WO2016166845A1 - 冷凍サイクル装置 - Google Patents

冷凍サイクル装置 Download PDF

Info

Publication number
WO2016166845A1
WO2016166845A1 PCT/JP2015/061603 JP2015061603W WO2016166845A1 WO 2016166845 A1 WO2016166845 A1 WO 2016166845A1 JP 2015061603 W JP2015061603 W JP 2015061603W WO 2016166845 A1 WO2016166845 A1 WO 2016166845A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
hic
refrigerant
superheat degree
cycle apparatus
Prior art date
Application number
PCT/JP2015/061603
Other languages
English (en)
French (fr)
Inventor
七種 哲二
大林 誠善
仁隆 門脇
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to GB1716734.7A priority Critical patent/GB2553970B/en
Priority to JP2017512129A priority patent/JP6463464B2/ja
Priority to PCT/JP2015/061603 priority patent/WO2016166845A1/ja
Publication of WO2016166845A1 publication Critical patent/WO2016166845A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/385Dispositions with two or more expansion means arranged in parallel on a refrigerant line leading to the same evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/39Dispositions with two or more expansion means arranged in series, i.e. multi-stage expansion, on a refrigerant line leading to the same evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/003Indoor unit with water as a heat sink or heat source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/19Calculation of parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2501Bypass valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2509Economiser valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1933Suction pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2103Temperatures near a heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21151Temperatures of a compressor or the drive means therefor at the suction side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21175Temperatures of an evaporator of the refrigerant at the outlet of the evaporator

Definitions

  • the present invention relates to a refrigeration cycle apparatus including a refrigerant circuit in which a refrigerant circulates.
  • Some conventional refrigeration cycle devices incorporate an internal heat exchanger that exchanges heat between the refrigerant flowing out of the condenser and the refrigerant flowing out of the evaporator.
  • HFO-1234yf R1234yf
  • HFO-1234ze has been used as a refrigerant for circulating the refrigeration cycle apparatus.
  • the internal heat exchanger is said to be useful for improving the refrigerating capacity when a refrigerant such as HFO-1234yf is used (see, for example, Patent Document 1).
  • Patent Document 1 includes a “compressor for compressing refrigerant, a condenser for condensing the compressed refrigerant, decompression / expansion means for decompressing / expanding the condensed refrigerant, and an evaporator for evaporating the decompressed / expanded refrigerant;
  • R1234yf is used as the refrigerant
  • the amount of heat exchange by the internal heat exchanger is The ratio of the heat exchange amount by the internal heat exchanger to the refrigeration capacity as a whole of the refrigeration capacity is set to 7% or more.
  • the refrigeration cycle apparatus of Patent Document 1 is set so that the heat exchange amount in the internal heat exchanger is 7% or more of the refrigeration capacity of the entire apparatus. For this reason, since the length of the heat transfer part of the internal heat exchanger becomes long and the refrigerant pressure loss from the evaporator to the suction port of the compressor increases, there is a problem that the efficiency decreases.
  • the present invention has been made to solve the above-described problems, and reduces the length of the heat transfer section of the internal heat exchanger when HFO-1234yf or HFO-1234ze is used as the refrigerant, and is efficient. It aims at providing the refrigerating-cycle apparatus which aims at improvement.
  • the refrigeration cycle apparatus includes a refrigerant circuit in which a compressor, a condenser, a main expansion valve, and an evaporator are connected via a main pipe, a refrigerant that flows between the condenser and the main expansion valve, and evaporation Between the condenser and the internal heat exchanger, which exchanges heat between the refrigerant flowing between the compressor and the compressor and allows the refrigerant flowing out of the evaporator to flow into the suction side of the compressor
  • a HIC heat exchanger connected in series to the internal heat exchanger, a bypass pipe that branches from between the condenser and the HIC heat exchanger, and leads the refrigerant to the compressor via the HIC heat exchanger, and condensation
  • a sub-expansion valve that decompresses the refrigerant flowing into the bypass pipe from the condenser and flows out to the HIC heat exchanger, and the HIC heat exchanger includes the refrigerant that flows in from the condenser through the main pipe and the
  • the HIC heat exchanger connected in series to the internal heat exchanger is configured to exchange heat between the refrigerant flowing from the condenser through the main pipe and the refrigerant flowing from the condenser through the bypass pipe. Therefore, since the amount of heat exchange by the internal heat exchanger can be reduced, even when using HFO-1234yf or HFO-1234ze as the refrigerant, the length of the heat transfer section of the internal heat exchanger is shortened, and Efficiency can be improved.
  • FIG. 1 is a system configuration diagram including a refrigerant circuit diagram of a refrigeration cycle apparatus according to Embodiment 1 of the present invention.
  • FIG. 2 is a Ph diagram illustrating an operating state of the refrigeration cycle apparatus of FIG. It is a flowchart which shows the control action at the time of the hot water supply driving
  • FIG. 8 is a Ph diagram illustrating an operating state of the refrigeration cycle apparatus of FIG. 7. It is a flowchart which shows the control action at the time of the hot water supply driving
  • FIG. 1 is a system configuration diagram including a refrigerant circuit diagram of a refrigeration cycle apparatus according to Embodiment 1 of the present invention.
  • FIG. 1 shows a state when a heating operation for raising the temperature of water on the load side is performed.
  • the refrigeration cycle apparatus 100 is configured such that the compressor 10, the four-way valve 20, the condenser 30, the main expansion valve 80, and the evaporator 60 are connected in an annular shape.
  • a HIC (Heat Inter Changer) heat exchanger 50 and an internal heat exchanger 70 connected in series are disposed between the condenser 30 and the main expansion valve 80. That is, the refrigeration cycle apparatus 100 includes a refrigerant circuit in which the compressor 10, the condenser 30, the main expansion valve 80, and the evaporator 60 are connected via the main pipe 1, and between the condenser 30 and the main expansion valve 80.
  • HIC Heat Inter Changer
  • the refrigeration cycle apparatus 100 is a main pipe that circulates refrigerant to the compressor 10, the four-way valve 20, the condenser 30, the HIC heat exchanger 50, the internal heat exchanger 70, the main expansion valve 80, and the evaporator 60 as refrigerant pipes.
  • the refrigeration cycle apparatus 100 includes a bypass pipe 2 that branches from between the condenser 30 and the HIC heat exchanger 50 and guides the refrigerant to the compressor 10 via the HIC heat exchanger 50.
  • the bypass pipe 2 branches from the main pipe 1 extending from the outlet of the condenser 30 and bypasses part of the high-pressure liquid refrigerant that has flowed out of the condenser 30 to flow into the main pipe 1.
  • the main pipe 1 extending from 70 is connected.
  • the refrigeration cycle apparatus 100 has a sub-expansion valve 40 that decompresses the refrigerant flowing into the bypass pipe 2 from the condenser 30 and flows out to the HIC heat exchanger 50. That is, the bypass pipe 2 is configured to bypass a part of the high-pressure liquid refrigerant that has passed through the condenser 30 and pass the sub expansion valve 40 and the HIC heat exchanger 50.
  • the compressor 10 is composed of, for example, an inverter compressor whose capacity can be controlled, and sucks and compresses the low-temperature and low-pressure gas refrigerant, and discharges it in the state of the high-temperature and high-pressure gas refrigerant.
  • the four-way valve 20 switches the direction between the high-temperature and high-pressure gas refrigerant discharged from the compressor 10 and the low-temperature and low-pressure gas refrigerant sucked into the compressor 10.
  • the condenser 30 is composed of, for example, a plate heat exchanger, and heats the high-temperature and high-pressure gas refrigerant discharged from the compressor 10 and passing through the four-way valve 20 by heat exchange with water.
  • the secondary expansion valve 40 is disposed in the bypass pipe 2 and depressurizes the high-pressure liquid refrigerant that has passed through the condenser 30 to form a low-pressure two-phase refrigerant.
  • the HIC heat exchanger 50 exchanges heat between the high-pressure liquid refrigerant that has flowed out of the condenser 30 and passed through the main pipe 1, and the low-pressure two-phase refrigerant that has been decompressed by the sub-expansion valve 40.
  • the evaporator 60 includes, for example, a fin plate heat exchanger and the like, and evaporates the refrigerant by exchanging heat with air.
  • the internal heat exchanger 70 has, for example, a double pipe, and exchanges heat between the high-pressure liquid refrigerant that has passed through the HIC heat exchanger 50 and the low-pressure gas refrigerant that has passed through the evaporator 60.
  • the main expansion valve 80 decompresses the high-pressure liquid refrigerant that has passed through the internal heat exchanger 70 into a low-pressure two-phase refrigerant.
  • a refrigerant circuit is formed in which the refrigerant is circulated sequentially to the compressor 10, the condenser 30, the sub-expansion valve 40, the HIC heat exchanger 50, the internal heat exchanger 70, the main expansion valve 80, and the evaporator 60.
  • the refrigeration cycle apparatus 100 uses a mixed refrigerant containing HFO-1234yf or HFO-1234ze as a refrigerant.
  • HFO-1234yf or HFO-1234ze as a refrigerant has a global warming potential (GWP) of 4.
  • GWP global warming potential
  • the GWP of R410A conventionally used is 2090
  • the GWP of R407C is 1770. That is, HFO-1234yf or HFO-1234ze is a refrigerant having a smaller influence on the global environment than R410A and R407C.
  • HFO-1234yf or HFO-1234ze has a feature that the discharge temperature from the compressor 10 is less likely to rise than R410A and R407C. Further, in the heating operation in which HFO-1234yf or HFO-1234ze is heated to increase the temperature of water, if the discharge temperature is increased by increasing the suction superheat degree of the compressor 10, the condensation pressure at the time of equivalent capacity output decreases. The efficiency is improved.
  • FIG. 2 is a Ph diagram illustrating the operating state of the refrigeration cycle apparatus 100, where the vertical axis represents the refrigerant absolute pressure P [MPa ⁇ abs] and the horizontal axis represents the specific enthalpy h [kJ / kg]. .
  • a low-temperature and low-pressure gaseous refrigerant is sucked into the compressor 10 (C01: compressor 10 suction port), compressed by the compressor 10, and discharged as a high-temperature and high-pressure gas.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 10 flows into the condenser 30 via the four-way valve 20.
  • the high-temperature high-pressure gas refrigerant that has flowed into the condenser 30 radiates heat to the heat exchange medium, and becomes high-pressure liquid refrigerant.
  • the high-pressure liquid refrigerant that has flowed out of the condenser 30 branches in two directions.
  • One branched high-pressure liquid refrigerant flows into the sub-expansion valve 40 through the bypass pipe 2 and is decompressed and expanded to become a low-temperature and low-pressure gas-liquid two-phase refrigerant (C03: sub-expansion valve 40 outlet).
  • the other branched high-pressure liquid refrigerant flows into the HIC heat exchanger 50 and exchanges heat with the low-temperature and low-pressure gas-liquid two-phase refrigerant that has flowed out of the sub-expansion valve 40 (T01) to become a high-pressure supercooled liquid refrigerant.
  • Outflow (C04a: HIC heat exchanger 50 outlet).
  • the low-temperature and low-pressure gas-liquid two-phase refrigerant that has flowed out of the sub-expansion valve 40 exchanges heat with the high-pressure liquid refrigerant that has flowed into the HIC heat exchanger 50 (T01) and flows out as medium-temperature and low-pressure gas refrigerant (C04b: HIC heat) Exchanger 50 outlet).
  • the high-pressure supercooled liquid refrigerant that has flowed out of the HIC heat exchanger 50 flows into the internal heat exchanger 70, exchanges heat with the low-pressure and low-temperature gas refrigerant that has flowed out of the evaporator 60 and passed through the four-way valve 20 (T02), Further, it flows out as a liquid refrigerant having a high degree of supercooling (C05: outlet of internal heat exchanger 70).
  • the supercooled liquid refrigerant that has flowed out of the internal heat exchanger 70 flows into the main expansion valve 80, is decompressed and expanded to become a low-pressure two-phase refrigerant, and flows into the evaporator 60 (C06: evaporator 60 inlet).
  • the low-pressure two-phase refrigerant that has flowed into the evaporator 60 cools the air that is the heat exchange medium, evaporates, and flows out as a low-temperature and low-pressure gas refrigerant (C07: outlet of the evaporator 60).
  • the low-temperature and low-pressure gas refrigerant that has flowed out of the evaporator 60 passes through the four-way valve 20 again, and then flows into the internal heat exchanger 70 and exchanges heat with the high-pressure liquid refrigerant that has flowed out of the HIC heat exchanger 50 (T02). Then, it flows out as medium temperature and low pressure gas refrigerant (C08: internal heat exchanger 70 outlet).
  • the HIC heat exchanger 50 can be configured with a narrower pipe than the internal heat exchanger 70, and can have a compact configuration.
  • the refrigeration cycle apparatus 100 includes a state detection unit that detects the state of the refrigerant flowing in the refrigerant circuit, and a microcomputer such as a DSP, for example.
  • the refrigeration cycle apparatus 100 includes a sub-expansion valve 40 and a main expansion valve 80 based on the detection result by the state detection unit. And a control device 90 for controlling the opening degree.
  • the state detection unit detects the pressure sensor 110 that detects the suction pressure Ps that is the pressure of the gas refrigerant sucked into the compressor 10 and the HIC outlet temperature Tho that is the temperature of the gas refrigerant that flows out of the HIC heat exchanger 50.
  • the HIC outlet temperature sensor 120 and the evaporator outlet temperature sensor 130 for detecting the evaporator outlet temperature The which is the temperature of the gas refrigerant flowing out of the evaporator 60 are provided.
  • the control device 90 has a superheat degree calculation unit 90a that calculates a first superheat degree that is a superheat degree at the outlet of the HIC heat exchanger 50 using a result of detection by the state detection part, and a first superheat degree is preset.
  • control device 90 calculates the saturation temperature f (Ps) of the suction pressure Ps detected by the pressure sensor 110 and calculates the saturation temperature f (Ps) from the HIC outlet temperature Tho detected by the HIC outlet temperature sensor 120. ) Is subtracted to calculate a first superheat degree SHa that calculates the first superheat degree SHh that is the degree of heating of the gas outlet of the HIC heat exchanger 50, and the first superheat degree SHh calculated in the superheat degree calculator 90a, A superheat degree determination unit 90b that compares a first set value that is a preset allowable lower limit and determines whether or not the first superheat degree SHh is less than the first set value, and a determination by the superheat degree determination unit 90b And a valve control unit 90c that controls the opening degree of the sub-expansion valve 40 and the main expansion valve 80.
  • the superheat degree determination unit 90b compares the first superheat degree SHh with a second set value that is a preset allowable upper limit, 1 has a function of determining whether the degree of superheat SHh is greater than the second set value.
  • the valve control unit 90c is configured to reduce the opening degree of the sub-expansion valve 40 when the superheat degree determination unit 90b determines that the first superheat degree SHh is less than the first set value. Further, the valve control unit 90c increases the opening degree of the sub-expansion valve 40 when the superheat degree determination unit 90b determines that the first superheat degree SHh is larger than the second set value.
  • valve control part 90c maintains the opening degree of the sub expansion valve 40, when it determines with 1st superheat degree SHh being below 2nd setting value in the superheat degree determination part 90b. That is, in the first embodiment, the target range is set to a range that is not less than the first set value and not more than the second set value.
  • the superheat degree calculation unit 90 a subtracts the saturation temperature f (Ps) of the suction pressure Ps from the evaporator outlet temperature The detected by the evaporator outlet temperature sensor 130 to obtain the superheat degree at the outlet of the evaporator 60. It has a function of calculating the second superheat degree SHe.
  • the superheat degree determination unit 90b compares the second superheat degree SHe calculated by the superheat degree calculation unit 90a with a preset third set value (target value), and the second superheat degree SHe is the third set value. It has a function to determine whether or not it is less than.
  • the valve control unit 90c reduces the opening degree of the main expansion valve 80 when the second superheat degree determination unit 90b determines that the second superheat degree SHe is less than the third set value, and the second superheat degree SHe is When it is determined that the value is greater than or equal to the third set value, the opening of the main expansion valve 80 is increased. That is, the valve control unit 90c controls the opening degree of the main expansion valve 80 so that the second superheat degree SHe becomes the sixth set value that is the target value.
  • FIG. 3 is a flowchart showing a control operation during hot water supply operation by the control device 90.
  • the superheat degree calculation unit 90a inputs the suction pressure Ps detected by the pressure sensor 110 (FIG. 3: step S101), and inputs the HIC outlet temperature Tho detected by the HIC outlet temperature sensor 120 (FIG. 3: Step S102).
  • the superheat degree calculation unit 90a calculates the saturation temperature f (Ps) of the suction pressure Ps, subtracts the calculated f (Ps) from the HIC outlet temperature Tho, and the first superheat degree at the gas outlet of the HIC heat exchanger 50. SHh is calculated (FIG. 3: step S103).
  • the superheat degree determination unit 90b compares the first superheat degree SHh calculated by the superheat degree calculation unit 90a with the first set value, and determines whether or not the first superheat degree SHh is less than the first set value. (FIG. 3: Step S104). When the superheat degree determination unit 90b determines that the first superheat degree SHh is less than the first set value (FIG. 3: Step S104 / Yes), the valve control unit 90c determines the opening degree of the sub expansion valve 40. The heat exchange amount of the HIC heat exchanger 50 is reduced (FIG. 3: Step S105). On the other hand, when the superheat degree determination unit 90b determines that the first superheat degree SHh is greater than or equal to the first set value (FIG.
  • valve control unit 90c determines that the first superheat degree SHh is The second set value is compared to determine whether or not the first superheat degree SHh is greater than the second set value (FIG. 3: step S106).
  • the superheat degree determination unit 90b compares the first superheat degree SHh calculated by the superheat degree calculation unit 90a with the second set value, and determines whether the first superheat degree SHh is larger than the second set value. Determination is made (FIG. 3: step S106).
  • the valve control unit 90c increases the opening degree of the sub expansion valve 40. Then, the heat exchange amount of the HIC heat exchanger 50 is increased (FIG. 3: step S107).
  • the valve control unit 90c presents the current sub-expansion valve.
  • the opening degree of 40 is maintained (FIG. 3: Step S108). That is, the valve control unit 90c controls the opening degree of the sub-expansion valve 40 so that the first degree of superheat falls within a target range that is not less than the first set value and not more than the second set value.
  • the superheat degree calculation unit 90a inputs the evaporator outlet temperature The detected by the evaporator outlet temperature sensor 130 (FIG. 3: step S109).
  • the superheat degree calculation unit 90a calculates the second superheat degree SHe at the outlet of the evaporator 60 by subtracting the saturation temperature f (Ps) of the suction pressure Ps from the evaporator outlet temperature The input from the evaporator outlet temperature sensor 130.
  • the superheat degree determination unit 90b compares the second superheat degree SHe calculated by the superheat degree calculation unit 90a with the third set value, and determines whether the second superheat degree SHe is less than the third set value. (FIG. 3: Step S111).
  • the valve control unit 90c determines the degree of opening of the main expansion valve 80 when the superheat degree determination unit 90b determines that the second superheat degree SHe is less than the third set value (FIG. 3: Step S111 / Yes).
  • the heat exchange amount of the evaporator 60 is suppressed by reducing the size (FIG. 3: Step S112).
  • the valve control unit 90c opens the main expansion valve 80 when the superheat degree determination unit 90b determines that the second superheat degree SHe is equal to or greater than the third set value (FIG. 3: step S111 / No).
  • the degree is increased and the heat exchange amount of the evaporator 60 is increased (FIG. 3: step S113).
  • FIG. 4 is a characteristic diagram showing a simulation result of the relationship between the ratio of the heat exchange amount of the internal heat exchanger 70 to the total refrigeration capacity of the refrigeration cycle apparatus 100 (hereinafter simply referred to as “total refrigeration capacity”) and COP. is there.
  • total refrigeration capacity the total refrigeration capacity of the refrigeration cycle apparatus 100
  • COP Coefficient of Performance: Performance coefficient
  • the suction superheat degree of the compressor 10 is increased.
  • the COP is reduced because the discharge temperature of the compressor 10 is reduced and the increase in the discharge temperature is reduced.
  • the internal heat exchanger 70 The refrigerant pressure loss on the low-pressure gas side increases and COP decreases.
  • the refrigeration cycle apparatus 100 if the ratio of the heat exchange amount of the internal heat exchanger 70 to the total refrigeration capacity is in the range of 2.4% or more and less than 7%, the COP takes a good value. Can drive in the area.
  • a region where COP takes a good value is a region where COP is 100% or more. That is, the refrigeration cycle apparatus 100 sets the length of the heat transfer portion of the internal heat exchanger 70 so that the ratio of the heat exchange amount of the internal heat exchanger 70 to the total refrigeration capacity is 2.4% or more and less than 7%. It is set.
  • FIG. 5 is a characteristic diagram showing the relationship between the ratio of the heat exchange amount of the internal heat exchanger 70 to the total refrigeration capacity and the first superheat degree SHh at the outlet of the HIC heat exchanger 50.
  • the adjustment method of the ratio of the heat exchange amount of the internal heat exchanger 70 to the total refrigeration capacity will be described.
  • the first lower limit of the first superheat degree SHh is set so that the ratio of the heat exchange amount of the internal heat exchanger 70 to the total refrigeration capacity is in the range of 2.4% or more and less than 7%.
  • the set value is set to 15 ° C.
  • the second set value that is the allowable upper limit of the first superheat degree SHh is set to 44 ° C. That is, the valve control unit 90c is configured to control the opening degree of the sub expansion valve 40 so that the first superheat degree SHh becomes a value within the target range.
  • FIG. 6 is a characteristic diagram showing the relationship between the ratio of the heat exchange amount of the HIC heat exchanger 50 to the heat exchange amount of the internal heat exchanger 70 and the COP in the refrigeration cycle apparatus 200.
  • the relationship between the heat exchange amount of the HIC heat exchanger 50 and the internal heat exchanger 70 and the region where the COP of the refrigeration cycle apparatus 100 takes a good value will be described.
  • the HIC heat exchanger 50 since the HIC heat exchanger 50 is on the upstream side and the internal heat exchanger 70 is on the downstream side, if the heat exchange amount of the HIC heat exchanger 50 is increased, the internal heat exchanger 50 The temperature of the high-pressure liquid refrigerant flowing into 70 decreases. That is, as the heat exchange amount of the HIC heat exchanger 50 increases, the heat exchange amount of the internal heat exchanger 70 decreases, and as shown in FIG. There is a peak value of COP with respect to the ratio of the heat exchange amount of the exchanger 50.
  • the ratio of the heat exchange amount of the HIC heat exchanger 50 to the heat exchange amount of the internal heat exchanger 70 is set to be 160% or more and 700% or less.
  • the refrigeration cycle apparatus 100 includes the HIC heat exchanger 50 connected in series to the internal heat exchanger 70, and the HIC heat exchanger 50 is connected to the main heat exchanger 50 from the condenser 30.
  • a configuration is adopted in which heat exchange is performed between the high-pressure refrigerant flowing in through the pipe 1 and the two-phase refrigerant flowing in from the condenser 30 via the sub-expansion valve 40 on the bypass pipe 2. For this reason, since the amount of heat exchange by the internal heat exchanger 70 can be reduced, the length of the heat transfer portion of the internal heat exchanger 70 that causes the refrigerant pressure loss on the suction side of the compressor 10 is more than necessary. The operation in the region where the COP is high can be realized without increasing the length.
  • the amount of heat exchange by the internal heat exchanger 70 can be reduced. Therefore, even when HFO-1234yf or HFO-1234ze is used as the refrigerant, heat transfer of the internal heat exchanger 70 is achieved. The length of the part can be shortened and the efficiency can be improved.
  • the valve control unit 90c employs a configuration in which the opening degree of the main expansion valve 80 is controlled so that the second superheat degree becomes a preset target value (third set value), the secondary expansion is performed. The influence of the control of the valve 40 on the evaporator 60 side can be minimized.
  • the internal heat exchanger has a long double tube configuration, there is a problem that productivity is lowered.
  • the length of the heat transfer section of the internal heat exchanger 70 is long. Therefore, productivity can be improved.
  • the bypass pipe 2 passing through the HIC heat exchanger 50 is configured to flow a small amount of two-phase refrigerant, the influence of the pressure loss on the efficiency of the refrigeration cycle apparatus 200 is suppressed. Therefore, according to the refrigeration cycle apparatus 200 having the HIC heat exchanger 50, the length of the heat transfer section of the internal heat exchanger 70 can be shortened and efficiency can be improved.
  • the HIC heat exchanger 50 can be configured with a narrower pipe than the internal heat exchanger 70, the apparatus can be made compact. Furthermore, by using a thin pipe for the HIC heat exchanger 50 and making it more compact, the dimensions of the equipment can be made smaller than in the conventional configuration, improving installation, reducing equipment weight, and reducing costs. Can be realized.
  • the refrigeration cycle apparatus 100 of the first embodiment is configured to use HFO-1234yf or HFO-1234ze having a low global warming potential, it is possible to reduce the influence on the global environment. .
  • FIG. 7 is a system configuration diagram including a refrigerant circuit diagram of the refrigeration cycle apparatus 200 according to the second embodiment.
  • FIG. 7 shows a state when a heating operation for increasing the temperature of water on the load side is performed.
  • the same reference numerals are used for the same constituent members as those in the first embodiment.
  • the refrigeration cycle apparatus 200 includes, for example, a capacity-controllable inverter compressor or the like, and includes a compressor 15 that sucks low-temperature low-pressure gas refrigerant, compresses it, and discharges it into a high-temperature high-pressure gas refrigerant state.
  • the compressor 15 has an injection port (not shown) and an intermediate chamber (not shown) for injecting an intermediate pressure refrigerant (intermediate pressure refrigerant) flowing into the bypass pipe 2 and flowing out of the HIC heat exchanger 50 in the compression process. have. That is, the gas refrigerant flowing out of the HIC heat exchanger 50 is injected into an intermediate chamber provided in the pressure chamber of the compressor 15 through the injection port.
  • FIG. 8 is a Ph diagram showing the operating state of the refrigeration cycle apparatus 200, where the vertical axis represents the absolute pressure P [MPa ⁇ abs] of the refrigerant and the horizontal axis represents the specific enthalpy h [kJ / kg]. .
  • a low-temperature and low-pressure gaseous refrigerant (C11: outlet of the internal heat exchanger 70) is sucked into the compressor 15, compressed by the compressor 15, and discharged as a high-temperature and high-pressure gas.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 15 flows into the condenser 30 via the four-way valve 20.
  • the high-temperature high-pressure gas refrigerant that has flowed into the condenser 30 radiates heat to the heat exchange medium, and becomes high-pressure liquid refrigerant.
  • the high-pressure liquid refrigerant that has flowed out of the condenser 30 (C12: outlet of the condenser 30) branches in two directions.
  • One of the branched high-pressure liquid refrigerant flows into the sub-expansion valve 40 through the bypass pipe 2 and is decompressed and expanded to become a gas-liquid two-phase refrigerant of medium temperature and medium pressure (C13: sub-expansion valve 40 outlet).
  • the other branched high-pressure liquid refrigerant flows into the HIC heat exchanger 50 and exchanges heat with the medium-temperature and medium-pressure gas-liquid two-phase refrigerant that has flowed out of the sub-expansion valve 40 (T11) to become a high-pressure supercooled liquid refrigerant.
  • C14a HIC heat exchanger 50 outlet
  • the medium-temperature and medium-pressure gas-liquid two-phase refrigerant that has flowed out of the sub-expansion valve 40 exchanges heat with the high-pressure liquid refrigerant that has flowed into the HIC heat exchanger 50 (T11) to become heated gas (C14b: HIC heat exchanger 50 outlet). Then, it is injected into the intermediate pressure of the compressor 15 (C15: intermediate pressure merging section).
  • the high-pressure supercooled liquid refrigerant that has flowed out of the HIC heat exchanger 50 flows into the internal heat exchanger 70, exchanges heat with the low-pressure and low-temperature gas refrigerant that has flowed out of the evaporator 60 and passed through the four-way valve 20 (T12), Furthermore, it flows out as a liquid refrigerant with a large degree of supercooling (C16: outlet of internal heat exchanger 70).
  • the supercooled liquid refrigerant that has flowed out of the internal heat exchanger 70 flows into the main expansion valve 80, is decompressed and expanded to become a low-pressure two-phase refrigerant, and flows into the evaporator 60 (C17: internal heat exchanger 70 inlet).
  • the low-pressure two-phase refrigerant that has flowed into the evaporator 60 cools the air that is the heat exchange medium, evaporates, and flows out as a low-temperature and low-pressure gas refrigerant (C18: outlet of the evaporator 60).
  • the low-temperature and low-pressure gas refrigerant that has flowed out of the evaporator 60 passes through the four-way valve 20 again, then flows into the internal heat exchanger 70, and exchanges heat with the high-pressure liquid refrigerant that has flowed out of the HIC heat exchanger 50 (T12). ), A gas refrigerant having a high degree of superheat, and sucked into the compressor 15 again.
  • the low-pressure gas before being sucked into the compressor 10 flows through the main pipe 1 on the gas side of the internal heat exchanger 70, the low-pressure pressure loss increases as the pipe length increases, and the refrigeration cycle apparatus 200 It becomes a factor to deteriorate efficiency.
  • the HIC heat exchanger 50 can be configured with a narrower pipe than the internal heat exchanger 70, and can have a compact configuration.
  • the refrigeration cycle apparatus 200 includes a state detection unit that detects the state of the refrigerant flowing through the refrigerant circuit, and a control device 190 that controls the opening degrees of the sub-expansion valve 40 and the main expansion valve 80 based on the detection result of the state detection unit. And have.
  • the state detection unit of the second embodiment includes a pressure sensor 110 that detects the suction pressure Ps that is the pressure of the gas refrigerant sucked into the compressor 10, and the HIC that is the temperature of the gas refrigerant that flows out of the HIC heat exchanger 50.
  • the HIC outlet temperature sensor 120 that detects the outlet temperature Th
  • the HIC inlet temperature sensor 210 that detects the HIC inlet temperature Thi, which is the temperature of the gas refrigerant flowing into the HIC heat exchanger 50
  • the internal heat exchanger 70 A suction temperature sensor 230 that detects a suction temperature Ts that is a temperature of a gas refrigerant sucked into the compressor 15, a pressure sensor 110, an HIC outlet temperature sensor 120, and an HIC inlet temperature sensor 210 are provided.
  • the control device 190 subtracts the HIC inlet temperature Thi detected by the HIC inlet temperature sensor 210 from the HIC outlet temperature Th detected by the HIC outlet temperature sensor 120, and determines the degree of superheat of the gas outlet of the HIC heat exchanger 50.
  • a superheat degree calculation unit 190a for calculating a certain first superheat degree SHh, the first superheat degree SHh calculated in the superheat degree calculation unit 190a, and a fourth set value that is a preset allowable lower limit are compared, Based on the results of the determination by the superheat degree determination unit 190b and the superheat degree determination unit 190b that determine whether or not the one superheat degree SHh is less than the fourth set value, the sub-expansion valve 40 and the main expansion valve 80 are opened. And a valve control unit 190c for controlling the degree.
  • the superheat degree determination unit 190b compares the first superheat degree SHh with the fifth set value that is a preset allowable upper limit, It has a function of determining whether or not 1 superheat degree SHh is larger than the fifth set value.
  • the valve control unit 190c reduces the opening degree of the sub-expansion valve 40 when the superheat degree determination unit 190b determines that the first superheat degree SHh is less than the fourth set value.
  • the valve control unit 190c increases the opening degree of the sub-expansion valve 40 when the superheat degree determination unit 190b determines that the first superheat degree SHh is larger than the fifth set value.
  • valve control part 190c maintains the opening degree of the sub expansion valve 40, when it determines with 1st superheat degree SHh being below 5th setting value in the superheat degree determination part 190b. That is, in the second embodiment, the target range is set to a range that is not less than the fourth set value and not more than the fifth set value.
  • the superheat degree calculation unit 190a calculates the saturation temperature f (Ps) of the suction pressure Ps detected by the pressure sensor 110, and subtracts the saturation temperature f (Ps) from the suction temperature Ts detected by the suction temperature sensor 230.
  • the third superheat degree SHs that is the superheat degree of the suction port of the compressor 15 is calculated.
  • the superheat degree determination unit 190b compares the third superheat degree SHs calculated by the superheat degree calculation unit 190a with a preset sixth set value (target value), and the third superheat degree SHs is the sixth set value. It has a function to determine whether or not it is less than.
  • the valve control unit 190c reduces the opening of the main expansion valve 80, and the third superheat degree SHs When it is determined that the value is equal to or larger than the sixth set value, the opening degree of the main expansion valve 80 is increased. That is, the valve control unit 190c controls the opening degree of the main expansion valve 80 so that the third superheat degree SHs becomes the sixth set value that is the target value.
  • FIG. 9 is a flowchart showing a control operation during hot water supply operation by control device 190.
  • the superheat degree calculation unit 190a inputs the HIC inlet temperature Thi detected by the HIC inlet temperature sensor 210 (FIG. 9: Step S201), and inputs the HIC outlet temperature Tho detected by the HIC outlet temperature sensor 120 ( FIG. 9: Step S202).
  • the superheat degree calculation unit 190a calculates the first superheat degree SHh at the gas outlet of the HIC heat exchanger 50 by subtracting the HIC inlet temperature Thi from the HIC outlet temperature Tho (FIG. 9: Step S203).
  • the superheat degree determination unit 190b compares the first superheat degree SHh calculated by the superheat degree calculation unit 190a with the fourth set value, and determines whether or not the first superheat degree SHh is less than the fourth set value. (FIG. 9: Step S204). When the superheat degree determination unit 190b determines that the first superheat degree SHh is less than the fourth set value (FIG. 9: Step S204 / Yes), the valve control unit 190c determines the opening degree of the sub expansion valve 40. The heat exchange amount of the HIC heat exchanger 50 is suppressed by reducing the size (FIG. 9: Step S205).
  • the superheat degree determination unit 190b compares the first superheat degree SHh with the fifth set value. Then, it is determined whether or not the first superheat degree SHh is larger than the fifth set value (FIG. 9: Step S206).
  • the valve control unit 190c increases the opening degree of the sub expansion valve 40. Then, the heat exchange amount of the HIC heat exchanger 50 is increased (FIG. 9: Step S207).
  • the valve control unit 190c presents the current sub-expansion valve.
  • the opening degree of 40 is maintained (FIG. 9: Step S208). That is, the valve control unit 190c controls the opening degree of the sub-expansion valve 40 so that the first degree of superheat falls within a target range that is not less than the fourth set value and not more than the fifth set value.
  • the superheat degree calculation unit 190a inputs the suction pressure Ps detected by the pressure sensor 110 (FIG. 9: Step S209), and inputs the suction temperature Ts detected by the suction temperature sensor 230 (FIG. 9: Step). S210).
  • the superheat degree calculation unit 190a calculates the saturation temperature f (Ps) of the suction pressure Ps, and subtracts the saturation temperature f (Ps) from the suction temperature Ts to calculate the third superheat degree SHs of the suction port of the compressor 15. (FIG. 9: Step S211).
  • the superheat degree determination unit 190b compares the third superheat degree SHs calculated by the superheat degree calculation unit 190a with the sixth set value, and determines whether the third superheat degree SHs is less than the sixth set value. (FIG. 9: Step S212). When the superheat degree determination unit 190b determines that the third superheat degree SHs is less than the sixth set value (FIG. 9: Step S212 / Yes), the valve control unit 190c determines the opening degree of the main expansion valve 80. The heat exchange amount of the evaporator 60 is suppressed by reducing the size (FIG. 9: Step S213).
  • the valve control unit 190c opens the main expansion valve 80. The degree is increased, and the heat exchange amount of the evaporator 60 is increased (FIG. 9: Step S214).
  • FIG. 10 is a characteristic diagram showing the result of simulating the relationship between the ratio of the heat exchange amount of the internal heat exchanger 70 to the total refrigeration capacity of the refrigeration cycle apparatus 200 and the COP.
  • region where COP of the refrigerating-cycle apparatus 200 takes a favorable value is demonstrated.
  • the COP in the refrigeration cycle apparatus 200 has a peak value in the vicinity where the ratio of the heat exchange amount of the internal heat exchanger 70 to the total refrigeration capacity is 5.5%. That is, if the length of the heat transfer section of the internal heat exchanger 70 is too short, the suction superheat degree of the compressor 10 becomes small and the increase in the discharge temperature of the compressor 10 becomes small, so that the COP becomes low. On the other hand, if the length of the heat transfer section of the internal heat exchanger 70 is too long, the refrigerant pressure loss on the low-pressure gas side of the internal heat exchanger 70 increases and COP decreases.
  • the refrigeration cycle apparatus 200 is operated in a region where the COP takes a good value if the ratio of the heat exchange amount of the internal heat exchanger 70 to the total refrigeration capacity is less than 7%. Can do. Also in the second embodiment, a region where COP takes a good value is a region where COP is 100% or more. That is, in the refrigeration cycle apparatus 200, the length of the heat transfer portion of the internal heat exchanger 70 is set so that the ratio of the heat exchange amount of the internal heat exchanger 70 to the total refrigeration capacity is less than 7%.
  • FIG. 11 is a characteristic diagram showing the relationship between the ratio of the heat exchange amount of the internal heat exchanger 70 to the total refrigeration capacity of the refrigeration cycle apparatus 200 and the first superheat degree SHh at the outlet of the HIC heat exchanger 50.
  • the adjustment method of the ratio of the heat exchange amount of the internal heat exchanger 70 to the total refrigeration capacity will be described. As shown in FIG. 11, by controlling the first superheat degree SHh at the outlet of the HIC heat exchanger 50, the ratio of the heat exchange amount of the internal heat exchanger 70 to the total refrigeration capacity can be controlled.
  • the valve control unit 190c in order to set the ratio of the heat exchange amount of the internal heat exchanger 70 to the total refrigeration capacity to be less than 7%, has a first superheat degree SHh of 15 ° C. or less, which is the target range.
  • the degree of opening of the sub expansion valve 40 is controlled so as to be in the range.
  • FIG. 12 is a characteristic diagram showing the relationship between the ratio of the heat exchange amount of the HIC heat exchanger 50 to the heat exchange amount of the internal heat exchanger 70 and the COP in the refrigeration cycle apparatus 200.
  • FIG. 12 the relationship between the heat exchange amount of the HIC heat exchanger 50 and the internal heat exchanger 70 and the region where the COP of the refrigeration cycle apparatus 200 takes a good value will be described.
  • the HIC heat exchanger 50 is on the upstream side and the internal heat exchanger 70 is on the downstream side, if the heat exchange amount of the HIC heat exchanger 50 is increased, the internal heat exchanger 50
  • the temperature of the high-pressure liquid refrigerant flowing into 70 decreases. That is, as the heat exchange amount of the HIC heat exchanger 50 increases, the heat exchange amount of the internal heat exchanger 70 decreases, and as shown in FIG. 12, the HIC heat with respect to the heat exchange amount of the internal heat exchanger 70
  • the ratio of the heat exchange amount of the HIC heat exchanger 50 to the heat exchange amount of the internal heat exchanger 70 is set to be 125% or more and 280% or less.
  • the refrigeration cycle apparatus 200 has the HIC heat exchanger 50 connected in series to the internal heat exchanger 70, and the HIC heat exchanger 50 is connected to the condenser 30 from the main unit.
  • a configuration is adopted in which heat is exchanged between the refrigerant flowing in through the pipe 1 and the refrigerant flowing in from the condenser 30 via the sub-expansion valve 40 on the bypass pipe 2. For this reason, since the amount of heat exchange by the internal heat exchanger 70 can be reduced, the length of the heat transfer portion of the internal heat exchanger 70 that causes the refrigerant pressure loss on the suction side of the compressor 10 is more than necessary. The operation in the region where the COP is high can be realized without increasing the length.
  • the amount of heat exchange by the internal heat exchanger 70 can be reduced. Therefore, even when HFO-1234yf or HFO-1234ze is used as the refrigerant, heat transfer of the internal heat exchanger 70 is achieved. The length of the part can be shortened and the efficiency can be improved.
  • the valve control unit 190c employs a configuration in which the opening degree of the main expansion valve 80 is controlled so that the third superheat degree becomes a preset target value (sixth set value). The influence of the control of the valve 40 on the evaporator 60 side can be minimized.
  • the length of the heat transfer section of the internal heat exchanger 70 can be shortened, so that productivity can be improved. Furthermore, since the bypass pipe 2 passing through the HIC heat exchanger 50 is configured to flow a small amount of two-phase refrigerant, the HIC heat exchanger 50 is configured with a pipe that is thinner than the internal heat exchanger 70. Can be made compact. In addition, by reducing the size of the HIC heat exchanger 50 by using a thin pipe, the size of the device can be made smaller than that of the conventional configuration, thereby improving the installation property, reducing the weight of the device, and reducing the cost. Can be realized. In addition, since the refrigeration cycle apparatus 100 of the second embodiment is configured to use HFO-1234yf or HFO-1234ze having a low global warming potential, the influence on the global environment can be reduced. .
  • each embodiment mentioned above is a suitable specific example in a refrigerating-cycle apparatus, and the technical scope of this invention is not limited to these aspects.
  • a mixed refrigerant containing HFO-1234yf or HFO-1234ze is exemplified as the refrigerant used by the refrigeration cycle apparatuses 100 and 200.
  • the present invention is not limited to this, and for example, HFO A single refrigerant of ⁇ 1234yf or HFO-1234ze may be used.
  • a mixed refrigerant containing HFO-1234yf or HFO-1234ze a mixed refrigerant obtained by mixing HFO-1234yf or HFO-1234ze and R32 may be used.
  • the detection result used for the calculation of the first superheat degree is not limited to that by each sensor illustrated in each embodiment, and for example, the calculation method in the first embodiment may be adopted in the second embodiment.
  • the calculation method in the second embodiment may be adopted in the first embodiment.
  • the control device 90 according to the first embodiment may perform the determination process using the third superheat degree
  • the control device 190 according to the second embodiment may perform the determination process using the second superheat degree. May be performed.

Abstract

圧縮機、凝縮器、主膨張弁、及び蒸発器が主配管を介して接続された冷媒回路と、凝縮器と主膨張弁との間に流れる冷媒と、蒸発器と圧縮機との間に流れる冷媒とを熱交換させて、蒸発器を流出した冷媒を圧縮機の吸入側に流入させる内部熱交換器と、凝縮器と内部熱交換器との間に設けられ、内部熱交換器に直列接続されたHIC熱交換器と、凝縮器とHIC熱交換器との間から分岐し、HIC熱交換器を経由して圧縮機に冷媒を導くバイパス配管と、凝縮器からバイパス配管に流入する冷媒を減圧してHIC熱交換器へ流出する副膨張弁と、を有する冷凍サイクル装置では、HIC熱交換器が、凝縮器から主配管を通じて流入する冷媒と、凝縮器から副膨張弁を介して流入する冷媒とを熱交換させる。

Description

冷凍サイクル装置
 本発明は、冷媒が循環する冷媒回路を備えた冷凍サイクル装置に関する。
 従来の冷凍サイクル装置には、凝縮器を流出した冷媒と蒸発器を流出した冷媒との間で熱交換を行う内部熱交換器が組み込まれたものがある。また、従来から、冷凍サイクル装置を循環させる冷媒として、HFO-1234yf(R1234yf)もしくはHFO-1234zeが使用されている。内部熱交換器は、HFO-1234yf等の冷媒を使用する際の冷凍能力の改善に有用であるとされている(例えば特許文献1参照)。
 特許文献1には、「冷媒を圧縮する圧縮機と、圧縮した冷媒を凝縮する凝縮器と、凝縮した冷媒を減圧・膨張させる減圧・膨張手段と、減圧・膨張した冷媒を蒸発させる蒸発器と、凝縮器出口側冷媒と蒸発器出口側冷媒との間で熱交換を行う内部熱交換器とを備えた冷凍サイクルにおいて、冷媒としてR1234yfを使用するとともに、内部熱交換器による熱交換量を、予めシミュレーションまたは試験により求めた所定値以上とし、該内部熱交換器による熱交換量の所定値の冷凍サイクル全体としての冷凍能力に対する能力割合が7%以上に設定されている」ものが提案されている。
特許第5180680号公報
 しかしながら、特許文献1の冷凍サイクル装置は、内部熱交換器での熱交換量が、装置全体の冷凍能力の7%以上となるように設定されている。このため、内部熱交換器の伝熱部の長さが長くなり、蒸発器から圧縮機の吸入口までの冷媒圧力損失等が増加することから、効率が低下するという課題がある。
 本発明は、上記のような課題を解決するためになされたもので、冷媒としてHFO-1234yfもしくはHFO-1234zeを用いる場合の内部熱交換器の伝熱部の長さを短縮し、かつ効率の向上を図る冷凍サイクル装置を提供することを目的とする。
 本発明に係る冷凍サイクル装置は、圧縮機、凝縮器、主膨張弁、及び蒸発器が主配管を介して接続された冷媒回路と、凝縮器と主膨張弁との間に流れる冷媒と、蒸発器と圧縮機との間に流れる冷媒とを熱交換させて、蒸発器を流出した冷媒を圧縮機の吸入側に流入させる内部熱交換器と、凝縮器と内部熱交換器との間に設けられ、内部熱交換器に直列接続されたHIC熱交換器と、凝縮器とHIC熱交換器との間から分岐し、HIC熱交換器を経由して圧縮機に冷媒を導くバイパス配管と、凝縮器からバイパス配管に流入する冷媒を減圧してHIC熱交換器へ流出する副膨張弁と、を有し、HIC熱交換器は、凝縮器から主配管を通じて流入する冷媒と、凝縮器から副膨張弁を介して流入する冷媒とを熱交換させるものである。
 本発明によれば、内部熱交換器に直列接続されたHIC熱交換器が、凝縮器から主配管を通じて流入する冷媒と、凝縮器からバイパス配管を通じて流入する冷媒とを熱交換させるように構成したことから、内部熱交換器による熱交換量を軽減することができるため、冷媒としてHFO-1234yfもしくはHFO-1234zeを用いる場合においても、内部熱交換器の伝熱部の長さを短縮し、かつ効率の向上を図ることができる。
本発明の実施の形態1に係る冷凍サイクル装置の冷媒回路図を含むシステム構成図である。 図1の冷凍サイクル装置の動作状態を示すP-h線図である。 図1の制御装置による給湯運転時の制御動作を示すフローチャートである。 図1の冷凍サイクル装置の全冷凍能力に対する内部熱交換器の熱交換量の比率とCOPとの関係をシミュレーションした結果を示す特性図である。 図1の冷凍サイクル装置の全冷凍能力に対する内部熱交換器の熱交換量の比率と、HIC熱交換器の出口の第1過熱度SHhとの関係を示す特性図である。 図1の冷凍サイクル装置における内部熱交換器の熱交換量に対するHIC熱交換器の熱交換量の比率とCOPとの関係を示す特性図である。 本発明の実施の形態2に係る冷凍サイクル装置の冷媒回路図を含むシステム構成図である。 図7の冷凍サイクル装置の動作状態を示すP-h線図である。 図7の制御装置による給湯運転時の制御動作を示すフローチャートである。 図7の冷凍サイクル装置の全冷凍能力に対する内部熱交換器の熱交換量の比率とCOPとの関係をシミュレーションした結果を示す特性図である。 図7の冷凍サイクル装置の全冷凍能力に対する内部熱交換器の熱交換量の比率と、HIC熱交換器の出口の第1過熱度SHhとの関係を示す特性図である。 図7の冷凍サイクル装置における内部熱交換器の熱交換量に対するHIC熱交換器の熱交換量の比率とCOPとの関係を示す特性図である。
 実施の形態1.
 図1は、本発明の実施の形態1に係る冷凍サイクル装置の冷媒回路図を含むシステム構成図である。図1には、負荷側の水の温度を上げる加熱運転を実施している時の状態が示されている。
 本実施の形態1における冷凍サイクル装置100は、圧縮機10と四方弁20と凝縮器30と主膨張弁80と蒸発器60とが環状に接続されて構成されている。また、冷凍サイクル装置100は、凝縮器30と主膨張弁80との間に、直列接続されたHIC(Heat Inter Changer)熱交換器50と内部熱交換器70とが配設されている。すなわち、冷凍サイクル装置100は、圧縮機10、凝縮器30、主膨張弁80、及び蒸発器60が主配管1を介して接続された冷媒回路と、凝縮器30と主膨張弁80との間に流れる冷媒と、蒸発器60と圧縮機10との間に流れる冷媒とを熱交換させて、蒸発器を流出した冷媒を圧縮機10の吸入側に流入させる内部熱交換器70と、凝縮器30と内部熱交換器70との間に設けられ、内部熱交換器70に直列接続されたHIC熱交換器50と、を有している。
 冷凍サイクル装置100は、冷媒配管として、圧縮機10、四方弁20、凝縮器30、HIC熱交換器50、内部熱交換器70、主膨張弁80、及び蒸発器60に冷媒を循環させる主配管1を有している。また、冷凍サイクル装置100は、凝縮器30とHIC熱交換器50との間から分岐し、HIC熱交換器50を経由して圧縮機10に冷媒を導くバイパス配管2を有している。バイパス配管2は、凝縮器30の出口から延びる主配管1より分岐して、凝縮器30を流出した高圧液冷媒の一部をバイパスして主配管1に流入させるものであり、内部熱交換器70から延びる主配管1に連結されている。さらに、冷凍サイクル装置100は、凝縮器30からバイパス配管2に流入する冷媒を減圧してHIC熱交換器50へ流出する副膨張弁40を有している。すなわち、バイパス配管2は、凝縮器30を通過した高圧液冷媒の一部をバイパスして副膨張弁40及びHIC熱交換器50を通過させるように構成されている。
 より具体的に、圧縮機10は、例えば容量制御可能なインバータ圧縮機等からなり、低温低圧ガス冷媒を吸引して圧縮し、高温高圧ガス冷媒の状態にして吐出するものである。四方弁20は、圧縮機10から吐出された高温高圧ガス冷媒と、圧縮機10に吸引させる低温低圧ガス冷媒の方向を切り替えるものである。凝縮器30は、例えばプレート式熱交換器からなり、圧縮機10から吐出されて四方弁20を通過した高温高圧ガス冷媒を水と熱交換させて放熱させるものである。
 副膨張弁40は、バイパス配管2に配設され、凝縮器30を通過した高圧液冷媒を減圧して低圧二相冷媒とするものである。HIC熱交換器50は、凝縮器30から流出され主配管1を通過した高圧液冷媒と、副膨張弁40において減圧された低圧二相冷媒とを熱交換させるものである。蒸発器60は、例えばフィンプレート式熱交換器等からなり、冷媒を空気と熱交換させて蒸発させるものである。内部熱交換器70は、例えば二重管を有しており、HIC熱交換器50を通過した高圧液冷媒と蒸発器60を通過した低圧ガス冷媒とを熱交換させるものである。主膨張弁80は、内部熱交換器70を通過した高圧液冷媒を低圧二相冷媒に減圧するものである。
 冷凍サイクル装置100では、圧縮機10、凝縮器30、副膨張弁40、HIC熱交換器50、内部熱交換器70、主膨張弁80、及び蒸発器60に順次冷媒を循環させる冷媒回路が形成されている。冷凍サイクル装置100は、冷媒として、HFO-1234yfもしくはHFO-1234zeを含む混合冷媒を使用している。
 冷媒としてのHFO-1234yfもしくはHFO-1234zeは、地球温暖化係数(GWP:Global-warming potential)が4である。一方、従来から使用されているR410AのGWPは2090であり、R407CのGWPは1770である。すなわち、HFO-1234yfもしくはHFO-1234zeは、R410A及びR407Cよりも地球環境に与える影響が小さい冷媒である。
 なお、HFO-1234yfもしくはHFO-1234zeは、R410A及びR407Cに比べて、圧縮機10からの吐出温度が上がりにくいという特徴を有している。また、HFO-1234yfもしくはHFO-1234zeは、水の温度を上げる加熱運転の場合、圧縮機10の吸入過熱度を上げることによって吐出温度を上昇させると、同等能力出力時の凝縮圧力が低下し、効率が向上するという特徴を有する。
 次に、図1及び図2を参照して、冷凍サイクル装置100の給湯運転の動作を説明する。図2は、冷凍サイクル装置100の動作状態を示すP-h線図であり、縦軸に冷媒の絶対圧力P[MPa・abs]、横軸に比エンタルピーh[kJ/kg]をとっている。
 低温低圧のガス状態の冷媒が、圧縮機10に吸引され(C01:圧縮機10吸入口)、圧縮機10で圧縮されて高温高圧ガスとなって吐出される。圧縮機10から吐出された高温高圧ガス冷媒は、四方弁20を経由して凝縮器30へ流入する。凝縮器30へ流入した高温高圧ガス冷媒は、被熱交換媒体である水に放熱し、高圧液冷媒となる。凝縮器30を流出した高圧液冷媒は(C02:凝縮器30出口)、2方向に分岐する。分岐した一方の高圧液冷媒は、バイパス配管2を通じて副膨張弁40へ流入し、減圧膨張されて低温低圧の気液二相冷媒となる(C03:副膨張弁40出口)。分岐したもう一方の高圧液冷媒は、HIC熱交換器50に流入し、副膨張弁40を流出した低温低圧の気液二相冷媒と熱交換し(T01)、高圧過冷却液冷媒となって流出する(C04a:HIC熱交換器50出口)。副膨張弁40を流出した低温低圧の気液二相冷媒は、HIC熱交換器50に流入した高圧液冷媒と熱交換し(T01)、中温低圧ガス冷媒となって流出する(C04b:HIC熱交換器50出口)。
 HIC熱交換器50を流出した高圧過冷却液冷媒は、内部熱交換器70に流入し、蒸発器60を流出して四方弁20を通過した低圧低温のガス冷媒と熱交換し(T02)、さらに過冷却度が大きい液冷媒となって流出する(C05:内部熱交換器70出口)。内部熱交換器70を流出した過冷却液冷媒は、主膨張弁80へ流入し、減圧膨張されて低圧二相冷媒となり、蒸発器60に流入する(C06:蒸発器60入口)。蒸発器60に流入した低圧二相冷媒は、被熱交換媒体である空気を冷却し、蒸発して低温低圧のガス冷媒となって流出する(C07:蒸発器60出口)。
 蒸発器60を流出した低温低圧のガス冷媒は、再び四方弁20を通過したのち、内部熱交換器70に流入し、HIC熱交換器50を流出した高圧液冷媒と熱交換して(T02)、中温低圧ガス冷媒となって流出する(C08:内部熱交換器70出口)。内部熱交換器70を流出した中温低圧ガス冷媒は、HIC熱交換器50を流出した中温低圧ガス冷媒と合流し、過熱度が大きな低圧ガスとなって圧縮機10に再び吸引される(C01:圧縮機10吸入口)。
 なお、内部熱交換器70の圧縮機10の吸入側には、圧縮機10に吸入する前の低圧ガスを流すため、伝熱部の長さが長くなることは、低圧圧力損失が増大して冷凍サイクル装置100の効率を悪化させる要因となる。一方、HIC熱交換器50のガス側であるバイパス配管2には、圧縮機10の吸入側にバイパスする少量の二相冷媒を流すため、圧力損失による冷凍サイクル装置100の効率に対する影響はない。よって、HIC熱交換器50を有する冷凍サイクル装置100によれば、内部熱交換器70の伝熱部の長さを短縮し、効率化を図ることができる。また、HIC熱交換器50は、内部熱交換器70に比べて細い配管で構成することができ、コンパクトな構成とすることができる。
 次に、図1を参照して、冷凍サイクル装置100の制御構成について説明する。冷凍サイクル装置100は、冷媒回路を流れる冷媒の状態を検知する状態検知部と、例えばDSP等のマイコンからなり、状態検知部による検知の結果をもとに副膨張弁40及び主膨張弁80の開度を制御する制御装置90と、を有している。状態検知部は、圧縮機10に吸入されるガス冷媒の圧力である吸入圧力Psを検知する圧力センサ110と、HIC熱交換器50を流出するガス冷媒の温度であるHIC出口温度Thoを検知するHIC出口温度センサ120と、蒸発器60を流出するガス冷媒の温度である蒸発器出口温度Theを検知する蒸発器出口温度センサ130と、を有している。
 制御装置90は、状態検知部による検知の結果を用いてHIC熱交換器50の出口の過熱度である第1過熱度を演算する過熱度演算部90aと、第1過熱度が予め設定された目標範囲となるように、副膨張弁40の開度を制御する弁制御部90cと、を有している。
 より具体的に、制御装置90は、圧力センサ110において検知された吸入圧力Psの飽和温度f(Ps)を算出し、HIC出口温度センサ120において検知されたHIC出口温度Thoから飽和温度f(Ps)を減算して、HIC熱交換器50のガス出口の加熱度である第1過熱度SHhを演算する過熱度演算部90aと、過熱度演算部90aにおいて演算された第1過熱度SHhと、予め設定された許容下限である第1設定値とを比較し、第1過熱度SHhが第1設定値未満であるか否かを判定する過熱度判定部90bと、過熱度判定部90bによる判定の結果をもとに、副膨張弁40及び主膨張弁80の開度を制御する弁制御部90cと、を有している。
 過熱度判定部90bは、第1過熱度SHhが第1設定値以上であると判定した場合に、第1過熱度SHhと予め設定された許容上限である第2設定値とを比較し、第1過熱度SHhが第2設定値より大きいか否かを判定する機能を有している。弁制御部90cは、過熱度判定部90bにおいて、第1過熱度SHhが第1設定値未満であると判定された場合に、副膨張弁40の開度を小さくするものである。また、弁制御部90cは、過熱度判定部90bにおいて、第1過熱度SHhが第2設定値よりも大きいと判定された場合に、副膨張弁40の開度を大きくするものである。そして、弁制御部90cは、過熱度判定部90bにおいて、第1過熱度SHhが第2設定値以下であると判定された場合に、副膨張弁40の開度を維持するものである。すなわち、本実施の形態1において、上記目標範囲は、第1設定値以上であり且つ第2設定値以下である範囲に設定されている。
 また、過熱度演算部90aは、蒸発器出口温度センサ130において検知された蒸発器出口温度Theから吸入圧力Psの飽和温度f(Ps)を減算して、蒸発器60の出口の過熱度である第2過熱度SHeを演算する機能を有している。過熱度判定部90bは、過熱度演算部90aにおいて演算された第2過熱度SHeと、予め設定された第3設定値(目標値)とを比較し、第2過熱度SHeが第3設定値未満であるか否かを判定する機能を有している。弁制御部90cは、過熱度判定部90bにおいて、第2過熱度SHeが第3設定値未満であると判定された場合に、主膨張弁80の開度を小さくし、第2過熱度SHeが第3設定値以上であると判定された場合に、主膨張弁80の開度を大きくするものである。すなわち、弁制御部90cは、第2過熱度SHeが目標値である第6設定値となるように、主膨張弁80の開度を制御するものである。
 次に、図1及び図3を参照して、給湯運転時の制御装置90による主膨張弁80及び副膨張弁40の開閉制御の手順を説明する。図3は、制御装置90による給湯運転時の制御動作を示すフローチャートである。
 まず、過熱度演算部90aは、圧力センサ110において検知された吸入圧力Psを入力し(図3:ステップS101)、HIC出口温度センサ120において検出されたHIC出口温度Thoを入力する(図3:ステップS102)。過熱度演算部90aは、吸入圧力Psの飽和温度f(Ps)を算出し、HIC出口温度Thoから算出したf(Ps)を減算して、HIC熱交換器50のガス出口の第1過熱度SHhを演算する(図3:ステップS103)。
 過熱度判定部90bは、過熱度演算部90aにおいて演算された第1過熱度SHhと第1設定値とを比較し、第1過熱度SHhが第1設定値未満であるか否かを判定する(図3:ステップS104)。弁制御部90cは、過熱度判定部90bにおいて、第1過熱度SHhが第1設定値未満であると判定された場合に(図3:ステップS104/Yes)、副膨張弁40の開度を小さくし、HIC熱交換器50の熱交換量を抑制させる(図3:ステップS105)。一方、弁制御部90cは、過熱度判定部90bにおいて、第1過熱度SHhが第1設定値以上であると判定された場合に(図3:ステップS104/No)、第1過熱度SHhと第2設定値とを比較し、第1過熱度SHhが第2設定値より大きいか否かを判定する(図3:ステップS106)。
 次に、過熱度判定部90bは、過熱度演算部90aにおいて演算された第1過熱度SHhと第2設定値とを比較し、第1過熱度SHhが第2設定値より大きいか否かを判定する(図3:ステップS106)。弁制御部90cは、過熱度判定部90bにおいて、第1過熱度SHhが第2設定値より大きいと判定された場合に(図3:ステップS106/Yes)、副膨張弁40の開度を大きくし、HIC熱交換器50の熱交換量を増加させる(図3:ステップS107)。一方、弁制御部90cは、過熱度判定部90bにおいて、第1過熱度SHhが第2設定値以下であると判定された場合には(図3:ステップS106/No)、現在の副膨張弁40の開度を維持する(図3:ステップS108)。すなわち、弁制御部90cは、第1過熱度が、第1設定値以上第2設定値以下である目標範囲となるように、副膨張弁40の開度を制御する。
 次に、過熱度演算部90aは、蒸発器出口温度センサ130において検知された蒸発器出口温度Theを入力する(図3:ステップS109)。過熱度演算部90aは、蒸発器出口温度センサ130から入力した蒸発器出口温度Theから吸入圧力Psの飽和温度f(Ps)を減算して、蒸発器60の出口における第2過熱度SHeを演算する(図3:ステップS110)。過熱度判定部90bは、過熱度演算部90aにおいて演算された第2過熱度SHeと第3設定値とを比較し、第2過熱度SHeが第3設定値未満であるか否かを判定する(図3:ステップS111)。
 弁制御部90cは、過熱度判定部90bにおいて、第2過熱度SHeが第3設定値未満であると判定された場合に(図3:ステップS111/Yes)、主膨張弁80の開度を小さくし、蒸発器60の熱交換量を抑制させる(図3:ステップS112)。一方、弁制御部90cは、過熱度判定部90bにおいて、第2過熱度SHeが第3設定値以上であると判定された場合に(図3:ステップS111/No)、主膨張弁80の開度を大きくし、蒸発器60の熱交換量を増加させる(図3:ステップS113)。
 図4は、冷凍サイクル装置100の全冷凍能力(以下単に「全冷凍能力」という。)に対する内部熱交換器70の熱交換量の比率と、COPとの関係をシミュレーションした結果を示す特性図である。図4を参照して、冷凍サイクル装置100のCOP(Coefficient Of Performance:成績係数)が良好な値をとる領域について説明する。図4の場合は、全冷凍能力に対する内部熱交換器70の熱交換量の比率が約4%のときにピーク値をとっている。内部熱交換器70の伝熱部の長さが短すぎると(全冷凍能力に対する内部熱交換器70の熱交換量の比率が所定の下限量より小さくなると)、圧縮機10の吸入過熱度が小さくなり、圧縮機10の吐出温度の上昇が小さくなるため、COPが低くなる。一方、内部熱交換器70の伝熱部の長さが長すぎると(全冷凍能力に対する内部熱交換器70の熱交換量の比率が所定の上限量より大きくなると)、内部熱交換器70の低圧ガス側の冷媒圧力損失が大きくなり、COPが低下する。
 図4に示すように、冷凍サイクル装置100は、全冷凍能力に対する内部熱交換器70の熱交換量の比率が2.4%以上7%未満の範囲であれば、COPが良好な値をとる領域で運転することができる。本実施の形態1において、COPが良好な値をとる領域は、COPが100%以上の領域とする。つまり、冷凍サイクル装置100は、全冷凍能力に対する内部熱交換器70の熱交換量の比率が2.4%以上7%未満となるように、内部熱交換器70の伝熱部の長さを設定している。
 図5は、全冷凍能力に対する内部熱交換器70の熱交換量の比率と、HIC熱交換器50の出口の第1過熱度SHhとの関係を示す特性図である。図5を参照して、全冷凍能力に対する内部熱交換器70の熱交換量の比率の調整方法を説明する。図5に示すように、HIC熱交換器50の出口の第1過熱度SHhを制御することにより、全冷凍能力に対する内部熱交換器70の熱交換量の比率を制御することができる。本実施の形態1では、全冷凍能力に対する内部熱交換器70の熱交換量の比率が2.4%以上7%未満の範囲となるように、第1過熱度SHhの許容下限である第1設定値が15℃に設定され、第1過熱度SHhの許容上限である第2設定値が44℃に設定されている。すなわち、弁制御部90cは、第1過熱度SHhが目標範囲内の値となるように、副膨張弁40の開度を制御するように構成されている。
 図6は、冷凍サイクル装置200における、内部熱交換器70の熱交換量に対するHIC熱交換器50の熱交換量の比率とCOPとの関係を示す特性図である。図6を参照して、HIC熱交換器50及び内部熱交換器70の熱交換量と、冷凍サイクル装置100のCOPが良好な値をとる領域との関係について説明する。
 加熱運転時の冷媒の流れに関しては、HIC熱交換器50が上流側にあり、内部熱交換器70が下流側にあるため、HIC熱交換器50の熱交換量を増やすと、内部熱交換器70に流入する高圧液冷媒の温度が低下する。すなわち、HIC熱交換器50の熱交換量が増えると、内部熱交換器70の熱交換量が減少する関係にあり、図6に示すように、内部熱交換器70の熱交換量に対するHIC熱交換器50の熱交換量の比率に対し、COPのピーク値が存在する。
 本実施の形態1では、内部熱交換器70の熱交換量に対するHIC熱交換器50の熱交換量の比率が、160%以上700%以下となるように設定されている。かかる設定により、冷凍サイクル装置100は、図6に示すように、COPが良好な値をとる領域で運転することができる。
 以上のように、本実施の形態1における冷凍サイクル装置100は、内部熱交換器70に直列接続されたHIC熱交換器50を有しており、HIC熱交換器50が、凝縮器30から主配管1を通じて流入する高圧冷媒と、凝縮器30からバイパス配管2上の副膨張弁40を介して流入する二相冷媒とを熱交換させるという構成を採っている。このため、内部熱交換器70による熱交換量を軽減することができることから、圧縮機10の吸入側の冷媒圧力損失の要因となる内部熱交換器70の伝熱部の長さを必要以上に長くすることなく、COPが高い領域での運転を実現することができる。すなわち、冷凍サイクル装置100によれば、内部熱交換器70による熱交換量を軽減することができるため、冷媒としてHFO-1234yfもしくはHFO-1234zeを用いる場合においても、内部熱交換器70の伝熱部の長さを短縮し、かつ効率の向上を図ることができる。加えて、弁制御部90cは、第2過熱度が予め設定された目標値(第3設定値)となるように主膨張弁80の開度を制御するという構成を採っているため、副膨張弁40の制御が蒸発器60側に与える影響を最小限に抑制することができる。
 また、従来は、内部熱交換器が長尺の二重管構成となっていたため、生産性が低下するという課題があるが、冷凍サイクル装置100では、内部熱交換器70の伝熱部の長さを短縮することができるため、生産性の向上を図ることができる。さらに、HIC熱交換器50を通過するバイパス配管2は、少量の二相冷媒を流すように構成されているため、圧力損失による冷凍サイクル装置200の効率に対する影響は抑制されている。よって、HIC熱交換器50を有する冷凍サイクル装置200によれば、内部熱交換器70の伝熱部の長さを短縮し、効率化を図ることができる。また、HIC熱交換器50は、内部熱交換器70に比べて細い配管で構成することができるため、装置のコンパクト化を実現することができる。さらに、HIC熱交換器50に細い配管を用いてコンパクト化を図ることにより、従来構成よりも、機器の寸法を小さくすることができるため、設置性の向上、機器の軽量化、及び低コスト化を実現することができる。
 加えて、本実施の形態1の冷凍サイクル装置100は、地球温暖化係数が低いHFO-1234yfもしくはHFO-1234zeを使用するように構成されているため、地球環境への影響を低減することができる。
 実施の形態2.
 次に、図7~図12を参照して、本発明の実施の形態2に係る冷凍サイクル装置の構成及び動作について説明する。図7は、本実施の形態2に係る冷凍サイクル装置200の冷媒回路図を含むシステム構成図である。図7には、負荷側の水の温度を上げる加熱運転を実施している時の状態が示されている。前述した実施の形態1と同一の構成部材については同一の符号を用いるものとする。
 冷凍サイクル装置200は、例えば容量制御可能なインバータ圧縮機等で構成され、低温低圧ガス冷媒を吸引し、圧縮して高温高圧ガス冷媒の状態にして吐出する圧縮機15を有している。圧縮機15は、圧縮工程において、バイパス配管2に流入しHIC熱交換器50を流出した中間圧の冷媒(中圧冷媒)をインジェクションするインジェクションポート(図示せず)及び中間室(図示せず)を有している。すなわち、HIC熱交換器50を流出したガス冷媒は、インジェクションポートを介して圧縮機15の圧力室内に設けられた中間室にインジェクションされる。
 次に、図7及び図8を参照して、冷凍サイクル装置200の給湯運転の動作を説明する。図8は、冷凍サイクル装置200の動作状態を示すP-h線図であり、縦軸に冷媒の絶対圧力P[MPa・abs]、横軸に比エンタルピーh[kJ/kg]をとっている。
 低温低圧のガス状態の冷媒が(C11:内部熱交換器70出口)、圧縮機15に吸引され、圧縮機15で圧縮されて高温高圧ガスとなって吐出される。圧縮機15から吐出された高温高圧ガス冷媒は、四方弁20を経由して凝縮器30へ流入する。凝縮器30へ流入した高温高圧ガス冷媒は、被熱交換媒体である水に放熱し、高圧液冷媒となる。凝縮器30を流出した高圧液冷媒は(C12:凝縮器30出口)、2方向に分岐する。分岐した一方の高圧液冷媒は、バイパス配管2を通じて副膨張弁40へ流入し、減圧膨張されて中温中圧の気液二相冷媒となる(C13:副膨張弁40出口)。分岐したもう一方の高圧液冷媒は、HIC熱交換器50に流入し、副膨張弁40を流出した中温中圧の気液二相冷媒と熱交換し(T11)、高圧過冷却液冷媒となって流出する(C14a:HIC熱交換器50出口)。副膨張弁40を流出した中温中圧の気液二相冷媒は、HIC熱交換器50に流入した高圧液冷媒と熱交換して(T11)加熱ガスとなり(C14b:HIC熱交換器50出口)、圧縮機15の中間圧にインジェクションされる(C15:中間圧合流部)。
 HIC熱交換器50を流出した高圧過冷却液冷媒は、内部熱交換器70に流入し、蒸発器60を流出して四方弁20を通過した低圧低温のガス冷媒と熱交換し(T12)、さらに過冷却度が大きい液冷媒となって流出する(C16:内部熱交換器70出口)。内部熱交換器70を流出した過冷却液冷媒は、主膨張弁80へ流入し、減圧膨張されて低圧二相冷媒となり、蒸発器60に流入する(C17:内部熱交換器70入口)。蒸発器60に流入した低圧二相冷媒は、被熱交換媒体である空気を冷却し、蒸発して低温低圧のガス冷媒となって流出する(C18:蒸発器60出口)。
 蒸発器60を流出した低温低圧のガス冷媒は、再び四方弁20を通過したのち、内部熱交換器70に流入し、HIC熱交換器50を流出した高圧液冷媒と熱交換することにより(T12)、過熱度の大きなガス冷媒となり、圧縮機15に再び吸引される。
 なお、内部熱交換器70のガス側である主配管1には、圧縮機10に吸入する前の低圧ガスを流すため、配管長が長くなると、低圧圧力損失が増大して冷凍サイクル装置200の効率を悪化させる要因となる。一方、HIC熱交換器50のガス側であるバイパス配管2には、圧縮機10の吸入側にバイパスする少量の二相冷媒を流すため、圧力損失による冷凍サイクル装置200の効率に対する影響はない。したがって、HIC熱交換器50は、内部熱交換器70に比べて細い配管で構成することができ、コンパクトな構成とすることができる。
 次に、図7を参照して、冷凍サイクル装置200の制御構成について説明する。冷凍サイクル装置200は、冷媒回路を流れる冷媒の状態を検知する状態検知部と、状態検知部による検知の結果をもとに副膨張弁40及び主膨張弁80の開度を制御する制御装置190と、を有している。本実施の形態2の状態検知部は、圧縮機10に吸入されるガス冷媒の圧力である吸入圧力Psを検知する圧力センサ110と、HIC熱交換器50を流出するガス冷媒の温度であるHIC出口温度Thoを検知するHIC出口温度センサ120と、HIC熱交換器50に流入するガス冷媒の温度であるHIC入口温度Thiを検知するHIC入口温度センサ210と、内部熱交換器70から流出して圧縮機15に吸入されるガス冷媒の温度である吸入温度Tsを検知する吸入温度センサ230と、圧力センサ110、HIC出口温度センサ120、HIC入口温度センサ210と、を有している。
 制御装置190は、HIC出口温度センサ120において検知されたHIC出口温度Thoから、HIC入口温度センサ210において検知されたHIC入口温度Thiを減算して、HIC熱交換器50のガス出口の過熱度である第1過熱度SHhを演算する過熱度演算部190aと、過熱度演算部190aにおいて演算された第1過熱度SHhと、予め設定された許容下限である第4設定値とを比較し、第1過熱度SHhが第4設定値未満であるか否かを判定する過熱度判定部190bと、過熱度判定部190bによる判定の結果をもとに、副膨張弁40及び主膨張弁80の開度を制御する弁制御部190cと、を有している。
 過熱度判定部190bは、第1過熱度SHhが第4設定値以上であると判定した場合に、第1過熱度SHhと予め設定された許容上限である第5設定値とを比較し、第1過熱度SHhが第5設定値よりも大きいか否かを判定する機能を有している。弁制御部190cは、過熱度判定部190bにおいて第1過熱度SHhが第4設定値未満であると判定された場合に、副膨張弁40の開度を小さくするものである。弁制御部190cは、過熱度判定部190bにおいて、第1過熱度SHhが第5設定値より大きいと判定された場合に、副膨張弁40の開度を大きくするものである。そして、弁制御部190cは、過熱度判定部190bにおいて、第1過熱度SHhが第5設定値以下であると判定された場合に、副膨張弁40の開度を維持するものである。すなわち、本実施の形態2において、上記目標範囲は、第4設定値以上であり且つ第5設定値以下である範囲に設定されている。
 また、過熱度演算部190aは、圧力センサ110において検知された吸入圧力Psの飽和温度f(Ps)を算出し、吸入温度センサ230において検知された吸入温度Tsから飽和温度f(Ps)を減算して、圧縮機15の吸入口の過熱度である第3過熱度SHsを演算する機能を有している。過熱度判定部190bは、過熱度演算部190aにおいて演算された第3過熱度SHsと、予め設定された第6設定値(目標値)とを比較し、第3過熱度SHsが第6設定値未満であるか否かを判定する機能を有している。弁制御部190cは、過熱度判定部190bにおいて、第3過熱度SHsが第6設定値未満であると判定された場合に、主膨張弁80の開度を小さくし、第3過熱度SHsが第6設定値以上であると判定された場合に、主膨張弁80の開度を大きくするように構成されている。すなわち、弁制御部190cは、第3過熱度SHsが目標値である第6設定値となるように、主膨張弁80の開度を制御するものである。
 次に、図7及び図9を参照して、給湯運転時の制御装置190による主膨張弁80及び副膨張弁40の開閉制御の手順を説明する。図9は、制御装置190による給湯運転時の制御動作を示すフローチャートである。
 まず、過熱度演算部190aは、HIC入口温度センサ210において検知されたHIC入口温度Thiを入力し(図9:ステップS201)、HIC出口温度センサ120において検出されたHIC出口温度Thoを入力する(図9:ステップS202)。過熱度演算部190aは、HIC出口温度ThoからHIC入口温度Thiを減算して、HIC熱交換器50のガス出口の第1過熱度SHhを演算する(図9:ステップS203)。
 過熱度判定部190bは、過熱度演算部190aにおいて演算された第1過熱度SHhと第4設定値とを比較し、第1過熱度SHhが第4設定値未満であるか否かを判定する(図9:ステップS204)。弁制御部190cは、過熱度判定部190bにおいて、第1過熱度SHhが第4設定値未満であると判定された場合に(図9:ステップS204/Yes)、副膨張弁40の開度を小さくし、HIC熱交換器50の熱交換量を抑制させる(図9:ステップS205)。
 一方、過熱度判定部190bは、第1過熱度SHhが第4設定値以上であると判定した場合に(図9:ステップS204/No)、第1過熱度SHhと第5設定値とを比較し、第1過熱度SHhが第5設定値より大きいか否かを判定する(図9:ステップS206)。弁制御部190cは、過熱度判定部190bにおいて、第1過熱度SHhが第5設定値より大きいと判定された場合に(図9:ステップS206/Yes)、副膨張弁40の開度を大きくし、HIC熱交換器50の熱交換量を増加させる(図9:ステップS207)。一方、弁制御部190cは、過熱度判定部190bにおいて、第1過熱度SHhが第5設定値以下であると判定された場合には(図9:ステップS206/No)、現在の副膨張弁40の開度を維持する(図9:ステップS208)。すなわち、弁制御部190cは、第1過熱度が、第4設定値以上第5設定値以下である目標範囲となるように、副膨張弁40の開度を制御する。
 次に、過熱度演算部190aは、圧力センサ110において検知された吸入圧力Psを入力し(図9:ステップS209)、吸入温度センサ230において検知された吸入温度Tsを入力する(図9:ステップS210)。過熱度演算部190aは、吸入圧力Psの飽和温度f(Ps)を算出し、吸入温度Tsから飽和温度f(Ps)を減算して、圧縮機15の吸入口の第3過熱度SHsを演算する(図9:ステップS211)。
 過熱度判定部190bは、過熱度演算部190aにおいて演算された第3過熱度SHsと第6設定値とを比較し、第3過熱度SHsが第6設定値未満であるか否かを判定する(図9:ステップS212)。弁制御部190cは、過熱度判定部190bにおいて、第3過熱度SHsが第6設定値未満であると判定された場合に(図9:ステップS212/Yes)、主膨張弁80の開度を小さくし、蒸発器60の熱交換量を抑制させる(図9:ステップS213)。一方、弁制御部190cは、過熱度判定部190bにおいて、第3過熱度SHsが第6設定値以上であると判定された場合に(図9:ステップS212/No)、主膨張弁80の開度を大きくし、蒸発器60の熱交換量を増加させる(図9:ステップS214)。
 図10は、冷凍サイクル装置200の全冷凍能力に対する内部熱交換器70の熱交換量の比率とCOPとの関係をシミュレーションした結果を示す特性図である。図10を参照して、冷凍サイクル装置200のCOPが良好な値をとる領域について説明する。図10に示すように、冷凍サイクル装置200におけるCOPは、全冷凍能力に対する内部熱交換器70の熱交換量の比率が5.5%となる付近にピーク値を有している。すなわち、内部熱交換器70の伝熱部の長さが短すぎると、圧縮機10の吸入過熱度が小さくなり、圧縮機10の吐出温度の上昇が小さくなるため、COPが低くなる。一方、内部熱交換器70の伝熱部の長さが長すぎると、内部熱交換器70の低圧ガス側の冷媒圧力損失が大きくなり、COPが低下する。
 図10に示すように、冷凍サイクル装置200は、全冷凍能力に対する内部熱交換器70の熱交換量の比率が7%未満の範囲であれば、COPが良好な値をとる領域で運転することができる。本実施の形態2においても、COPが良好な値をとる領域は、COPが100%以上の領域とする。つまり、冷凍サイクル装置200は、全冷凍能力に対する内部熱交換器70の熱交換量の比率が7%未満となるように、内部熱交換器70の伝熱部の長さが設定されている。
 図11は、冷凍サイクル装置200の全冷凍能力に対する内部熱交換器70の熱交換量の比率と、HIC熱交換器50の出口の第1過熱度SHhとの関係を示す特性図である。図11を参照して、全冷凍能力に対する内部熱交換器70の熱交換量の比率の調整方法を説明する。図11に示すように、HIC熱交換器50の出口の第1過熱度SHhを制御することにより、全冷凍能力に対する内部熱交換器70の熱交換量の比率を制御することができる。本実施の形態2では、全冷凍能力に対する内部熱交換器70の熱交換量の比率を7%未満とするために、弁制御部190cは、第1過熱度SHhが目標範囲である15℃以下の範囲となるように副膨張弁40の開度を制御する。
 図12は、冷凍サイクル装置200における、内部熱交換器70の熱交換量に対するHIC熱交換器50の熱交換量の比率とCOPとの関係を示す特性図である。図12を参照して、HIC熱交換器50及び内部熱交換器70の熱交換量と、冷凍サイクル装置200のCOPが良好な値をとる領域との関係について説明する。
 加熱運転時の冷媒の流れに関しては、HIC熱交換器50が上流側にあり、内部熱交換器70が下流側にあるため、HIC熱交換器50の熱交換量を増やすと、内部熱交換器70に流入する高圧液冷媒の温度が低下する。すなわち、HIC熱交換器50の熱交換量が増えると、内部熱交換器70の熱交換量が減少する関係にあり、図12に示すように、内部熱交換器70の熱交換量に対するHIC熱交換器50の熱交換量の比率に対し、COPのピーク値が存在する。
 本実施の形態2では、内部熱交換器70の熱交換量に対するHIC熱交換器50の熱交換量の比率が、125%以上280%以下となるように設定されている。かかる設定により、冷凍サイクル装置200は、図12に示すように、COPが良好な値をとる領域で運転することができる。
 以上のように、本実施の形態2における冷凍サイクル装置200は、内部熱交換器70に直列接続されたHIC熱交換器50を有しており、HIC熱交換器50が、凝縮器30から主配管1を通じて流入する冷媒と、凝縮器30からバイパス配管2上の副膨張弁40を介して流入する冷媒とを熱交換させるという構成を採っている。このため、内部熱交換器70による熱交換量を軽減することができることから、圧縮機10の吸入側の冷媒圧力損失の要因となる内部熱交換器70の伝熱部の長さを必要以上に長くすることなく、COPが高い領域での運転を実現することができる。すなわち、冷凍サイクル装置200によれば、内部熱交換器70による熱交換量を軽減することができるため、冷媒としてHFO-1234yfもしくはHFO-1234zeを用いる場合においても、内部熱交換器70の伝熱部の長さを短縮し、かつ効率の向上を図ることができる。加えて、弁制御部190cは、第3過熱度が予め設定された目標値(第6設定値)となるように主膨張弁80の開度を制御するという構成を採っているため、副膨張弁40の制御が蒸発器60側に与える影響を最小限に抑制することができる。
 また、冷凍サイクル装置200では、内部熱交換器70の伝熱部の長さを短縮することができるため、生産性の向上を図ることができる。さらに、HIC熱交換器50を通過するバイパス配管2は、少量の二相冷媒を流すように構成されているため、HIC熱交換器50は、内部熱交換器70に比べて細い配管で構成することができ、コンパクト化を実現することができる。また、HIC熱交換器50に細い配管を用いてコンパクト化を図ることにより、従来構成よりも、機器の寸法を小さくすることができるため、設置性の向上、機器の軽量化、及び低コスト化を実現することができる。加えて、本実施の形態2の冷凍サイクル装置100は、地球温暖化係数が低いHFO-1234yfもしくはHFO-1234zeを使用するように構成されているため、地球環境への影響を低減することができる。
 なお、上述した各実施の形態は、冷凍サイクル装置における好適な具体例であり、本発明の技術的範囲は、これらの態様に限定されるものではない。例えば、上記実施の形態1及び2では、冷凍サイクル装置100及び200が使用する冷媒として、HFO-1234yfもしくはHFO-1234zeを含む混合冷媒を例示しているが、これに限定されず、例えば、HFO-1234yfもしくはHFO-1234zeの単独冷媒を使用してもよい。また、HFO-1234yfもしくはHFO-1234zeを含む混合冷媒として、HFO-1234yfもしくはHFO-1234zeとR32とを混合した混合冷媒を使用してもよい。また、第1過熱度の演算に用いる検出結果は、各実施の形態で例示した各センサによるものに限定されず、例えば、実施の形態1における演算手法を実施の形態2に採用してもよく、実施の形態2における演算手法を実施の形態1に採用してもよい。さらに、実施の形態1における制御装置90が、第3過熱度を用いての判定処理を行うようにしてもよく、実施の形態2における制御装置190が、第2過熱度を用いての判定処理を行うようにしてもよい。
 1 主配管、2 バイパス配管、10、15 圧縮機、20 四方弁、30 凝縮器、40 副膨張弁、50 HIC熱交換器、60 蒸発器、70 内部熱交換器、80 主膨張弁、90、190 制御装置、90a、190a 過熱度演算部、90b、190b 過熱度判定部、90c、190c 弁制御部、100、200 冷凍サイクル装置、110 圧力センサ、120 HIC出口温度センサ、130 蒸発器出口温度センサ、210 HIC入口温度センサ、230 吸入温度センサ、Ps 吸入圧力、SHh 第1過熱度、SHe 第2過熱度、SHs 第3過熱度、The 蒸発器出口温度、Thi HIC入口温度、Tho HIC出口温度、Ts 吸入温度、f(Ps) 飽和温度。

Claims (13)

  1.  圧縮機、凝縮器、主膨張弁、及び蒸発器が主配管を介して接続された冷媒回路と、
     前記凝縮器と前記主膨張弁との間に流れる冷媒と、前記蒸発器と前記圧縮機との間に流れる冷媒とを熱交換させて、前記蒸発器を流出した冷媒を前記圧縮機の吸入側に流入させる内部熱交換器と、
     前記凝縮器と前記内部熱交換器との間に設けられ、前記内部熱交換器に直列接続されたHIC熱交換器と、
     前記凝縮器と前記HIC熱交換器との間から分岐し、前記HIC熱交換器を経由して前記圧縮機に冷媒を導くバイパス配管と、
     前記凝縮器から前記バイパス配管に流入する冷媒を減圧して前記HIC熱交換器へ流出する副膨張弁と、を有し、
     前記HIC熱交換器は、前記凝縮器から前記主配管を通じて流入する冷媒と、前記凝縮器から前記副膨張弁を介して流入する冷媒とを熱交換させるものである冷凍サイクル装置。
  2.  前記冷媒回路を流れる冷媒の状態を検知する状態検知部と、
     前記状態検知部による検知の結果をもとに前記副膨張弁の開度を制御する制御装置と、をさらに有し、
     前記制御装置は、
     前記状態検知部による検知の結果を用いて前記HIC熱交換器の出口の過熱度である第1過熱度を演算する過熱度演算部と、
     前記第1過熱度が予め設定された目標範囲となるように、前記副膨張弁の開度を制御する弁制御部と、を有する請求項1に記載の冷凍サイクル装置。
  3.  前記状態検知部は、
     前記圧縮機に吸入される冷媒の圧力である吸入圧力を検知する圧力センサと、
     前記HIC熱交換器を流出する冷媒の温度であるHIC出口温度を検知するHIC出口温度センサと、を有し、
     前記過熱度演算部は、前記圧力センサにおいて検知された前記吸入圧力から飽和温度を算出した上で、HIC出口温度センサにおいて検知された前記HIC出口温度から前記飽和温度を減算して前記第1過熱度を演算する請求項2に記載の冷凍サイクル装置。
  4.  前記状態検知部は、
     前記HIC熱交換器を流出する冷媒の温度であるHIC出口温度を検知するHIC出口温度センサと、
     前記HIC熱交換器に流入するガス冷媒の温度であるHIC入口温度を検知するHIC入口温度センサと、を有し、
     前記過熱度演算部は、前記HIC出口温度センサにおいて検知された前記HIC出口温度から前記HIC入口温度センサにおいて検知された前記HIC入口温度を減算して、前記第1過熱度を演算する請求項2に記載の冷凍サイクル装置。
  5.  前記状態検知部は、
     前記圧縮機に吸入される冷媒の圧力である吸入圧力を検知する圧力センサと、
     前記蒸発器を流出する冷媒の温度である蒸発器出口温度を検知する蒸発器出口温度センサを有し、
     前記過熱度演算部は、前記圧力センサ及び前記蒸発器出口温度センサによる検知の結果をもとに前記蒸発器の出口の過熱度である第2過熱度を演算する機能を有し、
     前記弁制御部は、
     前記主膨張弁の開度を制御する機能を有すると共に、
     前記第2過熱度が予め設定された目標値となるように、前記主膨張弁の開度を制御する請求項2~4の何れか一項に記載の冷凍サイクル装置。
  6.  前記状態検知部は、
     前記圧縮機に吸入されるガス冷媒の圧力である吸入圧力を検知する圧力センサと、
     前記内部熱交換器から流出して前記圧縮機に吸入されるガス冷媒の温度である吸入温度を検知する吸入温度センサと、を有し、
     前記過熱度演算部は、前記圧力センサ及び前記吸入温度センサによる検知の結果をもとに前記圧縮機の吸入口の過熱度である第3過熱度を演算する機能を有し、
     前記弁制御部は、
     前記主膨張弁の開度を制御する機能を有すると共に、
     前記第3過熱度が予め設定された目標値となるように、前記主膨張弁の開度を制御する請求項2~4の何れか一項に記載の冷凍サイクル装置。
  7.  全冷凍能力に対する前記内部熱交換器の熱交換量の比率が7%未満となるように、前記目標範囲が設定されている請求項2~6の何れか一項に記載の冷凍サイクル装置。
  8.  全冷凍能力に対する前記内部熱交換器の熱交換量の比率が2.4%以上となるように、前記目標範囲が設定されている請求項7に記載の冷凍サイクル装置。
  9.  前記バイパス配管は、前記内部熱交換器の出口から延びる前記主配管に連結されている請求項1~8の何れか一項に記載の冷凍サイクル装置。
  10.  前記圧縮機は、前記バイパス配管に流入し前記HIC熱交換器を流出した冷媒をインジェクションするインジェクションポートを有している請求項1~8の何れか一項に記載の冷凍サイクル装置。
  11.  前記内部熱交換器の熱交換量に対する前記HIC熱交換器の熱交換量の比率は、160%以上700%以下となるように設定されている請求項9に記載の冷凍サイクル装置。
  12.  前記内部熱交換器の熱交換量に対する前記HIC熱交換器の熱交換量の比率は、125%以上280%以下となるように設定されている請求項10に記載の冷凍サイクル装置。
  13.  前記主配管及び前記バイパス配管を循環させる冷媒として、HFO-1234yfもしくはHFO-1234zeの単独冷媒又はHFO-1234yfもしくはHFO-1234zeを含む混合冷媒を使用する請求項1~12の何れか一項に記載の冷凍サイクル装置。
PCT/JP2015/061603 2015-04-15 2015-04-15 冷凍サイクル装置 WO2016166845A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
GB1716734.7A GB2553970B (en) 2015-04-15 2015-04-15 Refrigeration cycle apparatus
JP2017512129A JP6463464B2 (ja) 2015-04-15 2015-04-15 冷凍サイクル装置
PCT/JP2015/061603 WO2016166845A1 (ja) 2015-04-15 2015-04-15 冷凍サイクル装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/061603 WO2016166845A1 (ja) 2015-04-15 2015-04-15 冷凍サイクル装置

Publications (1)

Publication Number Publication Date
WO2016166845A1 true WO2016166845A1 (ja) 2016-10-20

Family

ID=57125704

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/061603 WO2016166845A1 (ja) 2015-04-15 2015-04-15 冷凍サイクル装置

Country Status (3)

Country Link
JP (1) JP6463464B2 (ja)
GB (1) GB2553970B (ja)
WO (1) WO2016166845A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018215425A1 (en) * 2017-05-22 2018-11-29 Swep International Ab Refrigeration system
WO2019207618A1 (ja) * 2018-04-23 2019-10-31 三菱電機株式会社 冷凍サイクル装置および冷凍装置
JPWO2021166126A1 (ja) * 2020-02-19 2021-08-26

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112303944A (zh) 2019-07-31 2021-02-02 特灵国际有限公司 用于控制来自过冷却器的过热的系统和方法
EP4170262A1 (en) * 2021-10-20 2023-04-26 Thermo King Corporation Heat pump, methods of operation and simulation

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006112708A (ja) * 2004-10-14 2006-04-27 Mitsubishi Electric Corp 冷凍空調装置
JP2011179689A (ja) * 2010-02-26 2011-09-15 Hitachi Appliances Inc 冷凍サイクル装置
JP2012207843A (ja) * 2011-03-29 2012-10-25 Fujitsu General Ltd ヒートポンプ装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5409715B2 (ja) * 2011-07-04 2014-02-05 三菱電機株式会社 空気調和装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006112708A (ja) * 2004-10-14 2006-04-27 Mitsubishi Electric Corp 冷凍空調装置
JP2011179689A (ja) * 2010-02-26 2011-09-15 Hitachi Appliances Inc 冷凍サイクル装置
JP2012207843A (ja) * 2011-03-29 2012-10-25 Fujitsu General Ltd ヒートポンプ装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018215425A1 (en) * 2017-05-22 2018-11-29 Swep International Ab Refrigeration system
US11480367B2 (en) 2017-05-22 2022-10-25 Swep International Ab Refrigeration system
WO2019207618A1 (ja) * 2018-04-23 2019-10-31 三菱電機株式会社 冷凍サイクル装置および冷凍装置
CN112005062A (zh) * 2018-04-23 2020-11-27 三菱电机株式会社 制冷循环装置以及制冷装置
JPWO2019207618A1 (ja) * 2018-04-23 2021-02-12 三菱電機株式会社 冷凍サイクル装置および冷凍装置
CN112005062B (zh) * 2018-04-23 2022-06-14 三菱电机株式会社 制冷循环装置以及制冷装置
JPWO2021166126A1 (ja) * 2020-02-19 2021-08-26

Also Published As

Publication number Publication date
GB2553970A (en) 2018-03-21
GB201716734D0 (en) 2017-11-29
JPWO2016166845A1 (ja) 2017-12-14
GB2553970B (en) 2020-08-05
JP6463464B2 (ja) 2019-02-06

Similar Documents

Publication Publication Date Title
JP5318099B2 (ja) 冷凍サイクル装置、並びにその制御方法
JP5452138B2 (ja) 冷凍空調装置
JP5430667B2 (ja) ヒートポンプ装置
US9523520B2 (en) Air-conditioning apparatus
WO2013111176A1 (ja) 空気調和装置
JP6463464B2 (ja) 冷凍サイクル装置
US10208987B2 (en) Heat pump with an auxiliary heat exchanger for compressor discharge temperature control
US10018389B2 (en) Air-conditioning apparatus
WO2014128830A1 (ja) 空気調和装置
US9677790B2 (en) Multi-room air-conditioning apparatus
AU2012303446A1 (en) Refrigeration apparatus
EP3109566B1 (en) Air conditioning device
WO2011089652A1 (ja) 空調給湯複合システム
WO2014128831A1 (ja) 空気調和装置
JPWO2016113899A1 (ja) 冷凍サイクル装置
US10473354B2 (en) Air-conditioning apparatus
WO2015140883A1 (ja) 空気調和機
WO2017002377A1 (ja) 冷凍サイクル装置
CN113710971B (zh) 空气调节装置
US20220090815A1 (en) Air-conditioning apparatus
KR101923770B1 (ko) 엔진 구동식 공기 조화 장치
JP7361913B2 (ja) 冷凍サイクル装置
JPWO2018016058A1 (ja) 冷凍サイクル装置
KR20080024378A (ko) 공기조화기

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15889183

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017512129

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 201716734

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20150415

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15889183

Country of ref document: EP

Kind code of ref document: A1