WO2016175108A1 - Optical product molding apparatus and manufacturing method - Google Patents
Optical product molding apparatus and manufacturing method Download PDFInfo
- Publication number
- WO2016175108A1 WO2016175108A1 PCT/JP2016/062575 JP2016062575W WO2016175108A1 WO 2016175108 A1 WO2016175108 A1 WO 2016175108A1 JP 2016062575 W JP2016062575 W JP 2016062575W WO 2016175108 A1 WO2016175108 A1 WO 2016175108A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- slide core
- contact pressure
- contact
- molding
- actuator
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C45/00—Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
- B29C45/17—Component parts, details or accessories; Auxiliary operations
- B29C45/26—Moulds
- B29C45/33—Moulds having transversely, e.g. radially, movable mould parts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C45/00—Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
- B29C45/17—Component parts, details or accessories; Auxiliary operations
- B29C45/76—Measuring, controlling or regulating
- B29C45/80—Measuring, controlling or regulating of relative position of mould parts
Definitions
- the present invention relates to an optical product molding apparatus and manufacturing method that enable high-precision molding, and more particularly to an optical product molding apparatus and manufacturing method including a mold having a slide core movable in a mold.
- Patent Document 1 a resin mold with a nesting and drive mechanism that can apply compressive force to the resin from the inside of the mold part for forming the reflecting mirror surface with the injected resin A mold is disclosed (Patent Document 1).
- Patent Document 2 a method for manufacturing a polygon mirror having a chamfered portion at a ridge line position or the like is disclosed (Patent Document 2).
- the fluidity of the ridge line portion can be improved by providing a chamfered portion and reducing the pressure immediately before the resin filling is completed, or stress is concentrated on the chamfered end to improve the surface accuracy.
- a resin molding mold having a structure in which a split core for each reflecting mirror surface is provided between the upper and lower molds by improving the two divisions of the upper and lower molds of the conventional mold is disclosed (Patent Document 3).
- the resin on the mirror surface portion can be compressed with an equal amount of compression by the slide core, so that variations in internal distortion of the polygon mirror can be prevented.
- Patent Documents 1 and 3 are molds of a type in which a slide core or a nest is brought into contact with each other between upper and lower molds to press the resin from the lateral direction, but optical transfer formed on the slide core or the like by pressurization.
- the surface is deformed such as warping or bending, and the optical surface of the optical product is deteriorated due to the deformation of the optical transfer surface.
- the pressure is insufficient, the resin enters the gaps such as the slide core, and burrs are formed, which causes poor appearance.
- burrs Due to the occurrence of such burrs, there is also a problem that quality variations are likely to occur for each molding shot. In fact, if an attempt is made to improve the transferability of the optical surface by increasing the resin fluidity, the resin enters the gap between the slide cores of about 5 ⁇ m, and burrs are generated. Thus, in a molding apparatus using a slide core, it is not easy to prevent the formation of burrs in the gap around the slide core while preventing deterioration of the optical surface of the optical product. It can be said that burrs tend to be formed near the optical surface.
- the mold of Patent Document 2 is not related to a mold in which a plurality of slide cores are brought into contact with each other to form an optical transfer surface, and it is not easy to form an optical surface such as a polygon mirror with high accuracy.
- an optical product such as a polygon mirror has a reflective surface perpendicular to the rotation axis or an overhanging reflective surface, the reflective surface may not be formed.
- the displacement amount detection sensor detects the gap or opening amount of the parting surface between the fixed side and the movable side mold due to the pressure of the injection resin, and by power such as hydraulic pressure, An apparatus having a mechanism for controlling the mold deformation amount to be zero or relatively zero is disclosed (Patent Document 4).
- Patent Document 5 the mold of the mold A device having a mechanism for reducing displacement in the opening direction and extending deformation of the cavity is disclosed (Patent Document 5).
- Patent Document 6 Compression molding metal that can detect the resin pressure in the cavity, displacement of the core and movable mold, etc. with a pressure sensor or displacement sensor, etc., and can control the compression of resin in the independent cavity in units of cores using piezoelectric elements A mold is disclosed (Patent Document 6).
- a mechanism having a mechanism capable of stopping the slide core at a position other than the normal position when the position of the slide core driven by the cylinder is detected by a sensor and abnormality of the insert part in the mold is detected is disclosed. (Patent Document 7).
- Patent Documents 4 to 6 are not related to a mold that abuts a plurality of slide cores to form an optical transfer surface, but are directly applied to a mold that abuts slide cores. However, it does not solve the problems related to the slide core, that is, it does not prevent the formation of burrs in the gap around the slide core while preventing the optical transfer surface from deteriorating.
- Patent Document 7 the molding method disclosed in Patent Document 7 is applied to a mold of a type in which slide cores are brought into contact with each other.
- the slide core is only stopped at a position other than the normal position when an abnormality is detected. That is, in Patent Document 7, when molding is performed while preventing the optical transfer surface formed on the slide core or the like from being deformed and deteriorated by pressurization, the pressurization is insufficient and the gap between the slide core and the like is reduced. There is no disclosure of a technique for preventing burrs from being formed by the resin entering.
- JP-A-3-181913 Japanese Patent Laid-Open No. 10-186116 JP-A-3-42222 Japanese Patent Laid-Open No. 4-27516 JP-A-4-004117 JP 2003-094499 A Japanese Patent Laid-Open No. 10-296736
- the present invention relates to an optical product molding apparatus and a manufacturing method capable of preventing a resin from entering a gap of a slide core or the like and forming burrs while preventing the optical surface of the optical product from being deteriorated due to deformation of the optical transfer surface. It aims to provide a method.
- an optical product molding apparatus measures a contact pressure of a contact surface between a molding die including a slide core having an optical transfer surface and another member due to movement of the slide core.
- a control unit that brings the slide core and another member into contact with each other by the position adjusting unit based on the output of the contact pressure sensor.
- the position adjusting unit secures a gap between the slide core and the other member, so the resin remaining sufficiently in the mold space is sufficiently filled with the resin. Can do. Furthermore, before the resin injection is completed, based on the output of the contact pressure sensor, the slide core and the other member are brought into contact with each other by the position adjusting unit. Deformation can be prevented, and deterioration of the optical surface of the optical product can be prevented. Furthermore, since the contact of the contact surface of the slide core is ensured, it is possible to prevent a gap from being formed on the contact surface, and it is possible to prevent a resin from entering the gap and forming a burr.
- an optical product molding method measures a contact pressure of a contact surface between a molding die including a slide core having an optical transfer surface and another member due to the movement of the slide core.
- the position adjustment unit secures a gap between the slide core and the other member, and before the resin injection is completed, the position adjustment unit contacts the slide core and the other member based on the output of the contact pressure sensor.
- a gap is secured between the slide core and the other member by the position adjusting unit at the start of resin injection in the molding process, so that the resin is sufficiently filled while expelling air remaining in the mold space. Can do. Furthermore, before the resin injection is completed, based on the output of the contact pressure sensor, the slide core and the other member are brought into contact with each other by the position adjusting unit. Deformation can be prevented, and deterioration of the optical surface of the optical product can be prevented. Furthermore, since the contact of the contact surface of the slide core is ensured, it is possible to prevent a gap from being formed on the contact surface, and it is possible to prevent a resin from entering the gap and forming a burr.
- FIG. 9A and 9B are enlarged perspective views for explaining the operation of the molding apparatus shown in FIG. 1 and the like. It is an expanded sectional view explaining the operation state of the shaping
- FIG. 1 is a conceptual diagram for explaining a main part of an optical product molding apparatus. 1 includes a portion corresponding to the AA cross section of the molding die shown in FIG. 2 described later.
- the optical product molding apparatus 100 includes a molding die 40, a die associated mechanism 50, and a control device 30.
- the molding die 40 includes a first die 41 and a second die 42.
- the first mold 41 on the movable side of the molding die 40 can be reciprocated in the AB direction which is the opening / closing direction by a mechanism which will be described later.
- a mold for molding an optical product OP which will be described later, by moving the first mold 41 in the direction A (upper side of the drawing) and clamping the first mold 41 and the second mold 42 as shown in the figure.
- a cavity CV which is a space, is formed.
- FIGS. 2 and 3 are an end view and a perspective view for explaining the structure of the first mold 41 on the movable side, the die associated mechanism 50, and the like.
- the first mold 41 includes a mold structure 61 that is an assembly of a plurality of members arranged on the end surface side in the + Z direction, that is, the second mold 42 side, and the ⁇ Z direction. And a receiving plate 62 disposed on the back side of the.
- the mold structure 61 includes a fixed core 71 disposed in the center, four slide cores 72 that are opposed to each other with the fixed core 71 interposed therebetween, and four supports that respectively support the slide core 72 from behind. 73 and four sets of guide members 74 for guiding the slide core 72 or the support 73 to move forward and backward.
- the fixed core 71 is fixed on the receiving plate 62.
- the fixed core 71 has a top surface 71a and a side surface 71b as transfer surfaces, but these surfaces 71a and 71b are not optical transfer surfaces.
- the four slide cores 72 surrounding the fixed core 71 are also referred to as slide blocks, and are provided at four equal intervals around the fixed core 71 along the XY plane (specifically, the support surface 62a of the receiving plate 62). Yes.
- the cavity CV can be formed so as to be sandwiched between the plurality of slide cores 72, and the degree of freedom of the shape of the optical product OP can be increased.
- Each slide core 72 can move forward and backward toward a central axis CX passing through the center of the fixed core 71.
- the pair of slide cores 72 corresponding to the + X and + Y directions and the ⁇ X and ⁇ Y directions in FIG.
- each slide core 72 has a quadrangular prism-shaped outer shape, and an inner side surface 72a on the tip side is an optical transfer surface.
- the lower surface 72c (see FIG. 1) of each slide core 72 is a smooth surface so as to be supported by a support surface 71d provided on the fixed core 71 and to be slidable.
- the side surface 72d and the upper surface 72e of each slide core 72 are also smooth surfaces.
- Each slide core 72 has a pair of contact surfaces 72p adjacent to the inner surface 72a.
- contact surfaces 72p extend perpendicular to the support surface 62a, which is the surface of the receiving plate 62, and are orthogonal to the XY plane.
- the contact surface 72p is a part that prevents the gaps between the four slide cores 72 from being formed by closing the side surfaces of the cavity (mold space) CV when the adjacent slide cores 72 are in contact with each other.
- a pair of opposing contact surfaces 72p are separated by a predetermined interval as the slide core 72 is retracted, and air in the cavity CV can be removed during resin injection. In this case, for one of the adjacent slide cores 72, the other is another member to be abutted.
- the support body 73 is a block-shaped member, is connected to the outer surface on the base side of the slide core 72, and moves in the CD direction or the EF direction together with the slide core 72.
- the lower surface 73c of the support 73 is a smooth surface so as to be supported by the support surface 62a of the receiving plate 62 and to be slidable.
- a step 73d that fits smoothly with the guide member 74 is formed.
- the pair of guide members 74 arranged so as to sandwich the support member 73 from the side thereof is a set, and is fitted with a step 73d of the support member 73 to guide the movement of each support member 73.
- the guide member 74 is fixed to the receiving plate 62 by a member (not shown).
- the second mold 42 is a fixed mold and includes a mold structure 161 disposed on the end surface side thereof, that is, the first mold 41 side, and a receiving plate 162 disposed on the back surface side.
- the mold structure 161 includes a fixed core 81 disposed in the center and four blocks 84 disposed so as to surround the periphery of the fixed core 81.
- the fixed core 81 is fixed on the receiving plate 162.
- the fixed core 81 has a top surface 81a and a side surface 81b as transfer surfaces, but neither of these surfaces 81a and 81b is an optical transfer surface.
- a sprue port 81i is formed in the top surface 81a of the fixed core 81, and the sprue port 81i communicates with a sprue 42j for supplying molten resin from the outside to the inside.
- the four blocks 84 surrounding the fixed core 81 serve to bring the four slide cores 72 close to the fixed core 71 in advance when the first mold 41 and the second mold 42 are closed and clamped. That is, when the first mold 41 is moved in the direction A (upper side in FIG. 1) close to the second mold 42, the support 73 comes close to each block 84, and the slopes 84s and 73s come into contact with each other. Further, when the operation of bringing the first mold 41 close to the second mold 42 is continued, the four support bodies 73 and the four slide cores 72 supported by the four support bodies 73 are sandwiched by the four blocks 84 and close to each other.
- the pair of facing contact surfaces 72p of the adjacent slide cores 72 are in a state of being appropriately close to each other. That is, preliminary mold closing in the lateral direction of the slide core 72 is performed by the block 84 or the like. This preliminary mold closing ensures a wide gap formed between the slide cores 72 as compared to a gap securing state described later.
- the fixed core 71 of the first mold 41 and the fixed core 81 of the second mold 42 are not shown.
- the distance between the fixed core 71 and the fixed core 81 is adjusted to a specified value.
- the upper surface 72e of the slide core 72 and a part of the fixed core 81 are arranged close to each other.
- the slide core 72 has a peripheral surface extending in the CD direction surrounded by the fixed core 71 and the fixed core 81, and the movement in the CD direction is permitted while the movement perpendicular to the CD direction is restricted. It becomes.
- a rod 86 is obliquely inserted and fixed in a hole 84 h provided in each block 84 that enables the slide core 72 to be closed in the lateral direction.
- the rod 86 is fixed to the hole of the support 73.
- 73h has a predetermined play and is slidably inserted.
- the mold opening in the lateral direction is also achieved.
- the first mold 41 is moved in the A direction (upper side of the drawing in FIG. 1) close to the second mold 42, the first mold 41 is guided by the rod 86 extending from each block 84, and the support 73 and the slide core 72. Move forward so that they are close to each other.
- the support 73 can be finely moved in the CD direction with respect to the block 84.
- the die attachment mechanism unit 50 includes an actuator 52 that supports the slide core 72 from the outside and adjusts the position, and a contact pressure sensor 54 that measures the contact pressure of the contact surface 72p due to movement of the slide core 72 such as advancement.
- the actuator 52 constitutes a position adjusting unit 59 that supports the slide core 72 and adjusts its position, and adjusts the contact pressure of the contact surface 72p of the slide core 72.
- An actuator (position adjusting unit) 52 is provided in each of the four slide cores 72.
- the contact pressure sensor 54 is provided between the adjacent slide cores 72.
- the die attachment mechanism portion 50 is accompanied by an urging member 53 made of a spring or the like, and the urging member 53 provides power for moving the slide core 72 backward after the die is opened.
- Actuator (position adjustment unit) 52 is a telescopic device for position adjustment, and is sandwiched between fixed core 71 and support 73. More specifically, the actuator 52 is made of a piezoelectric element, one end is fixed to the inner portion 73 f of the support 73, and the other end is in contact with the outer edge portion 71 f of the fixed core 71. The actuator 52 adjusts the contact pressure on the contact surface 72p of the slide core 72 by expansion and contraction. Thereby, the contact pressure of the contact surface 72p can be made appropriate while the slide core 72 is appropriately advanced and retracted by the actuator 52 to adjust the position.
- the actuator 52 since the actuator 52 includes a piezoelectric element, and the piezoelectric element is small and thin, the contact pressure can be adjusted while ensuring the degree of freedom of the arrangement and shape of the slide core 72.
- the actuator 52 is driven by a position adjustment drive circuit 33 a provided in the position adjustment control unit 33 to expand and contract.
- the movable support 73 moves in the CD direction along the cross section of FIG. 1, and the slide core 72 supported by the support 73 also moves in the CD direction along the cross section of FIG. .
- the moving direction of the slide core 72 is guided by the fixed core 71 and the like, and is along the support surface 62 a of the receiving plate 62.
- the contact pressure sensor 54 includes a strain gauge, a piezoelectric element, and the like, and is attached to be embedded in one of the contact surfaces 72p between a pair of adjacent slide cores 72.
- the contact pressure sensor 54 is driven by a sensor drive circuit 33c provided in the position adjustment control unit 33 and detects the contact pressure at the contact surface 72p.
- the detection output of the contact pressure sensor 54 becomes zero, and the contact surface 72p comes into contact and the compression stress acts strongly.
- the detection output of the contact pressure sensor 54 increases as the detection pressure increases, and the detection output indicates the degree of contact pressure.
- the contact pressure detected by the contact pressure sensor 54 is zero or less, it is determined that the gap between the contact surfaces 72p is widened. On the other hand, when the contact pressure detected by the contact pressure sensor 54 is greater than zero, a gap is not formed between the contact surfaces 72p and the contact state is ensured, but the contact pressure becomes excessive and the optical transfer surface of the slide core 72 is increased. It is necessary to prevent deformation of the inner side surface 72a.
- the contact pressure sensor 54 is used for monitoring so that the contact pressure becomes a target value within a range that does not cause deformation of the inner side surface 72 a that is the optical transfer surface of the slide core 72.
- FIG. 4 shows the result of simulation of the contact pressure between the contact surfaces 72p and the deformation of the inner surface 72a of the slide core 72.
- the optical product OP produced by the molding apparatus 100 shown in FIG. 1 and the like is specifically a polygon mirror, has a quadrangular prism appearance, and the outer side surfaces of the four wall portions WP are , Each function as a mirror MR.
- the four mirrors MR are evenly arranged around the optical axis OA.
- a partition wall PA that partitions the optical product OP up and down is formed inside the wall WP, and functions as a part for supporting the optical product OP when the optical product OP is assembled to the apparatus.
- the outer shape of the optical product OP corresponds to the inner surface shape of the cavity CV that is a space sandwiched between the first mold 41 and the second mold 42 shown in FIG.
- the illustrated optical product OP is merely an example, and optical products having various shapes can be manufactured by the molding apparatus 100 illustrated in FIG. 1 and the like.
- the number of mirrors can be 6 or 8 according to the required specifications.
- a polygon mirror having a two-stage configuration along the optical axis may be used.
- the outer shape is a drum shape or a pincushion shape in which the diameter is larger at both ends along the optical axis at the center and the mirrors adjacent in the optical axis direction face each other.
- the optical product OP is not limited to a polygon mirror, but may be a prism or other optical element.
- the molding apparatus 100 includes an injection molding machine 10 that is a main body part that performs injection molding to produce an optical product OP, and a control device 30 that comprehensively controls the operation of each part of the molding apparatus 100.
- the injection molding machine 10 is a horizontal molding machine and includes a fixed platen 11, a movable platen 12, an opening / closing drive device 15, and an injection device 16 in addition to the molding die 40 described above.
- the injection molding machine 10 is also provided with a mold temperature controller 91 and the like.
- the injection molding machine 10 clamps both molds 41 and 42 by sandwiching a first mold 41 and a second mold 42 constituting the molding mold 40 between the fixed platen 11 and the movable platen 12. This enables molding.
- the fixed platen 11 fixed on the support frame 14 detachably supports the second mold 42.
- the fixed platen 11 is formed with an opening 11b through which a nozzle 21 described later is passed.
- the opening 11b communicates with the sprue 42j in FIG.
- the movable platen 12 is supported by a linear guide 15a so as to be movable back and forth with respect to the fixed platen 11.
- the movable platen 12 detachably supports the first mold 41.
- the opening / closing drive device 15 is supported by the mold clamping board 13, and includes a linear guide 15a, a power transmission unit 15d, and a board actuator 15e.
- the power transmission unit 15 d expands and contracts by receiving a driving force from the panel actuator 15 e that operates under the control of the control device 30. Thereby, the fixed platen 11 and the movable platen 12 can be brought close to or away from each other, and the first mold 41 and the second mold 42 can be clamped or opened.
- the injection device 16 includes a feed unit 16a, a raw material storage unit 16b, a drive unit 16c, and the like.
- the injection device 16 operates at an appropriate timing under the control of the control device 30 and is a molten resin in which the temperature and the filling pressure are controlled from the resin injection nozzle 21 provided at the tip of the feed portion 16a. Can be injected at a desired timing, and holding pressure for maintaining the injection pressure of the molten resin can be performed after the resin injection.
- a mold temperature controller 91 attached to the injection molding machine 10 circulates a temperature-controlled heat medium in both molds 41 and 42. Thereby, the temperature of both metal mold
- the control device 30 includes an opening / closing control unit 31, an injection device control unit 32, a position adjustment control unit 33, and a storage unit 34.
- the open / close control unit 31 enables the molds 41 and 42 to be closed, clamped, opened, and the like by operating the panel actuator 15e.
- the injection device control unit 32 causes the molten resin to be injected at a desired pressure into the cavity CV formed between the molds 41 and 42 by appropriately operating the feed unit 16a, the drive unit 16c, and the like.
- the position adjustment control unit 33 operates the die accompanying mechanism unit 50 including the actuator 52 and the contact pressure sensor 54 after the mold clamping. Specifically, the position adjustment control unit 33 uses the detection output of the contact pressure sensor 54 to determine whether or not the contact pressure of the contact surface 72p of the adjacent slide core 72 is within an appropriate setting range. . The position adjustment control unit 33 adjusts the position of the slide core 72 by operating the actuator 52 when the contact pressure of the contact surface 72p is out of an appropriate setting range. Specifically, the actuator 52 is operated to properly maintain the contact state between the slide cores 72 so that the inner side surface 72a that is the optical transfer surface is not excessively deformed.
- the position adjustment control unit 33 operates the actuator 52 as appropriate to retract the slide core 72 from a state where the contact surface 72p is in contact so that a gap between the facing contact surfaces 72p becomes a predetermined interval or distance. You can also. Specifically, the position adjustment control unit 33 operates the actuator 52 based on the detection output of the contact pressure sensor 54 and, for example, adjusts the contact pressure of the contact surface 72p once to a specified value close to zero, The slide core 72 is retracted by a predetermined amount by extending the actuator 52 by a predetermined amount. Thereby, the clearance gap of a predetermined space
- interval can be formed between a pair of adjacent contact surfaces 72p. It should be noted that the control for extending the actuator 52 by a predetermined amount can be performed in an open loop. However, when the actuator 52 includes a position sensor, feedback using the position sensor is performed. Control, that is, the detection output of the position sensor can be used to maintain the actuator 52 in an initially extended state.
- the four slide cores 72 are linked to each other, and the die-associated mechanism unit 50 associated therewith is also linked to operate.
- the contact pressure of the contact surface 72p is set to an appropriate setting range so as not to be biased toward the specific slide core 72.
- the driving amount of the actuator 52 is distributed to the pair of slide cores 72.
- the feedback amount is calculated. In the following description of the operation, such a drive amount or feedback amount is distributed, but the description thereof is omitted.
- the driving amount or feedback amount of the actuator 52 is calculated from the average value thereof.
- the driving amount of the actuator 52 or the like may be calculated so that the measured values from the two or more contact pressure sensors 54 are all within the appropriate range of the contact pressure.
- control device 30 operates the opening / closing drive device 15 to advance the movable platen 12 to start mold closing and mold clamping (step S11). Note that both molds 41 and 42 are heated in advance by a mold temperature controller 91 to a temperature suitable for molding.
- the control device 30 operates the position adjustment control unit 33 to start feedback control for making the position of the slide core 72 appropriate (step S12).
- the position adjustment control unit 33 sets the actuator 52 to an initial operation state, and initializes the arrangement of the slide core 72.
- the position adjustment control unit 33 reads the initial target value of the contact pressure of the contact surface 72p from the storage unit 34, and takes in the detection output of the contact pressure of the contact surface 72p by the contact pressure sensor 54. Thereby, the position of the slide core 72 can be feedback controlled by the actuator 52 so that the contact pressure detected by the contact pressure sensor 54 becomes the initial target value.
- the position adjustment control unit 33 determines whether or not the contact pressure detected by the contact pressure sensor 54 is within the setting range, that is, the detected value m of the contact pressure is a target value NI close to zero. If the contact pressure detection value m is larger than the target value NI or smaller than the target value NI, that is, if the detection value m is different from the target value NI, the actuator 52 is turned on. By operating (step S14), the slide core 72 is moved forward or backward.
- the target value NI is a value close to zero and does not cause deformation on the optical transfer surface of the slide core 72.
- step S14 the position adjustment control unit 33 calculates the drive amount of the actuator 52 so as to compensate for this, and the actuator 52 To perform an operation corresponding to the driving amount. That is, the position adjustment control unit 33 increases or decreases the dimension of the actuator 52 by the amount corresponding to the driving amount. By such an operation of the actuator 52, the slide core 72 supported from the rear by the support body 73 moves forward or backward by an amount corresponding to the driving amount of the actuator 52.
- the slide cores 72 come into contact with the contact surfaces 72p, and the contact pressure between the contact surfaces 72p is close to zero.
- FIG. 9A as shown in FIG. 9B, even when the contact surfaces 72p of the adjacent slide cores 72 are initially separated from each other and the gap GA is formed, as shown in FIG. The surfaces 72p are in contact with each other, and there is almost no gap GA.
- the position adjustment control unit 33 extends the actuator 52 by a predetermined amount to move the slide core 72.
- the clearance GA is retracted so that the gap GA between the opposing contact surfaces 72p becomes a predetermined interval (step S15).
- the position adjustment control unit 33 confirms the completion of the mold clamping of both molds 41 and 42, and waits until the mold clamping is completed when the mold clamping is not completed (step S16).
- the mold clamping is completed, the first mold 41 and the second mold 42 are clamped with a necessary pressure. Since the gap GA is secured between the contact surfaces 72p in step S15, the cavity GA is formed in the cavity CV formed inside the slide core 72 at the location of the contact surface 72p. Yes.
- Such a gap GA is referred to as an air vent gap, and a state in which such a gap GA is formed is referred to as a gap securing state.
- the actuator 52 once realizes a contact state in which the output of the contact pressure sensor 54 indicates contact based on the output of the contact pressure sensor 54, and from the contact state.
- the state where the slide core 72 is retracted by a predetermined amount is maintained. Thereby, a gap can be secured between the slide cores 72 using the output of the contact pressure sensor 54.
- the control device 30 operates the injection device 16 to inject the molten resin into the cavity CV between the clamped first mold 41 and the second mold 42 at a necessary pressure.
- the position adjustment control unit 33 receives an injection start signal indicating the start of the injection operation of the injection device 16 from the control device 30.
- the clearance GA is formed at the location of the contact surface 72p of the cavity CV as the clearance securing state in step S15, the air is quickly introduced into the cavity CV while eliminating the air in the cavity CV. Or it can be filled with resin.
- the position adjustment control unit 33 determines whether or not it is a predetermined timing to start closing the gap (step S122). Whether or not it is a predetermined timing for starting the gap closing is set in accordance with the progress of air removal in the cavity CV. For example, as shown in FIG. 10, if the resin MM is substantially filled in the cavity CV and the air removal is substantially completed, it is determined that the gap closing start timing is reached. In this way, when it is determined that the gap closing start timing is reached, the resin pressure in the cavity CV starts to rise, so it is necessary to close the gap between the slide cores 72 to prevent the resin from protruding into the gap.
- FIG. 11 is a graph conceptually illustrating the timing for starting the gap closing.
- the horizontal axis represents time (seconds), and the vertical axis represents the screw pressure when the resin is supplied by the injection device 16.
- T1 is when injection is started, and T2 is when switching to holding pressure.
- the injection time T2-T1 is a time for filling the cavity CV with resin, and is determined by the injection speed and the capacity of the cavity CV. Generally, the injection time T2-T1 is set to about several seconds.
- T3 is a timing at which the gap between the slide cores 72 starts to close, and the gap between the slide cores 72 is closed almost instantaneously.
- Timing T3 which means the transition from the gap securing state to the gap closing start assumes a state where resin MM is almost entirely filled in the cavity CV, as shown in FIG.
- the switching waiting time T3-T1 from the start of injection to closing the gap is set to about half to about 3/4 of the injection time T2-T1.
- the switching standby time T3-T1 can be set within a range in which the burr is not formed by actually manufacturing the optical product OP.
- the position adjustment control unit 33 performs feedback control of the position of the slide core 72 so that the contact pressure sensor 54 detects a predetermined contact pressure.
- the slide core 72 is advanced to bring the contact surfaces 72p into contact with each other.
- the position adjustment control unit 33 determines whether or not the contact pressure detected by the contact pressure sensor 54 is within the set range, that is, whether or not the detected value m of the contact pressure is the target value N. Is determined (step S23).
- the target value N can be a single numerical value of zero or more. Further, the target value N can be a numerical range having a predetermined width.
- the target value N is set so that the detected value m of the contact pressure is within a range in which the optical transfer surface of the slide core 72 is not deformed.
- This target value N can be made to coincide with the target value NI in step S13 described above, but it is not necessary to make it coincide with the target value NI.
- the position adjusting actuator 52 is operated (step S24). Specifically, when the detected value m of the contact pressure is different from the target value N (N ⁇ m in step S23), particularly when the detected value m of the contact pressure is larger than the target value N, or the detected value m is the target value N.
- the position adjustment control unit 33 operates the actuator 52 to move the slide core 72 backward or back and forth by a small amount.
- the position adjustment control unit 33 calculates the driving amount of the actuator 52 so as to compensate for this, and the actuator 52 operates corresponding to the driving amount. To do.
- the position adjustment control unit 33 increases the dimension of the actuator 52 corresponding to the driving amount or drives the urging force applied by the actuator 52. Increase as much as the amount. Due to the operation of the actuator 52, the slide core 72 supported on the support 73 from the rear moves backward by an amount corresponding to the drive amount of the actuator 52.
- the reverse operation is performed and the slide core 72 is given or appropriately moved forward.
- the contact pressure can be prevented from exceeding the target range, and the state can be stably maintained.
- a certain limit can be provided for the adjustment width or the pressure adjustment width. That is, the amount of feedback to the actuator 52 can be limited, and the size or urging force of the actuator 52 can be reduced in units of the upper limit adjustment width or pressure adjustment width.
- the adjustment width or the pressure adjustment width small, it is possible to gradually achieve the transition from the gap securing state to the gap closing start. Furthermore, the transition from the gap securing state to the gap closing start can be nonlinearly advanced by program control.
- the position of the slide core 72 is controlled by the actuator 52 so that the slide cores 72 are separated from each other by a predetermined interval before the predetermined timing during the resin injection, and after the predetermined timing,
- the position of the slide core 72 is feedback-controlled by the actuator 52 so that the contact pressure at the contact surface 72p becomes a target value within a range in which the optical transfer surface of the slide core 72 is not deformed.
- the resin injected into the cavity CV can be prevented from protruding into the gap GA by moving the slide core 72 forward after a predetermined timing and closing the gap between the slide cores 72.
- the contact pressure of the contact surface 72p does not exceed the allowable value as the slide core 72 advances, so that the inner side surface 72a that is the optical transfer surface is deformed. Can be prevented. That is, in the optical product OP shown in FIG.
- the position of the slide core 72 can be maintained against the resin filling pressure by setting the target value N for controlling the contact pressure to a predetermined value of zero or more.
- the position adjustment control unit 33 checks whether or not the resin filling is substantially completed. (Step S26). When the resin filling is not substantially completed (N in step S26), the process returns to step S23, and steps S23 and S24 are repeated until the resin filling is substantially completed, so that the detected value m of the contact pressure is the target. The actuator 52 is operated until the value N is reached.
- step S32 the control device 30 operates the injection device 16 as appropriate to maintain the resin pressure in the cavity CV between the molds 41 and 42, thereby improving the resin filling property.
- the position of the slide core 72 is feedback-controlled by the actuator 52 so that the contact pressure at the contact surface 72p of the slide core 72 becomes a target value within a range in which the optical transfer surface of the slide core 72 is not deformed. .
- the optical transfer surface of the slide core 72 is prevented from being deformed such as warping or bending during pressure holding, and it is possible to prevent the gap GA from being formed on the contact surface 72p of the slide core 72 to form burrs. .
- the position adjustment control unit 33 determines whether or not the contact pressure detected by the contact pressure sensor 54 is within the set range, that is, whether or not the detected value m of the contact pressure is the target value N. It is determined whether or not (step S33). If the detected value m does not match the target value N, the position adjustment control unit 33 operates the position adjusting actuator 52 to match the detected value m of the contact pressure with the target value N. Note that, for example, when the detected value m of the contact pressure is larger than the target value N, the method of operating the actuator 52 for position adjustment in step S34 is the same as step S24 after the start of resin filling or resin injection. The description is omitted.
- step S42 the control device 30 operates the mold temperature controller 91 as appropriate to cool and solidify the resin in the cavity CV between the molds 41 and 42.
- the position of the slide core 72 is feedback-controlled by the actuator 52 so that the contact pressure on the contact surface 72p of the slide core 72 becomes a target value within a range in which the optical transfer surface of the slide core 72 is not deformed. Thereby, it is possible to prevent the optical transfer surface of the slide core 72 from being deformed such as warping or bending during cooling.
- the position adjustment control unit 33 determines whether or not the contact pressure detected by the contact pressure sensor 54 is within the set range, that is, whether or not the detected value m of the contact pressure is the target value N. Is determined (step S43). If the detected value m does not match the target value N, the position adjustment control unit 33 operates the position adjusting actuator 52 to match the detected value m of the contact pressure with the target value N (step S44). Note that the method of operating the position adjusting actuator 52 in step S44 is the same as step S14 before the start of resin filling or resin injection, and a description thereof will be omitted.
- step S46 When the cooling cycle is completed (Y in step S46), the control device 30 starts mold opening (step S51). And the control apparatus 30 complete
- the gap GA is secured between the slide cores 72 by the position adjusting unit 59 at the start of resin injection in the molding process, sufficient resin is expelled while expelling air remaining in the cavity CV. Can be filled. Furthermore, before the resin injection is completed, the slide cores 72 are brought into contact with each other by the position adjusting unit 59 based on the output of the contact pressure sensor 54, so that the contact pressure becomes excessive due to the abutment of the slide core 72 and the optical transfer surface. It is possible to prevent a certain inner side surface 72a from being deformed and to prevent the mirror MR, which is the optical surface of the optical product OP, from being deteriorated. Furthermore, since the contact of the contact surface 72p of the slide core 72 is ensured, it is possible to prevent the gap GA from being formed on the contact surface 72p, and to prevent the resin from entering the gap GA and forming burrs. .
- FIG. 12 is a diagram for explaining a modified molding apparatus 100.
- a nest 78 is arranged as another member between the four slide cores 72.
- the insert 78 is supported by the fixed core 71, for example.
- the contact pressure sensor 54 by assembling the contact pressure sensor 54 to the slide core 72 and the insert 78, the contact pressure at the contact surface 72p can be monitored, and the inner side surface 72a, which is an optical transfer surface, can be prevented from being deformed. It is possible to prevent a gap that causes burrs from being formed between the side surface 72a and the insert 78.
- the number of slide cores 72 is not limited to 4, and can be 2, 3,... According to the shape of the optical product.
- the actuator (position adjustment unit) 52 is not limited to a piezoelectric element, and can be replaced by a hydraulic or pneumatic driving device.
- step S13 of FIG. 7 the actuator 52 can be gradually shortened from the beginning, and the operation of the actuator 52 can be stopped immediately when the detected value m becomes equal to or greater than the target value NI. In this case, after the operation of the actuator 52 is stopped, the process proceeds to step S15 in FIG. 7 so that the gap between the facing contact surfaces 72p becomes a predetermined interval.
- the gap between the opposing contact surfaces 72p is controlled only by the actuator (position adjusting unit) 52.
- the actuator position adjusting unit
- an additional actuator can be provided in addition to the actuator 52.
- the additional actuator can be hydraulically or pneumatically operated.
- the biasing member 53 can have a role.
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- Moulds For Moulding Plastics Or The Like (AREA)
- Injection Moulding Of Plastics Or The Like (AREA)
- Casting Or Compression Moulding Of Plastics Or The Like (AREA)
Abstract
Provided are an optical product molding apparatus, etc. with which deformation of an optical transfer surface can be prevented while preventing burr formation. The molding apparatus 100 is provided with a molding die 40 comprising sliding cores 72, contact pressure sensors 54 for measuring the contact pressure of the contact surfaces 72p of the sliding cores 72, position adjustment units 59 for adjusting the positions of the sliding cores 72, and a position adjustment control unit 33. Since the position adjustment units 59 secure the gap GA between the sliding cores 72 at the beginning of resin injection in the molding step, it is possible to force out air remaining inside the cavity CV. Moreover, since the sliding cores 72 are brought into contact with each other by the position adjustment units 59 prior to completion of resin injection on the basis of the output of the contact pressure sensors 54, it is possible to keep contact pressure from becoming excessive due to butting of the sliding cores 72 and the inside surfaces 72a, which are optical transfer surfaces, from being deformed.
Description
本発明は、高精度の成形を可能にする光学製品の成形装置及び製造方法に関し、特に型内で移動可能なスライドコアを有する金型を備える光学製品の成形装置及び製造方法に関する。
The present invention relates to an optical product molding apparatus and manufacturing method that enable high-precision molding, and more particularly to an optical product molding apparatus and manufacturing method including a mold having a slide core movable in a mold.
ポリゴンミラー等の光学転写面の面精度を向上させる装置として、射出した樹脂によって反射鏡面を形成するための金型部分の内側から樹脂に圧縮力を付加できる入れ子や駆動機構を設けた樹脂成形金型が開示されている(特許文献1)。
As a device to improve the surface accuracy of optical transfer surfaces such as polygon mirrors, a resin mold with a nesting and drive mechanism that can apply compressive force to the resin from the inside of the mold part for forming the reflecting mirror surface with the injected resin A mold is disclosed (Patent Document 1).
また、稜線位置等に面取り部を設けたポリゴンミラーの製造方法が開示されている(特許文献2)。この製法では、面取り部を設けて樹脂の充填完了直前に降圧することで、稜線部の流動性を向上させることができ、或いは面取り末端に応力を集中させて、面精度の向上を狙っている。
Further, a method for manufacturing a polygon mirror having a chamfered portion at a ridge line position or the like is disclosed (Patent Document 2). In this manufacturing method, the fluidity of the ridge line portion can be improved by providing a chamfered portion and reducing the pressure immediately before the resin filling is completed, or stress is concentrated on the chamfered end to improve the surface accuracy. .
従来金型の上下型の2分割を改良して、上下型間に反射鏡面ごとのスライドコアを設けた構造の樹脂成形金型が開示されている(特許文献3)。この金型では、スライドコアにより鏡面部の樹脂を等しい圧縮量で圧縮できるため、ポリゴンミラーの内部歪のバラツキを防止することができる。
A resin molding mold having a structure in which a split core for each reflecting mirror surface is provided between the upper and lower molds by improving the two divisions of the upper and lower molds of the conventional mold is disclosed (Patent Document 3). In this mold, the resin on the mirror surface portion can be compressed with an equal amount of compression by the slide core, so that variations in internal distortion of the polygon mirror can be prevented.
上記特許文献1、3の金型は、上下型間においてスライドコア又は入れ子同士を突き合わせて横方向から樹脂を加圧するタイプの金型であるが、加圧によってスライドコア等に形成された光学転写面に反りや湾曲等の変形が生じ、かかる光学転写面の変形によって光学製品の光学面に劣化が生じる。逆に、加圧が不十分であると、スライドコア等の隙間に樹脂が入り込んでバリが形成され、外観不良の原因となる。
The molds of Patent Documents 1 and 3 are molds of a type in which a slide core or a nest is brought into contact with each other between upper and lower molds to press the resin from the lateral direction, but optical transfer formed on the slide core or the like by pressurization. The surface is deformed such as warping or bending, and the optical surface of the optical product is deteriorated due to the deformation of the optical transfer surface. On the other hand, if the pressure is insufficient, the resin enters the gaps such as the slide core, and burrs are formed, which causes poor appearance.
この点についてより詳細に説明すると、スライドコアを用いる場合、光学成形品の光学面に反りが生じないように、スライドコアを強く突き合わせないで隙間を確保することが望ましいとも言える。しかしながら、高精度を要求される光学製品、特に小型の光学製品では、樹脂の流動性及び充填圧力を高めて高転写性を実現する必要がある。高転写性を実現する手法として、ヒートサイクル法、ガスアシスト成形法、断熱成形法、射出条件の工夫等があるが、樹脂の流動性及び充填圧力を高くすることにより、通常の成形では入り込まないようなスライドコア間の隙間に樹脂が入り込み、バリの発生により外観不良となる場合が生じている。このようなバリの発生により、成形ショット毎の品質バラツキが起こりやすくなるという問題もある。実際、樹脂流動性を高めて光学面の転写性を向上させようとすると、5μm程度のスライドコア間の隙間に樹脂が入りバリが発生する。このように、スライドコアを用いるタイプの成形装置において、光学製品の光学面の劣化を防止しつつスライドコア周辺の隙間におけるバリの形成を防止することは容易でなく、特にスライドコアを用いる場合、バリが光学面に近い場所に形成される傾向が強まると言える。
Describing this point in more detail, when using a slide core, it can be said that it is desirable to ensure a gap without strongly abutting the slide core so that the optical surface of the optical molded product is not warped. However, in optical products that require high accuracy, particularly small optical products, it is necessary to increase the fluidity and filling pressure of the resin to achieve high transferability. Techniques to achieve high transferability include heat cycle method, gas assist molding method, adiabatic molding method, ingenuity of injection conditions, etc., but it does not enter in normal molding by increasing the fluidity and filling pressure of resin In some cases, resin enters the gaps between the slide cores, resulting in poor appearance due to the generation of burrs. Due to the occurrence of such burrs, there is also a problem that quality variations are likely to occur for each molding shot. In fact, if an attempt is made to improve the transferability of the optical surface by increasing the resin fluidity, the resin enters the gap between the slide cores of about 5 μm, and burrs are generated. Thus, in a molding apparatus using a slide core, it is not easy to prevent the formation of burrs in the gap around the slide core while preventing deterioration of the optical surface of the optical product. It can be said that burrs tend to be formed near the optical surface.
一方、上記特許文献2の金型は、複数のスライドコア同士を突き合わせて光学転写面を形成するタイプの金型に関するものではなく、ポリゴンミラー等の光学面を高精度で形成することは容易でない。特に、ポリゴンミラー等の光学製品が回転軸に垂直な反射面やオーバーハングした反射面を有する場合、反射面の成形が不可能になる場合もある。
On the other hand, the mold of Patent Document 2 is not related to a mold in which a plurality of slide cores are brought into contact with each other to form an optical transfer surface, and it is not easy to form an optical surface such as a polygon mirror with high accuracy. . In particular, when an optical product such as a polygon mirror has a reflective surface perpendicular to the rotation axis or an overhanging reflective surface, the reflective surface may not be formed.
一方、センサー及びアクチュエーターを用いた樹脂成形方法として、射出樹脂の圧力による固定側及び可動側金型間のパーティング面の隙間又は開き量を変位量検出センサーで検出し、油圧等の動力により、金型変形量をゼロもしくは相対的にゼロにするように制御する機構を有するものが開示されている(特許文献4)。
On the other hand, as a resin molding method using a sensor and an actuator, the displacement amount detection sensor detects the gap or opening amount of the parting surface between the fixed side and the movable side mold due to the pressure of the injection resin, and by power such as hydraulic pressure, An apparatus having a mechanism for controlling the mold deformation amount to be zero or relatively zero is disclosed (Patent Document 4).
また、射出樹脂の圧力による固定側及び可動側金型間に発生する変形を変位量検出センサーで検出して、射出成形機の樹脂の射出速度又は射出圧力を制御することで、金型の型開き方向の変位延いてはキャビティの変形を低減させる機構を有するものが開示されている(特許文献5)。
In addition, by detecting the deformation that occurs between the fixed and movable molds due to the pressure of the injection resin with the displacement detection sensor and controlling the injection speed or injection pressure of the resin in the injection molding machine, the mold of the mold A device having a mechanism for reducing displacement in the opening direction and extending deformation of the cavity is disclosed (Patent Document 5).
キャビティ内の樹脂圧、コア及び可動型の変位等を圧力センサー又は変位センサー等で検出し、ピエゾ素子を用いてコア単位で独立したキャビティ内の樹脂を圧縮制御することが可能な圧縮成形用金型が開示されている(特許文献6)。
Compression molding metal that can detect the resin pressure in the cavity, displacement of the core and movable mold, etc. with a pressure sensor or displacement sensor, etc., and can control the compression of resin in the independent cavity in units of cores using piezoelectric elements A mold is disclosed (Patent Document 6).
シリンダー駆動によるスライドコアの位置をセンサーで検出し、金型内のインサート部品の異常を検知した場合には、スライドコアを正規の位置以外で停止することができる機構を有するものが開示されている(特許文献7)。
A mechanism having a mechanism capable of stopping the slide core at a position other than the normal position when the position of the slide core driven by the cylinder is detected by a sensor and abnormality of the insert part in the mold is detected is disclosed. (Patent Document 7).
上記特許文献4~6の成形方法等は、複数のスライドコア同士を突き合わせて光学転写面を形成するタイプの金型に関するものではなく、スライドコア同士を突き合わせるタイプの金型にそのまま適用しても、スライドコアに関連する課題を解決すること、すなわち光学転写面の劣化を防止しつつスライドコア周辺の隙間におけるバリの形成を防止することにはならない。
The molding methods described in Patent Documents 4 to 6 are not related to a mold that abuts a plurality of slide cores to form an optical transfer surface, but are directly applied to a mold that abuts slide cores. However, it does not solve the problems related to the slide core, that is, it does not prevent the formation of burrs in the gap around the slide core while preventing the optical transfer surface from deteriorating.
一方、上記特許文献7の成形方法は、スライドコア同士を突き合わせるタイプの金型に適用されるが、異常検知時にスライドコアを正規位置以外で停止させるだけである。つまり、特許文献7は、スライドコア等に形成された光学転写面が加圧によって変形し劣化することを防止しつつ成形を行う際に、加圧が不十分となってスライドコア等の隙間に樹脂が入り込んでバリが形成されることを防止する手法について、開示していない。
On the other hand, the molding method disclosed in Patent Document 7 is applied to a mold of a type in which slide cores are brought into contact with each other. However, the slide core is only stopped at a position other than the normal position when an abnormality is detected. That is, in Patent Document 7, when molding is performed while preventing the optical transfer surface formed on the slide core or the like from being deformed and deteriorated by pressurization, the pressurization is insufficient and the gap between the slide core and the like is reduced. There is no disclosure of a technique for preventing burrs from being formed by the resin entering.
本発明は、光学転写面の変形によって光学製品の光学面に劣化が生じることを防止しつつスライドコア等の隙間に樹脂が入り込んでバリが形成されることを防止できる光学製品の成形装置及び製造方法を提供することを目的とする。
The present invention relates to an optical product molding apparatus and a manufacturing method capable of preventing a resin from entering a gap of a slide core or the like and forming burrs while preventing the optical surface of the optical product from being deteriorated due to deformation of the optical transfer surface. It aims to provide a method.
上記目的を達成するため、本発明に係る光学製品の成形装置は、光学転写面を有するスライドコアを含む成形金型と、スライドコアの移動による他の部材との当たり面の接触圧を計測する接触圧センサーと、スライドコアの位置を調整する位置調整部と、成形工程の樹脂射出開始時において、位置調整部によってスライドコアと他の部材との間に隙間を確保するとともに、樹脂射出完了前において、接触圧センサーの出力に基づいて、位置調整部によってスライドコアと他の部材とを接触させる制御部とを備える。
In order to achieve the above object, an optical product molding apparatus according to the present invention measures a contact pressure of a contact surface between a molding die including a slide core having an optical transfer surface and another member due to movement of the slide core. A contact pressure sensor, a position adjusting unit that adjusts the position of the slide core, and at the start of resin injection in the molding process, the position adjusting unit secures a gap between the slide core and another member and before the resin injection is completed. And a control unit that brings the slide core and another member into contact with each other by the position adjusting unit based on the output of the contact pressure sensor.
上記成形装置では、成形工程の樹脂射出開始時において、位置調整部によってスライドコアと他の部材との間に隙間を確保するので、型空間内に残る空気を追い出しつつ樹脂を十分に充填することができる。さらに、樹脂射出完了前において、接触圧センサーの出力に基づいて、位置調整部によってスライドコアと他の部材とを接触させるので、スライドコアの突き当てによって接触圧が過度となって光学転写面が変形することを防止でき、光学製品の光学面に劣化が生じることを防止できる。さらに、スライドコアの当たり面の接触が確保されるので、この当たり面において隙間が形成されることを防止でき、かかる隙間に樹脂が入り込んでバリが形成されることを防止できる。
In the molding apparatus, when the resin injection is started in the molding process, the position adjusting unit secures a gap between the slide core and the other member, so the resin remaining sufficiently in the mold space is sufficiently filled with the resin. Can do. Furthermore, before the resin injection is completed, based on the output of the contact pressure sensor, the slide core and the other member are brought into contact with each other by the position adjusting unit. Deformation can be prevented, and deterioration of the optical surface of the optical product can be prevented. Furthermore, since the contact of the contact surface of the slide core is ensured, it is possible to prevent a gap from being formed on the contact surface, and it is possible to prevent a resin from entering the gap and forming a burr.
上記目的を達成するため、本発明に係る光学製品の成形方法は、光学転写面を有するスライドコアを含む成形金型と、スライドコアの移動による他の部材との当たり面の接触圧を計測する接触圧センサーと、スライドコアの位置を調整する位置調整部とを備える成形装置を用いた、光学製品の成形方法であって、成形工程の樹脂射出開始時において、接触圧センサーの出力を利用して、位置調整部によってスライドコアと他の部材との間に隙間を確保するとともに、樹脂射出完了前において、接触圧センサーの出力に基づいて、位置調整部によってスライドコアと他の部材とを接触させる。
In order to achieve the above object, an optical product molding method according to the present invention measures a contact pressure of a contact surface between a molding die including a slide core having an optical transfer surface and another member due to the movement of the slide core. An optical product molding method using a molding apparatus having a contact pressure sensor and a position adjusting unit for adjusting the position of the slide core, and using the output of the contact pressure sensor at the start of resin injection in the molding process. The position adjustment unit secures a gap between the slide core and the other member, and before the resin injection is completed, the position adjustment unit contacts the slide core and the other member based on the output of the contact pressure sensor. Let
上記成形方法では、成形工程の樹脂射出開始時において、位置調整部によってスライドコアと他の部材との間に隙間を確保するので、型空間内に残る空気を追い出しつつ樹脂を十分に充填することができる。さらに、樹脂射出完了前において、接触圧センサーの出力に基づいて、位置調整部によってスライドコアと他の部材とを接触させるので、スライドコアの突き当てによって接触圧が過度となって光学転写面が変形することを防止でき、光学製品の光学面に劣化が生じることを防止できる。さらに、スライドコアの当たり面の接触が確保されるので、この当たり面において隙間が形成されることを防止でき、かかる隙間に樹脂が入り込んでバリが形成されることを防止できる。
In the molding method described above, a gap is secured between the slide core and the other member by the position adjusting unit at the start of resin injection in the molding process, so that the resin is sufficiently filled while expelling air remaining in the mold space. Can do. Furthermore, before the resin injection is completed, based on the output of the contact pressure sensor, the slide core and the other member are brought into contact with each other by the position adjusting unit. Deformation can be prevented, and deterioration of the optical surface of the optical product can be prevented. Furthermore, since the contact of the contact surface of the slide core is ensured, it is possible to prevent a gap from being formed on the contact surface, and it is possible to prevent a resin from entering the gap and forming a burr.
以下、本発明に係る光学製品の成形装置及びその製造方法の実施形態について、図面を参照しつつ説明する。
Hereinafter, embodiments of an optical product molding apparatus and a manufacturing method thereof according to the present invention will be described with reference to the drawings.
図1は、光学製品の成形装置の要部を説明する概念図である。なお、図1は、後述する図2に示す成形金型のAA断面に対応する部分を含むものとなっている。
FIG. 1 is a conceptual diagram for explaining a main part of an optical product molding apparatus. 1 includes a portion corresponding to the AA cross section of the molding die shown in FIG. 2 described later.
光学製品の成形装置100は、成形金型40と、型付随機構部50と、制御装置30とを備える。
The optical product molding apparatus 100 includes a molding die 40, a die associated mechanism 50, and a control device 30.
成形金型40は、第1金型41と第2金型42とを備える。成形金型40のうち可動側の第1金型41は、後述する機構によって、開閉方向であるAB方向に往復移動可能になっている。図示のように第1金型41をA方向(図面上側)に移動させて第1金型41と第2金型42とを型締めすることにより、後述する光学製品OPを成形するための型空間であるキャビティCVが形成される。
The molding die 40 includes a first die 41 and a second die 42. The first mold 41 on the movable side of the molding die 40 can be reciprocated in the AB direction which is the opening / closing direction by a mechanism which will be described later. A mold for molding an optical product OP, which will be described later, by moving the first mold 41 in the direction A (upper side of the drawing) and clamping the first mold 41 and the second mold 42 as shown in the figure. A cavity CV, which is a space, is formed.
図2及び図3は、可動側の第1金型41及び型付随機構部50等の構造を説明する端面図及び斜視図である。
2 and 3 are an end view and a perspective view for explaining the structure of the first mold 41 on the movable side, the die associated mechanism 50, and the like.
図1~図3に示すように、第1金型41は、その+Z方向の端面側すなわち第2金型42側に配置される複数部材の集合体である金型構造61と、-Z方向の裏面側に配置される受板62とを備える。このうち、金型構造61は、中央に配置される固定コア71と、固定コア71を挟んで対向し進退移動する4つのスライドコア72と、スライドコア72をそれぞれ背後から支持する4つの支持体73と、スライドコア72又は支持体73の進退移動を案内する4組のガイド部材74とを備える。
As shown in FIGS. 1 to 3, the first mold 41 includes a mold structure 61 that is an assembly of a plurality of members arranged on the end surface side in the + Z direction, that is, the second mold 42 side, and the −Z direction. And a receiving plate 62 disposed on the back side of the. Among these, the mold structure 61 includes a fixed core 71 disposed in the center, four slide cores 72 that are opposed to each other with the fixed core 71 interposed therebetween, and four supports that respectively support the slide core 72 from behind. 73 and four sets of guide members 74 for guiding the slide core 72 or the support 73 to move forward and backward.
固定コア71は、受板62上に固定されている。固定コア71は、転写面として頂面71a及び側面71bを有するが、これらの面71a,71bは、いずれも光学転写面ではない。
The fixed core 71 is fixed on the receiving plate 62. The fixed core 71 has a top surface 71a and a side surface 71b as transfer surfaces, but these surfaces 71a and 71b are not optical transfer surfaces.
固定コア71を囲む4つのスライドコア72は、スライドブロックとも呼ばれ、XY面(具体的には、受板62の支持面62a)に沿って固定コア71のまわりに4等配に設けられている。このように、複数のスライドコア72を配置することにより、複数のスライドコア72によって挟むようにしてキャビティCVを形成することができ、光学製品OPの形状の自由度を高めることができる。各スライドコア72は、固定コア71の中央を通る中心軸CXに向かって進退移動可能になっている。具体的には、図2の+X及び+Y方向と-X及び-Y方向とに対応する一対のスライドコア72は、CD方向に沿って移動し互いに近接し又は離間する。+X及び-Y方向と-X及び+Y方向とに対応する一対のスライドコア72は、EF方向に沿って移動し互いに近接し又は離間する。各スライドコア72は、図示の例では、四角柱状の外形を有し、その先端側の内側面72aは、光学転写面となっている。各スライドコア72の下面72c(図1参照)は、固定コア71に設けた支持面71dに支持されて摺動可能となるように、平滑面となっている。各スライドコア72の側面72d及び上面72eも、平滑面となっている。各スライドコア72は、内側面72aに隣接して一対の当たり面72pを有する。これらの当たり面72pは、受板62の表面である支持面62aに垂直に延びており、XY面と直交する。当たり面72pは、隣接するスライドコア72同士が接触することで、キャビティ(型空間)CVの側面を閉じて4つのスライドコア72間に隙間が形成されることを防止する部分となっている。一方で、対向する一対の当たり面72pは、スライドコア72の後退に伴って所定間隔だけ離間し、樹脂射出中にキャビティCV内のエアー排除を可能にする。この場合、隣接するスライドコア72の一方にとって、他方は突き当ての対象である他の部材となっている。
The four slide cores 72 surrounding the fixed core 71 are also referred to as slide blocks, and are provided at four equal intervals around the fixed core 71 along the XY plane (specifically, the support surface 62a of the receiving plate 62). Yes. Thus, by arranging the plurality of slide cores 72, the cavity CV can be formed so as to be sandwiched between the plurality of slide cores 72, and the degree of freedom of the shape of the optical product OP can be increased. Each slide core 72 can move forward and backward toward a central axis CX passing through the center of the fixed core 71. Specifically, the pair of slide cores 72 corresponding to the + X and + Y directions and the −X and −Y directions in FIG. 2 move along the CD direction and approach or separate from each other. The pair of slide cores 72 corresponding to the + X and −Y directions and the −X and + Y directions move along the EF direction and approach or separate from each other. In the illustrated example, each slide core 72 has a quadrangular prism-shaped outer shape, and an inner side surface 72a on the tip side is an optical transfer surface. The lower surface 72c (see FIG. 1) of each slide core 72 is a smooth surface so as to be supported by a support surface 71d provided on the fixed core 71 and to be slidable. The side surface 72d and the upper surface 72e of each slide core 72 are also smooth surfaces. Each slide core 72 has a pair of contact surfaces 72p adjacent to the inner surface 72a. These contact surfaces 72p extend perpendicular to the support surface 62a, which is the surface of the receiving plate 62, and are orthogonal to the XY plane. The contact surface 72p is a part that prevents the gaps between the four slide cores 72 from being formed by closing the side surfaces of the cavity (mold space) CV when the adjacent slide cores 72 are in contact with each other. On the other hand, a pair of opposing contact surfaces 72p are separated by a predetermined interval as the slide core 72 is retracted, and air in the cavity CV can be removed during resin injection. In this case, for one of the adjacent slide cores 72, the other is another member to be abutted.
支持体73は、ブロック状の部材であり、スライドコア72の根元側である外側面に連結され、スライドコア72とともにCD方向又はEF方向に移動する。支持体73の下面73cは、受板62の支持面62aに支持されて摺動可能となるように、平滑面となっている。支持体73の側面には、ガイド部材74と滑らかに嵌合する段差73dが形成されている。
The support body 73 is a block-shaped member, is connected to the outer surface on the base side of the slide core 72, and moves in the CD direction or the EF direction together with the slide core 72. The lower surface 73c of the support 73 is a smooth surface so as to be supported by the support surface 62a of the receiving plate 62 and to be slidable. On the side surface of the support 73, a step 73d that fits smoothly with the guide member 74 is formed.
ガイド部材74は、支持体73をその側方から挟むように配置された一対が一組となって、支持体73の段差73dと嵌合して各支持体73の移動を案内する。ガイド部材74は、不図示の部材によって受板62に固定されている。
The pair of guide members 74 arranged so as to sandwich the support member 73 from the side thereof is a set, and is fitted with a step 73d of the support member 73 to guide the movement of each support member 73. The guide member 74 is fixed to the receiving plate 62 by a member (not shown).
第2金型42は、固定金型であり、その端面側すなわち第1金型41側に配置される金型構造161と、裏面側に配置される受板162とを備える。このうち、金型構造161は、中央に配置される固定コア81と、固定コア81の周囲を囲むように配置された4つのブロック84とを備える。
The second mold 42 is a fixed mold and includes a mold structure 161 disposed on the end surface side thereof, that is, the first mold 41 side, and a receiving plate 162 disposed on the back surface side. Among these, the mold structure 161 includes a fixed core 81 disposed in the center and four blocks 84 disposed so as to surround the periphery of the fixed core 81.
固定コア81は、受板162上に固定されている。固定コア81は、転写面として頂面81a及び側面81bを有するが、これらの面81a,81bは、いずれも光学転写面ではない。なお、固定コア81の頂面81aには、スプルー口81iが形成されており、このスプルー口81iは、外部からの溶融樹脂を内部に供給するためのスプルー42jと連通している。
The fixed core 81 is fixed on the receiving plate 162. The fixed core 81 has a top surface 81a and a side surface 81b as transfer surfaces, but neither of these surfaces 81a and 81b is an optical transfer surface. A sprue port 81i is formed in the top surface 81a of the fixed core 81, and the sprue port 81i communicates with a sprue 42j for supplying molten resin from the outside to the inside.
固定コア81を囲む4つのブロック84は、第1金型41と第2金型42とを型閉じ及び型締めする際に、4つのスライドコア72を固定コア71に予め近接させる役割を有する。つまり、第1金型41を第2金型42に近接するA方向(図1の紙面上側)に移動させると、各ブロック84に支持体73が近接し、斜面84s,73s同士が当接する。さらに第1金型41を第2金型42に近接させる動作を継続すると、4つの支持体73とこれらに支持された4つのスライドコア72とは、4つのブロック84に挟まれて互いに近接する方向に徐々に移動し、型締めを完了した段階では、隣接するスライドコア72の一対の対向する当たり面72p同士は、適度に近接した状態となる。つまり、ブロック84等によってスライドコア72の横方向に関しての予備的な型閉じが行われる。この予備的な型閉じは、後述する隙間確保状態に比較して、スライドコア72間に形成される隙間を広く確保したものとなる。
The four blocks 84 surrounding the fixed core 81 serve to bring the four slide cores 72 close to the fixed core 71 in advance when the first mold 41 and the second mold 42 are closed and clamped. That is, when the first mold 41 is moved in the direction A (upper side in FIG. 1) close to the second mold 42, the support 73 comes close to each block 84, and the slopes 84s and 73s come into contact with each other. Further, when the operation of bringing the first mold 41 close to the second mold 42 is continued, the four support bodies 73 and the four slide cores 72 supported by the four support bodies 73 are sandwiched by the four blocks 84 and close to each other. In the stage where the molds are gradually moved in the direction and the mold clamping is completed, the pair of facing contact surfaces 72p of the adjacent slide cores 72 are in a state of being appropriately close to each other. That is, preliminary mold closing in the lateral direction of the slide core 72 is performed by the block 84 or the like. This preliminary mold closing ensures a wide gap formed between the slide cores 72 as compared to a gap securing state described later.
第1金型41をA方向に移動させて金型41,42の型締めを行った場合、第1金型41の固定コア71と、第2金型42の固定コア81とが、不図示の箇所で当接し、固定コア71と固定コア81との間隔が規定値に調整される。この際、スライドコア72の上面72e等と固定コア81の一部とが近接して配置される。これにより、スライドコア72は、そのCD方向に延びる周囲面が固定コア71と固定コア81とに囲まれて、これらによってCD方向の移動が許可されつつCD方向に垂直な移動が制限された状態となる。
When the first mold 41 is moved in the A direction and the molds 41 and 42 are clamped, the fixed core 71 of the first mold 41 and the fixed core 81 of the second mold 42 are not shown. The distance between the fixed core 71 and the fixed core 81 is adjusted to a specified value. At this time, the upper surface 72e of the slide core 72 and a part of the fixed core 81 are arranged close to each other. As a result, the slide core 72 has a peripheral surface extending in the CD direction surrounded by the fixed core 71 and the fixed core 81, and the movement in the CD direction is permitted while the movement perpendicular to the CD direction is restricted. It becomes.
なお、スライドコア72の横方向の型閉じを可能にする各ブロック84に設けられた孔84hには、ロッド86が斜めに挿入されて固定されており、このロッド86は、支持体73の孔73hに所定の遊びを有して摺動可能に斜めに挿入されている。これにより、第1金型41を第2金型42から離間するB方向(図1の紙面下側)に移動させると、各ブロック84から延びるロッド86に案内されて、各支持体73が互いに離間するように後退し、対応する各スライドコア72も互いに離間するように後退する。つまり、型開きに際して、第1金型41と第2金型42とを離間させれば、4つのスライドコア72が互いに離間するように後退し、横方向に関しての型開きも達成される。逆に、第1金型41を第2金型42に近接するA方向(図1の紙面上側)に移動させると、各ブロック84から延びるロッド86に案内されて、支持体73やスライドコア72が互いに近接するように前進する。なお、ロッド86と孔73hとの間に遊びを設けているので、支持体73は、ブロック84に対してCD方向に微動可能となっている。
In addition, a rod 86 is obliquely inserted and fixed in a hole 84 h provided in each block 84 that enables the slide core 72 to be closed in the lateral direction. The rod 86 is fixed to the hole of the support 73. 73h has a predetermined play and is slidably inserted. Thus, when the first mold 41 is moved in the B direction (lower side in FIG. 1) away from the second mold 42, the first support 41 is guided by the rods 86 extending from the blocks 84, and the support bodies 73 are mutually connected. It retreats so that it may space apart, and each corresponding slide core 72 also retreats so that it may mutually space apart. That is, when the mold is opened, if the first mold 41 and the second mold 42 are separated from each other, the four slide cores 72 are retracted so as to be separated from each other, and the mold opening in the lateral direction is also achieved. Conversely, when the first mold 41 is moved in the A direction (upper side of the drawing in FIG. 1) close to the second mold 42, the first mold 41 is guided by the rod 86 extending from each block 84, and the support 73 and the slide core 72. Move forward so that they are close to each other. In addition, since play is provided between the rod 86 and the hole 73h, the support 73 can be finely moved in the CD direction with respect to the block 84.
図1等に示す型付随機構部50は、4つのスライドコア72に亘って設けられている。型付随機構部50は、スライドコア72を外側から支持して位置を調整するアクチュエーター52と、スライドコア72の前進等の移動による当たり面72pの接触圧を計測する接触圧センサー54とを備える。これらのうち、アクチュエーター52は、スライドコア72を支持してその位置を調整するとともにスライドコア72の当たり面72pの接触圧を調整する位置調整部59を構成する。アクチュエーター(位置調整部)52は、4つのスライドコア72のそれぞれに設けられている。一方、接触圧センサー54は、隣接するスライドコア72間に設けられている。なお、型付随機構部50には、スプリング等からなる付勢部材53が付随しており、付勢部材53は、型開き後にスライドコア72を後退させるための動力を与えるものとなっている。
1 is attached to the four slide cores 72. As shown in FIG. The die attachment mechanism unit 50 includes an actuator 52 that supports the slide core 72 from the outside and adjusts the position, and a contact pressure sensor 54 that measures the contact pressure of the contact surface 72p due to movement of the slide core 72 such as advancement. Among these, the actuator 52 constitutes a position adjusting unit 59 that supports the slide core 72 and adjusts its position, and adjusts the contact pressure of the contact surface 72p of the slide core 72. An actuator (position adjusting unit) 52 is provided in each of the four slide cores 72. On the other hand, the contact pressure sensor 54 is provided between the adjacent slide cores 72. The die attachment mechanism portion 50 is accompanied by an urging member 53 made of a spring or the like, and the urging member 53 provides power for moving the slide core 72 backward after the die is opened.
アクチュエーター(位置調整部)52は、位置調整のため伸縮自在の装置であり、固定コア71と支持体73との間に挟持される。より具体的には、アクチュエーター52は、圧電素子からなり、一端が支持体73の内側部分73fに固定され、他端が固定コア71の外縁部71fに当接している。アクチュエーター52は、伸縮によってスライドコア72の当たり面72pにおける接触圧を調整する。これにより、アクチュエーター52によってスライドコア72を適宜進退させて位置調整を実施しつつ、当たり面72pの接触圧が適正になるようにもできる。また、アクチュエーター52が圧電素子を含み、圧電素子が小型かつ薄型であることから、スライドコア72の配置や形状の自由度を確保しつつ接触圧を調整することができる。アクチュエーター52は、位置調整制御部33に設けた位置調整駆動回路33aに駆動されて伸縮動作する。アクチュエーター52が伸縮すると、可動側の支持体73が図1の断面に沿ったCD方向に移動し、この支持体73に支持されたスライドコア72も図1の断面に沿ったCD方向に移動する。スライドコア72の移動方向は、固定コア71等によって案内されており、受板62の支持面62aに沿ったものとなる。
Actuator (position adjustment unit) 52 is a telescopic device for position adjustment, and is sandwiched between fixed core 71 and support 73. More specifically, the actuator 52 is made of a piezoelectric element, one end is fixed to the inner portion 73 f of the support 73, and the other end is in contact with the outer edge portion 71 f of the fixed core 71. The actuator 52 adjusts the contact pressure on the contact surface 72p of the slide core 72 by expansion and contraction. Thereby, the contact pressure of the contact surface 72p can be made appropriate while the slide core 72 is appropriately advanced and retracted by the actuator 52 to adjust the position. In addition, since the actuator 52 includes a piezoelectric element, and the piezoelectric element is small and thin, the contact pressure can be adjusted while ensuring the degree of freedom of the arrangement and shape of the slide core 72. The actuator 52 is driven by a position adjustment drive circuit 33 a provided in the position adjustment control unit 33 to expand and contract. When the actuator 52 expands and contracts, the movable support 73 moves in the CD direction along the cross section of FIG. 1, and the slide core 72 supported by the support 73 also moves in the CD direction along the cross section of FIG. . The moving direction of the slide core 72 is guided by the fixed core 71 and the like, and is along the support surface 62 a of the receiving plate 62.
接触圧センサー54は、歪みゲージ、圧電素子等からなり、一対の隣接するスライドコア72間の当たり面72pの一方に埋め込むように取り付けられている。接触圧センサー54は、位置調整制御部33に設けたセンサー駆動回路33cに駆動されて当たり面72pにおける接触圧を検出する。一方のスライドコア72の当たり面72pが他方のスライドコア72の当たり面72pに接触していない状態では、接触圧センサー54の検出出力がゼロとなり、当たり面72pが接触して圧縮応力が強く作用するほど接触圧センサー54の検出出力が増加して、検出出力が接触圧の程度を示す。接触圧センサー54が検出した接触圧がゼロ以下である場合、当たり面72p間の隙間が広がっていると判断される。一方、接触圧センサー54が検出した接触圧がゼロより大きい場合、当たり面72p間に隙間が形成されず接触状態が確保されているが、接触圧が過度となってスライドコア72の光学転写面である内側面72aに変形を生じさせることを防止する必要がある。接触圧センサー54は、接触圧がスライドコア72の光学転写面である内側面72aに変形を生じさせない範囲内の目標値となるように監視するために利用される。
The contact pressure sensor 54 includes a strain gauge, a piezoelectric element, and the like, and is attached to be embedded in one of the contact surfaces 72p between a pair of adjacent slide cores 72. The contact pressure sensor 54 is driven by a sensor drive circuit 33c provided in the position adjustment control unit 33 and detects the contact pressure at the contact surface 72p. In a state where the contact surface 72p of one slide core 72 is not in contact with the contact surface 72p of the other slide core 72, the detection output of the contact pressure sensor 54 becomes zero, and the contact surface 72p comes into contact and the compression stress acts strongly. The detection output of the contact pressure sensor 54 increases as the detection pressure increases, and the detection output indicates the degree of contact pressure. When the contact pressure detected by the contact pressure sensor 54 is zero or less, it is determined that the gap between the contact surfaces 72p is widened. On the other hand, when the contact pressure detected by the contact pressure sensor 54 is greater than zero, a gap is not formed between the contact surfaces 72p and the contact state is ensured, but the contact pressure becomes excessive and the optical transfer surface of the slide core 72 is increased. It is necessary to prevent deformation of the inner side surface 72a. The contact pressure sensor 54 is used for monitoring so that the contact pressure becomes a target value within a range that does not cause deformation of the inner side surface 72 a that is the optical transfer surface of the slide core 72.
図4は、当たり面72p間の接触圧と、スライドコア72の内側面72aの変形とについてシミュレーションを行った結果を示す。チャートからも明らかなように、当たり面72p間の接触圧の増加に応じて光学転写面の変形が無視できない程度に増加し、当たり面72p間の接触圧の制御が重要であることが分かる。
FIG. 4 shows the result of simulation of the contact pressure between the contact surfaces 72p and the deformation of the inner surface 72a of the slide core 72. As is apparent from the chart, it can be seen that the deformation of the optical transfer surface increases to a degree that cannot be ignored according to the increase in the contact pressure between the contact surfaces 72p, and it is understood that the control of the contact pressure between the contact surfaces 72p is important.
図5に示すように、図1等に示す成形装置100によって作製される光学製品OPは、具体的にはポリゴンミラーであり、四角柱状の外観を有し、4つの壁部WPの外側面は、それぞれミラーMRとして機能する。4つのミラーMRは、光軸OAのまわりに均等に配置されている。壁部WPの内側には、光学製品OPを上下に仕切る隔壁PAが形成され、光学製品OPを装置に組み付ける際に光学製品OPを支持するための部分として機能する。光学製品OPの外形は、図1等に示す第1金型41と第2金型42とに挟まれた空間であるキャビティCVの内面形状に対応するものとなっている。
As shown in FIG. 5, the optical product OP produced by the molding apparatus 100 shown in FIG. 1 and the like is specifically a polygon mirror, has a quadrangular prism appearance, and the outer side surfaces of the four wall portions WP are , Each function as a mirror MR. The four mirrors MR are evenly arranged around the optical axis OA. A partition wall PA that partitions the optical product OP up and down is formed inside the wall WP, and functions as a part for supporting the optical product OP when the optical product OP is assembled to the apparatus. The outer shape of the optical product OP corresponds to the inner surface shape of the cavity CV that is a space sandwiched between the first mold 41 and the second mold 42 shown in FIG.
なお、図示の光学製品OPは、単なる一例であり、図1等に示す成形装置100によって様々な形状の光学製品を製造することができる。例えば光学製品がポリゴンミラーであっても、ミラーの数は、要求される仕様に応じて、6面、8面等とすることができる。また、光軸に沿って2段構成のポリゴンミラーとすることもできる。2段構成のポリゴンミラーの場合、中央でくびれ光軸に沿った両端で径が大きくなって光軸方向に隣接するミラーが向き合うような鼓型又は糸巻き型状の外形となる場合もある。さらに、光学製品OPは、ポリゴンミラーに限らず、プリズムその他の光学素子であってもよい。
Note that the illustrated optical product OP is merely an example, and optical products having various shapes can be manufactured by the molding apparatus 100 illustrated in FIG. 1 and the like. For example, even if the optical product is a polygon mirror, the number of mirrors can be 6 or 8 according to the required specifications. Further, a polygon mirror having a two-stage configuration along the optical axis may be used. In the case of a polygon mirror having a two-stage configuration, there is a case where the outer shape is a drum shape or a pincushion shape in which the diameter is larger at both ends along the optical axis at the center and the mirrors adjacent in the optical axis direction face each other. Furthermore, the optical product OP is not limited to a polygon mirror, but may be a prism or other optical element.
図6を参照して、図1に示す成形装置100の全体構造について説明する。成形装置100は、射出成形を行って光学製品OPを作製する本体部分である射出成形機10と、成形装置100を構成する各部の動作を統括的に制御する制御装置30とを備える。
Referring to FIG. 6, the overall structure of the molding apparatus 100 shown in FIG. 1 will be described. The molding apparatus 100 includes an injection molding machine 10 that is a main body part that performs injection molding to produce an optical product OP, and a control device 30 that comprehensively controls the operation of each part of the molding apparatus 100.
射出成形機10は、横型の成形機であり、既に説明した成形金型40の他に、固定盤11と、可動盤12と、開閉駆動装置15と、射出装置16とを備える。射出成形機10には、これに付随して金型温度調節機91等も設けられている。射出成形機10は、固定盤11と可動盤12との間に成形金型40を構成する第1金型41と第2金型42とを挟持して両金型41,42を型締めすることにより成形を可能にする。
The injection molding machine 10 is a horizontal molding machine and includes a fixed platen 11, a movable platen 12, an opening / closing drive device 15, and an injection device 16 in addition to the molding die 40 described above. The injection molding machine 10 is also provided with a mold temperature controller 91 and the like. The injection molding machine 10 clamps both molds 41 and 42 by sandwiching a first mold 41 and a second mold 42 constituting the molding mold 40 between the fixed platen 11 and the movable platen 12. This enables molding.
支持フレーム14上に固定された固定盤11は、第2金型42を着脱可能に支持している。固定盤11には、後述するノズル21を通す開口11bが形成されている。この開口11bは、図1のスプルー42jに連通している。
The fixed platen 11 fixed on the support frame 14 detachably supports the second mold 42. The fixed platen 11 is formed with an opening 11b through which a nozzle 21 described later is passed. The opening 11b communicates with the sprue 42j in FIG.
可動盤12は、リニアガイド15aによって固定盤11に対して進退移動可能に支持されている。可動盤12は、第1金型41を着脱可能に支持している。
The movable platen 12 is supported by a linear guide 15a so as to be movable back and forth with respect to the fixed platen 11. The movable platen 12 detachably supports the first mold 41.
開閉駆動装置15は、型締め盤13に支持されており、リニアガイド15aと、動力伝達部15dと、盤用アクチュエーター15eとを備える。動力伝達部15dは、制御装置30の制御下で動作する盤用アクチュエーター15eからの駆動力を受けて伸縮する。これにより、固定盤11と可動盤12とを互いに近接又は離間させることができ、第1金型41と第2金型42との型締め又は型開きを行うことができる。
The opening / closing drive device 15 is supported by the mold clamping board 13, and includes a linear guide 15a, a power transmission unit 15d, and a board actuator 15e. The power transmission unit 15 d expands and contracts by receiving a driving force from the panel actuator 15 e that operates under the control of the control device 30. Thereby, the fixed platen 11 and the movable platen 12 can be brought close to or away from each other, and the first mold 41 and the second mold 42 can be clamped or opened.
射出装置16は、フィード部16a、原料貯留部16b、駆動部16c等を備える。射出装置16は、制御装置30の制御下で適当なタイミングで動作するものであり、フィード部16aの先端に設けられた樹脂射出用のノズル21から温度及び充填圧力が制御された状態の溶融樹脂を所望のタイミングで射出することができるとともに、樹脂射出後に溶融樹脂の射出圧を維持する保圧を行うことができる。
The injection device 16 includes a feed unit 16a, a raw material storage unit 16b, a drive unit 16c, and the like. The injection device 16 operates at an appropriate timing under the control of the control device 30 and is a molten resin in which the temperature and the filling pressure are controlled from the resin injection nozzle 21 provided at the tip of the feed portion 16a. Can be injected at a desired timing, and holding pressure for maintaining the injection pressure of the molten resin can be performed after the resin injection.
射出成形機10に付随して設けられた金型温度調節機91は、両金型41,42中に温度制御された熱媒体を循環させる。これにより、成形時に両金型41,42の温度を適切な温度に保つことができる。
A mold temperature controller 91 attached to the injection molding machine 10 circulates a temperature-controlled heat medium in both molds 41 and 42. Thereby, the temperature of both metal mold | dies 41 and 42 can be kept at an appropriate temperature at the time of shaping | molding.
制御装置30は、開閉制御部31と、射出装置制御部32と、位置調整制御部33と、記憶部34とを備える。開閉制御部31は、盤用アクチュエーター15eを動作させることによって両金型41,42の型閉じ、型締め、型開き等を可能にする。射出装置制御部32は、フィード部16a、駆動部16c等を適宜動作させることによって両金型41,42間に形成されたキャビティCV中に所望の圧力で溶融樹脂を射出させる。
The control device 30 includes an opening / closing control unit 31, an injection device control unit 32, a position adjustment control unit 33, and a storage unit 34. The open / close control unit 31 enables the molds 41 and 42 to be closed, clamped, opened, and the like by operating the panel actuator 15e. The injection device control unit 32 causes the molten resin to be injected at a desired pressure into the cavity CV formed between the molds 41 and 42 by appropriately operating the feed unit 16a, the drive unit 16c, and the like.
位置調整制御部33は、型締め以後に、アクチュエーター52、及び接触圧センサー54を含む型付随機構部50を動作させる。具体的には、位置調整制御部33は、接触圧センサー54の検出出力を利用して、隣接するスライドコア72の当たり面72pの接触圧が適正な設定範囲内であるか否かを判断する。位置調整制御部33は、当たり面72pの接触圧が適正な設定範囲から外れる場合、アクチュエーター52を動作させて、スライドコア72の位置を調整する。具体的には、アクチュエーター52を動作させて、スライドコア72同士の当たり状態を適正に維持し、光学転写面である内側面72aの変形が過度にならないようにする。また、位置調整制御部33は、アクチュエーター52を適宜動作させて、当たり面72pが接触する状態からスライドコア72を後退させて対向する当たり面72p間の隙間が所定間隔又は距離となるようにすることもできる。具体的には、位置調整制御部33は、接触圧センサー54の検出出力に基づいてアクチュエーター52を動作させ、例えば当たり面72pの接触圧が一旦ゼロに近い規定値になるように調整した後、アクチュエーター52を所定量だけ伸張させることによってスライドコア72を所定量だけ後退させる。これにより、隣接する一対の当たり面72p間に所定間隔の隙間を形成することができる。なお、アクチュエーター52を目的とする所定量だけ伸張させる制御の際には、オープンループで制御を行うこともできるが、アクチュエーター52が位置センサーを内蔵するものである場合、かかる位置センサーを用いたフィードバック制御、すなわち位置センサーの検出出力を用いてアクチュエーター52を当初所定量だけ伸張させた状態に維持することもできる。
The position adjustment control unit 33 operates the die accompanying mechanism unit 50 including the actuator 52 and the contact pressure sensor 54 after the mold clamping. Specifically, the position adjustment control unit 33 uses the detection output of the contact pressure sensor 54 to determine whether or not the contact pressure of the contact surface 72p of the adjacent slide core 72 is within an appropriate setting range. . The position adjustment control unit 33 adjusts the position of the slide core 72 by operating the actuator 52 when the contact pressure of the contact surface 72p is out of an appropriate setting range. Specifically, the actuator 52 is operated to properly maintain the contact state between the slide cores 72 so that the inner side surface 72a that is the optical transfer surface is not excessively deformed. Further, the position adjustment control unit 33 operates the actuator 52 as appropriate to retract the slide core 72 from a state where the contact surface 72p is in contact so that a gap between the facing contact surfaces 72p becomes a predetermined interval or distance. You can also. Specifically, the position adjustment control unit 33 operates the actuator 52 based on the detection output of the contact pressure sensor 54 and, for example, adjusts the contact pressure of the contact surface 72p once to a specified value close to zero, The slide core 72 is retracted by a predetermined amount by extending the actuator 52 by a predetermined amount. Thereby, the clearance gap of a predetermined space | interval can be formed between a pair of adjacent contact surfaces 72p. It should be noted that the control for extending the actuator 52 by a predetermined amount can be performed in an open loop. However, when the actuator 52 includes a position sensor, feedback using the position sensor is performed. Control, that is, the detection output of the position sensor can be used to maintain the actuator 52 in an initially extended state.
詳細な説明は省略するが、4つのスライドコア72は相互にリンクして動作しており、これらに付随する型付随機構部50も相互にリンクして動作する。つまり、特定のスライドコア72に偏って動作させないようにして、当たり面72pの接触圧が適正な設定範囲となるようにする。例えば、隣接する一対のスライドコア72間の接触圧センサー54の測定値から接触圧を適正範囲に戻すべきと判断された場合、これら一対のスライドコア72に配分するように、アクチュエーター52の駆動量又はフィードバック量が計算される。以下の動作説明では、このような駆動量又はフィードバック量の配分を行っているが、その説明を省略している。また、同一のスライドコア72について2つ以上の接触圧センサー54からの測定値が得られる場合、これらの平均値からアクチュエーター52の駆動量又はフィードバック量が計算される。ただし、2つ以上の接触圧センサー54からの測定値が全て接触圧の適正範囲となるように、アクチュエーター52の駆動量等を算出してもよい。以上のような制御により、複数の当たり面72p間に隙間を形成する場合も、これらの隙間をバランスさせることができる。
Although detailed description is omitted, the four slide cores 72 are linked to each other, and the die-associated mechanism unit 50 associated therewith is also linked to operate. In other words, the contact pressure of the contact surface 72p is set to an appropriate setting range so as not to be biased toward the specific slide core 72. For example, when it is determined from the measurement value of the contact pressure sensor 54 between a pair of adjacent slide cores 72 that the contact pressure should be returned to an appropriate range, the driving amount of the actuator 52 is distributed to the pair of slide cores 72. Alternatively, the feedback amount is calculated. In the following description of the operation, such a drive amount or feedback amount is distributed, but the description thereof is omitted. Further, when measurement values from two or more contact pressure sensors 54 are obtained for the same slide core 72, the driving amount or feedback amount of the actuator 52 is calculated from the average value thereof. However, the driving amount of the actuator 52 or the like may be calculated so that the measured values from the two or more contact pressure sensors 54 are all within the appropriate range of the contact pressure. With the control as described above, even when gaps are formed between the plurality of contact surfaces 72p, these gaps can be balanced.
以下、図7及び図8を参照して、図1、図6等に示す成形装置100を用いた光学製品OPの製造方法について説明する。
Hereinafter, a method of manufacturing the optical product OP using the molding apparatus 100 shown in FIGS. 1 and 6 will be described with reference to FIGS.
まず、制御装置30は、開閉駆動装置15を動作させ、可動盤12を前進させて型閉じ及び型締めを開始させる(ステップS11)。なお、予め金型温度調節機91により、両金型41,42を成形に適する温度まで加熱している。
First, the control device 30 operates the opening / closing drive device 15 to advance the movable platen 12 to start mold closing and mold clamping (step S11). Note that both molds 41 and 42 are heated in advance by a mold temperature controller 91 to a temperature suitable for molding.
続いて、制御装置30は、位置調整制御部33を動作させ、スライドコア72の位置を適正にするフィードバック制御を開始する(ステップS12)。具体的には、位置調整制御部33は、アクチュエーター52を初期設定の動作状態にし、スライドコア72の配置を初期化する。また、位置調整制御部33は、当たり面72pの接触圧の初期の目標値を記憶部34から読み出すとともに、接触圧センサー54による当たり面72pの接触圧の検出出力を取り込む。これにより、接触圧センサー54によって検出された接触圧が初期の目標値となるように、アクチュエーター52によってスライドコア72の位置をフィードバック制御することができる。
Subsequently, the control device 30 operates the position adjustment control unit 33 to start feedback control for making the position of the slide core 72 appropriate (step S12). Specifically, the position adjustment control unit 33 sets the actuator 52 to an initial operation state, and initializes the arrangement of the slide core 72. The position adjustment control unit 33 reads the initial target value of the contact pressure of the contact surface 72p from the storage unit 34, and takes in the detection output of the contact pressure of the contact surface 72p by the contact pressure sensor 54. Thereby, the position of the slide core 72 can be feedback controlled by the actuator 52 so that the contact pressure detected by the contact pressure sensor 54 becomes the initial target value.
フィードバック制御の開始後は、位置調整制御部33は、接触圧センサー54によって検出された接触圧が設定範囲内となっているか否か、すなわち接触圧の検出値mがゼロに近い目標値NIとなっているか否かを判断し(ステップS13)、接触圧の検出値mが目標値NIよりも大きい又は目標値NIよりも小さい場合、つまり検出値mが目標値NIと異なる場合、アクチュエーター52を動作させて(ステップS14)、スライドコア72を前進又は後退させる。ここで、目標値NIは、ゼロに近い値であり、スライドコア72の光学転写面に変形を生じさせないものとなっている。
After the feedback control is started, the position adjustment control unit 33 determines whether or not the contact pressure detected by the contact pressure sensor 54 is within the setting range, that is, the detected value m of the contact pressure is a target value NI close to zero. If the contact pressure detection value m is larger than the target value NI or smaller than the target value NI, that is, if the detection value m is different from the target value NI, the actuator 52 is turned on. By operating (step S14), the slide core 72 is moved forward or backward. Here, the target value NI is a value close to zero and does not cause deformation on the optical transfer surface of the slide core 72.
ステップS13において接触圧の検出値mが目標値NIと異なると判断された場合、ステップS14において、位置調整制御部33は、これを補償するようにアクチュエーター52の駆動量を算出するとともに、アクチュエーター52に駆動量に対応する動作を行わせる。つまり、位置調整制御部33は、アクチュエーター52の寸法を駆動量に対応するだけ増減させる。アクチュエーター52のこのような動作により、支持体73に後方から支持されたスライドコア72は、アクチュエーター52の駆動量に相当するだけ前進又は後退する。
When it is determined in step S13 that the detected value m of the contact pressure is different from the target value NI, in step S14, the position adjustment control unit 33 calculates the drive amount of the actuator 52 so as to compensate for this, and the actuator 52 To perform an operation corresponding to the driving amount. That is, the position adjustment control unit 33 increases or decreases the dimension of the actuator 52 by the amount corresponding to the driving amount. By such an operation of the actuator 52, the slide core 72 supported from the rear by the support body 73 moves forward or backward by an amount corresponding to the driving amount of the actuator 52.
結果的に、スライドコア72同士は、当たり面72pが当接する状態に至り、当たり面72p間の接触圧は、ゼロに近いものとなる。具体的には、当初図9Aに示すように、当初は隣接するスライドコア72の当たり面72p同士が離間して隙間GAが形成されていた場合であっても、図9Bに示すように、当たり面72p同士が当接して殆ど隙間GAのない状態となる。
As a result, the slide cores 72 come into contact with the contact surfaces 72p, and the contact pressure between the contact surfaces 72p is close to zero. Specifically, as shown in FIG. 9A, as shown in FIG. 9B, even when the contact surfaces 72p of the adjacent slide cores 72 are initially separated from each other and the gap GA is formed, as shown in FIG. The surfaces 72p are in contact with each other, and there is almost no gap GA.
接触圧の検出値mが目標値NIと等しくなっていると判断された場合(ステップS13でm=NI)、位置調整制御部33は、アクチュエーター52を所定量だけ伸張させることによってスライドコア72を後退させ、対向する当たり面72p間の隙間GAが所定間隔となるようにする(ステップS15)。これにより、型締め時にスライドコア72の光学転写面に反りや湾曲等の変形が生じることを防止できる。
When it is determined that the detected value m of the contact pressure is equal to the target value NI (m = NI in step S13), the position adjustment control unit 33 extends the actuator 52 by a predetermined amount to move the slide core 72. The clearance GA is retracted so that the gap GA between the opposing contact surfaces 72p becomes a predetermined interval (step S15). Thereby, it is possible to prevent the optical transfer surface of the slide core 72 from being deformed such as warping or bending during mold clamping.
その後、位置調整制御部33は、両金型41,42の型締めの完了を確認し、型締めが完了していない場合、型締めの完了まで待機する(ステップS16)。型締め完了により、第1金型41と第2金型42とが必要な圧力で締め付けられる。なお、上記ステップS15で当たり面72p間に隙間GAが確保されているので、スライドコア72の内側に形成されるキャビティCVには、当たり面72pの箇所に隙間GAが形成された状態となっている。このような隙間GAをエアー抜き用の隙間と呼び、このような隙間GAが形成された状態を隙間確保状態と呼ぶものとする。
After that, the position adjustment control unit 33 confirms the completion of the mold clamping of both molds 41 and 42, and waits until the mold clamping is completed when the mold clamping is not completed (step S16). When the mold clamping is completed, the first mold 41 and the second mold 42 are clamped with a necessary pressure. Since the gap GA is secured between the contact surfaces 72p in step S15, the cavity GA is formed in the cavity CV formed inside the slide core 72 at the location of the contact surface 72p. Yes. Such a gap GA is referred to as an air vent gap, and a state in which such a gap GA is formed is referred to as a gap securing state.
以上のように、スライドコア72間に隙間を確保するため、接触圧センサー54の出力に基づいてアクチュエーター52によって接触圧センサー54の出力が接触を示す接触状態を一旦実現するとともに、当該接触状態からスライドコア72を所定量だけ後退させた状態を維持する。これにより、接触圧センサー54の出力を利用してスライドコア72間に隙間を確保することができる。
As described above, in order to secure a gap between the slide cores 72, the actuator 52 once realizes a contact state in which the output of the contact pressure sensor 54 indicates contact based on the output of the contact pressure sensor 54, and from the contact state. The state where the slide core 72 is retracted by a predetermined amount is maintained. Thereby, a gap can be secured between the slide cores 72 using the output of the contact pressure sensor 54.
次に、制御装置30は、射出装置16を動作させて、型締めされた第1金型41と第2金型42との間のキャビティCV中に、必要な圧力で溶融樹脂を注入する射出を行わせることで樹脂の充填を開始する(ステップS22)。位置調整制御部33は、制御装置30から射出装置16の射出動作の開始を意味する射出開始信号を受け取る。この際、上記ステップS15において隙間確保状態として、キャビティCVの当たり面72pの箇所にエアー抜き用の隙間GAを形成しているので、キャビティCV内のエアーを排除しつつキャビティCV内に迅速に導入又は樹脂を充填することができる。
Next, the control device 30 operates the injection device 16 to inject the molten resin into the cavity CV between the clamped first mold 41 and the second mold 42 at a necessary pressure. To start filling the resin (step S22). The position adjustment control unit 33 receives an injection start signal indicating the start of the injection operation of the injection device 16 from the control device 30. At this time, since the clearance GA is formed at the location of the contact surface 72p of the cavity CV as the clearance securing state in step S15, the air is quickly introduced into the cavity CV while eliminating the air in the cavity CV. Or it can be filled with resin.
その後、位置調整制御部33は、隙間閉じを開始する所定タイミングか否かを判断する(ステップS122)。隙間閉じ開始の所定タイミングか否かは、キャビティCV内のエアー排除の進行に対応させて設定される。例えば、図10に示すようにキャビティCV内の略全体に樹脂MMが充填され、エアー排除が略完了していれば、隙間閉じ開始のタイミングと判断される。このように隙間閉じ開始のタイミングと判断された場合、キャビティCV内の樹脂圧が上昇し始めるので、スライドコア72間の隙間を閉じて隙間に樹脂がはみ出すことを防止する必要が生じる。
After that, the position adjustment control unit 33 determines whether or not it is a predetermined timing to start closing the gap (step S122). Whether or not it is a predetermined timing for starting the gap closing is set in accordance with the progress of air removal in the cavity CV. For example, as shown in FIG. 10, if the resin MM is substantially filled in the cavity CV and the air removal is substantially completed, it is determined that the gap closing start timing is reached. In this way, when it is determined that the gap closing start timing is reached, the resin pressure in the cavity CV starts to rise, so it is necessary to close the gap between the slide cores 72 to prevent the resin from protruding into the gap.
図11は、隙間閉じ開始のタイミングを概念的に説明するグラフである。横軸は時間(秒)であり、縦軸は射出装置16による樹脂供給に際してのスクリュー圧力である。T1は、射出開始時であり、T2は、保圧への切り換え時である。射出時間T2-T1は、キャビティCVに樹脂を充填する時間であり、射出速度やキャビティCVの容量によって定まる。一般には、射出時間T2-T1は、数秒程度に設定される。T3は、スライドコア72間の隙間を閉じ始めるタイミングであり、スライドコア72間の隙間は略瞬時に閉じられる。隙間確保状態から隙間閉じ開始への移行を意味するタイミングT3は、図10に示すようにキャビティCV内の略全体に樹脂MMが充填された状態(充填完了直前)を想定しており、例えばスクリュー圧力が一旦一定に維持されて安定した状態となった場合に、タイミングT3に略達したとして扱うことができる。具体的な動作例では、射出開始から隙間閉じまでの切替え待機時間T3-T1は、射出時間T2-T1の半分程度から3/4程度とする。なお、切替え待機時間T3-T1は、実際に光学製品OPを作製してバリが形成されないような範囲とすることができる。
FIG. 11 is a graph conceptually illustrating the timing for starting the gap closing. The horizontal axis represents time (seconds), and the vertical axis represents the screw pressure when the resin is supplied by the injection device 16. T1 is when injection is started, and T2 is when switching to holding pressure. The injection time T2-T1 is a time for filling the cavity CV with resin, and is determined by the injection speed and the capacity of the cavity CV. Generally, the injection time T2-T1 is set to about several seconds. T3 is a timing at which the gap between the slide cores 72 starts to close, and the gap between the slide cores 72 is closed almost instantaneously. Timing T3 which means the transition from the gap securing state to the gap closing start assumes a state where resin MM is almost entirely filled in the cavity CV, as shown in FIG. When the pressure is once maintained constant and is in a stable state, it can be handled that the timing T3 has been substantially reached. In a specific operation example, the switching waiting time T3-T1 from the start of injection to closing the gap is set to about half to about 3/4 of the injection time T2-T1. Note that the switching standby time T3-T1 can be set within a range in which the burr is not formed by actually manufacturing the optical product OP.
隙間閉じ開始のタイミングと判断された場合(ステップS122でY)、位置調整制御部33は、接触圧センサー54が所定の接触圧を検出するようにスライドコア72の位置をフィードバック制御することにより、スライドコア72を前進させて当たり面72p同士を当接させる。具体的には、位置調整制御部33は、接触圧センサー54によって検出された接触圧が設定範囲内となっているか否か、すなわち接触圧の検出値mが目標値Nとなっているか否かを判断する(ステップS23)。ここで、目標値Nは、ゼロ以上の単一の数値とすることができる。また、目標値Nは、所定の幅を持った数値範囲とすることもできる。目標値Nは、接触圧の検出値mがスライドコア72の光学転写面に変形を生じさせない範囲内となるように設定される。この目標値Nは、上述したステップS13の目標値NIと一致させることができるが、当該目標値NIと一致させなくてもよい。
When it is determined that the gap closing start timing is determined (Y in step S122), the position adjustment control unit 33 performs feedback control of the position of the slide core 72 so that the contact pressure sensor 54 detects a predetermined contact pressure. The slide core 72 is advanced to bring the contact surfaces 72p into contact with each other. Specifically, the position adjustment control unit 33 determines whether or not the contact pressure detected by the contact pressure sensor 54 is within the set range, that is, whether or not the detected value m of the contact pressure is the target value N. Is determined (step S23). Here, the target value N can be a single numerical value of zero or more. Further, the target value N can be a numerical range having a predetermined width. The target value N is set so that the detected value m of the contact pressure is within a range in which the optical transfer surface of the slide core 72 is not deformed. This target value N can be made to coincide with the target value NI in step S13 described above, but it is not necessary to make it coincide with the target value NI.
接触圧の検出値mが目標値Nと異なる場合、位置調整用のアクチュエーター52を動作させる(ステップS24)。具体的には、接触圧の検出値mが目標値Nと異なる場合(ステップS23のN≠m)、特に接触圧の検出値mが目標値Nよりも大きい場合又は検出値mが目標値Nに近い場合、位置調整制御部33は、アクチュエーター52を動作させ、スライドコア72を後退させ或いは微少量だけ進退させる。接触圧の検出値mが目標値Nと異なると判断された場合、位置調整制御部33は、これを補償するようにアクチュエーター52の駆動量を算出するとともに、アクチュエーター52に駆動量に対応する動作を行わせる。つまり、例えば接触圧の検出値mが目標値Nよりも大きい場合、位置調整制御部33は、アクチュエーター52の寸法を駆動量に対応するだけ増加させ、或いはアクチュエーター52によって付与される付勢力を駆動量に対応するだけ増加させる。アクチュエーター52の動作により、支持体73に後方から支持されたスライドコア72は、アクチュエーター52の駆動量に相当するだけ後退する。逆に、接触圧の検出値mが目標値Nよりも小さい場合、逆の動作となってスライドコア72は、適宜前進する力を与えられ又は前進する。これにより、接触圧が目標の範囲を超えないようにでき、かつその状態を安定的に維持することができる。
If the detected value m of the contact pressure is different from the target value N, the position adjusting actuator 52 is operated (step S24). Specifically, when the detected value m of the contact pressure is different from the target value N (N ≠ m in step S23), particularly when the detected value m of the contact pressure is larger than the target value N, or the detected value m is the target value N. When the position is close to, the position adjustment control unit 33 operates the actuator 52 to move the slide core 72 backward or back and forth by a small amount. When it is determined that the detected value m of the contact pressure is different from the target value N, the position adjustment control unit 33 calculates the driving amount of the actuator 52 so as to compensate for this, and the actuator 52 operates corresponding to the driving amount. To do. That is, for example, when the detected value m of the contact pressure is larger than the target value N, the position adjustment control unit 33 increases the dimension of the actuator 52 corresponding to the driving amount or drives the urging force applied by the actuator 52. Increase as much as the amount. Due to the operation of the actuator 52, the slide core 72 supported on the support 73 from the rear moves backward by an amount corresponding to the drive amount of the actuator 52. On the other hand, when the detected value m of the contact pressure is smaller than the target value N, the reverse operation is performed and the slide core 72 is given or appropriately moved forward. Thus, the contact pressure can be prevented from exceeding the target range, and the state can be stably maintained.
なお、本実施形態では、接触圧の検出値mが目標値Nよりも著しく小さくなる場合を想定していない。つまり、接触圧の検出値mが目標値Nよりも著しく小さく例えばゼロに近いとすると、スライドコア72が樹脂圧に押し戻されている状態であり、この場合、アクチュエーター52のみによってこれに抗することは必ずしも容易でない。本実施形態の場合、ロッド86を利用した機械的な移動の制限によって、接触圧の検出値mが目標値Nよりも過度に小さくなること、すなわち支持体73やスライドコア72が後退しすぎることを確実に防止している。
In the present embodiment, it is not assumed that the detected value m of the contact pressure is significantly smaller than the target value N. That is, if the detected value m of the contact pressure is significantly smaller than the target value N, for example, close to zero, the slide core 72 is being pushed back to the resin pressure. In this case, the actuator 52 only resists this. Is not always easy. In the case of the present embodiment, the detection value m of the contact pressure becomes excessively smaller than the target value N due to the restriction of the mechanical movement using the rod 86, that is, the support 73 and the slide core 72 are moved backward too much. Is surely prevented.
以上において、アクチュエーター52の駆動量に関しては、調節幅又は圧調整幅に一定の制限を設けることができる。つまり、アクチュエーター52に対するフィードバック量を制限でき、アクチュエーター52の寸法又は付勢力を上限の調節幅又は圧調整幅を単位として減少させることもできる。この場合、調節幅又は圧調整幅を小刻みとすることで、隙間確保状態から隙間閉じ開始への移行を徐々に達成することもできる。さらに、プログラム制御によって、隙間確保状態から隙間閉じ開始への移行を非線形的に進行させることもできる。
As described above, with respect to the driving amount of the actuator 52, a certain limit can be provided for the adjustment width or the pressure adjustment width. That is, the amount of feedback to the actuator 52 can be limited, and the size or urging force of the actuator 52 can be reduced in units of the upper limit adjustment width or pressure adjustment width. In this case, by making the adjustment width or the pressure adjustment width small, it is possible to gradually achieve the transition from the gap securing state to the gap closing start. Furthermore, the transition from the gap securing state to the gap closing start can be nonlinearly advanced by program control.
以上のように、樹脂射出中の所定タイミングより前において、スライドコア72間が所定間隔だけ離間するように、アクチュエーター52によってスライドコア72の位置を制御するとともに、所定タイミング以後において、スライドコア72の当たり面72pにおける接触圧がスライドコア72の光学転写面に変形を生じさせない範囲内の目標値となるように、アクチュエーター52によってスライドコア72の位置をフィードバック制御する。これにより、射出時にスライドコア72の光学転写面に反りや湾曲等の変形が生じることを防止でき、スライドコア72の当たり面72pにおいて隙間GAが形成されてバリが形成されることを防止できる。
As described above, the position of the slide core 72 is controlled by the actuator 52 so that the slide cores 72 are separated from each other by a predetermined interval before the predetermined timing during the resin injection, and after the predetermined timing, The position of the slide core 72 is feedback-controlled by the actuator 52 so that the contact pressure at the contact surface 72p becomes a target value within a range in which the optical transfer surface of the slide core 72 is not deformed. Thereby, it is possible to prevent the optical transfer surface of the slide core 72 from being deformed such as warping or bending during injection, and it is possible to prevent the gap GA from being formed on the contact surface 72p of the slide core 72 and the formation of burrs.
また、キャビティCV内の空気排除の進行に対応させてスライドコア72の前進開始に関する所定タイミングを設定することにより、キャビティCV内のエアー排除を確保しつつ、スライドコア72間の隙間に起因するバリの発生を防止できる。つまり、所定タイミング以後にスライドコア72を前進させてスライドコア72間の隙間を閉じることで、キャビティCV内に射出された樹脂が隙間GAにはみ出すことを防止することができる。その一方で、アクチュエーター52の駆動量の調整によりスライドコア72の前進にともなって当たり面72pの接触圧が許容値を超えないようにすることで、光学転写面である内側面72aが変形することを防止できる。つまり、図5に示す光学製品OPにおいて、スライドコア72間の隙間に起因するバリが発生することを防止できる。なお、接触圧の制御に際しての目標値Nをゼロ以上の所定値とすることで、樹脂充填の圧力に抗してスライドコア72の位置を維持することができる。
Further, by setting a predetermined timing regarding the start of advancement of the slide core 72 in accordance with the progress of the air removal in the cavity CV, it is possible to ensure the air removal in the cavity CV and to prevent the variability caused by the gap between the slide cores 72. Can be prevented. That is, the resin injected into the cavity CV can be prevented from protruding into the gap GA by moving the slide core 72 forward after a predetermined timing and closing the gap between the slide cores 72. On the other hand, by adjusting the drive amount of the actuator 52, the contact pressure of the contact surface 72p does not exceed the allowable value as the slide core 72 advances, so that the inner side surface 72a that is the optical transfer surface is deformed. Can be prevented. That is, in the optical product OP shown in FIG. 5, it is possible to prevent the occurrence of burrs due to the gap between the slide cores 72. Note that the position of the slide core 72 can be maintained against the resin filling pressure by setting the target value N for controlling the contact pressure to a predetermined value of zero or more.
接触圧の検出値mが目標値Nになっていると判断された場合(ステップS23でN=m)、位置調整制御部33は、樹脂の充填が実質的に完了したか否かを確認する(ステップS26)。樹脂の充填が実質的に完了していない場合(ステップS26でN)、ステップS23に戻って、樹脂の充填が実質的に完了するまでステップS23、S24を繰り返して接触圧の検出値mが目標値Nになるまで、アクチュエーター52を動作させる。
When it is determined that the detected value m of the contact pressure is the target value N (N = m in step S23), the position adjustment control unit 33 checks whether or not the resin filling is substantially completed. (Step S26). When the resin filling is not substantially completed (N in step S26), the process returns to step S23, and steps S23 and S24 are repeated until the resin filling is substantially completed, so that the detected value m of the contact pressure is the target. The actuator 52 is operated until the value N is reached.
結果的に、樹脂の射出又は充填が終わるまで、スライドコア72の当たり面72pが適度に密着する状態が維持される。
As a result, the state in which the contact surface 72p of the slide core 72 is in close contact with each other is maintained until the injection or filling of the resin is completed.
樹脂の充填が実質的に完了して樹脂射出を終了した場合(ステップS26でY)、保圧サイクルが開始される(ステップS32)。保圧サイクル中、制御装置30は、射出装置16を適宜動作させることで両金型41,42間のキャビティCV中の樹脂圧を保って、樹脂の充填性を高める。
When the resin filling is substantially completed and the resin injection is finished (Y in step S26), the pressure holding cycle is started (step S32). During the pressure-holding cycle, the control device 30 operates the injection device 16 as appropriate to maintain the resin pressure in the cavity CV between the molds 41 and 42, thereby improving the resin filling property.
保圧時において、スライドコア72の当たり面72pにおける接触圧がスライドコア72の光学転写面に変形を生じさせない範囲内の目標値となるように、アクチュエーター52によってスライドコア72の位置をフィードバック制御する。これにより、保圧時にスライドコア72の光学転写面に反りや湾曲等の変形が生じることを防止でき、スライドコア72の当たり面72pにおいて隙間GAが形成されてバリが形成されることを防止できる。
At the time of holding pressure, the position of the slide core 72 is feedback-controlled by the actuator 52 so that the contact pressure at the contact surface 72p of the slide core 72 becomes a target value within a range in which the optical transfer surface of the slide core 72 is not deformed. . Thereby, it is possible to prevent the optical transfer surface of the slide core 72 from being deformed such as warping or bending during pressure holding, and it is possible to prevent the gap GA from being formed on the contact surface 72p of the slide core 72 to form burrs. .
保圧サイクルの開始後、位置調整制御部33は、接触圧センサー54によって検出された接触圧が設定範囲内となっているか否か、すなわち接触圧の検出値mが目標値Nとなっているか否かを判断する(ステップS33)。検出値mが目標値Nと一致しなければ、位置調整制御部33は、位置調整用のアクチュエーター52を動作させて、接触圧の検出値mを目標値Nと一致させる。なお、接触圧の検出値mが目標値Nよりも大きい場合等においてに、ステップS34で位置調整用のアクチュエーター52を動作させる手法は、樹脂充填又は樹脂射出の開始後のステップS24と同様であり、説明を省略する。
After the start of the pressure holding cycle, the position adjustment control unit 33 determines whether or not the contact pressure detected by the contact pressure sensor 54 is within the set range, that is, whether or not the detected value m of the contact pressure is the target value N. It is determined whether or not (step S33). If the detected value m does not match the target value N, the position adjustment control unit 33 operates the position adjusting actuator 52 to match the detected value m of the contact pressure with the target value N. Note that, for example, when the detected value m of the contact pressure is larger than the target value N, the method of operating the actuator 52 for position adjustment in step S34 is the same as step S24 after the start of resin filling or resin injection. The description is omitted.
保圧サイクルが完了した場合(ステップS36でY)、冷却サイクルが開始される(ステップS42)。冷却サイクル中、制御装置30は、金型温度調節機91を適宜動作させることで両金型41,42間のキャビティCV中の樹脂を冷却して固化させる。
When the pressure holding cycle is completed (Y in step S36), the cooling cycle is started (step S42). During the cooling cycle, the control device 30 operates the mold temperature controller 91 as appropriate to cool and solidify the resin in the cavity CV between the molds 41 and 42.
冷却時において、スライドコア72の当たり面72pにおける接触圧がスライドコア72の光学転写面に変形を生じさせない範囲内の目標値となるように、アクチュエーター52によってスライドコア72の位置をフィードバック制御する。これにより、冷却時にスライドコア72の光学転写面に反りや湾曲等の変形が生じることを防止できる。
At the time of cooling, the position of the slide core 72 is feedback-controlled by the actuator 52 so that the contact pressure on the contact surface 72p of the slide core 72 becomes a target value within a range in which the optical transfer surface of the slide core 72 is not deformed. Thereby, it is possible to prevent the optical transfer surface of the slide core 72 from being deformed such as warping or bending during cooling.
冷却サイクルの開始後、位置調整制御部33は、接触圧センサー54によって検出された接触圧が設定範囲内となっているか否か、すなわち接触圧の検出値mが目標値Nとなっているか否かを判断する(ステップS43)。検出値mが目標値Nと一致しなければ、位置調整制御部33は、位置調整用のアクチュエーター52を動作させて、接触圧の検出値mを目標値Nと一致させる(ステップS44)。なお、ステップS44で位置調整用のアクチュエーター52を動作させる手法は、樹脂充填又は樹脂射出の開始前のステップS14と同様であり、説明を省略する。
After the start of the cooling cycle, the position adjustment control unit 33 determines whether or not the contact pressure detected by the contact pressure sensor 54 is within the set range, that is, whether or not the detected value m of the contact pressure is the target value N. Is determined (step S43). If the detected value m does not match the target value N, the position adjustment control unit 33 operates the position adjusting actuator 52 to match the detected value m of the contact pressure with the target value N (step S44). Note that the method of operating the position adjusting actuator 52 in step S44 is the same as step S14 before the start of resin filling or resin injection, and a description thereof will be omitted.
冷却サイクルが完了した場合(ステップS46でY)、制御装置30は、型開きを開始する(ステップS51)。そして、制御装置30は、位置調整制御部33による接触圧のフィードバック制御を終了させる(ステップS52)。最後に、制御装置30は、不図示の取出装置を動作させて、型開き後の第1及び第2金型41,42間から光学製品OPを取り出す(ステップS53)。
When the cooling cycle is completed (Y in step S46), the control device 30 starts mold opening (step S51). And the control apparatus 30 complete | finishes the feedback control of the contact pressure by the position adjustment control part 33 (step S52). Finally, the control device 30 operates a take-out device (not shown) to take out the optical product OP from between the first and second molds 41 and 42 after the mold is opened (step S53).
以上説明した光学製品用の成形装置100では、成形工程の樹脂射出開始時において、位置調整部59によってスライドコア72間に隙間GAを確保するので、キャビティCV内に残るエアーを追い出しつつ樹脂を十分に充填することができる。さらに、樹脂射出完了前において、接触圧センサー54の出力に基づいて、位置調整部59によってスライドコア72同士を接触させるので、スライドコア72の突き当てによって接触圧が過度となって光学転写面である内側面72aが変形することを防止でき、光学製品OPの光学面であるミラーMRに劣化が生じることを防止できる。さらに、スライドコア72の当たり面72pの接触が確保されるので、この当たり面72pにおいて隙間GAが形成されることを防止でき、かかる隙間GAに樹脂が入り込んでバリが形成されることを防止できる。
In the molding apparatus 100 for optical products described above, since the gap GA is secured between the slide cores 72 by the position adjusting unit 59 at the start of resin injection in the molding process, sufficient resin is expelled while expelling air remaining in the cavity CV. Can be filled. Furthermore, before the resin injection is completed, the slide cores 72 are brought into contact with each other by the position adjusting unit 59 based on the output of the contact pressure sensor 54, so that the contact pressure becomes excessive due to the abutment of the slide core 72 and the optical transfer surface. It is possible to prevent a certain inner side surface 72a from being deformed and to prevent the mirror MR, which is the optical surface of the optical product OP, from being deteriorated. Furthermore, since the contact of the contact surface 72p of the slide core 72 is ensured, it is possible to prevent the gap GA from being formed on the contact surface 72p, and to prevent the resin from entering the gap GA and forming burrs. .
図12は、変形例の成形装置100を説明する図である。この場合、4つのスライドコア72間に他の部材として入れ子78が配置されている。入れ子78は、例えば固定コア71に支持されている。この場合も、スライドコア72や入れ子78に接触圧センサー54を組み付けることで、当たり面72pにおける接触圧を監視することができ、光学転写面である内側面72aが変形することを防止でき、内側面72aと入れ子78との間にバリの原因となるような隙間が形成されることを防止できる。
FIG. 12 is a diagram for explaining a modified molding apparatus 100. In this case, a nest 78 is arranged as another member between the four slide cores 72. The insert 78 is supported by the fixed core 71, for example. Also in this case, by assembling the contact pressure sensor 54 to the slide core 72 and the insert 78, the contact pressure at the contact surface 72p can be monitored, and the inner side surface 72a, which is an optical transfer surface, can be prevented from being deformed. It is possible to prevent a gap that causes burrs from being formed between the side surface 72a and the insert 78.
以上、実施形態に即して本発明を説明したが、本発明は上記実施形態に限定されるものではない。例えば、スライドコア72の数は、4に限らず、光学製品の形状に応じて、2、3、…とすることができる。
As mentioned above, although this invention was demonstrated according to embodiment, this invention is not limited to the said embodiment. For example, the number of slide cores 72 is not limited to 4, and can be 2, 3,... According to the shape of the optical product.
また、アクチュエーター(位置調整部)52は、圧電素子に限らず、油圧又は空圧による駆動装置に置き換えることができる。
Also, the actuator (position adjustment unit) 52 is not limited to a piezoelectric element, and can be replaced by a hydraulic or pneumatic driving device.
また、図7のステップS13において、当初からアクチュエーター52を徐々に短縮し、検出値mが目標値NI以上になった時点で直ちにアクチュエーター52の動作を停止することもできる。この場合、アクチュエーター52の動作停止後に、図7のステップS15に進んで、対向する当たり面72p間の隙間が所定間隔となるようにできる。
Further, in step S13 of FIG. 7, the actuator 52 can be gradually shortened from the beginning, and the operation of the actuator 52 can be stopped immediately when the detected value m becomes equal to or greater than the target value NI. In this case, after the operation of the actuator 52 is stopped, the process proceeds to step S15 in FIG. 7 so that the gap between the facing contact surfaces 72p becomes a predetermined interval.
以上では、アクチュエーター(位置調整部)52のみによって、対向する当たり面72p間の隙間を制御したが、樹脂圧が過度になると、スライドコア72が初期の状態以上に後退してしまう場合も考えられる。このような場合を考慮して、アクチュエーター52に加えて追加のアクチュエーターを設けることができる。追加のアクチュエーターは、油圧又は空気圧で動作するものとでき、例えば付勢部材53に役割を持たせることができる。
In the above description, the gap between the opposing contact surfaces 72p is controlled only by the actuator (position adjusting unit) 52. However, if the resin pressure becomes excessive, the slide core 72 may be retracted beyond the initial state. . In consideration of such a case, an additional actuator can be provided in addition to the actuator 52. The additional actuator can be hydraulically or pneumatically operated. For example, the biasing member 53 can have a role.
Claims (11)
- 光学転写面を有するスライドコアを含む成形金型と、
前記スライドコアの移動による他の部材との当たり面の接触圧を計測する接触圧センサーと、
前記スライドコアの位置を調整する位置調整部と、
成形工程の樹脂射出開始時において、前記位置調整部によって前記スライドコアと前記他の部材との間に隙間を確保するとともに、樹脂射出完了前において、前記接触圧センサーの出力に基づいて、前記位置調整部によって前記スライドコアと前記他の部材とを接触させる制御部とを備える光学製品の成形装置。 A molding die including a slide core having an optical transfer surface;
A contact pressure sensor that measures a contact pressure of a contact surface with another member due to the movement of the slide core;
A position adjusting unit for adjusting the position of the slide core;
At the start of resin injection in the molding process, the position adjusting unit secures a gap between the slide core and the other member, and before the resin injection is completed, based on the output of the contact pressure sensor, the position An apparatus for molding an optical product, comprising: a control unit that brings the slide core and the other member into contact with each other by an adjustment unit. - 前記制御部は、前記スライドコアと前記他の部材との間に隙間を確保するため、前記接触圧センサーの出力に基づいて前記位置調整部によって前記接触圧センサーの出力が接触を示す接触状態を一旦実現するとともに、当該接触状態から前記スライドコアを所定量だけ後退させた状態を維持する、請求項1に記載の光学製品の成形装置。 In order to secure a gap between the slide core and the other member, the control unit has a contact state in which the output of the contact pressure sensor indicates contact by the position adjustment unit based on the output of the contact pressure sensor. The apparatus for molding an optical product according to claim 1, which is realized once and maintains a state in which the slide core is retracted by a predetermined amount from the contact state.
- 前記制御部は、樹脂射出中の所定タイミング以後において、前記接触圧センサーの出力に基づいて前記位置調整部によって前記スライドコアを当該スライドコアが前記他の部材に接触するまで前進させる、請求項1及び2のいずれか一項に記載の光学製品の成形装置。 The control unit advances the slide core until the slide core comes into contact with the other member by the position adjusting unit based on an output of the contact pressure sensor after a predetermined timing during resin injection. 3. An apparatus for molding an optical product according to claim 1.
- 前記位置調整部は、伸縮によって前記スライドコアの前記当たり面における接触圧を調整するアクチュエーターである、請求項1~3のいずれか一項に記載の光学製品の成形装置。 The optical product molding apparatus according to any one of claims 1 to 3, wherein the position adjusting unit is an actuator that adjusts a contact pressure on the contact surface of the slide core by expansion and contraction.
- 前記アクチュエーターは、圧電素子を含む、請求項4に記載の光学製品の成形装置。 The apparatus for molding an optical product according to claim 4, wherein the actuator includes a piezoelectric element.
- 前記制御部は、成形工程の型閉め時において、前記スライドコアと前記他の部材とが所定間隔だけ離間するように、前記アクチュエーターによって前記スライドコアの位置を制御する、請求項4及び5のいずれか一項に記載の光学製品の成形装置。 The said control part controls the position of the said slide core by the said actuator so that the said slide core and the said other member may be spaced apart by predetermined spacing at the time of mold closing of a formation process. An apparatus for molding an optical product according to claim 1.
- 前記制御部は、成形工程の樹脂射出中の所定タイミングより前において、前記スライドコアと前記他の部材とが所定間隔だけ離間するように、前記アクチュエーターによって前記スライドコアの位置を制御するとともに、前記所定タイミング以後において、前記スライドコアの前記当たり面における接触圧が前記スライドコアの光学転写面に変形を生じさせない範囲内の目標値となるように、前記アクチュエーターによって前記スライドコアの位置をフィードバック制御する、請求項4~6のいずれか一項に記載の光学製品の成形装置。 The control unit controls the position of the slide core by the actuator so that the slide core and the other member are separated from each other by a predetermined interval before a predetermined timing during resin injection in the molding process, and After a predetermined timing, the position of the slide core is feedback-controlled by the actuator so that the contact pressure at the contact surface of the slide core becomes a target value within a range that does not cause deformation of the optical transfer surface of the slide core. The apparatus for molding an optical product according to any one of claims 4 to 6.
- 前記制御部は、成形工程の保圧時において、前記スライドコアの前記当たり面における接触圧が前記スライドコアの光学転写面に変形を生じさせない範囲内の目標値となるように、前記アクチュエーターによって前記スライドコアの位置をフィードバック制御する、請求項4~7のいずれか一項に記載の光学製品の成形装置。 The controller controls the actuator so that the contact pressure at the contact surface of the slide core is a target value within a range that does not cause deformation of the optical transfer surface of the slide core at the time of holding pressure in the molding process. The optical product molding apparatus according to claim 4, wherein the position of the slide core is feedback-controlled.
- 前記制御部は、成形工程の冷却時において、前記スライドコアの前記当たり面における接触圧が前記スライドコアの光学転写面に変形を生じさせない範囲内の目標値となるように、前記アクチュエーターによって前記スライドコアの位置をフィードバック制御する、請求項4~8のいずれか一項に記載の光学製品の成形装置。 The controller controls the slide by the actuator so that a contact pressure at the contact surface of the slide core becomes a target value within a range that does not cause deformation of the optical transfer surface of the slide core during cooling of the molding process. The apparatus for molding an optical product according to any one of claims 4 to 8, wherein the position of the core is feedback-controlled.
- 前記スライドコアは前記成形金型の支持面に沿って複数配置され、前記接触圧センサーは前記スライドコア同士の当たり面の接触圧を計測し、前記位置調整部は、各スライドコアの位置を調整する、請求項1~9のいずれか一項に記載の光学製品の成形装置。 A plurality of the slide cores are arranged along the support surface of the molding die, the contact pressure sensor measures the contact pressure of the contact surfaces of the slide cores, and the position adjusting unit adjusts the position of each slide core. The apparatus for molding an optical product according to any one of claims 1 to 9.
- 光学転写面を有するスライドコアを含む成形金型と、前記スライドコアの移動による他の部材との当たり面の接触圧を計測する接触圧センサーと、前記スライドコアの位置を調整する位置調整部とを備える成形装置を用いた、光学製品の成形方法であって、
成形工程の樹脂射出開始時において、前記接触圧センサーの出力を利用して、前記位置調整部によって前記スライドコアと前記他の部材との間に隙間を確保するとともに、樹脂射出完了前において、前記接触圧センサーの出力に基づいて、前記位置調整部によって前記スライドコアと前記他の部材とを接触させる光学製品の製造方法。 A molding die including a slide core having an optical transfer surface; a contact pressure sensor for measuring a contact pressure of a contact surface with another member due to movement of the slide core; and a position adjusting unit for adjusting the position of the slide core; An optical product molding method using a molding apparatus comprising:
At the start of resin injection in the molding process, using the output of the contact pressure sensor, the position adjustment unit secures a gap between the slide core and the other member, and before the resin injection is completed, A method of manufacturing an optical product, wherein the position adjusting unit contacts the slide core and the other member based on an output of a contact pressure sensor.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201680024929.5A CN107530930A (en) | 2015-04-30 | 2016-04-20 | The building mortion and manufacture method of optical goods |
JP2017515506A JPWO2016175108A1 (en) | 2015-04-30 | 2016-04-20 | Optical product molding apparatus and manufacturing method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015093726 | 2015-04-30 | ||
JP2015-093726 | 2015-04-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016175108A1 true WO2016175108A1 (en) | 2016-11-03 |
Family
ID=57198377
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/062575 WO2016175108A1 (en) | 2015-04-30 | 2016-04-20 | Optical product molding apparatus and manufacturing method |
Country Status (3)
Country | Link |
---|---|
JP (1) | JPWO2016175108A1 (en) |
CN (1) | CN107530930A (en) |
WO (1) | WO2016175108A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20210316488A1 (en) * | 2018-12-26 | 2021-10-14 | Denso Corporation | Resin part and its manufacturing method |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08142142A (en) * | 1994-11-17 | 1996-06-04 | Canon Inc | Resin molding method and apparatus |
JP2001058335A (en) * | 1999-08-20 | 2001-03-06 | Ricoh Co Ltd | Method and mold for molding plastic material |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000158492A (en) * | 1998-11-30 | 2000-06-13 | Konica Corp | Mold for molding throttle member, film unit with lens and method for molding throttle member |
JP2010221516A (en) * | 2009-03-24 | 2010-10-07 | Konica Minolta Opto Inc | Molding mold, molding method, and optical element |
CN104309081A (en) * | 2014-09-30 | 2015-01-28 | 天津市科成防水材料有限公司 | Injection molding machine |
CN104354279A (en) * | 2014-09-30 | 2015-02-18 | 天津市科成防水材料有限公司 | Automatic injection molding machine |
-
2016
- 2016-04-20 CN CN201680024929.5A patent/CN107530930A/en active Pending
- 2016-04-20 JP JP2017515506A patent/JPWO2016175108A1/en active Pending
- 2016-04-20 WO PCT/JP2016/062575 patent/WO2016175108A1/en active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08142142A (en) * | 1994-11-17 | 1996-06-04 | Canon Inc | Resin molding method and apparatus |
JP2001058335A (en) * | 1999-08-20 | 2001-03-06 | Ricoh Co Ltd | Method and mold for molding plastic material |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20210316488A1 (en) * | 2018-12-26 | 2021-10-14 | Denso Corporation | Resin part and its manufacturing method |
US11801626B2 (en) * | 2018-12-26 | 2023-10-31 | Denso Corporation | Resin part and its manufacturing method |
Also Published As
Publication number | Publication date |
---|---|
JPWO2016175108A1 (en) | 2018-02-22 |
CN107530930A (en) | 2018-01-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2011040150A1 (en) | Mold-aligning apparatus, molding machine, and molding method | |
JP5031867B2 (en) | Injection molding method and apparatus | |
JP5018481B2 (en) | Injection molding equipment | |
JP4750195B2 (en) | Injection molding machine with nozzle touch mechanism | |
JPWO2007037136A1 (en) | Injection molding equipment | |
WO2016175108A1 (en) | Optical product molding apparatus and manufacturing method | |
WO2016167337A1 (en) | Device for molding optical product, and method for manufacturing optical product | |
KR20090122349A (en) | Plastic lens molding method | |
CN107000291B (en) | Mold clamping device, molding device, and molding method | |
WO2017212907A1 (en) | Injection compression molding mold and injection compression molding method | |
TWI503219B (en) | A thin plate injection molding method and a thin plate injection press forming apparatus | |
KR101423238B1 (en) | Molding device for injection compression molding for non-uniform wall thickness | |
JP5369474B2 (en) | Mold | |
JP6699138B2 (en) | Resin mold | |
JPH044117A (en) | Mold, injection molding machine for that mold and molded product | |
JP2009233975A (en) | Injection mold and injection molding method | |
JP5131089B2 (en) | Spacer-integrated spool, molding tool for the spool part, manufacturing method thereof, and spacer-integrated spool manufactured by the manufacturing method | |
JP6920494B1 (en) | How to adjust the mold clamping force of the toggle type mold clamping device | |
WO2023095652A1 (en) | Ejector device, mould clamping device, and injection moulding device | |
JP7240343B2 (en) | INJECTION COMPRESSION MOLDING APPARATUS AND INJECTION COMPRESSION MOLDING METHOD | |
JPH0671707A (en) | Compression correcting method for injection compression molding method | |
JP2685628B2 (en) | Injection molding equipment | |
JP2004276540A (en) | Device for producing plastic molded product | |
TW202317348A (en) | Method for producing forming mold for resin molding, forming mold for resin molding, resin molding device, and method for producing resin molded article | |
JP5240873B2 (en) | Clamping device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16786385 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017515506 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16786385 Country of ref document: EP Kind code of ref document: A1 |