増加させ、或いは第1アクチュエーター52によって付与される付勢力を駆動量に対応するだけ増加させる。第1アクチュエーター52の動作により、支持体73に後方から支持されたスライドコア72は、第1アクチュエーター52の駆動量に相当するだけ後退等する。 Conversely, if it is determined in step S13 that the detected value m of the contact pressure is greater than the target value N0, the mold pressure control unit 33 calculates the drive amount of the first actuator 52 so as to compensate for this, The first actuator 52 is caused to perform an operation corresponding to the drive amount. That is, the mold pressure control unit 33 increases the size of the first actuator 52 corresponding to the driving amount, or increases the biasing force applied by the first actuator 52 only corresponding to the driving amount. Due to the operation of the first actuator 52, the slide core 72 supported by the support 73 from the rear is retracted by an amount corresponding to the driving amount of the first actuator 52.
 結果的に、スライドコア72同士は、当たり面72pが密着し、当たり面72p間の接触圧は、目標値N0の所定下限値以上であって所定上限値以下となる。具体的には、当初図9Aに示すように、当初は隣接するスライドコア72の当たり面72p同士が僅かに離間して隙間GAが形成されていた場合であっても、図9Bに示すように、当たり面72p同士が密着して殆ど隙間GAのない状態となる。 As a result, the contact surfaces 72p are in close contact with each other between the slide cores 72, and the contact pressure between the contact surfaces 72p is not less than the predetermined lower limit value of the target value N0 and not more than the predetermined upper limit value. Specifically, as shown in FIG. 9A, as shown in FIG. 9B, even if the contact surfaces 72p of the adjacent slide cores 72 are initially slightly separated from each other to form the gap GA, as shown in FIG. The contact surfaces 72p are in close contact with each other so that there is almost no gap GA.
 以上において、第1アクチュエーター52の駆動量に関しては、調節幅又は圧調整幅に一定の制限を設けることができる。つまり、第1アクチュエーター52に対するフィードバック量を制限でき、第1アクチュエーター52の寸法又は付勢力を上限の調節幅又は圧調整幅を単位として増減させることもできる。 In the above, with respect to the driving amount of the first actuator 52, a certain limit can be provided for the adjustment width or the pressure adjustment width. That is, the amount of feedback to the first actuator 52 can be limited, and the size or urging force of the first actuator 52 can be increased or decreased with the upper limit adjustment width or pressure adjustment width as a unit.
 接触圧の検出値mが目標値N0になっていると判断された場合(ステップS13でN0=m)、型圧制御部33は、両金型41,42の型締めの完了を確認し、型締めが完了していない場合、型締めの完了まで待機する(ステップS16)。型締め完了により、第1金型41と第2金型42とが必要な圧力で締め付けられる。 When it is determined that the detected value m of the contact pressure is the target value N0 (N0 = m in step S13), the mold pressure control unit 33 confirms completion of mold clamping of both the molds 41 and 42, If the mold clamping has not been completed, the process waits until the mold clamping is completed (step S16). When the mold clamping is completed, the first mold 41 and the second mold 42 are clamped with a necessary pressure.
 次に、制御装置30は、射出装置16を動作させて、型締めされた第1金型41と第2金型42との間のキャビティCV中に、必要な圧力で溶融樹脂を注入する射出を行わせることで樹脂の充填を開始する(ステップS22)。 Next, the control device 30 operates the injection device 16 to inject the molten resin into the cavity CV between the clamped first mold 41 and the second mold 42 at a necessary pressure. To start filling the resin (step S22).
 樹脂充填の開始後つまり樹脂射出時、型圧制御部33は、接触圧センサー54によって検出された接触圧が設定範囲内すなわち接触圧の検出値mが基準値Nに比較して大きいか小さいか、並びに目標値N+Δに達したか否かを判断する(ステップS23)。ここで、基準値Nは、後述するようにアクチュエーター52,53を切り替える閾値であり、切り替え判断の基準となる所定値である。一方、目標値N+Δは、スライドコア72同士に許容される接触圧であり、ゼロ以上の単一の数値とすることができる。また、目標値N+Δは、所定の幅を持った数値範囲とすることもできる。具体的には、目標値N+Δをゼロ以上の所定下限値から所定上限値までの範囲とすることができる。目標値N+Δは、接触圧の検出値mがスライドコア72の光学転写面に変形を生じさせない範囲内となるように設定される。この目標値N+Δは、上述したステップS13の目標値N0と一致させることができるが、当該目標値N0と一致させなくてもよい。なお、アクチュエーター切り替えの基準値Nは、例えばスライドコア72同士に許容される接触圧よりも大幅に小さい値とすることができる。具体的には、例えばアクチュエーター切り替えの基準値NをゼロPaとし、第1アクチュエーター52によるフィードバック制御の目標値N+Δを10~数10kPaとするといった動作が可能である。 After the resin filling is started, that is, at the time of resin injection, the mold pressure control unit 33 determines whether the contact pressure detected by the contact pressure sensor 54 is within the set range, that is, the detected value m of the contact pressure is larger or smaller than the reference value N. In addition, it is determined whether or not the target value N + Δ has been reached (step S23). Here, the reference value N is a threshold value for switching the actuators 52 and 53 as will be described later, and is a predetermined value serving as a reference for switching determination. On the other hand, the target value N + Δ is a contact pressure allowed between the slide cores 72 and can be a single numerical value of zero or more. Further, the target value N + Δ can be a numerical range having a predetermined width. Specifically, the target value N + Δ can be set to a range from a predetermined lower limit value of zero or more to a predetermined upper limit value. The target value N + Δ is set so that the detected value m of the contact pressure is within a range in which the optical transfer surface of the slide core 72 is not deformed. This target value N + Δ can be matched with the target value N0 in step S13 described above, but does not have to be matched with the target value N0. The reference value N for switching the actuator can be set to a value that is significantly smaller than the contact pressure allowed between the slide cores 72, for example. Specifically, for example, an operation of setting the actuator switching reference value N to zero Pa and the feedback control target value N + Δ by the first actuator 52 to 10 to several tens of kPa is possible.
 接触圧の検出値mが基準値N以上(ただし、m=N+Δを除く)の場合、位置調整用の第1アクチュエーター52を動作させる(ステップS24)。具体的には、接触圧の検出値mが基準値N以上の場合(ステップS23のN≦m)、型圧制御部33は、第1アクチュエーター52を動作させ、スライドコア72を進退させる。 If the detected value m of the contact pressure is equal to or greater than the reference value N (except for m = N + Δ), the first actuator 52 for position adjustment is operated (step S24). Specifically, when the detected value m of the contact pressure is greater than or equal to the reference value N (N ≦ m in step S23), the mold pressure control unit 33 operates the first actuator 52 to move the slide core 72 forward and backward.
 すなわち、接触圧の検出値mが基準値N以上の場合であって、接触圧の検出値mが目標値N+Δより大きい場合、型圧制御部33は、これを補償するように第1アクチュエーター52の駆動量を算出するとともに、第1アクチュエーター52に駆動量に対応する動作を行わせる。つまり、型圧制御部33は、第1アクチュエーター52の寸法を駆動量に対応するだけ増加させ、或いは第1アクチュエーター52によって付与される付勢力を駆動量に対応するだけ増加させる。第1アクチュエーター52のこのような動作により、支持体73に後方から支持されたスライドコア72は、第1アクチュエーター52の駆動量に相当するだけ後退する。これにより、接触圧が目標の上限を超えないようにできる。なお、第1アクチュエーター52の能力を超えた検出値である場合、第2アクチュエーター53を動作させて補助的に調整してもよい。 That is, when the detected value m of the contact pressure is equal to or greater than the reference value N and the detected value m of the contact pressure is larger than the target value N + Δ, the mold pressure control unit 33 compensates for this. And the first actuator 52 is caused to perform an operation corresponding to the drive amount. That is, the mold pressure control unit 33 increases the size of the first actuator 52 corresponding to the driving amount, or increases the biasing force applied by the first actuator 52 only corresponding to the driving amount. By such an operation of the first actuator 52, the slide core 72 supported on the support body 73 from the back moves backward by the amount corresponding to the driving amount of the first actuator 52. Thereby, it is possible to prevent the contact pressure from exceeding the upper limit of the target. If the detected value exceeds the capability of the first actuator 52, the second actuator 53 may be operated to make an auxiliary adjustment.
 一方、接触圧の検出値mが基準値N以上の場合であって、接触圧の検出値mが目標値N+Δより小さい場合、型圧制御部33は、これを補償するように第1アクチュエーター52の駆動量を算出するとともに、第1アクチュエーター52に駆動量に対応する動作を行わせる。つまり、型圧制御部33は、第1アクチュエーター52の寸法を駆動量に対応するだけ減少させ、或いは第1アクチュエーター52によって付与される付勢力を駆動量に対応するだけ減少させる。第1アクチュエーター52のこのような動作により、支持体73に後方から支持されたスライドコア72は、第1アクチュエーター52の駆動量に相当するだけ前進する。これにより、接触圧が目標の下限を下回らないようにできる。 On the other hand, if the detected value m of the contact pressure is greater than or equal to the reference value N and the detected value m of the contact pressure is smaller than the target value N + Δ, the mold pressure control unit 33 compensates for this. And the first actuator 52 is caused to perform an operation corresponding to the drive amount. That is, the mold pressure control unit 33 reduces the size of the first actuator 52 corresponding to the driving amount, or reduces the biasing force applied by the first actuator 52 only corresponding to the driving amount. By such an operation of the first actuator 52, the slide core 72 supported on the support 73 from the rear advances by the amount corresponding to the drive amount of the first actuator 52. This prevents the contact pressure from falling below the lower limit of the target.
 以上において、第1アクチュエーター52の駆動量に関しては、調節幅又は圧調整幅に一定の制限を設けることができる。つまり、第1アクチュエーター52に対するフィードバック量を制限でき、第1アクチュエーター52の寸法又は付勢力を上限の調節幅又は圧調整幅を単位として減少させることもできる。 In the above, with respect to the driving amount of the first actuator 52, a certain limit can be provided for the adjustment width or the pressure adjustment width. That is, the amount of feedback to the first actuator 52 can be limited, and the size or urging force of the first actuator 52 can be reduced in units of the upper limit adjustment width or pressure adjustment width.
 接触圧の検出値mが基準値Nよりも小さい場合、押圧用の第2アクチュエーター53を動作させる(ステップS25)。接触圧の検出値mが基準値Nよりも小さいということは、スライドコア72が溶融樹脂の射出圧に押されて後退している状況を意味する。 When the detected value m of the contact pressure is smaller than the reference value N, the pressing second actuator 53 is operated (step S25). That the detected value m of the contact pressure is smaller than the reference value N means that the slide core 72 is moved backward by being pushed by the injection pressure of the molten resin.
 このように接触圧の検出値mが基準値Nよりも小さい場合(ステップS23のN>m)、型圧制御部33は、第2アクチュエーター53を動作させ、スライドコア72を前進させる。接触圧の検出値mが基準値Nより小さいと判断された場合、型圧制御部33は、これを確実に補償するように第2アクチュエーター53の駆動量を算出するとともに、第2アクチュエーター53に駆動量に対応する動作を行わせる。つまり、型圧制御部33は、第2アクチュエーター53から支持体73又はスライドコア72に付与される押圧力を駆動量に対応する適宜の時間だけ増加させる。第2アクチュエーター53の動作により、スライドコア72に前進させる押圧力を相当時間に亘って付与することができる。これにより、隣接するスライドコア72について、当たり面72p間の接触状態を確保することができる。 Thus, when the detected value m of the contact pressure is smaller than the reference value N (N> m in step S23), the mold pressure control unit 33 operates the second actuator 53 to advance the slide core 72. When it is determined that the detected value m of the contact pressure is smaller than the reference value N, the mold pressure control unit 33 calculates the driving amount of the second actuator 53 so as to reliably compensate for this, and the second actuator 53 An operation corresponding to the driving amount is performed. That is, the mold pressure control unit 33 increases the pressing force applied from the second actuator 53 to the support 73 or the slide core 72 for an appropriate time corresponding to the driving amount. By the operation of the second actuator 53, a pressing force for moving the slide core 72 forward can be applied for a considerable time. Thereby, about the slide core 72 adjacent, the contact state between the contact surfaces 72p is securable.
 以上において、第2アクチュエーター53の駆動量に関しては、修正幅又は修正量に一定の制限を設けることができる。つまり、第2アクチュエーター53に対するフィードバック量を制限でき、第2アクチュエーター53の押圧力を上限の修正幅は又は修正量を単位として減少させることもできる。 As described above, with respect to the driving amount of the second actuator 53, a certain limit can be set to the correction width or the correction amount. That is, the feedback amount for the second actuator 53 can be limited, and the upper limit of the pressing force of the second actuator 53 can be reduced or the correction amount can be decreased as a unit.
 以上のように第2アクチュエーター53によって補助しつつ第1アクチュエーター52を動作させることによって、接触圧の検出値mが目標値N+Δに達したと判断された場合(ステップS23でm=N+Δ)、型圧制御部33は、樹脂の充填が実質的に完了したか否かを確認する(ステップS26)。樹脂の充填が実質的に完了していない場合(ステップS26でN)、ステップS23に戻って、樹脂の充填が実質的に完了するまでステップS23~S25を繰り返して接触圧の検出値mが目標値N+Δに維持され又は目標値N+Δに復帰するように、第1又は第2アクチュエーター52,53を動作させる。 As described above, when it is determined that the detected value m of the contact pressure has reached the target value N + Δ by operating the first actuator 52 while being assisted by the second actuator 53 (m = N + Δ in step S23), the mold The pressure control unit 33 confirms whether or not the resin filling is substantially completed (step S26). If the resin filling is not substantially completed (N in step S26), the process returns to step S23, and steps S23 to S25 are repeated until the resin filling is substantially completed, so that the detection value m of the contact pressure is the target. The first or second actuator 52, 53 is operated so as to be maintained at the value N + Δ or to return to the target value N + Δ.
 結果的に、樹脂の射出又は充填が終わるまで、スライドコア72の当たり面72pが適度に密着する状態が維持され、スライドコア72が溶融樹脂の射出圧に押されて後退したままとなることを回避できる。 As a result, until the injection or filling of the resin is completed, the contact surface 72p of the slide core 72 is maintained in a moderately close state, and the slide core 72 is pushed back by the injection pressure of the molten resin. Can be avoided.
 つまり、図10に示すように、スライドコア72は、樹脂射出の最終段階で射出された溶融樹脂MMに押されて後退する方向の樹脂圧力P1を受けるが、第1アクチュエーター52や第2アクチュエーター53によってスライドコア72に押し戻す押し圧力P2を与えることで、スライドコア72が後退してしまうことを防止できる。樹脂圧力P1は、例えば50~100Mpaに達するので、押し圧力P2もこれに均衡させた値となる。 That is, as shown in FIG. 10, the slide core 72 receives the resin pressure P <b> 1 in the direction of being pushed back by the molten resin MM injected in the final stage of resin injection, but the first actuator 52 and the second actuator 53. By applying the pressing force P2 to push back to the slide core 72, the slide core 72 can be prevented from moving backward. Since the resin pressure P1 reaches, for example, 50 to 100 Mpa, the pressing pressure P2 also has a value balanced with this.
 樹脂の充填が実質的に完了して樹脂射出を終了した場合(ステップS26でY)、保圧サイクルが開始される(ステップS32)。保圧サイクル中、制御装置30は、射出装置16を適宜動作させることで両金型41,42間のキャビティCV中の樹脂圧を保って、樹脂の充填性を高める。 When the resin filling is substantially completed and the resin injection is finished (Y in step S26), the pressure holding cycle is started (step S32). During the pressure-holding cycle, the control device 30 operates the injection device 16 as appropriate to maintain the resin pressure in the cavity CV between the molds 41 and 42, thereby improving the resin filling property.
 保圧サイクルの開始後、型圧制御部33は、接触圧センサー54によって検出された接触圧が設定範囲内すなわち接触圧の検出値mが目標値N+Δとなっているか否かを判断する(ステップS33)。検出値mが目標値N+Δと一致しなければ、型圧制御部33は、位置調整用の第1アクチュエーター52や押圧用の第2アクチュエーター53を動作させて、接触圧の検出値mを目標値N+Δと一致させる。なお、接触圧の検出値mが基準値N以上(ただし、m=N+Δを除く)の場合に、ステップS34で位置調整用の第1アクチュエーター52を動作させるとともに検出値mを目標値N+Δと一致させる手法は、樹脂充填又は樹脂射出の開始後のステップS24と同様であり、説明を省略する。また、接触圧の検出値mが基準値Nよりも小さい場合に、ステップS35で押圧用の第2アクチュエーター53を動作させて検出値mを基準値Nよりも大きくする手法は、樹脂充填又は樹脂射出の開始後のステップS25と同様であり、説明を省略する。 After the start of the pressure holding cycle, the mold pressure control unit 33 determines whether or not the contact pressure detected by the contact pressure sensor 54 is within a set range, that is, the detected value m of the contact pressure is the target value N + Δ (step) S33). If the detected value m does not match the target value N + Δ, the mold pressure control unit 33 operates the first actuator 52 for position adjustment or the second actuator 53 for pressing to set the detected value m of the contact pressure to the target value. Match N + Δ. If the detected value m of the contact pressure is equal to or greater than the reference value N (except for m = N + Δ), the first actuator 52 for position adjustment is operated in step S34 and the detected value m matches the target value N + Δ. The method of performing is the same as that in step S24 after the start of resin filling or resin injection, and the description thereof is omitted. Further, when the detected value m of the contact pressure is smaller than the reference value N, the technique of operating the second actuator 53 for pressing in step S35 to make the detected value m larger than the reference value N is resin filling or resin This is the same as step S25 after the start of injection, and a description thereof will be omitted.
 以上のように、樹脂射出時及び保圧時において、スライドコア72の当たり面72pにおける接触圧が所定値を下回っている場合に第2アクチュエーター53によってスライドコア72に付与する押圧力を所定値まで増加させる。また、スライドコア72の当たり面72pにおける接触圧がスライドコア72の光学転写面に変形を生じさせない範囲内の目標値となるように、第1アクチュエーター52によってスライドコア72の位置をフィードバック制御する。これにより、射出時及び保圧時にスライドコア72の光学転写面に反りや湾曲等の変形が生じることを防止でき、スライドコア72の当たり面72pにおいて隙間GAが形成されてバリが形成されることを防止できる。 As described above, when the contact pressure on the contact surface 72p of the slide core 72 is lower than a predetermined value at the time of resin injection and holding pressure, the pressing force applied to the slide core 72 by the second actuator 53 is reduced to the predetermined value. increase. Further, the position of the slide core 72 is feedback-controlled by the first actuator 52 so that the contact pressure on the contact surface 72p of the slide core 72 becomes a target value within a range in which the optical transfer surface of the slide core 72 is not deformed. As a result, it is possible to prevent the optical transfer surface of the slide core 72 from being deformed such as warping or bending at the time of injection and pressure holding, and a gap GA is formed on the contact surface 72p of the slide core 72 to form a burr. Can be prevented.
 保圧サイクルが完了した場合(ステップS36でY)、冷却サイクルが開始される(ステップS42)。冷却サイクル中、制御装置30は、金型温度調節機91を適宜動作させることで両金型41,42間のキャビティCV中の樹脂を冷却して固化させる。 When the pressure holding cycle is completed (Y in step S36), the cooling cycle is started (step S42). During the cooling cycle, the control device 30 operates the mold temperature controller 91 as appropriate to cool and solidify the resin in the cavity CV between the molds 41 and 42.
 冷却サイクルの開始後、型圧制御部33は、接触圧センサー54によって検出された接触圧が設定範囲内すなわち接触圧の検出値mが目標値N+Δとなっているか否かを判断する(ステップS43)。検出値mが目標値N+Δと一致しなければ、型圧制御部33は、位置調整用の第1アクチュエーター52を動作させて、接触圧の検出値mを目標値N+Δと一致させる(ステップS44)。なお、ステップS44で位置調整用の第1アクチュエーター52を動作させる手法は、樹脂充填又は樹脂射出の開始前のステップS14と同様であり、説明を省略する。 After the start of the cooling cycle, the mold pressure control unit 33 determines whether or not the contact pressure detected by the contact pressure sensor 54 is within the set range, that is, the detected value m of the contact pressure is the target value N + Δ (step S43). ). If the detected value m does not match the target value N + Δ, the mold pressure control unit 33 operates the first actuator 52 for position adjustment to match the detected value m of the contact pressure with the target value N + Δ (step S44). . Note that the method for operating the first actuator 52 for position adjustment in step S44 is the same as step S14 before the start of resin filling or resin injection, and a description thereof will be omitted.
 冷却時における第1アクチュエーター52によるフィードバック制御により、冷却時にスライドコア72の光学転写面に反りや湾曲等の変形が生じることを防止できる。 The feedback control by the first actuator 52 during cooling can prevent the optical transfer surface of the slide core 72 from being deformed such as warping or bending during cooling.
 冷却サイクルが完了した場合(ステップS46でY)、制御装置30は、型開きを開始する(ステップS51)。そして、制御装置30は、型圧制御部33による接触圧のフィードバック制御を終了させる(ステップS52)。最後に、制御装置30は、不図示の取出装置を動作させて、型開き後の第1及び第2金型41,42間から光学製品OPを取り出す(ステップS53)。 When the cooling cycle is completed (Y in step S46), the control device 30 starts mold opening (step S51). And the control apparatus 30 complete | finishes the feedback control of the contact pressure by the type | mold pressure control part 33 (step S52). Finally, the control device 30 operates a take-out device (not shown) to take out the optical product OP from between the first and second molds 41 and 42 after the mold is opened (step S53).
 以上説明した光学製品用の成形装置100では、型閉め後において、型圧制御部33が、接触圧センサー54の出力に基づいて、第1アクチュエーター52によってスライドコア72の位置を調整するので、スライドコア72の突き当てによって接触圧が過度となって光学転写面である内側面72aが変形することを防止でき、光学製品OPの光学面であるミラーMRに劣化が生じることを防止できる。さらに、スライドコア72の当たり面72pの接触が確保されるので、この当たり面72pにおいて隙間GAが形成されることを防止でき、かかる隙間GAに樹脂が入り込んでバリが形成されることを防止できる。 In the molding apparatus 100 for optical products described above, the mold pressure control unit 33 adjusts the position of the slide core 72 by the first actuator 52 based on the output of the contact pressure sensor 54 after the mold is closed. It is possible to prevent the inner surface 72a, which is the optical transfer surface, from being deformed due to excessive contact pressure due to the abutment of the core 72, and to prevent the mirror MR, which is the optical surface of the optical product OP, from being deteriorated. Furthermore, since the contact of the contact surface 72p of the slide core 72 is ensured, it is possible to prevent the gap GA from being formed on the contact surface 72p, and to prevent the resin from entering the gap GA and forming burrs. .
 また、型圧制御部33は、型閉め後において、接触圧センサー54の出力に基づいて、第1アクチュエーター52によってスライドコア72の位置を調整するとともに、樹脂圧によるスライドコア72の押し戻しが発生した場合に、第2アクチュエーター53によってスライドコア72に付与する押圧力を増加させる。このように、樹脂の射出後において、樹脂圧によるスライドコア72の押し戻しが発生した場合に、型圧制御部33が第2アクチュエーター53によってスライドコア72に付与する押圧力を増加させるので、キャビティCV内の樹脂圧が高まってもスライドコア72の当たり面72pにおいて隙間GAが形成されることを確実に防止できる。また、型圧付与部59として、第1アクチュエーター52と第2アクチュエーター53とを設けることにより、第1アクチュエーター52と第2アクチュエーター53とに場面に応じた機能及び役割を持たせることができ、スライドコア72の当たり面72pにおける接触圧の制御をより精密に行うことができる。 The mold pressure control unit 33 adjusts the position of the slide core 72 by the first actuator 52 based on the output of the contact pressure sensor 54 after the mold is closed, and the slide core 72 is pushed back by the resin pressure. In this case, the pressing force applied to the slide core 72 by the second actuator 53 is increased. As described above, after the resin is injected, when the slide core 72 is pushed back by the resin pressure, the mold pressure control unit 33 increases the pressing force applied to the slide core 72 by the second actuator 53. Even if the internal resin pressure increases, it is possible to reliably prevent the gap GA from being formed on the contact surface 72p of the slide core 72. In addition, by providing the first actuator 52 and the second actuator 53 as the mold pressure applying portion 59, the first actuator 52 and the second actuator 53 can have functions and roles according to the scene, and the slide The contact pressure at the contact surface 72p of the core 72 can be controlled more precisely.
 図11は、変形例の成形装置100を説明する図である。この場合、4つのスライドコア72間に他の部材として入れ子78が配置されている。入れ子78は、例えば固定コア71に支持されている。この場合も、スライドコア72や入れ子78に接触圧センサー54を組み付けることで、当たり面72pにおける接触圧を監視することができ、光学転写面である内側面72aが変形することを防止でき、内側面72aと入れ子78との間にバリの原因となるような隙間が形成されることを防止できる。 FIG. 11 is a diagram for explaining a modified molding apparatus 100. In this case, a nest 78 is arranged as another member between the four slide cores 72. The insert 78 is supported by the fixed core 71, for example. Also in this case, by assembling the contact pressure sensor 54 to the slide core 72 and the insert 78, the contact pressure at the contact surface 72p can be monitored, and the inner side surface 72a, which is an optical transfer surface, can be prevented from being deformed. It is possible to prevent a gap that causes burrs from being formed between the side surface 72a and the insert 78.
 以上、実施形態に即して本発明を説明したが、本発明は上記実施形態に限定されるものではない。例えば、スライドコア72の数は、4に限らず、光学製品の形状に応じて、2、3、…とすることができる。 As mentioned above, although this invention was demonstrated according to embodiment, this invention is not limited to the said embodiment. For example, the number of slide cores 72 is not limited to 4, and can be 2, 3,... According to the shape of the optical product.

Claims (12)

  1.  光学転写面を有するスライドコアを含む成形金型と、
     前記スライドコアの移動による他の部材との当たり面の接触圧を計測する接触圧センサーと、
     前記スライドコアの位置を調整する型圧付与部と、
     型閉め後において、前記接触圧センサーの出力に基づいて、前記型圧付与部によって前記スライドコアの位置を調整する制御部とを備える光学製品の成形装置。
    A molding die including a slide core having an optical transfer surface;
    A contact pressure sensor that measures a contact pressure of a contact surface with another member due to the movement of the slide core;
    A mold pressure applying unit for adjusting the position of the slide core;
    An optical product molding apparatus comprising: a control unit that adjusts the position of the slide core by the mold pressure applying unit based on an output of the contact pressure sensor after the mold is closed.
  2.  前記型圧付与部は、前記スライドコアに対して外側から押圧力を付与し、
     前記制御部は、樹脂圧による前記スライドコアの押し戻しが発生した場合に、前記型圧付与部によって前記スライドコアに付与する押圧力を増加させる、請求項1に記載の光学製品の成形装置。
    The mold pressure applying unit applies a pressing force from the outside to the slide core,
    2. The optical product molding apparatus according to claim 1, wherein when the slide core is pushed back by a resin pressure, the control unit increases the pressing force applied to the slide core by the mold pressure applying unit.
  3.  前記型圧付与部は、前記スライドコアを支持して位置を調整する第1アクチュエーターと、前記スライドコアに対して外側から押圧力を付与する第2アクチュエーターとを有し、
     前記制御部は、型閉め後において、前記接触圧センサーの出力に基づいて、前記第1アクチュエーターによって前記スライドコアの位置を調整するとともに、樹脂圧による前記スライドコアの押し戻しが発生した場合に、前記第2アクチュエーターによって前記スライドコアに付与する押圧力を増加させる、請求項2に記載の光学製品の成形装置。
    The mold pressure applying unit includes a first actuator that supports the slide core and adjusts a position, and a second actuator that applies a pressing force to the slide core from the outside.
    The controller adjusts the position of the slide core by the first actuator based on the output of the contact pressure sensor after mold closing, and when the slide core is pushed back by resin pressure, The apparatus for molding an optical product according to claim 2, wherein a pressing force applied to the slide core by a second actuator is increased.
  4.  前記第1アクチュエーターは、伸縮によって前記スライドコアの前記当たり面における接触圧を調整する、請求項3に記載の光学製品の成形装置。 4. The optical product molding apparatus according to claim 3, wherein the first actuator adjusts a contact pressure at the contact surface of the slide core by expansion and contraction.
  5.  前記第1アクチュエーターは、圧電素子を含む、請求項4に記載の光学製品の成形装置。 The apparatus for molding an optical product according to claim 4, wherein the first actuator includes a piezoelectric element.
  6.  前記第2アクチュエーターは、油圧又は空圧を利用した圧力付加機構を含む、請求項3~5のいずれか一項に記載の光学製品の成形装置。 The optical product molding apparatus according to any one of claims 3 to 5, wherein the second actuator includes a pressure applying mechanism using hydraulic pressure or pneumatic pressure.
  7.  前記制御部は、前記第2アクチュエーターによって、前記接触圧センサーの出力に応じて前記第1アクチュエーターによって実行される圧調整幅よりも粗い修正量で前記スライドコアに押圧力を付与する、請求項3~6のいずれか一項に記載の光学製品の成形装置。 The control unit applies a pressing force to the slide core with a correction amount coarser than a pressure adjustment range executed by the first actuator according to an output of the contact pressure sensor by the second actuator. 7. A molding apparatus for optical products according to any one of items 1 to 6.
  8.  前記制御部は、成形工程の型閉め時において、前記スライドコアの前記当たり面における接触圧が前記スライドコアの光学転写面に変形を生じさせない範囲内の目標値となるように、前記第1アクチュエーターによって前記スライドコアの位置をフィードバック制御する、請求項3~7のいずれか一項に記載の光学製品の成形装置。 The control unit includes the first actuator so that the contact pressure on the contact surface of the slide core becomes a target value within a range that does not cause deformation of the optical transfer surface of the slide core when the mold is closed in the molding process. The apparatus for molding an optical product according to any one of claims 3 to 7, wherein the position of the slide core is feedback-controlled by the above.
  9.  前記制御部は、成形工程の樹脂射出時及び保圧時において、前記スライドコアの前記当たり面における接触圧が所定値を下回っている場合に前記第2アクチュエーターによって前記スライドコアに付与する押圧力を前記所定値まで増加させ、前記スライドコアの前記当たり面における接触圧が前記スライドコアの光学転写面に変形を生じさせない範囲内の目標値となるように、前記第1アクチュエーターによって前記スライドコアの位置をフィードバック制御する、請求項3~8のいずれか一項に記載の光学製品の成形装置。 The control unit applies a pressing force applied to the slide core by the second actuator when a contact pressure on the contact surface of the slide core is lower than a predetermined value at the time of resin injection and holding pressure in a molding process. The position of the slide core is increased by the first actuator so that the contact pressure at the contact surface of the slide core reaches a target value within a range that does not cause deformation of the optical transfer surface of the slide core. The apparatus for molding an optical product according to any one of claims 3 to 8, wherein the feedback control is performed.
  10.  前記制御部は、成形工程の冷却時において、前記スライドコアの前記当たり面における接触圧が前記スライドコアの光学転写面に変形を生じさせない範囲内の目標値となるように、前記第1アクチュエーターによって前記スライドコアの位置をフィードバック制御する、請求項3~9のいずれか一項に記載の光学製品の成形装置。 The controller controls the first actuator so that the contact pressure at the contact surface of the slide core becomes a target value within a range that does not cause deformation of the optical transfer surface of the slide core during cooling of the molding process. The optical product molding apparatus according to any one of claims 3 to 9, wherein the position of the slide core is feedback-controlled.
  11.  前記スライドコアは前記成形金型の支持面に沿って複数配置され、前記接触圧センサーは前記スライドコア同士の当たり面の接触圧を計測し、前記型圧付与部は、各スライドコアの位置を調整する、請求項1~10のいずれか一項に記載の光学製品の成形装置。 A plurality of the slide cores are arranged along the support surface of the molding die, the contact pressure sensor measures the contact pressure of the contact surfaces between the slide cores, and the mold pressure applying unit determines the position of each slide core. The apparatus for molding an optical product according to any one of claims 1 to 10, which is adjusted.
  12.  光学転写面を有するスライドコアを含む成形金型と、前記スライドコアの移動による他の部材との当たり面の接触圧を計測する接触圧センサーと、前記スライドコアの位置を調整する型圧付与部とを備える成形装置を用いた、光学製品の成形方法であって、
     型閉め後において、前記接触圧センサーの出力に基づいて前記型圧付与部によって前記スライドコアの位置を調整することにより、前記スライドコアの前記当たり面の接触圧を調整する光学製品の製造方法。
    A molding die including a slide core having an optical transfer surface, a contact pressure sensor for measuring a contact pressure of a contact surface with another member due to movement of the slide core, and a mold pressure applying unit for adjusting the position of the slide core An optical product molding method using a molding apparatus comprising:
    An optical product manufacturing method for adjusting a contact pressure of the contact surface of the slide core by adjusting a position of the slide core by the mold pressure applying unit based on an output of the contact pressure sensor after the mold is closed.
PCT/JP2016/062078 2015-04-17 2016-04-15 Device for molding optical product, and method for manufacturing optical product WO2016167337A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017512591A JPWO2016167337A1 (en) 2015-04-17 2016-04-15 Optical product molding apparatus and manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-085480 2015-04-17
JP2015085480 2015-04-17

Publications (1)

Publication Number Publication Date
WO2016167337A1 true WO2016167337A1 (en) 2016-10-20

Family

ID=57126545

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/062078 WO2016167337A1 (en) 2015-04-17 2016-04-15 Device for molding optical product, and method for manufacturing optical product

Country Status (2)

Country Link
JP (1) JPWO2016167337A1 (en)
WO (1) WO2016167337A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023157680A1 (en) * 2022-02-15 2023-08-24 三菱電機株式会社 Resin mold

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010260175A (en) * 2009-04-28 2010-11-18 Plamo Kk Injection molding machine
JP2012148455A (en) * 2011-01-18 2012-08-09 Plamo Kk Injection molding device and injection molding method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010260175A (en) * 2009-04-28 2010-11-18 Plamo Kk Injection molding machine
JP2012148455A (en) * 2011-01-18 2012-08-09 Plamo Kk Injection molding device and injection molding method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023157680A1 (en) * 2022-02-15 2023-08-24 三菱電機株式会社 Resin mold

Also Published As

Publication number Publication date
JPWO2016167337A1 (en) 2018-02-08

Similar Documents

Publication Publication Date Title
WO2011040150A1 (en) Mold-aligning apparatus, molding machine, and molding method
JP5018481B2 (en) Injection molding equipment
US10105753B2 (en) Opening/closing apparatus and molding apparatus
WO2016167337A1 (en) Device for molding optical product, and method for manufacturing optical product
WO2007037136A1 (en) Injection molding machine
JP6731017B2 (en) Pressure molding machine
WO2016175108A1 (en) Optical product molding apparatus and manufacturing method
CN107000291B (en) Mold clamping device, molding device, and molding method
TWI503219B (en) A thin plate injection molding method and a thin plate injection press forming apparatus
US5405259A (en) Injection molding machine using a pulsating pressing force
KR101423238B1 (en) Molding device for injection compression molding for non-uniform wall thickness
JP4024778B2 (en) Method for controlling mold clamping device
KR100193396B1 (en) Local pressurized injection molding machine
JPH05293861A (en) Molding device
JPH044117A (en) Mold, injection molding machine for that mold and molded product
JP6319815B2 (en) Control method of compression molding machine
JP5131089B2 (en) Spacer-integrated spool, molding tool for the spool part, manufacturing method thereof, and spacer-integrated spool manufactured by the manufacturing method
JP6699138B2 (en) Resin mold
JP3600167B2 (en) Injection compression molding method
JP2685628B2 (en) Injection molding equipment
JP6920494B1 (en) How to adjust the mold clamping force of the toggle type mold clamping device
JP7173860B2 (en) Manufacturing method of injection molded product and injection mold
WO2023095652A1 (en) Ejector device, mould clamping device, and injection moulding device
JP4065160B2 (en) Injection molding machine and optical disk substrate manufacturing method
JP2004276540A (en) Device for producing plastic molded product

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16780128

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017512591

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16780128

Country of ref document: EP

Kind code of ref document: A1