WO2016167152A1 - Gas-barrier plastic molded product and method for manufacturing same - Google Patents

Gas-barrier plastic molded product and method for manufacturing same Download PDF

Info

Publication number
WO2016167152A1
WO2016167152A1 PCT/JP2016/061070 JP2016061070W WO2016167152A1 WO 2016167152 A1 WO2016167152 A1 WO 2016167152A1 JP 2016061070 W JP2016061070 W JP 2016061070W WO 2016167152 A1 WO2016167152 A1 WO 2016167152A1
Authority
WO
WIPO (PCT)
Prior art keywords
content
gas barrier
plastic molded
vacuum chamber
equation
Prior art date
Application number
PCT/JP2016/061070
Other languages
French (fr)
Japanese (ja)
Inventor
博康 田渕
Original Assignee
キリン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キリン株式会社 filed Critical キリン株式会社
Priority to KR1020177032902A priority Critical patent/KR20170138476A/en
Priority to MYPI2017703465A priority patent/MY186446A/en
Priority to US15/566,515 priority patent/US10487397B2/en
Priority to SG11201708290QA priority patent/SG11201708290QA/en
Priority to CN201680021428.1A priority patent/CN107429392B/en
Priority to AU2016248605A priority patent/AU2016248605A1/en
Priority to EP16779943.6A priority patent/EP3284846B1/en
Publication of WO2016167152A1 publication Critical patent/WO2016167152A1/en
Priority to PH12017501752A priority patent/PH12017501752A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D23/00Details of bottles or jars not otherwise provided for
    • B65D23/02Linings or internal coatings
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/04Coating on selected surface areas, e.g. using masks
    • C23C16/045Coating cavities or hollow spaces, e.g. interior of tubes; Infiltration of porous substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/32Carbides
    • C23C16/325Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/42Silicides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/452Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by activating reactive gas streams before their introduction into the reaction chamber, e.g. by ionisation or addition of reactive species
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process

Definitions

  • the present invention relates to a gas barrier plastic molding and a method for producing the same.
  • a heating element CVD method is known as a technique for forming a thin film having gas barrier properties (hereinafter sometimes referred to as a gas barrier thin film).
  • the heating element CVD method is also referred to as a Cat-CVD method or a hot wire CVD method, which decomposes by bringing a raw material gas into contact with a heated heating element and undergoes a reaction process directly or in a gas phase.
  • This is a method of depositing as a thin film on the surface of a plastic molded body (see, for example, Patent Document 1).
  • Patent Document 1 is excellent in gas barrier properties but lacks transparency.
  • An object of the present invention is to provide a gas barrier plastic molded article excellent in gas barrier properties and transparency and a method for producing the same.
  • the content of Si, O, or C is the content in the breakdown of the three elements of Si, O, and C.
  • the content of Si, O, or C is the content in the breakdown of the three elements of Si, O, and C.
  • the method for producing a gas barrier plastic molding according to the present invention includes an evacuation step in which the inside of a vacuum chamber is evacuated to adjust the inside of the vacuum chamber to an initial pressure P 0 or lower, and the pressure in the vacuum chamber is set to P 0 or lower.
  • a silicon-containing hydrocarbon gas is introduced into the vacuum chamber to reduce the pressure in the vacuum chamber.
  • a film forming step for forming the film for forming the film.
  • Examples of the resin constituting the plastic molded body 91 include polyethylene terephthalate resin (PET), polybutylene terephthalate resin, polyethylene naphthalate resin, polyethylene resin, polypropylene resin (PP), and cycloolefin copolymer resin (COC, cyclic olefin copolymer).
  • PET polyethylene terephthalate resin
  • PP polypropylene resin
  • COC cycloolefin copolymer resin
  • Ionomer resin poly-4-methylpentene-1 resin, polymethyl methacrylate resin, polystyrene resin, ethylene-vinyl alcohol copolymer resin, acrylonitrile resin, polyvinyl chloride resin, polyvinylidene chloride resin, polyamide resin, polyamideimide resin
  • Polyacetal resin polycarbonate resin, polysulfone resin, tetrafluoroethylene resin, acrylonitrile-styrene resin, or acrylonitrile-butadiene-styrene resin That.
  • One of these may be used as a single layer, or two or more may be used as a laminate, but a single layer is preferable in terms of productivity.
  • the type of resin is more preferably PET.
  • the gas barrier plastic molded body 90 includes a form in which the plastic molded body 91 is a container, a film, or a sheet.
  • the shape can be appropriately set according to the purpose and application, and is not particularly limited.
  • the container includes a container that is used with a lid, a stopper, or a seal, or a container that is used without being used.
  • the size of the opening can be appropriately set according to the contents.
  • the plastic container includes a plastic container having a predetermined thickness having moderate rigidity and a plastic container formed by a sheet material having no rigidity. The present invention is not limited to the manufacturing method of the container.
  • the contents are, for example, beverages such as water, tea beverages, soft drinks, carbonated beverages or fruit juice beverages, or liquid, viscous, powder or solid foods.
  • the container may be either a returnable container or a one-way container.
  • the film or sheet includes a long sheet or cut sheet. It does not matter whether the film or sheet is stretched or unstretched.
  • the present invention is not limited to the method for manufacturing the plastic molded body 91.
  • the thickness of the plastic molded body 91 can be appropriately set according to the purpose and application, and is not particularly limited.
  • the thickness of the bottle is preferably 50 to 500 ⁇ m, more preferably 100 to 350 ⁇ m.
  • the thickness of the film is preferably 3 to 300 ⁇ m, more preferably 10 to 100 ⁇ m.
  • the thickness of the film is preferably 25 to 200 ⁇ m, more preferably 50 to 100 ⁇ m.
  • the thickness of the sheet is preferably 50 to 500 ⁇ m, more preferably 100 to 350 ⁇ m.
  • the gas barrier thin film 92 is provided on one or both of the inner wall surface and the outer wall surface. Further, when the plastic molded body 91 is a film, the gas barrier thin film 92 is provided on one side or both sides.
  • the gas barrier thin film 92 contains silicon (Si), carbon (C), and oxygen (O) as constituent elements, and when the X-ray electron spectroscopic analysis is performed under the condition (1), the peak appearance position of the bond energy of Si—C And has a region where the main peak is observed.
  • Condition (1) The measurement range is 95 to 105 eV.
  • the gas barrier thin film 92 is a thin film having excellent transparency.
  • the main peak means a peak having the highest intensity among peaks observed by separating the peaks in the condition (1).
  • a peak observed at the peak appearance position of the Si—C bond energy is a Si—Si bond. It is preferably larger than the peak observed at the energy peak appearance position. Thereby, the transparency can be further enhanced.
  • the content of Si, O, or C is the content in the breakdown of the three elements of Si, O, and C.
  • Si content [%] ⁇ (Si content [atomic%]) / (total content of Si, O and C [atomic%]) ⁇ ⁇ 100
  • the content of Si, O, or C is the content in the breakdown of the three elements of Si, O, and C.
  • the O content represented by (Equation 3) in the upper layer 92a is lower than the Si content represented by (Equation 2) in the upper layer 92a (Condition 2). It is preferable.
  • the upper layer 92a has the highest C content, then the Si content and the O content, and the transparency can be further enhanced.
  • (Equation 3) O content [%] ⁇ (O content [atomic%]) / (total content of Si, O and C [atomic%]) ⁇ ⁇ 100
  • the content of Si, O, or C is the content in the breakdown of the three elements of Si, O, and C.
  • the C content represented by (Equation 1) in the lower layer 92b is higher than the O content represented by (Equation 3) in the lower layer 92b (Condition 3). Is preferred.
  • the adhesion between the thin film and the plastic molded body can be increased.
  • the gas barrier thin film 92 is preferably substantially colorless and transparent.
  • substantially colorless and transparent means that the b * value is 2.0 or less, using the degree of coloration b *, which is the color difference in JIS K 7105-1981 “Testing methods for optical properties of plastics” as an index. Say things.
  • the b * value is more preferably 1.7 or less.
  • the b * value can be obtained by Equation 4.
  • Equation 4 Y or Z is a tristimulus value.
  • the correlation between the b * value and visual observation in the present invention is as shown in Table 1.
  • the gas barrier plastic molded body 90 preferably has a barrier property improvement rate (Barrier Improvement Factor, hereinafter referred to as BIF) obtained by Equation 5 of 5 or more. More preferably, it is 10 or more.
  • BIF Barrier Improvement Factor
  • the oxygen permeability is set to 0.1. 0070 cc / container / day or less.
  • the oxygen permeability can be 0.0098 cc / container / day or less.
  • a method for producing a gas barrier plastic molded body according to this embodiment will be described by taking as an example a case where a gas barrier thin film is formed on the inner surface of a plastic bottle as the plastic molded body 4.
  • the present invention is not limited to an apparatus, and for example, as shown in FIG. 2 of Patent Document 1, an apparatus having only one chamber may be used.
  • silicon-containing hydrocarbon gas is introduced while the vacuum chamber 31 is evacuated to adjust the pressure in the vacuum chamber 31 to P 0 .
  • the pressure in the vacuum chamber 31 increases rapidly, and the pressure in the vacuum chamber 31 may greatly exceed P 0 (for example, exceed P B ) in the initial stage of the preparation process.
  • P 0 for example, exceed P B
  • the pressure in the vacuum chamber 31 may be adjusted to be less than P 0 in the evacuation process so that the pressure in the vacuum chamber 31 does not become a large pressure exceeding, for example, P B in the preparation process.
  • the heating element 42 is heated by energization, for example.
  • the heating element 42 has a tantalum carbide phase.
  • the tantalum carbide phase is, for example, a carbide obtained by carbonizing tantalum, a tantalum-based alloy, or tantalum or a tantalum-based alloy containing an additive.
  • the tantalum carbide phase may contain, for example, Ta 2 C and TaC.
  • the tantalum carbide phase may be present throughout the heating element 42 or may be present in a portion of the heating element 42.
  • the heating element 42 is heated for the first time in the film forming process, and the heating element 42 is not heated in the exhaust process and the preparation process.
  • the only gas remaining in the vacuum chamber 31 is air, and when the heating element 42 is heated in such an atmosphere, the heating element 42 is likely to be oxidized and deteriorated.
  • the vacuum breaker valve (not shown) installed in the entrance / exit chamber 32 is operated to open the inside / outside chamber 32 to the atmosphere. At this time, it is preferable that the vacuum chamber 31 is always in a vacuum state, and the heating element 42 disposed in the vacuum chamber 31 is always kept in a vacuum state.
  • the open / close gate 56 is opened, the gas barrier plastic molded body is taken out, and a new untreated plastic molded body is introduced. Then, the open / close gate 56 is closed, and the exhaust process, the preparation process, and the film forming process are repeated.
  • the method for producing a gas barrier plastic molding having a substantially colorless and transparent gas barrier thin film has been described.
  • the gas barrier thin film is not required to have a high degree of transparency (for example, b * exceeds 2 and is 6 or less). The case will be described.
  • the method for producing a gas barrier plastic molded body according to the second embodiment includes an evacuation process in which the inside of the vacuum chamber 31 is evacuated to adjust the inside of the vacuum chamber 31 to an initial pressure P 0 or less, and the pressure in the vacuum chamber 31 is P.
  • the heating element 42 is adjusted to 0 or less and is not heated, the source gas is introduced into the vacuum chamber 31 to adjust the pressure in the vacuum chamber 31 to P 0 .
  • the manufacturing method according to the second embodiment is different from the manufacturing method according to the first embodiment in the following two points.
  • the first point is the type of the heating element 42.
  • the heating element 42 has a tantalum carbide phase, whereas in the second embodiment, the material of the heating element 42 is not limited.
  • the second point is the type of source gas used. While the silicon-containing hydrocarbon gas is used in the first embodiment, the second embodiment is not limited to the silicon-containing hydrocarbon gas.
  • the manufacturing method of the second embodiment has the same basic configuration as the manufacturing method according to the first embodiment except for the above two points. For this reason, here, description is omitted about a common structure, and only a different point is demonstrated.
  • the material of the heating element is not particularly limited, but C, W, Ta, Nb, Ti, Hf, V, Cr, Mo, Mn, Tc, Re, Fe, Ru, Os, Co, Rh , Ir, Ni, Pd and Pt are preferably included.
  • a heat generating body contains the 1 or 2 or more metal element chosen from the group of Ta, W, Mo, and Nb, for example.
  • the material containing a metal element is a pure metal, an alloy, a metal or alloy containing an additive, or an intermetallic compound.
  • the metal which forms an alloy or an intermetallic compound may be a combination of two or more of the aforementioned metals, or a combination of the aforementioned metals and other metals.
  • the other metal is, for example, chromium.
  • the alloy or intermetallic compound preferably contains a total of 80 atomic% or more of one or more metal elements selected from the group of Ta, W, Mo and Nb.
  • the additive is, for example, an oxide such as zirconia, yttria, calcia, or silica. The addition amount of the additive is preferably 1% by mass or less.
  • the source gas other than the above-mentioned silicon-containing hydrocarbon gas is, for example, alkane-based gases such as methane, ethane, propane, butane, pentane, or hexane, and alkene-based gases such as ethylene, propylene, or butyne.
  • alkane-based gases such as methane, ethane, propane, butane, pentane, or hexane
  • alkene-based gases such as ethylene, propylene, or butyne.
  • Example 1 A gas barrier plastic molded body was manufactured using the film forming apparatus shown in FIG.
  • a plastic bottle made of PET (with an internal volume of 500 ml) was used as the plastic molding, vinylsilane as the silicon-containing hydrocarbon gas, and tantalum carbide wire ( ⁇ 0.5 mm) as the heating element.
  • the plastic bottle was lowered from the entrance / exit chamber, and the heating element and the source gas supply pipe were inserted into the plastic bottle.
  • the film forming process was performed as follows. In the film forming process, heating of the heating element is started while continuing the introduction of the silicon-containing hydrocarbon gas, and the heating is performed up to 2100 to 2200 ° C. When the thin film deposited on the inner surface of the plastic bottle reaches 20 nm, the heating is generated. Body heating stopped. Thereafter, the plastic bottle was returned to the entrance / exit chamber, the gate valve was closed, and the gas supply was stopped. In the film forming process, the pressure in the vacuum chamber was allowed to reach P B Pa higher than P A Pa.
  • Example 2 A gas barrier plastic molded article was produced in the same manner as in Example 1 except that the pressures P A and P B in each step were adjusted so that (P B ⁇ P A ) / P 0 was 0.15.
  • Example 1 A gas barrier plastic molded article was prepared in the same manner as in Example 1 except that a tantalum wire ( ⁇ 0.5 mm) that was not carbonized was used as a heating element, the preparatory process was not performed, and the thickness of the thin film was changed to 36 nm. Manufactured.
  • XPS analysis-composition analysis The surface of the thin film of the plastic bottle obtained in Example 1 and Comparative Example 1 in the first series of film forming operations was analyzed using an XPS apparatus (model: QUANTERASXM, manufactured by PHI). Table 2 shows the ratio of constituent elements on the surface of the thin film.
  • the conditions of XPS analysis are as follows. Measurement conditions Excitation X-ray: Al mono Detection area: 100 ⁇ m ⁇ Extraction angle: 90deg Detection depth: about 8nm
  • FIG. 4 is a narrow scan spectrum of Si2p obtained by XPS analysis of the thin film surface under the condition (1).
  • (A) is the thin film of Example 1
  • (b) is the thin film of Comparative Example 1.
  • a main peak was observed at the peak appearance position of the Si—C bond energy
  • Comparative Example 1 the main peak was observed at the peak appearance position of the Si—Si bond energy. A peak was observed.
  • Example 1 XPS analysis-depth profile analysis
  • Comparative Example 1 the depth profile of the thin film of the plastic bottle obtained in the first series of film forming operations was analyzed for Example 1 and Comparative Example 1 while performing argon ion etching.
  • the test piece and analysis conditions were the same as in the composition analysis.
  • the gas barrier thin film is divided into two equal parts in the depth direction, in Example 1, 10 nm on the opposite side to the plastic molded body is the upper layer, 10 nm on the plastic molded body side is the lower layer, and in Comparative Example 1, the plastic is 18 nm on the side opposite to the molded body was the upper layer, and 18 nm on the plastic molded body side was the lower layer.
  • FIG. 5 is a depth profile of Example 1.
  • the O and C profiles have one extreme value in each of the upper layer and the lower layer, the O profile having the highest priority is selected, and Si, C, and O at the extreme values of the O profile are selected.
  • the content of was compared.
  • the extreme value of the profile of O has a minimum value in Sputter Time 1.5 min included in the upper layer, and has a maximum value in Sputter Time 6.0 min included in the lower layer.
  • the C content in Sputter Time 1.5 min was higher than the Si content in Sputter Time 1.5 min.
  • the O content in Sputter Time 1.5 min was lower than the Si content in Sputter Time 1.5 min. From the above, in Example 1, it was confirmed that the composition at the extreme value of the O profile of the upper layer had the highest C content, followed by the Si content and the O content.
  • FIG. 6 is a depth profile of Comparative Example 1.
  • the O and C profiles have one extreme value in each of the upper layer and the lower layer, the O profile having the highest priority is selected and Si, C, and O at the extreme values of the O profile are selected. The content of was compared.
  • the extreme value of the profile of O has a minimum value in Sputter Time 6.0 min included in the upper layer, and has a maximum value in Sputter Time 13.5 min included in the lower layer.
  • the C content in Sputter Time 6.0 min was lower than the Si content in Sputter Time 6.0 min.
  • the O content in Sputter Time 6.0 min was lower than the Si content in Sputter Time 6.0 min. From the above, in Comparative Example 1, it was confirmed that the composition at the extreme value of the O profile of the upper layer had the highest Si content.
  • Example 1 as shown in FIG. 5, the C content in Sputter Time 6.0 min is higher than the Si content in Sputter Time 6.0 min, and the O content in Sputter Time 6.0 min is Sputter Time 6.0 min. It was higher than the Si content in.
  • Comparative Example 1 as shown in FIG. 6, the C content in Sputter Time 13.5 min is lower than the Si content in Sutter Time 13.5 min, and the O content in Sputter Time 13.5 min is Sputter. It was higher than the Si content in Time 13.5 min.
  • Example 1 when the integrated value of each atomic concentration of Si, C, and O in the lower layer was determined, in Example 1, the lower layer had the highest C content, and then the O content and the Si content. It could be confirmed. Moreover, in FIG. 6, when the integrated value of each atomic concentration of Si, C, and O in the lower layer was obtained, in Comparative Example 1, the lower layer had the highest O content, followed by the Si content and the C content. I was able to confirm.
  • Transparency evaluation The transparency was evaluated using the plastic bottles obtained in the first series of film forming operations for Examples and Comparative Examples. Transparency was evaluated by b * value.
  • the b * value was measured using a self-recording spectrophotometer (U-3900, manufactured by Hitachi) equipped with a 60 ⁇ integrating sphere attachment device (for infrared, visible and near infrared) manufactured by the same company.
  • a self-recording spectrophotometer U-3900, manufactured by Hitachi
  • a 60 ⁇ integrating sphere attachment device for infrared, visible and near infrared manufactured by the same company.
  • an ultrasensitive photomultiplier tube R928: for ultraviolet and visible
  • cooled PbS for near infrared region
  • the transmittance measurement of only the gas barrier thin film can be calculated.
  • the b * value in this example is the same as that calculated in the form including the absorption rate of the PET bottle. Show.
  • the test piece used for the measurement of glossiness was used for the measurement.
  • the average value of 3 sheets is shown in Table 3 as b * value.
  • gas barrier property evaluation Regarding Examples and Comparative Examples, gas barrier properties were evaluated using each plastic bottle obtained when the number of repetitions of a series of film forming operations was 1st, 100th, and 200th. The gas barrier property was evaluated by BIF. First, oxygen permeability was measured for each plastic bottle of the example or comparative example. The oxygen permeability was measured under the conditions of 23 ° C. and 90% RH using an oxygen permeability measuring device (model: Oxtran 2/20, manufactured by Modern Control), conditioned for 24 hours from the start of measurement, and then started measurement. The value after 72 hours had passed.
  • an oxygen permeability measuring device model: Oxtran 2/20, manufactured by Modern Control
  • the oxygen permeability value of the unformed film bottle is defined as the oxygen permeability value of the plastic molded body where the thin film is not formed, and the oxygen permeability value of each plastic bottle of the example or comparative example is used as the gas barrier plastic molding. Calculated as oxygen permeability of the body.
  • the evaluation criteria are as follows. The evaluation results are shown in Table 3. A: BIF of each plastic bottle is 10 or more (practical level). ⁇ : BIF of each plastic bottle is 5 or more and less than 10 (practical lower limit level). X: BIF of each plastic bottle is less than 5 (practical unsuitable level).
  • each Example was substantially colorless and transparent and had high gas barrier properties. Moreover, compared with the comparative example 1, it has confirmed that it was a manufacturing method excellent in durability with respect to the catalyst activity and intensity
  • Example 1 and Example 2 were able to form a thin film having a high gas barrier property without losing the catalytic activity of the heating element even when the heating element was repeatedly used 10,000 times or more.
  • (P B -P A ) / P 0 was 0.11 or more, and a gas barrier thin film having high transparency and high gas barrier properties could be formed.
  • (P B -P A ) / P 0 was 0.15 or more, and the gas barrier property was kept high even when the heating element was repeatedly used.

Abstract

The purpose of the present invention is to provide a gas-barrier plastic molded product having superior gas-barrier properties and transparency, and a method for manufacturing the same. A gas-barrier plastic molded product 90 according to the present invention is provided with a plastic molded product 91 and a gas-barrier thin-film 92 provided on the surface of the plastic molded product 91, wherein the gas-barrier thin-film 92 contains silicon (Si), carbon (C), and oxygen (O) as constituent elements, and when carrying out X-ray electron spectrometry under condition (1), the gas-barrier thin-film 92 has a region in which the main peak is observed in a peak appearance position of the Si-C binding energy. Condition (1): measurement range is 95-105 eV.

Description

ガスバリア性プラスチック成形体及びその製造方法Gas barrier plastic molded body and method for producing the same
 本発明は、ガスバリア性プラスチック成形体及びその製造方法に関する。 The present invention relates to a gas barrier plastic molding and a method for producing the same.
 従来、ガスバリア性を有する薄膜(以降、ガスバリア薄膜ということもある。)を形成する技術として、発熱体CVD法が知られている。発熱体CVD法は、Cat-CVD法又はホットワイヤーCVD法とも呼ばれ、発熱させた発熱体に原料ガスを接触させて分解し、生成した化学種を直接又は気相中で反応過程を経た後に、プラスチック成形体の表面上に薄膜として堆積させる方法である(例えば、特許文献1を参照。)。 Conventionally, a heating element CVD method is known as a technique for forming a thin film having gas barrier properties (hereinafter sometimes referred to as a gas barrier thin film). The heating element CVD method is also referred to as a Cat-CVD method or a hot wire CVD method, which decomposes by bringing a raw material gas into contact with a heated heating element and undergoes a reaction process directly or in a gas phase. This is a method of depositing as a thin film on the surface of a plastic molded body (see, for example, Patent Document 1).
WO2012/091097号公報WO2012 / 091097 WO2013/099960号公報WO2013 / 099960
 プラスチック成形体では高いガスバリア性に加えて、高い透明性が求められる場合がある。特許文献1記載の方法では、ガスバリア性に優れるものの、透明性が不足していた。 In addition to high gas barrier properties, plastics may require high transparency. The method described in Patent Document 1 is excellent in gas barrier properties but lacks transparency.
 本発明の目的は、ガスバリア性及び透明性に優れたガスバリア性プラスチック成形体及びその製造方法を提供することである。 An object of the present invention is to provide a gas barrier plastic molded article excellent in gas barrier properties and transparency and a method for producing the same.
 本発明に係るガスバリア性プラスチック成形体は、プラスチック成形体と、該プラスチック成形体の表面に設けたガスバリア薄膜とを備えるガスバリア性プラスチック成形体において、前記ガスバリア薄膜は、構成元素として珪素(Si)、炭素(C)及び酸素(O)を含有し、かつ、条件(1)でX線電子分光分析すると、Si-Cの結合エネルギーのピーク出現位置に、メインピークが観察される領域を有することを特徴とする。
 条件(1)測定範囲を95~105eVとする。
The gas barrier plastic molded article according to the present invention is a gas barrier plastic molded article comprising a plastic molded article and a gas barrier thin film provided on the surface of the plastic molded article, wherein the gas barrier thin film comprises silicon (Si) as a constituent element, It contains carbon (C) and oxygen (O), and when X-ray electron spectroscopy analysis is performed under the condition (1), it has a region where a main peak is observed at the peak appearance position of the bond energy of Si—C. Features.
Condition (1) The measurement range is 95 to 105 eV.
 本発明に係るガスバリア性プラスチック成形体では、前記ガスバリア薄膜は、深さ方向に傾斜組成を有し、前記ガスバリア薄膜を深さ方向に二等分し、前記プラスチック成形体とは反対側を上層とし、前記プラスチック成形体側を下層としたとき、前記上層における(数1)で表されるC含有率が、前記上層における(数2)で表されるSi含有率よりも高いことが好ましい。
(数1)C含有率[%]={(C含有量[atomic%])/(Si,O及びCの合計含有量[atomic%])}×100
数1において、Si,O又はCの含有量は、Si,O及びCの3元素の内訳における含有量である。
(数2)Si含有率[%]={(Si含有量[atomic%])/(Si,O及びCの合計含有量[atomic%])}×100
数2において、Si,O又はCの含有量は、Si,O及びCの3元素の内訳における含有量である。
In the gas barrier plastic molded article according to the present invention, the gas barrier thin film has a gradient composition in the depth direction, the gas barrier thin film is divided into two equal parts in the depth direction, and the side opposite to the plastic molded article is the upper layer. When the plastic molding side is the lower layer, the C content represented by (Equation 1) in the upper layer is preferably higher than the Si content represented by (Equation 2) in the upper layer.
(Equation 1) C content [%] = {(C content [atomic%]) / (total content of Si, O and C [atomic%])} × 100
In Equation 1, the content of Si, O, or C is the content in the breakdown of the three elements of Si, O, and C.
(Expression 2) Si content [%] = {(Si content [atomic%]) / (total content of Si, O and C [atomic%])} × 100
In Formula 2, the content of Si, O, or C is the content in the breakdown of the three elements of Si, O, and C.
 本発明に係るガスバリア性プラスチック成形体では、前記上層における(数3)で表されるO含有率が、前記上層におけるSi含有率よりも低いことが好ましい。
(数3)O含有率[%]={(O含有量[atomic%])/(Si,O及びCの合計含有量[atomic%])}×100
数3において、Si,O又はCの含有量は、Si,O及びCの3元素の内訳における含有量である。
In the gas barrier plastic molded article according to the present invention, it is preferable that the O content represented by (Equation 3) in the upper layer is lower than the Si content in the upper layer.
(Equation 3) O content [%] = {(O content [atomic%]) / (total content of Si, O and C [atomic%])} × 100
In Equation 3, the content of Si, O, or C is the content in the breakdown of the three elements of Si, O, and C.
 本発明に係るガスバリア性プラスチック成形体では、前記ガスバリア薄膜は、深さ方向に傾斜組成を有し、前記ガスバリア薄膜を深さ方向に二等分し、前記プラスチック成形体とは反対側を上層とし、前記プラスチック成形体側を下層としたとき、前記下層における(数1)で表されるC含有率が、前記下層における(数3)で表されるO含有率よりも高いことが好ましい。下層において、C含有率をO含有率よりも高くすることで、薄膜とプラスチック成形体との密着性を高めることができる。
(数1)C含有率[%]={(C含有量[atomic%])/(Si,O及びCの合計含有量[atomic%])}×100
数1において、Si,O又はCの含有量は、Si,O及びCの3元素の内訳における含有量である。
(数3)O含有率[%]={(O含有量[atomic%])/(Si,O及びCの合計含有量[atomic%])}×100
数3において、Si,O又はCの含有量は、Si,O及びCの3元素の内訳における含有量である。
In the gas barrier plastic molded article according to the present invention, the gas barrier thin film has a gradient composition in the depth direction, the gas barrier thin film is divided into two equal parts in the depth direction, and the side opposite to the plastic molded article is the upper layer. When the plastic molding side is the lower layer, the C content represented by (Equation 1) in the lower layer is preferably higher than the O content represented by (Equation 3) in the lower layer. By making C content rate higher than O content rate in a lower layer, the adhesiveness of a thin film and a plastic molding can be improved.
(Equation 1) C content [%] = {(C content [atomic%]) / (total content of Si, O and C [atomic%])} × 100
In Equation 1, the content of Si, O, or C is the content in the breakdown of the three elements of Si, O, and C.
(Equation 3) O content [%] = {(O content [atomic%]) / (total content of Si, O and C [atomic%])} × 100
In Equation 3, the content of Si, O, or C is the content in the breakdown of the three elements of Si, O, and C.
 本発明に係るガスバリア性プラスチック成形体の製造方法は、真空チャンバの内部を排気して前記真空チャンバ内を初期圧力P以下に調整する排気工程と、前記真空チャンバ内の圧力がP以下に調整され、かつ、真空チャンバ内に配置された炭化タンタル相を有する発熱体が加熱されていないときに、珪素含有炭化水素ガスを前記真空チャンバ内に導入して該真空チャンバ内の圧力を前記Pに調整する準備工程と、前記珪素含有炭化水素ガスを継続して前記真空チャンバに導入しながら前記発熱体を加熱して、前記真空チャンバ内に収容されているプラスチック成形体の表面にガスバリア薄膜を形成する成膜工程と、を有することを特徴とする。 The method for producing a gas barrier plastic molding according to the present invention includes an evacuation step in which the inside of a vacuum chamber is evacuated to adjust the inside of the vacuum chamber to an initial pressure P 0 or lower, and the pressure in the vacuum chamber is set to P 0 or lower. When the heating element having a tantalum carbide phase that is conditioned and disposed in the vacuum chamber is not heated, a silicon-containing hydrocarbon gas is introduced into the vacuum chamber to reduce the pressure in the vacuum chamber. A gas barrier thin film on the surface of the plastic molded body accommodated in the vacuum chamber by heating the heating element while continuously introducing the silicon-containing hydrocarbon gas into the vacuum chamber. And a film forming step for forming the film.
 本発明に係るガスバリア性プラスチック成形体の製造方法では、前記準備工程において、前記真空チャンバ内の圧力を前記Pに調整後、前記真空チャンバ内の圧力を前記Pより高い圧力Pに到達させ、前記成膜工程において、前記真空チャンバ内の圧力を前記Pより高い圧力Pに到達させることが好ましい。 In the method for manufacturing a gas barrier plastic molded body according to the present invention, in the preparation step, after adjusting the pressure in the vacuum chamber to said P 0, reaches the pressure in the vacuum chamber at a higher pressure P A from the P 0 It is allowed, in the film forming step, it is preferable to reach a higher pressure P B of the pressure from the P a of the vacuum chamber.
 本発明に係るガスバリア性プラスチック成形体の製造方法では、(P-P)/Pが0.11以上であることが好ましい。 In the method for producing a gas barrier plastic molding according to the present invention, (P B -P A ) / P 0 is preferably 0.11 or more.
 本発明は、ガスバリア性及び透明性に優れたガスバリア性プラスチック成形体及びその製造方法を提供することができる。 The present invention can provide a gas barrier plastic molded article excellent in gas barrier properties and transparency and a method for producing the same.
本実施形態に係るガスバリア性プラスチック成形体の一例を示す断面図である。It is sectional drawing which shows an example of the gas barrier plastic molding which concerns on this embodiment. 従来の成膜装置の一例を示す概略図である。It is the schematic which shows an example of the conventional film-forming apparatus. 本実施形態に係る製造方法における真空チャンバ内の圧力変化及び発熱体の温度変化の一例を示した概念図である。It is the conceptual diagram which showed an example of the pressure change in the vacuum chamber and the temperature change of a heat generating body in the manufacturing method which concerns on this embodiment. 薄膜表面を条件(1)でXPS分析したSi2pのナロースキャンスペクトルであり、(a)は実施例1の薄膜、(b)は比較例1の薄膜である。It is the narrow scan spectrum of Si2p which analyzed the thin film surface by conditions (1), (a) is the thin film of Example 1, (b) is the thin film of the comparative example 1. FIG. 実施例1の深さプロファイルである。It is a depth profile of Example 1. 比較例1の深さプロファイルである。It is a depth profile of the comparative example 1.
 次に、本発明について実施形態を示して詳細に説明するが本発明はこれらの記載に限定して解釈されない。本発明の効果を奏する限り、実施形態は種々の変形をしてもよい。 Next, the present invention will be described in detail with reference to embodiments, but the present invention is not construed as being limited to these descriptions. As long as the effect of the present invention is exhibited, the embodiment may be variously modified.
 図1は、本実施形態に係るガスバリア性プラスチック成形体の一例を示す断面図である。本実施形態に係るガスバリア性プラスチック成形体90は、プラスチック成形体91と、プラスチック成形体91の表面に設けたガスバリア薄膜92とを備えるガスバリア性プラスチック成形体において、ガスバリア薄膜92は、構成元素として珪素(Si)、炭素(C)及び酸素(O)を含有し、かつ、条件(1)でX線電子分光分析すると、Si-Cの結合エネルギーのピーク出現位置に、メインピークが観察される領域を有する。
 条件(1)測定範囲を95~105eVとする。
FIG. 1 is a cross-sectional view showing an example of a gas barrier plastic molded article according to this embodiment. The gas barrier plastic molded body 90 according to the present embodiment is a gas barrier plastic molded body including a plastic molded body 91 and a gas barrier thin film 92 provided on the surface of the plastic molded body 91. The gas barrier thin film 92 includes silicon as a constituent element. (Si), carbon (C) and oxygen (O), and when X-ray electron spectroscopy analysis is performed under the condition (1), a region where a main peak is observed at the peak appearance position of Si—C bond energy Have
Condition (1) The measurement range is 95 to 105 eV.
 プラスチック成形体91を構成する樹脂は、例えば、ポリエチレンテレフタレート樹脂(PET)、ポリブチレンテレフタレート樹脂、ポリエチレンナフタレート樹脂、ポリエチレン樹脂、ポリプロピレン樹脂(PP)、シクロオレフィンコポリマー樹脂(COC、環状オレフィン共重合)、アイオノマー樹脂、ポリ‐4‐メチルペンテン‐1樹脂、ポリメタクリル酸メチル樹脂、ポリスチレン樹脂、エチレン‐ビニルアルコール共重合樹脂、アクリロニトリル樹脂、ポリ塩化ビニル樹脂、ポリ塩化ビニリデン樹脂、ポリアミド樹脂、ポリアミドイミド樹脂、ポリアセタール樹脂、ポリカーボネート樹脂、ポリスルホン樹脂、4弗化エチレン樹脂、アクリロニトリル-スチレン樹脂、又は、アクリロニトリル‐ブタジエン‐スチレン樹脂である。これらは、1種を単層で、又は2種以上を積層して用いることができるが、生産性の点で、単層であることが好ましい。また、樹脂の種類は、PETであることがより好ましい。 Examples of the resin constituting the plastic molded body 91 include polyethylene terephthalate resin (PET), polybutylene terephthalate resin, polyethylene naphthalate resin, polyethylene resin, polypropylene resin (PP), and cycloolefin copolymer resin (COC, cyclic olefin copolymer). , Ionomer resin, poly-4-methylpentene-1 resin, polymethyl methacrylate resin, polystyrene resin, ethylene-vinyl alcohol copolymer resin, acrylonitrile resin, polyvinyl chloride resin, polyvinylidene chloride resin, polyamide resin, polyamideimide resin Polyacetal resin, polycarbonate resin, polysulfone resin, tetrafluoroethylene resin, acrylonitrile-styrene resin, or acrylonitrile-butadiene-styrene resin That. One of these may be used as a single layer, or two or more may be used as a laminate, but a single layer is preferable in terms of productivity. The type of resin is more preferably PET.
 本実施形態に係るガスバリア性プラスチック成形体90では、プラスチック成形体91が、容器、フィルム又はシートである形態を包含する。その形状は、目的及び用途に応じて適宜設定をすることができ、特に限定されない。容器は、蓋、栓若しくはシールして使用する容器、又はそれらを使用せず開口状態で使用する容器を含む。開口部の大きさは、内容物に応じて適宜設定することができる。プラスチック容器は、剛性を適度に有する所定の肉厚を有するプラスチック容器と剛性を有さないシート材によって形成されたプラスチック容器とを含む。本発明は、容器の製造方法に制限されない。内容物は、例えば、水、茶飲料、清涼飲料、炭酸飲料若しくは果汁飲料などの飲料、又は、液体、粘体、粉末若しくは固体状の食品である。また、容器は、リターナブル容器又はワンウェイ容器のどちらであってもよい。フィルム又はシートは、長尺なシート状物又はカットシートを含む。フィルム又はシートは、延伸又は未延伸であるかを問わない。本発明は、プラスチック成形体91の製造方法に制限されない。 The gas barrier plastic molded body 90 according to the present embodiment includes a form in which the plastic molded body 91 is a container, a film, or a sheet. The shape can be appropriately set according to the purpose and application, and is not particularly limited. The container includes a container that is used with a lid, a stopper, or a seal, or a container that is used without being used. The size of the opening can be appropriately set according to the contents. The plastic container includes a plastic container having a predetermined thickness having moderate rigidity and a plastic container formed by a sheet material having no rigidity. The present invention is not limited to the manufacturing method of the container. The contents are, for example, beverages such as water, tea beverages, soft drinks, carbonated beverages or fruit juice beverages, or liquid, viscous, powder or solid foods. Further, the container may be either a returnable container or a one-way container. The film or sheet includes a long sheet or cut sheet. It does not matter whether the film or sheet is stretched or unstretched. The present invention is not limited to the method for manufacturing the plastic molded body 91.
 プラスチック成形体91の厚さは、目的及び用途に応じて適宜設定することができ、特に限定されない。プラスチック成形体91が、例えば、飲料用ボトルなどの容器である場合には、ボトルの肉厚は、50~500μmであることが好ましく、より好ましくは、100~350μmである。また、プラスチック成形体91が包装袋を構成するフィルムである場合には、フィルムの厚さは、3~300μmであることが好ましく、より好ましくは、10~100μmである。プラスチック成形体91が電子ペーパー又は有機ELなどのフラットパネルディスプレイの基板である場合には、フィルムの厚さは、25~200μmであることが好ましく、より好ましくは、50~100μmである。プラスチック成形体91が容器を形成するためのシートである場合には、シートの厚さは、50~500μmであることが好ましく、より好ましくは100~350μmである。そして、プラスチック成形体91が、容器である場合には、ガスバリア薄膜92は、その内壁面若しくは外壁面のいずれか一方又は両方に設ける。また、プラスチック成形体91が、フィルムである場合には、ガスバリア薄膜92は、片面又は両面に設ける。 The thickness of the plastic molded body 91 can be appropriately set according to the purpose and application, and is not particularly limited. When the plastic molded body 91 is, for example, a container such as a beverage bottle, the thickness of the bottle is preferably 50 to 500 μm, more preferably 100 to 350 μm. When the plastic molded body 91 is a film constituting a packaging bag, the thickness of the film is preferably 3 to 300 μm, more preferably 10 to 100 μm. When the plastic molded body 91 is a substrate of a flat panel display such as electronic paper or organic EL, the thickness of the film is preferably 25 to 200 μm, more preferably 50 to 100 μm. When the plastic molded body 91 is a sheet for forming a container, the thickness of the sheet is preferably 50 to 500 μm, more preferably 100 to 350 μm. When the plastic molded body 91 is a container, the gas barrier thin film 92 is provided on one or both of the inner wall surface and the outer wall surface. Further, when the plastic molded body 91 is a film, the gas barrier thin film 92 is provided on one side or both sides.
 ガスバリア薄膜92は、構成元素として珪素(Si)、炭素(C)及び酸素(O)を含有し、かつ、条件(1)でX線電子分光分析すると、Si-Cの結合エネルギーのピーク出現位置に、メインピークが観察される領域を有する。
 条件(1)測定範囲を95~105eVとする。
The gas barrier thin film 92 contains silicon (Si), carbon (C), and oxygen (O) as constituent elements, and when the X-ray electron spectroscopic analysis is performed under the condition (1), the peak appearance position of the bond energy of Si—C And has a region where the main peak is observed.
Condition (1) The measurement range is 95 to 105 eV.
 Si-Cの結合エネルギーのピーク出現位置に、メインピークが観察される領域を有することで、ガスバリア薄膜92は透明性に優れた薄膜となる。本明細書において、メインピークとは、条件(1)において、ピーク分離して観察されるピークの中で、最も強度の高いピークを意味する。 By having a region where the main peak is observed at the peak appearance position of the Si—C bond energy, the gas barrier thin film 92 is a thin film having excellent transparency. In the present specification, the main peak means a peak having the highest intensity among peaks observed by separating the peaks in the condition (1).
 ガスバリア薄膜92が含有する化合物の結合態様は、Si-C結合の他に、例えば、Si‐Si結合、Si‐H結合、Si‐O結合、C‐H結合、C‐C結合、C‐O結合、C=O結合、Si‐O‐C結合、C‐O‐C結合、O‐C‐O結合又はO=C-O結合である。 The bonding mode of the compound contained in the gas barrier thin film 92 is, for example, Si—Si bond, Si—H bond, Si—O bond, C—H bond, C—C bond, C—O other than Si—C bond. A bond, C═O bond, Si—O—C bond, C—O—C bond, O—C—O bond or O═C—O bond.
 本実施形態に係るガスバリア性プラスチック成形体では、ガスバリア薄膜92を条件(1)でX線電子分光分析すると、Si-Cの結合エネルギーのピーク出現位置に観察されるピークが、Si-Siの結合エネルギーのピーク出現位置に観察されるピークよりも大きいことが好ましい。これによって、透明性を更に高めることができる。 In the gas barrier plastic molded body according to the present embodiment, when the gas barrier thin film 92 is subjected to X-ray electron spectroscopy analysis under the condition (1), a peak observed at the peak appearance position of the Si—C bond energy is a Si—Si bond. It is preferably larger than the peak observed at the energy peak appearance position. Thereby, the transparency can be further enhanced.
 本実施形態に係るガスバリア性プラスチック成形体90では、前記ガスバリア薄膜は、深さ方向に傾斜組成を有し、ガスバリア薄膜92を深さ方向Dに二等分し、プラスチック成形体91とは反対側を上層92aとし、プラスチック成形体91側を下層92bとしたとき、上層92aにおける(数1)で表されるC含有率が、上層92aにおける(数2)で表されるSi含有率よりも高い(条件1)ことが好ましい。これによって、透明性を更に高めることができる。
(数1)C含有率[%]={(C含有量[atomic%])/(Si,O及びCの合計含有量[atomic%])}×100
数1において、Si,O又はCの含有量は、Si,O及びCの3元素の内訳における含有量である。
(数2)Si含有率[%]={(Si含有量[atomic%])/(Si,O及びCの合計含有量[atomic%])}×100
数2において、Si,O又はCの含有量は、Si,O及びCの3元素の内訳における含有量である。
In the gas barrier plastic molded body 90 according to the present embodiment, the gas barrier thin film has a gradient composition in the depth direction, the gas barrier thin film 92 is divided into two equal parts in the depth direction D, and is opposite to the plastic molded body 91. Is the upper layer 92a and the plastic molded body 91 side is the lower layer 92b, the C content represented by (Equation 1) in the upper layer 92a is higher than the Si content represented by (Equation 2) in the upper layer 92a. (Condition 1) is preferable. Thereby, the transparency can be further enhanced.
(Equation 1) C content [%] = {(C content [atomic%]) / (total content of Si, O and C [atomic%])} × 100
In Equation 1, the content of Si, O, or C is the content in the breakdown of the three elements of Si, O, and C.
(Expression 2) Si content [%] = {(Si content [atomic%]) / (total content of Si, O and C [atomic%])} × 100
In Formula 2, the content of Si, O, or C is the content in the breakdown of the three elements of Si, O, and C.
 上層92aは、ガスバリア薄膜92の膜厚をT[nm]としたとき、ガスバリア薄膜92の表面92sから厚さT/2[nm]の部分である。下層92bは、上層92aとプラスチック成形体91との間の部分であり、ガスバリア薄膜92とプラスチック成形体91との界面から厚さT/2[nm]の部分である。 The upper layer 92a is a portion having a thickness T / 2 [nm] from the surface 92s of the gas barrier thin film 92 when the thickness of the gas barrier thin film 92 is T [nm]. The lower layer 92b is a portion between the upper layer 92a and the plastic molded body 91, and is a portion having a thickness T / 2 [nm] from the interface between the gas barrier thin film 92 and the plastic molded body 91.
 本実施形態に係るガスバリア性プラスチック成形体90では、ガスバリア薄膜92の膜厚Tが、5nm以上であることが好ましい。より好ましくは、10nm以上である。5nm未満では、ガスバリア性が不十分となる場合がある。また、ガスバリア薄膜92の膜厚の上限値は、200nmとすることが好ましい。より好ましくは、100nmである。ガスバリア薄膜92の膜厚が、200nmを超えると、内部応力によってクラックが生じやすくなる。 In the gas barrier plastic molded body 90 according to this embodiment, the film thickness T of the gas barrier thin film 92 is preferably 5 nm or more. More preferably, it is 10 nm or more. If it is less than 5 nm, gas barrier properties may be insufficient. The upper limit value of the thickness of the gas barrier thin film 92 is preferably 200 nm. More preferably, it is 100 nm. If the thickness of the gas barrier thin film 92 exceeds 200 nm, cracks are likely to occur due to internal stress.
 ガスバリア薄膜92は、深さ方向Dに傾斜組成を有する。深さ方向Dとは、図1に示すように、ガスバリア薄膜92の表面92sからプラスチック成形体91に向かう方向をいう。傾斜組成とは、Si、O又はCの少なくとも一種の含有量が、深さ方向Dにおいて連続的又は段階的に変化する組成をいう。ガスバリア薄膜92が深さ方向Dに傾斜組成を有するとは、上層92aと下層92bとがそれぞれ独立した傾斜組成を有するのではなく、上層92aと下層92bとが、両者の間に明確な境界をもたずに一連の傾斜組成を有することをいう。傾斜組成は、上層92a及び下層92bの全域にわたって傾斜しているか、又は上層92a若しくは下層92bの一部に傾斜していない部分を有していてもよい。なお、ガスバリア薄膜92が、深さ方向Dに傾斜組成を有することは、XPS分析においてアルゴンイオンエッチングを行いながら、深さプロファイルを測定することで確認できる。 The gas barrier thin film 92 has a gradient composition in the depth direction D. The depth direction D refers to a direction from the surface 92s of the gas barrier thin film 92 toward the plastic molded body 91 as shown in FIG. The graded composition refers to a composition in which the content of at least one of Si, O, or C changes continuously or stepwise in the depth direction D. The fact that the gas barrier thin film 92 has a gradient composition in the depth direction D does not mean that the upper layer 92a and the lower layer 92b have independent gradient compositions, but the upper layer 92a and the lower layer 92b have a clear boundary between them. It means having a series of gradient compositions. The gradient composition may be inclined over the entire area of the upper layer 92a and the lower layer 92b, or may have a portion that is not inclined in a part of the upper layer 92a or the lower layer 92b. It can be confirmed that the gas barrier thin film 92 has a gradient composition in the depth direction D by measuring the depth profile while performing argon ion etching in the XPS analysis.
 本実施形態に係るガスバリア性プラスチック成形体90では、上層92aにおける(数3)で表されるO含有率が、上層92aにおける(数2)で表されるSi含有率よりも低い(条件2)ことが好ましい。条件1に加えて条件2を有することで、上層92aにおいて、C含有率が最も高く、次いでSi含有率、O含有率となり、透明性を更に高めることができる。
(数3)O含有率[%]={(O含有量[atomic%])/(Si,O及びCの合計含有量[atomic%])}×100
数3において、Si,O又はCの含有量は、Si,O及びCの3元素の内訳における含有量である。
In the gas barrier plastic molded body 90 according to the present embodiment, the O content represented by (Equation 3) in the upper layer 92a is lower than the Si content represented by (Equation 2) in the upper layer 92a (Condition 2). It is preferable. By having Condition 2 in addition to Condition 1, the upper layer 92a has the highest C content, then the Si content and the O content, and the transparency can be further enhanced.
(Equation 3) O content [%] = {(O content [atomic%]) / (total content of Si, O and C [atomic%])} × 100
In Equation 3, the content of Si, O, or C is the content in the breakdown of the three elements of Si, O, and C.
 上層92aのC含有率は、40~60%であることが好ましく、43~58%であることがより好ましい。上層92aのSi含有率は、20~40%であることが好ましく、25~38%であることがより好ましい。上層92aのO含有率は、5~30%であることが好ましく、7~28%であることがより好ましい。Si含有率、C含有率又はO含有率は、例えば、ガスバリア薄膜92をXPS分析することによって測定することができる。 The C content of the upper layer 92a is preferably 40 to 60%, more preferably 43 to 58%. The Si content of the upper layer 92a is preferably 20 to 40%, and more preferably 25 to 38%. The O content of the upper layer 92a is preferably 5 to 30%, more preferably 7 to 28%. The Si content, C content, or O content can be measured, for example, by XPS analysis of the gas barrier thin film 92.
 本実施形態に係るガスバリア性プラスチック成形体では、下層92bにおける(数1)で表されるC含有率が、下層92bにおける(数3)で表されるO含有率よりも高い(条件3)ことが好ましい。下層92bにおいて、C含有率をO含有率よりも高くすることで、薄膜とプラスチック成形体との密着性を高めることができる。 In the gas barrier plastic molded article according to the present embodiment, the C content represented by (Equation 1) in the lower layer 92b is higher than the O content represented by (Equation 3) in the lower layer 92b (Condition 3). Is preferred. By making the C content higher than the O content in the lower layer 92b, the adhesion between the thin film and the plastic molded body can be increased.
 条件1~3におけるSi含有率、O含有率及びC含有率の高低関係は、ガスバリア薄膜の深さプロファイルにおいて、Siのプロファイル、Oのプロファイル及びCのプロファイルの中から上層及び下層に極値を一つずつ有するプロファイルを一つ選択し、当該選択したプロファイルの上層又は下層の各極値におけるSi、O又はCの原子濃度の高低関係で判断する(判断基準1)。判断基準1において、上層及び下層に極値を一つずつ有するプロファイルが複数ある場合、選択する優先順位は、Oのプロファイル、Cのプロファイル、Siのプロファイルの順である。または、条件1~3におけるSi含有率、O含有率及びC含有率の高低関係は、上層の全体又は下層の全体におけるSi含有率、O含有率及びC含有率の高低関係で判断する(判断基準2)。判断基準2において、上層又は下層の全体におけるSi含有率、O含有率及びC含有率は、例えば、ガスバリア薄膜の深さプロファイルにおいてSi,O及びCの各プロファイルの上層又は下層における原子濃度の積算値として求めることができる。本実施形態では、判断基準1又は判断基準2の少なくともいずれか一方において条件1を満たすとき、条件1が成立していると判断する。当然に、判断基準1及び判断基準2の両方において条件1を満たすときも、条件1が成立していると判断する。条件2又は条件3についても、条件1と同様にして条件2又は条件3の成立の成否を判断する。 The relationship between the Si content, the O content, and the C content in the conditions 1 to 3 indicates that the depth profile of the gas barrier thin film has an extreme value in the upper and lower layers of the Si profile, O profile, and C profile. One profile having one by one is selected, and a determination is made based on the level of Si, O, or C atomic concentration at each extreme value of the upper or lower layer of the selected profile (Criteria 1). In the criterion 1, when there are a plurality of profiles each having one extreme value in the upper layer and the lower layer, the priority order to be selected is the order of the O profile, the C profile, and the Si profile. Alternatively, the high / low relationship between the Si content, the O content, and the C content in the conditions 1 to 3 is determined by the high / low relationship between the Si content, the O content, and the C content in the entire upper layer or the entire lower layer (determination) Standard 2). In criterion 2, the Si content, O content, and C content in the entire upper layer or lower layer are, for example, integrated atomic concentrations in the upper layer or lower layer of each of the Si, O, and C profiles in the depth profile of the gas barrier thin film. It can be obtained as a value. In the present embodiment, it is determined that the condition 1 is satisfied when the condition 1 is satisfied in at least one of the determination criterion 1 and the determination criterion 2. Naturally, it is determined that the condition 1 is satisfied even when the condition 1 is satisfied in both the determination criterion 1 and the determination criterion 2. As for condition 2 or condition 3, whether condition 2 or condition 3 is satisfied is determined in the same manner as condition 1.
 ガスバリア薄膜92は、Si、C及びO以外に、その他の元素を含んでいてもよい。その他の元素は、例えば、タンタル(Ta)などの発熱体由来の金属元素、水素(H)又は窒素(N)である。 The gas barrier thin film 92 may contain other elements in addition to Si, C and O. The other element is, for example, a metal element derived from a heating element such as tantalum (Ta), hydrogen (H), or nitrogen (N).
 ガスバリア薄膜92は実質的に無色透明であることが好ましい。本明細書において、実質的に無色透明とは、JIS K 7105-1981「プラスチックの光学的特性試験方法」における色差である着色度b値を指標として、b値が2.0以下であるものをいう。b値は、より好ましくは1.7以下である。b値は数4で求めることができる。なお、数4において、Y又はZは三刺激値である。また、本発明におけるb値と目視との相関はおおよそ表1に示す通りである。 The gas barrier thin film 92 is preferably substantially colorless and transparent. In the present specification, “substantially colorless and transparent” means that the b * value is 2.0 or less, using the degree of coloration b *, which is the color difference in JIS K 7105-1981 “Testing methods for optical properties of plastics” as an index. Say things. The b * value is more preferably 1.7 or less. The b * value can be obtained by Equation 4. In Equation 4, Y or Z is a tristimulus value. Further, the correlation between the b * value and visual observation in the present invention is as shown in Table 1.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 本実施形態に係るガスバリア性プラスチック成形体90は、数5で求めるバリア性改良率(Barrier Improvement Factor,以降、BIFという。)が5以上であることが好ましい。より好ましくは、10以上である。具体例としては、500mlのペットボトル(高さ133mm、胴外径64mm、口部外径24.9mm、口部内径21.4mm、肉厚300μm及び樹脂量29g)において、酸素透過度を0.0070cc/容器/日以下とすることができる。720mlのペットボトルにおいて、酸素透過度を0.0098cc/容器/日以下とすることができる。
(数5)BIF=[薄膜未形成のプラスチック成形体の酸素透過度]/[ガスバリア性プラスチック成形体の酸素透過度]
The gas barrier plastic molded body 90 according to this embodiment preferably has a barrier property improvement rate (Barrier Improvement Factor, hereinafter referred to as BIF) obtained by Equation 5 of 5 or more. More preferably, it is 10 or more. As a specific example, in a 500 ml PET bottle (height 133 mm, trunk outer diameter 64 mm, mouth outer diameter 24.9 mm, mouth inner diameter 21.4 mm, wall thickness 300 μm, resin amount 29 g), the oxygen permeability is set to 0.1. 0070 cc / container / day or less. In a 720 ml PET bottle, the oxygen permeability can be 0.0098 cc / container / day or less.
(Equation 5) BIF = [Oxygen permeability of plastic molding without thin film] / [Oxygen permeability of gas barrier plastic molding]
 本実施形態に係るガスバリア性プラスチック成形体は、例えば図2に示すような従来の成膜装置で製造できる。図2に示す成膜装置は、WO2013/099960号公報(特許文献2)の図3に示される装置であり、装置の詳細はWO2013/099960号公報に記載されている。ここでは、成膜装置について図2を用いて簡単に説明する。 The gas barrier plastic molding according to the present embodiment can be manufactured by a conventional film forming apparatus as shown in FIG. The film forming apparatus shown in FIG. 2 is the apparatus shown in FIG. 3 of WO2013 / 099960 (Patent Document 2), and details of the apparatus are described in WO2013 / 099960. Here, the film forming apparatus will be briefly described with reference to FIG.
 成膜装置は、プラスチック成形体(図2ではプラスチックボトル)4の成膜を行うための成膜専用チャンバ31と、プラスチック成形体4の出し入れを行うための出入用チャンバ32とを有し、成膜専用チャンバ31と出入用チャンバ32との間にゲートバルブ33が設けられている。 The film forming apparatus includes a dedicated film forming chamber 31 for forming a plastic molded body (plastic bottle in FIG. 2) 4 and a loading / unloading chamber 32 for loading and unloading the plastic molded body 4. A gate valve 33 is provided between the membrane dedicated chamber 31 and the entrance / exit chamber 32.
 成膜専用チャンバ31は、その内部にプラスチック成形体4の表面に薄膜を形成する反応室を有する。反応室には、発熱体42及び原料ガス供給管(不図示)が配置される。反応室内は、真空ポンプVP1によって排気可能である。 The film formation dedicated chamber 31 has a reaction chamber for forming a thin film on the surface of the plastic molded body 4 therein. A heating element 42 and a source gas supply pipe (not shown) are arranged in the reaction chamber. The reaction chamber can be evacuated by the vacuum pump VP1.
 出入用チャンバ32は、その内部に成膜前のプラスチック成形体4を待機させる待機室を有する。待機室内は、真空ポンプVP2によって排気可能である。出入用チャンバ32は、開閉ゲート56を有する。開閉ゲート56を開くことによって、成膜前のプラスチック成形体4を待機室内に導入したり、成膜後のプラスチック成形体4を待機室から取り出したりできるようになっている。 The entrance / exit chamber 32 has a standby chamber for waiting for the plastic molded body 4 before film formation therein. The waiting room can be evacuated by the vacuum pump VP2. The entrance / exit chamber 32 has an open / close gate 56. By opening the open / close gate 56, the plastic molded body 4 before film formation can be introduced into the standby chamber, and the plastic molded body 4 after film formation can be taken out from the standby chamber.
 ゲートバルブ33は、成膜専用チャンバ31と出入用チャンバ32との仕切りである。 The gate valve 33 is a partition between the film formation dedicated chamber 31 and the entrance / exit chamber 32.
 次に、図2を参照しながら、プラスチック成形体4としてプラスチックボトルの内表面にガスバリア薄膜を形成する場合を例にとって、本実施形態に係るガスバリア性プラスチック成形体の製造方法を説明する。本発明は装置に限定されず、例えば、特許文献1の図2に示されるように、チャンバを一つだけ有する装置を用いてもよい。 Next, with reference to FIG. 2, a method for producing a gas barrier plastic molded body according to this embodiment will be described by taking as an example a case where a gas barrier thin film is formed on the inner surface of a plastic bottle as the plastic molded body 4. The present invention is not limited to an apparatus, and for example, as shown in FIG. 2 of Patent Document 1, an apparatus having only one chamber may be used.
 第一実施形態に係るガスバリア性プラスチック成形体の製造方法は、真空チャンバ(図2では成膜専用チャンバ)31の内部を排気して真空チャンバ31内を初期圧力P以下に調整する排気工程と、真空チャンバ31内の圧力がP以下に調整され、かつ、真空チャンバ31内に配置された炭化タンタル相を有する発熱体42が加熱されていないときに、珪素含有炭化水素ガスを真空チャンバ31内に導入して真空チャンバ31内の圧力をPに調整する準備工程と、珪素含有炭化水素ガスを継続して真空チャンバ31に導入しながら発熱体42を加熱して、真空チャンバ31内に収容されているプラスチック成形体(図2ではプラスチックボトル)4の表面にガスバリア薄膜を形成する成膜工程と、を有する。 The method for producing a gas barrier plastic molded body according to the first embodiment includes an evacuation step of evacuating the inside of the vacuum chamber 31 (deposition chamber for film formation in FIG. 2) to adjust the inside of the vacuum chamber 31 to an initial pressure P 0 or less. When the pressure in the vacuum chamber 31 is adjusted to P 0 or less and the heating element 42 having a tantalum carbide phase disposed in the vacuum chamber 31 is not heated, the silicon-containing hydrocarbon gas is removed from the vacuum chamber 31. And the heating element 42 is heated while the silicon-containing hydrocarbon gas is continuously introduced into the vacuum chamber 31 and introduced into the vacuum chamber 31 to adjust the pressure in the vacuum chamber 31 to P 0. A film forming step of forming a gas barrier thin film on the surface of the plastic molded body 4 (plastic bottle in FIG. 2).
 排気工程では、ゲートバルブ33及び開閉ゲート56は閉の状態である。真空ポンプVP1を作動させて、真空チャンバ(成膜専用チャンバ)31内の空気を排気し、真空チャンバ31内を初期圧力P以下にする。初期圧力Pは、1.5Paであることが好ましく、1.0Paであることがより好ましい。また、排気工程における真空チャンバ31内の圧力の下限は、特に限定されない。 In the exhaust process, the gate valve 33 and the open / close gate 56 are closed. By operating the vacuum pump VP1, to evacuate the air in the vacuum chamber (film formation only chamber) 31, to the inside of the vacuum chamber 31 below the initial pressure P 0. The initial pressure P 0 is preferably 1.5 Pa, and more preferably 1.0 Pa. Further, the lower limit of the pressure in the vacuum chamber 31 in the exhaust process is not particularly limited.
 排気工程では、真空チャンバ31内の排気に並行して、真空ポンプVP2を作動させて、出入用チャンバ32内の空気を排気することが好ましい。このとき、出入用チャンバ32内の圧力は、真空チャンバ31内の圧力よりも高くするか、又は低くしてもよい。 In the exhaust process, it is preferable that the vacuum pump VP2 is operated in parallel with the exhaust in the vacuum chamber 31 to exhaust the air in the access chamber 32. At this time, the pressure in the entrance / exit chamber 32 may be higher or lower than the pressure in the vacuum chamber 31.
 準備工程は、図2に示す装置では、ゲートバルブ33を開けて、真空チャンバ31と出入用チャンバ32とを連通させた時に始めることが好ましい。ゲートバルブ33を開けると、真空チャンバ31内の圧力と出入用チャンバ32内の圧力とが同等になる。 In the apparatus shown in FIG. 2, the preparation step is preferably started when the gate valve 33 is opened and the vacuum chamber 31 and the entrance / exit chamber 32 communicate with each other. When the gate valve 33 is opened, the pressure in the vacuum chamber 31 and the pressure in the access chamber 32 become equal.
 準備工程では、真空チャンバ31内を排気しながら珪素含有炭化水素ガスを導入して、真空チャンバ31内の圧力をPに調整する。珪素含有炭化水素ガスを導入すると真空チャンバ31内の圧力が急上昇して、準備工程の初期において真空チャンバ31内の圧力がPを大きく超える(例えばPを超える)場合がある。この場合は、真空チャンバ31内を排気して、真空チャンバ31内の圧力を例えばPを超えるような大きな圧力にならないように調整することが好ましい。また、準備工程において真空チャンバ31内の圧力が、例えばPを超えるような大きな圧力にならないように、排気工程において真空チャンバ31内の圧力をP未満に調整しておいてもよい。真空チャンバ31内の圧力は、例えば、珪素含有炭化水素ガスの流量を制御することで調整する。珪素含有炭化水素ガスを用いることで、実質的に無色透明のガスバリア薄膜を形成することができる。珪素含有炭化水素ガスは、成膜工程において原料ガスとして用いられるガスであり、例えば、四塩化ケイ素、ヘキサメチルジシラン、ビニルトリメチルシラン、メチルシラン、ジメチルシラン、トリメチルシラン、ビニルシラン、ジエチルシラン、プロピルシラン、フェニルシラン、メチルトリエトキシシラン、ビニルトリエトキシシラン、ビニルトリメトキシシラン、テトラメトキシシラン、テトラエトキシシラン、フェニルトリメトキシシラン、メチルトリメトキシシラン若しくはメチルトリエトキシシランなどの有機シラン化合物、オクタメチルシクロテトラシロキサン、1,1,3,3-テトラメチルジシロキサン、テトラエトキシシラン若しくはヘキサメチルジシロキサンなどの有機シロキサン化合物、又は、ヘキサメチルシラザンなどの有機シラザン化合物が使用される。また、これらの材料以外にも、アミノシランなども用いられる。これらの珪素含有炭化水素のうち、酸素又は窒素を構成元素に含まない有機シラン化合物が好ましく、構成元素において珪素より炭素の割合が高く、常温常圧で気体として扱えるという利用しやすさの観点では、ビニルシラン、ジメチルシラン、トリメチルシラン又はテトラメチルシランが特に好ましい。 In the preparation step, silicon-containing hydrocarbon gas is introduced while the vacuum chamber 31 is evacuated to adjust the pressure in the vacuum chamber 31 to P 0 . When silicon-containing hydrocarbon gas is introduced, the pressure in the vacuum chamber 31 increases rapidly, and the pressure in the vacuum chamber 31 may greatly exceed P 0 (for example, exceed P B ) in the initial stage of the preparation process. In this case, by evacuating the vacuum chamber 31, it is preferable to adjust so as not the pressure in the vacuum chamber 31, for example, in large pressure exceeding P B. Further, the pressure in the vacuum chamber 31 may be adjusted to be less than P 0 in the evacuation process so that the pressure in the vacuum chamber 31 does not become a large pressure exceeding, for example, P B in the preparation process. The pressure in the vacuum chamber 31 is adjusted by controlling the flow rate of the silicon-containing hydrocarbon gas, for example. By using silicon-containing hydrocarbon gas, a substantially colorless and transparent gas barrier thin film can be formed. The silicon-containing hydrocarbon gas is a gas used as a raw material gas in the film forming process. For example, silicon tetrachloride, hexamethyldisilane, vinyltrimethylsilane, methylsilane, dimethylsilane, trimethylsilane, vinylsilane, diethylsilane, propylsilane, Organosilane compounds such as phenylsilane, methyltriethoxysilane, vinyltriethoxysilane, vinyltrimethoxysilane, tetramethoxysilane, tetraethoxysilane, phenyltrimethoxysilane, methyltrimethoxysilane or methyltriethoxysilane, octamethylcyclotetra Organosiloxane compounds such as siloxane, 1,1,3,3-tetramethyldisiloxane, tetraethoxysilane or hexamethyldisiloxane, or hexamethylsilaza Organic silazane compounds such as are used. In addition to these materials, aminosilane and the like are also used. Among these silicon-containing hydrocarbons, an organic silane compound that does not contain oxygen or nitrogen as a constituent element is preferable. In terms of ease of use, the constituent element has a higher carbon ratio than silicon and can be treated as a gas at normal temperature and pressure. Vinylsilane, dimethylsilane, trimethylsilane or tetramethylsilane is particularly preferred.
 準備工程が完了するまでに、出入用チャンバ32に配置されたプラスチック成形体4を下降させて発熱体42近傍の所定の位置に到達させることが好ましい。準備工程が完了する時は、真空チャンバ31内が所定の圧力に到達した時である。所定の圧力は、Pより高い圧力Pであることが好ましい。また、発熱体42近傍の所定の位置に到達した状態は、例えば、プラスチック成形体4としてプラスチックボトルの内表面に成膜するときは、図2に示すように、発熱体42及び原料ガス供給管(不図示)がプラスチックボトル内に挿入された状態である。 Before the preparation step is completed, it is preferable to lower the plastic molded body 4 disposed in the entrance / exit chamber 32 to reach a predetermined position near the heating element 42. The preparation process is completed when the inside of the vacuum chamber 31 reaches a predetermined pressure. Predetermined pressure is preferably higher pressure P A from P 0. Further, when the film reaches a predetermined position in the vicinity of the heating element 42, for example, when forming a film on the inner surface of the plastic bottle as the plastic molded body 4, as shown in FIG. 2, the heating element 42 and the source gas supply pipe (Not shown) is the state inserted in the plastic bottle.
 成膜工程では、珪素含有炭化水素ガスを継続して真空チャンバ31に導入しながら発熱体42を加熱して、プラスチック成形体4の表面にガスバリア薄膜を形成する。 In the film forming step, the heating element 42 is heated while continuously introducing the silicon-containing hydrocarbon gas into the vacuum chamber 31 to form a gas barrier thin film on the surface of the plastic molded body 4.
 発熱体42は、例えば通電することで加熱する。発熱体42は、炭化タンタル相を有する。炭化タンタル相を有する発熱体42を用いることで、実質的に無色透明のガスバリア薄膜を形成することができる。炭化タンタル相は、例えば、タンタル、タンタル基合金、又は添加剤を含有させたタンタル若しくはタンタル基合金が炭化した炭化物である。また、炭化タンタル相は、例えば、TaC及びTaCを含んでいてもよい。炭化タンタル相は、発熱体42の全体にわたって存在するか、又は発熱体42の一部に存在してもよい。炭化タンタル相が発熱体42の一部に存在する形態は、例えば、発熱体42が中心部と周縁部とを有し、炭化タンタル相が発熱体42の周縁部だけに存在する形態である。このとき、中心部は金属タンタル相を有することが好ましい。発熱体42の加熱温度は、特に限定されないが、1600℃以上2400℃未満であることが好ましく、1850℃以上2350℃未満であることがより好ましく、2000℃以上2200℃以下であることがさらに好ましい。 The heating element 42 is heated by energization, for example. The heating element 42 has a tantalum carbide phase. By using the heating element 42 having a tantalum carbide phase, a substantially colorless and transparent gas barrier thin film can be formed. The tantalum carbide phase is, for example, a carbide obtained by carbonizing tantalum, a tantalum-based alloy, or tantalum or a tantalum-based alloy containing an additive. Moreover, the tantalum carbide phase may contain, for example, Ta 2 C and TaC. The tantalum carbide phase may be present throughout the heating element 42 or may be present in a portion of the heating element 42. The form in which the tantalum carbide phase is present in a part of the heating element 42 is, for example, a form in which the heating element 42 has a center portion and a peripheral portion and the tantalum carbide phase exists only in the peripheral portion of the heating element 42. At this time, the central part preferably has a metal tantalum phase. The heating temperature of the heating element 42 is not particularly limited, but is preferably 1600 ° C. or higher and lower than 2400 ° C., more preferably 1850 ° C. or higher and lower than 2350 ° C., and further preferably 2000 ° C. or higher and 2200 ° C. or lower. .
 第一実施形態では、成膜工程で初めて発熱体42を加熱するのであって、排気工程及び準備工程では発熱体42を加熱しない。準備工程が完了する前は、真空チャンバ31内に残存する気体は大気だけであり、そのような雰囲気下で発熱体42を加熱すると、発熱体42が酸化劣化しやすい。また、発熱体CVD法を、例えばプラスチックボトルのコーティングなどの実製造ラインで利用可能とするためには、発熱体を繰返し使用することが求められる。発熱体を例えば1万回を超えて繰り返し使用すると、酸化劣化によって変形したり、発熱体の触媒活性が失われてガスバリア性の高い薄膜が形成できなくなったりする問題があった。そこで、第一実施形態では、真空チャンバ31内が珪素含有炭化水素ガスで適度に満たされた雰囲気下で発熱体42を加熱することで、発熱体42の酸化劣化を抑制することができる。その結果、発熱体を例えば1万回を超えて繰り返し使用した場合であっても、発熱体42が酸化劣化によって変形することを防止することができる。 In the first embodiment, the heating element 42 is heated for the first time in the film forming process, and the heating element 42 is not heated in the exhaust process and the preparation process. Before the preparation process is completed, the only gas remaining in the vacuum chamber 31 is air, and when the heating element 42 is heated in such an atmosphere, the heating element 42 is likely to be oxidized and deteriorated. Further, in order to make the heating element CVD method available in an actual production line such as coating of a plastic bottle, it is required to repeatedly use the heating element. When the heating element is repeatedly used more than 10,000 times, for example, there is a problem that the heating element is deformed due to oxidative deterioration, or the catalytic activity of the heating element is lost and a thin film having a high gas barrier property cannot be formed. Therefore, in the first embodiment, the heating element 42 is heated in an atmosphere where the inside of the vacuum chamber 31 is appropriately filled with the silicon-containing hydrocarbon gas, so that the oxidation deterioration of the heating element 42 can be suppressed. As a result, even when the heating element is repeatedly used more than 10,000 times, for example, the heating element 42 can be prevented from being deformed due to oxidative degradation.
 図3は、本実施形態に係る製造方法における真空チャンバ内の圧力変化及び発熱体の温度変化の一例を示した概念図である。第一実施形態に係るガスバリア性プラスチック成形体の製造方法では、図3に示すように、準備工程において、真空チャンバ31内の圧力をPに調整後、真空チャンバ31内の圧力をPより高い圧力Pに到達させ、成膜工程において、真空チャンバ31内の圧力をPより高い圧力Pに到達させることが好ましい。高い透明性及び高いガスバリア性を有するガスバリア薄膜を形成することができる。 FIG. 3 is a conceptual diagram showing an example of a pressure change in the vacuum chamber and a temperature change of the heating element in the manufacturing method according to the present embodiment. In the method for manufacturing a gas barrier plastic molded body according to the first embodiment, as shown in FIG. 3, in the preparation process, after adjusting the pressure in the vacuum chamber 31 to P 0, the pressure in the vacuum chamber 31 from P 0 to reach a higher pressure P a, in the film formation step, it is preferable to bring the pressure in the vacuum chamber 31 to a high pressure P B from P a. A gas barrier thin film having high transparency and high gas barrier properties can be formed.
 第一実施形態に係るガスバリア性プラスチック成形体の製造方法では、(P-P)/Pが0.11以上であることが好ましい。より好ましくは、0.15以上である。高い透明性及び高いガスバリア性を有するガスバリア薄膜を形成することができる。(P-P)/Pの上限は、特に限定されないが、0.67以下であることが好ましく、0.34以下であることがより好ましい。 In the method for producing a gas barrier plastic molded article according to the first embodiment, it is preferable that (P B -P A ) / P 0 is 0.11 or more. More preferably, it is 0.15 or more. A gas barrier thin film having high transparency and high gas barrier properties can be formed. The upper limit of (P B -P A ) / P 0 is not particularly limited, but is preferably 0.67 or less, and more preferably 0.34 or less.
 圧力P,P及びPは圧力検出部80で検出した圧力である。圧力検出部80は、図2に示すように、下チャンバーポート部Pに設けることが好ましい。 Pressure P 0, P A and P B is the pressure detected by the pressure detection unit 80. The pressure detector 80 is preferably provided in the lower chamber port part P as shown in FIG.
 プラスチック成形体4の表面に所定の膜厚の薄膜が形成されたところで、発熱体42の加熱を停止し、得られたガスバリア性プラスチック成形体を出入用チャンバ32に戻した後、ゲートバルブ33を閉じ、成膜工程を終了する。 When a thin film having a predetermined thickness is formed on the surface of the plastic molded body 4, heating of the heating element 42 is stopped, and the obtained gas barrier plastic molded body is returned to the entrance / exit chamber 32, and then the gate valve 33 is turned on. Close the film forming process.
 成膜工程後、出入用チャンバ32に設置された真空破壊弁(不図示)を作動させて出入用チャンバ32内を大気開放する。このとき、真空チャンバ31内は常に真空状態とし、真空チャンバ31内に配置された発熱体42が常に真空状態で保持されることが好ましい。 After the film formation process, the vacuum breaker valve (not shown) installed in the entrance / exit chamber 32 is operated to open the inside / outside chamber 32 to the atmosphere. At this time, it is preferable that the vacuum chamber 31 is always in a vacuum state, and the heating element 42 disposed in the vacuum chamber 31 is always kept in a vacuum state.
 次に、開閉ゲート56を開いてガスバリア性プラスチック成形体を取り出し、新たな未処理のプラスチック成形体を導入する。そして、開閉ゲート56を閉じて、前記排気工程、準備工程及び成膜工程が繰り返される。 Next, the open / close gate 56 is opened, the gas barrier plastic molded body is taken out, and a new untreated plastic molded body is introduced. Then, the open / close gate 56 is closed, and the exhaust process, the preparation process, and the film forming process are repeated.
 ここまで、実質的に無色透明なガスバリア薄膜を有するガスバリア性プラスチック成形体の製造方法について説明してきたが、ガスバリア薄膜の透明性の高さがさほど要求されない(例えばbが2を超え6以下)場合について説明する。 So far, the method for producing a gas barrier plastic molding having a substantially colorless and transparent gas barrier thin film has been described. However, the gas barrier thin film is not required to have a high degree of transparency (for example, b * exceeds 2 and is 6 or less). The case will be described.
 第二実施形態に係るガスバリア性プラスチック成形体の製造方法は、真空チャンバ31の内部を排気して真空チャンバ31内を初期圧力P以下に調整する排気工程と、真空チャンバ31内の圧力がP以下に調整され、かつ、真空チャンバ31内に配置された発熱体42が加熱されていないときに、原料ガスを真空チャンバ31内に導入して真空チャンバ31内の圧力をPに調整する準備工程と、原料ガスを継続して真空チャンバ31に導入しながら発熱体42を加熱して、真空チャンバ31内に収容されているプラスチック成形体4の表面にガスバリア薄膜を形成する成膜工程と、を有する。 The method for producing a gas barrier plastic molded body according to the second embodiment includes an evacuation process in which the inside of the vacuum chamber 31 is evacuated to adjust the inside of the vacuum chamber 31 to an initial pressure P 0 or less, and the pressure in the vacuum chamber 31 is P. When the heating element 42 is adjusted to 0 or less and is not heated, the source gas is introduced into the vacuum chamber 31 to adjust the pressure in the vacuum chamber 31 to P 0 . A preparatory step, and a film forming step of heating the heating element 42 while continuously introducing the source gas into the vacuum chamber 31 to form a gas barrier thin film on the surface of the plastic molded body 4 accommodated in the vacuum chamber 31. Have.
 この第二実施形態に係る製造方法が、第一実施形態に係る製造方法と異なる点は、次の2点である。第一点は、発熱体42の種類である。第一実施形態では、発熱体42が炭化タンタル相を有するのに対して、第二実施形態では、発熱体42の材質が限定されていない。第二点は、用いる原料ガスの種類である。第一実施形態では珪素含有炭化水素ガスであるのに対し、第二実施形態では珪素含有炭化水素ガスに限定されていない。第二実施形態の製造方法は、上記2点の以外は第一実施形態に係る製造方法と基本的な構成を同じくする。このため、ここでは、共通する構成については説明を省略し、異なる点だけについて説明する。 The manufacturing method according to the second embodiment is different from the manufacturing method according to the first embodiment in the following two points. The first point is the type of the heating element 42. In the first embodiment, the heating element 42 has a tantalum carbide phase, whereas in the second embodiment, the material of the heating element 42 is not limited. The second point is the type of source gas used. While the silicon-containing hydrocarbon gas is used in the first embodiment, the second embodiment is not limited to the silicon-containing hydrocarbon gas. The manufacturing method of the second embodiment has the same basic configuration as the manufacturing method according to the first embodiment except for the above two points. For this reason, here, description is omitted about a common structure, and only a different point is demonstrated.
 第二実施形態では、発熱体の材質は、特に限定されないが、C,W,Ta,Nb,Ti,Hf,V,Cr,Mo,Mn,Tc,Re,Fe,Ru,Os,Co,Rh,Ir,Ni,Pd及びPtの群の中から選ばれる一つ又は二つ以上を含むことが好ましい。このうち、発熱体は、例えば、Ta,W,Mo及びNbの群の中から選ばれる一つ又は二つ以上の金属元素を含むことが好ましい。金属元素を含む材料は、純金属、合金、添加剤を含有させた金属若しくは合金又は金属間化合物である。合金又は金属間化合物を形成する金属は、前記した金属の中から二つ以上を組合せるか、又は前記した金属とその他の金属との組合せであってもよい。その他の金属は、例えば、クロムである。合金又は金属間化合物は、Ta,W,Mo及びNbの群の中から選ばれる一つ又は二つ以上の金属元素を合計で80原子%以上含有することが好ましい。添加剤は、例えば、ジルコニア、イットリア、カルシア又はシリカなどの酸化物である。添加剤の添加量は、1質量%以下であることが好ましい。 In the second embodiment, the material of the heating element is not particularly limited, but C, W, Ta, Nb, Ti, Hf, V, Cr, Mo, Mn, Tc, Re, Fe, Ru, Os, Co, Rh , Ir, Ni, Pd and Pt are preferably included. Among these, it is preferable that a heat generating body contains the 1 or 2 or more metal element chosen from the group of Ta, W, Mo, and Nb, for example. The material containing a metal element is a pure metal, an alloy, a metal or alloy containing an additive, or an intermetallic compound. The metal which forms an alloy or an intermetallic compound may be a combination of two or more of the aforementioned metals, or a combination of the aforementioned metals and other metals. The other metal is, for example, chromium. The alloy or intermetallic compound preferably contains a total of 80 atomic% or more of one or more metal elements selected from the group of Ta, W, Mo and Nb. The additive is, for example, an oxide such as zirconia, yttria, calcia, or silica. The addition amount of the additive is preferably 1% by mass or less.
 第二実施形態では、上述した珪素含有炭化水素ガス以外の原料ガスは、例えば、メタン、エタン、プロパン、ブタン、ペンタン若しくはヘキサンなどのアルカン系ガス類、エチレン、プロピレン若しくはブチンなどのアルケン系ガス類、ブタジエン若しくはペンタジエンなどのアルカジエン系ガス類、アセチレン若しくはメチルアセチレンなどのアルキン系ガス類、ベンゼン、トルエン、キシレン、インデン、ナフタレン若しくはフェナントレンなどの芳香族炭化水素ガス類、シクロプロパン若しくはシクロヘキサンなどのシクロアルカン系ガス類、シクロベンテン若しくはシクロヘキセンなどのシクロアルケン系ガス類、メタノール若しくはエタノールなどのアルコール系ガス類、アセトン若しくはメチルエチルケトンなどのケトン系ガス類、又は、フォルムアルデヒド若しくはアセトアルデヒドなどのアルデヒド系ガス類であってもよい。 In the second embodiment, the source gas other than the above-mentioned silicon-containing hydrocarbon gas is, for example, alkane-based gases such as methane, ethane, propane, butane, pentane, or hexane, and alkene-based gases such as ethylene, propylene, or butyne. , Alkadiene gases such as butadiene or pentadiene, alkyne gases such as acetylene or methylacetylene, aromatic hydrocarbon gases such as benzene, toluene, xylene, indene, naphthalene or phenanthrene, cycloalkanes such as cyclopropane or cyclohexane Gas, cycloalkene gas such as cyclobenten or cyclohexene, alcohol gas such as methanol or ethanol, ketone gas such as acetone or methyl ethyl ketone S, or it may be an aldehyde gas such as formaldehyde or acetaldehyde.
 次に、本発明の実施例を挙げて説明するが、本発明はこれらの例に限定されるものではない。 Next, examples of the present invention will be described. However, the present invention is not limited to these examples.
(実施例1)
 図2に示す成膜装置を用いてガスバリア性プラスチック成形体を製造した。プラスチック成形体としてPET製のプラスチックボトル(内容量500ml)、珪素含有炭化水素ガスとしてビニルシラン、発熱体として炭化タンタル線(φ0.5mm)を用いた。まず、排気工程を次のとおり行った。排気工程では、真空チャンバの内部を排気して真空チャンバ内を初期圧力P=1.5Pa以下に調整した。次いで、準備工程を次のとおり行った。準備工程では、ゲートバルブを開けた後、真空チャンバ内に珪素含有炭化水素ガスを導入して真空チャンバ内の圧力をPPaに調整した後、PPaより高いPPaに到達させた。また、プラスチックボトルを出入用チャンバから降下させて発熱体及び原料ガス供給管をプラスチックボトルの内部に挿入した。次に、成膜工程を次のとおり行った。成膜工程では、珪素含有炭化水素ガスの導入を継続しながら発熱体の加熱を開始し、2100~2200℃まで加熱して、プラスチックボトルの内表面に堆積した薄膜が20nmに到達したところで、発熱体の加熱を停止した。その後、プラスチックボトルを出入チャンバに戻してゲートバルブを閉じるとともに、ガスの供給を停止した。また、成膜工程では、真空チャンバ内の圧力をPPaより高いPPaに到達させた。各工程での圧力P,Pは、(P-P)/Pが0.16となるように調整した。成膜工程が完了した後、出入チャンバ内を大気解放して、得られたガスバリア性プラスチック成形体を取り出し、新たな未処理のプラスチックボトルを投入して開閉ゲートを閉じた。これら一連の成膜作業を繰り返し行った。
(Example 1)
A gas barrier plastic molded body was manufactured using the film forming apparatus shown in FIG. A plastic bottle made of PET (with an internal volume of 500 ml) was used as the plastic molding, vinylsilane as the silicon-containing hydrocarbon gas, and tantalum carbide wire (φ0.5 mm) as the heating element. First, the exhaust process was performed as follows. In the evacuation step, the inside of the vacuum chamber was evacuated and the inside of the vacuum chamber was adjusted to an initial pressure P 0 = 1.5 Pa or less. Subsequently, the preparatory process was performed as follows. In the preparation process, after opening the gate valve, silicon-containing hydrocarbon gas was introduced into the vacuum chamber to adjust the pressure in the vacuum chamber to P 0 Pa, and then reached P A Pa higher than P 0 Pa. . Further, the plastic bottle was lowered from the entrance / exit chamber, and the heating element and the source gas supply pipe were inserted into the plastic bottle. Next, the film forming process was performed as follows. In the film forming process, heating of the heating element is started while continuing the introduction of the silicon-containing hydrocarbon gas, and the heating is performed up to 2100 to 2200 ° C. When the thin film deposited on the inner surface of the plastic bottle reaches 20 nm, the heating is generated. Body heating stopped. Thereafter, the plastic bottle was returned to the entrance / exit chamber, the gate valve was closed, and the gas supply was stopped. In the film forming process, the pressure in the vacuum chamber was allowed to reach P B Pa higher than P A Pa. The pressures P A and P B in each step were adjusted so that (P B −P A ) / P 0 was 0.16. After the film formation process was completed, the inside of the inlet / outlet chamber was opened to the atmosphere, the resulting gas barrier plastic molded article was taken out, and a new untreated plastic bottle was put in to close the open / close gate. These series of film forming operations were repeated.
(実施例2)
 各工程での圧力P,Pを(P-P)/Pが0.15となるように調整した以外は、実施例1と同様にしてガスバリア性プラスチック成形体を製造した。
(Example 2)
A gas barrier plastic molded article was produced in the same manner as in Example 1 except that the pressures P A and P B in each step were adjusted so that (P B −P A ) / P 0 was 0.15.
(実施例3)
 各工程での圧力P,Pを(P-P)/Pが0.11となるように調整した以外は、実施例1と同様にしてガスバリア性プラスチック成形体を製造した。
(Example 3)
A gas barrier plastic molded article was produced in the same manner as in Example 1 except that the pressures P A and P B in each step were adjusted so that (P B −P A ) / P 0 was 0.11.
(比較例1)
 発熱体として炭化処理していないタンタル線(φ0.5mm)を用い、準備工程を行わなわず、薄膜の膜厚を36nmに変更した以外は、実施例1と同様にしてガスバリア性プラスチック成形体を製造した。
(Comparative Example 1)
A gas barrier plastic molded article was prepared in the same manner as in Example 1 except that a tantalum wire (φ0.5 mm) that was not carbonized was used as a heating element, the preparatory process was not performed, and the thickness of the thin film was changed to 36 nm. Manufactured.
(XPS分析-組成分析)
 実施例1及び比較例1について一連の成膜作業1回目で得られたプラスチックボトルの薄膜の表面をXPS装置(型式:QUANTERASXM、PHI社製)を用いて分析した。薄膜表面の構成元素の比率を表2に示す。XPS分析の条件は、次の通りである。
測定条件
励起X線:Al mono
検出領域:100μmφ
取出角:90deg
検出深さ:約8nm
(XPS analysis-composition analysis)
The surface of the thin film of the plastic bottle obtained in Example 1 and Comparative Example 1 in the first series of film forming operations was analyzed using an XPS apparatus (model: QUANTERASXM, manufactured by PHI). Table 2 shows the ratio of constituent elements on the surface of the thin film. The conditions of XPS analysis are as follows.
Measurement conditions Excitation X-ray: Al mono
Detection area: 100 μmφ
Extraction angle: 90deg
Detection depth: about 8nm
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
(XPS分析-結合エネルギー)
 実施例1及び比較例1について一連の成膜作業1回目で得られたプラスチックボトルの薄膜の表面を前記したXPS装置を用いて条件(1)で分析した。試験片及び分析条件は、組成分析と同様とした。
(XPS analysis-binding energy)
Regarding Example 1 and Comparative Example 1, the surface of the thin film of the plastic bottle obtained in the first series of film forming operations was analyzed under the condition (1) using the XPS apparatus described above. The test piece and analysis conditions were the same as in the composition analysis.
 図4は、薄膜表面を条件(1)でXPS分析したSi2pのナロースキャンスペクトルであり、(a)は実施例1の薄膜、(b)は比較例1の薄膜である。図4に示すとおり、実施例1は、Si-Cの結合エネルギーのピーク出現位置にメインピークが観察されたのに対して、比較例1は、Si-Siの結合エネルギーのピーク出現位置にメインピークが観察された。 FIG. 4 is a narrow scan spectrum of Si2p obtained by XPS analysis of the thin film surface under the condition (1). (A) is the thin film of Example 1, and (b) is the thin film of Comparative Example 1. As shown in FIG. 4, in Example 1, a main peak was observed at the peak appearance position of the Si—C bond energy, whereas in Comparative Example 1, the main peak was observed at the peak appearance position of the Si—Si bond energy. A peak was observed.
(XPS分析‐深さプロファイル分析)
 前記したXPS装置を用いて、アルゴンイオンエッチングを行いながら、実施例1及び比較例1について一連の成膜作業1回目で得られたプラスチックボトルの薄膜の深さプロファイルを分析した。試験片及び分析条件は、組成分析と同様とした。ここで、ガスバリア薄膜を深さ方向に二等分して考えたとき、実施例1ではプラスチック成形体とは反対側の10nmを上層とし、プラスチック成形体側の10nmを下層とし、比較例1ではプラスチック成形体とは反対側の18nmを上層とし、プラスチック成形体側の18nmを下層とした。
(XPS analysis-depth profile analysis)
Using the above-described XPS apparatus, the depth profile of the thin film of the plastic bottle obtained in the first series of film forming operations was analyzed for Example 1 and Comparative Example 1 while performing argon ion etching. The test piece and analysis conditions were the same as in the composition analysis. Here, when the gas barrier thin film is divided into two equal parts in the depth direction, in Example 1, 10 nm on the opposite side to the plastic molded body is the upper layer, 10 nm on the plastic molded body side is the lower layer, and in Comparative Example 1, the plastic is 18 nm on the side opposite to the molded body was the upper layer, and 18 nm on the plastic molded body side was the lower layer.
 図5は、実施例1の深さプロファイルである。図5では、O及びCのプロファイルが上層及び下層に極値を一つずつ有していたため、優先順位が最も高いOのプロファイルを選択して、Oのプロファイルの極値におけるSi,C及びOの含有率を比較した。図5では、Oのプロファイルの極値は、上層に含まれるSputter Time1.5minに極小値があり、下層に含まれるSputter Time6.0minに極大値があった。実施例1は、図5に示すように、Sputter Time1.5minにおけるC含有率が、Sputter Time1.5minにおけるSi含有率よりも高かった。また、実施例1は、図5に示すように、Sputter Time1.5minにおけるO含有率が、Sputter Time1.5minにおけるSi含有率よりも低かった。以上より、実施例1では、上層のOのプロファイルの極値における組成は、C含有率が最も高く、次いでSi含有率、O含有率であることが確認できた。 FIG. 5 is a depth profile of Example 1. In FIG. 5, since the O and C profiles have one extreme value in each of the upper layer and the lower layer, the O profile having the highest priority is selected, and Si, C, and O at the extreme values of the O profile are selected. The content of was compared. In FIG. 5, the extreme value of the profile of O has a minimum value in Sputter Time 1.5 min included in the upper layer, and has a maximum value in Sputter Time 6.0 min included in the lower layer. In Example 1, as shown in FIG. 5, the C content in Sputter Time 1.5 min was higher than the Si content in Sputter Time 1.5 min. Further, in Example 1, as shown in FIG. 5, the O content in Sputter Time 1.5 min was lower than the Si content in Sputter Time 1.5 min. From the above, in Example 1, it was confirmed that the composition at the extreme value of the O profile of the upper layer had the highest C content, followed by the Si content and the O content.
 図6は、比較例1の深さプロファイルである。図6では、O及びCのプロファイルが上層及び下層に極値を一つずつ有していたため、優先順位が最も高いOのプロファイルを選択して、Oのプロファイルの極値におけるSi,C及びOの含有率を比較した。図6では、Oのプロファイルの極値は、上層に含まれるSputter Time6.0minに極小値があり、下層に含まれるSputter Time13.5minに極大値があった。比較例1は、図6に示すように、Sputter Time6.0minにおけるC含有率が、Sputter Time6.0minにおけるSi含有率よりも低かった。また、比較例1は、図6に示すように、Sputter Time6.0minにおけるO含有率が、Sputter Time6.0minにおけるSi含有率よりも低かった。以上より、比較例1では、上層のOのプロファイルの極値における組成は、Si含有率が最も高いことが確認できた。 FIG. 6 is a depth profile of Comparative Example 1. In FIG. 6, since the O and C profiles have one extreme value in each of the upper layer and the lower layer, the O profile having the highest priority is selected and Si, C, and O at the extreme values of the O profile are selected. The content of was compared. In FIG. 6, the extreme value of the profile of O has a minimum value in Sputter Time 6.0 min included in the upper layer, and has a maximum value in Sputter Time 13.5 min included in the lower layer. In Comparative Example 1, as shown in FIG. 6, the C content in Sputter Time 6.0 min was lower than the Si content in Sputter Time 6.0 min. In Comparative Example 1, as shown in FIG. 6, the O content in Sputter Time 6.0 min was lower than the Si content in Sputter Time 6.0 min. From the above, in Comparative Example 1, it was confirmed that the composition at the extreme value of the O profile of the upper layer had the highest Si content.
 図5において、上層におけるSi,C及びOの各原子濃度の積算値を求めたところ、実施例1では、上層は、C含有率が最も高く、次いでSi含有率、O含有率であることが確認できた。また、図6において、上層におけるSi,C及びOの各原子濃度の積算値を求めたところ、比較例1では、上層は、Si含有率が最も高く、次いでC含有率、O含有率であることが確認できた。 In FIG. 5, when the integrated value of each atomic concentration of Si, C and O in the upper layer was determined, in Example 1, the upper layer had the highest C content, and then the Si content and O content. It could be confirmed. Moreover, in FIG. 6, when the integrated value of each atomic concentration of Si, C, and O in the upper layer was determined, in Comparative Example 1, the upper layer had the highest Si content, followed by the C content and the O content. I was able to confirm.
 また、実施例1は、図5に示すように、Sputter Time6.0minにおけるC含有率が、Sputter Time6.0minにおけるSi含有率よりも高く、Sputter Time6.0minにおけるO含有率が、Sputter Time6.0minにおけるSi含有率よりも高かった。これに対して、比較例1は、図6に示すように、Sputter Time13.5minにおけるC含有率が、Sputter Time13.5minにおけるSi含有率よりも低く、Sputter Time13.5minにおけるO含有率が、Sputter Time13.5minにおけるSi含有率よりも高かった。 Further, in Example 1, as shown in FIG. 5, the C content in Sputter Time 6.0 min is higher than the Si content in Sputter Time 6.0 min, and the O content in Sputter Time 6.0 min is Sputter Time 6.0 min. It was higher than the Si content in. On the other hand, in Comparative Example 1, as shown in FIG. 6, the C content in Sputter Time 13.5 min is lower than the Si content in Sutter Time 13.5 min, and the O content in Sputter Time 13.5 min is Sputter. It was higher than the Si content in Time 13.5 min.
 図5において、下層におけるSi,C及びOの各原子濃度の積算値を求めたところ、実施例1では、下層は、C含有率が最も高く、次いでO含有率、Si含有率であることが確認できた。また、図6において、下層におけるSi,C及びOの各原子濃度の積算値を求めたところ、比較例1では、下層は、O含有率が最も高く、次いでSi含有率、C含有率であることが確認できた。 In FIG. 5, when the integrated value of each atomic concentration of Si, C, and O in the lower layer was determined, in Example 1, the lower layer had the highest C content, and then the O content and the Si content. It could be confirmed. Moreover, in FIG. 6, when the integrated value of each atomic concentration of Si, C, and O in the lower layer was obtained, in Comparative Example 1, the lower layer had the highest O content, followed by the Si content and the C content. I was able to confirm.
(透明性評価)
 実施例及び比較例について一連の成膜作業1回目で得られたプラスチックボトルと用いて透明性を評価した。透明性はb値で評価した。b値は、自記分光光度計(U‐3900形、日立社製)に同社製60Φ積分球付属装置(赤外可視近赤外用)を取り付けたものを用いて測定した。検知器としては、超高感度光電子増倍管(R928:紫外可視用)と冷却型PbS(近赤外域用)を用いた。測定波長は、380nmから780nmの範囲で透過率を測定した。ペットボトルの透過率を測定することによって、ガスバリア薄膜のみの透過率測定を算出することができるが、本実施例のb値は、ペットボトルの吸収率も含めた形で算出したものをそのまま示している。測定には、光沢度の測定で用いた試験片を使用した。3枚の平均値をb値として表3に示した。
(Transparency evaluation)
The transparency was evaluated using the plastic bottles obtained in the first series of film forming operations for Examples and Comparative Examples. Transparency was evaluated by b * value. The b * value was measured using a self-recording spectrophotometer (U-3900, manufactured by Hitachi) equipped with a 60Φ integrating sphere attachment device (for infrared, visible and near infrared) manufactured by the same company. As the detector, an ultrasensitive photomultiplier tube (R928: for ultraviolet and visible) and cooled PbS (for near infrared region) were used. The transmittance was measured in the measurement wavelength range of 380 nm to 780 nm. By measuring the transmittance of the PET bottle, the transmittance measurement of only the gas barrier thin film can be calculated. However, the b * value in this example is the same as that calculated in the form including the absorption rate of the PET bottle. Show. The test piece used for the measurement of glossiness was used for the measurement. The average value of 3 sheets is shown in Table 3 as b * value.
(ガスバリア性評価)
 実施例及び比較例について一連の成膜作業の繰返し回数が1回目、100回目、200回目で得られた各プラスチックボトルを用いてガスバリア性を評価した。ガスバリア性はBIFで評価した。まず、実施例又は比較例の各プラスチックボトルについて酸素透過度を測定した。酸素透過度は、酸素透過度測定装置(型式:Oxtran 2/20、Modern Control社製)を用いて、23℃、90%RHの条件にて測定し、測定開始から24時間コンディションし、測定開始から72時間経過後の値とした。BIFは、数5において、未成膜ボトルの酸素透過度の値を薄膜未形成のプラスチック成形体の酸素透過度とし、実施例又は比較例の各プラスチックボトルの酸素透過度の値をガスバリア性プラスチック成形体の酸素透過度として算出した。評価基準は、次のとおりである。評価結果を表3に示す。
◎:各プラスチックボトルのBIFが10以上である(実用レベル)。
○:各プラスチックボトルのBIFが5以上10未満である(実用下限レベル)。
×:各プラスチックボトルのBIFが5未満である(実用不適レベル)。
(Gas barrier property evaluation)
Regarding Examples and Comparative Examples, gas barrier properties were evaluated using each plastic bottle obtained when the number of repetitions of a series of film forming operations was 1st, 100th, and 200th. The gas barrier property was evaluated by BIF. First, oxygen permeability was measured for each plastic bottle of the example or comparative example. The oxygen permeability was measured under the conditions of 23 ° C. and 90% RH using an oxygen permeability measuring device (model: Oxtran 2/20, manufactured by Modern Control), conditioned for 24 hours from the start of measurement, and then started measurement. The value after 72 hours had passed. In BIF, in Equation 5, the oxygen permeability value of the unformed film bottle is defined as the oxygen permeability value of the plastic molded body where the thin film is not formed, and the oxygen permeability value of each plastic bottle of the example or comparative example is used as the gas barrier plastic molding. Calculated as oxygen permeability of the body. The evaluation criteria are as follows. The evaluation results are shown in Table 3.
A: BIF of each plastic bottle is 10 or more (practical level).
○: BIF of each plastic bottle is 5 or more and less than 10 (practical lower limit level).
X: BIF of each plastic bottle is less than 5 (practical unsuitable level).
(機械的耐久性評価)
 一連の成膜作業を1万回繰り返した後、発熱体を成膜装置から外して、返し部から40~80mm部分を指で把持し、強度を確認した。評価基準は次のとおりである。評価結果を表3に示す。
○:発熱体直線部が±1.5mmの範囲を維持し、指で把持しても破損しない(実用レベル)。
△:発熱体直線部が±3.0mmの範囲を維持し、指で把持しても破損しない(実用下限レベル)。
×:発熱体直線部が±3.0mmの範囲を超え、指把持により破損する(実用不適レベル)。
(Mechanical durability evaluation)
After a series of film forming operations was repeated 10,000 times, the heating element was removed from the film forming apparatus, and a 40 to 80 mm portion from the return portion was grasped with a finger, and the strength was confirmed. The evaluation criteria are as follows. The evaluation results are shown in Table 3.
◯: The heating element straight line portion maintains a range of ± 1.5 mm and does not break even when gripped with a finger (practical level).
(Triangle | delta): A heating-element linear part maintains the range of +/- 3.0mm, and even if it hold | grips with a finger, it does not break (practical use lower limit level).
X: The heating element linear portion exceeds the range of ± 3.0 mm and is damaged by finger grip (practical unsuitable level).
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表3に示すように、各実施例はいずれも実質的に無色透明で、かつ、高いガスバリア性を有していた。また、比較例1と比較して、発熱体の触媒活性及び強度ともに耐久性に優れた製造方法であることが確認できた。特に、実施例1及び実施例2は、発熱体を1万回以上繰り返し使用しても、発熱体の触媒活性が失われること無く、ガスバリア性の高い薄膜を形成することができた。また、各実施例は、(P-P)/Pが0.11以上であり、高い透明性及び高いガスバリア性を有するガスバリア薄膜を形成することができた。実施例1,2は、(P-P)/Pが0.15以上であり、発熱体を繰返し使用してもガスバリア性が高い状態を保持していた。 As shown in Table 3, each Example was substantially colorless and transparent and had high gas barrier properties. Moreover, compared with the comparative example 1, it has confirmed that it was a manufacturing method excellent in durability with respect to the catalyst activity and intensity | strength of a heat generating body. In particular, Example 1 and Example 2 were able to form a thin film having a high gas barrier property without losing the catalytic activity of the heating element even when the heating element was repeatedly used 10,000 times or more. In each example, (P B -P A ) / P 0 was 0.11 or more, and a gas barrier thin film having high transparency and high gas barrier properties could be formed. In Examples 1 and 2, (P B -P A ) / P 0 was 0.15 or more, and the gas barrier property was kept high even when the heating element was repeatedly used.
4 プラスチック成形体(プラスチックボトル)
31 成膜専用チャンバ(真空チャンバ)
32 出入用チャンバ
33 ゲートバルブ
42 発熱体
56 開閉ゲート
80 圧力検出部
VP1 真空ポンプ
VP2 真空ポンプ
90 ガスバリア性プラスチック成形体
91 プラスチック成形体
92 ガスバリア薄膜
92a 上層
92b 下層
92s ガスバリア薄膜の表面
4 Plastic molded body (plastic bottle)
31 Deposition chamber (vacuum chamber)
32 Entrance / exit chamber 33 Gate valve 42 Heating element 56 Opening / closing gate 80 Pressure detector VP1 Vacuum pump VP2 Vacuum pump 90 Gas barrier plastic molded body 91 Plastic molded body 92 Gas barrier thin film 92a Upper layer 92b Lower layer 92s Surface of the gas barrier thin film

Claims (7)

  1.  プラスチック成形体と、該プラスチック成形体の表面に設けたガスバリア薄膜とを備えるガスバリア性プラスチック成形体において、
     前記ガスバリア薄膜は、構成元素として珪素(Si)、炭素(C)及び酸素(O)を含有し、かつ、条件(1)でX線電子分光分析すると、Si-Cの結合エネルギーのピーク出現位置に、メインピークが観察される領域を有することを特徴とするガスバリア性プラスチック成形体。
     条件(1)測定範囲を95~105eVとする。
    In a gas barrier plastic molded body comprising a plastic molded body and a gas barrier thin film provided on the surface of the plastic molded body,
    The gas barrier thin film contains silicon (Si), carbon (C), and oxygen (O) as constituent elements, and when the X-ray electron spectroscopic analysis is performed under the condition (1), the peak appearance position of the bond energy of Si—C And a gas barrier plastic molded article having a region where a main peak is observed.
    Condition (1) The measurement range is 95 to 105 eV.
  2.  前記ガスバリア薄膜は、深さ方向に傾斜組成を有し、
     前記ガスバリア薄膜を深さ方向に二等分し、前記プラスチック成形体とは反対側を上層とし、前記プラスチック成形体側を下層としたとき、
     前記上層における(数1)で表されるC含有率が、前記上層における(数2)で表されるSi含有率よりも高いことを特徴とする請求項1に記載のガスバリア性プラスチック成形体。
    (数1)C含有率[%]={(C含有量[atomic%])/(Si,O及びCの合計含有量[atomic%])}×100
    数1において、Si,O又はCの含有量は、Si,O及びCの3元素の内訳における含有量である。
    (数2)Si含有率[%]={(Si含有量[atomic%])/(Si,O及びCの合計含有量[atomic%])}×100
    数2において、Si,O又はCの含有量は、Si,O及びCの3元素の内訳における含有量である。
    The gas barrier thin film has a gradient composition in the depth direction,
    When the gas barrier thin film is bisected in the depth direction, the side opposite to the plastic molded body is the upper layer, and the plastic molded body side is the lower layer,
    2. The gas barrier plastic molded article according to claim 1, wherein the C content represented by (Equation 1) in the upper layer is higher than the Si content represented by (Equation 2) in the upper layer.
    (Equation 1) C content [%] = {(C content [atomic%]) / (total content of Si, O and C [atomic%])} × 100
    In Equation 1, the content of Si, O, or C is the content in the breakdown of the three elements of Si, O, and C.
    (Expression 2) Si content [%] = {(Si content [atomic%]) / (total content of Si, O and C [atomic%])} × 100
    In Formula 2, the content of Si, O, or C is the content in the breakdown of the three elements of Si, O, and C.
  3.  前記上層における(数3)で表されるO含有率が、前記上層におけるSi含有率よりも低いことを特徴とする請求項2に記載のガスバリア性プラスチック成形体。
    (数3)O含有率[%]={(O含有量[atomic%])/(Si,O及びCの合計含有量[atomic%])}×100
    数3において、Si,O又はCの含有量は、Si,O及びCの3元素の内訳における含有量である。
    3. The gas barrier plastic molded article according to claim 2, wherein an O content represented by (Equation 3) in the upper layer is lower than an Si content in the upper layer.
    (Equation 3) O content [%] = {(O content [atomic%]) / (total content of Si, O and C [atomic%])} × 100
    In Equation 3, the content of Si, O, or C is the content in the breakdown of the three elements of Si, O, and C.
  4.  前記ガスバリア薄膜は、深さ方向に傾斜組成を有し、
     前記ガスバリア薄膜を深さ方向に二等分し、前記プラスチック成形体とは反対側を上層とし、前記プラスチック成形体側を下層としたとき、
     前記下層における(数1)で表されるC含有率が、前記下層における(数3)で表されるO含有率よりも高いことを特徴とする請求項1~3のいずれか1つに記載のガスバリア性プラスチック成形体。
    (数1)C含有率[%]={(C含有量[atomic%])/(Si,O及びCの合計含有量[atomic%])}×100
    数1において、Si,O又はCの含有量は、Si,O及びCの3元素の内訳における含有量である。
    (数3)O含有率[%]={(O含有量[atomic%])/(Si,O及びCの合計含有量[atomic%])}×100
    数3において、Si,O又はCの含有量は、Si,O及びCの3元素の内訳における含有量である。
    The gas barrier thin film has a gradient composition in the depth direction,
    When the gas barrier thin film is bisected in the depth direction, the side opposite to the plastic molded body is the upper layer, and the plastic molded body side is the lower layer,
    4. The C content represented by (Equation 1) in the lower layer is higher than the O content represented by (Equation 3) in the lower layer. Gas barrier plastic molding.
    (Equation 1) C content [%] = {(C content [atomic%]) / (total content of Si, O and C [atomic%])} × 100
    In Equation 1, the content of Si, O, or C is the content in the breakdown of the three elements of Si, O, and C.
    (Equation 3) O content [%] = {(O content [atomic%]) / (total content of Si, O and C [atomic%])} × 100
    In Equation 3, the content of Si, O, or C is the content in the breakdown of the three elements of Si, O, and C.
  5.  真空チャンバの内部を排気して前記真空チャンバ内を初期圧力P以下に調整する排気工程と、
     前記真空チャンバ内の圧力がP以下に調整され、かつ、真空チャンバ内に配置された炭化タンタル相を有する発熱体が加熱されていないときに、珪素含有炭化水素ガスを前記真空チャンバ内に導入して該真空チャンバ内の圧力を前記Pに調整する準備工程と、
     前記珪素含有炭化水素ガスを継続して前記真空チャンバに導入しながら前記発熱体を加熱して、前記真空チャンバ内に収容されているプラスチック成形体の表面にガスバリア薄膜を形成する成膜工程と、
    を有することを特徴とするガスバリア性プラスチック成形体の製造方法。
    Evacuating the inside of the vacuum chamber to adjust the inside of the vacuum chamber to an initial pressure P 0 or less;
    Silicon-containing hydrocarbon gas is introduced into the vacuum chamber when the pressure in the vacuum chamber is adjusted to P 0 or less and the heating element having a tantalum carbide phase disposed in the vacuum chamber is not heated. A preparatory step of adjusting the pressure in the vacuum chamber to the P 0 ,
    A film forming step of heating the heating element while continuously introducing the silicon-containing hydrocarbon gas into the vacuum chamber to form a gas barrier thin film on the surface of the plastic molded body housed in the vacuum chamber;
    A method for producing a gas barrier plastic molded article, comprising:
  6.  前記準備工程において、前記真空チャンバ内の圧力を前記Pに調整後、前記真空チャンバ内の圧力を前記Pより高い圧力Pに到達させ、
     前記成膜工程において、前記真空チャンバ内の圧力を前記Pより高い圧力Pに到達させることを特徴とする請求項5に記載のガスバリア性プラスチック成形体の製造方法。
    In the preparation step, wherein after adjusting the pressure in the vacuum chamber to said P 0, to reach the pressure of the vacuum chamber at a higher pressure P A from the P 0,
    Wherein in the film forming step, the manufacturing method of the gas barrier plastic molded body according to claim 5, characterized in that to reach the pressure of said vacuum chamber to said P A higher pressures P B.
  7.  (P-P)/Pが0.11以上であることを特徴とする請求項6に記載のガスバリア性プラスチック成形体の製造方法。 7. The method for producing a gas barrier plastic molded article according to claim 6, wherein (P B -P A ) / P 0 is 0.11 or more.
PCT/JP2016/061070 2015-04-17 2016-04-05 Gas-barrier plastic molded product and method for manufacturing same WO2016167152A1 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
KR1020177032902A KR20170138476A (en) 2015-04-17 2016-04-05 Gas-barrier plastic molded article and manufacturing method thereof
MYPI2017703465A MY186446A (en) 2015-04-17 2016-04-05 Gas-barrier plastic molded product and method for manufacturing same
US15/566,515 US10487397B2 (en) 2015-04-17 2016-04-05 Gas-barrier plastic molded product and method for manufacturing same
SG11201708290QA SG11201708290QA (en) 2015-04-17 2016-04-05 Gas-barrier plastic molded product and method for manufacturing same
CN201680021428.1A CN107429392B (en) 2015-04-17 2016-04-05 Gas barrier property plastic shaped body and its manufacturing method
AU2016248605A AU2016248605A1 (en) 2015-04-17 2016-04-05 Gas-barrier plastic molded product and method for manufacturing same
EP16779943.6A EP3284846B1 (en) 2015-04-17 2016-04-05 Gas-barrier plastic molded product and method for manufacturing same
PH12017501752A PH12017501752A1 (en) 2015-04-17 2017-09-25 Gas-barrier plastic molded product and method for manufacturing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-085018 2015-04-17
JP2015085018A JP6474673B2 (en) 2015-04-17 2015-04-17 Gas barrier plastic molded body and method for producing the same

Publications (1)

Publication Number Publication Date
WO2016167152A1 true WO2016167152A1 (en) 2016-10-20

Family

ID=57126273

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/061070 WO2016167152A1 (en) 2015-04-17 2016-04-05 Gas-barrier plastic molded product and method for manufacturing same

Country Status (11)

Country Link
US (1) US10487397B2 (en)
EP (1) EP3284846B1 (en)
JP (1) JP6474673B2 (en)
KR (1) KR20170138476A (en)
CN (1) CN107429392B (en)
AU (1) AU2016248605A1 (en)
MY (1) MY186446A (en)
PH (1) PH12017501752A1 (en)
SG (1) SG11201708290QA (en)
TW (1) TWI686497B (en)
WO (1) WO2016167152A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018095937A (en) * 2016-12-15 2018-06-21 三菱重工機械システム株式会社 Electrode state evaluation device, film deposition apparatus, and electrode state evaluation method
JP2019155704A (en) * 2018-03-13 2019-09-19 東レエンジニアリング株式会社 Barrier film and photoconversion member

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170118137A (en) * 2015-02-18 2017-10-24 기린 가부시키가이샤 Heating element and manufacturing method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004107689A (en) * 2002-09-13 2004-04-08 Ulvac Japan Ltd Diamond like carbon film deposition method and deposition system
WO2006126677A1 (en) * 2005-05-27 2006-11-30 Kirin Beer Kabushiki Kaisha Apparatus for manufacturing gas barrier plastic container, method for manufacturing the container, and the container
JP2009120885A (en) * 2007-11-13 2009-06-04 Toyo Advanced Technologies Co Ltd Carbonaceous thin film and production method therefor
WO2012091097A1 (en) * 2010-12-28 2012-07-05 麒麟麦酒株式会社 Gas-barrier plastic molded product and manufacturing process therefor
WO2012091095A1 (en) * 2010-12-28 2012-07-05 麒麟麦酒株式会社 Method for producing gas barrier plastic molded body

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2001250886A1 (en) * 2000-03-20 2001-10-03 N V. Bekaert S.A. Materials having low dielectric constants and methods of making
US7288311B2 (en) * 2003-02-10 2007-10-30 Dai Nippon Printing Co., Ltd. Barrier film
US20110274933A1 (en) * 2008-12-12 2011-11-10 Lintec Corporation Laminate, method for producing same, electronic device member, and electronic device
KR101489551B1 (en) * 2009-05-22 2015-02-03 린텍 가부시키가이샤 Molded object, process for producing same, member for electronic device, and electronic device
JP5706777B2 (en) * 2011-07-25 2015-04-22 麒麟麦酒株式会社 Gas barrier plastic molding
MY167942A (en) 2011-12-27 2018-10-04 Kirin Brewery Apparatus for forming thin film
TWI576242B (en) * 2011-12-28 2017-04-01 Kirin Brewery Gas barrier plastic molded body and manufacturing method thereof
JP6009243B2 (en) * 2012-06-27 2016-10-19 麒麟麦酒株式会社 Carbonated beverage bottle and method for producing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004107689A (en) * 2002-09-13 2004-04-08 Ulvac Japan Ltd Diamond like carbon film deposition method and deposition system
WO2006126677A1 (en) * 2005-05-27 2006-11-30 Kirin Beer Kabushiki Kaisha Apparatus for manufacturing gas barrier plastic container, method for manufacturing the container, and the container
JP2009120885A (en) * 2007-11-13 2009-06-04 Toyo Advanced Technologies Co Ltd Carbonaceous thin film and production method therefor
WO2012091097A1 (en) * 2010-12-28 2012-07-05 麒麟麦酒株式会社 Gas-barrier plastic molded product and manufacturing process therefor
WO2012091095A1 (en) * 2010-12-28 2012-07-05 麒麟麦酒株式会社 Method for producing gas barrier plastic molded body

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3284846A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018095937A (en) * 2016-12-15 2018-06-21 三菱重工機械システム株式会社 Electrode state evaluation device, film deposition apparatus, and electrode state evaluation method
JP2019155704A (en) * 2018-03-13 2019-09-19 東レエンジニアリング株式会社 Barrier film and photoconversion member
WO2019176936A1 (en) * 2018-03-13 2019-09-19 東レエンジニアリング株式会社 Barrier film and light conversion member
JP7163041B2 (en) 2018-03-13 2022-10-31 東レエンジニアリング株式会社 Barrier film and light conversion material

Also Published As

Publication number Publication date
KR20170138476A (en) 2017-12-15
JP6474673B2 (en) 2019-02-27
EP3284846A1 (en) 2018-02-21
US10487397B2 (en) 2019-11-26
US20180127872A1 (en) 2018-05-10
CN107429392A (en) 2017-12-01
JP2016204685A (en) 2016-12-08
CN107429392B (en) 2019-08-20
TW201641732A (en) 2016-12-01
EP3284846B1 (en) 2021-02-17
PH12017501752A1 (en) 2018-04-11
TWI686497B (en) 2020-03-01
EP3284846A4 (en) 2018-12-19
AU2016248605A1 (en) 2017-10-19
SG11201708290QA (en) 2017-11-29
MY186446A (en) 2021-07-22

Similar Documents

Publication Publication Date Title
AU2011350429B2 (en) Gas-barrier plastic molded product and manufacturing process therefor
JP5260050B2 (en) Gas barrier plastic container manufacturing apparatus and method for manufacturing the container
JP5695673B2 (en) Method for producing gas barrier plastic molding
WO2016167152A1 (en) Gas-barrier plastic molded product and method for manufacturing same
JP2007261077A (en) Dlc-film-coated biodegradable plastic container or film and its manufacturing method
JP5706777B2 (en) Gas barrier plastic molding
JP6009243B2 (en) Carbonated beverage bottle and method for producing the same
JP5566334B2 (en) Gas barrier plastic molded body and method for producing the same
EP3093309B1 (en) Process for depositing a gas barrier coating on a polymer film or polymer container, and polymer film or polymer container with coated with such a gas barrier
JP5779044B2 (en) Control method of wettability
JP2007168882A (en) Gas barrier plastic container
JP7005256B2 (en) Gas barrier container
TWI537415B (en) Production method of gas barrier plastic molded body

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16779943

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12017501752

Country of ref document: PH

WWE Wipo information: entry into national phase

Ref document number: 11201708290Q

Country of ref document: SG

WWE Wipo information: entry into national phase

Ref document number: 15566515

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2016248605

Country of ref document: AU

Date of ref document: 20160405

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2016779943

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20177032902

Country of ref document: KR

Kind code of ref document: A